
Functional Programming with Overloading andHigher-Order PolymorphismMark P. JonesDepartment of Computer Science, University of Nottingham, University Park,Nottingham NG7 2RD, UK.Abstract. The Hindley/Milner type system has been widely adopted asa basis for statically typed functional languages. One of the main reasonsfor this is that it provides an elegant compromise between exibility, al-lowing a single value to be used in di�erent ways, and practicality, freeingthe programmer from the need to supply explicit type information.Focusing on practical applications rather than implementation or theo-retical details, these notes examine a range of extensions that providemore exible type systems while retaining many of the properties thathave made the original Hindley/Milner system so popular. The topicsdiscussed, some old, but most quite recent, include higher-order poly-morphism and type and constructor class overloading. Particular em-phasis is placed on the use of these features to promote modularity andreusability.1 IntroductionThe Hindley/Milner type system [6, 19, 3], hereafter referred to as HM, repre-sents a signi�cant and highly inuential step in the development of type systemsfor functional programming languages. In our opinion, the main reason for thisis that it combines the following features in a single framework:{ Type security: soundness results guarantee that well-typed programs can-not `go wrong'. This should be compared with the situation in dynamicallytyped languages like Scheme where run-time tests are often required to checkthat appropriate types of value are used in a particular context, and the ex-ecution of a program may terminate if these tests fail.{ Flexibility: polymorphism allows the use and de�nition of functions thatbehave uniformly over all types. This should be compared with the situa-tion in monomorphically typed languages where it is sometimes necessaryto produce several versions of a particular function or algorithm to dealwith di�erent types of values. Standard examples include swapping a pair ofvalues, choosing the minimum of two values, sorting an array of values, etc.{ Type inference: there is an e�ective algorithm which can be used to deter-mine that a given program term is well-typed and, in addition, to calculateits most general (principal) type, without requiring any type annotations inthe source program. In practice, even though it is not required, programmersoften choose to include explicit type information in a program as a form of

documentation. In this case, the programmer bene�ts from a useful consis-tency check that is obtained automatically by comparing the declared typeswith the results of the type inference algorithm.{ Ease of implementation: the type inference algorithm is easy to imple-ment and behaves well in practice. Polymorphism itself is also easy to im-plement, for example, by using a uniform (or boxed) representation that isindependent of the type of the values concerned.As a result, HM has been used as a basis for several widely used functionallanguages including Hope [2], Standard ML [20], Miranda1 [27] and Haskell [7].The features listed above make HM an attractive choice for language de-signers, but we should also recognize that it has some signi�cant limitations.In particular, while HM polymorphism allows the de�nition of functions thatbehave uniformly over all types, it does not permit:{ Restricted polymorphism/overloading: the use or de�nition of func-tions that are can be used for some, but not necessarily all, types, withpotentially di�erent behaviours in each case.{ Higher-order polymorphism: the use or de�nition of functions that be-have uniformly over all type constructors.{ Polymorphic arguments: the use or de�nition of functions with polymor-phic arguments that can be used at di�erent instances in the body of thefunction.These notes describe how the �rst two of these restrictions can be relaxed, whilepreserving many of the properties that have made HM so popular. The thirditem, to permit the use of function arguments with polymorphic components, isa topic of current research. For example, one approach that we are investigatingis to use explicit type annotations to supplement the results of type inference.However, for reasons of space, this will not be addressed any further here.Our main aim is to illustrate practical applications of these extended typesystems using a variety of functional programming examples. To this end, weavoid the distraction of long technical discussions about either the underlyingtype theory or the implementation; these have already been covered in depthelsewhere. We place particular emphasis on the use of these extensions to pro-mote modularity, extensibility and reusability at the level of the core language2.The main subjects of these notes are illustrated in Fig. 1. We start with a briefreview of the original Hindley/Milner type system (Sect. 2). The �rst extensionof HM that we consider is to support overloading using a system of type classes,as described in Sect. 3. Introduced, at least in the form used here, by Wadlerand Blott [30], type classes have been adopted as part of the de�nition of thestandard for the functional programming language Haskell [7]. Type classes are1 Miranda is a is a trademark (TM) of Research Software Limited.2 i.e. for programming in the small. These notes do not address the subject of modu-larity for programming in the large. Such goals are better met by powerful modulesystems, for example, the structures and functors of Standard ML.

particularly useful for describing the implementation of standard polymorphicoperators such as equality, arithmetic and printing. We also include examples toshow how they can be used to provide a exible framework for other applications.Hindley/MilnerType System(Sect. 2) Higher-orderHindley/Milner(Sect. 4)Type Classes(Sect. 3) ConstructorClasses(Sect. 5)? - ?-Fig. 1. A summary of the main subjects covered in these notesAnother way to extend HM is to make use of a form of higher-order poly-morphism, i.e. polymorphism over type constructors as well as types. This isdescribed in Sect. 4. The generalization to the higher-order case is surprisinglystraightforward; it is most useful as a tool for specifying datatypes but it doesnot signi�cantly increase the expressiveness of the type system as a whole.However, there is a signi�cant increase in expressiveness when we combinehigher-order polymorphism with a class based overloading mechanism, leadingto the system of constructor classes described in Sect. 5. For example, we showhow constructor classes can be used to capture general patterns of recursionof a large family of datatypes, to support the use of monads and to constructmodular programming language interpreters.We assume familiarity with the basic techniques of functional programming,as described by Bird and Wadler [1] for example, and with the concrete syntaxand use of Haskell [7] and/or Gofer [12]; these are the languages that were usedto develop the examples shown in these notes.2 The Hindley/Milner Type SystemThese notes assume that the reader is already familiar with the use of HM inlanguages like Standard ML or Haskell. However, it seems useful to start witha summary of what we consider the most important features of HM for thepurposes of this paper.The goal of the type system is to assign a type to each part of an inputprogram, guaranteeing that execution of the program will not go wrong, i.e.

that it will not encounter a run-time type error. Terms that cannot be assigneda type will result in a compile-time type error.One of the most striking di�erences between HM and many other type sys-tems is the fact that the most general type of a term can be inferred without theneed for type annotations. In some cases, the most general type is monomorphic:not :: Bool -> Boolnot False = Truenot True = FalseIn other cases, the most general type is polymorphic:identity :: a -> aidentity x = xThe type variable a appearing in the type of identity here represents an arbi-trary type; if the argument x to identity has type a, then so will the result ofidentity x. Another simple example is the length function which is used tocalculate the length of a list. One way to de�ne length is as follows:length :: [a] -> Intlength [] = 0length (x:xs) = 1 + length xsIn this example, the appearance of the type variable a in the type of lengthindicates that this single function length may be applied to any list, regardlessof the type of values that it contains.In some treatments of HM, the types of the identity and length functionsabout might be written more formally as 8a:a ! a and 8a:[a] ! Int , respec-tively, so that polymorphic type variables are explicitly bound by a universalquanti�er. These quanti�ers are left implicit in the concrete syntax of Haskell.However, it is sometimes convenient to write the types of particular functionsusing the quanti�er notation to emphasize the role of polymorphism.3 Type ClassesThe HM type system is convenient for many applications, but there are someimportant functions that cannot be given a satisfactory type. There are severalwell-rehearsed examples, including arithmetic and equality operators, which il-lustrate this point:{ If we treat addition as a monomorphic function of type Int -> Int -> Int,then it can be used to add integer values, but it is not as general as we mighthave hoped because it cannot also be used to add oating point quantities.On the other hand, it would not be safe to use a polymorphic type such asa -> a -> a for the addition operator because this allows a to be any type,but addition is only de�ned for numeric types.

