
An Algorithm for Computing Analytic Branches ofSpace Curves at Singular PointsM.E.AlonsoT. MoraG. NiesiM. Raimondo�IntroductionWe discuss an algorithmical approach to the problem of authomatic para-metrization of a curve in n-dimensional space, which is de�ned by implicitpolynomial equations. The focus of our interest is the structure of the curvenear singular points.Let us be given a curve � � Cn de�ned by s polynomials P1; : : : ; Ps inC[X1; : : : ;Xn] and let (�1; : : : ; �n) 2 � be a singular point of the curve. Weassume that � is not contained in the hyperplane X1 � �1 = 0; there is noloss of generality in doing this, since otherwise by the substitution X1 = �1in P1; : : : ; Ps we can reduce to a problem in one variable less.It is then known that the analytic branches of � have a parametrization:X1 � �1 = ta1;X2 � �2 = f2(t); : : : ;Xn � �n = fn(t)with a1 2 N�f0g; f2; : : : ; fn non-invertible power series in C[[t]] . Our aimis to explicitly \compute" such parametrizations.More exactly for each analytic branch we intend to compute integersa1; : : : ; an , polynomials T2(t); : : : ; Tn(t), polynomials S2(t;X2; : : : ;Xn),. . . ,Sn(t;X2; : : : ;Xn) such that:1) the Jacobian ( �Si�Xj )ij is non-zero at the origin.�First author's address: Departamento de Algebra, Facultad de Ciencias Matemati-cas, Universidad Complutense, Madrid, SPAIN. Other authors' address: Dipartimento diMatematica, Universit�a di Genova, ITALY. 1



2) denoting Q2(t); : : : ; Qn(t) the unique formal power series s.t.8i Si(t;Q2(t); : : : ; Qn(t)) = 0a parametrization of the analytic branch is given by:X1 � �1 = ta1 ;X2 � �2 = T2(t) + ta2Q2(t); : : : ;Xn � �n = Tn(t) + tanQn(t):The problem is not only a typical one in E�ective Algebraic Geometry;it has interesting applications in Geometric Modeling. There, space curvetracing is needed and numerical techniques fail near singular points; for curvetracing near a singular point, symbolic computations based on resolutions ofsingularities have been proposed ( [12], [4]). The approach we are developingleads to symbolic tracing of approximations of Puiseux expansions for eachbranch; we hope it could provide a useful alternative for curve tracing nearsingularities. An approach for plane curves, which is similar to the one wepropose here, has been given in [8].The theory behind this problem is well settled since long time (cf.[17]and for more recent algorithmic approaches [18] and [5]) and we don't claimto have original results. Our e�ort has been devoted to taylor the theoreti-cal results into an algorithm which takes advantage of the most recent stateof the art in polynomial system solving, which allows an easy and robustconversion of the symbolic output to a numerical one (in view of the Ge-ometric Modeling applications) and which is easily integrable in a generalPolynomial System Solver (as the one who is the core of the Esprit POSSOProject).It is mainly based on the Tangent Cone Algorithm for standard basescomputations ([20]), weak models for the arithmetics of algebraic numbersas advocated by Duval ([9]) and seminumerical techniques for real zeroesof 0-dimensional systems ([7]). There is no current implementation of ouralgorithm, but we will present some promising experimentations performedby means of CoCoA 1.5.3 ([10]).A version of this paper appeared as [1]; we refer to it for the proofs whichhave been omitted.1 Branches of a Curve at a Singular PointWe begin by recalling some algebraic facts and �xing some notations.2



A Puiseux series in X over a �eld K (all �elds considered in this paperare of characteristic 0) is a formal expression:P (X) = 1Xi=0 ciX�i=�with ci 2 K , c0 6= 0, �i 2 Z , � 2 N , gcd (�; �0; : : : ; �i; : : :) = 1 and�0 < �1 < : : : .Remark that there are at most �nitely many negative exponents �i=�in the Puiseux series P (X), while there can be �nitely or in�nitely manypositive exponents having non-zero coe�cients. The value �0=� is called theorder of P , ord (P ) = �0=� , while � is called its index, ind (P ) = � , orderand index of the zero series being unde�ned.By the usual de�nition of sum and product, and by the canonical con-ventions for dealing with exponents, the set of all Puiseux series is turnedinto an integral domain. For each non-zero Puiseux series P (X), there isa unique Puiseux series P�1(X) such that P (X)P�1(X) = 1; for such aseries, necessarily, ord (P�1) = � ord (P ); moreover if ind (P ) = 1, i.e. theexponents of P are all integers, then ind (P�1) = 1 too. As a consequencethe set of all Puiseux series in X over K is a �eld, which we denote byK((X))Puis . The subset of K((X))Puis consisting of those series P (X)such that ord (P ) � 0 (i.e. none among the exponents with non zero co-e�cient is negative) is closed under sums and products and is therefore anintegral domain which we will denote as K[[X]]Puis . Units of K[[X]]Puis arethen the elements of order zero. The Puiseux series P (X) = P1i=0 ciX�i=�with index 1, i.e. with integer exponents, are easily seen to be both a sub-�eld of K((X))Puis and the �eld of fractions of K[[X]] ; it will be denotedby K((X)).The most important property of Puiseux series is given by Puiseux Theo-rem which states that, if K is algebraically closed, then the �eld K((X))Puisis algebraically closed.Since a polynomial can be canonically identi�ed with a (�nite) Puiseuxseries with non-negative order and integer exponents, so that K[X] �K[[X]]Puis , one concludes that K(X) � K((X))Puis , so that, by PuiseuxTheorem, K((X))Puis contains the algebraic closure of K(X), where K isthe algebraic closure of K .Let � � Cn be a curve de�ned byF1(X1; : : : ;Xn) = 0; : : : ; Fs(X1; : : : ;Xn) = 03



where Fi is a polynomial in K[X1; : : : ;Xn] , the �eld K is some �nite exten-sion of Q and K � C denotes its algebraic closure; let I � K[X1; : : : ;Xn]be the ideal generated by F1; : : : ; Fs and let us denote K[x1; : : : ; xn] :=K[X1; : : : ;Xn]=I the coordinate ring of �. Let us also consider the ideal Iegenerated by F1; : : : ; Fs in the larger ring K(X1)[X2; : : : ;Xn] .Let us assume that none of the irreducible components of � is con-tained in some hyperplane X1 = � ; this implies that x1 is not algebraicover K . Under this assumption, the ideal Ie (i.e. the system of equa-tions F1 = : : : = Fs = 0) has only �nitely many solutions in the (n � 1)-dimensional a�ne space over the algebraical closure of K(X1), which iscontained in K((X1))Puis . Then there are �nitely many Puiseux seriesPjk(X1) 2 K((X1))Puis , j = 1 : : : ; r , k = 2 : : : n such that:Fi(X1; Pj2(X1); : : : ; Pjn(X1)) = 0 for all i; jeach of the (n � 1)-tuples (Pj2(X1); : : : ; Pjn(X1)) being a solution of thesystem. Moreover each Pjk(X1) converges in a neighborhood of X1 = 0. Itis important to remark that, for each such solution, there is a �nite algebraicextension Kj of K such that Pjk(X1) 2 Kj((X1))Puis .There are therefore, a fortiori, at most �nitely many solutions(Pj2(X1); : : : ; Pjn(X1))such that ord (Pjk) > 0 for all k . We will call them the solutions centeredat the origin of Ie = (F1; : : : ; Fs).Let P2(X1) := 1Xi=0 ci2X�i2=�2 ; : : : ; Pn(X1) := 1Xi=0 cinX�in=�nbe one of these solutions; let � := lcm (�2; : : : ; �n), let �ij := �ij�=�j ; for� 2 K let Rj(�; t) := 1Xi=0 cij��ij t�ij 2 K[[ t ]]and let Rj(t) := Rj(1; t). Then Pj 2 K[[X1=�1 ]] and it is the image ofRj(�; t) under the isomorphism between K[[X1=�1 ]] and K[[t]] given by theidenti�cation t = ��1X1=�1 .Since (P2; : : : ; Pn) is such that each Pi is convergent, then there is " > 0such that for all � 2 K and for all t 2 U"j�j�1 := ft 2 C : jtj < "j�j�1g wehave (��t� ; R2(�; t); : : : ; Rn(�; t)) 2 �:4



Moreover the sets f(��t� ; R2(�; t); : : : ; Rn(�; t)) : t 2 U"j�j�1g are the samefor all � 2 K .In particular, if � is a �th -root of unity, �� = 1, the automorphismof K((t)) given by t 7! �t leaves �xed X1 = t� and so K(X1). As aconsequence, ifQ2(X1) := 1Xi=0 ci2��i2X�i2=�2; : : : ; Qn(X1) := 1Xi=0 cin��inX�in=�nthen (Q2; : : : ; Qn) is another solution of the system, while the setsf(t� ; R2(t); : : : ; Rn(t)) : t 2 U"g = f(t� ; P2(t�); : : : ; Pn(t�)) : t 2 U"gandf(t� ; R2(�; t); : : : ; Rn(�; t)) : t 2 U"g = f(t� ; Q2(t�); : : : ; Qn(t�)) : t 2 U"gare the same.In other words, solutions centered at the origin of the ideal (F1; : : : ; Fs)of K(X1)[X2; : : : ;Xn] can be divided in cycles; each cycle contains, for some� , exactly � solutions, related each other as speci�ed above. This motivatesthe following de�nition.De�nition 1 An analytic branch of � (at the origin) is a cycle of solutions(P2; : : : ; Pn) with ord (Pi) > 0 for all i , of (F1; : : : ; Fs). The order of branchis the length � of the corresponding cycle, i.e. the least common multiple ofthe indexes of the Pi 's. Each n-tuple (��t� ; R2(�; t); : : : ; Rn(�; t)) is calleda parametrization of the branch.Assume moreover that for each neighborhood U of zero such that, forall i , the series Ri(t) is convergent for each t 2 U , one hasf(t� ; R2(t); : : : ; Rn(t)) : t 2 Ug \Rn 6= (0; : : : ; 0):Then the corresponding analytic branch is called real.Clearly if a solution (P2; : : : ; Pn) is such that Pi 2 R[[X1]]Puis for all i ,then the corresponding branch is real. The converse is however false as it isshown by the following trivial example.Let F (X;Y ) = X + Y 2 2 Q[X;Y ] . The equation F = 0 has twosolutions centered at the origin in C[[X]]Puis , which are Y = iX1=2 and Y =�iX1=2 ; they form a cycle of length 2, being related by the transformation5



