
Efficient chaotic iteration strategies
with widenings

François Bourdoncle

DIGITAL Paris Research Laboratory Centre de Mathématiques Appliquées
85, avenue Victor Hugo Ecole des Mines de Paris

92500 Rueil-Malmaison — France Sophia-Antipolis
Tel: +33 (1) 47 14 28 22 06560 Valbonne — France

bourdoncle@prl.dec.com

Abstract. Abstract interpretation is a formal method that enables the static and automatic
determination of run-time properties of programs. This method uses a characterization of
program invariants as least and greatest fixed points of continuous functions over complete
lattices of program properties. In this paper, we study precise and efficient chaotic iteration
strategies for computing such fixed points when lattices are of infinite height and speedup
techniques, known as widening and narrowing, have to be used. These strategies are based
on a weak topological ordering of the dependency graph of the system of semantic equations
associated with the program and minimize the loss in precision due to the use of widening
operators. We discuss complexity and implementation issues and give precise upper bounds on
the complexity of the intraprocedural and interprocedural abstract interpretation of higher-order
programs based on the structure of their control flow graph.

1 Introduction

Abstract interpretation [7, 10, 11] is a formal method that enables the static and auto-
matic determination of run-time properties of programs, such as the range [2, 4, 5] or
congruence properties [15] of integer variables, linear inequalities [9] between variables,
data aliasing [2, 4, 12, 13], etc. This method is based on a characterization of programs
invariants as either least or greatest fixed points of continuous functions over complete
lattices, which are classically computed by iterative computations starting from either
the smallest element or the largest element of the lattice. Efficient computation of ex-
tremal fixed points of functions over lattices of finite height is a classical topic [17, 19].
Unfortunately, abstract interpretation also has to deal with lattices of infinite or very
large height. For instance, when the values of the integer variables of a program are
coded on n bits, the lattice of intervals, which is used to compute the maximum range
of these variables, is of height 2n and iterative computations of extremal fixed points of
functions over this lattice have a worst-case complexity of 2n, which is unacceptable in
practice. Speed-up techniques, known as widening and narrowing [7, 11], have been
designed to determine safe approximations of extremal fixed points of continuous func-
tion over lattices of infinite height, non-complete lattices [9], and even complete partial

orders [3, 4]. When the control flow graph of the program being analyzed is known
in advance (as is the case for intraprocedural abstract interpretation) the fixed point
equation to be solved amounts to a system of equations, each equation being associated
with a control point c 2 C. In this case, widening techniques require that widening (i.e.
generalization) operators be applied at each control point of a set of widening points
W such that every cycle in the dependency graph of the system is cut by at least one
widening point. Of course, it is always possible to choose W = C, but this leads to very
poor results. In this paper, we propose efficient and precise algorithms for computing
approximate fixed points of continuous functions over lattices of infinite height by an
appropriate use of widening and narrowing operators.

The paper is organized as follows. In section 2, we review the classical notions of
widening operators, narrowing operators and chaotic iterations. Then, in section 3, we
introduce the notion of weak topological ordering of directed graphs, which generalizes
the notion of topological ordering of directed acyclic graphs. We show that this notion is
very well suited to the design of chaotic iteration strategies with widenings and give the
worst-case complexity of the corresponding algorithms. In section 4, we present three
algorithms for computing weak topological orderings with different price/performance
ratios. In section 5, we apply the previous theoretical framework to the intraprocedural
abstract interpretationof programs. Finally, in section 6, we describe a simple algorithm
for the interprocedural abstract interpretation of higher-order programs (for which the
control flow graph is not known in advance) and deduce its worst-case complexity from
a canonical weak topological ordering of the interprocedural call graph.

2 Chaotic iterations

A central problem in the abstract interpretation of a program is to compute the least (or
greatest) solution of a system of semantic equations of the form:8><>: x1 = Φ1(x1; : : : ; xn)

...
xn = Φn(x1; : : : ; xn)

where each index i 2 C = [1; n] represents a control point of the program, and each
function Φi is a continuous function from Ln to L (L being the abstract lattice of
program properties) which computes the property holding at point i after one program
step executed from any point leading to i. The dependency graph of this system is a
graph with set of vertices C such that there is an edge i ! j if Φj depends on its i-th
parameter, that is, if it is possible to jump from point i to point j by executing a single
program step. In most cases, this graph is thus identical to the control flow graph of the
program. For the sake of simplicity, we shall suppose that point 1 is the entry point of
the program and that every other point is reachable from 1.

