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Abstract: In the framework of usual superfield approach, we derive the exact local, covari-

ant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST

symmetry transformations for the U(1) gauge field (Aµ) and the (anti-)ghost fields ((C̄)C)

of the Lagrangian density of a four (3+1)-dimensional QED by exploiting the horizontality

condition defined on the six (4 + 2)-dimensional supermanifold. The long-standing prob-

lem of the exact derivation of the above nilpotent symmetry transformations for the matter

(Dirac) fields (ψ̄, ψ), in the framework of superfield formulation, is resolved by a new re-

striction on the (4+2)-dimensional supermanifold. This new gauge invariant restriction on

the supermanifold, due to the augmented superfield formalism, owes its origin to the (super)

covariant derivatives. The geometrical interpretations for all the above off-shell nilpotent

transformations are provided in the framework of augmented superfield formalism.
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The current year 2005 has been declared as the “world year of physics” to mark the 100th

anniversary of the miraculous discoveries made by Albert Einstein in 1905. This year has

also been a landmark year for the researchers, working in the realm of Becchi-Rouet-Stora-

Tyutin (BRST) formalism, because this year has celebrated the 30th birth anniversary of

the discovery of BRST symmetries in the context of gauge theories [1,2]. This formalism,

during its three decades of existence, has found applications in some of the frontier areas

of research like topological field theories [3,4] and string field theories (see, e.g., [5]).

The key ideas of the BRST formalism have deep connections with the mathematics of

differential geometry and (theoretical) physics of gauge theories as well as supersymmetries.

One of its intuitive connections has been with supersymmetry through the usual superfield

formulation [6] where the geometrical interpretations for the nilpotent (Q2
(a)b = 0) and

anticommuting (QbQab +QabQb = 0) (anti-)BRST charges (Q(a)b) emerge very beautifully.

However, there have been some long-standing problems in this domain of research which

have defied their resolutions during the last 30 years. In our presentation, we shall touch

upon one such long-standing problem connected with the superfield approach to BRST

formalism and provide its resolution by exploiting the importance of gauge invariance.

Under the usual superfield approach [6], a D-dimensional gauge theory (endowed with

the first-class constraints in the language of Dirac [7,8]) is considered on a (D + 2)-

dimensional supermanifold parameterized by D-number of spacetime (even) co-ordinates

xµ (µ = 0, 1, 2....D − 1) and a couple of (odd) Grassmannian variables θ and θ̄ (with

θ2 = θ̄2 = 0, θθ̄ + θ̄θ = 0). In general, the (p + 1)-form super curvature F̃ (p+1), con-

structed from the super exterior derivative d̃ (with d̃2 = 0) and the super p-form connec-

tion Ã(p) of a p-form (p = 1, 2, 3....) gauge theory through the Maurer-Cartan equation (i.e.

d̃Ã(p) + Ã(p) ∧ Ã(p) = F̃ (p+1)), is restricted to be flat along the Grassmannian directions

of the (D + 2)-dimensional supermanifold due to the so-called horizontality condition †.

Mathematically, this condition implies F̃ (p+1) = F (p+1) where F (p+1) = dA(p) + A(p) ∧ A(p)

is the (p+ 1)-form curvature defined on the ordinary D-dimensional manifold through the

ordinary exterior derivative d (with d2 = 0) and ordinary p-form connection A(p).

The above horizontality condition on the six (4+2)-dimensional supermanifold leads to

the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge- and

(anti-)ghost fields of the (anti-)BRST invariant Lagrangian density of a given four (3 + 1)-

dimensional 1- and 2-form (non-)Abelian gauge theories [6]. However, it does not shed any

light on the nilpotent (anti-)BRST symmetry transformations that are associated with the

matter (Dirac) fields of the interacting 1-form (non-)Abelian gauge theories where there

is a coupling between the gauge field and the matter conserved current, constructed by

the Dirac fields. This issue (i.e. the derivation of the nilpotent transformations for matter

fields) has been a long-standing problem in the superfield approach to BRST formalism.