t 7! �t , where t = X1=2 and therefore they give the single branch f(t2; it) :t 2 Cg . This branch is real as it is easily realized by the transformationt 7! �iu , which gives a parametrization of the branch as f(�u2; u) : u 2 Cg ,which satis�es f(�u2; u) : u 2 Cg \R2 = f(�u2; u) : u 2 Rg .One proves that each real analytic branch has either a parametrization(t� ; R2(t); : : : ; Rn(t)) or a parametrization (�t� ; R2(t); : : : ; Rn(t)) whereRi(t) 2 R[[t]] for all i .Finally recall that the origin is a simple point for � if and only if there isonly an analytic branch of � at the origin, this branch being of order 1, i.e.if and only if there is a single solution centered at the origin of (F1; : : : ; Fs).Otherwise the origin is singular.Let I = (F1; : : : ; Fs) � K[X1; : : : ;Xn] be a polynomial ideal over some�nite extension K of Q and let K � C denote the algebraic closure of K ;let � := f(�1; : : : ; �n) 2 Kn : F1(�1; : : : ; �n) = : : : = Fs(�1; : : : ; �n) = 0gWe will assume that1. I is radical, so thatI = fF 2 K[X1; : : : ;Xn] s:t: F (�1; : : : ; �n) = 0 8(�1; : : : ; �n) 2 �g2. I is unmixed of dimension 1, i.e. all irreducible components of � arecurves and � has only �nitely many singular points3. x1 2 K[x1; : : : ; xn] = K[X1; : : : ;Xn]=I is not algebraic over K , i.e.none of the irreducible components of � is contained in some hyper-plane X1 = �1and we will say that I de�nes an admissible curveLet (�1; : : : ; �n) 2 � be a singular point of the curve. By the translation� : K[X1; : : : ;Xn]! K[X1; : : : ;Xn] de�ned by �(Xi) = Xi+ �i we can as-sume w.l.o.g. the singular point to be the origin. Since the origin is singular,there is more than one solution centered at the origin of (F1; : : : ; Fs), corre-sponding to either several branches or to a single branch of order greater than1. By back-translating, each such solution (P2(X1); : : : ; Pn(X1)) will giverise to the corresponding solution (�2+P2(X1��1); : : : ; �n+Pn(X1��1))\centered at (�1; : : : ; �n)", each branch will give rise to a branch, and if(�1; : : : ; �n) 2 Rn each real branch to a real branch.6



Our aim is to \compute" all branches (and all real branches) centeredat the singular points of �, by \computing" an element (�2 + P2(X1 ��1); : : : ; �n + Pn(X1 � �1)) in each cycle giving a branch, or, equivalently,a parametrization (�1 � t� ; �2 +R2(t); : : : ; �n +Rn(t))such that Ri(t) 2 R[[ t ]] if the branch is real.Since the problem is a local one, i.e. one needs only to be able to \com-pute" solutions centered at the origin, we need to formulate the problem inlocal terms, by considering the behaviour of � only near singular points.We say therefore that I = (F1; : : : ; Fs) locally de�nes an admissible curveif, denoting I0 := IK[X1; : : : ;Xn]0 , then:1. I0 is radical, i.e. all irreducible components of � passing through theorigin are simple2. I0 is unmixed of dimension 1, i.e. all irreducible components of �passing through the origin are curves3. x1 2 K[x1; : : : ; xn]0 = K[X1; : : : ;Xn]0=I0 is not algebraic over K , i.e.none of the irreducible components of � passing through the origin iscontained in the hyperplane X1 = 02 Tools2.1 ArithmeticsThe algorithm we are going to describe in this paper requires extensive re-course to solving systems of polynomial equations with �nitely many rootsand to dealing with the arithmetics of algebraic numbers. E�cient tech-niques for both problems are therefore crucial for the performance of thealgorithms we are discussing.The current theoretical state of the art of polynomial system solving ismuch advanced in respect of the currently available implementations (notonly in general purpose symbolic computation systems, but even in fairlyspecialized ones), and further advances will be available in the next fu-ture (see [6]). Implementations reecting these theoretical advances are tobe considered as forthcoming ( a specialized symbolic computation systemfor polynomial system solving will be produced within the ESPRIT Basic7



Research Action POSSO) and will have then an impact on the practicalperformance of our proposals.The general philosophy underlying all recent advances in polynomial sys-tem solving is that there is no need to actually compute zeroes (�1; : : : ; �n)of a 0-dimensional ideal I � K[X1; : : : ;Xn] (i.e. s.t. it has �nitely manyroots in Kn ) provided that one is able to perform arithmetical operationsin K(�1; : : : ; �n), so that the e�ort is mainly devoted to devising e�ective(and e�cient) schemes to perform arithmetics in K(�1; : : : ; �n) when onlya 0-dimensional ideal I is given which has (�1; : : : ; �n) as a zero.This philosophy was �rst advocated by Duval ([9]) in her model foralgebraic number arithmetics, where an algebraic number � is de�ned, notby giving its minimal polynomial over Q , as in the classical computationalmodels, but just a squarefree polynomial f(X) 2 Q[X] s.t. f(�) = 0.Elements in the �eld Q(�) are then represented (in a non-unique way)by elements in Q[X]=(f), so that Q[X]=(f) is used to represent all the�elds Q(�) where � is any one of the roots of f . Sums and products inQ(�) are then performed as usual by modular arithmetics in Q[X]=(f).Problems obviously arise with inverse computation, since a same expressiong 2 Q[X]=(f) can be zero for some roots of f and non-zero for some otherroots; the basic idea behind Duval's model is that g(�) is:zero if � is root of f0(X) := GCD(f(X); g(X))non-zero if � is root of f1(X) := f(X)=f0(X)so that each time a zero-checking and/or an inverse computation is required,while performing some algorithm requiring arithmetics over Q(�), it givesa partial factorization of f into f0 and f1 and a splitting of Q[X]=(f) intoQ[X]=(f0) and Q[X]=(f1); the algorithm is then to be performed separatelyover both Q[X]=(f0) and Q[X]=(f1).Extensions of Duval approach to systems of polynomial equations aretheoretically known ([14], [15], and the forthcoming paper [22]); let us sketchhere the basic ideas of [22]:Let (�1; : : : ; �n) be a zero of a 0-dimensional ideal I � K[X1; : : : ;Xn] ;then:1. there is a surjection from K[X1; : : : ;Xn]=I to K(�1; : : : ; �n);2. K[X1; : : : ;Xn]=I is a K -vector space of �nite dimension h = mult(I);3. a Gr�obner basis of I determines a vector subspace V of K[X1; : : : ;Xn]isomorphic to K[X1; : : : ;Xn]=I8



4. therefore each element of K(�1; : : : ; �n) can be represented (not in aunique way) by an element of V .5. linear algebra algorithms can be used to perform sums and productsof elements of K[X1; : : : ;Xn]=I and so of the corresponding elementsof K(�1; : : : ; �n);6. moreover if g 2 V , denoting I0 := I + (g) and I1 := I : gh , thenthe zeroes of I0 are exactly those zeroes (�1; : : : ; �n) of I such thatg(�1; : : : ; �n) = 0, while the zeroes of I1 are exactly those zeroes(�1; : : : ; �n) of I such that g(�1; : : : ; �n) 6= 0.7. given a a Gr�obner basis of I , linear algebra algorithms can be used tocompute Gr�obner bases of both I0 and I1 and so vectorial represen-tations of both K[X1; : : : ;Xn]=I0 and K[X1; : : : ;Xn]=I18. therefore , exactly as in Duval model, if some algorithm is appliedto the zeroes of I , each zero-checking will give rise to a splitting ofK[X1; : : : ;Xn]=I .With reference to the model of [22] (or to any other model based on Duvaltechniques), we will say that (I1; : : : ; It) is a splitting of a 0-dimensionalideal I � K[X1; : : : ;Xn] if:1. 8j Ij � K[X1; : : : ;Xn] is a 0-dimensional ideal2. the roots of I are the disjoint union of the roots of Ij 8jWe are still left to discuss how to deal with real roots. Our proposal isto use the multivariate versions of Sturm Theorem ([23]) to decide whethera 0-dimensional ideal I has real zeroes; is such is the case, while still per-forming arithmetics with them in the model described above, we also usethe seminumerical techniques advocated in [7] to obtain oating point ap-proximations of all real algebraic numbers we are computing with.2.2 Standard Bases and MultiplicitiesLet us �x a non-zero vector of integer non-negative weights (a1; : : : ; an). Letus consider the morphism  : K[X1; : : : ;Xn]! K[X1; : : : ;Xn; t] de�ned by (Xi) = taiXi . Then if F (X1; : : : ;Xn) 2 K[X1; : : : ;Xn] , one has: (F ) = F (ta1X1; : : : ; tanXn)= tdG(X1; : : : ;Xn) + td+1H(t;X1; : : : ;Xn):9



The initial form of F (X1; : : : ;Xn) (w.r.t. the weights (a1; : : : ; an)) isde�ned to be the polynomial G(X1; : : : ;Xn) and we put in (F ) = G .An alternative way of describing it is as follows: assigning to the variableXi the weight ai , a weight is then de�ned on T := hX1; : : : ;Xni , the set ofterms in K[X1; : : : ;Xn] , by:wt(Xe11 � � �Xenn ) = nXi=1 aieiA pseudohomogenous form F of weight d , wt(F ) = d , is then a polyno-mial F = Pt2T ctt s.t. wt(t) = d 8t s.t.ct 6= 0. Each non-zero polynomialG(X1; : : : ;Xn) can be written uniquely as a �nite sum of non-zero pseudo-homogeneous forms of di�erent weights; in (G) is the form of least weight inthis representation, and the weight of G is de�ned as wt(G) := wt(in (G)).Let I be an ideal in K[X1; : : : ;Xn] . Let us denote by in (I) the idealin K[X1; : : : ;Xn] generated by fin (F ) : F 2 Ig . It is easy to verify thatin (I) is pseudohomogeneous (i.e. if a polynomial belongs to in (I), theneach pseudohomogeneous form in its representation belongs to in (I) too)and that a pseudohomogeneous element in in (I) is the initial form of somepolynomial in I .In general if (F1; : : : ; Fs) is a basis of I , then (in (F1); : : : ; in (Fs)) maynot be a basis of in (I).De�nition 2 A standard basis of an ideal I (w.r.t. (a1; : : : ; an)) is a setof elements fG1; : : : ; Gtg of I such that the ideal in (I) is generated by(in (G1),. . . , in (Gt)).There is a generalization of Buchberger Algorithm, the Tangent ConeAlgorithm ([20]), which, given any set of generators of an ideal I , allows tocompute a standard basis (G1; : : : ; Gt) of I ; moreover, for any prescribedterm-ordering < , the algorithm returns a standard basis (G1; : : : ; Gt) suchthat (in (G1); : : : ; in (Gt)) is a Gr�obner basis of in (I) w.r.t. < .It is important to remark that standard bases are a local tool, intendedto describe the structure of a variety near the origin; in fact the ideal gener-ated by a standard basis of I in the polynomial ring K[X1; : : : ;Xn] can bedi�erent from I; however the extensions of the two ideals in K[X1; : : : ;Xn]0 ,the localization of K[X1; : : : ;Xn] at the origin, are the same. In geometri-cal terms this means that the irreducible components passing through the10



