
1

New Algorithms for Improved
Transcendental Functions on IA-64

Shane Story Ping Tak Peter Tang
Intel Corporation Intel Corporation
Hillsboro, OR 97124 Santa Clara, CA 95052
shane.story@intel.com

Abstract

The IA-64 architecture provides new opportunities
and challenges for implementing an improved set of
transcendental functions. Using several novel
polynomial-based table-driven techniques, we are
able to provide new algorithms for the transcendental
functions. Major improvements include an accuracy
level of about 0.6 ulps (units in the last place) and
forward trigonometric functions that have a period of
2 π . The accuracy enhancements are achieved at
improved speed, yet without an increase in the table
size. In this paper, we highlight the key IA-64
architectural features that influenced our designs and
explain the main ideas used in our new algorithms.

1 Introduction

The IA-32 architecture [5] provides hardware
instructions to compute a small but important set
of transcendental functions − F2XM1, FYL2X,
FYL2XP1, FSIN, FCOS, FSINCOS, FPTAN, and
FPATAN. The IA-64 architecture, based on the
EPIC (Explicitly Parallel Instruction Computing)
technology, incorporates a combination of
speculation, predication, and explicit parallelism
into the basic instruction set and programming
control structure. IA-64 was designed to fully
support IA-32 applications, so we needed to
design and implement new algorithms to support
the higher-level IA-32 transcendental function
calls. Our primary focus is on these hardware
supported instructions, although the methods
described can be easily extended to
mathematical functions done traditionally in
software. This new architecture provides us with
an opportunity to further improve the quality of
the hardware supported transcendental functions
and those done in software.

Our rationale for these improvements is thus.
While correctly rounded implementations are
ideal, they are unattainable at present within
practical speed and resource limits. We aim to

minimize the worst-case error under round-to-
nearest mode to as close to 0.5 ulps as we see
possible, maximize the speed, and limit resource
requirements. Therefore, a worst-case error
below 0.6 ulps is an improvement when
compared to that of 1 ulp in the PentiumTM

generation (see [9]). Since these functions do not
always yield a correctly rounded result, invoking
them twice under two directed rounding modes
does not always produce an interval that
includes the true mathematical value. In pursuit
of more accurate results, we also choose to use a
precise argument reduction scheme within the
trigonometric functions.

The IA-64 features that are most relevant to the
algorithmic design are (1) FMA - fused multiply-
add based +, −, ×, and ÷, the last operation with
the aid of an approximation to the reciprocal
followed by a Newton-Raphson iteration, (2) an
internal 82-bit format (1-bit sign, 17-bit
exponent, and a 64-bit significand with no
hidden bit). For a discussion of other important
IA-64 architectural features, see [2].

When approximating transcendental functions, it
is sometimes advantageous to have access to the
extra bits of precision that result from the basic
operations. The IA-64 hardware does not
provide a mechanism to access any extra bits of
precision. This constraint poses a major
challenge for accurate function implementations
if fast high-precision simulations are needed
(see [8]).

We begin in Section 2 with a discussion of some
modifications to a conventional table-driven
approach. We apply these modifications to
algorithms in the exponential family. Argument
reduction for the trigonometric functions is
described in Section 3.1. Sections 3.2 and 3.3
outline the algorithms used for the sine and

2

cosine functions. The algorithms for tangent and
cotangent that use both a table driven approach
and an iterative division scheme are outlined in
Sections 3.4 and 3.5. Section 4 is devoted to the
inverse tangent. Section 5 compares the
accuracy of these new functions with their
counterparts on the Pentium™ processor. In
Section 6 we offer our concluding remarks.

We assume throughout this paper that the input
arguments discussed are IA-32 80-bit floating-
point numbers of the form

(−1)s 2e 1.z1z2z3z4…z63,

where s = 0 or 1, -16382 ≤ e ≤ 16383, and the
z’s = 0 or 1. We refer to values of this type as
working-precision numbers.