{ If we treat equality as a monomorphic function of type T -> T -> Bool forsome type constructor T, then it is less general than we might have hopedbecause it cannot be used to compare values of other types. However, apolymorphic type like a -> a -> Bool would not be appropriate becauseit includes the case where a is a function type, and there is no computableequality for functional values.In both of these examples we �nd ourselves in a position where monomorphictypes are too restrictive and fully polymorphic types are too general. Typeclasses, described in some detail below, are an attempt to remedy such prob-lems. This is achieved by providing an intermediate step between monomorphicand polymorphic types, i.e. by allowing the de�nition of values that can be usedover a range of types, without requiring that they can be used over all types.3.1 Basic principlesType classes can be understood and used at several di�erent levels. To beginwith, we restrict our attention to the built-in classes of Haskell. Later, we willdescribe how these classes can be extended, and how new classes can be intro-duced.The Haskell standard prelude is a large library of useful types, type classes,and functions, that is automatically imported into every Haskell program. Theprelude datatypes include Booleans (Bool), integers (�xed precision Int andarbitrary precision Integer), rationals (Ratio), complex numbers (Complex),oating point values (single precision Float and double precision Double), char-acters (Char), lists, tuples, arrays, etc.The prelude also de�nes a number of type classes, which can be thought ofas sets of types whose members are referred to as the instances of the class. If Cis the name of a class and a is a type, then we write C a to indicate that a is aninstance of C. Each type class is in fact associated with a collection of operatorsand this has an inuence on the choice of names. For example, the Eq classcontains types whose elements can be tested for equality, while the class Ordcontains types whose elements are ordered. We will return to this again below,but for the time being, we will continue to think of classes as sets of types.The instances of a class are de�ned by a collection of instance declarations.For example, the instances of the Eq class are described by the declarations:instance Eq Boolinstance Eq Charinstance Eq Intinstance Eq Integerinstance Eq Floatinstance Eq Doubleinstance Eq a => Eq [a]instance (Eq a, Eq b) => Eq (a,b)instance (Eq a, Eq b, Eq c) => Eq (a,b,c)

Eq ������+QQs BinaryOrdQQs ��+Ix ������+ Enum ��+ NumQQs ��+RealQQs ��+ FractionalQQs ��+Integral RealFrac��+ FloatingQQsRealFloat
Fig. 2. The hierarchy of standard Haskell type classesinstance (Eq a, Eq b, Eq c, Eq d) => Eq (a,b,c,d)...The �rst few lines indicate that the types Bool, Char, Int, Integer, Float andDouble are instances of Eq class. The remaining declarations include a contextto the left of the => symbol. For example, the instance Eq a => Eq [a] dec-laration can be read as indicating that, if a is an instance of Eq, then so is thelist type [a]. The very �rst declaration tells us that Bool is an instance of Eq,and hence so are [Bool], [[Bool]], : : :More formally, the e�ect of these instance declarations is to de�ne Eq as thesmallest solution of the equation:Eq = f Bool; Char; Int; Integer; Float; Doubleg [f [�] j � 2 Eqg [f (�1; �2) j �1; �2 2 Eqg [f (�1; �2; �3) j �1; �2; �3 2 Eq g [f (�1; �2; �3; �4) j �1; �2; �3; �4 2 Eqg [: : :The Haskell prelude de�nes a number of other classes, as illustrated in Fig. 2.Not all of the standard classes are in�nite like Eq. For example, the preludeincludes instance declarations which de�nes the classes Integral and RealFloatof integer and oating point number types, respectively, to be equivalent to:Integral = f Int; IntegergRealFloat = f Float; DoublegThe prelude also speci�es inclusions between di�erent classes; these are illus-trated by arrows in Fig. 2. For example, the Ord class is a subset of Eq: everyinstance of Ord is also an instance of Eq. These inclusions are described by acollection of class declarations like the following:

class Eq aclass (Eq a) => Ord aclass (Eq a, Text a) => Num a...The last declaration shown here speci�es that Num is a subset of both Eq andText3. The inclusions between classes are veri�ed by the compiler, and are ofmost use in reasoning about whether a particular type is an instance of a givenclass.Finally, on top of the type, class, and instance declarations, the standard pre-lude de�nes a large collection of primitive values and general purpose functions.Some of the values de�ned in the prelude have monomorphic types:not :: Bool -> Bool -- Boolean negationord :: Char -> Int -- Character to ASCII codeOthers have polymorphic types:(++) :: [a] -> [a] -> [a] -- List appendlength :: [a] -> Int -- List lengthThere are also a number of functions with restricted polymorphic types:(==) :: Eq a => a -> a -> Bool -- Test for equalitymin :: Ord a => a -> a -> a -- Find minimumshow :: Text a => a -> String -- Convert to string(+) :: Num a => a -> a -> a -- AdditionWe refer to these types as being restricted because they include type class con-straints. For instance, the �rst example tells us that the equality operator, (==),can be treated as a function of type a -> a -> Bool. But the choice for a isnot arbitrary; the context Eq a will only be satis�ed if a is an instance of Eq.Thus we can use 'a'=='b' to compare character values, or [1,2,3]==[1,2,3]to compare lists of integers, but we cannot use id == id, where id is the identityfunction, because the class Eq does not contain any function types. In a similarway, the (+) operator can be used to add two integer values or two oating pointnumbers because these are all instances of Num, but it cannot be used to add twolists, say, because Haskell does not include lists in the Num class; any attempt toadd two list values will result in a compile-time type error.Class constraints may also appear in the types of user-de�ned functions thatmake use, either directly or indirectly of prelude functions with restricted poly-morphic types. For example, consider the following de�nitions:> member xs x = any (x==) xs> subset xs ys = all (member ys) xs3 This aspect of Haskell syntax can sometimes be confusing. It might have been betterif the roles of the expressions on the left and right hand side of => were reversed sothat Num a => (Eq a, Text a) could be read as an implication; if a is an instanceof Num, then a is also an instance of Eq and Text.

The de�nition of member takes a list xs of type [a] and a value x of type a, andreturns a boolean value indicating whether x is a member of xs; i.e. whetherany element of xs is equal to x. Since (==) is used to compare values of typea, it is necessary to restrict our choice of a to instances of Eq. In a similar way,it follows that subset must also have a restricted polymorphic type because itmakes use of the member function. Hence the types of these two functions are:> member :: Eq a => [a] -> a -> Bool> subset :: Eq a => [a] -> [a] -> BoolThese functions can now be used to work with lists of type [a] for any instancea of Eq. But what if we want to work with user-de�ned datatypes that were notmentioned in the prelude? In Haskell, this can be dealt with by including a listof classes as part of the datatype de�nition. For example:> data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat> deriving (Eq, Ord, Text)The second line, deriving (Eq, Ord, Text), is a request to the compiler toextend the three named classes to include the Day datatype, and to generateappropriate versions of any overloaded operators for values of type Day. Forexample:? member [Mon,Tue,Wed,Thu,Fri] WedTrue? subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]False?Instances of a type class that are obtained in this way are described as derivedinstances. In the general case, a derived instance may require a context. Forexample, the following datatype de�nition:> data Either a b = Left a | Right b deriving (Eq, Ord)will result in two derived instances:instance (Eq a, Eq b) => Eq (Either a b)instance (Ord a, Ord b) => Ord (Either a b)3.2 De�ning instancesThe simple approach to type classes described above works quite well until yourun into a situation where either you want to include a new datatype in a classfor which derived instances are either not permitted4 or not suitable because4 Haskell only permits derived instances of Eq, Ord, Text, Ix, Enum, and Binary. Insome cases, there are additional restrictions on the form of the datatype de�nitionwhen a derived instance is requested.

the rules for generating versions of overloaded functions do not give the desiredsemantics. For example, suppose that we de�ne a set datatype using lists to storethe members of each set, but without worrying about duplicate values or aboutthe order in which the elements are listed. A datatype de�nition like:data Set a = Set [a] deriving (Eq)would result in an implementation of equality satisfying:Set xs == Set ys = xs == yswhere the equality on the right hand side is the equality on lists. Thus the setsSet [1,2] and Set [2,1,2] would be treated as being distinct because theirelement lists di�er, even though they are intended to represent the same set.In situations like this, it is possible for a programmer to provide their ownsemantics for the overloaded operators associated with a particular class. Tostart with, we need to take a more careful look at the full de�nition of the Eqclass:class Eq a where(==), (/=) :: a -> a -> Boolx /= y = not (x == y)This indicates that, to include a type a as an instance of the Eq class, the pro-grammer must supply de�nitions for the (==) and (/=) functions, both of typea -> a -> Bool. In fact, the �nal line eases the programmers task a little byproviding a default de�nition for (/=) that will be used if the programmer doesnot give a suitable de�nition of their own. As a result, all that the programmerhas to do is to provide a de�nition for (==); i.e. to de�ne what it means for twovalues of type a to be equal.Returning to the example above, we can de�ne the set datatype as:> data Set a = Set [a]and we use the following in place of a derived instance:> instance Eq a => Eq (Set a) where> Set xs == Set ys = subset xs ys && subset ys xsThis properly captures the intended semantics of set equality, i.e. that two setsare equal precisely when each is a subset of the other, indicating that they havethe same members.It is important to notice that a class can be arbitrarily extended to includenew instances, without any modi�cation to the original class de�nition. Thisgives a high degree of extensibility and modularity in many cases.