origin of the varieties de�ned by the two ideals are the same and have thesame multiplicity.In what follows we will restrict the weights ai to be all positive, andw.l.o.g. we will assume gcd (ai) = 1. Under this assumption a standardbasis of I satis�es the following properties:1. the ideal in (I) is pseudohomogeneous; therefore if (�1; : : : ; �n) is azero of in (I) then, for all t , (ta1�1; : : : ; tan�n) is also a zero of in (I).2. The dimension of in (I) is the local dimension of I , i.e. the maximaldimension of the irreducible components passing through the origin ofthe variety de�ned by the ideal.3. If I locally de�nes a curve (i.e. the irreducible components of the vari-ety de�ned by I passing through the origin are curves), then in (I) lo-cally de�nes a curve too; in this case we can conclude that in (I) de�nesthe union of the curves whose generic points are (ta1�1; : : : ; tan�n),where (�1; : : : ; �n) runs among the zeroes of in (I); in particular thosecurves which do not lie in the plane X1 = 0 are uniquely determinedby the zeroes (�1; : : : ; �n) of in (I), with �1 = 1.4. A curve (ta1�1; : : : ; tan�n) satis�es the equations of in (I) if and onlyif it is tangent at the origin to the curve de�ned by I .Let us recall the notion of multiplicity for a root (!1; : : : ; !n) 2 Ln ofa 0-dimensional ideal I = (H1; : : : ;Hs) 2 K[X1; : : : ;Xn] , where K � L �K . Let us denote by � the L-vector space generated by all the partialderivations @i1+���+in@Xi11 ���@Xin1 and by �(!; I) � � the subvector space�(!; I) := f@ 2 � s:t: @(F )(!1; : : : ; !n) = 0 8F 2 IgDe�nition 3 The multiplicity of a root ! = (!1; : : : ; !n) 2 Ln of a 0-dimensional ideal I 2 K[X1; : : : ;Xn] , where K � L � K , is Mult(!; I) =dimL(�(!; I))Let us immediately remark the following Lemma which we will need inthe sequel:Lemma 1 Let K � L � K ; let (H1; : : : ;Hs) 2 K[X1; : : : ;Xn] be a 0-dimensional ideal, and let (!1; : : : ; !n) 2 Ln be a root of I. Then (!1; : : : ; !n)is a multiple root if and only if there are �1; : : : ; �n 2 L such that, denoting:�(H) := �1@H=@X1 + : : :+ �n@H=@Xn for H 2 L[X1; : : : ;Xn]11



then �(Hi)(!1; : : : ; !n) = 0 for all i .Standard bases are a useful tool in studying multiplicities because of thefollowing:Proposition 1 Let I be an ideal of dimension 0 ; then in (I) is a properideal if and only if the origin is among the zeroes of I ; in this case:mult(0; I) = mult(0; in (I)) = dimK(K[X1; : : : ;Xn]=I)Furthermore we can count multiplicities of roots of a 0-dimensional idealI � K[X1; : : : ;Xn] other than the origin as follows: let � := (�1; : : : ; �n) bea zero of I of multiplicity h and let �� : K[X1; : : : ;Xn] ! K[X1; : : : ;Xn]be the morphism de�ned by ��(Xi) = Xi + �i ; then the origin is a zero for��(I) of multiplicity h and this multiplicity can be computed by means ofstandard bases. Moreover the sum of the multiplicities of the zeroes of a0-dimensional ideal I is equal to the K -dimension of K[X1; : : : ;Xn]=I andis called the multiplicity of I .The notion of multiplicity is insu�cient for some of our purposes andwe need to give a stronger notion; let J be a 0-dimensional ideal and let� := (�1; : : : ; �n), � := (�1; : : : ; �n) be two zeroes of J . We will say that �and � are equivalent zeroes of J if in (��(J)) = in (��(J)); two equivalentzeroes have obviously the same multiplicity.If � is a zero of I and � is a zero of J (where I and J are 0-dimensional), we will also say that � (as a zero of I ) and � (as a zeroof J ) are equivalent if in (��(I)) = in (��(J)).If I is a 0-dimensional ideal and we apply the arithmetical models de-scribed in Section 2.1 for computing a standard basis of ��(I) for a root �of I by performing arithmetics over K[�] := K[X1; : : : ;Xn]=I , the outputwill be� a splitting (I1; : : : ; Iu)� 8i = 1; : : : ; u a set of polynomials in Kj [X1; : : : ;Xn] where Kj :=K[X1; : : : ;Xn]=Ij , which are a standard basis of ��(I) for each root� of Ij .so that two non-equivalent roots of I will be separated, but a single compu-tation has been performed for equivalent ones.12



2.3 Critical TropismsLet us �x weights (a; b; : : : ; b) on K[X1; : : : ;Xn] with a > 0 and let � :=b=a . Clearly in (F ) is invariant if the weights are scaled by a positive quan-tity, so we will denote in�(F ), in�(I) to denote in (F ), in (I) for weights(a; b; : : : ; b) with b=a = � .De�nition 4 We say that � 2 Q+ = f� 2 Q : � > 0g is a critical tropismfor the ideal I if8" > 0 9� s:t: j�� �j < " and in�(I) 6= in�(I)In other words, � is not a critical tropism if in�(I) is constant in aneighborhood of � . A result by Lejeune and Tessier ([16]) states that anideal has only �nitely many critical tropisms; we give here a proof of thisfact based on the notion of Gr�obner Fan ([21]) which allows to adapt analgorithm by Assi ([3]) for their computation.We start by imposing a bigraduation on T := hX1; : : : ;Xni by de�ning:wt2(Xe11 � � �Xenn ) = (e1; nXi=2 ei) 2 N2and we �x a semigroup well-ordering < on N2 . A bihomogenous form F ofweight (d1; d2), wt2(F ) = (d1; d2), is then a polynomial F = Pt2T ctt s.t.wt2(t) = (d1; d2) 8t s.t. ct 6= 0. Each non-zero polynomial G(X1; : : : ;Xn)can be written uniquely as a �nite sum of non-zero bihomogeneous formsof di�erent weights; B(G) is the form of least weight w.r.t. < in thisrepresentation, and the weight of G is de�ned as wt(G) := wt(B(G)).If I is an ideal in K[X1; : : : ;Xn] , we denote by B(I) the ideal inK[X1; : : : ;Xn] generated by fB(F ) : F 2 Ig . It is easy to verify thatB(I) is bihomogeneous (i.e. if a polynomial belongs to B(I), then eachbihomogeneous form in its representation belongs to B(I) too).We will call a B-standard basis of an ideal I (w.r.t. <) a set of elementsfG1; : : : ; Gtg � I such that B(I) is generated by (B(G1),. . . ,B(Gt)).To each semigroup well-ordering < on N2 , a linear form is associated(uniquely up to a positive scaling) L(d1; d2) = ad1 + bd2 with a , b non-negative integers and not both of them zero s.t. if L(d1; d2) < L(e1; e2)then (d1; d2) < (e1; e2). If L is as above, let us pose wt(<) := � := b=a ifa > 0, wt(<) := � :=1 if a = 0 and L� := L .13



Moreover there are exactly two semigroup orderings < s.t. L� = Lwhich we will denote by <�+ and <�� , and which are de�ned as follows:(d1; d2) <�+ (e1; e2) () L�(d1; d2) < L�(e1; e2) or(L�(d1; d2) = L�(e1; e2) and e1 < e2)(d1; d2) <�� (e1; e2) () L�(d1; d2) < L�(e1; e2) or(L�(d1; d2) = L�(e1; e2) and e1 > e2)The only one among these orderings which is not a well-ordering is <0� .By B�+(�) (resp. B��(�)) we will denote B(�) w.r.t. <�+ (resp.<�� ).It is clear that:a) if wt(<) := � then B(in�(F )) = B(F ), B(in�(I)) = B(I).b) if (G1; : : : ; Gs) is a B-standard basis of I w.r.t. < , then (in�(G1), . . . ,in�(Gs)) is a B-standard basis of in�(I), so that in particular (G1; : : : ; Gs)is a standard basis of I with respect to the weights (a; b; : : : ; b).The Tangent Cone Algorithm , given any set of generators of I , canbe applied to compute a B-standard basis (G1; : : : ; Gt) of I ; moreover, forany prescribed term-ordering < , the algorithm returns a B-standard basis(G1; : : : ; Gt) such that (B(G1); : : : ; B(Gt)) is a Gr�obner basis of B(I) w.r.t.< .Lemma 2 If in�(I) is bihomogeneous, then B�+(I) = in�(I) = B��(I)Proposition 2 There are rational 0 = �0 < �1 < : : : < �s < �s+1 =1 s.t.8j = 0 : : : s , 8� 2 (�j ; �j+1) for each ordering < s.t. wt(<) := � ,B(I) = in�(I) is independent on < .if � = �j then B�+(I) = in�+"(I) , B��(I) = in��"(I) for each su�-ciently small " > 0Proof: it is an easy generalization of [21] and a suitable specialization of[19], IV.3 and VII.5Lemma 3 in�(I) is bihomogeneous if and only if in�+"(I) = in��"(I) foreach su�ciently small " > 0 14