2 The Exponential Family

The IA-64 architecture has three instructions of
the exponential type: F2XM1, FYL2X, and
FYL2XP1 which approximate 2x − 1, ylog2(x),
and ylog2(1 + x), respectively. We discuss only
the algorithms used for computing 2x − 1 and
ylog2(1 + x), as the latter subsumes the function
ylog2(x). The approximation to log2(1 + x) is a
crucial part of the computation and will be a
primary focus.

Usually we require only simple polynomial
approximations for regions near the functions’
roots − for each of these functions, x = 0 is the
only root. In regions bounded away from the
roots, we employ well-known table-driven
methodologies (see [11], [12], and [13]). With
the help of function values tabulated beforehand
at suitably chosen breakpoints, function
evaluations are transformed into calculations at
reduced arguments that are relatively small in
magnitude. Consequently, the calculations at the
reduced arguments are usually faster and easier
to perform.

2.1 Simple Polynomial Approximations

One difficulty here is that we are dealing with
the base 2 and not the base e family of functions.
Near the root of ƒ(x) = 2x − 1 and log2(1 + x), the
Taylor’s series representations are of the form

ƒ(x) = ρ1x + ρ2x
2 + ρ3x

3 + …,

where the leading coefficient is either ln(2) or
1/ln(2), neither of which is an exact machine
number. Thus, direct polynomial approximations
formulated with machine numbers for the ρj's
will have a relative accuracy limited to roughly
2-64 as x tends to zero. Utilizing polynomials of
the form

p0 x + p1x + p2x
2 + ... + pNxN

surmounts this difficulty wherein ln(2) and
1/ln(2) are approximated accurately by the sum
of the machine numbers p0 and p1. We obtain
these special polynomials using a Remez
algorithm [1].

To complete the approximation to f(x), we
evaluate the polynomial,

q ≈ p1x + p2x
2 + ... + pNxN

using a variant of Horner’s rule and perform a
last step, p0 x + q, with a single fused multiply-
add. This sequence of operations simulates the
effect of having stored highly accurate values for
ln(2) and 1/ln(2).

2.2 Table Driven Algorithms
Typical table-driven approaches [11], [12],
[13] for ƒ(x) = 2x − 1 or log2(1 + x) usually
require us to tabulate beforehand, ƒ(B), where B
is the leading part of x or 1 + x, respectively.
The core approximations are then tailored to the
calculation of ƒ(r) for some r small in
magnitude. Specifically, for ƒ(x) = 2x − 1

ƒ(x) =ƒ(B) + (ƒ(B) + 1)ƒ(x − B),

and for ƒ(x) = log2(1 + x),

ƒ(x) = ƒ(B − 1) + ƒ((1 + x − B)/B).

However, these table-driven methods will not
allow us to meet our goals entirely. Our
objective is to achieve an accuracy level of
about 0.6 ulps as efficiently as possible, which
means that x − B and 1 + x − B need to be on the
order of 2−10. This would in turn require
extremely large tables, tables too large to be
accommodated easily on our target platform.

We overcome this obstacle in two ways. First,
the two functions in question have properties
that permit us to construct a table with 2K entries
from several smaller tables. These smaller tables

3

are of the sizes 2L, 2M, and 2N, where
K = L + M + N. Second, we formulate a strategy
for each approximation that facilitates an exact
calculation of its dominant part.

Consider, for example, ƒ(x) = 2x − 1 where
1/16 ≤  x < 1. In its unnormalized form, x is
actually

x = (−1)s 0.b1 b2 b3 ... b67.

Instead of using a table with 213 entries that
correspond to breakpoints of the form

B = (−1)s 0.b1 b2 b3 b4 ... b12 1

so that  x − B≤ 2−13 , we define instead B1, B2,
and B3 such that

B1 = (−1)s 0.b1b2b3b4,
B2 = (−1)s 0. 0 0 0 0 b5b6b7b8, and
B3 = (−1)s 0. 0 0 0 0 0 0 0 0 b9b10b11b121.

