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1 Introduction

New key-oriented access control systems offer a fully distributed alternative
to traditional hierarchical or centralized, identity-oriented schemes. In the
new systems, access rights are bound to a key, not to the identity of the
owner of the key. They are delegated from key to key with chains of signed
certificates. These certificates form a network between the keys, where the
amount of trust between each two keys can be exactly specified. This way,
local authorities are free to establish trust relations without the need for a
global hierarchy of trusted officials.

The goal of this paper is to present an abstract model for the networks of
delegation formed by public-key certificates between keys. We formalize the
concept of a delegation network and present a formal semantics for delega-
tion. The model is used for proving the equivalence of different methods for
access control decisions. In particular, we show that the certificate reduc-
tion technique of [15] is sound and complete with respect to our definition of
authorization. Theoretical treatment of the topic allows us to focus on the
essential features of the systems instead of lengthy technical specifications.
This makes it possible to develop efficient algorithms for access control de-
cisions from a database of certificates. We also show that joint delegation
certificates of [15] can be slightly generalized while simplifying the imple-
mentation.

1.1 Outline of the report

We begin with a brief overview of the history and development of access
control models in Sec. 1.2.

The concept of delegation network and the authorization problem are defined
in Sec. 2. This section also discusses subnetworks and presents a fundamental
theorem on the existence finite ones.

Sec. 3 shows how delegation can be visualized as trees. This is helpful in
proving theorems and in development of algorithms.

Certificate reduction as a technique for deciding the authorization problem
is introduced and its soundness and completeness is proven in Sec. 4. This
is the most important result of the report.

Our theory allows all certificates to be joint-delegation type, i.e. to have
several subjects whose co-operation is needed for using the delegated rights.
Sec. 5 discusses threshold certificates where only a certain threshold num-
ber of subjects is required to co-operate. A generalized type of threshold



certificates is described and its security properties are proven.

Sec. 6 contains algorithms for deciding the authorization problem from a
database of certificates. The structure of a typical delegation network is dis-
cussed. The model is based on conceptual analysis since examples of imple-
mentations are not yet available. An efficient two-way search algorithm for
large sets of certificates is presented. The efficiency of alternative algorithms
is compared based on the model of typical delegation network structure. The
expected performance is compared to simulations on generated data.

Sec. 7 concludes the report and makes some remarks on possible directions
of future research.

1.2 Background and related work

Traditionally, access control decisions in a system have been made by a cen-
tral authority called reference monitor. The idea is that access requests go
through a trusted system component that decides if they should be allowed.
The authority can, for example, be an operating system or a database man-
ager.

The reference monitor concept cannot easily be adapted [20, 7, 25] to the
highly distributed systems built around today’s data communications net-
works [16, 26]. In the network, a virtually unlimited number of local author-
ities can set up and administer access to their own resources. Furthermore,
from each host’s viewpoint, the network can be divided into areas of more
or less trusted and untrusted hosts, e.g. separated by firewalls [12].

The reference monitor usually follows some fixed access control policy. The
most common types of policies have been based on labeling of the subjects
and objects with multi-level labels. Higher level data is more sensitive and
higher level entities have more access rights. Well-known models of multi-
level security are the Bell-LaPadula 4] and Biba [5] models.

Multi-level security is suitable for centralized multi-user computers in a high-
security environment such as military organizations. It does not necessarily
satisfy the needs of commercial environment or those of private persons. In
a commercial environment, the separation of duties between trusted entities
is often just as important as protection against outsiders. The Clark—Wilson
[13] and Chinese Wall [9] models aim to do this from different angles of view.

Another problem with multi-level security is that the concept of a single
global security policy does not scale well to computer networks. Since the
criteria for granting or denying access depend on the provider of the service,



the policies in a network environment can be as diverse as the interests of
the networked community.

The PGP [31, 27| approach does away with authorities. Instead, a web of
trust is allowed to anarchically develop between individual persons on the
net. The central objective is trustworthy certification of identities. However,
because of the intransitivity of complete trust, the web-of-trust concept is
mostly used for managing personal relations.

Some systems like the X.509 authentication hierarchy |10, 17| and Kerberos
[18] try to scale the centralized, identity-based approach to open networks.
In X.509, trustworthiness radiates from a central trusted entity to lower level
authorities. It has the obvious problem that, in the end, everyone has to trust
all the officials appointed by the global central authority. In the Kerberos
authentication service, the goals are more modest and it has worked well
in local network domains. Problems arise when the system should be used
between arbitrary nodes on a large network. Some serious attempt are being
made to combine the ideas from PGP web of trust and X.509 hierarchy into
a web of local hierarchies [11, 30]. It is too early to see how successful this
will be in practice.

Both the anarchical web of trust and the more centralized and hierarchical
systems have had their main emphasis of verifying the identities of individu-
als. The certification authorities must be completely trusted with respect to
all activities for which the certified keys are used. This may be why a right
balance between centralization and free formation of trust relations has not
been found and no general solution exists to access control problems on the
networks. The new kind of distributed, key-oriented authentication infras-
tructures address the problems by replacing identities with cryptographic
keys owned by individuals and computer systems. They allow free creation
of local and global authorities and trust relationships between them. Also,
the delegated rights, i.e. the level of trust, can be precisely specified in the
certificates.

The three most prominent proposals for distributed trust management are
SPKI certificates |15] by Ellison et al., SDSI public key infrastructure |23] by
Rivest and Lampson, and PolicyMaker local security policy database [8] by
Blaze et al. SDSI replaces globally unique names of entities with linked local
name spaces [1]. SPKI is a standard proposal for certificates whose purpose
is to delegate access rights rather than to certify identity. PolicyMaker is a
general database for managing access control policies. In the development
of our theory, we have most often referred to the SPKI specification.

A lot of work has been done on modelling the structure and behavior of
systems under the control of a single reference monitor. For example, the



take—grant model can be used to characterize different access control policies
[28, 6]. There is, however, very little literature on the new key-oriented
systems. Especially theoretical treatments have not been published. This is
the gap we are trying to fill.



2 Delegation network

We start by defining a structure called delegation network in Sec. 2.1. It
consists of keys and certificates delegating authorizations between the keys.
The authorizations are rights to perform sets of operations. This is detailed
in Sec. 2.2. In Sec. 2.3 we continue by formulating the authorization prob-
lem, i.e. the question of who is authorized to which operations, in terms
of the delegation networks. Subnetworks and a fundamental result on their
existence is presented in Sec. 2.4.

2.1 Definition of delegation network

We define a delegation network as a directed bipartite graph. The partitions
of nodes are called keys (the set Keys) and certificates (the set Certs). The
certificates are annotated with authorizations (the set Auths). The directions
of arcs (the Flow relation) point from the issuer key to the certificate and
from the certificate to the subject keys. With the certificate, the issuer
delegates to the subject(s) the right to (jointly) request some operations to
be executed. In our level of abstraction, the keys are primitive data items in
the sense that we will not give any structure to the set. The relations between
keys are determined by their connections to the certificates. This way, we
abstract away the cryptography that will make keys and certificates work in
implementations. The authenticity of the certificates must have been checked
by verifying signature on them at the time the certificates were entered into
the database. The set of authorizations, on the other hand, will be given a
structure in Sec. 2.2.

Definition 1 (delegation network) A delegation network is a 5-tuple
DN = (Keys, Certs, Auths, Flow, auth) such that

1. Keys is a set called keys,

2. Certs is a set called certificates,

3. Auths is a set called authorizations,

4. Flow C Keys x Certs U Certs x Keys is called a flow relation,

5. for each ¢ € Certs, there is a unique key k € Keys such that (k,c) €
Flow. This key s called the issuer of c.

6. for each c € Certs, there is at least one and at most a finite number of
keys k such that (c, k) € Flow. These keys are called the subjects of c.



7. auth : Certs — Auths maps certificates into authorizations.

According to the definition, a certificate is connected to two or more other
keys. For exactly one of these keys, the arc is directed towards the certificate.
This key is the issuer, i.e. signer, of the certificate. The other keys, subjects,
are the keys to whom the certificate has been given. The function auth
attaches to each certificate the access rights delegated with it.

We limit the number of subjects for each certificate to finite although the
number of certificates in the network can be infinite. This makes sense
because representing an infinite set of cryptographic keys in one certificate
does not seem implementable but the number of certificates retrievable from,
for example, a computer network can be unlimited.

The certificates could also be defined as a relation between keys. We have
chosen the graph approach, because it makes the theory more visual and we
will draw ideas for decision algorithms from graph theory. It should be noted
that if all certificates have only a single subject, the nodes representing them
have only one incoming arc and one leaving arc. In that case, the certificates
can be pictured as annotations on arcs between the keys.

Note that we allow delegation networks to have cycles, i.e. a key can directly
or indirectly delegate access rights to itself. This kind of cyclic delegation
naturally will not give the key any new rights. It merely means that the
alternative paths of delegation form loops. For simplicity, we also do not
want to disallow direct delegation to self although it is never useful in prac-
tice. We will, however, show that in some situations it suffices to look at
parts of delegation networks with no cycles. Therefore we give the following
definition.

Definition 2 (acyclic) A delegation network with flow relation Flow is
acyclic iff the network has are no cycle, i.e. looping chains of certificates

<k] s C]>, <C] , kg), <k2, C2>, <CQ, kg), e (Cn,] s kn> € Flow
where k1 = k,,.
Fig. 1 shows an example of a delegation network. On the certificates, we
have marked the access rights delegated by them. Only one certificate has

more than one subject. The network has a cycle although no access rights
are actually delegated all the way around the cycle.
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Figure 1: A delegation network

2.2 Set-type authorizations

The auth function specifies the access rights delegated with a certificate. The
structure of the authorizations depends on what kind of access takes place
in the system.

Often, authorizations are a sets of operations that the subject of the certifi-
cate is allowed to request. In that case, the result of a series of delegations
is given by the intersection of the operation sets allowed in the delegations
and the result of obtaining access rights from several sources is given by the
union of the operation sets.

Definition 3 (set-type authorizations) Set type authorizations are
formed by a lattice of subsets of a set of operations.

Thus, the authorizations are sets of operations, Auths C P(Ops) (the power
set of Ops) for some set Ops. The word lattice in this context means that
the union and the intersection of any two authorizations must also be au-
thorizations.

