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Abstract
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CMS offline system. The work focused on the issue of usinglaigk farms efficiently.
We discuss various hard disk performance characteristidgshware important for physics
analysis applications. It is shown that the layout of physiata on disk (clustering) has a
significant impact on performance. We develop a storage geamant architecture which
ensures high disk performance under a typical physics aisalyorkload.
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Summary

At CERN, the European laboratory for particle physics, tnedamental structure of matter is studied
using particle accelerators. Accelerated particles ali@ed head-on inside large detectors, which
measure the collision products. The measurements aredtuding large computer systems. One of
the next-generation particle physics detectors, calleds@®ompact Muon Solenoid), will produce 1
Petabyte (1.000.000.000 Megabytes) of data each yedingtéioom 2005. This data volume pushes
the limits of current database technology. The data stosagkeanalysis software will be based on
object technology, in particular on an object database.h@mardware side, CERN plans to use tape
robots, large hard disk farms, and large CPU farms, all coteokby a fast network.

The goal of the design project was to collaborate on findinthods for efficiently storing, managing,
and retrieving the CMS detector data. Early on in the projéetas decided to focus on the issue of
using large disk farms efficiently.

First, the relation between disk access patterns and dfilieeicy was studied, in particular with
respect to the types of access done in physics data progeddaasurements for different scenarios
were made on current disk hardware, and were extrapolatediue hardware. The results of these
performance studies, which were often very counter-ivielitwere then fed into a design phase.
In this phase, a number of complementary storage manageandmptimisation mechanisms were
produced. Together, these mechanisms keep performantcavhite database access patterns change.
The designs were validated by making prototype implememisitof the parts which were critical to
performance.



Management Summary

This documents reports on research and prototyping workCid6 storage management and optimi-
sation, in particular with respect to the efficient use ofi¢adisk farms in physics analysis jobs.

Chapter 4 reports on disk performance measurements inmpdotgphysics analysis applications. Itis
shown that the layout of physics data on disk (clustering)daignificant impact on performance. In
developing the CMS physics analysis system, a significanuatrof work will need to be devoted to
the creation of mechanisms for optimising the clusterindadf. The required clustering optimisations
are not provided by the object database, nor by any other eooiahhardware or software component
in the system.

Chapter 5 reports on prototyping activities which were perfed to test the usefulness of the IRIS
Explorer software framework for creating CMS physics asysoftware. It is concluded that IRIS
Explorer is not useful for this.

Chapter 6 reports on prototyping activities connected doagfe management, in particular with re-
spect to the clustering services shown to be needed in ehapBhapter 6 contains an analysis of the
requests which will be made on the object data store by physialysis applications, and presents
the global design of a storage management mechanism whicld fedfil the stated CMS needs.

Results obtained in this project indicate that it will be gib& to create a storage management system
which maintains high performance, while meeting the flditibiequirements in the CMS computing
technical proposal. For analysis efforts which repetijiveccess the same dataset, it will be possible
to automatically optimise the placement of data on disk, l&vel at which access speeds are close to
the maximum disk access speeds as specified by hardwarersendo

In this project, the tests for finding performance and schifalproblems were done on a medium-size
hardware configuration (6 processor machine with two digk &, using the Objectivity/DB database
on top of the UNIX file system. Tests with larger hardware agurfations and more software layers
may reveal additional problems, which are not addressed®yptimisation services presented in
chapter 6.
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Chapter 1

Introduction

The CMS (Compact Muon Solenoid) detector is a next-germrgtarticle physics detector which
will be built at CERN. The detector will be ready in 2005, araksha planned operational lifetime
of 15 years. The detector will produce 1 Petabyte (1.0000@Megabytes) of permanently stored
physics data each year. Teams of physicists will search eswkgs this data to extract new physics
results. For every Petabyte of raw data, some 0.1 to 0.2 Yaetabf derived data will be produced
and stored by various physics analysis efforts. Unlike &ve data, derived data can exist in multiple
versions.