3.3 De�ning classesWe have now seen how a programmer can use either derived instances or theirown implementations to specify the instances of one the standard Haskell classes.This may be all that some programmers will ever need to know about Haskelltype classes. However, for some applications, it is useful for a programmer to beable to de�ne new classes. We will give a number of examples to illustrate thispoint below.In de�ning a new class, the �rst step is to decide exactly what commonproperties we expect the instances to share, and to decide how this should bereected in the choice of the operators listed in the class declaration. However, itis important to recognize that overloading is only appropriate if the meaning ofa symbol is uniquely determined by the types of the values that are involved. Forinstance, some might consider the following example, using classes to describemonoids, as an abuse of the system because monoid structures are not uniquelydetermined by type.class Monoid a wheree :: aop :: a -> a -> ainstance Monoid [a] wheree = [] -- Empty listop = (++) -- List appendinstance Monoid (a -> a) wheree = id -- Identity functionop = (.) -- Function compositioninstance Monoid Int wheree = 0op = (+)The �nal instance declaration here is particularly di�cult to justify; there isanother equally good way to de�ne a monoid structure on Integers using e=1and op=(*), i.e. multiplication. There does not seem to be any good reason whywe should favour either one of these alternatives over the other.We hope that the reader will �nd that most of the applications of type classesin this paper, and of constructor classes in later sections, are well suited to over-loading, with a single natural implementation for each instance of a particularoverloaded operator.Trees. From search trees to the representation of parsed terms in a compiler,trees, of one form or another, must rate as one of the most widely used datastructures in functional programming. There are many di�erent kinds of treestructure, with variations such as the number of branches out of each node,

and the type of values used as labels. The following datatype de�nitions help toillustrate the point:{ Simple binary trees, with a value of type a at each leaf node.> data BinTree a = Leaf a> | BinTree a :^: BinTree a{ Labelled trees with a value of type a at each leaf node, and a value of typel at each interior node:> data LabTree l a = Tip a> | LFork l (LabTree l a) (LabTree l a){ Binary search trees, with data values of type a in the body of the tree.These values would typically be used in conjunction with an ordering on theelements of type a in order to locate a particular item in the tree.> data STree a = Empty> | Split a (STree a) (STree a){ Rose trees, in which each node is labelled with a value of type a, and mayhave an arbitrary number of subtrees:> data RoseTree a = Node a [RoseTree a]{ Abstract syntax, for example, the following datatype might be used to rep-resent �-expressions in a simple interpreter. In this case, the leaf nodes cor-respond to variables while the interior nodes represent either applications orabstractions:> type Name = String> data Term = Var Name -- variable> | Ap Term Term -- application> | Lam Name Term -- lambda abstractionOn the other hand, there are some strong similarities between these datatypes,and many familiar concepts, for example, depth, size, paths, subtrees, etc. canbe used with any of these di�erent kinds of tree.Consider the task of calculating the depth of a tree. Normally, it would benecessary to write a di�erent version of the depth calculation for each di�erentkind of tree structure that we are interested in. However, using type classes itis possible to take a more general approach by de�ning a class of tree-like datatypes. Starting with the observation that, whichever datatype we happen to beusing, every tree has a number of subtrees, we are lead to the following simplecharacterization of tree-like data structures:> class Tree t where> subtrees :: t -> [t]

In words, subtrees t generates the list of (proper) subtrees of a given tree, t.There are many properties of trees that this does not address, for example, theuse of labels, but of course, these are exactly the kind of things that we need toignore to obtain the desired level of generality.The following instance declarations can be used to include each of the �vetree-like data structures listed above as an instance of the Tree class:> instance Tree (BinTree a) where> subtrees (Leaf n) = []> subtrees (l :^: r) = [l,r]> instance Tree (LabTree l a) where> subtrees (Tip x) = []> subtrees (LFork x l r) = [l,r]> instance Tree (STree a) where> subtrees Empty = []> subtrees (Split x l r) = [l,r]> instance Tree (RoseTree a) where> subtrees (Node x gts) = gts> instance Tree Term where> subtrees (Var _) = []> subtrees (Ap f x) = [f,x]> subtrees (Lam v b) = [b]With these de�nitions in place, we can start to construct a library of usefulfunctions that can be applied to any kind of tree that has been included in theTree class. For example, the following de�nitions can be used to determine thedepth and the size (i.e. the number of nodes) in any given tree:> depth :: Tree t => t -> Int> depth = (1+) . foldl max 0 . map depth . subtrees> size :: Tree t => t -> Int> size = (1+) . sum . map size . subtreesThere are more e�cient ways to describe these calculations for particular kindsof tree. For example, the de�nition of size for a BinTree could be simpli�ed to:size (Leaf n) = 1size (l :^: r) = size l + size rwithout constructing the intermediate list of subtrees. However, it is entirelypossible that this more e�cient implementation could be obtained automati-cally in a compiler, for example, by generating specialized versions of overloadedfunctions [11].

Another simple example of an algorithm that can be applied to many di�erentkinds of tree is the process of calculating the list of paths from the root nodeto each of the leaves. In speci�c cases, we might be tempted to use sequences oflabels, or sequences of directions such as `left' and `right' to identify a particularpath in the tree. Neither of these is possible in our more general framework.Instead, we will identify each path with the corresponding sequence of subtrees.This leads to the following de�nition:> paths :: Tree t => t -> [[t]]> paths t | null br = [[t]]> | otherwise = [t:p | b<-br, p<-paths b]> where br = subtrees tThe de�nitions of depth-�rst and breadth-�rst search can also be expressedin our current framework, each yielding a list of subtrees in some appropriateorder:> dfs :: Tree t => t -> [t]> dfs t = t : concat (map dfs (subtrees t))> bfs :: Tree t => t -> [t]> bfs = concat . lev> where lev t = [t] : foldr cat [] (map lev (subtrees t))> cat = combine (++)> combine :: (a -> a -> a) -> ([a] -> [a] -> [a])> combine f (x:xs) (y:ys) = f x y : combine f xs ys> combine f [] ys = ys> combine f xs [] = xsThe depth-�rst algorithm given here is straightforward. We refer the reader to[8] for further details and explanation of the breadth-�rst algorithm. It may seemstrange to de�ne functions that return the complete list of every subtree in agiven tree. But this approach is well-suited to a lazy language where the listproduced by the search may not be fully evaluated. For example, if p is somepredicate on trees, then we might use the function:head . filter p . dfsto �nd the �rst node in a depth �rst search of a tree that satis�es p, and, onceit has been found, there will not be any need to continue the search.As a �nal example, we sketch the implementation of a function for drawingcharacter-based diagrams of arbitrary tree values. This might, for example, beuseful as a way of visualizing the results of simple tree-based algorithms. The

following examples show the output of the function for two di�erent kinds oftree:? drawTree ((Leaf 1 :^: Leaf 2) :^: (Leaf 3 :^: Leaf 4))--@--@--1| || `--2|̀--@--3|̀--4? drawTree (Lam "f" (Ap (Ap (Var "f") (Var "x")) (Var "y")))--\f--@--@--f| || `--x|̀--y?The tree-drawing algorithm is based on a function:> drawTree' :: Tree t => (t -> String) -> t -> [String]The �rst argument of drawTree' is a function of type (t -> String) thatproduces a text string corresponding to the label (if any) of the root node of atree of type t. The second argument of drawTree' is the tree itself. The resultof the function is a list of strings, each corresponding to a single line of output,that can be combined using the standard unlines function to produce a singlestring with a newline character after each line.To save the trouble of specifying a labelling function for drawTree, we de�nea subclass of Tree that provides appropriate functions for labelling and drawing:> class Tree t => DrawTree t where> drawTree :: t -> String> labTree :: t -> String>> drawTree = unlines . drawTree' labTreeFor example, the instance declaration that we use for the Term datatype is asfollows:> instance DrawTree Term where> labTree (Var v) = v> labTree (Ap _ _) = "@"> labTree (Lam v _) = "\\"++vWe leave the construction of drawTree' and the de�nition of instances of theDrawTree class for the other tree types de�ned above as an exercise for thereader.

Duality and the De Morgan Principle. Our next example is inspired by thework of Turner [26] to extend the concept of duality on Boolean algebras, andthe well-known De Morgan principle, to the list datatype. We start by de�ning aclass Dual of types with a function dual that maps values to appropriate duals:> class Dual a where> dual :: a -> aThe only property that we will require for an instance of Dual is that the corre-sponding implementation of dual is self-inverse:dual . dual = idThe easiest way to deal with classes constrained by laws such as this is to treat thelaws as proof obligations for each instance of the class that is de�ned, assumingthat the laws are satis�ed for each of the subinstances involved.The �rst example of duality is the inversion of boolean values given by:> instance Dual Bool where> dual = notFor example, dual True = False and dual False = True. It is easy to seethat this declaration satis�es the self-inverse property since because not . notis the identity on booleans.To make any further progress, we need to extend the concept of duality tofunction values:> instance (Dual a, Dual b) => Dual (a -> b) where> dual f = dual . f . dualThe proof that this satis�es the self-inverse law is straightforward:dual (dual f)= { definition of dual, twice }dual . dual . f . dual . dual= { Assuming dual . dual = id for Dual a, Dual b }id . f . id= { ((.),id) monoid }fThe dual function distributes over application and composition of functions:dual (f x) = (dual f) (dual x)dual (f . g) = dual f . dual gWe leave formal veri�cation of these properties as a straightforward exercise forthe reader. These laws can be used to calculate duals. For example, consider thede�nition of conjunction in the Haskell standard prelude:True && x = xFalse && x = False