If DN = (Keys, Certs, Auths, Flow, auth) is a delegation network, the set
Ops = UAuths is called the operations of DN.

The set-type authorizations have the advantage that the right to perform
each operation can be considered separately. There is no need to define
special operations for combining the rights obtained by a single key from
several certificate paths. Instead, the certificates can be presented together
to demonstrate the right to the union of the access rights delegated by each
of them. This makes the implementation of the system straightforward. It
would be possible to define authorizations with more complex structure, for
example, by allowing arbitrary functions for combining them as in [8].



2.3 The authorization problem

We will now define how the access rights are transfered from key to key in
a delegation network. This is the most straightforward way to define the
semantics of the authentication networks since it raises directly from the
intuitive meaning of the certificates. Access rights are transfered to the set
of subjects who all must delegate the right to the same key, possibly via
other keys. When there is only one subject, that subject can alone use or
delegate the rights. Of course, every key completely trusts itself.

Definition 4 (authorizes relation) Let DN = (Keys, Certs, Auths, Flow,
auth) be a delegation network where the authorizations are set-type. Denote
by Ops the operations of DN . The relation authorizespny C Keys X Keys %
Ops is the smallest three-place relation such that

1. if k € Keys and o € Ops, then (k,k,o0) € authorizespn, and

2. if (ki1,¢) € Flow and (k,ko,0) € authorizespy for all k such that
(¢, k) € Flow, then (ki,ko,0) € authorizespn .

Lemma 5 With the assumptions of Def. 4, there is a unique smallest rela-
tion (with respect to set inclusion) satisfying the two rules in the definition.

Proof Assume that authorizes; are two or more differing minimal rela-
tions satisfying the two rules in Def. 4. The intersection of the relations
authorizes = Nauthorizes; is smaller than either of the two relations. Fur-
thermore, the intersection satisfies the two conditions: (1) (k,k,o0) must
be included in all the relations, so it also is in the intersection. (2) If
(k1,¢) € Flow, and (k, ko) € authorizes for all k such that (c, k) € Flow,
then also (k,ks) € authorizes; for the same keys k for all i. Therefore,
(k1,ko,0) € authorizes;. Thus, (k1, ks, 0) is in authorizes and Rule 2 is sat-
isfied. Since the intersection authorizes is smaller than all of the relations
and also satisfies the two rules, the relations authorizes; cannot be minimal.
In conclusion, the assumption of having two different minimal relations is
wrong and there is a unique smallest relation authorizesp . O

Note that the definition does not refer to the graph terminology at all. In
Sec. 3 we will give an equivalent formulation based on trees in the graph.

Often, we will write authorizespy(k1,ks,0) in predicate notation to de-
note (k1, ks, 0) € authorizespy. If ops is a set of operations, and we have
authorizes pn (k1, ko, 0) for all o € ops, we write authorizes py (k1, ko, 0ps).



When authorizes pn(k1, k2, 0) is true, we say that key k; delegates autho-
rization for operation o to key k9 in DN. This is the central question to be
queried from a database of certificates, called the authorization problem.

The authorization problem
In a database of certificates, does a key ki delegate authorization for

operation o to another key ko, i.e. is authorizes pn(k1, ko, 0) true in the
delegation network?

For example, in the network of Fig. 1, authorizes(ki,kq,r) is true, but
authorizes(ky, kg, w) and authorizes(ky, k7, r) are not true because the dele-
gation path through ko is missing.

Usually, the first key in the chain of delegation should be a key belonging to
the server providing the service for which authorization is being delegated.
This way, the server who naturally trusts its own public key can verify from
the set of certificates that the client key has the right to request the service.

The idea of minimality in Def. 4 is that all tuples in the relation authorizes
should have an explicit reason for being there. It is a straightforward con-
sequence of the minimality that in order for a triple (k1, k2, 0) to be in the
relation authorizes, one of the Rules 1 and 2 must be the reason. This is
formally stated in the following lemma.

Lemma 6 Let DN be a delegation network. For all keys ki such that
(k1,ko,0) € authorizes pn, at least one of the following holds:

1. k] = kg, or

2. there exist ¢ € Certs such that (ky,c) € Flow and
(k,ko,0) € authorizespy for all k such that {(c, k) € Flow.

Proof The theorem is proven by contradiction. Assume that there is an
element (ki, ko, 0) € authorizespy for which neither of the conditions 1 2
of Lemma 6 holds. The relation authorizes’ = authorizespy \ {(k1,k2,0)}
is smaller than authorizespy. Furthermore, neither of the conditions in
Def. 4 requires (ki,ko,0) to be a member of the relation, and removing an
element from the relation cannot make the conditions true for any other
element. Thus, the smaller relation still satisfies the requirements of Def. 4.
Therefore, the assumption cannot be true. [l

In addition, the minimality of authorizes means that looping or infinite
chains of certificates do not add to the relation. A consequence is that in



order to have effect, any path of delegation must end in a certificate that has
only a single subject. This is stated formally in the next theorem. Although
the theorem does not depend on any concepts other than those presented so
far and could thus be proven here, the proof is delayed till the end of Sec.
2.4 where we have some technically convenient results at hand.

Theorem 7 Let DN be a delegation network such that authorizes pn (k1, k2, 0)
for two keys k1 # ko. There is a certificate ¢ in DN whose only subject is
ko.

2.4 Subnetworks

Even if the delegation network is very large or infinite in size, decisions to
grant access are based on finite subsets of certificates. For this purpose, we
define the concept of a subnetwork. A subnetwork is a part of a delegation
network that has some of the keys and certificates of the original network so
that all the keys connected to the remaining certificates are also retained.

Definition 8 (subnetwork) Let DN = (Keys, Certs, Auths, Flow, auth)
be a delegation network. DN' = (Keys', Certs', Auths', Flow', auth') is a
subnetwork of DN iff Keys' C Keys, Certs' C Certs, Auths' C Auths, and
Flow' and auth’ are restrictions of Flow and auth, respectively, to Keys'
and Certs', and the following condition is satisfied: ¢ € Certs' A ((k,c) €
Flow V {c, k) € Flow) = k € Keys'.

If DN' is a subnetwork of DN, we say that DN is a supernetwork of DN'.

The authorization relation in a subnetwork is naturally a subset of the re-
lation for a supernetwork. This is because the rules in Def. 4 cannot be
disabled by adding new keys and certificates to the delegation network.

Theorem 9 Let DN be a delegation network with set-type authorizations
and DN' its subnetwork. In that case, authorizespn' C authorizespy .

Proof Let DN = (Keys, Certs, Auths, Flow, auth) be a delegation network
and DN' = (Keys', Certs', Auths', Flow', auth') its subnetwork . By the
definition of subnetwork (Def. 8), Keys' C Keys, Certs' C Certs and Flow' C
Flow. Def. 4 defines authorizespn' as the smallest relation including all
tuples that satisfy certain two conditions (the left sides of the two rules
in the definition). These conditions are monotonic in the way that they
cannot be made false by adding new items into the sets Keys', Certs’ and
Flow'. Therefore, if (k1,ka,0) € authorizes pn: by the rules, also (ki, ko, 0) €



authorizespy for any delegation network DN with equal or larger sets of
keys, certificates and flow relation. O

The next theorem is the basis for most of the following theory and for de-
velopment of decision algorithms. It shows that we only need to consider
finite subsets of certificates when deciding if the relation authorizes pn holds
for a pair of keys. The proof is particularly interesting because its first part
contains a construction of the relation authorizespy.

Theorem 10 Let DN be a delegation network where authorizes pn (k1, ko, 0).
DN has a finite acyclic subnetwork DN' = (Keys', Certs', Auths, Flow', auth')
where authorizes pn (ki1, ko, 0) and, furthermore,

1. authorizes pn+(k, ko, 0) is true for all the keys k € Keys',

2. ky is the only key in Keys' that is not an issuer of any certificate in
Certs', and

3. o € auth'(c) for all ¢ € Certs'.

Proof (including construction of authorizes) In the first part of the
proof we follow the flow relation from the subject keys (in particular from
k2) towards issuers and get a subset of certificates where the maximum length
of delegation paths is bounded. In the second part, we follow the flow from
k1 towards ko and remove all but one of the alternative delegation paths.
The result is a finite subnetwork with the desired properties.

We first consider an arbitrary operation o and a subject key k£ and see which
keys delegate the right for the operation o to the key k. These keys and
the certificates delegating the right to o will be collected in indexed sets by
increasing length of delegation paths to k. As an initial step, define the sets

Certsg’o =,
Keysy” = {k},
Ay” = {{k. k. 0)}.

Then, for i =1,2,..., define

Certsf’o ={c| o€ auth(c) A
(VK" : ((c, k') € Flow = k' € U;ZUKeysf’o)
A (K c) € Flow = k' ¢ Keysffl))},
Keysf’o ={k}U{K' |ce Certsf’o A (K c) € Flow},
AR = LK ko) | K € Keys™ Y.



Corresponding cumulative collections of keys and certificates are

Certs}/kk’o = Ul Certs™°,
xk,0

Keys,™" = Uézo Keys

We show by induction that Keys;‘k’O and Certs;‘k’o cannot form infinite paths
of keys and certificates. Basis step: The maximum path length of Flow in

Keysgk’o U Certssk’o is 0. This is because all paths contain only a single key.

Induction step: If the maximum path length of Flow in Keys:fk’o U C’erts;-‘k’o
is finite, then in Keys:ff’f U Certs;‘f_’f it is extended at most by 2. Infinite
paths cannot be formed for two reasons. Firstly, the extensions to paths
lead to new keys that were not in the previous set. Hence, loops cannot
be formed with earlier keys and certificates. The extensions only increase
length of existing paths. Secondly, the extensions themselves cannot connect
to each other forming loops or infinite paths because the subjects of the new
certificates are all in the earlier sets. Only the issuer is in the new set. By
induction, the maximum path length for Flow in Keys;-‘k’ou C’erts;-‘k’o is finite

meaning also that loops do not exist for any i > 0.

Moreover, (k' k,0) € A?’O for all &' € Keysf’o for all ¢ = 0,1,2,..., and
Af’o C authorizespy. In the basis step this follows from Rule 1 of Def. 4
and later from Rule 2 of the same definition.