Proof: Let g 2 in�(I) and not bihomogenous, so that g = B�+(g) + hwith h 6= 0.Since there are standard bases (G1; : : : ; Gs) of I s.t. (B(G1); : : : ; B(Gs))is a Groebner basis for B�+(I), by applying an obvious modi�cation ofBuchberger reduction, we can moreover assume that no bihomogeneous formin the representation of h is in B�+(I).Since B�+(h) <�+ B�+(g), one has B�+(g) <�� B�+(h), since the twoorderings are the reverse of each other on pseudohomogeneous elements.Therefore B��(h) = B��(g) 2 B��(I), B��(h) 62 B�+(I), so that B�+(I) 6=B��(I).Conversely if in�(I) is bihomogeneous, then for each su�ciently small" > 0, in�+"(I) = B�+(I) = in�(I) = B��(I) = in��"(I)Corollary 1 If for a su�ciently small " > 0 , in�+"(I) = in��"(I) , thenin�(I) = in�+"(I) = in��"(I)Proof: In fact, by the assumption, in�(I) is bihomogeneous, so thatin�(I) = B��(I) = in��"(I)Proposition 3 There are only �nitely many critical tropisms 0 = �0 <�1 < : : : < �t < 1 for I; if � 2 (�i; �i+1) , where we put �t+1 = 1 , thenin�(I) is bihomogeneous, while in�i(I) is not bihomogeneous for i = 1 : : : t .Proof: It is an obvious corollary of the results above.Lemma 4 Let � := b=a 2 Q+ be such that in�(I) is bihomogeneous; let(G1; : : : ; Gs) be a standard basis of I w.r.t. to the weights (a; b; : : : ; b) . Let0 � �� < � < �+ � 1 be s.t.8i 8� 2 (��; �+); in�(Gi) = in�(Gi)9i; j s:t: in�(Gi) 6= in��(Gi); in�(Gj) 6= in�+(Gj)Then in�(I) = in�(I) 8� 2 (��; �+) .Moreover, both �� and �+ are critical tropisms (unless they are resp. 0or 1)Proof: Assume there is � 2 (��; �+) s.t. in�(I) is not bihomogeneous.We will discuss only the case � > � , the other case requiring only trivialmodi�cations. Let us choose the minimal such � . Let F 2 I be s.t. G :=in�(F ) = B��(G) + H is not bihomogeneous. As above, we can assume15



that no bihomogeneous form in H is in B��(I) Also B��(G) = in��"(G) =in�(G) 2 in�(I) � in�(I). Therefore H 2 in�(I), B��(H) 2 B��(I),contrary to the assumption.As a corollary one obtains the following algorithm to compute all thecritical tropisms of I (cf. [3]):Compute a B-standard basis (G1; : : : ; Gs) for I w.r.t. <0+% in"(I) = B0+(I) = (B0+(G1); : : : ; B0+(Gs))i = 0; �0 = 0While 9� 9j : in�(Gj) 6= B�+i (Gj) do�i+1 := min(� : 9j : in�(Gj) 6= B�+i (Gj))i := i+ 1% in�i+"(I) = B�+i (I) = (B�+i (G1); : : : ; B�+i (Gs))2.4 Transformations on a curveLet I = (F1; : : : ; Fs) locally de�ne an admissible curve �. First of all weneed some more notation; if (P2; : : : ; Pn) is a solution centered at the originof I , thenP2(X1) = "2X�21 +X�21 Q2(X1); : : : ; Pn(X1) = "nX�n1 +X�n1 Qn(X1)with "i 6= 0, ord (Qi) > 0 for all i ; let � := min(�i); �i := "i if �i = � ,�i := 0 if �i > � . Then we say that:� is the initial exponent of (P2; : : : ; Pn)(�2X�1 ; : : : ; �nX�1 ) is the initial approximation of (P2; : : : ; Pn).Let us �x weights (a; b; : : : ; b) and let � := b=a . Let �� := (�2; : : : ; �n) 2Ln�1 , where L is a �nite algebraic extension of K . Let �� : L[X1; : : : ;Xn]! L[t;X2; : : : ;Xn]be the morphism de�ned by:X1 = ta; X2 = (�2 +X2)tb; : : : ;Xn = (�n +Xn)tb:For a polynomial F (X1; : : : ;Xn) 2 K[X1; : : : ;Xn] , denoteG(X2; : : : ;Xn) := in�(F )(1;X2; : : : ;Xn)16



and d(F ) the weight of F . Then: ��(F ) = td(F )G(�2 +X2; : : : ; �n +Xn) + td(F )+1H(t; �2 +X2; : : : ; �n +Xn)so that  ��(F ) is divisible by td(F ) , but not by a higher power of t .Lemma 5 Let F 2 K[X1; : : : ;Xn] and P2(X1); : : : ; Pn(X1) 2 K[[X1]]Puisbe such that:a) F (X1; P2(X1); : : : ; Pn(X1)) = 0b) ord (Pi) � � for all i , so thatc) Pi(X1) := �iX�1 +X�1Qi(X1) for all i with Qi(X1) 2 K[[X1]]Puis andord (Qi) > 0 .Denote �� := (�2; : : : ; �n) and R(t;X2; : : : ;Xn) :=  ��(F )=td(F ) . Then:1. in�(F )(1; �2; : : : ; �n) = 0 ;2. R(t;Q2(ta); : : : ; Qn(ta)) = 0 .Lemma 6 Let F 2 K[X1; : : : ;Xn] , �� := (�2; : : : ; �n) 2 Kn�1 . LetR(t;X2; : : : ;Xn) :=  ��(F )=td(F ) , and Q2(t); : : : ; Qn(t) 2 K[[t]]Puis ,such that ord (Qi) > 0 and R(t;Q2(t); : : : ; Qn(t)) = 0 . Let Pi(X1) = �iX�1+X�1Qi(X1=a1 ) . Then F (X1; P2(X1); : : : ; Pn(X1)) = 0:Theorem 1 Let F1; : : : ; Fs be a standard basis of the ideal I for the weights(a; b; : : : b) , � := b=a . Let Gi(X2; : : : ;Xn) := innu(Fi)(1;X2; : : : ;Xn) andlet di be the weight of Fi . Then:1. The ideal (G1; : : : ; Gs) is either the whole ring (i.e. it has no roots)or a 0-dimensional ideal (i.e. it has �nitely many roots only).2. There is a solution centered at the origin of (F1; : : : ; Fs) with initialapproximation X2 = �2X�1 ; : : : ;Xn = �nX�1if and only if (�2; : : : ; �n) is a root of (G1; : : : ; Gs) .Let �� := (�2; : : : ; �n) be a a root of (G1; : : : ; Gs) and Ri(t;X2; : : : ;Xn) := ��(Fi)=tdi . Then:3. (R1; : : : ; Rs) locally de�nes an admissible curve ��� (the �� -trans-formation of �). 17



4. The solutions of (F1; : : : ; Fs) with initial approximationX2 = �2X�1 ; : : : ;Xn = �nX�1are (P2(X1); : : : ; Pn(X1)) , with Pi(X1) = �iX�1 + X�1Qi(X1) and(Q2(ta); : : : ; Qn(ta)) a solution centered at the origin of (R1; : : : ; Rs) .Proof: 1) The ideal in�(I) = (in�(F1); : : : ; in�(Fs)) has dimension 1,so its zeroes are �nitely many curves (ta�1; tb�2; : : : ; tb�n). The roots of(G1; : : : ; Gs) are the points which satisfy in�(F1) = : : : = in�(Fs) = 0 andmoreover X1 = 1. Therefore there is a root of (G1; : : : ; Gs), for each curve(ta1�1; : : : ; tan�n), which is not in the hyperplane X1 = 0.2) If (P2(X1); : : : ; Pn(X1)) is a solution of (F1; : : : ; Fs) centered at theorigin with initial approximationX2 = �2X�1 ; : : : ;Xn = �nX�1then (�2; : : : ; �n) is a root of (G1; : : : ; Gs), as a consequence of Lemma 5.Conversely, since (F1; : : : ; Fs) is a standard basis, if (�2; : : : ; �n) is a zeroof (G1; : : : ; Gs), then (ta; tb�2; : : : ; tb�n) is tangent to �, and so there is asolution of (F1; : : : ; Fs) centered at the origin with initial approximationX2 = �2X�1 ; : : : ;Xn = �nX�1 :3) Since (F1; : : : ; Fs) locally de�nes a curve and so it has �nitely manysolutions centered at the origin with initial approximationX2 = �2X�1 ; : : : ;Xn = �nX�1Lemmata 5 and 6 prove that (R1; : : : ; Rs) has �nitely many zeroes overK[[t]]Puis , i.e. it locally de�nes a curve. If (R1; : : : ; Rs) had components inthe hyperplane t = 0, then (R1; : : : ; Rs; t) would have in�nitely many solu-tions in Kn . However (R1; : : : ; Rs; t) = (G1; : : : ; Gs; t) is 0-dimensional.We must prove that all the solutions centered at the origin of (R1; : : : ; Rs)are simple. Let �2(t); : : : ; �n(t) 2 K((t))Puis and denote�(H) := �2@H=@X2 + : : :+ �n@H=@Xnfor H 2 K[t;X2; : : : ;Xn] .Let !i(X1) := �i(X1=a1 ) and denote�(F ) := !2@F=@X2 + : : :+ !n@F=@Xn18



for F 2 K[X1;X2; : : : ;Xn]:A direct veri�cation shows that for all i and j :tdi@Ri=@Xj = tb ��(@Fi=@Xj)so that for all i tdi�(Ri) = tb ��(�(Fi)):By Lemmata 5 and 6 (Q2(t); : : : ; Qn(t)) is a root of (�(R1); : : : ;�(Rs)),if and only if (P2(X1),. . . , Pn(X1)) is a root of (�(F1); : : : ;�(Fs)), i.e.(Q2(t); : : : ; Qn(t)) is a multiple root of (R1; : : : ; Rs) if and only if(P2(X1); : : : ; Pn(X1)) is a multiple root of (F1; : : : ; Fs). Since the solutionscentered at the origin of (F1; : : : ; Fs) are all simple, the same is necessarilytrue for those of (R1; : : : ; Rs).4) It is an immediate consequence of Lemmata 5 and 6.Corollary 2 Given a standard basis (F1; : : : ; Fs) of I w.r.t. the weights(a; b; : : : b) , let � := b=a , let di be the weight of in (Fi) , let �� := (�2; : : : ; �n)be a zero ofin�(F1)(1;X2; : : : ;Xn) = : : : = in�(Fs)(1;X2; : : : ;Xn) = 0and let Ri(t;X2; : : : ;Xn) :=  ��(Fi)=tdi:Let (uc; V2(u); : : : ; Vn(u)) , Vi 2 K[[u]] be a parametrization of a branchof ��� . Then (uac; �2ubc + ubcV2(u); : : : ; �nubc + ubcVn(u))is a parametrization of a branch of � .Moreover each branch of � has a parametrization obtained as above.It is useful to have some more insight into the conjugacy classes of theroots of (G1; : : : ; Gs). Let � : K[X1; : : : ;Xn] ! K[X2; : : : ;Xn] be theprojection given by �(X1) = 1, �(Xi) = Xi . Let � be a primitive ath -rootof unity, �a = 1.Let J = in�(I) = (in�(F1); : : : ; in�(Fs)), so that �(J) = (G1; : : : ; Gs).Let �� := (�2; : : : ; �n) be a zero of �(J). Then (ta; �2tb; : : : ; �ntb) is thegeneric zero of an irreducible component of the variety de�ned by J . Since(ta; �2� ibtb; : : : ; �n� ibtb) is also a generic zero of the same component, ��i :=19