In a recent set of papers [10-13], the usual superfield formalism has been consistently

†Nakanishi and Ojima call it the “soul-flatness” condition which amounts to setting the Grassmannian
components of the (p+1)-rank (anti-)symmetric super curvature tensor (defining F̃ (p+1)) equal to zero [9].
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extended by invoking the additional restrictions on the six (4+2)-dimensional supermanifold

that are complimentary to the horizontality condition [6]. These additional restrictions on

the supermanifold are the equality of (i) the conserved (super) matter current [10,11] (as

well as other conserved quantities [11]), and (ii) the gauge invariant quantities owing their

origin to the (super) covariant derivatives on the (super) matter fields [12,13].

The former set of restrictions [10,11] lead to the consistent derivation of the nilpotent

symmetry transformations for the matter fields. On the other hand, the latter restrictions

[12,13] lead to the exact and unique derivation of the nilpotent symmetry transformations

for the matter fields. We christen these extended versions of the usual superfield approach

to BRST formalism as the augmented superfield formalism. Both types of extensions have

their own merits and advantages. Any further (consistent) extension of the usual superfield

approach would be a welcome sign for the future of this area of research.

In our presentation, we first focus on the strength of the horizontality condition in the

exact and unique derivation of the nilpotent symmetry transformations for the gauge and

(anti-)ghost fields of a 4D interacting U(1) gauge theory with the Dirac fields. This inter-

acting Abelian system has been taken into consideration only for the sake of simplicity. The

ideas, proposed in our presentation, can be generalized to a non-Abelian interacting gauge

theory in a straightforward manner. Second, we concentrate on the consistent derivation

of the nilpotent transformations for the matter (Dirac) fields by exploiting the equality of

the conserved matter (super) current on the six (4+2)-dimensional supermanifold. Finally,

we obtain the exact and unique nilpotent symmetry transformations for the Dirac fields

by exploiting the equality of the gauge invariant quantity on the above supermanifold that

owes its origin to the (super) covariant derivatives on the (super) Dirac fields.

Let us begin with the (anti-)BRST invariant Lagrangian density Lb for the interacting

four (3 + 1)-dimensional (4D) U(1) gauge theory in the Feynman gauge [14]

Lb = −1
4
F µνFµν + ψ̄ (iγµDµ −m) ψ +B (∂ ·A) + 1

2
B2 − i ∂µC̄∂

µC, (1)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor for the U(1) gauge theory that is

derived from the 2-form dA(1) = 1
2
(dxµ ∧ dxν)Fµν

‡. As is evident, the latter is constructed

by the application of the exterior derivative d = dxµ∂µ (with d2 = 0) on the 1-form

A(1) = dxµAµ which defines the vector potential Aµ. The gauge-fixing term (∂ · A) is

derived through the operation of the co-exterior derivative δ (with δ = − ∗ d∗, δ2 = 0)

on the one-form A(1) (i.e. δA(1) = − ∗ d ∗ A = (∂ · A)) where ∗ is the Hodge duality

operation. The fermionic Dirac fields (ψ, ψ̄), with the mass m and charge e, couple to the

U(1) gauge field Aµ (i.e. −eψ̄γµAµψ) through the conserved current Jµ = ψ̄γµψ. The

‡We adopt here the conventions and notations such that the 4D flat Minkowski metric is: ηµν = diag
(+1,−1,−1,−1) and 2 = ηµν∂µ∂ν = (∂0)

2 − (∂i)
2, F0i = Ei = ∂0Ai − ∂iA0 = F i0, Fij = ǫijkBk, Bi =

(1/2)ǫijkFjk, Dµψ = ∂µψ+ieAµψ where ǫijk is the 3D totally antisymmetric Levi-Civita tensor and electric
and magnetic fields are Ei and Bi, respectively. In equation (1), γ’s are the usual 4 × 4 Dirac matrices.
Furthermore, the Greek indices: µ, ν, ρ... = 0, 1, 2, 3 in (1) correspond to the spacetime directions and Latin
indices i, j, k... = 1, 2, 3 stand only for the space directions on the 4D spacetime manifold.
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anticommuting (CC̄ + C̄C = 0, C2 = C̄2 = 0, Cψ + ψC = 0 etc.) (anti-)ghost fields

(C̄)C are required to maintain the unitarity and “quantum” gauge (i.e. BRST) invariance

together at any arbitrary order of perturbation theory for a given physical process §. The

Nakanishi-Lautrup auxiliary field B is required to linearize the quadratic gauge-fixing term

−1
2
(∂ · A)2 present in the Lagrangian density (1), in a subtle way.

