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THE IMPACT OF THE LAMBDA CALCULUS

IN LOGIC AND COMPUTER SCIENCE

HENK BARENDREGT

Abstract. One of the most important contributions of A. Church to logic is his invention
of the lambda calculus. We present the genesis of this theory and its two major areas of
application: the representation of computations and the resulting functional programming
languages on the one hand and the representation of reasoning and the resulting systems of
computer mathematics on the other hand.
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§1. Introduction. This paper is written to honor Church’s great invention:
the lambda calculus. The best way to do this—I think—is to give a descrip-
tion of its genesis (§2) and its impact on two areas of mathematical logic:
the representation of computations (§3) and of reasoning (§4). In both cases
technological applications have emerged.
The very notion of computability was first formalized in terms of defin-
ability on numerals represented in the lambda calculus. Church’s Thesis,
stating that this is the correct formalization of the notion of computability,
has formore than 60 years never seriously been challenged. One of the recent
advances in lambda calculus is that computations on other data types, like
trees and syntactic structures (e.g., for parsing), can be done by representing
these data types directly as lambda terms and not via a coding as Gödel
numbers that are then represented as numerals. This resulted in a much
more efficient representation of functions defined on these data types.
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The notion of lambda definability is conceptually the basis for the disci-
pline of functional programming. Recent progress in this area has been the
construction of very efficient compilers for functional languages and the cap-
turing of interactive programs (like e.g., text editors) within the functional
programming paradigm.
As to the representation of proofs, one of Church’s original goals had been
to construct a formal system for the foundations of mathematics by having a
system of functions together with a set of logical notions. When the resulting
system turned out to be inconsistent, this program was abandoned by him.
Church then separated out the consistent subsystem that is now called the
lambda calculus and concentrated on computability1. It turned out later that
there are nevertheless consistent ways to represent logical notions in (typed
and untyped) lambda calculus so that a foundation for mathematics is ob-
tained. Some of the resulting systems are used in recently developed systems
for computer mathematics, i.e., programs for the interactive development
and automated verification of mathematical proofs.

We restrict attention to applications of the lambda calculus to the fields
of mathematical logic and computer science. Other applications like several
forms of grammars studied in linguistics (e.g., Montague (see [45]) and
categorial grammars (see [17])) are not treated in this paper.

We end this introduction by telling what seems to be the story how the
letter ‘ë’ was chosen to denote function abstraction. In [100] Principia
Mathematica the notation for the function f with f(x) = 2x + 1 is 2x̂ +1.
Church originally intended to use the notation x̂ .2x+1. The typesetter could
not position the hat on top of the x and placed it in front of it, resulting in

ˆ
x.2x + 1.

Then another typesetter changed it into ëx.2x + 1.

Preliminaries. This short subsectionwith preliminaries is given for readers
not familiar with the lambda calculus. For more information see e.g., [6,
Chapters 2, 3 and 6], or [8, Sections 2 (untyped lambda calculus) and 3
(simply typed lambda calculus)]. Topics outside these chapters or sections
needed in this paper will be explicitly mentioned.
Untyped lambda calculus.

Definition 1.1. The sets of variables and terms of the lambda calculus
are defined by the following abstract syntax. (This means that no mention is
made of necessary partentheses in order to warrant unique readability; one

1Church had been considerably helped by his students in the early development of the
lambda calculus, notably byKleene, see [70] and [99]. Other important influences came from
[36] and [37].
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thinks about trees instead of strings being generated.)

var = a | var′
term = var | term term | ë var term.

The syntactic category var is for the collection of variables. Examples of
variables are a, a ′, a ′′. The letters x, y, z, . . . range over arbitrary variables.
The syntactic category term is for the collection of lambda terms, notation
Λ.

Notation. (i)MN1 . . . Nk stands for (..((MN1)N2) . . . Nk).
(ii) Dually, ëx1 . . . xk .M stands for (ëx1(ëx2(. . . (ëxk(M ))..))).

Examples of lambda terms are x, xy, ëx.xy, z(ëx.xy), ëzy.z(ëx.xy) and
(ëzy.z(ëx.xy))(ww)yx.
A term of the formMN is called an application, with the intended inter-
pretation ‘the function M applied to the argument N ’; a term of the form
ëx.M is called an abstraction, with the intended interpretation ‘the function
that assigns to x the valueM ’. In this interpretation the notion of function is
to be taken intensional, i.e., as an algorithm. [103] succeeded to give lambda
calculus also an extensional interpretation by interpreting lambda terms as
(continuous) functions on some topological space D having its space of
continuous functions [D → D] as a retract.
In a lambda term like ëxy.xz the variable x is said to occur as a bound
variable and z occurs as a free variable. In z(ëz.z) the variable occurs both
as free (the first occurrence) and as bound (the second occurrence) variable.
The statement M ≡ N stands for syntactic equality modulo a renaming
of the bound variables. E.g., ëx.x ≡ ëy.y or x(ëx.x) ≡ x(ëy.y), but
ëx.xy 6≡ ëy.yy because the free occurrence of y in the LHS becomes bound
in the RHS.
The lambda calculus is the study of the set Λ modulo so called â-
convertibility which is the least congruence relation =â axiomatized by

(ëx.M )N =â M [x:=N ].

HereM [x:=N ] stands for the result of substitutingN for the free variables of
M . In this notation the free variables ofN are not allowed to become bound
after substitution; for example (ëy.x)[x:=yy] 6≡ (ëy.yy). By changing the
names of bound variables one may obtain

(ëy.x)[x:=yy] ≡ (ëz.x)[x:=yy] ≡ ëz.yy.

The notion of â-convertibility is an equivalence relation compatible with
the syntactic operations of application and abstraction. That is,

C [(ëx.M )N ] =â C [M [x:=N ]]
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holds for arbitrary contexts C [ ].
The notion of â-reduction is the least compatible reflexive and transitive
relation։â axiomatized by

(ëx.M )N ։â M [x:=N ].

The difference with â-conversion is that one has e.g., a =â (ëx.x)a, but
a 6։â (ëx.x)a: there is a direction involved in reduction, while conversion
is bidirectional.
The reason for the notational convention introduced above can be under-
stood by realizing that e.g.,

(ëxyz.x(yz)y)XYZ ։â X (YZ)Y.

A termM ∈ Λ is called in â-normal form (â-nf ) ifM has no part of the
form (ëx.M )N . Such part is called a â-redex. A termM is said to have a
â-normal form N if N is in â-normal form andM =â N .

Theorem 1.2 (Church-Rosser theorem). LetM,N ∈ Λ. Then
M =â N ⇐⇒ ∃Z [M ։â Z &N ։â Z].

It follows from the Church-Rosser theorem that a term can have at most
one â-normal form. Indeed, ifM hasM ′ andM ′′ as â-nf’s, thenM ′ =â M

′′

and soM ′
։â Z âև M

′′. But sinceM ′ andM ′′ are in â-nf, there are no
redexes to contract. ThereforeM ′ ≡ Z ≡M ′′.
Simply typed lambda calculus. Simple types are defined by the abstract
syntax

tvar = α | tvar′
type = tvar | type → type.

We use α, â, ã, . . . for type variables and A,B,C, . . . for types. The set of
types is denoted by T. A statement is of the form M : A with M ∈ Λ
and A ∈ T; M is called the subject of the statement. A basis is a set of
statements with only variables as subjects. Γ,∆, . . . range over bases. (For
more complicated versions of typed lambda calculus, a basis needs to be
ordered and then is called a context. This is unfortunately a different notion
with the same name as the notion ‘context’ defined earlier, but that is how it
is.)