Clearly,  x − (B1 + B2 + B3) ≤ 2−13. In
principle, this example requires that we need
only tabulate

ƒ(Bj) + 1, j = 1, 2, 3, for

ƒ(B1+B2+B3) = (ƒ(B1)+1)(ƒ(B2)+1)(ƒ(B3)+1) −1.

Thus the table size is reduced to 3 × 25 from 213.
We require an extra factor of 2 because table
entries are needed for both the positive and
negative breakpoints.

Unfortunately, this technique alone does not
allow us to represent ƒ(Bj) + 1 exactly in
working precision. Obtaining ƒ(B1 + B2 + B3) to
high accuracy would require not only that each
ƒ(Bj) + 1 be stored to extra precision, but also
that additional extra-precise products be
computed.

So, we complement our first technique with a
second one. Instead of using the Bj’s as our
breakpoints, we use the slightly perturbed
points, βj, defined by

βj = Bj − δj = log2([ƒ(Bj) + 1]21),

where [α] 21 maps α to 21 significant bits by a
well-defined rounding rule.

We define Tj = ƒ(βj) + 1 in 21 significant bits
with the rounding rule Tj = 1 if Bj = 0, or Tj = 2Bj

rounded up or down to 21 significant bits

depending on whether x > 0 or x < 0,
respectively. The δj’s, which are small in
magnitude, are computed to working precision
beforehand and stored alongside the Tj’s as dj’s.
We note that this method is different from the
accurate tables method proposed in [3]. There,
special breakpoints are selected so that the table
values can almost be represented in working
precision. Our requirement that the table values
be almost 21 significant bits is too restrictive for
that method.

The reduced argument,

γ = x − (β1 + β2 + β3),

is computed by

r = [x − (B1 + B2 + B3)] + (d1 + d2 + d3).

Because r is so small,  r≤ 2-13, the rounding
errors associated with its computation are
harmless. Finally, we compute ƒ(x) by

ƒ(x) = ƒ(β) + (ƒ(β) + 1)ƒ(γ),

≈ (T − 1) + Tp(r),

where β = β1 + β2 + β3, T = T1T2T3, and p(r) is a
short polynomial approximation to ƒ(r). Note
that T is represented exactly in 64 significant
bits using two multiplies, and the difference,
T − 1, is error free because of cancellation.

We now consider g(x,y) = ylog2(1 + x), which
provides a foundation to an implementation of
the instructions FYL2X and FYL2XP1. To begin,
we apply some basic transformations. Because x
is a working-precision number, we are able to
represent 1 + x, exactly as 2N(Z + z), whereby Z
and z are two working-precision numbers that
satisfy 1 ≤ Z + z < 2,  Z≥ 263 z , and

Z = 1. w1 w2 … w63.

We focus first on log2(Z + z). As before, typical
table-driven methods define B as a leading part
of Z, for example,

B = 1. w1 w2 w3 ... w9 1,

and use the identity

log2(Z + z) = log2(B) + log2((Z + z)/B).

Both log2(B) and 1/B are then retrieved from a
table, and the second term is evaluated using a

4

short polynomial because (Z + z)/B is very close
to 1. The table size needed for this scheme
would be about 210 − again, too large to meet our
design goals.

We apply our special table-driven methodology
and technique for assuring accuracy by defining
B1 and β1 as

B1 = 1.w1w2w3, and β1 = 1/[1/B1]21.

We tabulate G1 = 1/β1 = [1/B1]21 and log2(β1) as
a single-precision constant T1 with a double-
precision correction t1. The following holds
exactly:

log2(Z + z) = log2(β1) + log2(G1(Z + z)).