Applying dual to both sides of each equation and simplifying, we obtain:dual (&&) False x = xdual (&&) True x = Truewhich shows that dual (&&) = (||), i.e. that disjunction (or) is the dual ofconjunction (and), as we would expect from the standard version of De Morgan'stheorem for boolean values.There are a variety of other applications of duality. Turner's work was moti-vated by the duality on �nite lists that arises from the list reverse function:> instance Dual a => Dual [a] where> dual = reverse . map dualIf we restrict our attention to �nite lists, then reverse . reverse is the identityfunction and it is easy to show that this de�nition satis�es the self-inverse law.We can make direct use of dual in calculations such as:? dual head [1..10] -- dual head = last10? dual tail [1..10] -- dual tail = init[1, 2, 3, 4, 5, 6, 7, 8, 9]? dual (++) [1,2] [3,4] -- dual (++) = flip (++)[3, 4, 1, 2]?The flip function referred to in the last example is the Haskell equivalent ofthe classical W combinator that switches the order of the arguments to a curriedfunction:flip :: (a -> b -> c) -> (b -> a -> c)flip f x y = f y xThis can also be used to illustrate the use of the duals of the Haskell preludefunctions foldl an foldr, as in the following:? foldl (flip (:)) [] [1..4][4, 3, 2, 1]? dual foldr (:) [] [1..4][4, 3, 2, 1]?In general, the two fold functions are related by the formulae:dual foldr = foldl . flipdual foldl = foldr . flipWe refer the reader to the text by Bird and Wadler [1] for further discussion onthe relationship between foldl and foldr, and on duality for lists.To conclude our comments about duality, we extend the framework to includeintegers with unary minus as the dual function:

> instance Dual Int where> dual = negateFor example:? dual (+) 3 4 -- dual (+) = (+)7? dual max 3 5 -- dual max = min3? dual min 3 5 -- dual min = max5?Computing with Lattices. A lattice is a partially ordered set with a topand a bottom value in which every pair of elements has a meet (greatest lowerbound) and a join (least upper bound). There are many applications for latticesin computer science, particularly in studies of semantics and program analysis.Motivated by the study of frontiers and their use in strictness analysis, Jones[9] developed a general framework for computing with (�nite) lattices using typeclasses. The result is an elegant system that includes a range of di�erent typesof lattice and extends easily to accommodate other kinds of lattice needed forparticular applications. This compares very favourably with an earlier imple-mentation of the same ideas that did not use type classes and, because of thelimitations imposed by HM, was less robust, more awkward to work with, andharder to extend.The most important part of Jones' framework is the de�nition of a class oflattices:> class Eq a => Lattice a where> bottom, top :: a> meet, join :: a -> a -> a> lt :: a -> a -> Bool> x `lt` y = (x `join` y) == yThe lt function, written here as an in�x operator, is used to describe the partialorder on the elements of the lattice. The default de�nition for lt shows how itcan be de�ned in terms of the join and equality operators.The Bool datatype gives one of the simplest examples of a lattice, with meetand join corresponding to conjunction and disjunction, respectively:> instance Lattice Bool where> bottom = False> top = True> meet = (&&)> join = (||)Note that we ignore any improper elements of lattice types, in this case, justthe bottom element ? of type Bool, since these values cannot be used withoutrisking abnormal- or non-termination.

As a slightly more complex example, we can de�ne the lattice structure of aproduct of two lattices using the declaration:> instance (Lattice a, Lattice b) => Lattice (a,b) where> bottom = (bottom,bottom)> top = (top,top)> (x,y) `meet` (u,v) = (x `meet` u, y `meet` v)> (x,y) `join` (u,v) = (x `join` u, y `join` v)It is possible to extend the Lattice class with other kinds of lattice, such aslattices of subsets, lattices of frontiers, lifted lattices, and lattices of functions.We will use the problem of de�ning the least �xed point operator as anillustration of the use of the Lattice class. It is well-known that, if f is amonotonic function5 on some lattice a, then f has a least �xed point whichcan be obtained as the limit of the sequence:iterate f bottom = [bottom, f bottom, f (f bottom), ...Assuming that the lattice in question is �nite, the limit will be the �rst (andonly) repeated value in this sequence. This translates directly to an algorithmfor calculating the least �xed point, fix f:> fix :: Lattice a => (a -> a) -> a> fix f = firstRepeat (iterate f bottom)> firstRepeat :: Eq a => [a] -> a> firstRepeat (x:xs) = if x==head xs then x else firstRepeat xsBuilding on examples like these, Jones [9] shows how to de�ne general tools forcomputing with lattices, including an algorithm to enumerate the elements of a�nite lattice. It is beyond the scope of these notes to give any further details ofthese examples here.4 A Higher-order Hindley/Milner Type SystemWe have already seen examples showing how HM allows the programmer togeneralize with respect to types, suggesting that a polymorphic function has auniform implementation for a range of di�erent types. For example, the typeof the length function in Sect. 2 is 8a:[a] ! Int ; this reects the fact that theelements of a list do not play a part in the calculation of its length. However, HMdoes not allow us to generalize with respect to type constructors, for example tode�ne a function: size :: 8t :8a:t(a)! Int :that could be used to give some measure of the size of an object of type (t a)for any type constructor t , and any type a (for instance, we might expect that5 In the notation used here, this means that f x `lt` f y, whenever x `lt` y.

length would be a special case of size, using the list type constructor in placeof the variable t).At �rst glance, we may be concerned that a generalization of HM to supportthis weak form of higher-order polymorphism would quickly run into technicaldi�culties. For example, standard type inference algorithms require the use ofa uni�cation algorithm to determine when two types are equal. In the higher-order case, we need to be able to compare type constructors which might seemto imply a need for higher-order uni�cation, known to be undecidable. In fact,the generalization of HM to support higher-order polymorphism that is sketchedhere is surprisingly straightforward. Many of the technical properties of HM, andtheir proofs, carry over with little or no change. In particular, there is an e�ectivetype inference algorithm, based on a (decidable) kinded, �rst-order uni�cationprocess6. To the best of our knowledge, the only place where this has beendescribed in the past is as an integral part of the system of constructor classes[10] which is the subject of the next section. Our goal here is to highlight thefact that the higher-order extension is independent of any use of overloading.The extension rests on the use of a kind system:� ::= � monotypesj �1 ! �2 function kindsKinds are used to identify particular families of type constructors in much thesame way as types are used to describe collections of values. The � kind representsthe set of all monotypes, i.e. nullary type constructors, while the kind �1 ! �2represents constructors that take something of kind �1 and return somethingof kind �2. For each kind �, we have a collection of constructors C � (includingconstructor variables ��) of kind � given by:C � ::= �� constantsj �� variablesj C �0!� C �0 applicationsThis corresponds very closely to the way that most type expressions are alreadywritten in Haskell. For example, List a is an application of the constructorconstant List to the constructor variable a. In addition, each constructor con-stant has a corresponding kind. For example, writing (->) for the function spaceconstructor and (,) for pairing we have:Int, Float, () :: *List, BinTree :: * -> *(->), (,), LabTree :: * -> * -> *The task of checking that a given type expression is well-formed can now bereformulated as the task of checking that a given constructor expression has kind�. The apparent mismatch between the explicitly kinded constructor expressions6 This is possible because the language of constructors is built up from constants andapplications; in particular, there are no abstractions.

speci�ed above and the implicit kinding used in examples can be resolved by aprocess of kind inference; i.e. by using standard techniques to infer kinds withoutthe need for programmer supplied kind annotations [10].Given this summary of the technical issues, we turn our attention to appli-cations of the extended type system. Here, we �nd that, by itself, higher-orderpolymorphism is often too general for practical examples. For example, in thecase of the size function described above, it is hard to construct a de�nition forany interesting functions of type 8t :8�:t(�)! Int7 because we need a de�nitionthat will work for any type constructor t , and any type a. The only possibilitiesare functions of the form �x :n where n is an integer constant, all of which canbe treated as having the more general type 8a:a ! Int without the need forhigher-order polymorphism.Even so, higher-order types are still useful, particularly as a means of speci-fying new datatypes where we can use a mixture of types and type constructorsas parameters.data Mu f = In (f (Mu f))data NatF s = Zero | Succ stype Nat = Mu NatFdata StateT s m a = STM (s -> m (a,s))The �rst three examples here can be used to provide a general frameworkfor constructing recursive datatypes and corresponding recursion schemes. Thefourth example is used to describe a parameterized state monad. Both of theseexamples will be described in the following section.The reader may like to check the following kinds for each of the type con-structors introduced above.Mu :: (* -> *) -> *NatF :: * -> *Nat :: *StateT :: * -> (* -> *) -> * -> *All of these kinds can be determined automatically without the use of kindannotations.As a �nal comment, it is worth noting that the implementation of this formof higher-order polymorphism is straightforward, and that experience with prac-tical implementations, for example, Gofer, suggests that it is also natural froma programmer's perspective.7 observation that this argument is based on an implicit assumption that we do nothave any extra constants that were not included in HM. Adding suitable constantswith types that involve higher-order polymorphism would make the type systemdescribed here much more powerful.

