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Abstract

Warped compactifications with significant warping provide one of the few known
mechanisms for naturally generating large hierarchies of physical scales. We demon-
strate that this mechanism is realizable in string theory, and give examples involving
orientifold compactifications of IIB string theory and F-theory compactifications on
Calabi-Yau four-folds. In each case, the hierarchy of scales is fixed by a choice of RR
and NS fluxes in the compact manifold. Our solutions involve compactifications of the
Klebanov-Strassler gravity dual to a confining N = 1 supersymmetric gauge theory,
and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge
theory.
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1 Introduction

The origin of the small ratio Mweak/MPlanck is a great puzzle. There are several known

mechanisms for producing an exponentially small ratio of scales. One is dimensional trans-

mutation, which Nature employs in many contexts. Another is nonperturbative effects, such

as instantons, which are exponentially small in the inverse coupling. A third possibility has

recently come to the fore. In a warped spacetime — one where the normalization of the

four-dimensional metric varies in the transverse dimensions — a given invariant energy scale

can give rise to many four-dimensional scales, depending on the position-dependent gravi-

tational redshift in the transverse space. This mechanism has in particular played a role in

the Randall-Sundrum (RS) models [1, 2].

Such generation of a hierarchy via redshift has a number of interesting potential conse-

quences. For example, one may reach thresholds to produce Kaluza-Klein modes at low ener-

gies, perhaps in the TeV range, with interesting phenomenological consequences. Moreover,

in such scenarios, scattering at apparently low energies can actually reach the fundamental

Planck scale, due to the relative redshift, raising the prospect of experimental probes of

Planck- or string-scale physics at energies far below the apparent four-dimensional Planck

scale; an example is the possibility of producing black holes at relatively low energy scales [3].

Warped metrics are quite natural in string theory, where D-branes generically provide

sources for the warping. Within the context of string compactifications, a particularly simple

realization was described by H. Verlinde [4]: simply take N D3-branes to be coincident on

a Calabi-Yau (CY) space. As is familiar from the AdS/CFT duality [5], the spacetime near

the D3-branes is of the form AdS5 × S5. It is well known that AdS5 can be represented as a

Poincaré-invariant four-dimensional space plus a radial direction, with a varying warp factor

that vanishes at the horizon of its Poincaré parameterization.

The RS models, and the warped compactifications of Verlinde, allow a large hierarchy

but do not explain it. There is a moduli space of solutions, and the size of the hierarchy is a

function of the moduli. These moduli correspond, for example, to the separations of various

branes. Goldberger and Wise [6] have shown that additional dynamics can fix the moduli

and produce a calculable large hierarchy. Their analysis was phenomenological; the goal of

our paper is to examine this issue in string theory, in the framework suggested by Verlinde.

In particular, as has been exhibited in the work of [7] (see also [8, 9]), a natural mechanism

to generate such a hierarchy is to consider warped compactifications with both RR and NS

fluxes present.

One way to understand this arises from a picture where branes are placed at a singularity.
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The low energy physics of D3-branes on a CY manifold is conformally invariant and N = 4

supersymmetric. In order to fix the moduli it is necessary to break the conformal invariance

and most of the supersymmetry. Precisely this same issue arises in the context of Maldacena

duality. String theory on AdS5 × S5 is dual to N = 4 supersymmetric Yang-Mills theory.

To find string duals of gauge theories with confinement and chiral symmetry breaking one

must reduce the symmetry; in the supergravity context this generates potentials which can

fix some of the moduli and stabilize a hierarchy.

A simple means of reducing the symmetry is to place the D3-branes not at a smooth point

of the transverse space but at a singularity [10, 11, 12, 13]. Indeed, placing them at a generic

CY singularity, a conifold point [14], reduces the supersymmetry to N = 1. This does not

break the conformal invariance, so it is also necessary to add additional ‘fractional’ branes

localized at the conifold singularity [15, 16, 17]. In the final analysis these branes dissolve

into flux, and result in a nonsingular solution that has recently been found by Klebanov and

Strassler (KS) [7]. So while the picture of branes and fractional branes at a conifold is used

to motivate the construction, the net result is that one ends up with a string background

with RR and NS fluxes, which lead to a smooth string solution with a large hierarchy.

The KS solution is, however, noncompact and therefore not suitable as a means of re-

ducing string theory to four dimensions; in particular it would produce an infinite 4d Planck

scale. Thus, our goal is to find true string compactifications, with a finite 4d Planck scale

and a local region of the KS form which generates a large but finite hierarchy. This hierar-

chy will be determined by the quantized values of the fluxes on the compact manifold. (For

another discussion of compactifications with fluxes, see [18].)

The outline of our paper is as follows. In section 2 we consider global constraints on

warped IIB solutions. Such constraints have been used in the past to exclude warped so-

lutions of IIB supergravity, but in the context of string theory their effect is to require the

presence of objects of negative tension such as O3 planes and wrapped D7-branes. Further,

when the localized sources satisfy a certain BPS-like bound, we are able from the global con-

straints to find the general solution. We find that, in the classical approximation in which

we work, the radial modulus is a flat direction with zero cosmological constant. This is the

case even though supersymmetry is generically broken at a scale that depends on the radial

modulus. Thus, these are no-scale models [19].

In section 3 we focus on the local structure of the compactifications, beginning with a

review of the Verlinde solution and its generalizations. In particular, in the presence of certain

fluxes on a compact manifold, together with the required O3 planes or D7-branes, we show

that compact smooth string solutions exist with the hierarchy fixed by the fluxes, in a limit of
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large fluxes. However, as noted above, the overall radius of the compact dimensions is always

left unfixed. This reflects the familiar feature of string compactifications, that it is very

difficult to stabilize all moduli, though we should note that in classical IIB compactifications

with fluxes the dilaton generically is stabilized.1 In fact the effective theories that we find

are very similar to those which arise in heterotic string compactifications [21, 22]. We

also outline the dual, gauge theory, description of these solutions. Section 4 is devoted to

constructing explicit examples, first as orientifolds of CY compactifications, and then as

F-theory compactifications (which allow larger fluxes and hierarchies).

2 Warped compactifications: global constraints

We begin by working in the approximation of low energy IIB supergravity, with such localized

sources as arise in string theory. In pure supergravity, the integrated field equations rule

out warped compactifications under broad conditions [23, 24]. In section 2.1 we revisit

this argument with localized sources included, and show that a warped compactification is

possible if sources with negative tension are present; such objects do exist in string theory.

With the constraint thus weakened, it does not appear possible to give a simple descrip-

tion of the general warped solution. In section 2.2 we show that when the localized sources

satisfy a certain BPS-like bound involving their energy-momentum tensor and their D3-brane

charge, then the global constraints do determine the general solution. The localized sources

that we consider — D3-branes, wrapped D7-branes, and O3-planes — all satisfy this bound.

We discuss various special properties of these solutions, in particular the effective action for

their moduli, and we relate them to solutions recently considered in the literature.

2.1 Action, equations of motion, and constraints

Our starting point is the effective action2

SIIB =
1

2κ10
2

∫
d10x

√−gs

{
e−2φ

[
Rs + 4(∇φ)2

]
−

F 2
(1)

2
− 1

2 · 3!
G(3) · G(3) −

F̃ 2
(5)

4 · 5!

}

+
1

8iκ10
2

∫
eφC(4) ∧ G(3) ∧ G(3) + Sloc . (2.1)

1More general compactifications with fluxes will be discussed in ref. [20]. In particular, some of these
have no moduli, and are reliably studied in a regime where low-energy supergravity is valid.

2We use the conventions of [25].
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Here gs denotes the string metric. We have also defined the combined three-flux, G(3) =

F(3) − τH(3), where as usual τ = C(0) + ie−φ, and

F̃(5) = F(5) −
1

2
C(2) ∧ H(3) +

1

2
B(2) ∧ F(3) . (2.2)

The term Sloc is the action of localized objects, such as branes, which will become important

shortly. The condition F̃(5) = ∗F̃(5) must as usual be imposed by hand on the equations of

motion.

We will be considering compactifications arising from F-theory, so it is particularly useful

to reformulate the action in an SL(2,Z) invariant form by defining the Einstein metric

gMN = e−φ/2gsMN , whence the action becomes

SIIB =
1

2κ10
2

∫
d10x

√−g

{
R− ∂Mτ∂M τ̄

2(Im τ)2
− G(3) · G(3)

12 Im τ
−

F̃ 2
(5)

4 · 5!