A naive algorithm for solving this system consists in applying each equation in
parallel until the vector (x1; : : : ; xn) stabilizes, starting from the least (or greatest)
element of Ln. If the lattice L is of height h, then the lattice Ln is of height h � n
and, therefore, at most h � n2 equations can be applied before the solution is reached.

But this algorithm is far from optimal, since it does not follow the control flow of the
program and recomputes the program property associated with every control point at
each iteration step. However, since each Φi is continuous, and hence monotonic, any
sequential algorithm à la Gauss-Seidel can also be used, provided that every equation is
applied infinitely many times. Such algorithms are called chaotic iteration algorithms
[8, 10], and a particular choice of the order in which the equations are applied is called
a chaotic iteration strategy.

When the dependency graph is acyclic, an optimal and linear iteration strategy thus
consists in applying the equations in any topological ordering of the set of vertices of
the dependency graph, but when there are loops in the program, this method is not
applicable. Furthermore, even the naive algorithm cannot be effectively applied to
compute least fixed points when the height of the abstract lattice is very large or infinite,
as for the lattice of intervals.

A speed-up technique, pioneered by Patrick and Radhia Cousot [7, 10, 11] consists
in choosing a subset W � C and replacing each equation i 2 W by the equation:

xi = xi r Φi(x1; : : : ; xn)
where “r” is a widening operator, i.e. a safe approximation of the least upper bound
such that for every increasing chain (lk)k�0, the chain (l0k)k�0 defined by l00 = l0 and
l0k+1 = l0k r lk+1 is eventually stable.

When W is such that every cycle in the dependency graph contains at least an element
of W , then any chaotic iteration strategy is guaranteed to terminate and stabilize on a
safe approximation of the least fixed point (actually a post-fixed point).

Similarly, narrowing operators can be used to improve the post-fixed points de-
termined by widening operators and to compute safe approximations of greatest fixed
points.

However, since widening operators generally lead to an important loss in precision,
it is essential that W be as small as possible. Unfortunately, the problem of finding
a minimal set W , which happens to be a classical problem (minimal feedback vertex
set), is a NP-complete problem[14], and since the worst-case complexity of the naive
algorithm is quadratic, finding this set would be by far too costly. Hence, two distinct
problems have to be solved:� Determine a good iteration strategy, that is, an order in which to apply the equa-

tions.� Determine a good set of widening points W .

The first problem has been addressed by many authors [6, 16, 17, 19] but, to our
knowledge, no algorithm exists for finding good sets of widening points, and authors
who mention widening operators use them everywhere or improperly [18].

In the next section, we introduce the notion of weak topological ordering of a directed
graph and we show that this notion yields an interesting answer to both problems. In
particular, and contrary to what is done by many authors, the iteration strategies we
propose are guided by the structure of the dependency graph rather than dynamically
selected through the use of ad-hoc data structures, such as work lists. We shall see

1 x := 0;
2 while x < 10 do begin

3 y := 0;
4 while y < x do

5 y := y + 1 6
7 end; 8 1 2

3

4 5 6

7

8

Figure 1: Intraprocedural dependency graph

that this property ensures excellent theoretical upper bounds on the complexities of the
resulting algorithms.

3 Weak topological ordering

3.1 Definition

Definition 1 (Hierarchical ordering) A hierarchical ordering of a set is a well-paren-
thesized permutation of this set without two consecutive “(”.

A hierarchical ordering of a set C defines a total order� over C. The elements between
two matching parentheses are called a component and the first element of a component
is called the head. We call !(c), c 2 C, the set of heads of the nested components
containing c, and W the set of components’ heads. We define the depth of c by�(c) = j!(c)j. An element has depth 0 if it is not contained in a component.