5 Constructor ClassesType class overloading and higher-order polymorphism are independent exten-sions of HM. In this section, we give a number of examples to illustrate theexpressiveness of a system that combines these two ideas. Previously, we haveused classes to represent sets of types, i.e. constructors of kind *, but in thissection, we will use classes to represent sets of constructors of any �xed kind �.We will refer to these sets as constructor classes [10], including the type classesof Sect. 3 as a special case.5.1 FunctorsWe begin our discussion of constructor classes with a now standard example.Consider the familiar map function that can be used to apply a function to eachelement in a list of values:map :: (a -> b) -> (List a -> List b)map f [] = []map f (x:xs) = f x : map f xsIt is well known that map satis�es the following laws:map id = idmap f . map g = map (f . g)Many functional programmers will be aware that it is possible to de�ne vari-ants of map, each satisfying very similar laws, for many other datatypes. Suchconstructions have also been widely studied in the context of category theorywhere the observations here might be summarized by saying that the list typeconstructor List, together with the map function correspond to a functor. Thisis an obvious application for overloading because the implementation of a par-ticular variant of map (if it exists) is uniquely determined by the choice of thetype constructor that it involves.Overloadingmap. Motivated by the discussion above, we de�ne a constructorclass, Functor with the following de�nition:> class Functor f where> fun :: (a -> b) -> (f a -> f b)Note that we have used the name fun to avoid a conict with the prelude mapfunction. Renaming the `functor' laws above gives:fun id = idfun f . fun g = fun (f . g)The following datatypes will be used in later parts of these notes, and all of themcan be treated as functors:

> data Id a = Id a> type List = []> data Maybe a = Just a | Nothing> data Error a = Ok a | Fail String> data Writer a = Result String a> type Read r = (r ->)The syntax in the �nal example may need a little explanation; (r->) is just amore attractive way of writing the partial application of constructors ((->) r).The whole declaration tells us that the expression Read r should be treated asa synonym for (r->), and hence that (a->b), ((a->) b), and Read a b areequivalent ways of writing the same type constructor. In this case, the typekeyword is something of a misnomer since (r->), and hence also Read r, haskind (*->*) rather than just *.The functor structures for each of these datatypes are captured by the fol-lowing de�nitions:> instance Functor Id where> fun f (Id x) = Id (f x)> instance Functor List where> fun f [] = []> fun f (x:xs) = f x : fun f xs> instance Functor Maybe where> fun f (Just x) = Just (f x)> fun f Nothing = Nothing> instance Functor Error where> fun f (Ok x) = Ok (f x)> fun f (Fail s) = Fail s> instance Functor Writer where> fun f (Result s x) = Result s (f x)> instance Functor (r->) where> fun f g = f . gAgain, we would draw special attention to the �nal example. As functional pro-grammers, we tend to think of mapping a function over the elements of a list asbeing a very di�erent kind of operation to composing two functions. But, in fact,they are both instances of a single concept. This means that, in future functionallanguages, we could dispense with the use of two di�erent symbols for these twoconcepts. We might have, for example:f . (xs ++ ys) = (f . xs) ++ (f . ys)(f . g) . xs = f . (g . xs)id . x = x

Recursion schemes: Functional programming with bananas and lenses.Functions like map are useful because they package up a particular pattern ofcomputation in a convenient form as a higher-order function. Algorithms ex-pressed in terms of map are often quite because they hide the underlying recur-sion over the structure of a list and may be more useful in program calculationwhere standard, but general laws for map can be used in place of inductive proof.The foldr function is another well known example of this, again from the theoryof lists:foldr :: (a -> b -> b) -> b -> List a -> bfoldr f z [] = zfoldr f z (x:xs) = f x (foldr f z xs)As with map, there are variants of this function for other datatypes. For example,the fold function for the RoseTree datatype is:> foldRT :: (a -> [b] -> b) -> RoseTree a -> b> foldRT f (Node a xs) = f a (map (foldRT f) xs)Given that foldr and foldRT don't even have the same number of parameters,it will probably seem unlikely that we will be able to use overloading to viewthese two functions as instances of a single concept.In fact, it is possible to do just this, provided that we are prepared to adopt amore uniformway of de�ning recursive datatypes. These ideas have already beenwidely studied from a categorical perspective where datatypes are constructed as�xed points of functors. The general version of a fold function is often describedas a catamorphism and there is a dual notion of an anamorphism. It is commonto use the notation (j�j) for a catamorphism, and db()ec for an anamorphism.Inspired by the shape of the brackets used here, the use of these operators hasbeen described as `functional programming with bananas and lenses' [17]. Theremainder of this section shows how these ideas can be implemented directlyusing constructor classes. These ideas are dealt with in more detail elsewherein this volume. A more detailed overview of our implementation can be foundelsewhere [18].We start by de�ning a datatype for constructing �xed points of unary typeconstructors:> data Mu f = In (f (Mu f))Ideally, we would like to view the In constructor as an isomorphism of f (Mu f)and Mu f with the inverse isomorphism given by:> out :: Mu f -> f (Mu f)> out (In x) = xUnfortunately, the semantics of Haskell treats In as a non-strict constructor,so these functions are not actually isomorphisms. We will not concern ourselvesany further with this rather technical point here, except to note that there have

been several proposals to extend Haskell with mechanisms that would allow usto de�ne these functions as true isomorphisms.Now, choosing an appropriate functor as a parameter, we can use the Muconstructor to build recursive types:{ Natural numbers: the datatype Nat of natural numbers is de�ned as the �xedpoint of a functor NatF:> type Nat = Mu NatF> data NatF s = Zero | Succ s> instance Functor NatF where> fun f Zero = Zero> fun f (Succ x) = Succ (f x)For convenience, we de�ne names for the zero natural number and for thesuccessor function:> zero :: Nat> zero = In Zero> succ :: Nat -> Nat> succ x = In (Succ x)For example, the number 1 is represented by one = succ zero.{ Lists of integers: Following the same pattern as above, we de�ne the typeIntList as the �xed point of a functor IntListF, and we introduce conve-nient names for the constructors:> type IntList = Mu IntListF> data IntListF a = Nil | Cons Int a> instance Functor IntListF where> fun f Nil = Nil> fun f (Cons n x) = Cons n (f x)> nil = In Nil> cons x xs = In (Cons x xs){ Rose trees: Again, we follow a similar pattern:> type RoseTree a = Mu (RoseTreeF a)> data RoseTreeF a b = Node a [b]> instance Functor (RoseTreeF a) where> fun f (Node x ys) = Node x (map f ys)> node :: a -> [RoseTree a] -> RoseTree a> node x ys = In (Node x ys)

The general de�nitions of catamorphisms and anamorphisms can be ex-pressed directly in this framework, writing cata phi and ana psi for (j�j) anddb()ec, respectively:> cata :: Functor f => (f a -> a) -> Mu f -> a> cata phi = phi . fun (cata phi) . out> ana :: Functor f => (a -> f a) -> a -> Mu f> ana psi = In . fun (ana psi) . psiTo illustrate the use of these recursions schemes, consider the following de�ni-tions for arithmetic on natural numbers (addition, multiplication and exponen-tiation):> addNat n m = cata (\fa -> case fa of> Zero -> m> Succ x -> succ x) n> mulNat n m = cata (\fa -> case fa of> Zero -> zero> Succ x -> addNat m x) n> expNat n m = cata (\fa -> case fa of> Zero -> one> Succ x -> mulNat n x) mThe same recursion schemes can be used with other datatypes as shown by thefollowing implementations of functions to calculate the length of a list of integersand to append two lists. The �nal example uses an anamorphism to constructan in�nite list of integers:> len = cata (\fa -> case fa of> Nil -> zero> Cons z zs -> succ zs)> append xs ys = cata (\fa -> case fa of> Nil -> ys> Cons z zs -> cons z zs) xs> intsFrom = ana (\n -> Cons n (n+1))5.2 MonadsMotivated by the work of Moggi [21] and Spivey [24], Wadler [29, 28] has pro-posed a style of functional programming based on the use of monads. Wadler'smain contribution was to show that monads, previously studied in depth in thecontext of abstract category theory [16], could be used as a practical methodfor structuring functional programming, and particularly for modelling `impure'features in a purely functional setting.