The above Lagrangian density (1) respects the following off-shell nilpotent (s2
(a)b = 0)

and anticommuting (sbsab +sabsb = 0) (anti-)BRST (s(a)b)
¶ symmetry transformations [14]

sbAµ = ∂µC, sbC = 0, sbC̄ = iB, sbψ = −ieCψ,
sbψ̄ = −ieψ̄C, sbB = 0, sbFµν = 0, sb(∂ · A) = 2C,
sabAµ = ∂µC̄, sabC̄ = 0, sabC = −iB, sabψ = −ieC̄ψ,
sabψ̄ = −ieψ̄C̄, sabB = 0, sabFµν = 0, sab(∂ · A) = 2C̄.

(2)

The noteworthy points, at this stage, are (i) under the nilpotent (anti-)BRST transforma-

tions, it is the kinetic energy term (more precisely Fµν itself) that remains invariant. (ii)

The electric and magnetic fields Ei and Bi (that are components of Fµν) owe their origin

to the operation of cohomological operators d on the one-form A(1). (iii) The symmetry

transformations in (2) are generated by the local, conserved and nilpotent charges Q(a)b.

This statement, for the local generic field Σ(x), can be succinctly expressed as

sr Σ(x) = −i [ Σ(x), Qr ]±, r = b, ab, (3)

where Σ(x) = Aµ(x), C(x), C̄(x), ψ(x), ψ̄(x), B(x) and the (+)− signs, as the subscripts on

the square bracket, correspond to the (anti-)commutators for the generic local field Σ(x)

(of the Lagrangian density (1)) being (fermionic)bosonic in nature.

To derive the above anticommuting and nilpotent transformations s(a)b for the bosonic

U(1) gauge field Aµ and the fermionic (anti-)ghost fields (C̄)C, we exploit the usual su-

perfield formalism, endowed with the horizontality restriction on a six (4 + 2)-dimensional

supermanifold. This supermanifold is parametrized by the superspace coordinates ZM =

(xµ, θ, θ̄) where xµ (µ = 0, 1, 2, 3) are a set of four even (bosonic) spacetime coordinates

and fermionic θ and θ̄ are a set of two odd (Grassmannian) coordinates. One can de-

fine a super 1-form Ã(1) = dZMÃ
(1)
M where the supervector superfield Ã

(1)
M (with Ã

(1)
M =

(Bµ(x, θ, θ̄), F(x, θ, θ̄), F̄(x, θ, θ̄)) has the component multiplet superfields Bµ,F , F̄ .

These component superfields can be expanded in terms of the basic fields (Aµ, C, C̄), aux-

iliary field (B) of the Lagrangian density (1) and some extra secondary fields, as [6]

Bµ(x, θ, θ̄) = Aµ(x) + θ R̄µ(x) + θ̄ Rµ(x) + i θ θ̄Sµ(x),
F(x, θ, θ̄) = C(x) + i θB̄(x) + i θ̄ B(x) + i θ θ̄ s(x),
F̄(x, θ, θ̄) = C̄(x) + i θ B̄(x) + i θ̄ B(x) + i θ θ̄ s̄(x).

(4)

§The full strength of the (anti-)ghost fields turns up in the discussion of the unitarity and gauge (i.e.
BRST) invariance for the perturbative computations in the realm of non-Abelian gauge theory where, for
each loop diagram of the gauge (gluon) fields corresponding to a physical process, allowed by the theory,
a loop diagram consisting of only the (anti-)ghost fields is required to exist (see, e.g., [15] for details).