Definition 2 (Weak topological ordering) A weak topological ordering of a directed
graph (w.t.o. for short) is a hierarchical ordering of its vertices such that for every edge
u! v: (u � v ^ v =2 !(u)) _ (v � u ^ v 2 !(u))
An edge u ! v such that v � u is called a feedback edge. A w.t.o. of a directed graph
is such that the head v of every feedback edge is the head of a component containing its
tail u. For instance, a w.t.o. of the dependency graph of figure 1 is:

1 2 (3 4 (5 6) 7) 8

This decomposition consists of two nested components with heads 3 and 5 and, for
instance, !(1) = ;, !(6) = f3; 5g, and the feedback edge 7! 3 is such that 3 2 !(7).
Note that a w.t.o. without parentheses is a topological ordering and that every directed
graph over a set of vertices C = f1; : : : ; ng always has a trivial w.t.o.:(1 (2 (3 � � � (n))))
with n nested components. The following theorem shows that every w.t.o. naturally
defines an admissible set of widening points.

Theorem 3 (Widening points) The set W of components’ heads of a w.t.o. of the de-
pendency graph of a system of semantic equations is an admissible set of widening
points.

Proof. Let c1 ! � � � ! ck ! c1, be a cycle of k distinct elements. If k = 1, then
c1 � c1 and c1 ! c1, and thus c1 2 !(c1) � W . If k > 1, then either there exist i < j
such that cj � ci and thus cj 2 !(ci) � W , or c1 � � � � � ck and thus c1 � ck and
ck ! c1, which shows that c1 2 !(ck) � W .

In either case, the cycle is thus cut by at least one widening point, which proves the
theorem.

Of course, since widenings are costly in terms of precision, one should attempt to
minimize the cardinal of W , and the trivial w.t.o. is not very interesting in this respect.

3.2 Iteration strategies

We have seen that a w.t.o. of a dependency graph is useful for determining sets of
widening points, but every w.t.o. also defines at least two chaotic iteration strategies.
The first strategy, called the iterative strategy, simply applies the equations in sequence
and “stabilizes” outermost components whereas the second strategy, called the recursive
strategy, recursively stabilizes the subcomponents of every component every time the
component is stabilized.

For instance, the w.t.o. “1 2 (3 4 (5 6) 7) 8” of the graph of figure 1 yields the
iterative strategy:

1 2 [3 4 5 6 7]� 8

where []� is the “iterate until stabilization” operator, and the recursive strategy:

1 2 [3 4 [5 6]� 7]� 8

It is easy to see that these strategies are correct, since for every vertex v of depth 0
and every edge u ! v, u is necessarily listed before v, i.e. u � v, and the value of
u used in the computation of v already has its final value, which implies that it is not
necessary to iterate over the vertices of depth 0. Note that this idea forms the heart of
the method described in Jones [16], where the strongly connected components are listed
in topological order (c.f. section 4.3). However, our approach is superior in that we also
give algorithms for computing fixed points of strongly connected systems of semantic
equations instead of using the brute-force, O(n2) algorithm.

Theorem 4 (Iterative strategy) For the iterative strategy, the stabilization of an out-
ermost component of a w.t.o. can be detected by the stabilization of its widening points.

Proof. Let us suppose that the w.t.o. consists of a single outermost component. We are
going to show that after applying the equations in sequence, either one (at least) of the
the semantic values associated to a widening point has increased, or none has changed.

Suppose that the contrary holds, and that the value associated to a vertex v =2 W has
changed. Then by definition of a w.t.o., every edge u ! v is such that u � v. Thus,
there exists at least one vertex u � v whose value has changed since the last iteration.

But since u =2 W by hypothesis, the inductive application of the same argument to u
shows that the head of the component has changed, which is absurd.

Theorem 5 (Recursive strategy) For the recursive strategy, the stabilizationof a com-
ponent of a w.t.o. can be detected by the stabilization of its head.

Proof. Let us suppose that the w.t.o. consists of a single outermost component and that,
after applying the equations and stabilizing the sub-components, the value associated to
the head of the component remains unchanged after recomputation. Then the argument
used to prove the fact that no iteration is necessary over the vertices of depth 0 shows
that the values associated to the vertices within the component won’t change when the
equations are applied once more. Therefore, the stabilization of the component’s head
imply the stabilization of the entire component.

