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Abstract – This paper discusses a 3D tracking method allowing
real-time recovery of the 3D position and orientation of a moving
head. The described method uses a 3D wireframe model of the
head, a 2D feature-based matching algorithm, and an Extended
Kalman Filter (EKF) estimator. The resulting motion tracking
system works in a realistic environment without makeup on the
face, with uncalibrated camera, and unknown lighting conditions
and background.
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I. INTRODUCTION

Model-based video coding (MBVC) has recently emerged as
a very low bit rate video compression method suitable for
Collaborative Virtual Environment (CVE) applications [1].
The MBVC increases coding efficiency by using knowledge
about the scene content and describing the real world geome-
try by 3D model objects. The principle of this compression is
to generate a parametric model of the image seen at the emis-
sion end and to transmit only the characteristic parameters
describing how the model changes in time. These differential
parameters are then used to animate the model of the image
recovered at the reception end.

The first step in a full automatic MBVC system is the face
detection allowing the identification and location of the face
in first image frames. The next step is motion estimation
encompassing global 3D-motion recovery, local motion esti-
mation, expression and emotion analysis, etc. The problem is
technologically difficult, as 3D motion parameters have to be
extracted from a sequence of 2D images of the performer’s
head-and-shoulders.

This paper discusses a 3D tracking method for the real-time
measurement of six head motion parameters, namely 3D po-
sition and orientation, and the focal length of the camera.
This method uses a 3D wireframe head model, a 2D feature-
based matching algorithm, and an Extended Kalman Filter
(EKF) estimator. Our global motion tracking system is meant
to work in a realistic CVE without makeup on speaker's face,
with uncalibrated camera, unknown lighting conditions and
background.

II. TRACKING HEAD MOTION

The general problem of recovering 3D position parameters
from 2D images could be solved using different 2D views of
the 3D objects. If these images are taken at the same time the
problem is solved by stereovision [2], [3], or trifocal tensor
[4]. Another approach using monocular 2D images of moving
objects is known as Structure-From-Motion (SFM) [5].

Given 2D-object images the SFM problem aims to recover:
(i) the 3D object coordinates
(ii) the relative 3D camera- object motion
(iii) camera geometry (camera calibration)

The SFM framework (Fig.1) consists of two main modules:
(i) Tracking module, delivering the 2D point measure-

ments ),( iii vup of the tracked features, where

i=1,…,m, and m is the number of measurement
points.

(ii) Estimator module (for the estimation of 3D geome-
try and motion), delivering a state vector

),,,,,,,,,( iiizyx ZYXfttts λβα= (1)

where ),,,,,( λβαzyx ttt are the six 3D camera/object rela-

tive motion, namely translation and rotation, f is the camera

focal length, and ),,( iiii ZYXP is the object geometry,

where i=1,…,m, and m is the number of tracked features.

Fig. 1: The Structure-From-Motion (SFM) framework



To detect and locate a human face, the system will process
the image, identifying relevant features, and then use these
features to recognize and determine the location of the face.
Tracking finds and locates the relevant facial features in a
sequence of images. Tracking should allow estimating the
motion while locating the face. There are three main tracking
techniques [6], [7]:
(i) Feature-based methods, which extract image features and

track their movement from frame to frame. Image fea-
tures are low level image descriptors, such as "regions",
"edges", and "point features". Reliable tracking of re-
gions is often difficult, since minor changes between
frames can lead to very different segmentation in con-
secutive frames. Arbitrarily curving edges are difficult to
describe and track. Trackers based on point features such
as nostrils, corners of eyes, mouth endpoints, tips of eye-
brows are increasingly used in computer vision applica-
tions [8], [9]. However, in a scene where objects move
erratically, the noisy image data and spatial and temporal
sub-sampling can make motion and acceleration estima-
tion difficult.

(ii) Optical-flow methods, which use spatial and temporal
partial derivatives to estimate the image flow at each lo-
cation in the image. Algorithms for recovering optical
flow [6] are based on a set of assumptions about the
world that, by necessity, are simplifications and hence
may be violated in practice resulting in gross measure-
ment errors. Moreover, the extraction of the optical flow
from an image sequence is a highly computational task.

(iii) Correlation-based methods are popular for tracking ob-
jects [10], [11]. They use the sum of the absolute differ-
ences between template and search area pixel intensities
as a difference measure. On the negative side, the corre-
lation tracking methods are sensitive to changes in over-
all illumination changes between frames of the sequence.

We employ a feature-based tracking technique to obtain the
2D observations , which SFM can use to infer the 3D infor-
mation.