}

+
1

8iκ10
2

∫ C(4) ∧ G(3) ∧ G(3)

Im τ
+ Sloc . (2.3)

Henceforth we use the Einstein metric throughout. Invariance under the SL(2,Z) transform

τ → aτ + b

cτ + d
, (2.4)

together with the transformation

G(3) →
G(3)

cτ + d
(2.5)

is readily checked.

Our interest is in warped metrics maintaining four-dimensional Poincaré symmetry, with

convenient parameterization

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn (2.6)

in terms of four-dimensional coordinates xµ and coordinates ym on the compact manifold

M6. The axion/dilaton will be allowed to vary over the compact manifold,

τ = τ(y) , (2.7)

and since we will consider D7-branes, monodromies of the form (2.4) will be allowed. To

maintain Poincaré invariance only compact components of G(3) are present, and furthermore,

with monodromies (2.5), these will transform in a non-trivial bundle over M6:

G(3) ∈ σ(Ω3 ⊗L) , (2.8)
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where Ω denotes the canonical bundle, and L is the line bundle defined by the transformation

law (2.5). Finally, Poincaré invariance and the Bianchi identity allows a five-form flux of the

form

F̃(5) = (1 + ∗)[dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] , (2.9)

with α a function on the compact space. Also, in accord with Poincaré invariance, we will

allow some number of D3-branes along the noncompact directions, as well as D7-branes

filling the noncompact directions and wrapping certain four-cycles in M6.

Einstein’s equation, trace reversed, is

RMN = κ10
2
(
TMN − 1

8
gMNT

)
, (2.10)

where TMN = T sugra
MN + T loc

MN is the total stress tensor of the supergravity fields and the

localized objects. In particular, the latter contribution is

T loc
MN = − 2√−g

δSloc

δgMN
. (2.11)

The noncompact components take the form

Rµν = −gµν

(
GmnpG

mnp

48 Im τ
+

e−8A

4
∂mα∂mα

)
+ κ10

2
(
T loc

µν − 1

8
gµνT

loc
)

. (2.12)

From the metric Ansatz (2.6), one computes the Ricci components

Rµν = −ηµνe
4A∇̃2A = −1

4
ηµν

(
∇̃2e4A − e−4A∂me4A∂m̃e4A

)
. (2.13)

(A tilde denotes use of the metric g̃mn.) Using this and tracing (2.12) gives

∇̃2A = e−2A GmnpG
mnp

48 Im τ
+

e−6A

4
∂mα∂mα +

κ10
2

8
e−2A(Tm

m − T µ
µ )loc . (2.14)

or

∇̃2e4A = e2A GmnpG
mnp

12 Im τ
+ e−6A

[
∂mα∂mα + ∂me4A∂me4A

]
+

κ10
2

2
e2A(Tm

m − T µ
µ )loc . (2.15)

These equations serve as stringent constraints on flux/brane configurations that can lead

to warped solutions on compact manifolds.3 To see this, note that the integrals of their left

3One reaches the same conclusions by considering ∇2ekA for any positive k, but k = 4 is the value that
will be useful in the next subsection.
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sides over a compact manifold M6 vanish, whereas the flux and warp terms on the right-

hand side are positive definite. Thus, in the absence of localized sources there is a no-go

theorem [23, 24]: the fluxes must vanish and the warp factor must be constant. For a warped

solution the stress terms on the RHS must be negative, which can only be true under certain

circumstances.

For example, consider a p-brane wrapped on a (p − 3)-cycle Σ of the manifold M6. To

leading order in α′ (and in the case of vanishing fluxes along the brane) this contributes a

source action

Sloc = −
∫

R4×Σ
dp+1ξ Tp

√−g + µp

∫

R4×Σ
Cp+1 ; (2.16)

for positive tension objects the Einstein frame tension is

Tp = |µp|e(p−3)φ/4 . (2.17)

Eq. (2.16) gives a stress tensor

T loc
µν = −Tpe

2Aηµνδ(Σ) , T loc
mn = −TpΠ

Σ
mnδ(Σ) , (2.18)

where δ(Σ) and ΠΣ denote the delta function and projector on the cycle Σ, respectively.

From this we find

(Tm
m − T µ

µ )loc = (7 − p)Tpδ(Σ) . (2.19)

Eq. (2.19) tells us that for p < 7, in order to have the required negative stress on the RHS

of the constraint (2.15), the compactification must involve negative tension objects.

String theory does have such objects, and so evades the no-go theorem of [23, 24]. O3

planes are a simple example. The T 6/Z2 orientifold, which is T -dual to the type I theory, is

a compact Minkowski solution with 16 D3-branes and 64 O3-planes [25]. This implies that

the O3 tension is −1
4
T3. This orientifold was discussed in ref. [4] as an example of a warped

string solution.

Note that F-theory compactifications, despite having D7-branes, dilaton gradients, and

RR 1-form fluxes, satisfy the constraint (2.15) without negative tension. This is because

terms involving τ gradients do not enter the constraint, and the D7 brane stress tensor

contributions vanish by eq. (2.19).

To be precise, this is true only to leading order in α′. It is necessary to include also

the first α′ corrections to the D7 action Sloc (we will explain this expansion below). In the

Chern-Simons action the correction is [26]

− µ3

∫

R4×Σ
C(4) ∧

p1(R)

48
=

µ7

96
(2πα′)2

∫

R4×Σ
C(4) ∧ Tr (R(2) ∧R(2)) . (2.20)
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This Chern-Simons coupling captures the induced D3 charge on the wrapped D7-brane. In

the DBI action it is [27]

− µ7

96
(2πα′)2

∫

R4×Σ
d4x

√−gTr(R(2) ∧ ∗R(2)) . (2.21)

This term computes the first α′ correction to the wrapped D7-brane tension.4 The Chern-

Simons coupling has the effect, for example, that a D7-brane wrapped on K3 has −1 unit of

D3 charge [26]. This state is still BPS, with the same supersymmetry as the D3-brane, so

the DBI coupling must contribute −T3 to the tension. In F-theory, this background charge

is given in terms of the Euler number of the corresponding fourfold by

QD7
3 = −χ(X)

24
, (2.22)

and N = 1 supersymmetry implies the corresponding tension Qloc
3 T3. This can be thought of

as coming from the summed contribution of all 7-branes wrapping four-cycles in the base of

the elliptic fibration X. To directly derive this tension along the lines discussed above, one

should use the generalization of (2.21) which is applicable to branes wrapping divisors in the

(non-CY) base of X; the result is guaranteed by the supersymmetry of the configuration,

and the direct calculation is beyond the scope of our work.

We have been discussing constraints from the integrated Einstein equation. The Bianchi

identity/equations of motion for the 5-form flux is5

dF̃(5) = H(3) ∧ F(3) + 2κ10
2T3ρ

loc
3 (2.23)

where ρloc
3 is the D3 charge density form from localized sources; this includes the contributions

of the D7-branes or O3 planes, and also of mobile D3-branes that may be present.6 The

integrated Bianchi identity

1

2κ10
2T3

∫

M6

H(3) ∧ F(3) + Qloc
3 = 0 (2.24)

4For simplicity we are considering in eqs. (2.20, 2.21) the case of a trivial normal bundle; the full form is
given in ref. [28]. The F-theory result (2.22) is general.

5 Recall that 2κ10
2 = (2π)7α′4, µ3 = (2π)−3α′−2, µ7 = (2π)−7α′−4, and, in Einstein frame, T3 = µ3 [25].

6In deriving this field equation there is an annoying subtlety due to the self-dual flux. The electric
coupling of C(4) must actually be half of what we have written in eqs. (2.16, 2.20), in order to obtain
eq. (2.23). However, any object carrying D3 charge also has a magnetic coupling to C(4); in a self-dual
background the action for a probe is then obtained by doubling the electric coupling as we have done.

An alternative approach to the self-dual flux is to use a Lorentz-noninvariant action: double the F 2
(5) and

Chern-Simons terms in the actions (2.1, 2.3) but restrict to terms in which F(5) or C(4) has a 1-component.
This action, derived by T -duality from the IIA action, is well-suited to the study of compactification of the
IIB theory.
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states that the total D3 charge from supergravity backgrounds and localized sources vanishes.

In the next subsection, we will analyze the constraints (2.15, 2.24) further.