In principle, G1Z approximates 1 to within 2−3.
β1 is defined carefully by directed rounding so
that the seven high-order bits of G1Z are
1.000y4y5y6. We repeat this process a second
time by defining

B2 = 1.000y4y5y6, and β2 = 1/[1/B2]21.

This yields G2 = 1/β2 and a pair, (T2,t2). The
technique is repeated a final time, with

B3 = 1.000000z7z8z91, and β3 = 1/[1/B3]21.

This results in G3 = 1/β3 and a pair, (T3,t3). Thus,
the exact relationship,

log2(Z + z) = log2(β) + log2(G(Z+z)),

is established, where β = β1β2β3, and
G = G1G2G3. G is in our case computed exactly.
With the use of two fused multiply-adds, we are
able to approximate the exact reduced argument,

γ = G(Z + z) − 1,

with r = (GZ − 1) + Gz. We know that when
computed,  r < (1.2)2-10.

We let T = T1 + T2 + T3, which can be computed
exactly, and t = t1 + (t2 + t3), whose rounding
error is small. The final approximation to ƒ(x) is

ƒ(x) = ylog2(1 + x),
= y(N + log2(β) + log2(1 + γ)),
≈ y((N + T) + (p(r) + t))
≈ y(N + T) + (y(p(r) + t)),

where p(r) is a 6th degree polynomial
approximation to log2(1 + r).

3 The Forward Trigonometric Family

The forward trigonometric family consists of the
instructions FSIN, FCOS, FSINCOS, and FPTAN,
that approximate the sin(x), cos(x), both sin(x)
and cos(x), and tan(x), respectively, for
arguments x such that  x< 263. These functions
share a common argument reduction scheme that
maps x into [−π/4, π/4] by the relationship,

γ = x − N(π/2); γ ≤ π/4.

Depending on the value of N modulo 4 (or 2 in
the case of tangent), simple trigonometry shows
that sin(x) and cos(x) are equivalent to either the
positive or negative sin(γ) or cos(γ); and the
computation of tan(x) equivalent to either the
positive or negative tan(γ) or cot(γ). Our
challenge lies in computing differences of the
form x − N(π/2) to high relative accuracy. We
present first our new algorithm that computes a
pair of working precision numbers, r and a
correction c, so that  r + c≤ π/4 + 2−15 and

 (r + c) − [x − N(π/2)] ≤ 2−72  x − N(π/2) .

We follow that with a discussion of the
computation of ƒ(r + c) for ƒ(x) equal to sin(x),
cos(x), tan(x), and cot(x).

3.1 Trigonometric Argument Reduction

The reduction of an argument when it is of
moderate magnitude, π/4 ≤ x< 224, is
relatively straightforward. We first need to
determine the accuracy needed in the
approximation to π/2 because this is directly
related to the magnitude of the final reduced
argument. Using techniques similar to those
described in [10], we find that for
π/4 ≤  x < 263,  x − N(π/2) ≥ 2−70 for all
integers N. Therefore, if we approximate π/2 by
three working-precision numbers P1, P2, and P3,
we have π /2 − (P1 + P2 + P3)< 2−194. It follows
that for |x| < 224,

 [x – N(π/2)] − [x − N(P1 + P2 + P3)]< 2−170.

This error is tiny enough for even the smallest
reduced arguments. Moreover, a similar
argument shows that as long as the reduced
argument’s magnitude is at least 2−30, P1 and P2
suffice.

5

The crux is then to compute either
x − N(P1 + P2) or x − N(P1 + P2 + P3) so that
r + c provides an accurate approximation, where

N = nearest-integer(x (two-by-pi)),

and two-by-pi is 2/π rounded to working-
precision. A fused multiply-add generates
U = x − NP1 exactly due to cancellation because
N approximates the integer part of x/P1. If
 U≥ 2−30, we compute V = NP2 and
approximate U + V accurately by r + c.
Otherwise, we first compute N(P2 + P3)
accurately as V + W using a fused multiply-add.
We are able to then approximate U + V + W to
well beyond working-precision in two pieces,
r + c.