We now construct authorizes py as a union of the sets A?’O. Denote the set
of operations of DN by Ops and let

o k},()
A = Upec0ps UkeKeys Uimg A; -

Based on the results of the previous paragraph, A C authorizespn. Also, A
is closed in DN with respect to the two rules of Def. 4. Rule 1 is satisfied
because Uge 0ps Uke Keys Ag’o C A. For Rule 2, consider any (k},c) € Flow for
which (¢, k) € Flow implies (k, kb, 0) € A. Since the number of subjects k of
c is finite, there is some finite 7 so that k € Keysflz’o for all the subjects k.
If k) € Keysfé’o then (K, kb, 0) € Afé’o. If k) & Keysfé’o it follows from our
construction of the sets that &} € Keysﬁ_’lo and (k. k), 0) € AZ?_IO In both
cases, (ki kb, 0) € A. Hence, A fulfills the two closure rules of authorizespy.
Since we also know that A C authorizes pn, the minimality of authorizes pn
implies A = authorizespy.

Note that the issuers and subjects of all certificates of Certs;kk’o are in
Keys;-‘k’o. Moreover, the sets above are constructed in such a way that for
all k' € Keysf’o except for k, there is a certificate issued by k in C’ertsf’o and

,0

the subjects of the certificate are all in Keysﬁl . Thus, for all 7, k is the only



key in Keys;‘k’o that is not an issuer of any certificate in Certs;kk’o, and all
certificates of Certs;kk’o allow operation o. These properties will be retained
in the further reduced sets of certificates in the second part of the proof.

Since (kq, ko,0) € A, we have k; € Keyekz’ and (k1, ko, 0) € AI;Z’O for some
j € {0,1,2,...}. This j is the maximum length of delegation paths that
need to be con81dered for authorizes pn(k1, k2, 0) to be found true.

We now get to the second part of the proof. The subnetwork DN’ will be
formed by following the delegation paths in KPI/G*kQ’ U Cerfej’”’o from the
key ki towards the subjects. On the way, we select one of all alternative
ways in which the rights reach the key ks. As the path lengths are finitely
bounded, the chosen paths will terminate at ko after a finite number of steps.

Let Keys; = {ki1} and let Certs; = {c} be a singleton containing (an arbi-
trarily chosen) one of the certificates in Certs; "2 guch that (k1,¢) € Flow.
According to the definition of Keysj , at least one such ¢ must exist. Oth-

erwise, k1 would not be in Keys?’o
Fori=j—1,j—2,...,1,0 define:
Keys; = {k | (c,k) € Flow N c € Certs;y1}.

Also, build the set Certs; by choosing for each £ € Keys; one certificate
c € Cerfeb’o such that (k,c) € Flow. Again, such a ¢ must exist because
otherwise k£ would not be in KeyekQ’ .

The finite and acyclic subnetwork DN’ is constructed as follows. Denote
Keys' = UZ oKeys; and Certs' = UZ oCerts;. The delegation network
DN' = (Keys', Cerfs , Auths, Flow', auth') where Flow' and auth’ are re-
strictions of Flow and auth (respectively) to Keys' U Certs', is a subnetwork
of DN because the issuer and the subjects of each certificate of Certs; are
in Keys; U Keys,_, and thus in Keys'.

We now show that DN’ is acyclic and finite. Since the paths of Flow in
Keys' U Certs' are a subset of the paths in Keys;k’o U C’erts;k’o, the paths
lengths are bounded by a finite number j also in DN’. Hence, the paths
are acyclic. The number of keys and certificates in Keys; U Certs; is finite
(actually there is one key and one certificate). For each 1ndex 1=45—1,7—
2,..., the number of keys and certificates in Keys; U Certs; remains finite
because the number of subjects for each certificate is finite. Since the lengths
of the paths are finite, the total number of keys and certificates chosen to
DN’ is finite. Thus, DN’ is acyclic and finite, as suggested in the theorem.

On each level of the construction, 1 = 7 — 1,7 — 2,...,1,0, Keys; and
Certs; are non-empty because of the way in which Keysf’o and Cerf9k2’



were constructed guarantees that all certificates of Certsz’o have subjects
in Keys:ﬁzl’o. Thus, Keysy = {ka} C Keys'.

We show by induction that authorizes py: (k, ko, 0) for all k € Keys'. The ba-
sis step: for the single key ko € Keys,, authorizes pn' (ka, ko, 0) follows from
Rule 1 of Def. 4. The induction step: assume that authorizespn(k, ko, 0)
for all £ € Keys;. The sets Certsfi’]o and Keysfi’]o were specifically con-
structed so that all k£ € Keysfj_’f issue a certificate in Certsfj_’f and all
c € Certsfj’f have subjects in Keys;kkz’o When we above chose some of
these keys to Keys; and Keys;,; and some certificates to Certs;;1, this
was done in such a way that all keys of Keys, ; still issue a certificate in
Certsiy+1 and all subjects of this certificate are still in Keys;. By Rule 2 of
Def. 4 it follows that authorizes pn:(k, ko, 0) for all k € Keys; ;. By induc-
tion, authorizes pn: (k, ko, 0) for all k € Keys'. This suffices to show Claim 1
of the theorem. Naturally also authorizespy(k1, k2, 0).

The construction guarantees directly that keys other than ky in Keys' are
issuers of certificates in Certs’. Key ko cannot be the issuer of any certificate,
because the issuers of new certificates to Certsfw are required not to be in
the previous sets Keys;‘fﬁ’o, and ko € Keys;‘kQ’O for all i = 0,1,2,.... Thus,
Claim 2 holds for DN'.

Finally, only certificates ¢ for which o € auth’(c) were chosen to Certs;kz’o

and consequently to Certs’. This concludes the proof of Claim 3 and of the
entire Theorem 10. O

The above theorem is consequence of the requirement for the set of subjects
of a single certificate to be finite. If we would allow a certificate to have
an infinite number of subjects, the finiteness of the subnetwork in the above
theorem would not hold. It is interesting to note that the absence of infinite
length paths could still be proven. Fig. 2 illustrates the peculiar situation
where a certificate has an infinite number of subjects and all paths have finite
length but the path lengths do not have any upper bound. We are, however,
interested in delegation that depends only on finite number of certificates
and, thus, can be decided algorithmically.

One further detail to note is that the reflexive transitive closure of the flow
relation in an asymmetric delegation network is a partial order on the keys
and certificates.

Theorem 11 Let DN be a finite and acyclic delegation network with flow
relation Flow. The reflexive and transitive closure of Flow is a partial order
on the keys and certificates.
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Figure 2: A certificate with an infinite number of subjects

Proof The reflexive and transitive closure of an acyclic graph is reflexive,
transitive and antisymmetric, and thus, a partial order. O

Next we will prove Theorem 7. The theorem itself is a consequence of the
requirement for the authorizes relation to be minimal and it does not involve
subnetworks is any way. Nevertheless, we give the proof at this point of
discussion because it is easier to present with the help of Theorem 10.

Proof of Theorem 7 Let DN be a delegation network such that
authorizes pn (k1, ko, 0) for two keys ki # ko. Assume that all certificates of
DN that have k9 as a subject also have at least one other subject.

According to Theorem 10, DN has a finite, acyclic subnetwork DN' =
(Keys', Certs', Auths', Flow', auth'), where also authorizes pn:(k1,ks,0). A

finite and acyclic subnetwork has no infinite chains of keys and certificates
such that (ki,c}), (¢}, kL), (Kb, cb), (ch, kL), ... € Flow.

Since the certificates in DN’ are a subset of those in DN, and their subjects
are preserved, it follows that all certificates in DN’ that have k9 as a subject,
also have at least one other subject.

We choose k} = k1. Since authorizes pn (k1, k2,0) and ki # ko, Lemma 6 says
that there must exist a certificate ¢} issued by k; for all of whose subjects k,
authorizes pn (k, k2, 0). By our assumption, one of the subjects is not equal
to ko. We choose this subject as k5. We already have authorizes py (kb, ko, 0)
and kf # ko so we take k) as the next starting point and find a certificate
¢4 and subject k%. Continuing this way, we get an infinite chain of keys and
certificates where a subject of the precious certificate always issues the next
certificate. But such chains cannot exist in an acyclic network. Thus, the
assumption is false and there is a certificate in DN’ and in DN whose only
subject is ko. O
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Figure 3: A delegation tree

3 Tree-based formulation of the authorization prob-
lem

In this section, we will reformulate the authorization problem with graph
terminology. If a key k; delegates access rights to another key ko, a tree of
keys and certificates can be formed such that k; is at the root of the tree
and all branches end to k. The tree-based representation of delegation will
help us to visualize the theory and to make proofs more intuitive (see Sec.
4), and it has played a key role in development of graph-search algorithms
for delegation decisions in Sec. 6.

We formally define the tree in Sec. 3.1 and show in Sec. 3.2 that such a tree
exists if and only if the authorizes relation holds.

3.1 Delegation tree

Figure 3 shows how part of the delegation network of Fig. 1 can be unfolded
into a tree. This tree shows how the right to operation r is delegated from

k] to kﬁ.

Formally, a tree (Nodes, Arcs) is an acyclic directed graph formed by a set of
nodes Nodes and arcs Arcs C Nodes X Nodes connecting them. If (n,n') €
Arcs, the node n is called the parent of n’ and n' is called a child of n. There
is a unique node, called root mode, with no parent. All other nodes have a
unique parent. The nodes with no children are called leaf nodes. A tree is
finite if the number of nodes and arcs is finite. The depth of a tree is the
maximum path length from a leaf to the root.

For a set of nodes Nodes and a function h, we denote h(Nodes) = {h(n)|n €
Nodes}.

An annotation of the nodes of a tree with keys and certificates of the network,
can be formalized as a homomorfism from the tree to the delegation network.

Definition 12 (homomorfism from tree to delegation network) Let



DN = (Keys, Certs, Auths, Flow, auth) be a delegation network and T =
(Nodes, Arcs) a tree. A function h : Nodes — Keys U Certs is a homomor-
fism from DT to DN iff for all nodes n,n' € Nodes the following hold:

1. if (n,n')y € Arcs then (h(n),h(n')) € Flow,

2. if h(n) € Certs, there is exactly one node n' such that (h(n'), h(n)) €
Flow,

3. if h(n) € Certs, then h is a bijection from the nodes such that (n,n') €
Arcs to the keys such that (h(n),k) € Flow.