One useful way to think about monads is as a means of representing compu-tations. If m is a monad, then an object of type m a represents a computationthat is expected to produce a result of type a. The choice of monad reectsthe (possible) use of particular programming language features as part of thecomputation. Simple examples include state, exceptions and input/output. Thedistinction between computations of type m a and values of type a reects thefact that the use of programming language features is a property of the compu-tation itself and not of the result that it produces.Every monad provides at least two operations. First, there must be some wayto return a result from a computation. We will use an expression of the formresult e to represent a computation that returns the value e with no furthere�ect, where result is a function:result :: a -> m acorresponding to the unit function in Wadler's presentations.Second, to describe the way that computations can be combined, we use afunction:bind :: m a -> (a -> m b) -> m bWriting bind as an in�x operator, we can think of c `bind` f as a computationwhich runs c, passes the result x of type a to f, and runs the computation f xto obtain a �nal result of type b. In many cases, this corresponds to sequencingof one computation after another.The description above leads to the following de�nition for a constructor classof monads:> class Functor m => Monad m where> result :: a -> m a> bind :: m a -> (a -> m b) -> m bThe monad operators, result and bind, are required to satisfy some simplealgebraic laws, that are not reected in this class declaration. For further in-formation, we refer the reader to the more detailed presentations of monadicprogramming in this volume.One well-known application of monads is to model programs that make useof an internal state. Computations of this kind can be represented by statetransformers, i.e. by functions of type s -> (a,s), mapping an initial state toa result value paired with the �nal state. For the system of constructor classesin this paper, state transformers can be represented using the datatype:> data State s a = ST (s -> (a,s))The functor and monad structures for state transformers are as follows:> instance Functor (State s) where> fun f (ST st) = ST (\s -> let (x,s') = st s in (f x, s'))

> instance Monad (State s) where> result x = ST (\s -> (x,s))> m `bind` f = ST (\s -> let ST m' = m> (x,s1) = m' s> ST f' = f x> (y,s2) = f' s1> in (y,s2))Note that the State constructor has kind * -> * -> * so that, for any statetype s, the constructor State s has kind * -> * as required for instances of theFunctor and Monad classes. We refer the reader to other sources [28, 29, 10] forexamples illustrating the use of state monads.Many of the datatypes that we described as functors in the previous sectioncan also be given a natural monadic structure:{ The identity monad has little practical use on its own, but provides a trivialbase case for use with the monad transformers that are described in latersections.> instance Monad Id where> result = Id> Id x `bind` f = f x{ The list monad is useful for describing computations that may produce asequence of zero or more results.> instance Monad List where> result x = [x]> [] `bind` f = []> (x:xs) `bind` f = f x ++ (xs `bind` f){ The Maybe monad has been used to model programs that either produce aresult (by returning a value of the form Just e) or raise an exception (byreturning a value of the form Nothing).> instance Monad Maybe where> result x = Just x> Just x `bind` f = f x> Nothing `bind` f = Nothing{ The Error monad is closely related to the Maybe datatype, but attaches astring error message to any computation that does not produce a value.> instance Monad Error where> result = Ok> Ok x `bind` f = f x> Fail msg `bind` f = Fail msg

{ The Writer monad is used to allow a program to produce both an outputstring8 and a return value.> instance Monad Writer where> result x = Result "" x> Result s x `bind` f = Result (s ++ s') y> where Result s' y = f x{ A Reader monad is used to allow a computation to access the values heldin some enclosing environment (represented by the type r in the followingde�nitions).> instance Monad (r->) where> result x = \r -> x> x `bind` f = \r -> f (x r) rAs a passing comment, it is interesting to note that these two functions arejust the standard K and S combinators of combinatory logic.Operations on Monads. From a user's point of view, the most interestingproperties of a monad are described, not by the result and bind operators, butby the additional operations that it supports, for example, to permit access tothe state, or to deal with input/output. It would be quite easy to run throughthe list of monads above and provide a small catalogue of useful operators foreach one. For example, we might include an operator to update the state in aState monad, or to output a value in a Writer monad, or to signal an errorcondition in an Error monad.In fact, we will take a more forward-thinking approach and use the con-structor class mechanisms to de�ne di�erent families of monads, each of whichsupports a particular collection of simple primitives. The bene�t of this is that,later, we will want to consider monads that are simultaneously instances of sev-eral di�erent classes, and hence support a combination of di�erent primitivefeatures. This same approach has proved to be very exible in other recent work[10, 15].In these notes, we will make use of the following classes of monad:{ State monads: The principal characteristic of state based computations isthat there is a way to access and update the state. We will represent thesetwo features by a single update operator that applies a user supplied functionto update the current state, returning the old state as its result.> class Monad m => StateMonad m s where> update :: (s -> s) -> m s8 Note that, for a serious implementation of Writer, it would be better to use functionsof type ShowS = String -> String as the output component of the Writer monadin place of the strings used here. This is a well-known trick to avoid the worst-casequadratic behaviour of nested calls to the append operator, (++).

The State smonad described above is an obvious example of a StateMonad:> instance StateMonad (State s) s where> update f = ST (\s -> (s, f s))Simple uses of a state monad include maintaining an integer counter:> incr :: StateMonad m Int => m Int> incr = update (1+)or generating a sequence of pseudo-random numbers, in this case using thealgorithm suggested by Park and Miller [23]:> random :: StateMonad m Int => Int -> m Int> random n = update min_stand `bind` \m ->> result (m `mod` n)> min_stand :: Int -> Int> min_stand n = if test > 0 then test else test + 2147483647> where test = 16807 * lo - 2836 * hi> hi = n `div` 127773> lo = n `mod` 127773{ Error monads: The main feature of this class of monads is the ability fora computation to fail, producing an error message as a diagnostic.> class Monad m => ErrorMonad m where> fail :: String -> m aThe Error datatype used above is a simple example of an ErrorMonad:> instance ErrorMonad Error where> fail = Fail{ Writer monads: The most important feature of a writer monad is theability to output messages.> class Monad m => WriterMonad m where> write :: String -> m ()> instance WriterMonad Writer where> write msg = Result msg (){ Reader monads: A class of monads for describing computations that con-sult some �xed environment:> class Monad m => ReaderMonad m r where> env :: r -> m a -> m a> getenv :: m r

> instance ReaderMonad (r->) r where> env e c = _ -> c e> getenv = idTo illustrate why this approach is so attractive, consider the following de�nition:> nxt m = update (m+) `bind` \n ->> if n > 0 then write ("count = " ++ show n)> else fail "count must be positive"The nxt function uses a combination of features: state, error and output. Thisis reected in the inferred type:(WriterMonad m, ErrorMonad m, StateMonad m Int) => Int -> m ()In this example, the type inference mechanism records the combination of fea-tures that are required for a particular computation, without committing to aparticular monad m that happens to meet these constraints9. This last point isimportant for two reasons. First, because we may want to use nxt in a contextwhere some additional features are required, resulting in an extra constraint on m.Second, because there may be several ways to combine a particular combinationof features with corresponding variations in semantics. Clearly, it is preferable toretain control over this, rather than leaving the type system to make an arbitrarychoice on our behalf.Monads as substitutions. Up to this point, we have concentrated on the useof monads to describe computations. In fact, monads also have a useful inter-pretation as a general approach to substitution. This in turn provides anotherapplication for constructor classes.Suppose that a value of type m v represents a collection of terms with `vari-ables' of type v. Then a function of type w -> m v can be thought of as asubstitution, mapping variables of type w to terms over v. For example, considerthe representation of a simple language of types constructed from type variablesand the function space constructor using the datatype:> data Type v = TVar v -- Type variable> | TInt -- Integer type> | Fun (Type v) (Type v) -- Function typeFor convenience, we de�ne an instance of the Text class to describe how suchtype expressions will be displayed:instance Text v => Text (Type v) where> showsPrec p (TVar v) = shows v> showsPrec p TInt = showString "Int"> showsPrec p (Fun l r) = showParen (p>0) str> where str = showsPrec 1 l . showString " -> " . shows r9 In fact, none of the monad examples that we have seen so far are instances of allof these classes. The process of constructing new monads which do satisfy all of theclass constraints listed here will be described later in these notes.