(�2� i; : : : ; �n� i) is a zero of �(J). It is possible to show that the ��i 's areequivalent zeroes of �(J).Finally denote �i : K[t;X2; : : : ;Xn] ! K[t;X2; : : : ;Xn] the morphismsuch that �i(t) = � it and �i(Xj) = ��iXj . One has  ��i = �i �� so that thethe ideals of the ��i -transformations of � are isomorphic. In conclusion:Proposition 4 Let �� := (�2; : : : ; �n) be a root of (G1; : : : ; Gs) , and let��i := (�2� i; : : : ; �n� i) , where � is a primitive ath -root of unity. Then:1. ��i is a zero of (G1; : : : ; Gs) .2. The ��i 's are equivalent zeroes of (G1; : : : ; Gs)Let us now re�ne the theorems above to discuss in details the real ana-lytic branches.Proposition 5 Let (P2(X1); : : : ; Pn(X1)) be a solution centered at the ori-gin of (F1; : : : ; Fs) , withP2(X1) =X ci2X�i2=�1 ; : : : ; Pn(X1) =X cinX�in=�1with cij 6= 0 �; �ij 2 N , gcd (�ij ; �) = 1 , so that if � is a primitive � -throot of 1 , the � solutions in the cycle of (P2; : : : ; Pn) areP2j(X1) =X ci2�j�i2X�i2=�1 ; : : : ; Pnj(X1) =X cin�j�inX�in=�1 :If � is odd, consider the � parametrizations of the branchX1 = t� ;X2 =X ci2�j�i2t�i2 ; : : : ;Xn =X cin�j�int�inThere is at most one such parametrization, which is \real" in the sense thatall coe�cients cik�j�ik are real, and there is exactly one if and only if thebranch is real.If � is even let � be a primitive 2� -root of 1 and consider the 2�parametrizations of the branch:X1 = t� ;X2 =X ci2�j�i2t�i2 ; : : : ;Xn =X cin�j�int�in j evenX1 = �t� ;X2 =X ci2�j�i2t�i2 ; : : : ;Xn =X cin�j�int�in j oddThere are either none or two real parametrizations; there are two if and onlyif the branch is real. In this case they are transformed into each other bythe substitution t 7! �t . 20



In order to consider parametrizations of the kind(�t� ;X ci2t�i2 ; : : : ;X cint�in)we have to modify accordingly the results stated above.Let I = (F1; : : : ; Fs) locally de�ne an admissible curve �. Let us �xweights (a; b; : : : ; b), where a is even and b is odd, and let � := b=a . Let usassume moreover that (F1; : : : ; Fs) is a standard basis of I for the weights(a; b; : : : b). Let � be a 2ath -primitive root of unity.Let �� := (�2; : : : ; �n) 2 Kn�1 , let L := K(�2; : : : ; �n; �) and let  �� :L[X1; : : : ;Xn]! L[t;X2; : : : ;Xn] be the morphism de�ned by the transfor-mation X1 = ta; X2 = (�2 +X2)tb; : : : ; Xn = (�n +Xn)tbso that, for F (X1; : : : ;Xn) 2 K[X1; : : : ;Xn] , denoting d(F ) the weight ofin (F ), one has: ��(F ) = td(F ) in (F )(1; �2 +X2;: : :; �n +Xn) + : : :Let � : L[t;X2; : : : ;Xn]! L[t;X2; : : : ;Xn] be the morphism such that�(t) = �t; �(Xi) = ��bXi for all iso that � �� : L[X1; : : : ;Xn]! L[t;X2; : : : ;Xn] is given by the transforma-tion: X1 = �ta; X2 = (�b�2 +X2)tb; : : : ; Xn = (�b�n +Xn)tband � ��(F ) = td(F ) in (F )(�1; �b�2 +X2; : : : ; �b�n +Xn) + : : :Let now � : K[X1; : : : ;Xn]! K[X1; : : : ;Xn] be the morphism such that�(X1) = �X1; �(Xi) = Xi for i > 1and let ��� := (�b�2; : : : ; �b�n):It is immediate that � �� =  ����:Let � : K[X1; : : : ;Xn] ! K[X2; : : : ;Xn] be the projection such that�(X1) = 1, �(Xi) = Xi . Let J = in (I) = (in (F1); : : : ; in (Fs)), so that�(J) = (in (F1)(1;X2; : : : ;Xn); : : : ; in (Fs)(1;X2; : : : ;Xn)):21



Let �� := (�2; : : : ; �n) be a zero of �(J) so that ��2i := (�2�2i; : : : ; �n�2i) isa zero of �(J) for each i and (ta; �2tb; : : : ; �ntb) is the generic zero of an irre-ducible component of the variety de�ned by J . Then (�ta; �2�btb;: : :; �n�btb)is the generic zero of an irreducible component of the variety de�ned by�(J), so that, for each i , ��2i+1 := (�2�2i+1; : : : ; �n�2i+1) is a zero of ��(J) =(in (F1)(1;X2; : : : ;Xn); : : : ; in (Fs)(1;X2; : : : ;Xn)).Extending the results of Proposition 4, we have:Proposition 6 The zeroes ��2i of �(J) and the zeroes ��2i+1 of ��(J) areequivalent. Moreover the ��2i -transformations of � and the ��2i+1 -trans-formations of �(�) are all isomorphic. In particular this holds for the �� -transformation of � and the �� -transformation of �(�) .We have then the following generalization of Theorem 1:Proposition 7 Let F1; : : : ; Fs be a standard basis of I for the weights(a; b; : : : b) , let � := b=a , with a even. LetGi(X2; : : : ;Xn) := in�(Fi)(�1;X2; : : : ;Xn)and let di be the weight of in�(Fi) . Then:1) The ideal (G1; : : : ; Gs) is either the whole ring (i.e. it has no roots)or a 0-dimensional ideal.Let �� := (�2; : : : ; �n) be a zero of (G1; : : : ; Gs) and let Ri(t;X2; : : : ;Xn) = ���(Fi)=tdi . Then:2) R1; : : : ; Rs locally de�ne an admissible curve ��� .3) Fi(�ta; �2tb+ tbQ2(t); : : : ; �ntb+ tbQn(t)) = 0 for all i , if and only ifRi(t;Q2(t); : : : ; Qn(t)) = 0for all i and for Qi(t) 2 K[[t]]Puis .Corollary 3 Let (F1; : : : ; Fs) be a standard basis of I w.r.t. the weights(a; b; : : : ; b) , let � := b=a , let di be the weight of in�(Fi) , let �� := (�2; : : : ; �n)be a real zero ofin�(F1)(1;X2; : : : ;Xn) = : : : = in�(Fs)(1;X2; : : : ;Xn) = 0and let Ri(t;X2; : : : ;Xn) :=  ��(Fi)=tdi:22



Let ((�1)juc; V2(u); : : : ; Vn(u)) , Vi 2 R[[u]] be a real parametrization ofa real branch of ��� .Then((�1)ajuac; (�1)bj�2ubc+(�1)bjubcV2(u); : : : ; (�1)bj�nubc+(�1)bjubcVn(u))is a real parametrization of a real branch of � .Let now a be even, let �� := (�2; : : : ; �n) be a real zero ofin�(F1)(�1;X2; : : : ;Xn) = : : : = 2nu(Fs)(�1;X2; : : : ;Xn) = 0and let Ri(t;X2; : : : ;Xn) :=  ���(Fi)=tdi . Let ((�1)juc; V2(u); : : : ; Vn(u)) ,Vi 2 R[[u]] be a real parametrization of a real branch of ��� . Then(�uac; (�1)bj�2ubc + (�1)bjubcV2(u); : : : ; (�1)bj�nubc + (�1)bjubcVn(u))is a real parametrization of a real branch of � .Moreover a real branch of � has a parametrization obtained as above.We conclude this section by analyzing the case in which the �� -trans-formation of � has the origin as a simple point.Proposition 8 Assume (F1; : : : ; Fs) are a standard basis for the weights(a; b; : : : ; b) which locally de�ne an admissible curve � . Let Gi(X2; : : : ;Xn)be the polynomial in (Fi)(1;X2;: : :;Xn) , di the pseudodegree of in (Fi). Let(�2; : : : ; �n) be a simple zero of (G1; : : : ; Gs) , L := K(�2; : : : ; �n) .Let Ri(t;X2; : : : ;Xn) = Fi(ta; tb(�2 + X2); : : : ; tb(�n + Xn))=tdi . Thenthe Jacobian matrix (@Ri=@Xj)ij has maximal rank at the origin. As aconsequence there are n � 1 linear combinations of the Ri 's, S2; : : : ; Snsuch that1. Si(t;X2; : : : ;Xn) = Xi+Ti(t;X2; : : : ;Xn) with Ti 2 (t)+(X2; : : : ;Xn)2 ;2. there are unique power series Qj(t) 2 L[[t]] such thatSi(t;Q2(t); : : : ; Qn(t)) = 0;3 (Q2; : : : ; Qn) is the unique solution centered at the origin of (R1; : : : ; Rs) .Proof: First of all remark that Ri(0;X2; : : : ;Xn) = Gi(�2+X2; : : : ; �n+Xn), so that @Ri=@Xj(0;X2; : : : ;Xn) = @Gi=@Xj(�2 + X2; : : : ; �n + Xn).Therefore the Jacobian matrix (@Ri=@Xj)ij has maximal rank at the ori-gin if and only if the Jacobian matrix (@Gi=@Xj)ij has maximal rank at23



(�2; : : : ; �n). If the latter matrix has not maximal rank, then there arec2; : : : ; cn 2 L , not all zero such that c2@Gi=@X2 + : : : + cn@Gi=@Xn van-ishes at (�2; : : : ; �n) for all i , against the assumption that (�2; : : : ; �n) isa simple zero of (G1; : : : ; Gs). The other statement is an elementary conse-quence of the Implicit Function Theorem.3 Outline of the AlgorithmWe are now in a position to specify what we meant in Section 2.1 by \com-puting" all branches (and all real branches) centered at the singular pointsof �.Assume that we are given n� 1 polynomialsS2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn)such that the Jacobian (@Si=@Xj)ij is non-zero at the origin. Then by theImplicit Function Theorem, there are unique formal power series Q2(u),. . . ,Qn(u) such that Si(u;Q2(u); : : : ; Qn(u)) = 0 for all i ; moreover any ap-proximation of these series can be explicitly obtained by back substitutionin the Si .Therefore we say that an analytic branch of � is given if we are givenintegers a , b , polynomials T2(t); : : : ; Tn(t), polynomialsS2(t;X2; : : : ;Xn); : : : ; Sn(t;X2; : : : ;Xn)such that:1. the Jacobian (@Si=@Xj)ij is non-zero at the origin.2. denoting Q2(t); : : : ; Qn(t) the unique formal power series such that,for all i , Si(t;Q2(t); : : : ; Qn(t)) = 0 and Ui(t) := Ti(t) + tbQi(t) then(ta; U2(t); : : : ; Un(t)) is a parametrization of the branch.Analogously, we say that a real analytic branch of � is given if we aregiven integers j , k , a , b , real polynomials T2(t); : : : ; Tn(t), real polynomialsS2(t;X2; : : : ;Xn); : : : ; Sn(t;X2; : : : ;Xn) such that:1. the Jacobian (@Si=@Xj)ij is non-zero at the origin.2. denoting Q2(t); : : : ; Qn(t) the unique formal power series such that, forall i , Si(t;Q2(t); : : : ; Qn(t)) = 0 and Ui(t) := Ti(t)+(�1)ktbQi(t) then((�1)jta; U2(t); : : : ; Un(t)) is a real parametrization of the branch.24