The CMS data store requirements pose several key issuedarfieedata volume means that the data
storage and processing system uses a significant amountdvfdra (tape robots, disk farms, CPU
farms), so that hardware failures can be expected dailytitwoarly. Also, jobs which process the
data have to be executed on a massively parallel platfortheyf are to finish in reasonable time. To
achieve the desired database throughput, a storage tignaitt have to be used. At the bottom of
the hierarchy will be tape robots which can hold all data, Hate low throughput and high latency.
At the next level is a disk farm, which has a much higher thigug (about a factor of 100 higher),
and much lower latency, but which can only hold about 0.2 [Ra¢s of data. A large amount of
memory based on RAM chips will be at the top of the hierarchettivds have to be developed for
managing the migration and replication of physics datau@hothe hierarchy. A final key issue is that
the performance characteristics of 2005 hardware are ndtn@vn. Some technology tracking is
being done, but it cannot account for dramatically new dgwalents. Much of the development work
takes the most conservative technology predictions asia.bas

To address the key issues connected to the management at#hstare, several prototyping activities
are being done by CMS, often in collaboration with other gbhaving similar storage needs. The
prototyping work reported on in this document focused nyaaml the issue of data management at the
disk farm level of the storage hierarchy. The prototypinfpre$ aimed at reconciling the data access
needs of physics analysis jobs with the performance cheratits of disk drives, in such a way that
the greatest possible throughput is achieved.

Chapter 2 contains environment and background informatitevant for the work. Chapter 3 states
the project goal, and discusses the project organisatidohamiias chosen, and the management of
risks in the project. Chapter 4 reports on measurementssiif pgrformance characteristics which
were made to support the subsequent design and prototymirlg @hapter 5 reports on prototyping
activities which were done to test the usefulness of the B{lorer software framework for creating
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CMS physics analysis software. This chapter concludesnbatsing IRIS Explorer is the better
alternative design decision, and we thus did not use Explarsubsequent prototyping activities.
Chapter 6 reports on our design and prototyping activitiesJMS storage management and optimi-
sation. It also describes the storage management desigh wiis made. The first part of the chapter
presents an analysis of the nature of physics data progessil explains how this analysis led us
to choose certain design alternatives. The rest of the ehagports on design activities which were
steered, not so much by a requirements analysis effort,\bpitdiotyping efforts aimed at discovering
various relevant properties of hard disks, and the opeyatyrstem and database kernel layers above
them. It presents performance measurements done on etatyplementations, and shows how
these measurements led to subsequent design decisioreChaas conclusions.



Chapter 2

Environment

2.1 CERN

At CERN, the European laboratory for particle physics, tediamental structure of matter is studied
using particle accelerators. The acronym CERN comes fraretrlier French title: "Conseil Eu-
ropeen pour la Recherche Nucleaire”. CERN currently hadatfuyest accelerator in the world, the
LEP (Large Electron Positron) accelerator [1] which is aynmith a circumference of 26.7 km. The
successor of LEP is called the LHC (Large Hadron Collidet) [Phe LHC startup is scheduled in
2005. Currently, a large share of CERN's resources goegthietdesign and construction of the LHC
accelerator, and of its two main detectors, ATLAS (A TordidBC Apparatus) [3] and CMS (The
Compact Muon Solenoid) [4].

2.2 Particle physics

In accelerators like LEP and LHC, particles can be accealdrat near-light speed, and collided head-
on. Such high-energy collisions happen inside detectomchwdetect some of the products of the
collision (particles and energy quanta) which emanate filmencollision point. Figure 2.1 shows an

example of such a collision, which is commonly referred taasevent'.

By studying the types, speeds, and directions of the cofliproducts in the event record, physicists
can learn more about the exact nature of the particles asd$avhich were involved in the collision.
Because of the large amount of data involved, events argestwdth large computer systems.

In many physics analysis efforts, a large amount of time @mdputing power) is spent in taking a
large set of events, and narrowing it down to a much smalleofdateresting events.