According to the definition, A is simply a homomorfism from a tree to a bipar-
tite graph where the local structure around one of the partitions, certificates,
is preserved. We require a node corresponding to a certificate to have a par-
ent corresponding to the issuer and children with 1-1 correspondence to the
subjects of the certificate. (The latter requirement is not essential for our
theory but it makes the concept of homomorfism more intuitive.)

In Conditions 2 and 3 of the above definition, we implicitly assume that if
a node corresponds to a certificate, its parent and child nodes correspond
keys. This follows from Condition 1 and the bipartite structure of the dele-
gation network. The converse also holds, i.e. parents and children of nodes
corresponding to keys correspond to certificates. Moreover, the root and the
leaf nodes of the tree map into keys. This is because every certificate must
have an issuer and a subject and they are preserved in the tree.

Lemma 13 Let h be a homomorfism from a tree DT to a delegation network
DN = (Keys, Certs, Auths, Flow, auth). If a node n is mapped by h into a
certificate, its parent and children are mapped into keys. Also, if a node is
mapped into a key, its parent and children (if any exist) are mapped into
certificates.

Proof Assume that nodes n and n’ map both into keys or both into certifi-
cates and (n,n') € Arcs. Condition 1 in Def. 12 states that (h(n),h(n')) €
Flow. Thus, two keys or two certificates are connected in the delegation
network, but this is not possible according to Def. 1 where the flow relation
only connects keys to certificates and certificates to keys. [

The homomorfism always maps the boundary of a tree, i.e. its root and leafs,
into keys. This is because we want the issuer and subjects of all certificates
to be precisely copied from the delegation network to the tree.



Lemma 14 Let h be a homomorfism from a tree DT to a delegation network
DN = (Keys, Certs, Auths, Flow, auth). h maps the root node and all the
leaf nodes of DT into Keys.

Proof Def. 1 requires every certificate to have at least one subject key.
Condition 3 of Def. 12 requires the nodes of the tree mapping into certificates
to have children corresponding to all the subjects of the certificate. Thus, a
certificate node always has children and it cannot be a leaf node.

Similarly, Condition 2 of the same definition says that a certificate node
always has a parent node mapping into the issuer key of the certificate.
Thus, a node corresponding to a certificate is never the root node. ]

A delegation tree is simply a tree together with a homomorfism into a dele-
gation network.

Definition 15 (delegation tree) Let DN be a delegation network. We
say that DT = (Nodes, Arcs, h) is a delegation tree in DN iff (Nodes, Arcs)
is a finite tree and h is a homomorfism from (Nodes, Arcs) to DN.

When certificates have only one subject, delegation trees reduce into simple
paths in the graph. When there are more subjects, the paths branch into
trees.

3.2 Trees and the authorization problem

We will show that the finite delegation trees suffice to completely characterize
the delegation of access rights in a delegation network. But before we can
state the exact relation between delegation trees and the authorizes relation,
we need the following lemma.

Lemma 16 Let (Nodes, Arcs,h) be a delegation tree in a delegation network
DN. A node is the root of an even-depth subtree iff h maps it into a key.
Also, a node is the root of an odd-depth subtree iff h maps it into a certificate.

Proof This is easily shown by induction on the length of subtrees. Basis
step: all roots of subtrees of depth 0, i.e. the leaf nodes map into keys
according to Lemma 14. The roots of subtrees of depth 1 are connected to
the leafs and, by Lemma 13, mapped into certificates.

Induction step: assume that all roots of even-depth subtrees map into keys
and roots of odd-depth subtrees map into certificates for subtrees of depth ¢



or smaller where 7 is even. Let n be a root of a subtree of depth 7+ 1. n has
a child that is a root of subtree of depth 4 and, by our assumption, maps into
a key. By Lemma 13, n has to map into a certificate. On the other hand,
let m be a root of a subtree of depth 7 + 2. In that case, n has a child that
is a root of a subtree of depth i + 1 and, as concluded above, maps into a
certificate. Again by Lemma 13, n has to map into a key. This shows that
the roots of subtrees of depth 7 + 1 map into certificates and of depth 7 4 2
into keys. By induction, the assumption is valid for subtrees of any finite
depth. Since all nodes of the tree are roots of subtrees of either even or odd
depth, this suffices to prove the lemma. ]

Finally, we are ready to show that the authorization problem can be for-
mulated as a question on the existence of delegation trees. This is proven
using Theorem 10 that said it is sufficient to look at finite subnetworks. The
theorem is thus a consequence of the limitation for certificates to have only
a finite number subjects.

Theorem 17 Let DN = (Keys, Certs, Auths, Flow, auth) be a delegation
network, o an operation in DN, and k1, ke € Keys. authorizes pn(k1, k2, 0)
is true iff there exists a delegation tree DT = (Nodes, Arcs,h) in DN such
that

1. for the unique root node n of the tree, h(n) = k1,
2. for all leaf nodes n of the tree, h(n) = ko, and

3. for all nodes n € Nodes, if h(n) € Certs then o € auth(h(n)).

Proof We first show that the existence of a delegation tree implies the
authorization.

Let DN = (Keys, Certs, Auths, Flow, auth) be a delegation network and
DT = (Nodes, Arcs, h) a delegation tree in DN such that the Conditions
1-3 of the theorem are satisfied. Every node of the delegation tree is the
root of a subtree. We will show by induction on the depth of subtrees that
authorizes pny (h(n), ko, 0) holds for all the nodes n that are mapped into keys
by h. Basis step: Let n be a leaf node of DT. In that case, h(n) = ko and
authorizes pn (ka, ka,0) by Condition 1 of Def. 4. Thus, the claim is true for
all nodes that are roots of subtrees of depth 0.

Induction step: Assume that authorizes pn(h(n), ko, 0) for all nodes n that
are roots of subtrees of even depth smaller than or equal to some even
1 > 0. Let n be the root of a subtree of depth 7+ + 2. Lemma 16 shows



that n is mapped into a key. Let m’ be a child node of n. A child n'
exists because i + 2 > 0. According to Lemma 13, the child is mapped
into a certificate h(n'), and its children into keys. By Lemma 16, the
children of n' are roots of subtrees of even depth. This depth is i or
smaller. Therefore, the induction hypothesis implies that for all the chil-
dren n” of n', authorizespy(h(n"), ks, 0). By Condition 3 of Def. 12, there
exist children of n' mapped by h onto all of the subjects of h(n'). This
means that authorizespn(k,ka,0) for all the subjects k of h(n'). Conse-
quently, by Condition 2 of Def. 4, authorizespy(k,ke,0) where k is the
issuer of h(n'). But by Condition 3 of Def. 12, the issuer is k = h(n).
That is, authorizes py(h(n), ks, 0) for the root n of an arbitrary subtree of
depth i + 2. By induction, authorizespn(h(n), ko, 0) is true for all nodes in
n € Nodes that map into keys, also for the root node that maps into k.
Hence authorizes pn(k1, ko, 0). This suffices to prove the ‘if” direction of the
theorem.

Next, we show that the authorization implies the existence of a delegation
tree.

Let DN = (Keys, Certs, Auths, Flow, auth) be a delegation network and
authorizes(ki, ko,0) true. In Theorem 10 it was shown that DN has a fi-
nite acyclic subnetwork DN’ = (Keys', Certs', Auths, Flow', auth') where
authorizes(ki, ko, 0) for all k € Keys'. In the finite acyclic graph formed by
the Flow' relation there are no infinite chains. We will construct the finite
delegation tree from this relation from root down.

Let Nodesy = {n_y,} and let Arcsg = 0. Assign function h the value
h(ngk,) = ki. For i =1,2,..., let Nodes; = {n; .,n,, , | n € Nodes;_1 A
(h(n),c) € FlowA(c, k) € Flow} where the nodes n,, . and n,, ; are new nodes
not in Nodes;_1. Since the new nodes are named after their parent, the paths
cannot join, and a tree is formed. Let also Ares; = {(n,n], ), (n, o, 75, 1) [0 €
Nodes;_1 A (h(n),c) € Flow A (c,k) € Flow}. The construction follows
certificate chains in DN’ adding one key certificate step on each iteration.
Since the number of keys and certificates in DN is finite and no loops exists,
the construction must come to an end at some iteration after which Ares;
and Keys, are empty. Let j be the index of the last round where keys are
found. There is only a finite number of nodes in all Nodes; because Nodes
is finite and, on every iteration, the number of nodes attached to each one
of the previous nodes is limited by the finite number of keys and certificates

in the network.

Let Nodes = ngoNodesi and Arcs = U‘gzoArcsi. These sets are also finite.
Assign h the values h(ny, ) = c and h(nj, ;) = k for all n, ., n; € Nodes.

From the way the nodes were added to the sets, it follows that (Nodes, Arcs)
is a tree, and h a homomorfism from the tree to DN’. This is because the



nodes mapping into certificates have one parent mapping into their issuer
and a set of children corresponding to the subjects of the certificate. Thus,
DT = (Nodes, Arcs, h) is a delegation tree in DN.

The root of the tree is n_j, that is mapped into k; by h. Hence, Claim
1 of the theorem holds for the tree DT. According to Theorem 10 the
subnetwork DN’ can be selected in such a way that the only key that is
not an issuer of any certificate in DN’ is ko, and that all certificates in
DN' delegate the operation o. The former means that all leaf nodes of
the constructed delegation tree DT map into ko. The reason is that our
construction of the delegation tree only ends at nodes that map into a key
and whose corresponding key does not issue any certificates in DN’. (Def.
1 requires all certificates to have at least one subject). Thus, Claim 2 of the
theorem holds for the tree DT'. Since all nodes of the tree DT" map into some
key or certificate in DN’, the latter means that the nodes can only map into
certificates that delegate the right to operation o. Thus, also Claim 3 of the
theorem holds. O

The trees are finite because we restricted the number of subjects on a cer-
tificate to finite. The same theorem would hold for infinite sets of subjects
and infinite trees. The finiteness in the definition of delegation tree (Def.
15) could be replaced by a requirement that all paths from the root of the
tree to the leafs have finite length. In real systems, however, finite sets of
keys are more common, and we use the finite trees as a basis for terminating
algorithms.