¶We adopt here the notations and conventions followed in [14]. In fact, in its full glory, a nilpotent
(δ2B = 0) BRST transformation δB is equivalent to the product of an anticommuting (ηC = −Cη, ηC̄ =
−C̄η, ηψ = −ψη, ηψ̄ = −ψ̄η etc.) spacetime independent parameter η and sb (i.e. δB = η sb) where s2b = 0.
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It is straightforward to note that the local fields Rµ(x), R̄µ(x), C(x), C̄(x), s(x), s̄(x) are

fermionic (anticommuting) in nature and their number matches with the bosonic (com-

muting) local fields Aµ(x), Sµ(x),B(x), B̄(x), B(x), B̄(x) in (4).

All the secondary fields will be expressed in terms of basic fields (Aµ, C, C̄) and the

auxiliary field B due to the restrictions emerging from the application of horizontality

condition F̃ (2) = F (2) where the explicit forms of F̃ (2) and F (2) are:

F̃ (2) = d̃Ã(1) = 1
2
(dZM ∧ dZN)F̃MN , F

(2) = dA(1) = 1
2
(dxµ ∧ dxν)Fµν , F̃

(2) = F (2). (5)

The super exterior derivative d̃ and the connection super one-form Ã(1), in (5), are

d̃ = dZM ∂M = dxµ ∂µ + dθ ∂θ + dθ̄ ∂θ̄,

Ã(1) = dZM Ã
(1)
M = dxµ Bµ(x, θ, θ̄) + dθ F̄(x, θ, θ̄) + dθ̄ F(x, θ, θ̄).

(6)

Mathematically, the above condition (5) implies the “flatness” of all the components of

the (anti-)symmetric super curvature tensor F̃MN that are directed along the θ and/or

θ̄ directions of the supermanifold. Ultimately, the soul-flatness (horizontality) condition

(d̃Ã(1) = dA(1)) of equation (5) (with F̃ (2) = F (2)), yields ‖

Rµ (x) = ∂µ C(x), R̄µ (x) = ∂µ C̄(x), s (x) = s̄ (x) = 0,
Sµ (x) = ∂µB (x) B (x) + B̄ (x) = 0, B (x) = B̄(x) = 0.

(7)

The insertion of all the above values in the expansion (4) leads to the derivation of the

(anti-)BRST symmetries for the gauge- and (anti-)ghost fields of the theory as ∗∗

B(h)
µ (x, θ, θ̄) = Aµ(x) + θ (sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄ (sbsabAµ(x)),

F (h) (x, θ, θ̄) = C(x) + θ (sabC(x)) + θ̄ (sbC(x)) + θ θ̄ (sb sabC(x)),
F̄ (h) (x, θ, θ̄) = C̄(x) + θ (sabC̄(x)) + θ̄ (sbC̄(x)) + θ θ̄ (sb sabC̄(x)).

(8)

The above exercise provides the physical interpretation for the (anti-)BRST charges Q(a)b

as the generators (cf. (3)) of translations (i.e. Limθ̄→0(∂/∂θ),Limθ→0(∂/∂θ̄)) along the

Grassmannian directions of the supermanifold. It is clear that d̃Ã
(1)
(h) = dA(1) where Ã

(1)
(h) =

dxµB(h)
µ + dθF̄ (h) + dθ̄F (h) is, Ã(1) of (6), after the application of horizontality condition.

We now derive the nilpotent symmetry transformations for the matter (Dirac) fields

(ψ, ψ̄) due to the invariance of the conserved matter current of the theory on the supermani-

fold. We start off with the super expansion of the superfields (Ψ, Ψ̄)(x, θ, θ̄)), corresponding

to the ordinary Dirac fields (ψ, ψ̄)(x), as

Ψ(x, θ, θ̄) = ψ(x) + i θ b̄1(x) + i θ̄ b2(x) + i θ θ̄ f(x),
Ψ̄(x, θ, θ̄) = ψ̄(x) + i θ b̄2(x) + i θ̄ b1(x) + i θ θ̄ f̄(x).

(9)

‖In the explicit computation of d̃Ã(1), we have taken into account dxµ ∧ dxν = −dxν ∧ dxµ, dxµ ∧ dθ =
−dθ ∧ dxµ, dθ ∧ dθ̄ = dθ̄ ∧ dθ, etc., that emerge from the requirement of the nilpotency of d̃ (i.e. d̃2 = 0).