Finally, let us discuss the nature of the α′ expansion. The localized source in the Bianchi

identity (2.23) is of order Nα′2, where N is the characteristic D3 charge. It is not possible to

take N to be parametrically large, because the negative contributions to the Bianchi identity

are determined by the topology of the manifold. However, the Euler number (2.22) can be

quite large in a given example, and so we will treat N as an effective large parameter as in

ref. [4]. We will then treat Nα′2 as being of order one, but drop order α′ effects such as the

string corrections to the supergravity action. This is why we needed to keep the curvature

terms in the D7-brane action. The Bianchi identity then implies that G(3) = O(N1/2α′); the

factor of α′ is consistent with the quantization

1

2πα′

∫
F(3) ∈ 2πZ ,

1

2πα′

∫
H(3) ∈ 2πZ , (2.25)

and the number of 3-form flux units then scales as N1/2.

2.2 Special solutions

2.2.1 A BPS-like condition

With general negative tension sources, the constraints from the integrated field equations

appear to be rather weak. However, in the special case that

1

4
(Tm

m − T µ
µ )loc ≥ T3ρ

loc
3 (2.26)

for all localized sources, the global constraints determine the form of the solution completely.

In fact, the inequality (2.26) holds for all of the localized sources considered in this

paper. For D3-branes and O3 planes, whose integrated ρ3 is respectively +1 and −1
4
, the

stress tensor is

T 0
0 = T 1

1 = T 2
2 = T 3

3 = −T3ρ3 , Tm
m = 0 , (2.27)

and so the inequality is actually saturated. Anti-D3-branes satisfy the inequality but do

not saturate it. D5-branes wrapped on collapsed cycles also satisfy the inequality, as their

tension comes entirely from their induced D3 charge.

For D7-branes, the nonvanishing contributions to the two sides of the inequality come

from the curvature terms (2.20, 2.21). In the simple case of D7-branes wrapped on K3, the

property ∗R(2) = R(2) implies that the inequality is saturated. If a nontrivial gauge bundle

is introduced, the inequality is still respected as a consequence of FµνF
µν ≥ Fµν(∗F )µν . For
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the more general wrappings that arise in F-theory, we argue below that the inequality is

saturated.

There are objects that do violate the inequality (2.26). O5 planes make a negative

contribution to the LHS and zero contribution to the RHS. Anti-O3 planes make a negative

contribution to the LHS and a positive contribution to the RHS.

The inequality (2.26) resembles a BPS condition. Indeed, the underlying IIB supersym-

metry algebra implies that

H ≥ T3Q3 . (2.28)

If this holds locally, as might be expected classically, then by applying Lorentz invariance we

get −T 0
0 = −T 1

1 = −T 2
2 = −T 3

3 ≥ T3ρ3. When the inequality (2.28) is saturated, the pressure

Tm
m should vanish by analogy to the no-force condition. Away from extremality T m

m − T µ
µ

generally increases, by analogy to the weak energy condition, so the inequality (2.26) follows.

The O planes that do not satisfy the bound (2.26) are able to evade it because the necessary

supercharges do not exist: they are projected out by the orientifold. The D7-branes that

arise in F-theory compactifications saturate the bound because they preserve an N = 1

supersymmetry that is also preserved by D3-branes.

2.2.2 Solution of the constraints

In terms of the potential α the Bianchi identity (2.23) becomes

∇̃2α = ie2A Gmnp(∗6G
mnp

)

12 Im τ
+ 2e−6A∂mα∂me4A + 2κ10

2e2AT3ρ
loc
3 , (2.29)

where ∗6 is the dual in the transverse directions. Subtracting this from the Einstein equation

constraint (2.15) gives

∇̃2(e4A−α) =
e2A

6 Im τ

∣∣∣iG(3)−∗6G(3)

∣∣∣
2
+e−6A|∂(e4A−α)|2+2κ10

2e2A
[
1

4
(Tm

m −T µ
µ )loc−T3ρ

loc
3

]
.

(2.30)

The LHS integrates to zero, while under the assumption (2.26) the RHS is nonnegative.

Thus, if the inequality (2.26) holds, then

• The 3-form field strength is imaginary self-dual,

∗6G(3) = iG(3) . (2.31)

• The warp-factor and 4-form potential are related,

e4A = α . (2.32)
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• The inequality (2.26) is actually saturated.

Assuming this form, let use review the full set of field equations and Bianchi identities.

The 5-form field strength (2.9) is self-dual by construction. Its field strength/Bianchi iden-

tity (2.29) is consistent and determines α and A, provided that the total D3 charge (2.24)

vanishes. The 3-form Bianchi identities

dF(3) = dH(3) = 0 (2.33)

must be imposed. Using these, the equation of motion then takes the form

dΛ +
i

Im τ
dτ ∧ ReΛ = 0 , Λ = e4A∗6G(3) − iαG(3) , (2.34)

and so is satisfied as a consequence of eqs. (2.31, 2.32). The Rµν equation also follows from

these conditions. Finally, the remaining field equations reduce to

R̃mn = κ10
2 ∂mτ∂nτ̄ + ∂nτ∂mτ̄

4(Im τ)2
+ κ10

2
(
T̃D7

mn − 1

8
g̃mnT̃

D7
)

, (2.35)

∇̃2τ =
∇̃τ · ∇̃τ

i Im τ
− 4κ2

10(Im τ)2

√−g

δS̃D7

δτ̄
. (2.36)

These are the equations determining a solution to F-theory in the supergravity approxima-

tion.

In summary, assuming that the localized sources satisfy (2.26), the necessary and suffi-

cient conditions for a solution are an underlying manifold M̃6 ≡ (g̃mn, τ) satisfying (2.35, 2.36),

closed 3-form fluxes F(3) and H(3) such that G(3) is imaginary self-dual, and vanishing total

D3 charge.

2.2.3 Supersymmetry, and relation to previous solutions

The conditions for N = 1 supersymmetry of such a solution have recently been considered

in refs. [29, 30] for constant dilaton, and in ref. [31] more generally. The underlying manifold

must be Kähler and the connection D̃m − i
2
Qm must lie in SU(3), where Qm is constructed

from τ as in [32]. The flux G(3) must be a (2,1) form and primitive, meaning that the

index structure is ı̄jk and the contraction with the Kähler form J ı̄j vanishes. The condition

∗6G(3) = iG(3) allows a primitive (2, 1) piece and a (0, 3) piece.7 Thus our general solution

is supersymmetric if and only if the (0, 3) part vanishes.
7It also allows a (1, 2) piece of the form K(2) ∧ω(1) where K(2) is the Kähler form and ω(1) is a nontrivial

closed (0, 1)-form. A compact Calabi-Yau manifold has no such (0, 1)-form, and neither do the Calabi-Yau
orientifolds or F-theory compactifications we consider. Note that in our conventions for the complex basis,
ǫ123

123 = −i.
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In general, supersymmetric and nonsupersymmetric solutions are both possible, though

the latter are more generic. Consider for example the T 6/Z2 orientifold. This is somewhat

special because it has N = 4 supersymmetry in the absence of G-flux, but it serves for

illustration. In terms of three complex coordinates, the primitive fluxes G1̄23, G12̄3, and G123̄

can be turned on consistent with the quantization conditions (2.25) (these fix τ and some

of the Kähler moduli), leaving N = 1 supersymmetry. If the additional flux G1̄2̄3̄ is nonzero

then all supersymmetry is broken.

Noncompact solutions of this form have previously been described in ref. [29] in the special

case of constant dilaton. The supersymmetric solutions are dual [8, 33] to the M theory

solutions of ref. [34]. As emphasized in ref. [31] these solutions are special, in the sense that

the N = 1 supersymmetry lies in an N = 4 subgroup of the full N = 8 IIB supersymmetry.

In IIB form, this is the subgroup preserved by a space-filling D3-brane; in M theory form

it is the subgroup preserved by a space-filling M2-brane. F-theory compactifications on CY

fourfolds preserve N = 1 supersymmetry in the presence of D3 branes (and in fact are limits

of the M theory solutions of [34]). Therefore, we can infer that they are solutions of this

special form, though we have not displayed this by computing and explicitly comparing the

contributions of (the fully generalized forms of) (2.21) and (2.20) for the wrapped 7-branes.

2.2.4 Moduli and effective actions

The necessary and sufficient conditions (2.24, 2.31, 2.33, 2.35, 2.36) are all invariant under

rescaling g̃mn → λ2g̃mn. Thus,

• All special solutions have a radial modulus.