The algorithm by which, given a basis (F1; : : : ; Fs) of an ideal I 2K[X1; : : : ;Xn] de�ning an admissible curve �, we intend to compute all(real) analytic branches of � can be outlined at follows:1. Check if I de�nes an admissible curve �2. Compute the 0-dimensional ideal J whose roots are the singular pointsof �3. Compute a splitting (J1; : : : ; Jt) of J s.t. 8i all the roots of Ji areequivalent and, denoting Ki := K[X1; : : : ;Xn]=Ji , a set of polynomialsin Ki[X1; : : : ;Xn] which are a standard basis of ��(I) for each root� of Ji .4. For each root � of J :(a) Compute all initial exponents � of (real) solutions centered at � .(b) For each initial exponent � :i. Compute a parametrization for each (real) solution centeredat � with initial exponent � .Remark that the phrasing \For each root � of J " has been chosen justto avoid being unnecessarily cumbersome: computation of initial exponentsand of analytic branches is not to be performed separately for each root of Jbut just for each \generic" root of Ji ; if di�erent roots of Ji have di�erentpatterns for initial exponents or analytic branches, this will be revealed byan appropriate splitting of Ji .The actual output of the algorithm will be1. a splitting (J1; : : : ; Ju) of J ;2. for all i , a set of \parametrizations"f(�ta�; U2�(t); : : : ; Un�(t))g;with Uj�(t) a formal power series with coe�cients in K[X1; : : : ;Xn]=Jisuch that if for each root � := (�1; : : : ; �n) of the ideal Ji , we de-note �� : K[X1; : : : ;Xn]=Ji 7! K(�1; : : : ; �n) the canonical projec-tion, then 8� root of Ji ,f(�ta�; ��(U2�(t)); : : : ; ��(Un�(t)))ggives a parametrization for each solution centered at � .25



It is obvious that a single computation is required for each set of K -conjugate roots of J , but even roots which are not conjugate are possiblynot splitted by the algorithm, and even in case non-conjugate roots arecompletely separated by the algorithm, this is performed with no need ofdecomposing J by a primary decomposition algorithm. In particular more-over, only one parametrization for each cycle is explicitly computed, sincesolutions within the same cycle will never be splitted in this model.4 The Algorithm4.1 Testing the Algebraic Conditions and Computing Singu-lar PointsWe discuss here briey how to test whether the ideal I := (F1; : : : ; Fs) 2K[X1; : : : ;Xn] , where K is a �nite algebraic extension of the rationals,de�nes an admissible curve �.First we compute a Gr�obner basis of I , by which we can read the dimen-sion of I . If the dimension of I is 1, we can then test whether I is radicaland unmixed, by computing its top-radical toprad(I), i.e. the intersection ofthe prime components of I of maximal dimension (remark that most of thealgorithms for computing the radical of an ideal, actually need the computa-tion of the top-radical as an intermediate step). The knowledge of a Gr�obnerbasis of the toprad(I) w.r.t. suitable (elimination) orderings, allows also tocheck whether x1 2 K[x1; : : : ; xn] = K[X1; : : : ;Xn]=I is algebraic over K .If dim(I) = 1 and x1 is not algebraic over K , then toprad(I) de�nes anadmissible curve � which is the union of the irreducible curve componentsof the variety de�ned by I ; in this case, if I = toprad(I), then I satis�esthe assumptions; otherwise, the algorithm can still be applied to toprad(I).If x1 is algebraic over K , this is revealed by a polynomial f 2 toprad(I)\K[X1] . Then toprad(I) : (f)� = fg : 9d fdg 2 toprad(I)g de�nes the ad-missible curve consisting of the irreducible components of the variety de�nedby toprad(I) not contained in some hyperplane X1 = �1 . Moreover if � is aroot of f , then toprad(I)+(X1��) de�nes the admissible curve consistingof the irreducible components of the variety de�ned by toprad(I) containedin the hyperplane X1 = � . So the algorithm can be applied separately totoprad(I) : (f)� and toprad(I) + (X1 � �).Assuming now that I de�nes an admissible curve �, the singular pointsof � are the roots of the 0-dimensional ideal generated by (F1; : : : ; Fs) andby the maximal minors of the Jacobian matrix (@Fi=@Xj)ij .26



4.2 Finding Initial ExponentsTo compute the initial exponents of branches of I at a singular point � , byapplying the morphism �� , we can assume w.l.o.g. that � is the origin.The computation of initial exponents can then be reduced to the com-putation of the critical tropisms of I , because of the following results:Proposition 9 Let � 2 Q+ . If � is the initial exponent of an analyticbranch of I at the origin, then in�(I) is not bihomogeneous.Proof: Let a; b be positive integers s.t. � = b=a . Let (F1; : : : ; Fs)be a standard basis of I w.r.t. the weights (a; b; : : : ; b) and let Gi :=in�(Fi)(1;X2; : : : ;Xn). If the ideal in�(I) is bihomogeneous, then the ideal(G1; : : : ; Gs) � K[X2; : : : ;Xn] is homogeneous. Since it has at most �nitelyroots because of Theorem 1, then its only root is the origin, so that � is notan initial exponent of an analytic branch of I .Corollary 4 If � is the initial exponent of an analytic branch of I at theorigin, then � is a critical tropism of I .We can therefore apply the algorithm sketched in Section 2.3 to computethe critical tropisms of I . Remark that the output of Step 3 of the algorithmis exactly what one needs for the critical tropism computation.4.3 Finding all Solutions with a given Initial ExponentLet us now �x a positive rational � and let us show how to computeparametrizations for all analytic branches at the origin with initial exponent� of I = (F1; : : : ; Fs). Let a; b 2 N be such that b=a = � , gcd (a; b) = 1.1. Compute a standard basis (H1; : : : ;Ht) of the ideal (F1; : : : ; Fs) w.r.t.the weights (a; b; : : : ; b).The standard basis computation can be performed by means of theTangent Cone Algorithm [20], which has the advantage of returning aGr�obner basis of the ideal J0 = (G1; : : : ; Gt).2. Let Gi := in�(Hi)(1;X2; : : : ;Xn) and di := wt(Hi) and let J0 :=(G1; : : : ; Gt)The ideal J0 has at most �nitely many roots and its roots are thecoe�cients of the initial approximations of the solutions centered atthe origin with initial exponent � .27



3. Compute the ideal J := J0 :m� = S1d=1 J0 :md .The roots of J are exactly the non-zero roots of the ideal J0 and theyhave the same multiplicity in the two ideals. A Gr�obner basis for theideal J can be obtained from the Gr�obner basis (G1; : : : ; Gt) eitherby several Gr�obner basis computations (there are di�erent schemes todo that [24]) or more e�ciently by a linear algebra algorithm [13, 22].4. Compute a splitting (J1; : : : ; Ju) of J s.t. 8i all the roots of Ji areequivalent, the roots of J1 being the simple roots of J5. Denoting (�2; : : : ; �n) the generic root of the ideal J1 , computeRi(t;X2; : : : ;Xn) := Hi(ta; tb(�2+X2); : : : ; tb(�n+Xn))=tdi ; S2; : : : ; Snsatisfying the conditions of Proposition 8; return:[(ta; �2tb; : : : ; �ntb); tb; (S2; : : : ; Sn)]:Since the roots of J1 are the simple roots of J , Proposition 8 impliesthat:� there are unique formal power series Qi(t) such that:Rj(t;Q2(t); : : : ; Qn(t)) = 0 8 j� (ta; �2tb + tbQ2(t); : : : ; �2tb + tbQ2(t)) is a parametrization of theunique analytic branch with initial approximation (�2t� ; : : : �nt�).As it was speci�ed in section 3, the returned information is what weintend by \computing" a solution centered at the origin, and it issu�cient to compute polynomial approximations of any order.6. For each i = 2; : : : ; u , denoting (�2; : : : ; �n) the generic root of Ji :(a) computeRi(t;X2; : : : ;Xn) := Hi(ta; tb(�2 +X2); : : : ; tb(�n +Xn))=tdi(b) compute a parametrization for each solution centered at the originof (R1; : : : ; Rt), i.e. compute all[(uc; T2(u); : : : ; Tn(u)); ud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]28



such that (uc; T2(u) + udQ2(u); : : : ; Tn(u) + udQn(u)) is a para-metrization of a solution centered at the origin of (R1; : : : ; Rt),where Qi(u) denote the unique formal power series such that, forall j , Si(u;Q2(u); : : : ; Qn(u)) = 0.(c) For each parametrization[(uc; T2(u); : : : ; Tn(u)); ud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]return[(uac; �2ubc + ubcT2(u); : : : ; �nubc + ubcTn(u)); ubc+d;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]so that (uac; �2ubc + ubcT2(u) + ubc+dQ2(u); : : : ;�nubc + ubcTn(u) + ubc+dQn(u))is a parametrization of a branch of �, denoting again Qi(u) theunique formal power series such that, for all j :Sj(u;Q2(u); : : : ; Qn(u)) = 0:Here we apply instead Theorem 1 which implies that(uac; �2ubc+ubcT2(u)+ubc+dQ2(u); : : : ; �nubc+ubcTn(u)+ubc+dQn(u))is a parametrization of a solution centered at the origin of (F1; : : : ; Fs),if and only if(uc; T2(u) + udQ2(u); : : : ; Tn(u) + udQn(u))is a parametrization of a solution centered at the origin of (R1; : : : ; Rt)Let us describe the modi�cations in the algorithm needed to computeonly the real analytic branches; the modi�cations apply only to Steps (5)and (6) which are to be modi�ed as follows:29