For large arguments, 224 ≤ x< 263, we
introduce a non-traditional approach. Since all
trigonometric functions have a period of 2π,

trig(x) = trig(x − 2πk)

for any integer k. Furthermore, some IEEE
double-extended numbers are known to closely
approximate large integral multiples of 2π. The
new procedure requires that we first find the
remainder of x with respect to one such close
approximation, Γ to the integral multiples of 2π,
by computing

y = x − MΓ,  y≤ Γ/2.

In our implementation, we use the value

Γ = 4016C84D32B0CE81B9F1

in IA-32 80-bit format which is very close to
4178442π. Note that y is a machine number.
Because the resulting y satisfies  y< 224, we
can use the reduction method discussed
previously. One need only compensate for the
fact that Γ = 2πk + δ, δ < 2-63, is not an exact
integer multiple of 2π as follows:

y = x − MΓ = (x − 2πMk) − Mδ,

or in general terms

trig(x) = trig(x − 2πMk) = trig(y + Mδ).

Hence, we adjust the reduced argument obtained
from y by adding Mδ. The approximation to δ is
computed beforehand and is stored as the two
working-precision numbers, d1 and d2. Md1

alone suffices for reduced argument greater than
2-14 in magnitude. Otherwise, Md2 is also used.
In summary, we obtain a pair of working
precision numbers, r and a correction c, such
that

 (r + c) − [x − N(π/2)]≤ 2−72  x − N(π/2)

for some integer N where N mod 4 is known.
Note that N may not be the exact nearest integer
when the value, x(2/π), is close to the middle of
two consecutive integers. Nevertheless, we
know that |r + c| ≤ π/4 + 2−15.

3.2 Computation of Sin(r+c)

The computation is simple when  r + c is
small. A basic approximation,

r + c − r3/6 + r5/120,

suffices when  r + c < 2−14. In fact, when
 r + c< 2−30, the 5th degree term is not required.
A more general approximation to sin(r + c) is

sin(r + c) ≈ r + c + s1r
3 + s2r

5 + ... + skr
2k

≈ r + s1r
3 + (r5 p(r2) + c).

This approximation and its computation is
straightforward even up to  r < 2−3. Rounding
errors become more significant when  r≥ 2−3

because of the magnitude of s1r
3. For this reason,

we must compute r + s1r
3, the critical part of the

polynomial approximation, with great care. We
decompose r into two pieces, rhi + rlo, so that rhi

has the 10 most significant bits of r. Likewise,
the coefficient s1 is broken into two pieces,
shi + slo, whereby shi is comprised of the 16 most
significant bits. This allows us to compute
A = r + shi(rhi)

3 without error. The value
a = s1r

3 − shi(rhi)
3 must still be evaluated in

working precision to within a few rounding
errors. We do this using

a = shi(r
3 − rhi

3) + slor
3

= shirlo(r
2+ rrhi + rhi

2) + slor
3.

Hence, the precise approximation is given by

sin(r + c) ≈ A + [a + (r5p(r2) + c)].

3.3 Computation of Cos(r+c)

The computation is similar in spirit to that of the
sin(r + c). The approximation, 1 − r2/2 + r4/24,
suffices for  r + c< 2−14. The 4th degree term

6

can be ignored when  r + c< 2−30. Because c is
in general quite small, cos(r + c) is close to

cos(r) − sin(r)c

which we in turn approximate with a polynomial

1 − r2/2 + c2r
4 + ... + ckr

2k − sin(r)c.

We can express this polynomial more simply as

1 − r2/2 + r4q(r2) − sin(r)c.