4 Certificate reduction

The SPKI draft document [15] presents a certificate reduction technique for
authorization decisions. (It is called 5-tuple reduction because the SPKI cer-
tificates are defined as 5-tuples). At the time being, the reduction is defined
only for certificates with a single subject but we present our own definition
that we believe to convey the idea accurately also for joint-delegation certifi-
cates. In fact, our definition is simpler because we do not need to distinguish
between certificates with one and more subjects.

Sec. 4.1 contains the definition and illustration of the reduction technique.
Sec. 4.2 shows rigorously that certificate reduction is a correct and adequate
technique for making authorization decisions in our general framework.

4.1 Definition of certificate reduction

In certificate reduction, two certificates are merged into one. Fig. 4 illus-
trates the reduction process. The reduced certificate has the same issuer
as the first of the original certificates and the combined subjects from both
certificates, except for the one key that issued the lower certificate. This
way, two certificates in a chain can be reduced into one. By repeating the
process, any set of certificates can be combined into one.

Definition 18 (certificate reduction) Let DN = (Keys, Certs, Auths,
Flow, auth) be a delegation network. Delegation network DN' = (Keys, Certs’,
Auths, Flow', auth') is obtained from DN by reducing certificates c¢; with ca,
iff Certs’ = Certs U {c} where ¢ is a new certificate not in Certs and

Flow' = {(k,c) | (k,c1) € Flow} U
{{c,k) | (c2, k) € Flow} U
{{c, k) | {(c1,k) € Flow A (k,c2) & Flow}.

and auth'(c) = auth(cy) N auth(cy).

It is important to note that reduction of ¢; with ¢y differs from the reduction
of ¢g with ¢;. When the names of the reduced certificates need not be explic-
itly mentioned, we simply say that DN’ is obtained by a single certificate
reduction from DN.

The definition allows the reduction of any two certificates, even when they
do not form a chain. In practice, however, reductions are useful only when
the issuer of ¢o is a subject of ¢;.
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Figure 4: Certificate reduction

4.2 Soundness and completeness of certificate reduction

The next lemma shows that extending the subject set of a certificate does
not increase the rights delegated to any key. That is, if two certificates are
identical except that one has more subjects, that one is redundant.

Lemma 19 Let DN = (Keys, Certs, Arcs, Auths, auth) be a delegation net-
work and DN' = (Keys, Certs', Arcs', Auths, auth') be a supernetwork of
DN where Certs' = Certs U{c'}. Assume that the issuer of some ¢ € Certs
is also the issuer of ¢, auth(c) = auth(c') and the set of subjects of ¢’ is a
superset of the set of subjects of c. Then, authorizes pn' = authorizespy .

Proof Since DN is a subnetwork of the delegation network DN’, we have
authorizespy C authorizespyr. For the inclusion in the other direction,
assume that authorizes pn:(k1,ka,0). Theorem 17 says that there exist a
delegation tree in DN’ satisfying the three claims of the theorem. If there
are nodes n in the tree that map into ¢/, we redefine for all these nodes
h(n) = c. Since the subjects of ¢’ are a superset of the subjects of ¢, n has
children mapping onto all the subjects of ¢. The children of n that do not
map into subjects of ¢ and the subtrees under these children are removed
from the tree. By this construction, we get a delegation tree in DN for which
the three claims of Theorem 17 still hold. Therefore, authorizes pn (k1, ko, 0).
This suffices to show the inclusion in the other direction. Thus, the relations
are equal. O

Soundness of certificate reduction means that the reduced certificates do
not have any effect on the authorizes relation in the delegation network.
Completeness means that the reduction can be used as a way of deciding



the authorization problem. That is, it is possible to reduce any chain of
delegation into a single certificate. The next lemma is essential in proving
the soundness.

Lemma 20 Let DN’ be a delegation network obtained by a single certificate
reduction from DN . Then, authorizespyn C authorizespy.

Proof Let the delegation network DN’ be obtained from DN by reducing
certificate ¢; with o whereby a reduced certificate ¢’ is obtained. Assume
that authorizes pn'(k1, k2, 0). Theorem 17 says that there exist a delegation
tree DT' = (Nodes', Arcs',h') in DN’ satisfying the three claims of the
theorem.

There are three possible cases: (1) no nodes of DT map into ¢’, (2) one or
more nodes map into ¢’ and the issuer of ¢y is a subject of ¢, and (3) one
or more nodes map into ¢’ and the issuer of ¢y is not a subject of ¢;.

Case (1): If none of the nodes of the tree maps into ¢, the tree is also a
delegation tree for DN and by Theorem 17, authorizes pn(k1, k2, 0).

Case (2): The tree contains one or more nodes that map into the reduced
certificate ¢’. Let n’' be one of the nodes. In that case there exist also nodes
niss and g, . @ =1,... ], mapping onto the issuer and the subjects of ¢’.
We assume also that the issuer k& of ¢g is a subject of ¢;. We construct a new
delegation tree by removing n’ and adding two new certificate nodes ny, ng
and one key node n3. DT = (Nodes, Arcs, h) and Nodes = (Nodes'\ {n'})U
{n1,n9,n3}. The value of h is equal to A’ for all nodes from DT’ and for
the new nodes, h(nq) = c¢1, h(na) = ¢ and h(nz) = k, where k is the issuer
of ¢o. Denote the set of keys of DN by Keys. The new set of arcs is

Ares = ((Ares'\ (Keys x n')) \ (n’ x Keys) U
{<n;ss’n1><n17n3>7 <n37n2>} U
{(n1, i) i€ {1 1} Aer, h(nly,)) € Flow} U
{(n2,mup i) | i€ {1 1} Aea, h(nly ;) € Flow}.

This construction gives a delegation tree in DN that still fulfills the three
claims of Theorem 17. (The root and the leafs of the tree remain unchanged.)
Consequently, authorizes pn (k1 ko, 0).

Case (3): We still have to consider the possibility that the issuer of co is
not a subject of ¢;. In that case, the new certificate ¢ is like ¢; only with
extended set of subjects. By Lemma 19, this does not add anything new to
the authorizes py relation.

Hence, the theorem holds in all cases. [



We now have the necessary tools for proving the main result of this section.

Theorem 21 (soundness and completeness of certificate reduction)
Let DNy = (Keys, Certs, Auths, Flow, auth) be a delegation network. It is
true that authorizespn(k1, ko, 0) iff there is a finite sequence of delegation
networks DNo, DNy, DNy, ... , DN; such that DN;1q is obtained from D Nj
by certificate reduction for i = 1,...,l, and that there is a certificate ¢ in
DN such that o € auth'(c) and the issuer of ¢ is ki and the only subject of
c s ky.

Proof

If DN; has the certificate ¢ described in the theorem, then by applying
conditions 1 and 2 of Def. 4, we get authorizespy,(k1, ke, 0). This must be
true also in the original network DNy because from Lemma 20 it follows
that authorizespn,,, C authorizespy, for i = 1,...,l and consequently
authorizes pn, C authorizes pn,. Hence, the reduction method gives sound

results.

Let DN be a delegation network where authorizespy(k1,ks,0). We need
to show that there always is a finite sequence of certificate reductions that
produce the certificate c.

Theorem 17 says that there exists a finite delegation tree DTy in DNy such
that the three claims of the same theorem are satisfied. We claim that either
(1) there is a node mapped into a certificate in DT such that its parent is
mapped into k; and its only subject into k9 and the certificate authorizes
the operation o, or (2) there are two nodes n; and ng in DTy such that the
parent of ny is a child of ny. Assume that alternative (1) is not true. Then,
select one leaf node ne,s of the tree, and the parent n of this node. n maps
into a certificate. If n has a child n’ other than nje,y, this child is not mapped
into k9 and thus is not a leaf and has a child n” itself. In that case, we can
choose ny = n and ny = n”. On the other hand, if n has only nj,s as a
child, its parent node cannot be the root, because that would be case (1).
Thus, the parent n' of n has a parent n” and we can choose ny = n” and
ny = n. This shows that one of the alternatives (1) and (2) holds.

We now reduce pairs of certificates step by step and replace corresponding
two nodes in the tree by new nodes corresponding to the reduced certificate.
This way, we get a tree that shrinks in every reduction.

We start from DNy and its delegation tree DTy and for 1 = 0,1,2,..., do
the following. If alternative (1) does not hold but is true (2) instead, we can
reduce the two certificates h(n1) and h(ny) where the issuer of the latter is
a subject of the former. The reduction results in a new delegation network



DN, with an added certificate cpe. We construct a delegation tree DT; 4
by removing the nodes ny, no and the node ng corresponding to the issuer of
h(nsy) from the tree and by inserting a new node 1y, instead. nge, has the
issuer of mq, and all the children of n; and ng except for ng. We also assign
h(Npew) = Cpew- The resulting tree DT; 1 is a delegation tree in DN;,q,
because the new node corresponds to the reduced certificate. Furthermore,
DT;y, also fulfills the three claims of Theorem 17 since the root and leafs
do not change and o € auth(cpew) = auth(h(ny)) N auth(h(ng)).

This way we get a sequence of delegation networks DNy, DNy, DNs, ... and
trees in them DTy, DTy, D15, . ... Since DTy is finite and in every reduction
two nodes of the previous tree are replaced with one in the next tree, the
process has to end at some point in alternative (2) becoming false. This
happens at latest when there is only once certificate node left in the tree.
Hence, for some | > 0 the alternative (1) will be true and the desired ¢ exists
in DNj.

When alternative (1) holds in the tree DN, we have the desired result. That
is, there is a single certificate ¢ in DT} as described in the theorem above. [J



5 Threshold certificates

In this section we describe certificates where a sufficiently large subset of the
subjects of a certificate can delegate or use the authority given by it. Sec. 5.1
introduces threshold values and Sec. 5.2 describes how threshold certificates
can be made more flexible by dividing them into subcertificates.