For example, to learn more about Higgs bosons, one can stahisein which a collision produced

a Higgs boson which then decayed into four charged leptofAgdiggs boson cannot be observed
directly, only its decay products can be observed.) A Higgsob analysis effort can therefore start
with isolating the set of events in which four charged leptarere produced. Not all events in this
set will correspond to the decay of a Higgs boson: there argyrather physics processes which also
produce charged leptons. Therefore, subsequent isolstéps are needed, in which ‘background’
events, in which the leptons were not produced by a decayigggboson, are eliminated as much
as possible. Background events can be identified by lookinghar observables in the event record,
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Figure 2.1: A CMS event (simulation)

like the non-lepton particles which were produced, or theesis at which various particles left the
collision point. Once enough background events have beineted, properties of the Higgs boson
can be determined by doing a statistical analysis on thef &sents which are left.

The process of narrowing down an event set is done in mulsiigps, where each step is referred to
as a ‘cut’. The data reduction rate of the cutting processbeaanormous. The final event set in the
above example may contain only a few hundreds of events;tedlérom thed x 10'* events which
occurred in one year in the CMS detector. This gives a datacteah factor of about 1 in0'2,

The study of matter with accelerators is part of the field ghhénergy physics (HEP). A lot of the
technology, including software technology, used in the HiEH is developed specifically for HEP.

2.3 CMS

The CMS detector (figure 2.2) is one of the two main detectbthe LHC accelerator. It is being
designed and built, and will be used, by a world-wide colfation which currently consists of some
130 institutes, which contribute funds and manpower. Tistitiries will also be the users of the
detector when it is finished. CERN is one of the instituteh@n@MS collaboration.

In normal operation, the LHC accelerator will let two bunshe particles cross each other inside
the CMS detector 40.000.000 times each second. At the higbegr levels, there will be about 20
collisions of two particles in each bunch crossing. In CM$nieology, an ‘event’ corresponds to a
bunch crossing with collisions, and the combined measungsna the collisions products, done by
the detector elements in the CMS, are called the ‘raw eveat.dehe size of the raw event data for a
single CMS event is about 1 MB.

There are two main systems in CMS data processing: the osystem and the offline system (figure
2.3). The online system is a real-time system, which hasatle ¢f selecting (filtering out) the 100
most interesting events out of thex 107 events in every second. These 100 most interesting events
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Figure 2.2: The CMS detector

will be recorded on long-term storage maintained by theraflsystem. The output of the online
system is thus 100 MB/s data stream, containing raw evergbaft 1 MB each.

The detector takes data for abays of the time of each year, which corresponds to aldédtseconds.
Thus, in ayear] 0 events will be recorded in the offline system, which corresjsato 1 PB (Petabyte,
or 10" bytes) of data. The total running time of the LHC will be abd&tyears. The LHC data
volumes are the largest of any known project in the time framelved [5]. One of the big challenges
in CMS computing is to invent methods and techniques whialeso the Petabyte level.

2.4 CMS offline data processing

The stored events will be analysed by about 20 groups of pisysiin the CMS collaboration, using a
large computing system known as the offline system. Theigctifphysics analysis is an example of
a data mining [6]. Note however that physics analysis has Heae long before the term data mining
became popular.

Some parts of physics analysis are highly CPU-intensiVergiarts rely heavily on the I/O bandwidth
which can be achieved when accessing precomputed restisseXpected that the physicists in the
collaboration will be able to use whatever computing povier offline system makes available to
them: an increase in computing power means an increase ipdieatial for interesting physics

discoveries, because analysis jobs can look for more seffdets.

The CMS offline system will be based on a persistent objeot sihysicists will access event data via
an Object Database Management System that will be autatiptivailable from the CMS software.
Neither the tapes nor disk files should be accessed exylicitl

The offline system will rely on massive parallelism and spleaptimisation techniques to get the most
out of standard hardware. The hardware will be upgradediiirdime to profit from new advances in
computing technology. Performance could grow with severdérs of magnitude from 2005 to 2020,
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Figure 2.3: The CMS online and offline systems

and the system architecture and database model will haa&éahis into account.