Definition 1.3. We say that from basis Γ we can prove M : A, notation
Γ ⊢M : A, if it can be derived from the following production system.

(x : A) ∈ Γ ⇒ Γ ⊢ x : A;
Γ ⊢M : (A→ B), Γ ⊢ N : A ⇒ Γ ⊢ (MN ) : B ;

Γ, x : A ⊢M : B ⇒ Γ ⊢ (ëx.M ) : (A→ B).
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Example 1.4. (i) x : (A→ A→ B), y : A ⊢ xyy : B.
(ii) ⊢ ëxy.xyy : (A→ A→ B)→ (A→ B).

This version of the simply typed lambda calculus has implicit types at
each abstraction ëx and is studied by [37]. In [29] a variant with explicit
types at abstractions is introduced. In this theory the rule for introducing
abstractions is

Γ, x : A ⊢M : B ⇒ Γ ⊢ (ëx :A.M ) : (A→ B).

An essential difference between the two approaches is that in the explicit case
the unique type of a term always can be found easily. In the implicit case
types are not unique. For the simply typed lambda calculus the types can
be reconstructed even in the implicit case, but for more complicated systems
this is not the case.

Inductive types and recursion. Because inductive types are convenient to
represent data, both in theories and in programs, some type systems allow
the axiomatic introduction of so-called inductive types. The following is a
simple example.

nat ::= zero | succ nat.

Given this definition one has (axiomatically) ⊢ zero : nat, ⊢ succ : nat →
nat and ⊢ succ(succ zero) : nat. Inductive types come with natural
primitive recursive operators. For example, given a type A and assuming
a : A, b : nat → A→ A, we may define F : nat → A as follows.

F zero →é a;

F (succ x) →é b x (F x).

This F depends uniformly on a, b. To make this dependence explicit, we
write F ≡ R a b and postulate the following.

R a b zero →é a;

R a b (succ x) →é b x (R a b x).

With this operator one can represent primitive recursive functions. Because
of the presence of higher types one can even represent the Ackermann func-
tion using R.

§2. Formalizing the notion ‘computable’. Church introduced a formal the-
ory, let us call itT , based on the notion of function. This systemwas intended
to be a foundation of mathematics. Predicates were represented as charac-
teristic functions. There were many axioms to deal with logical notions. The
system T turned out to be inconsistent, as was shown by Church’s students
[71] using a tour de force argument involving all the techniques needed to
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prove Gödel’s incompleteness theorem2. Then [28] isolated the (untyped)
lambda calculus from the system T by deleting the part dealing with logic
and keeping the essence of the part dealing with functions. This system was
proved consistent by [31], who showed the confluence of â-reduction. Curry,
who also wanted to build a foundation for mathematics based on functions
(in his case in the form of combinators that do not mention free or bound
variables), found a paradox for a system with a similar aim as T , that is very
easy to derive, see e.g., [6, Appendix B3].
Church introduced the notion of lambda definability for functions f :

N
k → N in order to capture the notion of computability4. At first only
very elementary functions like addition and multiplication were proved to
be lambda definable. Even for a function as simple as the predecessor
(pred(0) = 0, pred(n + 1) = n) lambda definability remained an open
problem for a while. From our present knowledge it is tempting to explain
this as follows. Although the lambda calculus was conceived as an untyped
theory, typeable terms are more intuitive. Now the functions addition and
multiplication are definable by typeable terms, while [101] and [108] have
characterized the lambda definable functions in the (simply) typed lambda
calculus and the predecessor is not among them. Be this as itmay, Kleene did
find a way to lambda define the predecessor function in the untyped lambda
calculus, by using an appropriate data type (pairs of integers) as auxiliary de-
vice. In [69], he described howhe found the solutionwhile being anesthetized
by laughing gas (N2O) for the removal of four wisdom teeth. After Kleene
showed the solution to his teacher, Church remarked something like: “But
then all intuitively computable functions must be lambda definable. In fact,
lambda definability must coincide with intuitive computability.” Many years
later—it was at the occasion of Robin Gandy’s 70-th birthday, I believe—I
heard Kleene say: “I would like to be able to say that, at the moment of
discovering how to lambda define the predecessor function, I got the idea
of Church’s Thesis. But I did not, Church did.” Later, in [67], he gave
some important evidence for Church’s Thesis by showing that the lambda
definable functions coincide with the ì-recursive ones.

2Gödel just had given a series of lectures in Princeton at which Kleene and Rosser were
present.
3Consistent theories based on functions for the foundations of mathematics have been

described by [89] (simplified by [98]). With a similar aim are the theories in [53] and [75].
In all these theories the paradoxes have been avoided by having a partial application. [43],
[44] and [16] also discuss formal theories with partial application; they aim at constructive
foundations and come close to lambda calculus (partial combinatory algebras).
4I remember a story stating that Church started to work on the problem of trying to show

that the sequence of Betti numbers for a given algebraic variety is computable. He did not
succeed in this enterprise, but came up with the proposal to capture the notion of intuitive
computability. I have not been able to verify this story. Readers who can confirm or refute it
are kindly requested to inform the author.
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Independently of Church, an alternative formalization (in terms of (Tur-
ing) machines) of the notion ‘computable’ was given in [113]. In [114] it was
proved that the notions of lambda definability and Turing computability are
equivalent, thereby enlarging the credibility of Church’s Thesis.
Church’s Thesis is plausible but cannot be proved, nor even stated in (clas-
sical) mathematical terms, since it refers to the undefined notion of intuitive
computability. On the other hand, Church’s Thesis can be refuted. If ever
a function will be found that is intuitively computable but (demonstrably)
not lambda definable, then Church’s Thesis is false. For more than 60 years
this has not happened. This failure to find a counterexample is given as
an argument in favor of Church’s Thesis. I think that it is fair to say that
most logicians do believe Church’s Thesis. One may wonder why doubting
Church’s Thesis is not a completely academic question. This becomes clear
by realizing that [106] had introduced the class of primitive recursive func-
tions that for some time was thought to coincide with that of the intuitively
computable ones. But then [2] showed that there is a function that is intu-
itively computable but not primitive recursive. See also the paper of [46] for
arguments in favor of Church’s Thesis and [73, 74] for ones casting some
doubts.
Church’s Thesis is actually used for negative computability results: if a
function is shown to be not lambda definable (or Turing computable) then,
byChurch’sThesis, one can state that it is not intuitively computable. Church
and Turing gave examples of undecidable predicates, i.e., ones with non-
computable characteristic functions: the questions whether a lambda term
has a normal form (the normalization problem) and whether a machine with
program p and input x terminates (the halting problem), respectively. Both
concluded that provability in arithmetic is undecidable. In fact, the undecid-
ability of many mathematical problems has been established by translating
the halting problem into a given problem. A famous example is [82] result
that Hilbert’s tenth problem5 is unsolvable.
Finally it is worth mentioning that in intuitionistic mathematics, say in
Heyting’s arithmetic HA, one can precisely formulate Church’s Thesis as a
formal statement; this in contrast to the situation in the classical theory. This
statement is called CT and is

∀x[P(x) ∨ ¬P(x)] ⇒ ∃e∀x[[P(x)↔ φe(x) = 1]
& [φe(x) = 0 ∨ φe(x) = 1]],

where φe(x) = y ⇐⇒ ∃z[T (e, x, z)&U (z) = y] states that the e-th partial
recursive function with input x terminates with y as value (T is Kleene’s
computation predicate and U is the value extracting function, see [68]). In
this formCT states that ifP is a decidable predicate (i.e., the excludedmiddle

5“Is it decidable whether a given Diophantine equation has a solution in the integers?”
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holds for P), then P has a recursive characteristic function. See [112] for
formal consequences, models, counter-models and an extension of CT.