Thus our goal of fixing the moduli in a warped compactification is limited in this class of

solutions to leaving at least this one. On the other hand, there is no dilaton modulus, because

the dilaton couples differently to the NS-NS and R-R 3-form fluxes and so has a nontrivial

potential. This suggests that it may be an interesting exercise to look for solutions having

no classical moduli by introducing sources not satisfying the inequality (2.26) [20].

This is slightly subtle, because the solution itself does not scale simply. In the field

equation (2.15), the terms involving derivatives of A scale like λ−2, and the flux source term

scales like λ−6. It follows that at large radius e4A = 1 + O(λ−4) and so the warp factor

approaches a constant. At radii less than O(N1/4α′1/2) the warping becomes significant.

The properties of the nonsupersymmetric solutions — vanishing four-dimensional cosmo-

logical constant and a radial modulus in spite of the absence of supersymmetry — identifies
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them as no-scale models [19, 21, 22]. The combination of broken supersymmetry with vanish-

ing cosmological constant is intriguing, but there is no known reason that it should survive

quantum corrections, from instantons and even perturbative loops. Even at string tree level,

α′ corrections to the supergravity field equations presumably spoil the no-scale structure.

Let us also consider the effective four-dimensional action. Before turning on fluxes, there

will be massless fields corresponding to the Kähler and complex structure moduli; we denote

the latter zα. Furthermore, for orientifold models, the dilaton field τ is massless, whereas

in general F-theory models it is fixed in terms of the complex structure moduli by (2.36).

For the moment we consider the case of a single Kähler modulus, the radial modulus, in a

four-dimensional superfield ρ.

For a large-radius CY or orientifold, the Kähler potential follows by dimensionally reduc-

ing the 10d action.8 For the radius we find

K(ρ) = −3 ln[−i(ρ − ρ̄)] , (2.37)

and for the dilaton and complex structure moduli

K(τ, zα) = − ln[−i(τ − τ̄)] − ln
(
−i
∫

M

Ω ∧ Ω̄
)

(2.38)

where Ω is the holomorphic (3, 0) form. The latter expression follows from the Weil-Petersson

metric, and is discussed in [35]. An obvious conjecture for the F-theory generalization of

(2.38) is

K = − ln
(∫

X
Ω4 ∧ Ω̄4

)
(2.39)

where X and Ω4 denote the CY fourfold and its holomorphic (4, 0) form respectively.

The fluxes generate a superpotential, which takes the form [8]

W =
∫

M

Ω ∧ G(3) . (2.40)

This is independent of ρ. The expected F-theory generalization of this formula takes the

form [8]

W =
∫

X
Ω4 ∧ G(4) . (2.41)

In (2.41), G(4) denotes the four-form flux one would get in M-theory by compactifying the

F-theory on a circle; it can be expressed in terms of type IIB quantities in the F-theory

8For further discussion see the appendix.
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limit. If the one works with a local trivialization of the elliptic fibration, for example in the

vicinity of the conifold point, with fiber coordinate w, the four form G(4) takes the form

G(4) = −G(3)dw̄

τ − τ̄
+ h.c. . (2.42)

We will further discuss issues surrounding use of such a trivialization in section four.

Under these conditions the N = 1 supergravity potential simplifies [19],

V =
1

2κ2
10

eK
(
Gab̄DaWDbW − 3|W |2

)

→ 1

2κ2
10

eK
(
GīDiWDjW

)
, (2.43)

where DaW = ∂aW + W∂aK and Gab̄ = ∂a∂b̄K, and the indices a, b are summed over

superfields, with i, j labeling indices excluding ρ. In no-scale models the |DρW |2 term

cancels the negative term, leaving a nonnegative potential. When DaW = 0 the potential

vanishes; this condition is independent of ρ, so if there are n superfields besides ρ it represents

n equations on n moduli and leaves ρ undetermined. Generically at these solutions W 6= 0,

so DρW = −3W/(ρ − ρ) is nonzero and supersymmetry is broken.

A useful check on these expressions comes by comparing the 4d and 10d equations. In

the CY/orientifold case, one readily finds (see appendix)

0 = DαW ≡ ∂αW + (∂αK)W =
∫

M

G(3) ∧ χα ,

0 = DτW ≡ ∂τW + (∂τK)W =
1

τ̄ − τ

∫

M

G(3) ∧ Ω , (2.44)

where χα is a basis of (2, 1) forms on M. These equations imply that G(3) is imaginary

self-dual, in correspondence to the 10d condition (2.31). For F-theory, define a basis of (3, 1)

forms χA on X; the expected generalization of (2.44) is

0 = DAW =
∫

X
G(4) ∧ χA . (2.45)

While our discussion so far has focused on the case where there is only one Kähler

modulus, ρ, a general model may have several Kähler moduli ρi. The required modification

of this discussion is quite simple. The superpotential is independent of all of the ρi. It should

then follow that the Kähler metric for the Kähler deformations produces an analog of the

simplification (2.43), where now the greek indices sum over moduli excluding the ρi. One

way to see this is from the 10d picture – the condition (2.31), whose correspondence with the
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4d potentials was just seen, is independent of the Kähler moduli. So the no-scale structure

survives, with each of the Kähler moduli persisting as a flat direction at this order. Because

it is not difficult to find models with only a single Kähler modulus ρ, we will assume that

this is the case in the rest of the paper.

In the appendix we discuss further the derivation of the four-dimensional action by dimen-

sional reduction and the correspondence between the four-dimensional and ten-dimensional

pictures.

3 Warped solutions and hierarchies

In section 2 we discussed various global features of IIB compactifications with a nontrivial

warp factor. We now turn to the local structure of the warped region.

We begin by reviewing the solutions of Verlinde [4], corresponding to D3 branes on a

compact manifold. If N D3-branes are coincident, the warp factor in their vicinity is

e−4A ≈ 4πgsN

r̃4
, (3.1)

with r̃ the distance from the D3-branes in the g̃mn metric. Near the D3-branes the geometry

is thus AdS5 × S5, producing a large warp factor [4]. At larger values of r̃, the product

structure breaks down due to the curvature of M6, and eventually r̃ ceases to be a good

coordinate [36]: M6 is not globally the product of a five-sphere and a one dimensional

space. This is similar to the RS2 model [2], though is a bona-fide compactification, with the

compact manifold playing a role roughly analogous to the so-called “Planck brane” of [2],

and yielding a finite four-dimensional Planck scale. The warp factor of course diverges as

r̃ → 0, which is at infinite spatial distance.

If such a model is realized on an orientifold, the dilaton is a constant, eφ = gs, but in the

more general context of an F-theory compactification it varies holomorphically as determined

by (2.36) or equivalently by the eight-dimensional construction. As we will discuss in section

4.2, the physics near the D3-branes is essentially the same, and the effective value of gs is

determined by the value of τ at the D3-branes.

To get a large but finite hierarchy, one or more D3-branes must be separated from the

rest by a small distance r̃. These might be the branes on which the Standard Model fields

live, or they might be associated with some symmetry breaking that couples to the Standard

Model through the bulk. However, the D3-brane coordinates have no potential. Thus in the

present model there is nothing that fixes r̃ and so the size of the hierarchy.
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In order to find a warped solution that produces a large but stable hierarchy, we now add

fluxes. Our motivation stems from the work of Klebanov-Strassler [7]. The basic idea is that

locally in the vicinity of a conifold point, KS have found solutions with fluxes that generate

smooth supergravity solutions with large relative warpings. Here we will extend this work

to the compact context.

CY manifolds are generically nonsingular, but at special values of the parameters they

can develop singularities. The most generic singular space is a conifold [14]. Locally this can

be described as the submanifold of C4 defined by

w2
1 + w2

2 + w2
3 + w2

4 = 0 . (3.2)

This submanifold is singular at (w1, w2, w3, w4) = 0. The geometry of this space, including

its Calabi-Yau metric, is described in ref. [14]. It is important that this is a good singularity,

meaning that string theory makes sense in such a space [37]. Although the compactification

space M̃6 we are using is either the base of a nontrivial elliptic fibration, or is an orientifold

of a Calabi-Yau, the local structure of a singularity like (3.2) will not be affected by these

global details, so we can use local facts about CY singularities in the ensuing discussion.

The conifold singularity can be regarded as a cone whose base has the topology S3×S2. At

the singular point, both the S3 and the S2 shrink to zero size. The conifold can be smoothed

into a nonsingular CY manifold in two ways. In the small resolution of the conifold, the

S2 is blown up to finite size. In the deformed conifold, the S3 is expanded to finite size; it

is this that will be relevant for us. The deformed conifold has a simple description as the

submanifold

w2
1 + w2

2 + w2
3 + w2

4 = z . (3.3)

Here the complex parameter z is the modulus which controls the size of the S3.