5a) If J1 has real roots, denoting (�2; : : : ; �n) the generic root of J1 ,compute Ri(t;X2; : : : ;Xn) := Hi(ta; tb(�2+X2); : : : ; tb(�n+Xn))=tdi ;S2; : : : ; Sn satisfying the conditions of Proposition 8; return:[(ta; �2tb; : : : ; �ntb); tb; (S2; : : : ; Sn)]5b) If a is even, let � be a primitive 2ath -root of unity and let L1 be theideal whose roots, all simple, are:f(�2�b; : : : ; �n�b) : (�2; : : : ; �n) a root ofJ1g:If L1 has real roots, denoting (�2; : : : ; �n) its generic root, computeRi(t;X2; : : : ;Xn) = Hi(�ta; tb(�2 + X2); : : : ; tb(�n + Xn))=tdi ; andS2; : : : ; Sn satisfying the conditions of Proposition 4; return:[(�ta; �2tb; : : : ; �ntb); tb; (S2; : : : ; Sn)]6a) For each i = 2; : : : ; u , s.t. Ji has real roots, denoting (�2; : : : ; �n) thegeneric root of Ji :(a) computeRi(t;X2; : : : ;Xn) := Hi(ta; tb(�2 +X2); : : : ; tb(�n +Xn))=tdi(b) compute a parametrization for each real solution centered at theorigin of (R1; : : : ; Rt), i.e. compute all[((�1)juc; T2(u); : : : ; Tn(u)); (�1)kud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]where Ti , Si have real coe�cients and are such that((�1)juc; T2(u) + (�1)kudQ2(u); : : : ; Tn(u) + (�1)kudQn(u))is a real parametrization of a real solution centered at the originof (R1; : : : ; Rt), where Qi(u) denote the unique formal powerseries such that, for all j , Si(u;Q2(u); : : : ; Qn(u)) = 0.(c) For each real parametrization[((�1)juc; T2(u); : : : ; Tn(u)); (�1)kud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]30



return: [((�1)ajuac; (�1)bj�2ubc + (�1)bjubcT2(u); : : : ;(�1)bj�nubc + (�1)bjubcTn(u));(�1)bj+kubc+d; (S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]6b) If a is even, let � be a primitive 2ath -root of unity and let Li be theideal whose roots are f(�2�b; : : : ; �n�b) : (�2; : : : ; �n) is a root of Jig .If L1 has real roots, denoting (�2; : : : ; �n) its generic root:(a) computeRi(t;X2; : : : ;Xn) := Hi(�ta; tb(�2 +X2); : : : ; tb(�n +Xn))=tdi(b) compute a parametrization for each real solution centered at theorigin of (R1; : : : ; Rt), i.e. compute all[((�1)juc; T2(u); : : : ; Tn(u)); (�1)kud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))](c) For each real parametrization[((�1)juc; T2(u); : : : ; Tn(u)); (�1)kud;(S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]return: [(�uac; (�1)bj�2ubc + (�1)bjubcT2(u); : : : ;(�1)bj�nubc + (�1)bjubcTn(u));(�1)bj+kubc+d; (S2(u;X2; : : : ;Xn); : : : ; Sn(u;X2; : : : ;Xn))]There are some comments to make about the modi�cations to the algo-rithm to adapt it to the real case:1) We use the multivariate versions of Sturm Theorem ([23]) to decidewhether a 0-dimensional ideal Ji has real zeroes2) To compute Li from Ji we do the following: we homogeneize a basisof Ji w.r.t. the variable X1 , obtaining a pseudohomogeneous ideal Ii suchthat Ji = �(Ii); then Li is simply obtained by Li = ��(Ii).31



3) The recursive calls of the algorithm are performed in the computa-tional model for algebraic numbers described in Section 2.1; so they aredone once for all roots of Ji (resp. Li ) provided that Ji (resp. Li ) hasat least one real root. However when returning the results in the outmostlevel of recursion, we use the seminumerical techniques advocated in [7] toobtain oating point approximations of all real algebraic numbers appearingas coe�cients.4) Therefore in particular the polynomials Si will have oating pointcoe�cients and the computation of polynomial approximations of the for-mal power series solutions of the Si will be performed numerically, so thatour �nal output will be polynomial approximations of Puiseux series withoating point coe�cients.5 Correctness of the AlgorithmLet I = (F1; : : : ; Fs) locally de�ne an admissible curve �, so that I hasactually solutions centered at the origin.To guarantee the correctness of the algorithm we need to show that allsolutions centered at the origin are found by it. This is a consequence of thefollowing:Proposition 10 With notation and assumptions of Theorem 1, if �� is aroot of (G1; : : : ; Gs) with multiplicity h then (R1; : : : ; Rs) has exactly hsolutions centered at the origin (because of Theorem 1, the h solutions aresimple and so are all distinct).Correctness of the algorithm follows now immediately; in fact: at Step 5)for each simple root �� of J1 the Algorithm returns the single solution of the�� -transformation of a curve; at Step 6), for a root �� of J with multiplicityh , the Algorithm is called recursively to the ideal (R1; : : : ; Rs) which hasexactly h solutions centered at the origin, and by an inductive argument,all such solutions are necessarily returned.As an immediate consequence of Theorem 1 and Proposition 10, we getthe following rigorous formulation of an argument by MacMillan [17] tocount the number of solutions centered at the origin with a given initialexponent � : 32



Theorem 2 Let (F1;: : :; Fs) locally de�ne an admissible curve � and more-over be a standard basis for the weights (a; b; : : : ; b) . Let � := b=a . LetGi(X2; : : : ;Xn) = in�(Fi)(1;X2; : : : ;Xn) . Then:1. the multiplicity of the ideal (G1; : : : ; Gs) is the number of solutionscentered at the origin with initial exponent � � � ;2. the multiplicity of the origin as a zero of (G1; : : : ; Gs) is the numberof solutions centered at the origin with initial exponent � > � ;3. if (�2; : : : ; �n) is a zero of (G1; : : : ; Gs) , di�erent from the origin, withmultiplicity h , then h is the number of solutions centered at the originwith initial approximation X2 = �2Xb=a1 ; : : : ;Xn = �nXb=a1 .Moreover, the multiplicity of the origin as a root of I + (X1) is thenumber of solutions of I centered at the origin.This allows, while performing the computation of branches with initialexponent � , to control the number of solutions with initial exponents equal,greeater then, lesser than � . As a consequence we are allowed greater exi-bility in looking for initial exponents than the one given by the algorithm inSection 2.3. Remark in fact that Lemma 4 allows to �nd critical tropismsas well from below, as in the algorithm, as from above. We made use of thisexibility in the examples reported in Section 86 Termination of the AlgorithmWe have yet to prove termination of the algorithm; the only possibilityfor the algorithm to continue forever is that the recursive call in Step 6.b)is performed in�nitely many times. We would have therefore an in�nitesequence of:� admissible curves �1; : : : ;�r; : : :� polynomial sets fFi1; : : : ; Fisig� exponents �i = bi=ai� points ��i = (�2i; : : : ; �ni) 2 Kn�1� integers hi 33



related as follows:fFi1; : : : ; Fisig is a standard basis of �i w.r.t. the weights (ai; bi; : : : ; bi).(1; �2i; : : : ; �ni) is a zero of in (Fi1) = : : : = in (Fisi) = 0 of multiplicityhi . �i+1 is generated by  ��i(Fij)=td(Fij) and has exactly hi solutions cen-tered at the origin.We can then make the following remarks:1. the sequence of the hi 's is non increasing, so it must stabilize to acommon minimal value h ;2. moreover h > 1 (otherwise termination is assured);3. if ai > 1 then (1; ��2i; : : : ; ��ni) is a zero of in (Fi1) = : : : = in (Fisi)for each � such that �ai = 1;4. therefore if ai > 1 then hi�1 � aihi > hi ;5. so there is N such that for i � N we have ai = 1, hi = h > 1.The admissible curves �i have therefore h distinct solutions centered atthe origin, (P2ij(X1); : : : ; Pnij(X1))j=1:::hwith Plij(X1) 2 K[[X1]] . MoreoverPlij(X1) = �liXbi1 +Xbi1 Pl(i+1)j(X1)for each l; i; j . Therefore if we set cN := bN , ci := ci�1 + bi for all i > None has that PMi=N �liXci1 is an approximation of PlNj of order cM for allj;M , against the assumption that the solutions of �N are distinct.7 A Complete ExampleWe apply now our algorithm to compute the analytic branches of the curve� de�ned by I = (F1; F2) 2 Q[x; y; z] with:F1 = (x4 � x2y + y4 � 2y3 + y2)(x4 + x2y � x2 + y4 � 2y3 + y2) == y8+2y4x4+x8�4y7�4y3x4+6y6�y4x2+y2x4�x6�4y5+2y3x2+yx4+y4�y2x2F2 = z2 + y2 + x2 � y � 3=4 = z2 + (y � 1=2)2 + x2 � 1where we look for Puiseux expansions in C[[z]]Puis .34



The suspicious reader will have already noticed that we are cheating butwe pray him to go on, waiting for our apologies at the end of the Section.The singular points of � are the 8 roots of the radical idealJ = (z2 � 3=4; x3 � 1=4x; y2 + x2 � y; yx� 1=2x):Let therefore K = Q[a; b; c] = Q[x; y; z]=J , � : K[x; y; z] 7! K[x; y; z] bede�ned by: �(x) = x+ a; �(y) = y + b; �(z) = z + cA standard basis computation of �(I) w.r.t. weights (0; 0; 1) gives thefollowing splitting of J :J1 = (z2 � 3=4; y � 1=2; x2 � 1=4)J2 = (z2 � 3=4; y2 � y; x)and, denoting Ki := Q[a; b; c] = Q[x; y; z]=Ji , the following sets of polyno-mials which are a standard basis of �(I) in K1[x; y; z] , K2[x; y; z] , resp.:(y8+2y4x4+x8+8by7�4y7+8ay4x3+8by3x4�4y3x4+8ax7�28a2y6+6y6+12a2y4x2 � y4x2� 12a2y2x4 + y2x4 +28a2x6� x6 +8by5� 4y5� 4by3x2 +2y3x2�8ay2x3�2byx4+yx4+8ax5�3a2y4+y4�6a2y2x2�y2x2+4a2x4�ay2x�1=4a2y2 ,2az2 + 2ay2 + 2ax2 + 4caz + x)(�z8�4z6y2�6z4y4�4z2y6+6z4x4+12z2y2x4+8y4x4+8z2x6+8y2x6+4x8�8cz7�8bz6y+4z6y�24cz5y2�24bz4y3+12z4y3�24cz3y4�24bz2y5+12z2y5�8czy6+24cz3x4 +24bz2yx4� 12z2yx4 +24czy2x4 +32by3x4� 16y3x4 +16czx6 +16byx6�8yx6�18z6�48cbz5y+24cz5y�42z4y2�96cbz3y3+48cz3y3�30z2y4�48cbzy5+24czy5+z4x2+2z2y2x2+19z2x4+48cbzyx4�24czyx4+8y2x4�x6�24cz5�72bz4y+36z4y�48cz3y2�80bz2y3+40z2y3�24czy4+4cz3x2+4bz2yx2�2z2yx2+4czy2x2+2czx4�9z4�48cbz3y+24cz3y�18z2y2�16cbzy3+8czy3+3z2x2+8cbzyx2�4czyx2 ,2bz2 � z2 + 2by2 � y2 + 2bx2 � x2 + 4cbz � 2cz + y )We discuss now separately the two cases.For the 4 singular points (a; b; c) which are roots of J1 , from the standardbasis we read the �rst critical tropism � = 1. Moreover evaluating thestandard basis at z = 0 we obtain that a basis of in (�(I); z) is (y2; x) sothat the origin has multiplicity 2 as a root of (�(I); z), i.e. there are twosolutions centered at each (a; b; c).We then compute a basis of in1(�(I)) and evaluate it at z = 1, obtaining(y2; 4ca + x) i.e. the double root y = 0,x = �4ac . We apply then thetransformation obtaining: 35