These two theorems show that the iterative and recursive strategies minimize the number
of comparisons between elements of the lattice L of program properties, which can be
very useful when this test is very costly, as with the abstract interpretation of functional
or logic programs for instance. Also, note that even though the ordering v over L is
not explicitly used by the algorithm, it can be used to improve precision and force the
convergence of the computation to the first post-fixed point when the widening operator
is not stable [3, 4], i.e. does not satisfy:8 x; y 2 L : y v x =) x r y = x

The following theorem gives an upper bound on the complexity of each strategy.

Theorem 6 (Complexity) When the lattice L is of finite height h, or when the increasing
chains built by the widening operator are at most of length h, the maximum complexity
of the iterative iteration strategy for a strongly connected graph is:

h � jCj � jWj
and the maximum complexity of the recursive iteration strategy is:

h �X
c2C

�(c)
Proof. Since theorem 4 shows that each iteration yields a strictly greater element over
the lattice LjWj of height h � jWj, the first result is trivial. The second result is easily
proved inductively by showing that each equation (i.e. vertex) of depth k is applied at
most h � k and each sub-component of depth k + 1 is stabilized at most h � k times. A
detailed proof can be found in Bourdoncle [4].

The complexity of the recursive iteration strategy is thus a linear function of the sum
of the individual depths of the vertices of the graph. It is interesting to remark that
since �(c) � jWj for every vertex c, the upper bound of the recursive iteration strategy
is always better than that of the iterative strategy. Practice shows that the recursive
strategy is indeed almost always better than the iterative strategy. Furthermore, it is

1

2

3

4 5

1

2

3

4

Figure 2: Flow graphs

clear that the worst-case of each strategy for a program of size n, which is obtained with
the trivial w.t.o., is h � n2 for the iterative strategy and:

h � (1 + 2 + � � �+ n) = h � n � (n + 1)
2

for the recursive strategy. These results show that not only does the number of widening
points impact on the precision of the fixed point computation, but it also impacts on
the cost of the analysis. An essential goal is thus to minimize the number of widening
points as well as the sum of the individual depths of the graph’s vertices.

The following section presents three algorithms with different price/performance
ratios that can be used to compute weak topological orderings of directed graphs and
relate them to previous works.

4 Algorithms

4.1 Depth-first numbering

A first idea for building a non-trivial w.t.o. of a graph is to use a depth-first numbering
of this graph, which can be obtained in linear time, and 1) open a parenthesis before
every head b of edges a! b whose tail a has a greater number than b, 2) close all the
parentheses after the last vertex. For instance, this algorithm would yield the following
result on the graph of figure 1:

1 2 (3 4 (5 6 7 8))
which is better than the trivial w.t.o. but not as good as the “optimal” ordering:

1 2 (3 4 (5 6) 7) 8

Also, note that this algorithm has a tendency to overestimate the number of widening
points. For instance, the graph on the left of figure 2 would yield the following w.t.o.:

1 2 (3 (4 5))
with two widening points, although the graph has a single cycle. However, it is shown
in Bourdoncle [4] that the set of heads of the retreating edges (c.f. [1], p. 661) of the
depth-first spanning tree, i.e. edges a! b such that b is an ancestor of a in the tree, is a
smaller admissible set of widening points. For the graph on the left of figure 2, the only
retreating edge is 5! 4 and f4g is thus a set of widening points.

���� -@@R?6 - ��� @@R-(3 4)

1 2

7

8

(5 6)

1 2

(3 4 (5 6) 7)

8 1 2 (3 4 (5 6) 7) 8

Figure 3: Limit flow graph

Consequently, the w.t.o. decomposition can be used as the basis of the iteration
strategy whereas widening points can be detected through the retreating edges of the
depth-first spanning tree (which can be easily found by using a stack of “currently visited
vertices” during the depth-first visit of the graph).

In spite of its drawbacks, the advantage of this algorithm is that it is very simple and
incremental, and can be applied even when the graph is not known in advance as for the
abstract interpretation of higher-order programs (c.f. section 6).