∗∗For the non-Abelian gauge theory where F (2) = dA(1) + A(1) ∧ A(1), the off-shell nilpotent symmetry
transformations for the gauge (i.e. sbAµ = DµC) and (anti-)ghost fields (with sbC 6= 0, sabC̄ 6= 0, etc.)
were found in a beautiful paper by Bonora and Tonin with exactly the same kind of expansion as given
in (8) (see, e.g. [6]). The horizontality condition (F̃ (2) = F (2)) plays an important role in this work, too.
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In the limit (θ, θ̄) → 0, from the above expansions, we get back the usual Dirac fields (ψ, ψ̄)

of the Lagrangian density (1) and the number of bosonic fields (b1, b̄1, b2, b̄2) match with

the fermionic fields (ψ, ψ̄, f, f̄) for the consistency with the supersymmetry.

We construct the supercurrent J̃µ(x, θ, θ̄) with the following general super expansion

J̃µ(x, θ, θ̄) = Ψ̄(x, θ, θ̄) γµ Ψ(x, θ, θ̄) = Jµ(x) + θ K̄µ(x) + θ̄ Kµ(x) + i θ θ̄ Lµ(x), (10)

where the above components (i.e. K̄µ, Kµ, Lµ, Jµ), can be expressed in terms of the com-

ponents of the basic super expansions (9), as (see, e.g., [10])

K̄µ(x) = i(b̄2γµψ − ψ̄γµb̄1), Kµ(x) = i(b1γµψ − ψ̄γµb2),
Lµ(x) = f̄γµψ + ψ̄γµf + i(b̄2γµb2 − b1γµb̄1), Jµ(x) = ψ̄γµψ.

(11)

To be consistent with our earlier observation that the (anti-)BRST transformations (s(a)b)

are equivalent to the translations along the (θ)θ̄-directions of the supermanifold, it is

straightforward to re-express the expansion in (11) as

J̃µ(x, θ, θ̄) = Jµ(x) + θ (sabJµ(x)) + θ̄ (sbJµ(x)) + θ θ̄ (sbsabJµ(x)). (12)

It can be checked explicitly that, under the (anti-)BRST transformations (2), the conserved

current Jµ(x) remains invariant (i.e. sbJµ(x) = sabJµ(x) = 0). Thus, from (11), we have

b1γµψ = ψ̄γµb2, b̄2γµψ = ψ̄γµb̄1, f̄γµψ + ψ̄γµf = i(b1γµb̄1 − b̄2γµb2), (13)

as the conditions for s(a)bJµ = 0. This, ultimately, implies: Kµ = Lµ = K̄µ = 0 in (10).

One of the possible solutions to the above restrictions in equation (13), is [10]

b1 = −eψ̄C, b2 = −eCψ, b̄1 = −eC̄ψ, b̄2 = −eψ̄C̄,
f = −ie [ B + eC̄C ] ψ, f̄ = +ie ψ̄ [ B + eCC̄ ].

(14)

It is clear that the above expressions are consistent but not uniquely determined by the

restriction J̃µ(x, θ, θ̄) = Jµ(x) on the supermanifold. However, it should be emphasized

that, barring the constant factors, the above solutions are very logical. For instance, for the

validity of b1γµψ = ψ̄γµb2, the pair of bosonic components b1 and b2 should be proportional

to the fermionic fields ψ̄ and ψ, respectively. The corresponding equality can be achieved

only by bringing in the (anti-)ghost fields of the theory. There is no other possible choice.

Thus, we judiciously choose b1 ∼ ψ̄C and b2 ∼ Cψ. Rest of the consistent choices of (14)

are made on similar line of arguments with appropriate constants i and e thrown in.

The stage is now set for the exact derivation of (14). To this end in mind, we begin

with the following gauge invariant restriction on the supermanifold [12]

Ψ̄(x, θ, θ̄) (d̃+ ieÃ
(1)
(h)) Ψ(x, θ, θ̄) = ψ̄(x) (d+ ieA(1)) ψ(x), (15)

where the superfields Ψ and Ψ̄ are from (9). The r.h.s. of the above equation, expressed

in terms of the differential dxµ as: dxµψ̄(∂µ + ieAµ)ψ, is obviously a U(1) gauge invariant

6



quantity. The l.h.s. of the above equation yields the coefficients of the differentials dxµ, dθ

and dθ̄. The analogues of the latter two, as is evident from (15), do not exist on the r.h.s.