§3. Computing. Lambda calculi are prototype programming languages.
As is the case with imperative programming languages, where several ex-
amples are untyped (machine code, assembler, Basic) and several are typed
(Algol-68, Pascal), systems of lambda calculi exist in untyped and typed
versions. There are also other differences in the various lambda calculi.
The lambda calculus introduced in [28] is the untyped ëI-calculus in which
an abstraction ëx.M is only allowed if x occurs among the free variables
of M . Nowadays, “lambda calculus” refers to the ëK-calculus developed
under the influence of Curry, in which ëx.M is allowed even if x does not
occur in M . There are also typed versions of the lambda calculus. Of
these, the most elementary are two versions of the simply typed lambda
calculus ë→. One version is due to [37] and has implicit types. Sim-
ply typed lambda calculus with explicit types is introduced in [29] (this
system is inspired by the theory of types of [100] as simplified by [95]).
In order to make a distinction between the two versions of simply typed
lambda calculus, the version with explicit types is sometimes called the
Church version and the one with implicit types the Curry version. The dif-
ference is that in the Church version one explicitly types a variable when it
is bound after a lambda, whereas in the Curry version one does not. So
for example in Church’s version one has IA = (ëx : A.x) : A → A and
similarly IA→B : (A → B) → (A → B), while in Curry’s system one has
I = (ëx.x) : A → A but also I : (A → B) → (A → B) for the same term
I. See [8] for more information about these and other typed lambda calculi.
Particularly interesting are the second and higher order calculi ë2 and ëù
introduced by [49] (under the names ‘system F ’ and ‘system Fù’) for appli-
cations to proof theory and the calculi with dependent types introduced by
[26] for proof verification.

3.1. Computing on data types. In this subsection we explain how it is
possible to represent data types in a very directmanner in the various lambda
calculi.
Lambda definability was introduced for functions on the set of natural
numbers N. In the resulting mathematical theory of computation (recursion
theory) other domains of input or output have been treated as second class
citizens by coding them as natural numbers. In more practical computer
science, algorithms are also directly defined on other data types like trees or
lists.
Instead of coding such data types as numbers one can treat them as first
class citizens by coding them directly as lambda terms while preserving their
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structure. Indeed, lambda calculus is jstrong enough to do this, as was em-
phasized in [21] and [23]. As a result, a much more efficient representation
of algorithms on these data types can be given, than when these types were
represented via numbers. This methodology was perfected in two different
ways in [22] and [24] or [19]. The first paper does the representation in a way
that can be typed; the other papers in an essentially stronger way, but one
that cannot be typed. We present the methods of these papers by treating
labeled trees as an example.
Let the (inductive) data-type of labeled trees be defined by the following
abstract syntax.

tree = • | leaf nat | tree+ tree

nat = 0 | succ nat.

We see that a label can be either a bud (•) or a leaf with a number written
on it. A typical such tree is (leaf 3) + ((leaf 5) + •). This tree together
with its mirror image look as follows.
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+ +
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�
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�
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@
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@

Operation on such trees can be defined by recursion. For example the action
of mirroring can be defined by

fmir(•) = •;
fmir(leaf n) = leaf n;

fmir(t1 + t2) = fmir(t2) + fmir(t1).

Then one has for example that

fmir((leaf 3) + ((leaf 5) + •)) = ((•+ leaf 5) + leaf 3).

We will now show in two different ways how trees can be represented as
lambda terms and how operations likefmir on these objects become lambda
definable. The first method is from [22]. The resulting data objects and
functions can be represented by lambda terms typeable in the second order
lambda calculus ë2, see [51] or [8].
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Definition 3.1. (i) Let b, l, p be variables (used as mnemonics for bud,
leaf and plus). Define φ = φb,l,p : tree → term, where term is the
collection of untyped lambda terms, as follows.

φ(•) = b;
φ(leaf n) = lpnq;

φ(t1 + t2) = p φ(t1)φ(t2).

Here pnq ≡ ëfx.fnx is Church’s numeral representing n as lambda term.
(ii) Define ø1 : tree → term as follows.

ø1(t) = ëblp.φ(t).

Proposition 3.2. Define

B1 ≡ ëblp.b;

L1 ≡ ënblp.ln;

P1 ≡ ët1t2blp.p (t1blp)(t2blp).

Then one has

(i) ø1(•) = B1.
(ii) ø1(leaf n) = L1pnq.
(iii) ø1(t1 + t2) = P1ø1(t1)ø1(t2).

Proof.

(i) Trivial.
(ii) We have

ø1(leaf n) = ëblp.φ(leaf n)

= ëblp.lpnq

= (ënblp.ln)pnq

= L1pnq.

(iii) Similarly, using that ø1(t)blp = φ(t). ⊣

This proposition states that the trees we considered are representable as
lambda terms in such away that the constructors (•, leaf and+) are lambda
definable. In fact, the lambda terms involved can be typed in ë2. A nice
connection between these terms and proofs in second order logic is given in
[79].
Now we will show that iterative functions over these trees, like fmir, are
lambda definable.
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Proposition 3.3 (Iteration). Given lambda terms A0, A1, A2 there exists a
lambda term F such that (for variables n, t1, t2)

FB1 = A0;

F (L1 n) = A1 n;

F (P1t1t2) = A2(Ft1)(Ft2).

Proof. Take F ≡ ëw.wA0A1A2. ⊣
As is well known, primitive recursive functions can be obtained from
iterative functions.
There is a way of coding a finite sequence of lambda termsM1, . . . ,Mk as
one lambda term

〈M1, . . . ,Mk〉 ≡ ëz.zM1 . . .Mk
such that the components can be recovered. Indeed, take

U ik ≡ ëx1 . . . xk.xi ,

then

〈M1, . . . ,Mk〉U ik =Mi .
Corollary 3.4 (Primitive recursion). Given lambda termsC0, C1, C2 there
exists a lambda term H such that

HB1 = C0;

H (L1 n) = C1 n;

H (P1t1t2) = C2t1t2(Ht1)(Ht2).

Proof. Define the auxiliary function F ≡ ët.〈t,Ht〉. Then by the propo-
sition F can be defined using iteration. Indeed,

F (P1t1t2) = 〈Pt1t2, H (Pt1t2)〉 = A2(Ft1)(Ft2),

with

A2 ≡ ët1t2.〈P(t1U 12 )(t2U 12 ), C2(t1U 12 )(t2U 12 )(t1U 22 )(t2U 22 )〉.

Now take H = ët.FtU 22 . [This was the trick Kleene found at the dentist.] ⊣
Now we will present the method of [24] and [19] to represent data types.
Again we consider the example of labeled trees.

Definition 3.5. Define ø2 : tree → term as follows.

ø2(•) = ëe.eU 13 e;
ø2(leaf n) = ëe.eU

2
3 ne;

ø2(t1 + t2) = ëe.eU
3
3ø2(t1)ø2(t2)e.
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Then the basic constructors for labeled trees are definable by

B2 ≡ ëe.eU 13 e;

L2 ≡ ënëe.eU 23 ne;

P2 ≡ ët1t2ëe.eU
3
3 t1t2e.

Proposition 3.6. Given lambda termsA0, A1, A2 there exists a term F such
that

FB2 = A0F ;

F (L2n) = A1nF ;

F (P2xy) = A2xyF.