5.1 (k,n) schemes

A (k,n)-threshold certificate is considered valid if & of its n subjects co-
operate in using or further delegating the access rights. Joint-delegation
certificates with k subjects correspond to (k, k)-threshold certificates. The
threshold value is simply a convenient short-hand notation for a set of joint-
delegations where all subjects are required to co-operate. That is, a (k,n)-
threshold certificate can be expanded to (Z) joint-delegation certificates with
k subjects in each. Therefore, we have not complicated the theory above with
threshold values.

5.2 Open threshold certificates

In the joint-delegation and threshold certificates described above, the set of
subject keys has to be fixed at the time of certificate creation. This is be-
cause the keys are explicitly listed in the certificate. It is, however, possible
to leave the set of subjects open. We can give each subject a separate certifi-
cate (subcertificate) that includes the threshold value and a unique identifier
of the certificate set. The set of certificates are considered valid only if the
threshold number of subcertificates with the same identifier are presented
together. This way, the set of subjects is open for later additions. Moreover,
the division of the certificates into several subcertificates adds flexibility to
certificate management and the holders of the certificates can remain anony-
mous until they want to further delegate their share of the access rights. We
call this kind of scheme open threshold certificates. The properties of the
open threshold certificates make them an attractive alternative to fixed sub-
jects sets. This is especially so because it appears that most implementations
would be simplified by the transition.

In this section, we will show that the open threshold certificates can simulate
the functionality of normal threshold and joint-delegation certificates and
that the security of the system is not endangered in the transition.

First, open threshold certificates must be formally defined. We do this by
adding “dummy” operations to the delegation network and by redefining the



authorizes relation.

Definition 22 (open-threshold-type authorizations) Open-threshold-
type authorizations are triples (id,l,a) € Ids x Z" x Auths where Ids is a
set of identifiers, 7" are positive integers called threshold values and Auths
are set-type authorizations.

The authorizations of the form (id,1,a) with any value of id are identified
with each other for every a and the symbol a is used to represent them.

The set of operations for a delegation network with open-threshold-type au-
thorizations OAuths is defined as Ops = U{a | (id,l,a) € OAuths}. The
new fields 7d and / in the certificates are used to convey information about
joint delegation and the field a gives the set operations for which rights are
being delegated.

We need to define the authorizes relation for the new type of authorizations.

Definition 23 (authorizes relation) Let DN = (Keys, Certs, OAuths,
Flow, auth) be a delegation network where the authorizations are of open-
threshold type. Denote by Ops the operations of DN. The authorization
relation authorizespy C Keys x Keys x Ops is the smallest three-place rela-
tion such that

1. if k € Keys and o € Ops, then (k,k,o0) € authorizespy, and

2. if for some id € Ids, | € 7 and k; € Keys there exist at least |
pairs of keys k and certificates ¢ such that (k,ko,0) € authorizespy,
(¢, k) € Flow, (k1,c) € Flow and auth(c) = (id,l,a) where o € a, then
(k1, ko, 0) € authorizespy .

In practice, there should be a single threshold value matching each identifier
and only one key should issue certificates with a given identifier. Since these
rules cannot be enforced in a distributed system of issuers, the definition
above treats certificates with equal identifier but differing threshold value or
issuer as belonging to different groups, just as if they had different identifiers.
Other policies can of course be defined for this kind of situations.

Finally, we are able to give a transformation from delegation networks with
joint-delegation or threshold certificates to ones with open threshold cer-
tificates. The resulting network simulates a joint-delegation certificate by
issuing to all subjects separate certificates that contain a common identifier.

Definition 24 (transformation Open) Let DN = (Keys, Certs, Auths,
Flow, auth) be a delegation network with set-type certificates. Open(DN) =



(Keys, Certs', OAuths, Flow', auth') is a delegation network defined by

Certs' = {c_}, | c € Certs A {c, k) € Flow},
Flow' = {(k',c.;.) | ¢ € Certs' AN(K',¢) € Flow} U
[l o k) | chy € Certs'),
OAuths = Certs x Z" x Auths.

For all ¢, € Certs’, auth'(c'cyk) = (c,l,auth(c)) where | is the number of
subjects of the certificate c.

It should be carefully noted that the certificates ¢, , are just plain items in the
certificate set. In implementations, they will not contain any identification
of the original ¢ and k. The new authorizations, on the other hand, have an
explicit field containing the name of the original certificate or other unique
identifier for the set of certificates in Open(DN) that are derived from one
certificate in DN. Since the original certificate names do not have any
structure and they are forgotten in the transformation process, this field does
not carry any hidden knowledge of the structure of the original network. It
only groups the new certificates according to their origin.

We will show that the transformation Open preserves the authorizes relation.
This means that the open threshold certificates can express any kind of
delegation that the set-type authorizations could.

Theorem 25 Let DN be a delegation network with set-type authorizations.
Then,

authorizes pn = authorizes open(pN)-

Proof Let DN = (Keys, Certs, Auths, Flow, auth) be a delegation network
with set-type authorizations and let Open(DN) = (Keys, Certs', Flow',
OAuths, auth'). We notice that a certificate in DN corresponds to a set of
certificates in Open(DN). This set is the certificates that were named ¢/,
for the subjects k of c. ’

If we consider the authorizes relations in the two networks, we see that Defs.
4 and 23 both define authorizes as a closure of the set defined by Rule 1, on
which the two definitions agree, with respect to Rule 2, which differs in the
definitions. We will compare Rules 2 and see that they actually are equiv-
alent. Assume that authorizes pn (K, k2, 0) and authorizes gpen(pn)(k, k2, 0)
for all keys k in some set K.

Assume also that (k1,¢) € Flow, that o € auth(c) and that all the keys k
for which (c,k) € Flow are in K. The idea of the assumption is that the



conditions of Rule 2 of Def. 4 are met. By Def. 24, the number [ of certificates
corresponding to ¢ in Open(DN) is equal to the number of subjects of c.
This [ is also the threshold number visible in the authorizations of all the [
certificates. The [ certificates have all k1 as issuer and the subjects of ¢ as
subjects. Since all these subjects are in K, the conditions listed in Rule 2 of
Def. 23 are also met.

On the other hand, assume that in Open(DN) for some id € Ids and | €
ZT there exist at least | pairs of certificates ¢ and keys k& € K such that
(k1,c) € Flow', (¢,k) € Flow' and auth'(c) = (id,l,a) where o € a. This
assumption has the meaning that the conditions of Rule 2 of Def. 23 are met.
Again, Def. 24 requires that there is at least one certificate in DN with the
same issuer ki and the same [ subjects. The reason is that the values of id
in Open(DN) uniquely identify a group of certificates corresponding to one
certificate in DN. Since all the subjects k are in K, the conditions listed in
Rule 2 of Def. 4 are fulfilled.

Hence, Rule 2 in one of the definitions is applicable to a key k; if and only
if it is applicable in the other definition. As the closure rules are equal and
the starting sets are equal, the resulting closures are also equal. [

We will denote the issuers of a set of certificates by issuers(C) = {k | ¢ €
C A (k,c) € Flow}.

Next we want to show that addition or removal of certificates in DN can
be simulated by addition or removal of certificates by the same issuers in
Open(DN). This proves that the transformation Open preserves the func-
tionality of the delegation network.

Theorem 26 Let DNy be a delegation network with certificates Certs; and
with set-type authorizations and let DNy with certificates Certsy be its sub-
network. Denote the certificates of Open(DN7) by Certs' and of Open(DN>)
by Certsy. Then, Open(DNy) is a subnetwork of Open(DNy), and

issuers(Certsy \ Certsy) = issuers(Certsy \ Certs).

Proof That Open(DN3) is a subnetwork of Open(DNy) is a direct conse-
quence of the monotonic nature of the transformation Open. Added certifi-
cates in DN result in added certificates in Open(DN). The issuers of the
added certificates are also the same. O

In order to see that the transformation is secure, we still must show that
any additions to the authorizes relation that can be achieved by a set of
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Figure 5: Delegation networks in Theorem 27

keys in Open(DN) could also be caused by the same set of keys in DN.
When issuing new access rights in Open(DN) can be simulated in DN by
the same issuers, we know that the transformation does not endanger the
access control policy.

Theorem 27 Let DN; be a delegation network with set-type authorizations
and certificates Certsy, and denote the certificates of DNy = Open(DNy) by
Certsy. Let DNy be a supernetwork of DNo with the same set of keys and
authorizations. Then, DNy has a supernetwork DNy with certificates Certsy
such that

authorizespn, = authorizespn, and

issuers(Certsy \ Certsy) = issuers(Certss \ Certsy).

Proof We first include in DNy all the certificates of DNy. Let then C =
Certss\ Certsy be the set of added certificates in DN3. If auths(c) = (id, 1, a)
for a certificate ¢ € C, then we add to DN, a certificate for every set of [
certificates in D N3 whose identifier is id, threshold value [ and issuer the
same as that of ¢. The subject sets of these certificates are formed by the
subjects of the [ certificates. Clearly, the issuers of the certificates Certsy \
Certs; will be the same keys as the issuers of the certificates C.

If we now compute Open(DNy), the result is almost equal to DN3. One dif-
ference is that the identifiers of certificate groups may have changed and that
some groups may have been duplicated. Another difference is that if new cer-
tificates were added with an identifier already existing in D N3 thus exceeding
the threshold value [ associated with the identifier (thisis a (I,n) scheme with
n > 1), the subsets of size [ of the certificates have been enumerated as certifi-
cate groups of size [ with new identifiers. The changes of identifiers and dupli-
cation of certificates naturally does not affect the authorizes relation. Also,
the splitting of certificate groups to all their threshold-size subsets does not
cause any changes to the situations where Rule 2 of Def. 23 can be applied.
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As in the proof of Theorem 25, closure of the same base set with respect to the
same rule results in the same authorizes relation in DN3 and Open(DNy).
Hence, authorizes pn, = authorizes Open(DNy) = authorizes pn, . O

Similarly, it is possible to show that removal of certificates from Open(DN)
can be simulated or surpassed in DN by removal of certificates issued by the
same key. This means that the transformation does not open any new lines
of denial of service attack by expiring or revoking certificates.