The SFM problem can be formulated as a parameter estima-
tion problem: “Given a number of noisy measurements of
2D-tracker positions, we have to optimally recover the SFM
components of equation (1)”.

We have adapted the SFM approach of Azarbayejani and
Pentland [5] to recursively recover the 3D motion and per-
spective camera geometry from feature correspondences over
a sequence of 2D images. To speed up the calculations we
are using a motion model that simplifies the Jacobian. EKF is
used to solve the SFM problem resulting in an accurate, sta-
ble and real time solution. The EKF takes in consideration the
non-linear aspect of mapping. We use a perspective camera
model to reflect the mapping between the 3D world and its
projection. In the next section we present an EFK based tech-

nique, used to recover 3D motion parameters and camera
focal length.

III. EXTENDED KALMAN FILTER FOR 3D TRACKING

The continuous imaging process is sampled at discrete time
intervals by grabbing images at a constant time interval.
These images are then sequentially analyzed using an EKF to
determine the motion trajectory of the face within a deter-
mined error range.

The EKF converts the 2-D feature position measurements,
using a perspective camera model into 3-D estimates of the
position and orientation of the head [5], [12], [13]. The EKF
recursive approach captures both the cause-effect and the
dynamic nature of the tracking, offering also a probabilistic
framework for uncertainty representation.

The EKF is applied to nonlinear systems and consists of two
stages: time updates (or prediction) and measurement updates
(or correction). At each iteration, the filter provides an opti-
mal estimate of the current state using the current input
measurement, and produces an estimate of the future state
using the underlying state model. The values, which we want
to smooth and predict independently, are the tracker state
parameters.

The EKF state and measurement equations and can be ex-
pressed as:

)()()1( kkAsks ξ+=+ (2)

)()()( kkHskm η+= (3)

where s is the state vector, m is the measurement vector, A is
the state transition matrix, H is the Jacobian that relates state
to measurement, and )(kξ and )(kη are error terms mod-
eled as Gaussian white noise.

The observations are the 2D feature coordinates (u,v), which
are concatenated into a measurement vector )(km at each
time step. The observation vector is the back-projection of the
s state vector containing the relative 3D camera-scene mo-
tion, and the camera internal geometry, namely the focal
length. In our case the state vector is

)_,,,( lengthfocalvelocityrotationntranslatios that
contains the relative 3D camera-object translation, rotation
and their velocities, and camera focal length.

The EKF requires a physical dynamic model of the motion
and a measurement model relating image feature locations to



motion parameters. Additionally, a representation of the ob-
ject (user's head) is required.

3.1. The Motion Model

The dynamic model is a discrete-time Newtonian physical
model of a rigid body motion, moving with constant velocity.
The state vector:

),,,,,,,,,,,,( zyxzyxzyxzyx tttfttts ωωωωωω &&&
&&&

consists of 13 elements grouped as follows: the relative cam-

era-object translation ),,( zyx ttt , the small inter-frame rota-

tion ),,( zyx ωωω , the camera focal length f, the transla-

tional velocity ),,( zyx ttt &&& , and the rotational velocity

),,( zyx ωωω &&& .

The state equation (1) could be written as:
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where zyxi ,,= is the index of the coordinate axes of the

camera reference frame, I is the identity matrix and τ∆ is the
inter-frame time.

3.2. The Measurement Model

The measurement model relates the state vector s to the 2D-

image location ),( kk vu of each image feature point, kp .

The point ),,( kkkk ZYXp of the object reference frame

becomes the point ),,( ckckckck ZYXp of the camera refer-

ence frame, where:
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where T and R represent the object (or camera) translation
and rotation matrices, and N is the number of points.

The observed perspective projection is given by:
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where f is the camera focal length.

At each filter cycle we have to calculate the partial deriva-
tives of u and v with respect to each of the unknown parame-
ters. Lowe [14] proposed a reparameterization of the projec-
tion equations, to simplify the calculation of H Jacobian, by
expressing the translations in the camera coordinate system
rather than model coordinates. In this case the measurement
equation will take the following form:
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When N points are tracked, there are 2N measurements (co-
ordinates of point projections) at each frame and 7 parameters
to be recovered (six motion parameters plus camera focal
length). Both motion and focal length are over-determined at
each frame when 72 >N , which happens when N ≥ 4, i.e.
when tracking 4 or more points. When camera parameters are
known beforehand, we need N ≥ 3 points to recover the 3D
motion.