Proof. Try F ≡ 〈〈X0, X1, X2〉〉, the 1-tuple of a triple. Then we must have
FB2 = B2〈X0, X1, X2〉

= U 13X0X1X2〈X0, X1, X2〉
= X0〈X0, X1, X2〉
= A0〈〈X0, X1, X2〉〉
= A0F,

provided X0 = ëx.A0〈x〉. Similarly one can find X1, X2. ⊣
This second representation is essentially untypeable, at least in typed
lambda calculi in which all typeable terms are normalizing. This follows
from the following consequence of a result similar to Proposition 3.6. Let
K = ëxy.x,K∗ = ëxy.y represent true and false respectively. Then writing

if bool then X else Y fi

for
bool X Y,

the usual behavior of the conditional is obtained. Now if we represent the
natural numbers as a data type in the style of the second representation,
we immediately get that the lambda definable functions are closed under
minimalization. Indeed, let

÷(x) = ìy[g(x, y) = 0],

and suppose that g is lambda defined byG . Then there exists a lambda term
H such that

Hxy = if zero? (Gxy) then y else (Hx(succ y)) fi.

Indeed, we can write this asHx = AxH and apply Proposition 3.6, but now
formulated for the inductively defined type num. Then F ≡ ëx.Hxp0q does
represent ÷. Here succ represents the successor function and zero? a test
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for zero; both are lambda definable, again by the analogon to Proposition
3.6. Since minimalization anables us to define all partial recursive functions,
the terms involved cannot be typed in a normalizing system.
Self-interpretation. A lambda termM can be represented internally as a
lambda term pMq. This representation should be such that, for example,
one has lambda terms P1, P2 satisfying PipX1X2q = Xi . [67] already showed
that there is a (‘meta-circular’) self-interpreter E such that, for closed terms
M one has EpMq =M . The fact that data types can be represented directly
in the lambda calculus was exploited by [85] to find a simpler representation
for pMq and E.
The difficulty of representing lambda terms internally is that they do not
form a first order algebraic data type due to the binding effect of the lambda.
[85] solved this problem as follows. Consider the data type with signature

const, app, abs

where const and abs are unary constructors and app a binary constructor.
Let const, app and abs be a representation of these in lambda calculus

(according to Definition 3.5).

Proposition 3.7 ([85]). Define

pxq ≡ const x;

pPQq ≡ app pPqpQq;

pëx.Pq ≡ abs(ëx.pPq).

Then there exists a self-interpreter E such that for all lambda termsM (possibly
containing variables) one has

EpMq =M.

Proof. By an analogon to Proposition 3.6 there exists a lambda term E

such that

E(const x) = x;

E(app p q) = (Ep)(Eq);

E(abs z) = ëx.E(zx).

Then by an easy induction one can show that EpMq =M for all termsM .⊣
Following the construction of Proposition 3.6 in [24], this term E is given
the following very simple form:

E ≡ 〈〈K, S,C〉〉,
where S ≡ ëxyz.xz(yz) and C ≡ ëxyz.x(zy). This is a good improvement
over [67] or [6]. See also [7], [9] and [10] for more about self-interpreters.
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3.2. Functional programming. In this subsection a short history is pre-
sented of how lambda calculi (untyped and typed) inspired (either con-
sciously or unconsciously) the creation of functional programming.
Imperative versus functional programming. While Church had captured the
notion of computability via the lambda calculus, Turing had done the same
via hismodel of computation based onTuringmachines. When in the second
world war computational power was needed for military purposes, the first
electronic deviceswere built basically as Turingmachineswith randomaccess
memory. Statements in the instruction set for thesemachines, likex := x+1,
are directly related to the instructions of a Turing machine. Such statements
are much more easily interpreted by hardware than the act of substitution
fundamental to the lambda calculus. In the beginning, the hardware of the
early computers was modified each time a different computational job had
to be done. Then von Neumann, who must have known6 Turing’s concept
of a universal Turing machine, suggested building one machine that could
be programmed to do all possible computational jobs using software. In
the resulting computer revolution, almost all machines are based on this
so called von Neumann computer, consisting of a programmable universal
machine. It would have beenmore appropriate to call it the Turing computer.
Themodel of computability introducedbyChurch (lambdadefinability)—
although equivalent to that of Turing—was harder to interpret in hardware.
Therefore the emergence of the paradigm of functional programming, that
is based essentially on lambda definability, took much more time. Because
functional programs are closer to the specification of computational prob-
lems than imperative ones, this paradigm is more convenient than the tra-
ditional imperative one. Another important feature of functional programs
is that parallelism is much more naturally expressed in them, than in im-
perative programs. See [117] and [64] for some evidence for the elegance
of the functional paradigm. The implementation difficulties for functional
programming have to do with memory usage, compilation time and ac-
tual run time of functional programs. In the contemporary state of the
art of implementing functional languages, these problems have been solved
satisfactorily.7

Classes of functional languages. Let us describe some languages that have
been—and in some cases still are—influential in the expansion of functional
programming. These languages come in several classes.

6Church had invited Turing to the United States in the mid 1930’s. After his first year it
was von Neumann who invited Turing to stay for a second year. See [60].
7Logical programming languages also have the mentioned advantages. But so far pure

logical languages of industrial quality have not been developed. (Prolog is not pure and
ë-Prolog, see [87], although pure, is presently a prototype.)
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Lambda calculus by itself is not yet a complete model of computation,
since an expression M may be evaluated by different so-called reduction
strategies that indicatewhich sub-termofM is evaluated first (see [6, Chapter
12]). By theChurch-Rosser theorem this order of evaluation is not important
for the final result: the normal form of a lambda term is unique if it exists.
But the order of evaluation makes a difference for efficiency (both time and
space) and also for the question whether or not a normal form is obtained
at all.
So called ‘eager’ functional languages have a reduction strategy that eval-
uates an expression like FA by first evaluating F and A (in no particular
order) to, say, F ′ ≡ ëa. · · · a · · · a · · · and A′ and then contracting F ′A′

to . . . A′ . . . A′ . . . . This evaluation strategy has definite advantages for the
efficiency of the implementation. Themain reason for this is that ifA is large,
but its normal form A′ is small, then it is advantageous both for time and
space efficiency to perform the reduction in this order. Indeed, evaluating
FA directly to

· · ·A · · ·A · · ·

takes more space and if A is now evaluated twice, it also takes more time.
Eager evaluation, however, is not a normalizing reduction strategy in the
sense of [6, Chapter 12]. For example, if F ≡ ëx.I and A does not have a
normal form, then evaluating FA eagerly diverges, while

FA ≡ (ëx.I)A = I,

if it is evaluated leftmost outermost (roughly ‘from left to right’). This kind
of reduction is called ‘lazy evaluation’.
It turns out that eager languages are, nevertheless, computationally com-
plete, as we will soon see. The implementation of these languages was the
first milestone in the development of functional programming. The second
milestone consisted of the efficient implementation of lazy languages.
In addition to the distinction between eager and lazy functional languages
there is another one of equal importance. This is the difference between un-
typed and typed languages. The difference comes directly from the difference
between the untyped lambda calculus and the various typed lambda calculi,
see [8]. Typing is useful, because many programming bugs (errors) result
in a typing error that can be detected automatically prior to running one’s
program. On the other hand, typing is not too cumbersome, since in many
cases the types need not be given explicitly. The reason for this is that, by the
type reconstruction algorithm of [38] and [59] (later rediscovered by [84]),
one can automatically find the type (in a certain context) of an untyped but
typeable expression. Therefore, the typed versions of functional program-
ming languages are often based on the implicitly typed lambda calculi à la
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Curry. Types also play an important role in making implementations of lazy
languages more efficient, see below.
Besides the functional languages that will be treated below, the languages
APL and FP have been important historically. The language APL, intro-
duced in [65], has been, and still is, relatively widespread. The language FP
was designed by Backus, who gave, in his lecture ([5]) at the occasion of
receiving his Turing award (for his work on imperative languages) a strong
and influential plea for the use of functional languages. Both APL and FP
programs consist of a set of basic functions that can be combined to define
operations on data structures. The language APL has, for example, many
functions for matrix operations. In both languages composition is the only
way to obtain new functions and, therefore, they are less complete than a
full functional language in which user defined functions can be created. As
a consequence, these two languages are essentially limited in their ease of
expressing algorithms.