We now consider adding fluxes to this geometry, and find the resulting potential for the

moduli. Consider a compact manifold with moduli z, ρ, and τ (we explain at the end of

this subsection how additional complex structure moduli ui can be incorporated, without

substantially modifying the results).9 Dirac quantization implies that these fluxes, integrated

over all of the three-cycles of the CY, be integers as in (2.25). In the vicinity of the conifold,

there are two relevant cycles. Examining the equation (3.3), and taking z to be real and

positive for convenience, the three-cycle which vanishes as z → 0 (denoted A) can be taken

to be the S3 on which all of the wi are real. In general compact examples, there also exists a

dual B-cycle which intersects A exactly once. An example of such a cycle in this noncompact

9More generally, in the case of an F-theory compactification, the following should be generalized using
sections as outlined in (2.8), (2.42).
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case can be constructed by taking w1,2,3 to be imaginary and w4 real and positive. The KS

solution corresponds to M units of F(3) on the A-cycle. The field equation in KS requires

that H(3) be supported on the dual cycle to F(3), so let there be −K units on the B-cycle:

1

2πα′

∫

A
F(3) = 2πM ,

1

2πα′

∫

B
H(3) = −2πK . (3.4)

This can also be understood by requiring D3 charge conservation as in (2.24):

1

2κ2
10T3

∫

M

H(3) ∧ F(3) = MK . (3.5)

Thus, in the sense of Poincaré duality, we can write

F(3) = (2π)2α′M [B] , H(3) = (2π)2α′K[A] . (3.6)

This gives

W =
∫

M

G(3) ∧ Ω = (2π)2α′

(
M
∫

B
Ω − Kτ

∫

A
Ω
)

. (3.7)

The integrals appearing here are the periods defining the complex structure of the conifold.

In particular, the complex coordinate for the collapsing cycle A is defined by

z =
∫

A
Ω . (3.8)

It is a standard result that on the dual cycle
∫

B
Ω ≡ G(z) =

z

2πi
ln z + holomorphic . (3.9)

The superpotential is then

W = (2π)2α′(MG(z) − Kτz) . (3.10)

Such a superpotential has been obtained previously by Vafa [9].

Let us consider first the DzW condition,

0 = DzW ∝ M∂zG − Kτ + ∂zK(MG − Kτz) . (3.11)

In order to obtain a large hierarchy we will take K/gs to be large: this will result in z being

exponentially small. This has a simple interpretation in the dual gauge theory, as we will

discuss later in this section. In this regime, the dominant terms in DzW are

DzW ∝ M

2πi
ln z − i

K

gs

+ O(1) , (3.12)
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It follows that for K/Mgs ≫ 1, z is indeed exponentially small,

z ∼ exp(−2πK/Mgs) . (3.13)

Thus, we obtain a large hierarchy of scales if, for example, M = 1 and K/gs is of order 5.

As things stand, the Dτ equation

0 = DτW ∝ 1

τ̄ − τ
(−Kzτ̄ + MG) (3.14)

cannot be satisfied. The first term in parentheses is exponentially small, while the second is

not because the holomorphic part in (3.9) is generically nonvanishing, G(0) = O(1). Note

that this is a property of the compact case. In the noncompact case of interest in KS, the

bulk modulus τ is frozen and there is no corresponding DτW equation to impose.

The problem arises because at z = 0 the superpotential (3.10) is independent of τ ,

and the remedy is to consider a configuration with additional τ dependence. With such

τ dependence, one can generically find a solution to (3.14) with z ≈ 0, though additional

structure may be required to ensure that this minimum is at weak coupling. To give one

example, τ can be stabilized by turning on additional fluxes. Keeping for simplicity the case

of a single complex structure modulus z, there are 2 + 2b2,1 = 4 3-cycles, namely the pair

(A, B) and an additional pair (A′, B′). Turning on −K ′ units of H(3) on the B′ cycle gives

W = (2π)2α′ [MG(z) − τ(Kz + K ′z′)] (3.15)

where z′ is a function of z which is generically nonvanishing at z = 0, z′(z) = O(1). Then if

we fix z = 0, the DτW equation is

0 = DτW ∝ 1

τ̄ − τ
[−K ′z′(0)τ̄ + MG(0)] , (3.16)

thus fixing the dilaton at

τ̄ =
MG(0)

K ′z′(0)
. (3.17)

The hierarchy becomes

z ∼ exp
(

2πK

K ′
Im[G(0)/z′(0)]

)
(3.18)

Thus, by appropriate choices of K, K ′, and M one obtains an exponential hierarchy with

the dilaton fixed at an interesting value.

The hierarchy is determined in terms of integer fluxes and the Calabi-Yau geometry. To

obtain the actual warp factor requires solving the differential equation (2.14), but one can
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estimate it as follows. The D3-brane warp factor (3.1) is e4A ∼ r̃4. The resolution of the

conifold cuts this off at w2
i ∼ z. According to ref. [14], the conic coordinate r̃ (which is ρ in

the notation of that paper) is r̃ ∝ w2/3 ∝ z1/3, and so the hierarchy of energy scales is

eAmin ∼ z1/3 ∼ exp(−2πK/3Mgs) . (3.19)

In effect the fluxes produce a model similar to RS1 [1], in which the warp factor does not go

to zero but to a small positive value.10

The large hierarchy (3.13) has a simple interpretation in terms of a dual gauge theory.

The KS solution is the supergravity dual to a nonconformal N = 1 gauge theory, with

confinement and chiral symmetry breaking at a dynamically generated scale [7]. In the

spirit of the Verlinde model [4], the low energy physics of our supergravity solutions is

equivalent to this gauge theory coupled to the massless bulk fields of the compactification.

The KS solution begins with N whole D3-branes and M fractional D3-branes at a conifold

singularity. In the end all of these branes are replaced by flux; their moduli disappear, which

is in accord with confinement in the dual gauge theory. In particular, with M units of F(3)

on the A cycle and K units of H(3) on the dual B cycle, the total D3 charge is N = MK.11

The formula (3.19) then corresponds precisely to the renormalization group analysis

of KS [7]. Using the β-function in their eq. (23), one cascade takes place on a ratio of

scales e2π/3Mgs (during which the LHS of that equation changes from −2π/gs to +2π/gs).

The total number of cascades is N/M = K, because M units of D3 charge disappear at

each cascade, giving the total hierarchy (3.19). Thus the four-dimensional effective action

correctly reproduces the physics of the KS gauge theory.

In the gauge theory, the parameter z is the scale of gluino condensation. The instability

noted in eq. (3.14) is the familiar fact that a gluino condensate generates a dilaton poten-

tial [22]. The stabilization (3.16) does not have a gauge theory origin; rather, it is a bulk

effect in the IIB theory.

There is an effect which might have been expected to destabilize the large hierarchy, but

does not do so. The dual gauge theory has various relevant perturbations; for example, the

N = 1 supersymmetry allows a superpotential. This would produce a mass gap which is of

order the perturbation, rather than exponentially small. This perturbation is absent in our

solution: in supergravity language it is a 3-form flux, but it is not of the form ∗6G(3) = iG(3),

10We should note that, unlike RS1, there is no negative tension brane at the low energy end; rather, there
is a KS space. The negative tension objects that we require are elsewhere on the compact space, in the
region that replaces the RS Planck brane.

11In order to obtain an interesting low energy spectrum, one may need additional ‘mobile’ D3-branes in
the warped region, but this is beyond our present focus.
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as one sees from the explicit expressions in section III.C of ref. [38]. The reason for its

absence appears to be holomorphy: the gauge theory perturbation corresponds to a growing

(nonnormalizable) mode as one move away from the origin, and evidently this cannot be

extended to the full compact space.

So far, we have assumed that there is a single complex structure parameter z. Suppose

there are other complex structure deformations, controlled by moduli ui. In such a case,

the ui enter in the regular terms in the period (3.9), so G(z) is really G(z, ui). Generically,

assuming that z has been successfully stabilized near the conifold point in moduli space as

above, the equations

Dui
W |z=0 = 0 (3.20)

can be solved to yield fixed (order 1) values for the other moduli ui. So we see that the

presence of background RR and NS fluxes generically serves to fix all of the complex moduli

and the dilaton, while leaving the Kähler modulus ρ unfixed.