In addition to the central CMS data processing system at CER®e may be a small number of
regional computing centres around the globe, which hostlemaut still considerable, CPU and
storage capacities. Processing tasks are automatichiylated to be executed at the most convenient
location.

2.4.1 System dimensions

The following are estimates for the initial offline systen®05, taken from [7]. Exact figures cannot
be given: these will depend on the particular price/perfomoe ratios for hardware at that time.

Processing power. The offline system will have about” MIPS of processing power, and will heavily
rely on parallelisation to achieve the desired speeds.

Storage capacity. The system will have a robotic tape store with a capacity eése PB, and a disk
cache of several hundred TB (Terabyte 16> bytes).

I/0 throughput rates. For the central data store at CERN, the maximum integratediginput from
the disks to processors will to of the order 100 GB/s, whetieaintegrated tape-disk throughput may
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be of the order 1 GB/s (32 PB/year) spread over some tens afefev

The table below lists estimated data rates between thespersobject store and the different online
and offline system components in figure 2.3.

| Component name \ Data rate from/to Persistent Object Store |
Slow control ~ 0.1 MB/s (during detector operation)
L2/L3 ~ 100 MB/s (during detector operation)
L4 ~ 110 MB/s (keeping up with detector operation)
Simulation ~ 2 MB/s (occasional writing over the year)
Calibrations, group analyses (continuous use of

+ ~ 100 GB/s whatever resources

User analysis can be obtained)

Note that the data rate for the two analysis components faveaghs all other data rates. Thus, if one
is concerned with efficiently using the available hardwasources, only these two components need
to be considered.

With respect to storage management and optimisation, thi#ations, Group Analyses’ component
is the least problematic one of the two. This component glficuns large batch jobs which will
process all data in a huge dataset, writing another hugeetatdobs will mostly be tape-bound, and
will read data in a sequential way. The techniques for oiingi the data flow for such jobs are
relatively simple, and well-understood in the physics paiaessing community.

The ‘User analysis’ component, on the other hand, will dejpem storage management techniques
which are novel in physics data processing. Jobs run by tigponent are typically short, sometimes
even interactive, and will be concerned with analysingeasingly narrow subsets of all event data.
These jobs produce semi-random data access patterns wéistigect to gradual change. To keep the
performance for these jobs high, the persistent storageagearwill have to dynamically reorganise
(re-cluster) data on disk to match the changing patterns.

2.4.2 Types of data

We can recognise a number of different types of data in peyanalysis. All types of data below will
be stored in the persistent object store of the offline system

Raw data. For every event, the raw data is the record of all detectorsomeanents done for this
particular event. No processing has been done on the ravagatafrom some lossless compression.
In CMS, the raw data for a single event will have a size of alduB. In experimental terms, the raw
data for an event is a direct record of an observation, whithes as a basis for later interpretations.
After having been recorded, it will never be changed.

Calibration data. The calibration data is used in interpreting the raw datdib€@dion values, which
can be queried for each event, record things like the examinggic position of detector elements
inside the CMS detector, and factors needed to interpreduiygut of various analog-to-digital con-
verters, as recorded in the raw data blocks. Unlike the rae, diae calibration data records interpreta-
tions and judgements made by humans, usually with the ai@ti$tcal analysis programs. When the
interpretation process is refined, new versions of the tiitn values can be stored in the database.
Calibration values are not stored on an event-by-evenspasgery value will be stored with a valid-
ity interval which will span many events. Querying of theilbadtion values will usually be on an
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event-by-event basis.

Reconstructed data. The reconstructed data for an event represents an intatioredf the raw data
and calibrations for an event in terms of physics phenom&hare are several types of reconstructed
data. For example, the setmaconstructed tracker an event is a set of particle trajectories which can
be observed in the raw data, by connecting the ‘points’ nreadoy the individual detector elements.
A reconstructed track record for an event has a size of ab@tkB. The record is produced with
atrack reconstruction algorithnmGood track reconstruction algorithms are very CPU-intendlt is
expected that the majority of CPU resources in the CMS offtiystem will be devoted to running
track reconstruction algorithms. Another type of recomstied data are reconstructgs A jetis a
collection of tracks with the same origin and about the saimtion, which is produced by a physics
interaction at the quark level.