4.2 Reducible graphs

When the dependency graph is reducible [1], as is always the case for structured
programming languages without goto statement, it has been suggested [11] to choose
as widening points the heads of the intervals of the graph which are also the head of a
back-edge.

This idea can be pushed a step further to build a w.t.o. of the graph and, hence,
an iteration strategy. The idea consists in computing the limit flow graph obtained by
iteratively collapsing the graph into its intervals (c.f. [1], p. 666). When the graph is
reducible, this process is guaranteed to converge to a limit graph reduced to a single
vertex containing all the vertices of the original graph. This process is illustrated figure
3 for the reducible graph of figure 1 and gives the following result:

1 2 (3 4 (5 6) 7) 8

Note that an interval I is parenthesized only when there exists a feedback edge u ! v
from a vertex u 2 I to the header v of I.

To prove that the resulting decomposition of the graph is a w.t.o., the only thing
to show is that the head v of every feedback edge u ! v is the header of an interval
containing u.

First, remark that the property trivially holds when u and v belong to the same
interval of level 1. So let K denote the interval who first “merged” the two distinct
intervals I containing u and J containing v during the computation of the limit flow
graph. It is known (c.f. [1], prop. 2, p. 669) that v is necessarily the header of J. Now,
if J is the first “vertex” of K (as for the interval (3 4) of figure 3) then v is the head of K
and the property holds. Otherwise, I and J are proper “vertices” of K, J is listed before I
(since u! v is a feedback edge) and there is an edge from I to J, which is incompatible
with the fact that J has been added to K before I.

This algorithm has a worst-case complexity equal to O(� � " � �(")) where � is the
depth of the graph, " is the number of edges, and � is the inverse of Ackerman’s function

(which is nearly constant).
Finally, note that the iteration strategies built using this algorithm are similar to the

ones described in Burke [6] in a data-flow analysis framework.

4.3 Strongly connected components

Reducible graphs have been extensively studied in the literature but, unfortunately,
interprocedural dependency graphs are not reducible in general. For instance, the graph
of figure 5, which is an unfolded version of the graph of function “Fact”, is not reducible
since the head 60 of the back-edge 50 ! 60 does not dominate its tail, i.e. there is a path
from 1 to 50 that does not go through 60.

The base of the algorithm we propose in this case is an algorithm due to R.E.
Tarjan [20] to compute in linear time the strongly connected components of a directed
graph. Since Tarjan’s algorithm computes a list of (possibly trivial) strongly connected
components in topological order, the basic idea of the algorithm, given figure 4, is to
recursively apply Tarjan’s algorithm to each non-trivialcomponent after having removed
its head b and all the back-edges of the form a ! b. Note that “::” denotes the list
constructor operator.

Theorem 7 The algorithm of figure 4 computes a w.t.o. of any directed graph.

The proof is omitted here for the sake of brevity and can be found in Bourdoncle [4].
Note that when the graph is reducible, the interval-based algorithm can give better
results. For instance, depending on the order in which the graph’s vertices are visited,
the algorithm of figure 4 gives one of the following results for the graph on the right of
figure 2: (1 2 3 4)(1 4 3 2)
whereas the interval-based algorithm gives the optimum result:(1 2 4 3)
However, excellent decompositions are obtained for non-reducible graphs, such as the
graph of figure 5: (1 4 10 40) 20 30 2 3 (6 50 60 5)(1 4 10 40) 2 3 20 30 (60 5 6 50)
The worst-case complexity of this algorithm is � � ", where � is the maximum depth of
the graph’s vertices and " is the number of edges. Hence, this algorithm does not cost
more than the fixed point computation itself, and its complexity is a linear function of
the intrinsic complexity of the graph.