The functor and monad structure of the Type constructor are as follows:> instance Functor Type where> fun f (TVar v) = TVar (f v)> fun f TInt = TInt> fun f (Fun d r) = Fun (fun f d) (fun f r)> instance Monad Type where> result v = TVar v> TVar v `bind` f = f v> TInt `bind` f = TInt> Fun d r `bind` f = Fun (d `bind` f) (r `bind` f)In this setting, the fun function gives a systematic renaming of the variablesin a term (there are no bound variables), while result corresponds to the nullsubstitution that maps each variable to the term for that variable. If t has typeType v and s is a substitution of type v -> Type v, then t `bind` s gives theresult of applying the substitution s to the term t, replacing each occurrence ofa variable v in t with the corresponding term s v in the result. In other words,application of a substitution to a term is captured by the function:> apply :: Monad m => (a -> m b) -> (m a -> m b)> apply s t = t `bind` sNote that this operator can be used with any monad, not just the Type construc-tor that we are discussing here. Composition of substitutions also correspondsto a more general operator, called Kleisli composition, that can be used witharbitrary monads. Written here as the in�x operator (@@), Kleisli compositioncan be de�ned as:> (@@) :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)> f @@ g = join . fun f . g> join :: Monad m => m (m a) -> m a> join xss = bind xss idApart from its use in the de�nition of (@@), the join operator de�ned here canalso be used an alternative to bind for combining computations [28].In most cases, the same type will be used to represent variables in both thedomain and range of a substitution. We introduce a type synonym to capturethis and to make some type signatures a little easier to read.> type Subst m v = v -> m vOne of the simplest kinds of substitution, which will be denoted by v >> t,is a function that maps the variable v to the term t but leaves all other variables�xed:> (>>) :: (Eq v, Monad m) => v -> m v -> Subst m v> (v >> t) w = if v==w then t else result w

The type signature shown here is the most general type of the (>>) operator,and could also have been inferred automatically by the type system. The classconstraints (Eq v, Monad m) indicate that, while (>>) is de�ned for arbitrarymonads, it can be used only in cases where the values representing variables canbe tested for equality.The following de�nition gives an implementation of the standard uni�cationalgorithm for values of type Type v. This illustrates the use of monads both as ameans of describing substitutions and as a model for computations, in this case,in an ErrorMonad:> unify TInt TInt = result result> unify (TVar v) (TVar w) = result (if v==w then result> else v >> TVar w)> unify (TVar v) t = varBind v t> unify t (TVar v) = varBind v t> unify (Fun d r) (Fun e s) = unify d e `bind` \s1 ->> unify (apply s1 r)> (apply s1 s) `bind` \s2 ->> result (s2 @@ s1)> unify t1 t2 = fail ("Cannot unify " ++ show t1 ++> " with " ++ show t2)The only way that uni�cation can fail is if we try to bind a variable to a typethat contains that variable. A test for this condition, often referred to as theoccurs check, is included in the auxiliary function varBind:> varBind v t = if (v `elem` vars t)> then fail "Occurs check fails"> else result (v>>t)> where vars (TVar v) = [v]> vars TInt = []> vars (Fun d r) = vars d ++ vars rA Simple Application: A Type Inference Algorithm. To illustrate howsome of the classes and functions introduced above might be used in practice,we will describe a simple monadic implementation of Milner's type inferencealgorithmW. We will not attempt to explain in detail how the algorithm worksor to justify its formal properties since these are already well-documented, forexample in [19, 3].The purpose of the type checker is to determine types for the terms of asimple �-calculus represented by the Term datatype introduced in Section 3.3:> type Name = String> data Term = Var Name -- variable> | Ap Term Term -- application> | Lam Name Term -- lambda abstraction> | Num Int -- numeric literal

We will also use the representation of types described above with type variablesrepresented by integer values so that it is easy to generate `new' type variables asthe algorithm proceeds. For example, given the term Lam x (Var x), we expectthe algorithm to produce a result of the form Fun n n :: Type Int for some(arbitrary) type variable n = TVar m.At each stage, the type inference algorithmmaintains a collection of assump-tions about the types currently assigned to free variables. This can be describedby an environment mapping variable names to types and represented using as-sociation lists:> data Env t = Ass [(Name,t)]> emptyEnv :: Env t> emptyEnv = Ass []> extend :: Name -> t -> Env t -> Env t> extend v t (Ass as) = Ass ((v,t):as)> lookup :: ErrorMonad m => Name -> Env t -> m t> lookup v (Ass as) = foldr find err as> where find (w,t) alt = if w==v then result t else alt> err = fail ("Unbound variable: " ++ v)> instance Functor Env where> fun f (Ass as) = Ass [(n, f t) | (n,t) <- as]As the names suggest, emptyEnv represents the empty association list, extendis used to add a new binding, and lookup is used to search for a binding, raisingan error if no corresponding value is found. We have also de�ned an instance ofthe Functor class that allows us to apply a function to each of the values heldin the list, without changing the keys.The type inference algorithm behaves almost like a function taking assump-tions a and a term e as inputs, and producing a pair consisting of a substitutions and a type t as its result. The intention here is that t will be the principal typeof e under the assumptions obtained by applying s to a. The complete algorithmis given by the following de�nition, with an equation for each di�erent kind ofTerm:> infer a (Var v)> = lookup v a `bind` \t ->> result (result,t)> infer a (Lam v e)> = incr `bind` \b ->> infer (extend v (TVar b) a) e `bind` \(s,t) ->> result (s, s b `Fun` t)

> infer a (Ap l r)> = infer a l `bind` \(s,lt) ->> infer (fun (apply s) a) r `bind` \(t,rt) ->> incr `bind` \b ->> unify (apply t lt) (rt `Fun` TVar b) `bind` \u ->> result (u @@ t @@ s, u b)> infer a (Num n)> = result (result, TInt)The reason for writing this algorithm in a monadic style is that it is not quitefunctional. There are two reasons for this; �rst, it is necessary to generate `new'variables during type checking. This is usually dealt with informally in presenta-tions of type inference, but a more concrete approach is necessary for a practicalimplementation. For the purposes of this algorithm, we use a StateMonad withan integer state to represent the next unused type variable. New variables aregenerated using the function incr.The second reason for using the monadic style is that the algorithmmay fail,either because the term contains a variable not bound in the assumptions a, orbecause the uni�cation algorithm fails.Both of these are reected by the class constraints in the type of inferindicating that an instance of both StateMonad and ErrorMonad is required touse the type inference algorithm:infer :: (ErrorMonad m, StateMonad m Int) =>Env (Type Int) ->Term ->m (Subst Type Int, Type Int)Our problem now is that to make any use of infer, we need to construct a monadm that satis�es these constraints. It is possible to deal with such problems on acase-by-case basis, but it is obviously more attractive to use more general toolsif possible. This is the problem that we turn our attention to in the followingsections.Combining Monads. While we can give some nice examples to illustrate theuse of one particular set of features, for example, the use of state in a state monad,real programs typically require a combination of several di�erent features. It istherefore quite important to develop systematic techniques for combining groupsof features in a single monad.In recent years, there have been several investigations into techniques forcombining monads in functional programming languages10. Examples of thisinclude the work of King and Wadler [14], and of Jones and Duponcheel [13]10 In fact, much of this work is a rediscovery of ideas that have already been developedby category theorists, albeit in a more abstract manner that is perhaps less accessibleto some computer scientists.

to investigate the conditions under which a pair of monads m and n can becomposed. In the following de�nitions, we adapt the swap construction of Jonesand Duponcheel to the framework used in these notes. For reasons of space, wedo not give any formal proof or motivation for these techniques here. We urge thereader not to be too distracted by the formal de�nitions shown below, focusinginstead on the main objective which is to construct composite monads.To begin with, it is useful to de�ne two di�erent forms of composition; for-wards (FComp) and backwards (BComp):> data FComp m n a = FC (n (m a))> data BComp m n a = BC (m (n a))> unBC (BC x) = x> unFC (FC x) = xIt may seem strange to provide both forms of composition here since any value oftype FComp m n a corresponds in an obvious way to a value of type BComp n m a,and vice versa. However, it is useful to have both forms of composition whenwe consider partial applications; the constructors FComp m and BComp m are notequivalent.The functor structure for the two forms of composition are straightforward:> instance (Functor m, Functor n) => Functor (FComp m n) where> fun f (FC c) = FC (fun (fun f) c)> instance (Functor m, Functor n) => Functor (BComp m n) where> fun f (BC c) = BC (fun (fun f) c)These two de�nitions rely on the overloading mechanisms to determine whichversion of the fun operator is used for a particular occurrence.Two monads m and n can be `composed' if there is a function:swap :: m (n a) -> n (m a)satisfying certain laws set described by Jones and Duponcheel [13]. Fixing themonad m and using n to represent an arbitrary monad, it follows that the forwardcomposition FComp m n is a monad if m is an instance of the class:> class Monad m => Into m where> into :: Monad n => m (n a) -> n (m a)and the into function satis�es the laws for swap. We refer to this operator asinto because it allows us to push the monad m into an arbitrary computationrepresented by a monad n. Given this function, the structure of the compositemonad is given by:> instance (Into m, Monad n) => Monad (FComp m n) where> result x = FC (result (result x))> FC c `bind` f = FC ((fun join . join . fun f') c)> where f' = into . fun (unFC . f)

For example, any forward composition of one of either the Maybe, Error orWriter monads with another arbitrary monad can be obtained using the follow-ing instances of Into:> instance Into Maybe where> into Nothing = result Nothing> into (Just c) = fun Just c> instance Into Error where> into (Fail msg) = result (Fail msg)> into (Ok c) = fun Ok c> instance Into Writer where> into (Result s c) = c `bind` \x -> result (Result s x)In a similar way, for any �xed monad m and an arbitrary monad n, thebackward composition BComp m n is a monad if m is an instance of the class:> class Monad m => OutOf m where> outof :: Monad n => n (m a) -> m (n a)and the outof operator satis�es the laws for swap. In this case, the monadstructure can be described by the de�nition:> instance (OutOf m, Monad n) => Monad (BComp m n) where> result x = BC (result (result x))> BC c `bind` f = BC ((fun join . join . fun f') c)> where f' = outof . fun (unBC . f)For example, any backward composition of a reader monad and another arbitrarymonad, yields a monad:> instance OutOf (r ->) where> outof c = \r -> c `bind` \f -> result (f r)Monad Transformers. Notice that, rather than allowing us to combine twoarbitrary monads, all of the examples above use one �xed monad to transformanother arbitrary monad. In other words, the following constructors can be un-derstood as monad transformers, each having kind (* -> *) -> (* -> *) andmapping a monad to a new transformed monad that includes some extra fea-tures:> type MaybeT = FComp Maybe> type ErrorT = FComp Error> type WriterT = FComp Writer> type ReaderT r = BComp (r ->)