Event summary data. An event summary object has a size of about 10 KB, and sumasangortant
features of the event. It is largely based on the reconstudata. The record may for example
contain information about those reconstructed tracks wliwere produced by particles with very
high energies.

Event tag data. An event tag object has a size of about 200 bytes, and cordaiesy compact
summary of the nature of an event.

In the CMS data model [7], the distinction between the défertypes and sizes of reconstructed and
summary data is not very rigid. It is possible that some gisyanalysis effort is best done with event
summary data blocks of 50 KB, and the offline system shoulel tiak possibility into account. At the
database interface level, there will be no distinction leetwreconstructed, summary, and tag data:
all will be accessed through the same mechanism.

As seen in section 2.2 in physics analysis a sample of evemtariowed down to a smaller set of

interesting events in a number of steps, where each stefeisa@ to as a cut. For Higgs analysis,

with a data reduction factor d0'2, the online system will account for a reduction factorof 105,

the offline system for a factor of aboRt5 x 10°. The first cuts in the offline system will make use

of the small event tag objects, later cuts will graduallyessclarger objects for each remaining event.
The final cuts may even need the raw event data itself.

2.4.3 Object databases

The CMS offline system will be based on a persistent objeot sto the CMS computing strategy [7],
which was developed in close collaboration with the RD45qmio(see section 2.5), the choice was
made to implement this persistent object store on top of antertial object database management
system (ODBMS). The ODBMS should be compliant with the emgr@®DMG [8] standard for
object databases. This choice is in line with the generatesiy of using commercial software as
much as possible, rather than developing software in-hotike existence of the ODMG standard,
for which multiple vendors are making implementations, ugas that CMS will not be bound to a
single object database vendor. This is important for tweeea. First, it ensures that the continuity
of the CMS data store and its data management software isependent on the survival of a single
vendor or product line until 2020. Second, it improves CE®pbsition in negotiating the price of
the database license.

The Objectivity/DB object database [9] was chosen as this basall prototyping efforts in CMS
in the 1996-2000 timeframe. The final choice for a productiatabase will be made later. Objec-
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tivity/DB was found to be the product best suited for use by&hts internal architecture can cope
with extremely large databases, and it has facilities fdding distributed systems. Also, the vendor,
Objectivity Inc, has been shown to provide good support toproducts. CERN currently has the
status of an Objectivity beta testing site.

From a C++ programmer’s viewpoint, an object database offex service of creating and managing
persistent objectsA persistent object has the property that, unless exiyliditleted, it will continue

to exist after the termination of the program which created\side from that, persistent objects can
have all the features one can expect in a normal C++ obje&y Tan inherit from other objects, and
can have private and public data members, methods, an@lidnctions. A non-persistent object
can maintain references to persistent objects, and a fgrsizhject can maintain references to other
persistent objects. Compared to programming for a relatidatabase, programming for an object
database has the advantage that an object oriented datg aéili map naturally onto the object
database facilities. There is no need for code which ‘flattére object structure into something like
relational database tables.

The ODMG standard for object databases contains a langndgpendent model for objects in the
database. This object model defines, among other thingsistet object naming and identity, in-
heritance, locking, and the relations between objects lwbam be maintained by the database. The
ODMG standard defines language bindings for C++, Smalltaiki Java. These language bindings
define facilities for object creation, naming, manipulatand deletion. Individual vendors can extend
the facilities offered by the language bindings to areasivlare not covered by the standard. Objec-
tivity, for example, extends the C++ language binding witlelastering’ mechanism, by which the
application programmer can, to some extent, control theighy/placement of objects on the database
media. An optimal physical placement of objects is impdrtarget high performance on reading.