Finally, note that to our knowledge, other hierarchical decompositions of directed
graphs into strongly connected components [21] are not weak topological orderings and,
hence, cannot be used to perform chaotic iteration strategies with widenings.

function Partition
var vertex, partition

begin
foreach vertex 2 verticesG do

DFN[vertex] 0
NUM 0
partition nil
Visit(rootG, partition)
return partition

end
function Component(in vertex)

var succ, partition
begin

partition nil
foreach succ 2 succG[vertex] do

if DFN[succ] = 0 then
Visit(succ, partition)

return (vertex :: partition)
end
function Visit(in vertex, inout partition)

var head, min, succ, element, loop
begin

push(vertex)
head DFN[vertex] NUM NUM + 1
loop false
foreach succ 2 succG[vertex] do

if DFN[succ] = 0 then
min Visit(succ, partition)

else min DFN[succ]
if min � head then

head min
loop true

if head = DFN[vertex] then
DFN[vertex] +1
pop(element)
if loop then

while element 6= vertex do
DFN[element] 0
pop(element)

partition Component(vertex) :: partition
else partition vertex :: partition

return head
end

Figure 4: Hierarchical decomposition of a directed graph into
strongly connected components and subcomponents.

function Fact(n : integer) : integer;
begin
1 if n = 0 then

2 Fact := 1 3
else
4 Fact := n � Fact(n�1) 5

6
end;

1

2 3

4 5

6

1´

2´ 3´

4´ 5´

6´

Figure 5: Interprocedural dependency graph

5 Intraprocedural abstract interpretation

The algorithm of figure 4 is thus directly applicable to intraprocedural abstract inter-
pretation, and has been implemented in the abstract debugger Syntox [2, 4, 5]. The
advantage of using a w.t.o. is that it is computed once at the beginning of the analysis
and that the resulting chaotic iteration strategy minimizes the use of widening operators
as well as the number of tests needed to detect the stabilization of iterative computations.
Furthermore, the algorithm has a predictable worst-case complexity, which is n for a
program without loops and:

h � p � (n� p� 1
2

)
for a program with p nested loops.

6 Interprocedural abstract interpretation

The method of the previous section is applicable to the interprocedural abstract inter-
pretation of first-order program but cannot be used for higher-order programs for which
the dependency graph is not known in advance. However, the incremental algorithm
of section 4.1 can be used, and since the w.t.o. determined by this algorithm has the
generic form:

a1 � � � (ak1 � � � (ak2 � � � (ak3 � � �)))
the iterative strategy seems easier to implement and corresponds to a straightforward
depth-first execution of the program. Furthermore, if we note that each point aki is
necessarily either an entry point of a procedure, the head of an intraprocedural loop or
the return point of a procedure call, we have the following property on the worst-case
complexity of the interprocedural abstract interpretation of a program.

Theorem 8 If a program has p procedures, n control points, c procedure calls and l
intraprocedural loops, then the abstract interpretation over a lattice of height h using
the iterative iteration strategy has a worst-case complexity of:

h � (p + c + l) � n = � � h � n2

where � � 1 is sum c=n + l=n of the densities of procedure calls and intraprocedural
loops and of the inverse of the average size n=p of procedures. Furthermore, if each

procedure of a higher-order program has at most m procedural formal parameters,
then the computation of the interprocedural call graph of the program has a worst-case
complexity of � �m � p � n2.

Note that, as hinted in section 4.1, the depth-first visit of the interprocedural dependency
graph allows for the on-line determination of a better set of widening points thanfak1; ak2; : : :g and, in practice, it is sufficient to use widening operators at the head of
intraprocedural loops and at the entry and exit points of formally recursive procedures,
as opposed to the return points of procedure calls ([4], p. 52).

Note that the algorithm proposed by Le Charlier et al. [18], which is in fact a
particular implementation of basic functional partitioning [3], uses widening operators
at the entry point of every logic predicate but not at the exit point. This is justified
in their context, since they use noetherian domains with no infinite strictly increasing
chain, but their algorithm can loop when the abstract domain is of infinite height.

7 Conclusion

In this paper, we have addressed the problem of the efficient computation of least
and greatest fixed points of continuous functions over lattices of infinite height using
widening and narrowing operators.

We have introduced the notion of weak topological ordering of directed graphs and
shown how this notion can be used to determine admissible sets of widening points and
design efficient chaotic iteration strategies.

We have given several algorithms with different price/performance ratios to compute
weak topological orderings of directed graphs and shown how to apply them to the
intraprocedural and interprocedural abstract interpretation of higher-order languages.