Eager functional languages. Let us first give the promised argument that
eager functional languages are computationally complete. Every computable
(recursive) function is lambda definable in the ëI-calculus (see [30] or [6,
Theorem 9.2.16]). In the ëI-calculus a term having a normal form is strongly
normalizing (see [31] or [6, Theorem 9.1.5]). Therefore an eager evaluation
strategy will find the required normal form.
The first functional language, LISP, was designed and implemented by
[83]. The evaluation of expressions in this language is eager. LISP had (and
still has) considerable impact on the art of programming. Since it has a
good programming environment, many skillful programmers were attracted
to it and produced interesting programs (so called ‘artificial intelligence’).
LISP is not a pure functional language for several reasons. Assignment
is possible in it; there is a confusion between local and global variables8

(‘dynamic binding’; some LISP users even like it); LISP uses the ‘Quote’,
where (Quote M ) is like pMq. In later versions of LISP, Common LISP
(see [110]) and Scheme (see [32]), dynamic binding is no longer present. The
‘Quote’ operator, however, is still present in these languages. Since Ia = a
but pIaq 6= paq adding ‘Quote’ to the lambda calculus is inconsistent. As
one may not reduce in LISP within the scope of a ‘Quote’, however, having
a ‘Quote’ in LIPS is not inconsistent. ‘Quote’ is not an available function
but only a constructor. That is, if M is a well-formed expression, so is

8This means substitution of an expression with a free variable into a context in which that
variable becomes bound. The originators of LISP were in good company: in [58] the same
mistake was made.
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(Quote M )9. Also, LISP has a primitive fixed-point operator ‘LABEL’
(implemented as a cycle) that is also found in later functional languages.
In the meantime, [77] developed an abstract machine—the SECD ma-
chine—for the implementation of reduction. Many implementations of
eager functional languages, including some versions of LISP, have used,
or are still using, this computational model. (The SECD machine also
can be modelled for lazy functional languages, see [57].) Another way of
implementing functional languages is basedon the so calledCPS-translation.
This was introduced in [96] and used in a compilers by [109] and [3]. See
also [93] and [97].
The first important typed functional language with an eager evaluation
strategy is Standard ML, see [84]. This language is based on the Curry
variant of ë→, the simply typed lambda calculus with implicit typing, see
[8]. Expressions are type-free, but are only legal if a type can be derived for
them. By the algorithm of Curry and Hindley cited above, it is decidable
whether an expression does have a type and, moreover, its most general type
can be computed. Milner added two features to ë→. The first is the addition
of new primitives. One has the fixed-point combinator Y as primitive, with
essentially all types of the form (A→ A)→ A, withA ≡ (B → C ), assigned
to it. Indeed, if f : A→ A, then Yf is of type A so that both sides of

f(Yf) = Yf

have type A. Primitives for basic arithmetic operations are also added. With
these additions, ML becomes a universal programming language, while ë→
is not (since all its terms are normalizing). The second addition to ML is
the ‘let’ construction

(1) let x be N inM end.

This language construct has as its intended interpretation

(2) M [x := N ],

so that one may think that the let construction is not necessary. If, however,
N is large, then this translation of (1) becomes space inefficient. Another

9Using ‘Quote’ as a function would violate the Church-Rosser property. An example is

(ëx.x(Ia)) Quote

that then would reduce to both

Quote (Ia)→ pIaq
and to

(ëx.xa) Quote→ Quote a → paq
and there is no common reduct for these two expressions pIaq and paq.
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interpretation of (1) is

(3) (ëx.M )N.

But this interpretation has its limitations, asN has to be given one fixed type,
whereas in (2) the various occurrences of N may have different types. The
expression (1) is a way to make use of both the space reduction (‘sharing’)
of the expression (3) and the ‘implicit polymorphism’ in which N can have
more than one type of (2). An example of the let expression is

let id be ëx.x in ëfx.(id f)(id x) end.

This is typeable by

(A→ A)→ (A→ A),
if the second occurrence of id gets type (A→ A)→ (A→ A) and the third
(A→ A).
Because of its relatively efficient implementation and the possibility of type
checking at compile time (for finding errors), the language ML has evolved
into important industrial variants (like Standard ML of New Jersey).
Although not widely used in industry, a more efficient implementation of
ML is based on the abstract machine CAML, see [34]. CAML was inspired
by the categorical foundations of the lambda calculus, see [107], [72] and
[35]. All of these papers have been inspired by the work on denotational
semantics of Scott, see [103] and [54].
Lazy functional languages. Although all computable functions can be rep-
resented in an eager functional programming language, not all reductions in
the full ëK-calculus can be performed using eager evaluation. We already
saw that if F ≡ ëx.I and A does not have a normal form, then eager evalua-
tion of FA does not terminate, while this term does have a normal form. In
‘lazy’ functional programming languages the reduction of FA to I is possi-
ble, because the reduction strategy for these languages is essentially leftmost
outermost reduction which is normalizing.
One of the advantages of having lazy evaluation is that one can work with
‘infinite’ objects. For example there is a legal expression for the potentially
infinite lists of primes

[2, 3, 5, 7, 11, 13, 17, . . . ],

of which one can take the n-th projection in order to get the n-th prime. See
[117] and [64] for interesting uses of the lazy programming style.

Above we explained why eager evaluation can be implemented more effi-
ciently than lazy evaluation: copying large expressions is expensive because
of space and time costs. In [119] the idea of graph reduction was introduced
in order to also do lazy evaluation efficiently. In this model of computation,
an expression like (ëx. · · ·x · · ·x · · · )A does not reduce to · · ·A · · ·A · · ·
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but to · · ·@ · · ·@ · · · ; @ : A, where the first two occurrences of @ are
pointers referring to the A behind the third occurrence. In this way lambda
expressions become dags (directed acyclic graphs).10

Based on the idea of graph reduction, using carefully chosen combinators
as primitives, the experimental language SASL, see [115] and [116], was one
of the first implemented lazy functional languages. The notion of graph
reduction was extended by Turner by implementing the fixed-point combi-
nator (one of the primitives) as a cyclic graph. (Cyclic graphs were already
described in [119] but were not used there.) Like LISP, the language SASL
is untyped. It is fair to say that—unlike programs written in the eager lan-
guages such as LISP and Standard ML—the execution of SASL programs
was orders of magnitude slower than that of imperative programs in spite of
the use of graph reduction.
In the 1980s typed versions of lazy functional languages did emerge, as
well as a considerable speed-up of their performance. A lazy version of ML,
called LazyML (LML), was implemented efficiently by a group at Chalmers
University, see [66]. As underlying computational model they used the
so called G-machine, that avoids building graphs whenever efficient. For
example, if an expression is purely arithmetical (this can be seen from type
information), then the evaluation can be done more efficiently than by using
graphs. Another implementation feature of the LML is the compilation into
super-combinators, see [63], that do not form a fixed set, but are created on
demand depending on the expression to be evaluated. Emerging from SASL,
the first fully developed typed lazy functional language calledMirandaTM was
developed by [118]. Special mention should be made of its elegance and its
functional I/O interface (see below).
Notably, the ideas in the G-machine made lazy functional programming
much more efficient. In the late 1980s very efficient implementations of
two typed lazy functional languages appeared that we will discuss below:
Clean, see [40], and Haskell, see [92], [62]. These languages, with their
implementations, execute functional programs in a way that is comparable
to the speed of contemporary imperative languages such as C.
Interactive functional languages. The versions of functional programming
that we have considered so far could be called ‘autistic’. A program consists
of an expression M , its execution of the reduction of M and its output of
the normal form M nf (if it exists). Although this is quite useful for many