It is straightforward to note that the coefficients of dθ, collected from the l.h.s., should

be set equal to zero. This requirement leads to the following two independent relationships

−i ψ̄ (b̄1 + eC̄ψ) = 0, ψ̄ (if + eC̄b̄2 − eBψ) = 0. (16)

Similarly, the coefficients of dθ̄ equal to zero, implies the following relationships [12]

−i ψ̄ (b̄2 + eCψ) = 0, ψ̄ (−if + eC̄b̄1 + eBψ) = 0. (17)

Together, the above two equations, lead to the following results (for ψ̄ 6= 0)

b̄1 = −e C̄ ψ, b2 = −e C ψ, f = −ie (B + eC̄C) ψ. (18)

In fact, out of exactly four relations, only two in (16) and (17) are independent [12].

We shall focus now on the collection of the coefficients of dxµ, dxµ(θ), dxµ(θ̄) and

dxµ(θθ̄). The coefficient of the “pure” dxµ match from l.h.s. and r.h.s. Exploiting the

inputs from (18), we set equal to zero the coefficient of dxµ(θ) and dxµ(θ̄). These imply

i [ b̄2 + e ψ̄C̄ ] [ Dµψ ] = 0, i [ b1 + e ψ̄C ] [ Dµψ ] = 0. (19)

The above conditions lead to the exact determination of b1 and b̄2 as: b1 = −eψ̄C, b̄2 =

−eψ̄C̄. It will be noted that Dµψ 6= 0 for the QED with Dirac fields. Finally, we collect

the coefficients of dxµ(θθ̄) and set them equal to zero. This implies [12]

[ if̄ + eψ̄ (B + eCC̄) ] [ Dµψ ] = 0, (20)

where we have exploited the inputs from (18) and have inserted the values of b1 and b̄2
that were obtained earlier. It is obvious that, for Dµψ 6= 0, we obtain the exact value of f̄

as f̄ = ie[B + eCC̄]ψ̄. Thus, from the restriction (15), we obtain exactly all the values of

(14). Insertions of the values of (14) into (9) leads to the following (see, [12] for details)

Ψ (x, θ, θ̄) = ψ(x) + θ (sabψ(x)) + θ̄ (sbψ(x)) + θ θ̄ (sb sabψ(x)),
Ψ̄ (x, θ, θ̄) = ψ̄(x) + θ (sabψ̄(x)) + θ̄ (sbψ̄(x)) + θ θ̄ (sb sabψ̄(x)).

(21)

This establishes the fact that the nilpotent (anti-)BRST charges Q(a)b are the translations

generators (Limθ̄→0(∂/∂θ)) Limθ→0(∂/∂θ̄) along the (θ)θ̄ directions of the supermanifold.

To summarize, the geometrical interpretations for (i) the (anti-)BRST transformations

s(a)b and their corresponding generators Q(a)b, (ii) the nilpotency property of s(a)b and Q(a)b,

and (iii) the anticommutativity property of s(a)b and Q(a)b, for all the fields of QED with

Dirac fields, emerge in the framework of augmented superfield formalism. Mathematically,

these can be expressed, in an explicit manner, as illustrated below

sb ⇔ Qb ⇔ Limθ→0
∂

∂θ̄
, sab ⇔ Qab ⇔ Limθ̄→0

∂

∂θ
,

s2
(a)b = 0 ⇔ Q2

(a)b = 0 ⇔
( ∂

∂θ

)2
= 0,

( ∂

∂θ̄

)2
= 0,

sbsab + sabsb = 0 ⇔ QbQab +QabQb = 0 ⇔
∂

∂θ̄

∂

∂θ
+

∂

∂θ

∂

∂θ̄
= 0.

(22)
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The exact nilpotent (anti-)BRST symmetries for the matter (Dirac) fields are obtained

from the gauge invariant restriction (15) on the supermanifold which is different in nature

than the gauge covariant restriction of the horizontality condition (5) (see, e.g., [13]).
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