2.5 Organisational environment

The project was performed in the CMC (CMS computing) groughefECP (Electronics and Comput-
ing for Physics) division of CERN. This group contributeshe global computing work in the CMS
collaboration. This arrangement has a matrix organisattaicture (figure 2.4): the ECP division is
on the vertical axis, and the CMS collaboration is on thezumial axis, extending beyond CERN.

CERN

ECP

CMS
collaboration

CMC CMS computing

Figure 2.4: Position of CMC group in the organisation matrix

In the field of storage management for HEP, CMS is not the oxpheement with Petabyte require-
ments. To pool the efforts whenever possible, a joint pitdjetween the LHC experiments, called
the RD45 project (subtitle: A Persistent Storage ManageHI6P) [10], was created. In addition,
to providing a common R&D forum for the future experimentsC&RN, the RD45 project has ties
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with a number of particle physics experiments in preparatatside of CERN. An example is the
BaBar experiment at SLAC (The Stanford Linear Acceleratenter) [11], which starts in 1999 and
will store 100 TB of event data per year, using Object Dataltashnology. Another research project
with ties to RD45 is the CMS Caltech/CERN/HP joint proje@][vhich is constructing a large-scale
prototype of a CMS regional computing centre. Figure 2.5xshte structure of the RD45 project.

Another important joint project is the LHC++ (Libraries for
HEP Computing) project [13], which addresses the produc-_RD45

tion of HEP-specific software libraries, and the licensifig p CERN IT division
commercial software. The organisational structure of the

LHC++ project is similar to that of the RD45 project. | | ATLAS computing
The activities in the design project were done in the CMS |cw|s computing
computing group, and the main goal was to contribute to th

CMS computing milestones as recorded in [7]. A secondary |Etc'"

goal was to contribute to the RD45 milestones, as part of the N

CMS contribution to RD45. Due to the strong overlap be- \‘\:\:BaBm computing
tween the CMS computing and the RD45 milestones, many \

work items in the design project contributed to both mile- :Etc---
stones.

Figure 2.5: Structure of RD45 the project

2.6 CMS software process

The CMS software process differs from ‘textbook’ softwareqesses in a number of ways.

First, there is the large timescale involved: the offlinewafe has to be ready in 2005, and will be
used at least up to 2020. The large lead time has made roonmftutiaus requirements. The LHC

data volumes are the largest of any know project in the timmeé& involved [5], and this makes it

necessary for the software process to actively push thésliofistorage management technology.

The CMS software process [7] recognises the following (leygring) phases in offline software de-
velopment:

1995 -1998 Research, selection and testing of commerdtalaae components
Initial prototyping of parts of the system

1998 — 2000 Research, selection and testing of commerdialaze components
Development of full prototype of the system

2000 — 2002 Selection and testing of commercial softwarepooments
Development of first version of the Operational Phase soéwa
Choice of the final the software environment, including caencial components

2002 — 2004 Development of production version of the Opemnali Phase software
Deployment of production operational phase software

2005 - 2020 Maintenance of operational phase software
(Maintenance involves re-optimising to exploit new depahents in hardware)

It must be noted that in the current phase of the softwaregsmca detailed overall design does not
yet exist. Also, the system requirements have not been firegliirements are stated in terms of
‘the system must use the available 2005 hardware effegtivelther than ‘the system must supply



2.6 CMS SOFTWARE PROCESS 15

n MIPS of processing power'. In the end, the 2005 system pedioce will be a function of the
price/performance ratios of 2005 hardware, the CMS hareveadget (which is more or less fixed),
and the effectiveness of (the optimisation algorithmsie)goftware.

Second, the dispersed nature of the CMS collaboration ad@sthe software process different from
textbook cases. Though there is a core software team at C&tRé&l, development activities are done
in smaller teams, or by individuals, in other European coest and in the US. The flat nature of

the collaboration implies that there can be no centralisgdrol structure: decisions are made on the
basis of consensus. The core team at CERN can play a codangdimate at best.