Theorem 28 Let DN; be a delegation network with set-type authorizations
and certificates Certsy, and denote the certificates of DNy = Open(DNy)
by Certsy. Let DN3 be a subnetwork of DNy with the same set of keys and
authorizations. Then, DNy has a subnetwork DNy with certificates Certsy
such that

authorizespn, C authorizespn, and

issuers(Certsy \ Certsy) = issuers(Certse \ Certss) )

Proof Denote be the set of removed certificates in DN3 by C' = Certss \
Certse. We construct DNy by removing from DN; all certificates issued
by the keys issuers(C). All certificates issued by other keys are retained.
Clearly, the issuers of the certificates Certss \ Certs; are the same keys as
the issuers of the certificates C.

In a way similar to the proof of Theorem 25, we show that if Rule 2 of Def. 4 is
applicable in DNy then Rule 2 of Def. 23 is applicable in DN3. Write DN3 =
(Keys, Certs, Auths, Flow, auth) and DNy = (Keys, Certs', Auths', Flow',
auth').

Let K be a set of keys where for all keys k both authorizes pn, (k, k2,0) and
authorizes pn, (k, k2, 0). Assume that for some certificate ¢, (k1,c¢) € Flow',
o € auth'(c) and {(c,k) € Flow' implies k& € K. The assumption means



that authorizes pn,(k1,k2,0) by Rule 2 of Def. 4. Then ¢ is also in DN,
and not issued by any key in issuers(C). If ¢ has | subjects, there are [
certificates in DNy corresponding to ¢. These [ certificates have a common
identifier, they are all issued by the issuer of ¢, their threshold value is I,
and they have the subjects of ¢ as their subjects. Since the issuer of ¢ is not
in C, these certificates remain in DN3. Hence, Rule 2 of Def. 23 says that
authorizes pn, (k1, ke, 0).

authorizes pn, and authorizespy, are closures of the same set ({(k,k) | k €
Keys} of Rule 1) with respect to the different Rules 2. Since Rule 2 is
applicable in DN3 always when it is in DNy, the closure in DNy is a subset
of the closure in DN3: authorizespn, C authorizes pn,. [l

It should be noted that Theorems 25 27 and the proofs of this section do not
only show properties of our proposed certificates scheme. They can generally
be used as guidelines as to what kind of properties must always be shown
when we want to replace a certificate scheme by another without changing
the security properties.



6 Algorithms for deciding the authorization prob-
lem

In the literature, no actual algorithms for authorization decisions have been
described. The SPKI document [15] states that its authors believe that the
authorization problem can be answered but no implementation exists for
the time being. Some discussion on the implementation techniques but no
complete algorithms can be found in 22, 19].

In this section, we will describe several algorithms for the authorization deci-
sions. The algorithms are designed to handle threshold certificates. Normal
joint-delegation certificates are special cases where the threshold value equals
the number of subjects.

Two things are worth noting about our algorithms. Firstly, they are based on
simple path-finding algorithms for directed graphs. We have not considered
any pre-computation techniques. Storing the precomputed results or some
partial information in the memory can lead to constant-time algorithms but
the memory space required is quadratic with respect to the size of the certifi-
cate database. Using that much storage space does not seem feasible in the
implementations that we have in mind, although some kind of caching might
improve the efficiency of our algorithms. Secondly, signature verification is
not a part of the algorithm. All signatures are verified at the time when the
certificates are entered into the database.

6.1 Typical delegation network structure

The delegation networks in practice will not be arbitrary graphs but they are
expected to have certain structure. Although the system architecture itself
does not constrain the relations between the keys, common practices will
arise from the way popular applications choose to chain their certificates.

We anticipate that most delegation networks will have an hourglass shape
(Fig. 7). On the top of the hourglass there are the servers and on the
bottom the clients. Direct certificates between the servers and clients are
scarce. Instead, the access rights are distributed to the clients by a network
of intermediate keys. These can be certificate managers near the clients,
reference monitors near the servers, and service brokers between them. In
the extreme case, there could be a single broker delivering access rights from
servers to clients, as in Fig. 9(a).

Application programs, user platforms and servers themselves are unlikely
to incorporate wide capabilities for maintaining valid certificates. There-
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fore, specialized server software is needed for certificate acquisition, updates,
bookkeeping and verification. These servers will need algorithms for autho-
rization decisions from large sets of certificates, and they themselves form
an additional key layer in the network.

Naturally, the common structure will only hold for majority of the certifi-
cates. There may be occasional short links and even certificates issued by
clients to servers. Also, the servers or clients can create a wealth of relation-
ships amongst themselves. Thus, the system must be able to accommodate
certificates between arbitrary keys. Nevertheless, we will optimize the effi-
ciency of our algorithms with the hourglass structure in mind.

6.2 Certificate reduction as an algorithm

The only decision procedure defined in the SPKI document is certificate
(i.e. five-tuple) reduction. That is, rules are given for how two certificates
reduce into one. A server should grant access to a client if there is a path of
certificates that recursively reduces into a single certificate where the server
itself authorizes the client. The reduction rules correspond to our definition
of certificate reduction in Def. 18.

Since the reduction technique is a sound and complete (see Theorem 21) way
of deciding the authorization problem, it can be used as an implementation
technique. When a client has two certificates that form a chain, it sends them
to the issuer of the first one who signs and returns a reduced certificate. For
the issuer, the operation is purely syntactic manipulation of the certificates.
It checks the signatures and automatically grants the reduced signature. The
client has certificates reduced when possible or when it thinks it needs to.
When the client wants to request an operation from a server, it sends along
the request a reduced certificate signed by the server that directly authorizes
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Figure 8: Depth-first forward search can visit the same node several times.

the client to the operation.

A problem with this approach is that the client must maintain the certificates
and decide when it needs to start reducing the path. Therefore, techniques
are needed for efficient path finding and decision making from a set of cer-
tificates even when the certificate reduction is actually implemented.

6.3 Depth-first search forward

The most straight-forward way to verify authorization from a delegation net-
work is depth-first search in the graph of keys and certificates tracing the
flow of access rights from the server to the client. The recursive search proce-
dure has, in fact, been proposed as an alternative definition of authorization
for the SPKI certificates [29].

Pseudo-code for a recursive depth-first search algorithm is found in Listing 1.
The algorithm should contain no surprises to the reader. For each certificate,
it counts the valid paths leading from subjects of the certificate to the client.
If the count reaches the threshold required by the certificate (the threshold
is 1 for non-joint delegation and equals the number of subjects for normal
joint-delegation), there is a valid authorization path from the issuer of the
certificate to the client.

Unfortunately, the number of paths in a graph grows exponentially with the
graph size. Fig. 8(b) shows an example of how forward search must process
some nodes again even though they have been visited before. (This is a
good test case for algorithmic improvements.) If all certificates had only one
subject, a linear algorithm could be used instead.

Our implementation that was used for the experiments reported in Sec. 6.6,
does several further optimizations to avoid retraversing paths. Although
these significantly reduce the number of keys processed, the complexity of
the algorithm remains exponential. Typically, existing certificate paths are
found fast but negative answers can take even millions of steps.



1 function dfsForward (server,client,operation)

2 return dfsForwardRecursive(server,client ,operation);
3

4 function dfsForwardRecursive (key,client,operation)

5 mark key as in search path;

6 if (key = client) return TRUE;

7 for ¢ in certificates issued by key

8 if (¢ authorizes operation)

9 countPaths = 0;

10 for (subj in subjects of c¢)

11 if (countPaths < threshold value of c

12 AND (subj marked as having path to client

13 OR (subj NOT marked as having path to client

14 AND subj NOT marked as in search path

15 AND dfsForwardRecursive(subj,clzent,
operation))))

16 countPaths = countPaths + 1;

17 if (countPaths > threshold value of c¢)

18 mark key as having path to client;

19 return TRUE;

20 unmark key as in search path;

21 return FALSE;

Listing 1: Depth-first search forward from server to client
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Figure 9: When forward branching is greater, backward search is faster

6.4 Depth-first and breadth-first search backward

In addition to the multiple traversing of same paths, the forward search has
another inefficiency. In Fig. 9, there is a simple hourglass shaped delegation
network. Part (b) shows how a forward depth-first search from the server
finds the client. In part (c), the same kind of search is initiated backward
from the client to find the server. The searches are functionally equivalent
(even the same algorithm can be used when all certificates have only one
subject), but since the network branches less in the backward direction, the
backward search is faster.

There are two possible ways for handling joint-delegation certificates in back-
ward search. One can span forward searches from the subjects in order to
determine immediately if enough paths from the subjects to the client exist.
This approach suffers from the poor performance of the forward search. In-
stead, we have chosen to count the number of paths leading from the client
to the subjects, and to continue the backward search from the issuer of the
joint-delegation certificate when the threshold value is reached. This appears
to be simple and effective. If the same subject never appears twice in the
same certificate, the counting can be optimized by keeping counters with the
certificates. In the pseudocode of Listing 2, we have chosen the most general
approach and recount the subjects on every visit. Fig. 8 (¢) illustrates how
the backward search processes every key at most once.

Thus, the backward search in a delegation network with many joint-delegation
certificates is much more efficient than the forward search, linear-time with
respect to the size of the network. Because of the different branching fac-
tors, it is also somewhat more efficient in a delegation network where all
certificates have a single subject.

Backward search can also be done in breadth-first order as in Listing 3. The



22 function dfsBackward (serwer,client,operation)

23 return dfsBackwardRecursive(client ,server,client ,operation);
24

25 function dfsBackwardRecursive (key,server,client,operation)

26 mark key as having path to client;

27 if (key = server) return TRUE;

28 for ¢ in certificates given to key

29 if (c authorizes operation

30 AND issuer of ¢ NOT marked as having path to client)
31 countPaths = 0;

32 for (subj in subjects of c¢)

33 if (subj marked as having path to client)

34 countPaths = countPaths + 1;

35 if (countPaths > threshold value of c

36 AND dfsBackwardRecursive(issuer of c,server,
37 client, operation)
38 return TRUE;

39 return FALSE;

Listing 2: Depth-first search backward from client to server
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Figure 10: Two searches meet in the middle

breadth-first algorithm processes keys by increasing distance from the client.
Like in the depth-first algorithm, the issuers of joint-delegation certificates
are discarded until enough of the subjects of the certificate have been pro-
cessed. In theory the breadth-first search can require more memory than the
depth-first search. In our experiments, however, the memory consumption
was so small that we found it difficult to give any estimates.