10Robin Gandy mentioned at a meeting for the celebration of his seventieth birthday that
already in the early 1950s Turing had told him that he wanted to evaluate lambda terms using
graphs. In Turing’s description of the evaluation mechanism he made the common oversight
of confusing free and bound variables. Gandy pointed this out to Turing, who then said:
“Ah, this remark is worth 100 pounds a month!”
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purposes, no interaction with the outside world is made. Even just dealing
with input and output (I/O) requires interaction.
We need the concept of a ‘process’ as opposed to a function. Intuitively a
process is something that (in general) is geared towards continuation while a
function is geared towards termination. Processes have an input channel on
which an input stream (a potentially infinite sequence of tokens) is coming
in and an output channel on which an output stream is coming out. A
typical process is the control of a traffic light system: it is geared towards
continuation, there is an input stream (coming from the pushbuttons for
pedestrians) and an output stream (regulating the traffic lights). Text editing
is also a process. In fact, even the most simple form of I/O is already a
process.
A primitive way to deal with I/O in a functional language is used in some
versions of ML. There is an input stream and an output stream. Suppose
one wants to perform the following process P:

read the first two numbers x, y of the input stream;
put their difference x − y onto the output stream.

Then one can write in ML the following program

write (read− read).

This is not very satisfactory, since it relies on a fixed order of evaluation of
the expression ‘read− read’.
A more satisfactory way consists of so-called continuations, see [52]. To
the lambda calculus one adds primitives Read, Write and Stop. The oper-
ational semantics of an expression is now as follows:

M ⇒ M hnf, whereM hnf is the head normal form11 ofM ;

ReadM ⇒ M a, where a is taken off the input stream;

Write b M ⇒ M, and b is put into the output stream;

Stop ⇒ i.e., do nothing.

Now the process P above can be written as

P = Read (ëx. Read (ëy. Write (x − y) Stop)).
If, instead, one wants a process Q that continuously takes two elements of
the input stream and put the difference on the output stream, then one can
write as a program the following extended lambda term

Q = Read (ëx. Read (ëy. Write (x − y) Q)),
11A head nf in lambda calculus is of the form ë~x.yM1 . . .Mn , with theM1 . . .Mn possibly

not in nf.
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which can be found using the fixed-point combinator.
Now, every interactive program can be written in this way, provided that
special commandswritten on the output streamare interpreted. For example
one can imagine that writing

‘echo’ 7 or ‘print’ 7

on the output channel will put 7 on the screen or print it out respectively.
The use of continuations is equivalent to that of monads in programming
languages like Haskell, as shown in [52]. (The present version of Haskell
I/O is more refined than this; we will not consider this issue.)
If A0, A1, A2, . . . is an effective sequence of terms (i.e., An = F pnq for
some F ), then this infinite list can be represented as a lambda term

[A0, A1, A2, . . . ] ≡ [A0, [A1, [A2, . . . ]]]

= H p0q,

where [M,N ] ≡ ëz.zMN and
H pnq = [F pnq, H pn + 1q ].

ThisH can be defined using the fixed-point combinator.

Now the operations Read, Write and Stop can bemade explicitly lambda
definable if we use

In = [A0, A1, A2, . . . ],

Out = [ . . . , B2, B1, B0 ],

where In is a representation of the potentially infinite input stream given
by ‘the world’ (i.e., the user and the external operating system) and Out

of the potentially infinite output stream given by the machine running the
interactive functional language. Every interactive program M should be
acting on [In, Out] as argument. SoM in the continuation language becomes

M [In, Out].

The following definition then matches the operational semantics.











Read F [[A, In′], Out] = F A [In′, Out];

Write F B [In, Out] = F [In, [B, Out]]

Stop [In, Out] = [In, Out].

(1)

In this way [In, Out] acts as a dynamic state. An operating system should
take care that the actions on [In, Out] are actually performed to the I/O
channels. Also we have to take care that statements like ‘echo’ 7 are being
interpreted. It is easy to find pure lambda terms Read, Write and Stop
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satisfying (1). This seems to be a good implementation of the continuations
and therefore a good way to deal with interactive programs.
There is, however, a serious problem. Define

M ≡ ëp.[Write b1 Stop p, Write b2 Stop p].
Now consider the evaluation

M [In, Out] = [Write b1 Stop [In, Out], Write b2 Stop [In, Out]]

= [[In, [b1, Out]], [In, [b2, Out]].

Now what will happen to the actual output channel: should b1 be added to
it, or perhaps b2?

The dilemma is caused by the duplication of the I/O channels [In, Out].
One solution is not to explicitly mention the I/O channels, as in the lambda
calculus with continuations. This is essentially what happens in the method
of monads in the interactive functional programming language Haskell. If
one writes something like

Main f1 ◦ · · · ◦ fn
the intended interpretation is (f1 ◦ · · · ◦ fn)[In, Out].
The solutionput forward in the functional languageClean is to use a typing
system that guarantees that the I/O channels are never duplicated. For this
purpose a so-called ‘uniqueness’ typing system is designed, see [14, 15], that
is related to linear logic (see [50]). Once this is done, one can improve the way
in which parts of the world are used explicitly. A representation of all aspects
of the world can be incorporated in lambda calculus. Instead of having just
[In, Out], the world can now be extended to include (a representation of)
the screen, the printer, the mouse, the keyboard and whatever gadgets one
would like to add to the computer periphery (e.g., other computers to form
a network). So interpreting

‘print’ 7

now becomes simply something like

put 7 printer.

This has the advantage that if one wants to echo a 7 and to print a 3, but
the order in which this happens is immaterial, then one is not forced to make
an over-specification, like sending first ‘print’ 3 and then ‘echo’ 7 to the
output channel:

[ . . . , ‘echo’ 7, ‘print’ 3].

By representing inside the lambda calculus with uniqueness types as many
gadgets of the world as one would like, one can write something like

F [ keyboard, mouse, screen, printer ]
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= [ keyboard, mouse, put 3 screen, put 7 printer ].

What happens first depends on the operating system and parameters, that
we do not know (for example on how long the printing queue is). But we are
not interested in this. The system satisfies the Church-Rosser theorem and
the eventual result (7 is printed and 3 is echoed) is unambiguous. Thismakes
Clean somewhat more natural than Haskell (also in its present version) and
definitely more appropriate for an implementation on parallel hardware.

Both Clean and Haskell are state of the art functional programming lan-
guages producing efficient code; as to compiling time Clean belongs to the
class of fast compilers (including those for imperative languages). Many
serious applications are written in these languages. The interactive aspect
of both languages is made possible by lazy evaluation and the use of higher
type12 functions, two themes that are at the core of the lambda calculus (ëK,
that is). It is to be expected that they will have a significant impact on the
production of modern (interactive window based) software.

§4. Reasoning.