Third, HEP software has traditionally been developed in FRRN, and the field is currently in the
middle of making a slow transition to the use of object tedbgp and a higher reliance on commercial
software components. Many people in staff and managemenbrdy slowly making the shift to
the new design and programming paradigms. As a result, #wésts no clear, unified view on the
potentials and limitations of object technology, and on ploéentials and limitations of the chosen
software components. As a result, a lot of time is spent irstigating and reporting on issues
which would, in a more mature environment, have been idedtifieforehand as minor, non-critical,
orirrelevant. It is recognised though that at least somaéisfis an inevitable by-product of traversing
the organisational learning curve.

The CMS software strategy is to exploit commercial softwaremponents as much as possible. An
important part of this strategy is to provide early diren8aand feedback to vendors of such software
components, to ensure that the CMS needs are met in the longReoviding early feedback can be
particularly valuable in the ODBMS market. This market idl stall, while it is expected to grow
rapidly. Also, standardisation efforts for ODBMS systenns still underway. Feedback is mostly
provided through the RD45 and LHC++ joint projects.
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Chapter 3

Project Organisation

3.1 Project goal

The goal of the design project is to do research and protogyfor CMS storage management and
optimisation. Various access and optimisation servicéidweidesigned and prototypezh top ofthe
basic mechanisms of Objectivity/DB [9], in order to evatudtand how an ODBMS can be used for
implementing functions specific to the CMS computing tecahproposal [7].

The prototypes will also aim to integrate Objectivity/DBtlwivarious other software components in
the LHC++ [13] library. The goal of integrating with thesenet components is twofold: first, one
wants to know if the component is a good choice among variqu®ms, and second, one wants
to provide feedback and directions to the component authibing activities are performed in close
collaboration with the RD45 project [10].

3.2 Project planning

The project planning needed to address two major projecfaitors: technological risks and organ-
isational risks.

The technological risks are caused by a number of technicartainties. First, the research activities
will (naturally) explore unknown terrain, and the problemvhich may be encountered cannot be
known beforehand. Second, the prototyping activities et commercial software components
which have not yet been evaluated fully, and for which unetge integration problems may arise.
The technological risks cause large uncertainties in the tudget for different project activities.

The organisational risks stem from the characteristich®@f@MS software process. There is no ‘hard’
requirements document, and, in the 1997 phase, there ipaldetailed software design. As a result,
the design project goal is stated in broad, loose terms.

To address the risks, the planning follows the spiral mo#lé].[ Risks are identified, and questions
corresponding to these risks are formulated. The answedtese questions are used to address the
risks. We use a cyclic prototyping approach with a variahdmhber of cycles (figure 3.1). Each cycle
should take no longer than 10 working weeks, though the htitna from the start to the end of a
cycle may be a bit longer, because some overlap in the phaaiewed.
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Project startup

—
e}

\
Plan prototype

Y

Build prototype

Y

Evaluate prototype

Y

Document prototype

\
Final report

Figure 3.1: Project plan with cyclic prototyping

The planning of each prototype happens at the start of a,cyotecarlier. This makes it possible to
take the latest information about the needs of the CMS aniélon into account when committing
resources. Thus, frequent course corrections can be mawetithg the organisational risk that the
project drifts away from the CMS mainstream.

The plan for each prototype clearly defines

e the functionality of the prototype,
e the software components which are tested or integratedebgrbtotype,
e a set of prototype evaluation metrics.

There is no requirement that the ‘Build prototype’ phasesanith a working prototype. If software
integration problems turn out to be very big, then it is pblesito end the building phase with a
negative result, and a report on integration problems.

For every prototype, any bugs in software components, ategjiation problems between compo-
nents, will be reported to the relevant party or parties. émeing on the nature of the problem,
relevant parties can be the RD45 project, the LHC++ projecthe support groups of the various
software component vendors.