The possibility of using monad transformers had previously been suggested byMoggi [22], leading independently to the use of pseudomonads in Steele's workon the construction of modular interpreters [25], and to a Scheme implementa-tion by Espinosa [4, 5]. The problem of implementing monad transformers ina strongly typed language has been addressed by Liang, Hudak and Jones [15]using constructor classes.We can de�ne a class of monad transformers using the de�nition:> class MonadT t where> lift :: Monad m => m a -> t m aThe intention here is that lift embeds a computation in the m monad into theextended monad t m, without using any of the extra features that it supports.Partial applications of both forward and backward compositions give rise tomonad transformers, including the four examples above as special cases:> instance Into m => MonadT (FComp m) where> lift = FC . fun result> instance OutOf m => MonadT (BComp m) where> lift = BC . resultThere are also examples of monad transformers that are not easily expressedas compositions. A standard example of this is the following de�nition of a statemonad transformer:> data StateT s m a = STM (s -> m (a,s))> instance Monad m => Functor (StateT s m) where> fun f (STM xs) = STM (\s -> xs s `bind` \(x,s') ->> result (f x, s'))> instance Monad m => Monad (StateT s m) where> result x = STM (\s -> result (x,s))> STM xs `bind` f = STM (\s -> xs s `bind` (\(x,s') ->> let STM f' = f x> in f' s'))> instance MonadT (StateT s) where> lift c = STM (\s -> c `bind` \x -> result (x,s))In fact, this de�nes a family of monad transformers, each of which takes theform StateT s for some state type s.Previously, we have de�ned classes of monads for describing computationsinvolving state, errors, writers and readers, but we have only de�ned one instanceof each with no overlap between the di�erent classes. Using monad transformers,we can extend these classes with new instances, and construct monads that aresimultaneously instances of several di�erent classes. We will illustrate this with

two examples, leaving the task of extending some of the other classes introducedabove to include transformed monads as an exercise for the reader.{ The state monad transformer: The following instance declaration indicatesthat we can apply StateT s to an arbitrary monad m to obtain a monadwith a state component of type s:> instance Monad m => StateMonad (StateT s m) s where> update f = STM (\s -> result (s, f s))On the other hand, if m is a monad with a state component of type s, thenso is the result of applying an arbitrary transformer to m:> instance (MonadT t, StateMonad m s) => StateMonad (t m) s where> update f = lift (update f)These two instance de�nitions overlap; a monad of the form StateT s mmatches both of the monad constructors to the right of the => symbol. InGofer, these conicts are dealt with by choosing the most speci�c instancethat matches the given constructor.{ The Error monad transformer: Following a similar pattern to the declarationsabove, the following de�nitions tell us that applying ErrorT to any monador an arbitrary transformer to an ErrorMonad will produce an ErrorMonad:> instance Monad m => ErrorMonad (ErrorT m) where> fail msg = FC (result (fail msg))> instance (MonadT t, ErrorMonad m) => ErrorMonad (t m) where> fail msg = lift (fail msg)Now, at last, we have the tools that we need to combine monads to sat-isfy particular sets of constraints. For example, for the type inference algorithmdescribed above, we need to �nd a monad m satisfying the constraints:(ErrorMonad m, StateMonad m Int)We have at least two di�erent ways to construct a suitable monad:{ ErrorT (State Int): in this case, m is equivalent to the monad:ES a = Int -> (Error a, Int)With this combination of state and error handling it is possible to return amodi�ed state, even if an error occurs.{ StateT Int Error, in this case, m is equivalent to the monad:SE a = Int -> Error (a,Int)With this combination of state and error handling the �nal state will onlybe returned if the computation does not produce an error.This example shows how monad transformers can be used to combine severaldi�erent features in a single monad, with the exibility to choose an appropriatesemantics for a particular application.

References1. R. Bird and P. Wadler. Introduction to functional programming. Prentice Hall,1988.2. R.M. Burstall, D.B MacQueen, and D.T. Sanella. Hope: An experimental applica-tive language. In The 1980 LISP Conference, pages 136{143, Stanford, August1980.3. L. Damas and R. Milner. Principal type schemes for functional programs. In 9thAnnual ACM Symposium on Principles of Programming languages, pages 207{212,Albuquerque, N.M., January 1982.4. David Espinosa. Modular denotational semantics. Unpublished manuscript, De-cember 1993.5. David Espinosa. Building interpreters by transforming strati�ed monads. Unpub-lished manuscript, June 1994.6. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans-actions of the American Mathematical Society, 146:29{60, December 1969.7. P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the ProgrammingLanguage Haskell, A Non-strict Purely Functional Language (Version 1.2). ACMSIGPLAN Notices, 27(5), May 1992.8. Geraint Jones and Jeremy Gibbons. Linear-time breadth-�rst tree algorithms, anexercise in the arithmetic of folds and zips. Programming Research Group, Oxford,December 1992.9. Mark P. Jones. Computing with lattices: An application of type classes. Journalof Functional Programming, 2(4), October 1992.10. Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymorphism. In FPCA '93: Conference on Functional Programming Lan-guages and Computer Architecture, Copenhagen, Denmark, New York, June 1993.ACM Press.11. Mark P. Jones. Dictionary-free overloading by partial evaluation. In ACM SIG-PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipula-tion, Orlando, Florida, June 1994. To appear.12. Mark P. Jones. The implementation of the Gofer functional programming system.Research Report YALEU/DCS/RR-1030, Yale University, New Haven, Connecti-cut, USA, May 1994.13. M.P. Jones and L. Duponcheel. Composing monads. Research ReportYALEU/DCS/RR-1004, Yale University, New Haven, Connecticut, USA, Decem-ber 1993.14. D.J. King and P. Wadler. Combining monads. In Proceedings of the Fifth AnnualGlasgow Workshop on Functional Programming, Ayr, Scotland, 1992. Springer Ver-lag Workshops in Computer Science.15. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modularinterpreters. In Conference record of POPL '95: 22nd ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, San Francisco, CA, January1995.16. S. MacLane. Categories for the working mathematician. Graduate texts in math-ematics, 5. Springer-Verlag, 1971.17. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming withbananas, lenses, envelopes and barbed wire. In 5th ACM conference on FunctionalProgramming Languages and Computer Architecture, pages 124{144, New York,1991. Springer-Verlag. Lecture Notes in Computer Science, 523.

18. Erik Meijer and Mark P. Jones. Gofer goes bananas. In preparation, 1994.19. R. Milner. A theory of type polymorphism in programming. Journal of Computerand System Sciences, 17(3), 1978.20. Robin Milner, Mads Tofte, and Robert Harper. The de�nition of Standard ML.The MIT Press, 1990.21. E. Moggi. Computational lambda-calculus and monads. In IEEE Symposium onLogic in Computer Science, Asilomar, California, 1989.22. E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Laboratory for Foundations of Computer Science, University of Ed-inburgh, Edinburgh, Scotland, 1990.23. Stephen K Park and Keith W Miller. Random number generators: Good ones arehard to �nd. Communications of the ACM, 31(10):1192{1201, Oct 1988.24. M. Spivey. A functional theory of exceptions. Science of Computer Programming,14(1), 1990.25. Guy L. Steele Jr. Building interpreters by composing monads. In Conferencerecord of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, pages 472{492, Portland, OR, January 1994.26. D.A. Turner. Duality and De Morgan principles for lists. In W. Feijen, N. vanGasteren, D. Gries, and J. Misra, editors, Beauty is Our Business, A BirthdaySalute to Edsger W. Dijkstra, pages 390{398. Springer-Verlag, 1990.27. D.A. Turner. An overview of Miranda. In David Turner, editor, Research Topicsin Functional Programming, chapter 1, pages 1{16. Addison Wesley, 1990.28. P. Wadler. Comprehending monads. In ACM conference on LISP and FunctionalProgramming, Nice, France, 1990.29. P. Wadler. The essence of functional programming (invited talk). In Conferencerecord of the Nineteenth annual ACM SIGPLAN-SIGACT symposium on Princi-ples of Programming Languages, pages 1{14, Jan 1992.30. P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Pro-ceedings of 16th ACM Symposium on Principles of Programming Languages, pages60{76, Jan 1989.
This article was processed using the LaTEX macro package with LLNCS style