When  r < 2−3
, we use −(r)c to approximate

−sin(r)c and compute the rest of the polynomial
with ease. When  r ≥ 2−3, we approximate
−sin(r)c by −c(r − r3/6) and compute the
dominant part, 1 − r2/2, carefully. As before, r is
decomposed into rhi and rlo, and the crucial part
of the result, A = 1 − rhi

2/2, is therefore
computed exactly. We need a correction term, a,
and calculate it using

a = rhi
2/2 − r2/2 = −rlo(rhi + r)/2.

Hence, the final approximation to cos(r + c) is a
composite, made up of a number of separate
pieces;

cos(r + c) ≈ A + [a + (r4q(r2) − c(r − r3/6))].

3.4 Computation of Tan(r+c)

The approximation r + c + r3/3 + 2r5/15 suffices
when  r + c≤ 2−14. The 5th degree term is
unnecessary when  r + c< 2−30.

For larger r’s,  r< 2−2, we use a high-degree
polynomial of the form

tan(r + c) ≈ tan(r) + tan′(r)c
≈ tan(r) + (1 + r2)c
≈ r + p1r

3 + ... + p9r
19 + (1 + r2)c.

The computation is straightforward because the
rounding errors incurred by the high-order terms
beyond p1r

3 are negligible.

For r≥ 2−2, we use a table driven method. Note
that tan(r + c) ≈ tan(r) + sec2(r)c and that slight
inaccuracies are allowed in sec2(r)c because of
its small magnitude. Moreover,
tan(−x) = −tan(x). So to begin, we concentrate
on calculating tan(|r|) and the dominant part of
sec2(r)c. Denote  r by

 r= 2k(1.b1 b2 b3 ...b63) k = −1, −2.

We define the breakpoint B by

B = 2k(1.b1 b2 b3 b4 b5 1)

and recognize that

 r= B + y;  y≤ 2k − 6 ≤ 2−7.

The goal of this table-driven algorithm is to
express tan(|r|) as tan(B) + g(B,y), whereby the
computation of the function g is relatively fast
and  g(B,y) is significantly smaller than
 tan(B) . This difference in magnitude is
necessary to assure that rounding errors,
associated with the function g’s computation, are
insignificant. Because we know that

tan(B+y) = [tan(B) + tan(y)] / [1 − tan(B)tan(y)],

isolating the tan(B) term yields

tan(B + y) = tan(B) + sec(B)csc(B)
tan(y)/(cot(B) − tan(y)).

Moreover,

sec2(B + y)c ≈ sec2(B)c
= tan(B)sec(B)csc(B)c.

We pre-compute values for tan(B), cot(B), and a
product, sec(B)csc(B), and store them in tables.
We use these constants to compute cot(r + c).
Both tan(B) and cot(B) need to be very precise,
so are stored as the pairs (Thi, Tlo) and (Chi, Clo).
The sec(B)csc(B) values are stored as working-
precision numbers.

Because  y≤ 2−7, we approximate the tan(y) by
a short polynomial of the form

y + p1y
3 + p2y

5 + p3y
7.

Finally, we employ an iterative procedure to
compute 1/(cot(B) − tan(y)). Since

1/(cot(B) − tan(y)) ≈ 1/(cot(B) − y)
≈ Thi(1 + Thi y + [Thiy]2),

the latter provides a good initial approximation
that requires only two subsequent iterations to
converge on an accurate inverse.

3.5 Computation of Cot(r+c)

Recall that the tangent is equivalent to the
negative cotangent if the argument falls in
certain quadrants. For reduced arguments
limited to  r + c≤ 2−14, the approximation
1/(r + c) − r/3 − r3/45 provides sufficient

7

accuracy. The 3rd degree term is not needed if
 r + c< 2−30. However, unlike all the other
trigonometric functions discussed hitherto, the
dominant term poses a significant complication.
The term 1/(r + c) cannot in general be
expressed exactly. We can however express it
accurately as two working-precision numbers.
We do this by first computing, zhi, a working-
precision approximation to 1/(r + c). We then
calculate zlo, which serves as a correction with
care;

zlo = [(1 − zhir) − zhic]zhi.