4 Examples

In order to make our discussion of warped compactifications with fluxes more explicit and

concrete, and in particular check our ability to build consistent solutions with both negative

D3 charge/tension and the above flux configurations, we now turn to the construction of some

explicit models. We briefly describe models based on O3-folds, and then discuss F-theory

compactifications in detail.

4.1 O3 models

Models in which the negative tension objects are O3 planes are easily described. Begin with

a CY manifold with a conifold singularity and a Z2 symmetry that has isolated fixed points,

and orientifold on this symmetry. Since we assuming that the O3 planes are distant from the

singularity, the initial CY must actually have two conifold singularities which are images of

one another. The D3 charge of the O3 planes is then −1
4

times the number of fixed points. In

order that the supergravity description be good, we need gsN to be somewhat greater than

one. To work in perturbative string theory we should also assume that gs ≤ 1. Therefore,

we need N , and hence the number of fixed points, to be large.

We will not present explicit examples, deferring an explicit example to the discussion of

F-theory, but we will present some details of the orientifold construction and the low energy

spectrum.
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Let us first determine which of the RR fields survive the orientifolding by RΩ, where R

is the Z2 with isolated fixed points, and Ω is world-sheet parity. First, consider a T k/Z2

orientifold, where we can use T -duality to relate this to Ω in the IIB string [25],

RΩ = T−1ΩT . (4.1)

Consider a Ramond field with r indices in the direction of the k-torus and s in the orthogonal

directions. In the IIB string, the operator Ω acts as ir+s−2 on RR potentials and ir+s−3 on

RR fluxes; thus, for example, the RR two-form potential survives the projection to the type I

string. The T -duality takes r to k− r. Thus, ΩR acts as i−r+s+k−2 or i−r+s+k−3 respectively.

We can also phrase this as the statement that the intrinsic ΩR of these fields is respectively

in+k−2 or in+k−3, where n is the total number of indices. This intrinsic parity must be

combined with (−1)r, from the explicit action of the R on the indices. For the value k = 6

relevant here, the intrinsic parities are respectively in and in−1.

Thus, the Ramond scalar C has even intrinsic parity, as expected because it is the

superpartner of the dilaton. Similarly aµν , the axionic part of ρ, has even intrinsic parity:

Cµνpq = aµν J̃pq , (4.2)

where J̃ is the Kähler form.

The orientifolding requires that the Z2 symmetry hold throughout the moduli space and

so only complex structure moduli that are even survive. The R-R flux Fmnp has odd intrinsic

parity, as does the NS-NS flux Hmnp (from the action of Ω). Thus these must be proportional

to 3-forms of odd intrinsic parity to survive the projection. Note that the 3-form Ω (not to be

confused with the world-sheet parity operator) also has odd intrinsic parity. This is because

it is nowhere vanishing and so in particular is nonzero at the fixed points; at the fixed points

the Z2 gives an explicit −1 from the indices and this must be offset by the intrinsic parity.

It follows that the superpotential ∫
Ω ∧ G(3) (4.3)

is well-defined on the covering space. Also, the even complex structure deformations gener-

ate, by contraction with Ω, odd (2, 1) forms, so these are the appropriate fluxes to excite.

Models of this class can be analyzed exactly as in section 3. One can choose fluxes

through the A and B cycles of the conifold (with the D3 charge being canceled by the O3

planes), and obtain precisely the effective field theory for z, ρ and τ described there.
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4.2 F theory models

Another general class of warped models arises from F-theory compactifications to four di-

mensions. In such models the possible configurations of branes and fluxes are constrained

by the topology of the elliptic Calabi-Yau fourfold X → M, via the equation

χ(X)

24
= ND3 +

1

2κ2
10T3

∫

M

H3 ∧ F3 . (4.4)

The left-hand side of this equation arises from the induced D3 brane charge on the wrapped

D7 branes, and this charge must be compensated by introducing either wandering D3 branes

or appropriate fluxes in the base M of the elliptic fibration. In general one could also

introduce nontrivial gauge bundles in the wrapped D7 branes (which would yield another

term on the right-hand side of (4.4), corresponding to the instanton number in each D7-brane

gauge theory), but we will not need to use this freedom. Because χ ≫ 1 is attainable for

Calabi-Yau fourfolds, this class of models should allow a great deal of freedom in choosing

appropriate flux and brane configurations for model building. Earlier discussions of fourfold

compactifications with nontrivial fluxes can be found in [34, 8, 33, 40].

Because of SL(2,Z) monodromies around the (p, q) 7-branes wrapping surfaces in M, the

fluxes should really be viewed as transforming as sections of a nontrivial bundle (as detailed

in section 2.1). However, we will focus our attention on a local region around a conifold

singularity in the base M, and will write our formulae in terms of a local trivialization of

this bundle. This is particularly simple in orientifold limits of F-theory vacua, and we will

be most explicit there. Since the most general F-theory model does have an orientifold locus

in its moduli space [41], this does not constitute a serious loss of generality.

4.2.1 The Fourfold

To embed the Klebanov-Strassler system into an F-theory compactification, we need to

exhibit an elliptically fibered Calabi-Yau fourfold X which admits a conifold singularity in

its base M. A simple example can be designed as follows (the generalization to construct

other examples is straightforward).

Consider for M the hypersurface given by a quartic equation in P 4

P = z2
5(

4∑

i=1

z2
i ) − t2z4

5 +
4∑

i=1

z4
i = 0 (4.5)

where zi are the homogeneous coordinates on P 4, and t is for convenience taken to be a real

parameter. One can construct a fourfold X over M by specifying a Weierstrass model (see,
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e.g., [42])

y2 = x3 + xf(zi) + g(zi) (4.6)

where y ∈ 3L, x ∈ 2L, f ∈ H0(4L) and g ∈ H0(6L); here L is the line bundle given by

L = −KM in terms of the canonical bundle of M. In practice for this model, we can think of

f and g as being polynomials of degree 4 and 6 in the homogeneous coordinates zi (restricted

to M).

In type IIB language, one should think of the model (4.6) as corresponding to a compact-

ification of IIB string theory on the quartic in P 4, with various (p, q) 7-branes appearing at

the loci where the elliptic fibration degenerates, i.e. where the discriminant

∆ = 4f 3 + 27g2 (4.7)

vanishes. The physics associated with such degenerations involves enhanced gauge symmetry

and more exotic phenomena, and is described for many cases which arise in compactification

on CY threefolds in [43, 44, 45]. However, for our interests we want a degeneration of the

base which is unrelated to the physics of the 7 branes, and we will simply insure that the

loci in M of interest to us do not intersect the ∆ = 0 discriminant locus. For later reference,

the value of the IIB axion-dilaton τ is determined in terms of the Weierstrass data by the

equation

j(τ) =
4(24f)3

4f 3 + 27g2
(4.8)

where j(τ) is the modular invariant function of τ , normalized so that j(i) = (24)3.

Eqn. (2.22) gives the background D3 charge for this configuration. For the model (4.6),

one can evaluate χ by using the formula in [42], with the result that

− QD7
3 =

χ

24
= 12 + 15

∫

M

c1(M)3 = 72 . (4.9)

Inspection of (4.5) reveals that M has a conifold singularity as t → 0 – one can solve

P = dP = 0 at (0, 0, 0, 0, 1). The collapsing three-cycle can in fact be exhibited explicitly, as

the fixed point locus of the involution zi → zi. On this locus, the zi must be real. One can

see from (4.5) that without loss of generality on the real locus z5 6= 0, so we can take z5 = 1

and fix the projective symmetry. Denote the real part of zi by xi. The equation becomes

4∑

i=1

(x4
i + x2

i ) = t2 (4.10)
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and by defining ui =
√

x4
i + x2

i , and choosing the branch of the square root where sgn(ui) =

sgn(xi), we get a 1-1 map onto the locus

4∑

i=1

u2
i = t2 (4.11)

which describes an S3 that collapses as t → 0. This is the A-cycle of the conifold.

4.2.2 Orientifold Limit

Following the work of Sen [41] we can present X on a locus in its moduli space where it has

a particularly simple description, as a type IIB orientifold. Choose f and g so that they

satisfy

f = Cη(zi) − 3h(zi)
2, g = h(zi)[Cη(zi) − 2h(zi)

2] (4.12)

with h, η arbitrary functions of degrees 2 and 4. Since f is quartic this allows for a generic

choice of f , but is a specialization of the choice of g. Then from (4.8) it is clear that as

C → 0 with η and h fixed, j(τ) → ∞ wherever the numerator does not vanish. This means

τ → i∞ almost everywhere on the base, i.e. we are at weak type IIB coupling.