(�32caz6y4x3 � 32caz6x7 + z6y8 + 2z6y4x4 + z6x8 � 96caz6y4x+ 8az5y4x3 �672caz6x5 + 8az5x7 � 24cz5y4x2 + 36z6y4x2 � 56cz5x6 + 84z6x6 � 16caz4y4x +72az5y4x�2016caz6x3+32caz4y2x3�144caz4x5+504az5x5�24cz5y4+18z6y4�z4y6 +2z4y4x2� 840cz5x4 +630z6x4� 2z4y2x4 +6z4x6� 864caz6x+96caz4y2x�1440caz4x3 + 2520az5x3 � 8az3y2x3 + 8az3x5 + 6z4y4 � 1512cz5x2 + 756z6x2 +24cz3y2x2 � 36z4y2x2� 40cz3x4 +270z4x4� 1296caz4x+1512az5x+20caz2y2x�72az3y2x� 16caz2x3 + 240az3x3 � 216cz5 + 81z6 + 24cz3y2 � 18z4y2 + 1=4z2y4 �240cz3x2 + 810z4x2 � 5=2z2y2x2 + z2x4 � 48caz2x + 360az3x � azy2x � 72cz3 +162z4 + czy2 � 15=2z2y2 + 18z2x2 + 9z2 � 1=16y2 ,2=3czy2 + 2=3czx2 + 4=3cax� 4azx+ 8=3cz )which is is easily seen to be a standard basis for the weights (1; 1; 1)of the ideal I1 it generates. Evaluating in1(I1) at z = 1 we obtain theideal (9�1=16y2; 8a+x), which has two simple roots, corresponding to twodistinct solutions.Therefore at each of the 4 singular points (a; b; c) which are roots of J1we �nd two solutions with initial exponent 1,x = �4acz � 8az2 + : : : ; y = �12z2 + : : :corresponding to two distinct branches of order 1, which are tangent eachother. These branches can be expressed by formal power series over the �eldQ[a; b; c] ; since the four roots of J1 are easily seen to be all real, the eightbranches we have found are real.Let us now consider the behaviour of � at one of the 4 singular points(a; b; c) which are roots of J2 . In this case, from the standard basis, weobtain that the �rst critical tropism is � = 1=3. Moreover evaluating thestandard basis at z = 0 we obtain that a basis of in (�(I); z) is is (8y2x4 �x6; y) so that the origin has multiplicity 6 as a root of (�(I); z), i.e. thereare six solutions centered at each (a; b; c).Computing in1=3(�(I)) and evaluating at z = 1 we obtain the ideal(y; x6), whose only root is the origin with multiplicity 6; so the criticaltropism 1=3 doesn't correspond to an inital exponent.This computation gives us also the next critical tropism � = 1=2. Wecompute then in1=2(�(I)) and evaluate it at z = 1, obtaining (�x6�2cx4�3x2; y), which has the origin as a double root; removing the origin we obtain(x4 + 2cx2 + 3; y), which has four simple roots (all of them complex), eachof them giving a solution with initial exponent 1=2 and so in total two(complex) branches of order 2.The next critical tropism is � = 1; The evaluation of in1=2(�(I)) atz = 1 is (4cb� 2c+ y; x2 � 3) giving two non-zero simple roots ans so two36



solutions with initial exponent 1 corresponding to two branches of order 1,both of them real.As we hinted above, we have been cheating; what we did was to takethe tachnode in the (x; y)-plane with equation x4�x2y+ y4� 2y3+ y2 = 0which has singular points at the origin, with two (complex) branches oforder 2, and at (0; 1) with two real branches of order 1, crossing each othertransversally. We then rotated it of � around (0; 1=2) so that the singularpoints were mapped one into the other. The union of the two curves has nowtwo singular points, each of them being the center of two complex branchesof order 2 and two real branches of order 1; the branches centered at onepoint are mapped in those centered at the other point by the rotation. Twomore singular points appear in the other two intersection points of the twotachnodes, which are (�1=2; 1=2); in these two points the two tachnodes arecotangent.We then took the intersection of the cylinder in the direction of the z -axis generated by the union of the two tachnodes, with the sphere of center(0; 1=2; 0) and radius 1. Each of the four singular points gives rise to twosingular points on on each emisphere; the eight singular points are:(0; 0;p3=2) (0; 0;�p3=2) (0; 1;p3=2) (0; 1;�p3=2)(1=2; 1=2;p3=2) (1=2; 1=2;�p3=2) (�1=2; 1=2;p3=2) (�1=2; 1=2;�p3=2)They are conjugate in pairs, but it is obvious that the group of the fourrotations of the space around the center of the sphere which map the curvein itself has two orbits on the set of singular points. Therefore for any twopoints in the same orbit, there is a rotation in the group which maps thebranches centered at one point in those centered at the other point.This explains our choice of the example:� while our algorithm is completely unaware of all of this, the humanreader can easily verify the correctness of the computation, , with thissimple theoretical argument;� moreover we have supported the claim of the superiority of a \weak"model for algebraic number arithmetics over the \classical" one; weneeded to perform only a single computation for each set of points inthe same orbit, while in the classical model a computation for eachclass of conjugate points would be needed (and it could have beeneasy to modify the example, just by suitably choosing the radius ofthe sphere, so that all eight singular points would be rational, andeight distinct computations would be required)37



8 Some Experimentations in CoCoAWhile the algorithm outlined here is not implemented, we have performedsome experimentation in CoCoA (version 1.5.3), a system for symbolic com-putations in Commutative Algebra and Algebraic Geometry developed atthe Mathematics Department of the University of Genoa by A. Giovini andG. Niesi [2, 10]. This system, written partly in Pascal and partly in C,runs on any computer of the Macintosh or MS-DOS family. It allows tocompute Gr�obner bases and standard bases of polynomial ideals over Q orZp , to perform ideal operations and to compute invariants of ideals. In par-ticular it computes multiplicities of ideals. It must be remarked that thealgorithms to perform these operations are not (in the 0-dimensional case)the e�cient linear algebra ones, but are founded on Gr�obner basis compu-tations; in particular the division J0 : m� requires n Gr�obner basis com-putations and can be quite costly. CoCoA allows also to compute Gr�obnerbases for polynomial ideals over a �eld Q(�2; : : : ; �n) where (�2; : : : ; �n) isa root of a zero-dimensional ideal I , at least in the case in which the sur-jection Q[X2; : : : ;Xn]=I ! Q(�2; : : : ; �n) is actually a bijection. Standardbasis computations in this setting are not available in CoCoA 1.5.3, but arepresent in an experimental version. In both cases, the algorithms can beapplied also in case the surjection is not a bijection, but then a careful inter-pretation of the output is needed. CoCoA has no facility to recognize realroots of systems not for multiplicity handling. Therefore it can be used forall steps of the algorithm outlined in section 7 except Step (4) and real-rootrecognition where ad hoc hand-driven computations are required.Here we focus on Steps (1) to (3) which can be performed by the followinginstructions in CoCoA.h = TangentCone(i); h = h[z = 1] ; Mult(R=h)computes the standard basis (H1; : : : ;Ht) of (F1; : : : ; Fs), returns J0 andcomputes its multiplicity.j = h : ideal(xm , ym ); k = gbasis(j ); Mult(R=j )removes the null root, counts the number of non zero roots, with multiplicity,and gives the ideal J ; m is the multiplicity of J0 .The tables below report an outline of the computation (with timingsin secs.) for two examples discussed in MacMillan [17], i.e. the curves inQ[Z;X; Y ] with equations, respectively:X9 + Y 9 + (X6 + Y 6)Z +XY Z2 + Z5; Y 10 +X4Z + Y 2(X � Y )Z + Z338



and X3 + (X2 � Y 2)Z + Z4; Y 3 + (X2 � Y 2)Z � Z4where we looked for Puiseux expansions in R[[Z]]Puis . The subset of initialexponents which have been tested (in the order in which they have beenreported) has been chosen using the exibility allowed us by Theorem 2.Both examples have been computed on a Macintosh SE, with 2MB RAM,which is among the slowest computers in the Macintosh family.Invariants & TimingsInitial exp. � 1/7 2/7 2/3 1/2 1/3 4/13# roots, � 90 27 3 7 7 20# non-zero roots,�1 63 7 3 4 0 13mult(0), �0 27 20 0 3 7 7h=TangentCone(i) 0.86 2.59 2.15 1.98 5.50+ 5.50+h = h[z = 1] 0.16 0.20 0.25 0.13 0.21 0.20Mult(R=h) 0.96 1.14 0.94 1.01 1.04 0.98j = h : ideal(xm; ym) 5.91 4.38 2.36 2.95 2.56k = gbasis(j) 1.79 0.73 0.75 0.66 0.56Mult(S=j) 0.50 0.21 0.18 0.20 0.23Initial exp. � 1 3/2 4/3 9/7 5/4# roots, � 9 0 3 3 7# non-zero roots,�1 2 3 0 4mult(0), �0 7 0 3 3h=TangentCone(i) 0.26 0.41 0.78 0.71 0.75h = h[z = 1] 0.20 0.18 0.25 0.20 0.23Mult(R=h) 0.30 0.26 0.31 0.36 0.43j = h : ideal(xm; ym) 1.79 0.51 0.83k = gbasis(j) 0.31 0.15 0.15Mult(S=j) 0.18 0.20 0.18+ the standard basis computation has been truncated.References[1] M.E. Alonso, T. Mora, G. Niesi and M. Raimondo Local Parametriza-tion of Space Curves at Singular Points In Computer Graphics andMathematics, eds.B. Falcidieno, I. Herman and C. Pienovi, Eurograph-icSeminar Series, Springer Verlag ,1992 to appear39
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