6.5 Two-way search

The graph search can be optimized by starting from both ends and meeting
in the middle of the path. This is illustrated in Fig. 10.

The average cost ¢ of finding the path between two nodes in a graph grows
exponentially with the length d of the path. By searching from both ends
and meeting in the middle, we can reduce the problem to two parts with path
length d/2. This way, the complexity decreases to approximately the square
root of the original. In general graphs, we can search both ways and mark
visited nodes along the way. When one search finds a node visited by the
other, we know that a path exists. In order to find the complete path, the
search that had first visited the node and already left it must retraverse the
graph to find that node again, unless memory can be used to remember the
paths to all visited nodes. When we do not have excess memory at disposal,
the two-way search thus reduces the cost of deciding the existence of a path
between two nodes to 24/c and the cost of finding the path to 3y/c. (This is,
of course, not complete mathematical treatment but it should give an idea
of the magnitude of the expected benefits.)

When the branching factors of the graph in the two directions are different, as
in our case, the efficiency is not improved quite as much but still significantly.
The reason is that a one-way search is always done in the direction of the
smaller branching factor while a two-way search must also go in the less



40 function bfsBackward (serwer,client,operation)

41
43
44
45
46
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57
58
59
60

nertKeys = {client};
mark client as having path to client;
while (neztKeys !'= ()
currentKeys = nextKeys;
nextKeys = (;
for key in currentKeys
for ¢ in certificates given to key
if (c authorizes operation
AND issuer of c¢ NOT marked as having path
to client)
countPaths = 0;
for subj in subjects of ¢
if (subj marked as having path to client)
countPaths = countPaths + 1;
if (countPaths > threshold value of c)
if (number of certificates given to
issuer of ¢ > 0)
nextKeys = nextKeys U {issuer of c};
mark issuer of ¢ as having path to client;
if (issuer of ¢ = server) return TRUE;
return FALSE;

Listing 3: Breadth-first search backward from client to server



beneficial direction. If the branching factors can be estimated, the meeting
point should be set nearer the end from which the branching is greater, not
half-way between. If the distance d and the branching factors 8 and 35 are
large enough, the optimal meeting point is distance

dlog B2/ (log 51 + log 32)

away from the end from which the branching is (.

In practice, the average paths are likely to be so short that the above formula
is not needed to determine the optimal depth of the forward search. Instead,
a constant value of one or two can be used unless the delegation paths are
known to be especially long.

In a delegation network with a lot of joint-delegation certificates, the gains
of two-way searching are not as big as suggested by the above formula. The
reason is that the joint-delegation certificates make forward search of more
than one or two steps from the server towards the client infeasible. Still,
when large numbers of servers sign certificates for a few intermediate keys,
the benefits of first marking keys one or two keys away from the server can
be noticeable. If all certificates have only a single subject, the situation is
quite different because also the forward search can be done more efficiently.

We implemented the two-way search by first doing depth-first search forward
from the server, marking the visited keys on the way, and then trying to find
a marked key with breadth-first search from the client. The forward search is
terminated at a specified maximum depth and at joint-delegation certificates.
This way, it visits every key only once.

6.6 Experimental evaluation of the algorithms

Experiments conducted with generated certificate data confirm that the two-
way search is the most efficient of the algorithms. The backward search
algorithms appear almost as fast.

Since no real-world certificate databases are available for the time being, we
generated random delegation networks with the assumed hourglass structure.
This was done by dividing the keys to several levels, the top level representing
servers and the bottom level clients. The number of keys on each level and
the amounts of certificates between each two levels were chosen according to
our (admittedly vague) idea of the typical system. The network was then
automatically constructed by creating the certificates between random keys
in the specified levels.

The data presented here was collected from a network with 4 layers of keys.



Level | # keys # certificates from level
1 2 3 4
1 100 15 200 10 100
2 10 to level 212 2 200 10
3 100 3|2 2 5 20000
4 5000 412 2 2 500
Number of % of
subjects certificates
1 80
2 15
3 3
4 2

Table 1: Parameters for the generated delegation network

Search algorithm

Decision | dfs forward dfs backwd+forwd dfs backward bfs backward

all 3273 4327 o6 o4
positive 3581 4210 23 ol
negative 2347 4676 64 64

Table 2: Average number of algorithmic steps for a key pair in different
algorithms

Table 1 shows the number of keys on each level and the certificates between
them. It should be noted that in this network, there are only few backward
arcs towards the server. (This is determined by the lower half of the matrix
giving certificate counts.) We found the results of comparisons between al-
gorithms to be relatively stable with small changes in the parameter values.
The amount of backward arcs and the arcs inside the levels, however had
great effect on the efficiency of the forward depth-first search (see the dis-
cussion below). Although we have chosen the parameters to somewhat help
that algorithm, the results are not too favorable to it.

The experiments with different one-way algorithms showed that the depth-
first backward search and breadth-first backward search perform best (see
Table 2). Any performance differences between these two algorithms were in-



Depth of forward search

Decision | 0 1 2 3 4
all 56 42 67 1517 1606
positive | 51 32 58 1714 1804
negative | 70 71 92 970 1053

Table 3: Average number of algorithmic steps for a key pair in two-way
search

Depth of forward search

Decision | 0 1 2 3 4
all 58 36 73 1900 1895
positive | 50 21 60 2065 2048
negative | 81 82 116 1370 1406

Table 4: Average cost in two-way search with no joint delegation

significant and certainly much smaller than differences caused by implemen-
tation details. The depth-first forward search and the depth-first backward
search that spans forward searches at joint-delegation certificates, performed

badly.

In the delegation network of Table 1, the forward searches took about 50
times more time than the pure backward searches. The efficiency of the
depth-first search is greatly dependent on the completeness of the graph and
on the number of backward arcs from levels near the client to levels near the
server. These arcs create more paths in the graph, and the depth-first search
may traverse a lot of them. The positive answers are usually returned quite
fast while negative results may require exponentially more work. In some
networks, the forward searches become painfully slow taking occasionally
millions of steps to complete queries with a negative result.

In the comparisons, the lookahead test of the breadth-first backward search
(Listing 3, line 56) was disabled. We observed that the lookahead can reduce
the number of keys processed in the algorithm by up to 70 %. The more pure
clients, i.e. keys that only receive certificates, there are, the more significant
the speed-up will be. Hence, the optimization is in many situations more
significant than it first seems.

The two-way search was tested by the first starting depth-first forward from
the server to a maximum depth, and then looking for for the marked nodes



with breadth-first search backward from the client. (The depth-first search
stopped at all joint-delegation certificates; see Sec. 6.5.) Table 3 shows how
the cost of computation varied in the two-way search as a function of the
depth of the forward search.

With the delegation network of four levels, one step of forward search gave
best results. This is so because the one step away from the client saves a lot
of work in going through the large number servers attacked to a single broker.
Nevertheless, the average savings amount to only 25 %. In experiments with
other delegation network parameters, the best results were also given by
forward search to the depth of one or two certificates. When the network
had five or more levels of keys, forward search of depth two was usually
faster. The savings in computation time were between 10 and 50 %.

Table 4 shows the same kind of measurements as Table 3, only for a network
without any joint-delegation certificates. Here we can see that the two-way
search saves about 60 % of the cost for queries where a valid path is found.
The performance improvement is much bigger than when joint-delegation
certificates are present. This is natural because the forward search part in
the two-way search cannot handle joint-delegation certificates.

It is also interesting to compare the last column of Table 2 with the first
column of Table 3. These figures should be approximately equal. Both
experiments were done by averaging the execution costs for over 1000 key
pairs from the same delegation structure. The variation seems to be always
greater in the searches with negative answer but we expect such queries to
be minority in actual systems.



7 Conclusion

In this report, we presented a formal model of distributed, key-oriented trust
management systems. In the new systems, emphasis is put on delegation of
access rights with certificates. In contrast to centralized or hierarchical,
identity-oriented systems, the new distributed access control systems allow
free formation of local and global authorities and trust relations between
them. Rights are connected to cryptographic keys, not to identities of per-
sons or systems. This approach allows much more freedom in limiting the
level of trust between entities. As far as we know, our work is the first
attempt to formalize the ideas behind these systems. It appears that the
concept of delegation can be presented as a relatively simple formal model
without consideration to implementation details.

In particular, we presented a formal semantics of delegation in a network of
certificates. The delegation network was defined as a bipartite graph whose
nodes are keys and certificates. The arcs of the graph represent the flow of
authority from issuer keys to certificates and from certificates to subject keys.
The main question to be queried from a delegation networks is that does a
key authorize another one to a given operation with a given set of certificates.
It was shown that when each certificate has only a finite number of subjects,
the authorization of a key by another one is always done with a finite set
of the certificates. We also gave an equivalent tree-based formulation of
authorization. This made it easy develop intuitive proofs and to visualize
the workings of algorithms.

The biggest advantage of the formal model was that it made it possible to
discuss general properties of delegation networks without considering the de-
tails of various standards proposals. The equivalence of different techniques
for access control decisions was proven. In particular, we proved the sound-
ness and completeness of the SPKI certificate reduction with respect to the
model. Moreover, we suggested a simple way for representing threshold cer-
tificates and proved it to have desired functional and security properties.
Hopefully, the proposed changes will have effect on the ongoing standardiza-
tion work.

The model was also used as a basis for development of algorithms for manag-
ing certificate databases. We described and compared several algorithms for
authorization decisions from a database of certificates. The algorithms are
based on well-known graph-search techniques that have been enhanced to
handle joint-delegation certificates. Conceptual analysis and measurements
on generated certificate data were done to compare the efficiency of the algo-
rithms. The main observations from the experiments was that it is feasible
to make authorization decisions from large delegation networks comprising



thousands of keys and certificates. The most efficient algorithm was found
to be the two-way search where we first mark keys one or two certificates
away from the server with a forward search and then try to locate one of
the marked nodes with a backward search from the client key towards the
server.

In the future, we hope to derive a further abstraction of the formal model
where the authorizations can have general lattice structure instead of being
rights to perform a set of operations. This should make the theory simpler
and mathematically more aesthetic. Other promising lines of future work
include implementation of a certificate management database and develop-
ment of algorithms for automatic retrieval of certificates from a network
environment.
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