This gives zlo ≈ 1/(r+c) − zhi to within an
acceptable number of rounding errors. The short
approximation to cot(r + c) is in this case

zhi + ((−r − c)/3 − r3/45 + zlo).

For 2−14 <  r + c< 2−2, we utilize an expression
of the form

cot(r + c) ≈ 1/(r + c) + q1(r + c) + q2r
3 + ...

+ q7r
13.

Again, 1/(r + c) is computed to extra precision as
a pair zhi and zlo, and the final approximation is
given by these values combined with other terms
of a high-degree polynomial.

For larger r’s,  r≥ 2−2,

cot(r+c) ≈ cot(r) + cot′(r)c
≈ cot(r) − csc2(r)c

provides a basic approximation. We use a table-
driven approach similar to the one used for the
tangent. We decompose  r as B + y because we
know

cot(B+y) = cot(B) − sec(B)csc(B)
tan(y)/(tan(B) + tan(y))

and

csc2(B + y)c ≈ csc2(B)c
= cot(B)sec(B)csc(B)c.

We can approximate tan(y) by the same
polynomial used for computing tan(r + c), and
the value of 1/(tan(B) − tan(y)) iteratively with
an initial guess given by

1/(tan(B) + tan(y)) ≈ 1/(tan(B) + y)
≈ Chi(1 − Chi y + [Chiy]2)

4. The Function Atan2(y,x)

The two argument instruction FPATAN(y,x)
approximates the phase angle of the complex
number, x + i y, in the range [−π, π]. This
function is closely related to the inverse tangent
function of one variable, namely arctan(α).
Using simple trigonometry, one can show
that FPATAN(y,x) is equivalent to ±arctan(v/u),
±(π/2 ± arctan(v/u)), or ±(π − arctan(v/u)) where
v = min(|x|,|y|) and u = max(|x|,|y|) as long as v is
non-zero. We are therefore able to focus on the
computation of arctan(v/u) for 0 < v ≤ u. We
denote v/u by α, for 0 < α ≤ 1, and let z be its
working-precision approximation. We also
compute a correction term to z, denoted zc, using
a technique similar to one described in Section
3.5. When z < 2−3, we approximate arctan(α) by
a simple polynomial of the form

z + zc + p1z
3 + p2z

5 + ... + p8z
17.

When z ≥ 2−3, we use a table-driven algorithm.
Given that z = 2k(1. b1 b2 b3 ... b63), we define
the leading portion of z as B = 2k(1.b1b2b3...b51).
Our goal is to express arctan(α) as the sum of
arctan(B) and another term that is small in
magnitude and efficient to compute. By using a
little trigonometry, we have

arctan(α) = arctan(B) +

arctan([v − Bu]/[u + Bv]),

where arctan(B) is computed beforehand and
stored in a table as a pair, (Thi, Tlo). Next, we let
ξ = [v − Bu]/[u + Bv] and approximate arctan(ξ)
by a polynomial of the form

ξ + q1ξ3 + q2ξ5 + q3ξ7 + q4ξ9.

As with α, ξ is computed as a working-precision
number w with a correction wc. Hence, we
compute the polynomial above as

w + wc + q1w
3 + q2w

5 + q3w
7 + q4w

9.

If we denote the polynomial approximation as
w + Q, then arctan(v/u) is given accurately by

Thi + Tlo + w + Q.

Now, we may further combine this last
expression with π/2 or π as required to
approximate FPATAN(y,x) precisely.

8

5 Accuracy

These new functions are designed to be more
accurate than their predecessors on the
PentiumTM as the error bound analyses done by
both theoretical estimation and actual testing
will attest.