Computer mathematics. Modern systems for computer algebra (CA) are
able to represent mathematical notions on a machine and compute with
them. These objects can be integers, real or complex numbers, polynomials,
integrals and the like. The computations are usually symbolic, but can also
be numerical to a virtually arbitrary degree of precision. It is fair to say—as is
sometimes done—that “a system for CA can represent

√
2 exactly”. In spite

of the fact that this number has an infinite decimal expansion, this is not a
miracle. The number

√
2 is represented in a computer just as a symbol (as we

do on paper or in our mind), and the machine knows how to manipulate it.
The common feature of these kind of notions represented in systems for CA
is that in some sense or another they are all computable. Systems for CA have
reached a high level of sophistication and efficiency and are commercially
available. Scientists and both pure and applied mathematicians have made
good use of them for their research.
There is now emerging a new technology, namely that of systems for
Computer Mathematics (CM). In these systems virtually all mathematical
notions can be represented exactly, including those that do not have a com-
putational nature. How is this possible? Suppose, for example, that we want
to represent a non-computable object like the co-Diophantine set

X = {n ∈ N | ¬∃~x D(~x, n) = 0}.

12In the functional programming community these are called ‘higher order functions’. We
prefer to use the more logically correct expression ‘higher type’, since ‘higher order’ refers to
quantification over types (like in the system ë2).
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Then we can do as before and represent it by a special symbol. But now
the computer in general cannot operate on it because the object may be of a
non-computational nature.
Before answering the question in the previous paragraph, let us first analyze
where non-computability comes from. It is always the case that this comes
from the quantifiers ∀ (for all) and ∃ (exists). Indeed, these quantifiers
usually range over an infinite set and therefore one loses decidability.
Nevertheless, for ages mathematicians have been able to obtain interesting
information about these non-computable objects. This is because there is a
notion of proof. Using proofs one can state with confidence that e.g.,

3 ∈ X, i.e., ¬∃~x D(~x, 3) = 0.
Aristotle had already remarked that it is often hard to find proofs, but the
verification of a putative one can be done in a relatively easy way. Another
contribution of Aristotle was his quest for the formalization of logic. After
about 2300 years, when Frege had found the right formulation of predicate
logic and Gödel had proved that it is complete, this quest was fulfilled.
Mathematical proofs can now be completely formalized and verified by
computers. This is the underlying basis for the systems for CM.
Present day prototypes of systems for CM are able to help a user to
develop from primitive notions and axioms many theories, consisting of
defined concepts, theorems and proofs.13 All the systems of CM have been
inspired by the AUTOMATH project of de Bruijn (see [26] and [27] and
[88]) for the automated verification of mathematical proofs.
Representing proofs as lambda terms. Now that mathematical proofs can
be fully formalized, the question arises how this can be done best (for effi-
ciency reasons concerning the machine and pragmatic reasons concerning
the human user). Hilbert represented a proof of statement A from a set of
axioms Γ as a finite sequence A0, A1 . . . , An such that A = An and each Ai ,
for 0 ≤ i ≤ n, is either in Γ or follows from previous statements using the
rules of logic.

A more efficient way to represent proofs employs typed lambda terms
and is called the propositions-as-types interpretation discovered by Curry,
Howard and de Bruijn. This interpretation maps propositions into types
and proofs into the corresponding inhabitants. The method is as follows. A
statement A is transformed into the type (i.e., collection)

[A] = the set of proofs of A.

So A is provable if and only if [A] is ‘inhabited’ by a proof p. Now a proof
of A ⇒ B consists (according to the Brouwer-Heyting interpretation of

13This way of doing mathematics, the axiomatic method, was also described by Aristotle.
It was [42] who first used this method very successfully in his Elements.
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implication) of a function having as argument a proof of A and as value a
proof of B . In symbols

[A⇒ B] = [A]→ [B].
Similarly

[∀x ∈ X.Px] = Πx : X.[Px],
where Πx : A.[Px] is the Cartesian product of the [Px], because a proof of
∀x ∈ A.Px consists of a function that assigns to each element x ∈ A a proof
of Px. In this way proof-objects become isomorphic with the intuitionistic
natural deduction proofs of [48]. Using this interpretation, a proof of
∀y ∈ A.Py ⇒ Py is ëy :Aëx :Py.x. Here ëx :A.B(x) denotes the function
that assigns to input x ∈ A the output B(x). A proof of

(A⇒ A⇒ B)⇒ A⇒ B
is

ëp : (A⇒ A⇒ B)ëq :A.pqq.
A description of the typed lambda calculi in which these types and inhabi-
tants can be formulated is given in [8], which also gives an example of a large
proof object. Verifying whether p is a proof of A boils down to verifying
whether, in the given context, the type of p is equal (convertible) to [A].
The method can be extended by also representing connectives like & and ¬
in the right type system. Translating propositions as types has as default
intuitionistic logic. Classical logic can be dealt with by adding the excluded
middle as an axiom.
If a complicated computer system claims that a certain mathematical
statement is correct, then one may wonder whether this is indeed the case.
For example, there may be software errors in the system. A satisfactory
methodological answer has been given by de Bruijn. Proof-objects should
be public and written in such a formalism that a reasonably simple proof-
checker can verify them. One should be able to verify the program for
this proof-checker ‘by hand’. We call this the de Bruijn criterion. The
proof-development systems Lego (see [80]) and Coq (see [33]) satisfy this
criterion.
A way to keep proof-objects from growing too large is to employ the so-
called Poincaré principle. [94, p. 12] stated that an argument showing that
2 + 2 = 4 “is not a proof in the strict sense, it is a verification” (actually
he claimed that an arbitrary mathematician will make this remark). In
the AUTOMATH project of de Bruijn the following interpretation of the
Poincaré principle was given. If p is a proof of A(t) and t =R t

′, then the
same p is also a proof ofA(t′). HereR is a notion of reduction consisting of
ordinary â-reduction and ä-reduction in order to deal with the unfolding of
definitions. Since â-ä-reduction is not too complicated to be programmed,
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the type systems enjoying this interpretation of the Poincaré principle still
satisfy the de Bruijn criterion14.
In spite of the compact representation in typed lambda calculi and the
use of the Poincaré principle, proof-objects become large, something like 10
to 30 times the length of a complete informal proof. Large proof-objects
are tiresome to generate by hand. With the necessary persistence [18] has
written lambda after lambda to obtain the proof-objects showing that all
proofs (but one) in [76] are correct. Using a modern system for CM one can
do better. The user introduces the context consisting of the primitive notions
and axioms. Then necessary definitions are given to formulate a theorem
to be proved (the goal). The proof is developed in an interactive session
with the machine. Thereby the user only needs to give certain ‘tactics’
to the machine. (The interpretation of these tactics by the machine does
nothing mathematically sophisticated, only the necessary bookkeeping. The
sophistication comes from giving the right tactics.) The final goal of this
research is that the necessary effort to interactively generate formal proofs
is not more complicated than producing a text in, say, LATEX. This goal has
not been reached yet. See [11] for references, including those about other
approaches to computer mathematics. (These include the systems NuPrl,
HOL, Otter, Mizar and the Boyer-Moore theorem prover. These systems
do not satisfy the de Bruijn criterion, but some of them probably can be
modified easily so that they do.)
Computations in proofs. The following is taken from [12]. There are several
computations that are needed in proofs. This happens, for example, if we
want to prove formal versions of the following intuitive statements.

(1) [
√
45] = 6 where [r] is the integer part of a real;

(2) Prime(61)
(3) (x + 1)(x + 1) = x2 + 2x + 1.