In fact in this limit, the model becomes an orientifold of type IIB on a Calabi-Yau

threefold M̂. M̂ is a double cover of M, specified by the equation (4.5) together with

ξ2 − h(zi) = 0 (4.13)

where ξ is a new coordinate (valued in the line bundle L). We orientifold M̂ by the action

ξ → −ξ (4.14)

composed with Ω(−1)FL which fixes the locus ξ = 0, yielding an O7 plane localized at

h(zi) = 0 in (4.5).

One must also introduce D7 branes to cancel the RR tadpole generated by the orientifold.

Inspecting the discriminant ∆, which is

∆ = C2η2(4Cη − 9h2) (4.15)

in the limit (4.12), one can see that there are a pair of D7 branes located at η(zi) = 0 in M̂.
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4.2.3 Embedding Klebanov-Strassler

We have now reduced F-theory on X to IIB string theory on the orientifold of M̂ by (4.14).

Recall that as t → 0, there is a conifold singularity in M, which survives in the orientifold

of IIB on M̂. We can choose h and η to be of the form

h(zi) =
5∑

i=1

aiz
2
i , η(zi) =

5∑

i=1

biz
4
i (4.16)

with ai and bi real and positive. With such a choice, the loci h = 0 and η = 0 where the

O7 and D7s are located do not intersect the real slice of M. But the collapsing three-cycle

in M̂ as t2 → 0 lies on this real slice. Therefore, the D7 branes and O7 plane do not lie

near the conifold singularity, and we can work in a local neighborhood of the conifold in the

orientifold of M̂ while ignoring these other branes.

At the conifold point there is a collapsing A cycle in M̂, as well as a dual B cycle

in M̂ which it intersects once. We expect to be able to put flux through both of these,

consistent with the orientifold projection. The background charge (4.9) is still in force in

the orientifold limit (the D3 charge comes from the induced charge on the wrapped branes);

and can be cancelled by choosing appropriate H3 and F3 fluxes through these cycles. If we

choose to put M units of RR three-form flux through A and K units of NS three-form flux

through B, with MK = N ≤ 72, then (4.4) can be satisfied (for N < 72, we should add

wandering D3 branes or turn on other fluxes to saturate (4.4)). This allows us to reproduce

locally, in a neighborhood of the conifold point in (the orientifold of) M̂, the solution of

Klebanov and Strassler [7]. That is, the local geometry is the same as the gravity dual of

the SU(N +M)×SU(N) gauge theory considered there. Even with the values of M and K

which are possible in this model (much larger values of χ, and thus larger values of K, are

possible in other examples), one can generate a large hierarchy from the RG cascade, as we

have demonstrated in section 3.

Stabilizing the dilaton in such an orientifold requires some other generic addition to the

low-energy superpotential. One way to accomplish this is to turn on additional fluxes, as

discussed in §3. An alternative is to work at generic points in the F-theory moduli space,

which we discuss below.

4.2.4 Deforming Away from the Orientifold Limit

To understand the low energy physics governing an orientifold model with a conifold sin-

gularity and appropriate fluxes, one should compute the effective field theory governing (at

least) three different moduli, as described in §3. These are the complex modulus z which
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controls the volume of the collapsing three-cycle at the conifold, the dilaton τ , and the overall

volume of the space ρ.

In our F-theory situation, however, we could consider moving away from the limit of

§4.2.2, so that the model is not a perturbative IIB orientifold. Working away from the orien-

tifold limit while keeping the F3 and H3 fluxes as before, one achieves some simplification.12

While ρ (the size of the base M) and z (here controlled by t2 in (4.5)) remain moduli in the

F-theory picture, the dilaton does not remain an independent modulus. It is fixed in terms

of the complex structure of X by the equation (2.36), with solution (4.8).

This means that the naive problem with solving the DτW = 0 equation in the vicinity

of the conifold point, solved in §3 by for example turning on an additional flux, will not

occur here. τ does not appear as an independent mode in the low-energy effective field

theory. The modes controlling the complex structure of X, which determine τ via (4.8), are

frozen on general grounds by just the Klebanov-Strassler fluxes, as described at the end of

§3. Although our discussion there was in terms of perturbative type IIB string theory, there

is an alternative derivation which goes through M-theory. One can view F-theory on X as

being defined by a limit of M-theory on X (where one shrinks the volume of the elliptic

fiber in going from M-theory to F-theory). The superpotential for complex structure moduli

in M-theory on X is given by the formula (2.41) where G(4) is the M-theory four-form flux

and Ω4 is the holomorphic (4,0) form on X. The formula (3.7) for the IIB string theory

superpotential follows from (2.41) in the F-theory limit, for suitable choices of G(4) (those

which lift to G(3) flux in IIB language) and in the case that X is a Calabi-Yau threefold times

a two-torus. In the more general F-theory case, X is not such a product, but nevertheless

the A and B cycle in M that we have been using lift to 4-cycles in X and allow use of the

local decomposition (2.42). The statement that the complex moduli (and therefore the value

of τ at the conifold point in M) are fixed then follows from the fact that the period of Ω4

over the lift of the B cycle will have generic dependence on the complex structure moduli.

We saw in §3 that fixing the dilaton, either by this mechanism or by turning on additional

fluxes, allows one to solve for z. The exponentially small value of z computed from the su-

perpotential of [9] independently confirms the existence of a hierarchy for reasonable choices

of M and N (and represents the small, dynamically generated scale of chiral symmetry

breaking in [7]).

12Note that fluxes which were projected in by the orientifold action are guaranteed to adiabatically deform
to consistent G(4) fluxes in the full CY fourfold geometry.
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5 Conclusion

There has been a great deal of interest in finding string theory constructions which produce

large hierarchies through warping, and in particular reproduce, at long wavelengths, features

of the RS1 model [1]. Building on the ideas of Verlinde and collaborators [4, 36], we have

described orientifold and F-theory models which accomplish this. The role of the AdS throat

and the infrared brane is played by (a finite radial segment of) the gravity dual to a confining

gauge theory found by Klebanov and Strassler [7], while the UV brane is replaced by the

bulk of the string theory compactification manifold.

Our models are consistent, nonsingular string theory backgrounds. However, we expect

α′ and string loop corrections to generate a potential for the overall scale ρ of the compact-

ification manifold. An analogous problem also arises in familiar classical heterotic string

backgrounds [21, 22], and in some ways our models are quite similar to those (with the

important difference that non-perturbative gauge theory effects have already been incorpo-

rated in the classical gravity solution). It would be very interesting to find mechanisms for

stabilizing ρ in these models; toy models where all of the moduli are stabilized by fluxes can

be constructed [20].

The duality between gauge theories and compactifications with flux extends beyond the

single example [7] we have used here. The results of [9] provide a more general construction

of dualities between fluxes and gauge theories, and quantum gauge theory effects are again

calculable using classical geometry. It would be interesting to use other examples of this

gauge theory/flux duality to construct N = 1 string compactifications with moduli which

are calculably stabilized by non-perturbative gauge dynamics.

Finally, it has recently become clear that warped compactifications offer new mechanisms,

distinct from AdS redshifting, of producing large hierarchies [46]. The relevant warped mod-

els need to have two or more different brane throats, with fairly generic warping (so power-law

warping is sufficient). Large hierarchies can then be produced by the tunneling-suppressed

(and therefore weak) interactions between the IR modes localized down distinct throats. It

should be possible to design string theory examples of such multi-throat compactifications

by generalizing the construction in our paper.

Acknowledgments

We would like to thank P. Aspinwall, A. Grassi, S. Gubser, S. Gukov, G. Horowitz, S. Katz,

I. Klebanov, M. Schulz, E. Silverstein, C. Vafa, H. Verlinde and E. Witten for helpful dis-

cussions. This work was supported by National Science Foundation grants PHY99-07949

27



and PHY97-22022, and by the DOE under contracts DE-FG-03-91ER40618 and DE-AC03-

76SF00515. The research of S.K. is supported in part by a David and Lucile Packard Foun-

dation Fellowship for Science and Engineering and an Alfred P. Sloan Foundation Fellowship.