Further work will be to design an incremental version of the algorithm of figure
4 to handle the interprocedural abstract interpretation of higher-order programs more
efficiently.

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman: “Compilers — Principles,
Techniques and Tools”, Addison-Wesley Publishing Company (1986)

[2] François Bourdoncle: “Interprocedural Abstract Interpretation of Block Struc-
tured Languages with Nested Procedures, Aliasing and Recursivity”, Proc. of
the International Workshop PLILP’90, Lecture Notes in Computer Science 456,
Springer-Verlag (1990)

[3] François Bourdoncle: “Abstract Interpretation By Dynamic Partitioning”, Journal
of Functional Programming, Vol. 2, No. 4 (1992)

[4] François Bourdoncle: “Sémantiques des langages impératifs d’ordre supérieur et
interprétation abstraite”, Ph.D. dissertation, Ecole Polytechnique (1992)

[5] François Bourdoncle: “Abstract Debugging of Higher-Order Imperative Lan-
guages”, Proc. of SIGPLAN ’93 Conference on Programming Language Design
and Implementation (1993)

[6] Michael Burke: “An Interval-Based Approach to Exhaustive and Incremental Inter-
procedural Data-Flow Analysis”, ACM Transactions on Programming Languages
and Systems, Vol. 12, Num. 3 (1990) 341–395

[7] Patrick and Radhia Cousot: “Abstract Interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”, Proc.
of the 4th ACM Symp. on POPL (1977) 238–252

[8] Patrick Cousot: “Asynchronous iterative methods for solving a fixpoint system of
monotone equations”, Research Report IMAG-RR-88, Université Scientifique et
Médicale de Grenoble (1977)

[9] Patrick Cousot and Nicolas Halbwachs: “Automatic discovery of linear constraints
among variables of a program”, Proc. of the 5th ACM Symp. on POPL (1978) 84–97

[10] Patrick Cousot: “Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis. Analyse sémantique de programmes”,
Ph.D. dissertation, Université Scientifique et Médicale de Grenoble (1978)

[11] Patrick Cousot: “Semantic foundations of program analysis”, in Muchnick and
Jones Eds., Program Flow Analysis, Theory and Applications, Prentice-Hall (1981)
303–343

[12] Alain Deutsch: “On determining lifetime and aliasing of dynamically allocated
data in higher-order functional specifications”, Proc. of the 17th ACM Symp. on
POPL (1990)

[13] Alain Deutsch: “A Storeless Model of Aliasing and its Abstractions using Finite
Representations of Right-Regular Equivalence Relations”, Proc. of the IEEE’92
International Conference on Computer Languages, IEEE Press (1992)

[14] Michael. R. Garey and David S. Johnson: “Computers and Intractability: A Guide
to the Theory of NP-completeness”, W.H. Freeman and Company (1979)

[15] Philippe Granger: “Static analysis of arithmetical congruences”, International
Journal of Computer Mathematics (1989) 165–190

[16] Larry G. Jones: “Efficient Evaluation of Circular Attribute Grammars”, ACM
Transactions on Programming Languages and Systems, Vol. 12, Num. 3 (1990)
429–462

[17] B. Le Charlier, K. Musumbu and P. Van Hentenryck: “A generic abstract interpre-
tation algorithm and its complexity analysis”, in K. Furukawa editors, Proc. of the
Eight International Conference on Logic Programming, MIT Press (1991) 64–78

[18] B. Le Charlier and P. Van Hentenryck: “A universal top-down fixpoint algorithm”,
Technical Report 92-1, Institute of Computer Science, University of Namur, Bel-
gium (1992)

[19] R.A. O’Keefe: “Finite fixed-point problems”, in J.-L. Lassez editor, Proc. of
the Fourth International Conference of Logic Programming, MIT Press (1987)
729–743

[20] R.E. Tarjan: “Depth-first search and linear graph algorithms”, SIAM J. Comput.,
1 (1972) 146–160

[21] R.E. Tarjan: “An Improved Algorithm for Hierarchical Clustering Using Strong
Components”, Information Processing Letters 17, Elsevier Science Publishers
B.V. (1983) 37–41