We employ a three-parameter incremental rotation

),,( zyx ωωω , similar to that used in [5] to estimate inter-

frame rotation. The incremental rotation computed at each
frame step is combined into a global quaternion vector

),,,( 3210 qqqq used in the EKF linearization process and

rotation of the 3D-model [15].

IV. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

4.1. EKF Initialization

The 3D model provides the initial structure parameters



Step 1.
The user positions his/her face at the center of the
screen, and adjust the matching of the live image
and the projected mesh , so that the projected mesh
covers the entire facial region.

Step 2.
Left mouse click on every rigid feature point of in-
terest on the live image. An automatic program
function takes care to properly align the selected live
feature point to a vertex of the projected mesh.

Step 3.
Right mouse click anywhere on the active Windows
“live” image triggers the tracking process (by “boot-
ing the EKF module).

),,( iii ZYX of the Kalman filter. Each 2D-feature point

),( ii vu corresponds to a structure point ),,( iiii ZYXp .

As shown in Fig. 2, these ),( ii vu points are obtained by

intersecting the 2D image plane with a ray rooted in the cam-
era’s center of projection COP and aiming to the 3D structure
point on the head model.

Fig. 2: Identical point selection process on Marius’ image
and the corresponding 3D model projection.

The typical point identification problem of the 3D pose re-
covery from 2D images is solved in our case by identifying
corresponding points in both the 2D live image of the subject
and the 3D model of the subject’s head. In order to aid the
point identification process, we are using an augmented real-
ity technique by projecting in the 2D live image the 3D mesh
used to model the head.

At this development stage it is still up to the user to arrange
the scale matching between the live face image and the pro-
jected mesh. The steps of the EKF initialization algorithm for
multiple “point identification” procedure using this aug-
mented reality technique are as follows:

4.2. EKF Update

The EKF update stage is illustrated in Fig. 3. At each itera-
tion, the EKF computes an estimate of the rigid 3D motion
that must probably correspond to the motion of the 2D live
image. We employ the Kanade-Lucas-Tomasi (KLT) [16]
2D-gradient feature tracking method, which robustly per-
forms the tracking reinforced by the EFK estimation output.
An estimate of motion and camera focal length is found at
each step. After the 3D-motion and focal length are recov-
ered, a perspective transformation will project feature points
back onto the image to determine an estimated position of the
2D feature trackers. At the next frame in the sequence a 2D
tracking is performed starting at this 2D estimated position.
The current matching coordinates of tracked features are fed
back into the Kalman filter as the observation vector, and the
loop continues. The feedback from EFK is used to update the
3D-model pose parameters, i.e. provides the 3D head tracking
information.

Fig. 3: Continuous 3D pose recovery using EKF



The recovered 3D position and orientation are propagated to
the Head Modeling block of the CVE system, which renders
a new posture of the 3D-model as illustrated in Fig. 4.

Fig. 4: Tracking the head motion.

V. CALIBRATION

In order to validate the accuracy of our 3D-head tracking
system, we developed a rapid calibration technique. A previ-
ously recorded sequence of 2D images representing 3D head
model poses, is played as “live” image, and tracked with our
EKF framework.

Fig.5: True and recovered rotation angles: EKF-4 points
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In the above representation ),,( zyx ttt is the 3D position,

and ),,( zyx θθθ is the 3D orientation of the head. The re-

sulted errors show the effect of both human-aided 3D/2D
point-identification and 3D tracking.

We minimized the errors by fine-tuning the initialization
process of the EKF.

Fig. 5 shows the recovered vs. real 3D-orientation for a cali-
brated sequence.

We have found experimentally in one case that the RMS dif-
ference between true and recovered rotation angles is 3.035
degrees when tracking 4 points. These statistics are compara-
ble to the Polhemus sensor accuracy [5] indicating that the
vision estimate is at least as accurate as the Polhemus sensor.

VI. CONCLUSION

Tracking 3D pose parameters of a moving target (head) from
a sequence of 2D-images motion is technologically difficult.
The effects of head motion and facial expressions are com-
bined in these images, so it is crucial to successfully separate
the rigid from the non-rigid motion of the head
("pose/expression separation”). The head pose has to be accu-
rately computed before attempting to recover the expressions.

The 3D tracking model-based algorithm discussed in this
paper allows automatic recovery of six head-parameters: the
3D position and orientation. Experimental results show that
this tracking system works well in a realistic videoconferenc-
ing environment, without makeup highlighting the speaker's
facial features, unknown lighting conditions, and unknown
scene background.
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