A Dimensional reduction

We now develop further the low energy effective action, discussed in section 2. Before

turning on fluxes, the underlying manifold M̃ generically has a large number of moduli and

corresponding massless supermultiplets in the four-dimensional low-energy effective theory.

Turning on fluxes deforms the geometry of the compactification, and in the four-dimensional

effective theory generates a potential for the massless moduli [8, 33].

A.1 Kinetic terms and Kähler potential

The allowed moduli depend on the topology of the compactification, though one generically

has the universal Kähler modulus corresponding to overall rescaling of the six-dimensional

metric. This has partner aµν , arising from

Cµνpq = aµν J̃pq (A.1)

where J̃ is the Kähler form. We work in the approximation of constant warp factor and

vanishing F̃5; as discussed in section 2.2.4 this is valid in the large-radius limit (although

we expect our expressions to generalize beyond this). The effective action for this Kähler

multiplet together with the 4d metric and dilaton can be found by computing the action

(2.3) with

ds2 = gµνdxµdxν + e2u(x)g̃mndymdyn (A.2)

where g̃mn is the metric of the compactification. In doing so, we define the 4d Newton’s

constant κ2
4 = κ2

10/Ṽ where Ṽ is the volume of M̃, and the Weyl rescaled metric g4 = e−6ug̃4.

We also dualize, da(2) = e−8u∗̃db, and define ρ = b/
√

2 + ie4u. The result is

S =
1

2κ2
4

∫
d4x (−g̃4)

1/2

(
R̃4 − 2

∂µτ∂µτ̄

|τ − τ̄ |2 − 6
∂µρ∂µρ̄

|ρ − ρ̄|2
)

. (A.3)

The kinetic terms for τ and ρ can thus be found from the Kähler potential

K1 = − ln[−i(τ − τ̄)] − 3 ln[−i(ρ − ρ̄)] . (A.4)

In the O3 case, both τ and ρ survive the projection. In the case of an F-theory compact-

ification, the D7-brane monodromies generally remove τ from the 4d spectrum, although τ
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varies as other complex structure moduli, e.g. parameterizing the locations of the D7 branes,

vary.

The remaining moduli are the other Kähler and complex structure deformations of the 6d

compactification, or, in the F-theory context, of the eight-dimensional Calabi-Yau manifold.

In the following, we imagine for definiteness that M̃ is a Calabi-Yau orientifold, and we

discuss the complex structure moduli space of Calabi-Yau threefolds, but the relevant parts

of the story carry over also to the F-theory examples.

As shown by Candelas and de la Ossa [35], the effective action for CY moduli is de-

termined by the Weil-Petersson metric on the moduli space, and one may derive a simple

expression for the corresponding Kähler potential. First note that on a general CY threefold

there are the following harmonic forms:

1. One (3,0) form Ω.

2. b2,1 primitive (2,1) forms χα.

3. Their (1,2) conjugates χα.

4. The (0,3) conjugate Ω.

These satisfy

∗6Ω = −iΩ , ∗6χα = iχα . (A.5)

As discussed in section 4.2, only forms of odd intrinsic parity under the Z2 projection are

relevant. This includes Ω and a subset of the χα. In the subsequent analysis α is restricted

to this subset.

The metric for the complex structure deformations takes the form

Gαβ̄ = −

∫

M

χα ∧ χβ
∫

M

Ω ∧ Ω
. (A.6)

To find the corresponding Kähler potential, let zα be coordinates on the complex structure

moduli space. Then it can be shown that ∂Ω/∂zα is (3, 0) + (2, 1), and more precisely that

there is a basis χα such that
∂Ω

∂zα
= kα(z, z̄)Ω + χα . (A.7)

Defining

K2 = − ln
(
−i
∫

M

Ω ∧ Ω
)

, (A.8)
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one may then show

∂αK2 = −kα , (A.9)

and the equation

∂α∂β̄K2 = Gαβ̄ (A.10)

gives the above metric.

In the context of an F-theory compactification, an obvious generalization of (A.8) is

K = − ln
(∫

X
Ω4 ∧ Ω̄4

)
. (A.11)

A.2 The potential and superpotential

We now turn to the problem of finding the potential determined by the fluxes. From (2.3),

the potential is determined by

SG = − 1

24κ2
10

∫

M

d6yg̃1/2GmnpḠ
m̃np

Im τ
. (A.12)

Again, we are in a large-radius approximation where the warp factor is constant and F̃(5) = 0.

We define the imaginary self-dual parts of G(3) as

G(3) = G+
(3) + G−

(3) , G±

(3) =
1

2
(G(3) ± i∗6G(3)) ,

∗6G
±

(3) = ∓iG±

(3) . (A.13)

The action can then be written as

SG = − 1

12κ2
10Im τ

∫

M

d6x g̃1/2G+
mnpG

+m̃np − i

4κ2
10Im τ

∫

M

G(3) ∧ G(3)

= −V − i

4κ2
10Im τ

∫

M

G(3) ∧ G(3) (A.14)

where we define the potential

V = − 1

2κ2
10Im τ

∫

M

G+
(3) ∧ ∗6G

+
(3) (A.15)

The second term in (A.14) is proportional to µ3Q
G
3 , where µ3 is the D3 tension and QG

3 is

the D3 charge carried by the three-form flux. This term is topological and does not involve

the moduli. It is canceled by the tension of the localized sources, because these have total

D3 charge Qloc
3 = −QG

3 and saturate the inequality (2.26).
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(A.5) implies that V only depends on the coefficients of Ω and χα when G(3) is expanded

in the basis of 3-forms. In terms of the metric (A.6), we find

V =
i
∫

M

G(3) ∧ Ω
∫

M

G(3) ∧ Ω + Gαβ̄
∫

M

G(3) ∧ χα

∫

M

G(3) ∧ χβ

2Im τ κ2
10

∫

M

Ω ∧ Ω
. (A.16)

This can be derived from a superpotential of the form discussed in refs. [8, 47, 9],

W =
∫

M

G(3) ∧ Ω . (A.17)

Indeed, from (A.7,A.4) we find

DαW ≡ ∂αW + (∂αK)W =
∫

M

G(3) ∧ χα ,

DτW ≡ ∂τW + (∂τK)W =
1

τ̄ − τ

∫

M

G(3) ∧ Ω , (A.18)

where K = K1 + K2. After a Weyl transformation to the four-dimensional Einstein frame,

the potential takes the standard N = 1 supergravity form [48], as in eq. (2.43).

This potential has been discussed before [49], but in somewhat different contexts. In

the first place, these earlier systems had N = 2 low energy supersymmetry, even when

the potential was written in N = 1 form. Here, the orientifolding or the F-theory D7

configuration explicitly reduces the low energy supersymmetry to N = 1. Second, objects

with negative D3 charge were not included, so the fluxes were restricted to
∫
M H(3)∧F(3) = 0.

The conditions DαW = DτW = 0 imply that G+
(3) = 0. Thus the effective four-

dimensional action reproduces the ten-dimensional conditions (2.31) for a solution. Unbroken

supersymmetry requires also that DρW = 0, implying that the (0, 3) part of G(3) vanishes

and so this flux is (2, 1) and primitive, again as argued directly in ten dimensions. The latter

condition is equivalent to W = 0; this will generically not hold when DαW = DτW = 0.

The F-theory generalization of this discussion readily follows, with superpotential [8]

W =
∫

X
G(4) ∧ Ω4 , (A.19)

where G(4) is the F-theory lift of the flux, locally given in eq. (2.42).

This dimensional reduction has been carried out in a limit that is rather orthogonal to

the main concerns of this paper, in that the warp factor is constant rather than strongly

varying, and F̃(5) = 0. The detailed treatment of dimensional reduction in the warped case

is left for the future (see also ref. [40]), but in the present case we can argue that the key
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results are unaffected. In particular, the ten-dimensional analysis of section 2 shows that

the solutions found from the effective action derived here remain solutions even when the

warping is taken into account. The physical reason is that all localized sources as well as the

supergravity fields couple to the warp factor and the 5-form flux in the same ratio, so that

there is no net force.

The superpotential derived in the large-radius limit is exact in string perturbation theory.

This is because the real part of ρ is an axion, obtained from the tensor field (A.1), and so

there is a Peccei-Quinn symmetry broken only by D-instanton effects. Thus ρ cannot appear

in the superpotential [50]; the same will be true of all other Kähler moduli. Note that this

is not true of τ . The field C(0) appears in the classical action through the definition of G(3),

so there is no PQ symmetry and τ does enter into the classical superpotential (A.17).
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