The current theoretical error bounds are obtained
using a traditional approach (see [13]). We are
also developing a new automatic method that is
somewhat different from that of [6]. The error
bound provided for F2XM1 is based on this new
method; the other bounds are found with the
traditional method. We expect to have more
precise error bounds for all of the IA-64
implementations by conference time based on
the new techniques. This new method will be the
subject of a future paper.

Intel is also working on proving these algorithms
using a mechanical theorem prover. Currently,
only the algorithm for F2XM1 was proved
correct by mechanical means (see [4]).

Figure 1 summarizes the error bound analyses
for the new and old algorithms (see [7] and [9]).
Note that the estimated maximum errors for the
sine, cosine, and tangent on the Pentium™
processor are given for the modified
trigonometric function with a 66-bit period.

Instruction Pentium™
(1992)
Estimated

IA-64
(1998)
Estimated

IA-64
(1998)
Observed

F2XM1 .95 .53 .51
FYL2X .85 (y = 1) .60 .55
FYL2XP1 .85 (y = 1) .60 .56
FSIN .75 .65 .56
FCOS .75 .65 .56
FPTAN .98 .68 .57
FPATAN .85 .65 .52

Figure 1: Error Bounds Given in Maximum Ulps

Monotonicity was proved for all of the functions
– in the two argument functions, we held one
argument constant and varied the other.

6 Conclusion

In order to take full advantage of the IA-64
architecture, a set of new algorithms were
developed for each of the traditional IA-32
transcendental instructions.

In writing these functions, we wanted both high
accuracy and excellent performance. We believe
that both objectives were achieved.

We hope to see some of these new algorithmic
techniques play a role in future transcendental
function implementations in both hardware and
software.

References
[1] E. W. Cheney, Introduction to Approximation Theory,

Chelsea, New York, Second Edition, 1986.

[2] Carole Dulong, The IA-64 Architecture at Work,
IEEE Computer, pp. 25-32, July, 1998.

[3] Gal, et al., An Accurate Elementary Mathematical
Library for the IEEE Floating Point Standard, ACM
Transactions on Mathematical Software, pp. 26-45,
Vol 17, No 1, March, 1991.

[4] John Harrison, Floating point verification in
{HOL}{L}ight: the exponential function, Technical
Report 428, University of Cambridge Computer
Laboratory, New Museums Site, Cambridge, UK.
1997.

[5] Intel Architecture Software Developer’s Manual,
Volumes 1, 2, and 3, Order Numbers 243190-001,
243191-001, 243192-001, 1997.

[6] Walter Krämer, A priori Worst-Case Error Bounds for
Floating-Point Computations, Proceedings of the 13th

Symposium on Computer Arithmetic, pp. 64-71, 1997.

[7] Ted Kubaska, Accuracy Plots for the IVE
Transcendental Functions, Intel Internal Document,
July, 1998.

[8] Lynch, et al., The K5 Transcendental Functions. In
Proceedings of the 12th Symposium on Computer
Arithmetic, pp. 163-170, 1995.

[9] Pentium Family User’s Manual, Volume 3, Order
Number 241430-003, Appendix G, pp. 1-17, 1994.

[10] Roger Alan Smith, A Continued-Fraction Analysis of
Trigonometric Argument Reduction, IEEE
Transactions on Computers, pp. 1348-1351, Vol 44,
No 11, November, 1995.

[11] Ping Tak Peter Tang, Table-Driven Implementation of
the Exponential Function in IEEE Floating-point
Arithmetic, ACM Transactions on Mathematical
Software, pp. 144-157, Vol 15, No 2, June, 1989.

[12] Ping Tak Peter Tang, Table-Driven Implementation of
the Logarithm Function in IEEE Floating-point
Arithmetic, ACM Transactions on Mathematical
Software, pp. 378-400, Vol 16, No 2, December, 1990.

[13] Ping Tak Peter Tang, Table-Lookup Algorithms for
Elementary Functions and Their Error Analysis.
Proceedings of the 10th Symposium on Computer
Arithmetic, pp. 232-236, 1991.