Away to handle (1) is to use the Poincaré principle extended to the reduction
relation։é for primitive recursion on the natural numbers. Operations like
f(n) = [

√
n ] are primitive recursive and hence are lambda definable (using

։âé) by a term, say F , in the lambda calculus extended by an operation for
primitive recursion R satisfying

RAB zero →é A

RAB (succx) →é B x (RAB x).

14The reductions may sometimes cause the proof-checking to be of an unacceptable time
complexity. We have that p is a proof of A iff type(p) =âä A. Because the proof is coming
from a human, the necessary conversion path is feasible, but to find it automatically may
be hard. The problem probably can be avoided by enhancing proof-objects with hints for a
reduction strategy.
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Then, writing p0q = zero, p1q = succ zero, . . . , as

p6q = p6q

is formally derivable, it follows from the Poincaré principle that the same is
true for

F p45q = p6q

(with the same proof-object), since F p45q ։âé p6q. Usually, a proof obli-
gation arises that F is adequately constructed. For example, in this case it
could be

∀n (F n)2 ≤ n < ((F n) + 1)2.
Such a proof obligation needs to be formally proved, but only once; after
that reductions like

F pnq ։âé pf(n)q

can be used freely many times.

In a similar way, a statement like (2) can be formulated and proved by
constructing a lambda defining term KPrime for the characteristic function
of the predicate Prime. This term should satisfy the following statement

∀n [(Primen ↔ KPrime n = p1q)&

(KPrime n = p0q ∨ KPrime n = p1q)].

which is the proof obligation.
Statement (3) corresponds to a symbolic computation. This computation
takes place on the syntactic level of formal terms. There is a function g
acting on syntactic expressions satisfying

g((x + 1)(x + 1) ) = x2 + 2x + 1,

that we want to lambda define. While x + 1 : Nat (in context x : Nat),
the expression on a syntactic level represented internally satisfies ‘x + 1’ :
term(Nat), for the suitably defined inductive type term(Nat). After intro-
ducing a reduction relation ։é for primitive recursion over this data type,
one can use techniques similar to those of §3 to lambda define g, say by G ,
so that

G ‘(x + 1)(x + 1) ’։âé ‘x
2 + 2x + 1’.

Now in order to finish the proof of (3), one needs to construct a self-
interpreter E, such that for all expressions p : Nat one has

E ‘p’ ։âé p

and prove the proof obligation for G which is

∀t : term(Nat) E(G t) = E t.
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It follows that

E(G ‘(x + 1)(x + 1) ’) = E ‘(x + 1)(x + 1) ’;

now since

E(G ‘(x + 1)(x + 1) ’) ։âé E ‘x2 + 2x + 1’

։âé x
2 + 2x + 1

E ‘(x + 1)(x + 1) ’ ։âé (x + 1)(x + 1),

we have by the Poincaré principle

(x + 1)(x + 1) = x2 + 2x + 1.

The use of inductive types like Nat and term(Nat) and the corresponding
reduction relations for primitive reduction was suggested by [102] and the
extension of the Poincaré principle for the corresponding reduction relations
of primitive recursion by [81]. Since such reductions are not too hard to
program, the resulting proof checking still satisfies the de Bruijn criterion.

In [90] a program is presented that, for every primitive recursive predicate
P, constructs the lambda term KP defining its characteristic function and
the proof of the adequacy ofKP . The resulting computations for P = Prime

are not efficient, because a straightforward (non-optimized) translation of
primitive recursion is given and the numerals (represented numbers) used
are in a unary (rather than n-ary) representation; but the method is promis-
ing. In [41], a more efficient ad hoc lambda definition of the characteristic
function of Prime is given, using Fermat’s small theorem about primality.
Also the required proof obligation has been given.
Choice of formal systems. There are several possibilities for the choice of
a formal system to be used for the representation of theories in systems of
computer mathematics. Since, in constructing proof-objects, cooperation
between researchers is desirable, this choice has to be made with some care
in order to reach an international standard. As a first step towards this,
one may restrict attention to systems of typed lambda calculi, since they
provide a compact representation and meet de Bruijn’s criterion of having a
simple proof-checker. In their simplest form, these systems can be described
in a uniform way as pure type systems (PTS’s) of different strength, see [8].
The PTS’s should be extended by a definition mechanism to become DPTS’s
(PTS’s with definitions), see [104]. The DPTS’s are good for describing
several variants of logic: many sorted predicate logic in its first, second or
higher order versions. As stated before, the default logic is intuitionistic, but
can be made classical by assuming the excluded middle.

The next step consists of adding inductive types (IT’s) and the correspond-
ing reduction relations in order to capture primitive recursion. We suggest
that the right formal systems to be used for computer mathematics are the
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type systems (TS), consisting of DPTS’s extended by IT’s, as described e.g.,
in [91]. TS’s come with two parameters. The first is the specification A of
the underlying PTS specifying its logical strength, see [8]. The second is B
the collection of inductive types and their respective notions of reduction
։é specifying its mathematical and computational strength. In my opinion,
a system for proof-checking should be able to verify proof-objects written
in all the systems TS(A, B) (for a ‘reasonable’ choice spectrum of the pa-
rameters). If someone wants to use it for only a subclass of the choice of
parameters—dictated by that person’s foundational views—then the proof-
checker will do its work anyway. I believe that this generality will not be too
expensive in terms of the complexity of the checking.15

Illative lambda calculus. Curry and his students continued to look for a
way to represent functions and logic into one adequate formal system. Some
of the proposed systems turned out to be inconsistent, other ones turned out
to be incomplete. Research in TS’s for the representation of logic has resulted
in an unexpected side effect. By making a modification inspired by the TS’s,
it became possible, after all, to give an extension of the untyped lambda
calculus, called Illative Lambda Calculi (ILC; ‘illative’ from the Latin word
inferre which means to infer), such that first order logic can be faithfully and
completely embedded into it. The method can be extended for an arbitrary
PTS16, so that higher order logic can be represented too.
The resulting ILC’s are in fact simpler than the TS’s. But doing computer
mathematics via ILC is probably not very practical, as it is not clear how to
do proof-checking for these systems.
One nice thing about the ILC is that the old dream of Church and Curry
came true, namely, there is one system based on untyped lambda calculus
(or combinators) on which logic, hence mathematics, can be based. More
importantly there is a ‘combinatory transformation’ between the ordinary
interpretationof logic and its propositions-as-types interpretation. Basically,
the situation is as follows. The interpretation of predicate logic in ILC is
such that

⊢logic A with proof p ⇐⇒ ∀r ⊢ILC [A]r[p]
⇐⇒ ⊢ILC [A]I[p]
⇐⇒ ⊢ILC [A]K[p] = K[A]′

I
[p] = [A]′

I
,

15It may be argued that the following list of features is so important that they deserve to
be present in TS’s as primitives and be implemented: quotient types (see [61]), subtypes (see
[4]) and type inclusion (see [80]). This is an interesting question and experiments should be
done to determine whether this is the case or whether these can be translated into the more
basic TS’s in a sufficiently efficient way (possibly using some macros in the system for CM).
16For first order logic, the embedding is natural, but e.g., for second order logic this is less

so. It is an open question whether there exists a natural representation of second and higher
order logic in ILC.
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where r ranges over untyped lambda terms. Now if r = I, then this trans-
lation is the propositions-as-types interpretation; if, on the other hand, one
has r = K, then the interpretation becomes an isomorphic version of first
order logic denoted by [A]′

I
. See [13] and [39] for these results. A short in-

troduction to ILC (in its combinatory version) can be found in [6, Appendix
B].
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