The prototype documentation phase delivers the prototgpecs code, a discussion of relevant de-
sign decisions, and a report on the evaluation of metrics. pratotype will in general be throw-away
prototypes.
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The project startup phase has the following goals:

e Gather knowledge about the organisational environmen&RNTC

e Gather knowledge about the methods in High Energy Physicpaiticular with respect to
computing

e Gather knowledge about the CMS software process

e Study relevant documents produced at CERN, in particularGMS Technical Proposal [4],
the CMS Computing Technical Proposal [7], and relevant REz¢srts [10]

e Learn to program for the Objectivity/DB [9] ODBMS, and stuidyparticular those parts of the
ODBMS which relate to performance

e Gather relevant hardware performance figures

e Study existing data management techniques developed HigheEnergy Physics community
and outside it, in wider the field of data mining.

The ‘final report’ phase of the project has, of course, thd gbariting the final report required by
the OOTI course.
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Chapter 4

Disk Measurements

In the project startup phase, it was found that not all hardywarformance figures which were relevant
for CMS storage management could be found in literatureurited out that the standard sources, like
[15], [16], [17], [18] and [19], did not contain enough infoation to accurately predict performance
in some important disk-bound HEP data access scenarios, ilwas found that none of the CMS
and RD45 members of CMS were already performing, or plantingerform, a detailed study of
disk-bound data access.

It was therefore decided to add an extra ‘disk measuremphtsse to the project, directly following
the startup phase. The structure of the ‘disk measuremphése (figure 4.1) was similar to that of a
single prototyping cycle.

Plan measurements

Perform measurements

Evaluate measurements

Document measurements

Figure 4.1: Planning for disk measurements phase

4.1 HEP data access scenarios

As seen in section 2.4.2, physics analysis jobs refer tonstoacted objects of events. The jobs in
successive stages of a physics analysis process refestarlddess events. This leads to a data access
pattern as in figure 4.2: the selectivity in reading data grawer time (the grey blocks represent
objects which are being read by the jobs at a certain time).
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Reading 100%
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Reading 52% l
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Reading 22% l

t=2 CITTTTTTTITTTITTTTTITTTTITT] ReconstructedP's

Event 1
Event 2
Event 3
Event N

Figure 4.2: Increasing selectivity over time

One obvious way to optimise disk access performance for thé scenario in figure 4.2 is to cluster
all objects on disk in the order in which they will be read. histscenario, the job will perform a
sequential readver the disk.

Now, the question arises what will happen to the performandabet = 1 and¢ = 2 scenarios,
assuming that

e the data is not reclustered, but kept on disk as it was it thé) scenario
e thet = 1 and¢ = 2 jobs read events in the same order asithe0 jobs.

Under these assumptions the= 1 and¢ = 2 jobs will perform aselective readfigure 4.3): the
objects are read in a sequential ‘left to right’ order, bunsmbjects are skipped.

[ I —— T I T i —

Figure 4.3: Selective reading

It turns out that literature does not answer the questionoaf to compute the disk performance for
selective reading scenarios. The importance of these sosma HEP was the motivation for the disk
measurement phase in the design project.

We measured the disk performance of selective reading fimus selectivities and object sizes. For
background and validation, we also measured sequentialaanaihm reading scenarios, even though
the resulting curves, which are important in their own rjgtuld also have been calculated using
literature alone.

All measurements were performed on disks (2.1-GB 7200-gstwide SCSI-2, Seagate ST-32550W)
which can be considered typical for the high end of the 1994modity disk market. All measure-
ments are of raw disk performance, without any optimisatigran operating system cache.
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4.2 Sequential and random reading

We measured the raw disk performance for sequential ancdbrandading. The results, translated
to performance rates for various average (reconstructedcosizes, are in figure 4.4. Note that this
figure predicts the overall system performance only in treedhat the disks are the bottleneck. For
object sizes below000 bytes, the CPU usage requirements of Objectivity/DB willrenoften be the
limiting factor, at least in the case that only one processasling from disk.

Speed vs. average object size
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= — — random read
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Figure 4.4: Performance for sequential and random readiegasios

Observing the results in figure 4.4, we see that the randodseed is much lower than the sequential
read speed. For example, it is about a factor 7 lower for 8 Kjgaib. As can be seen in the Objects
per seconds plot, the random read time is completely doetnay the hard disk seek time for small
object sizes.

As far as the design of a storage manager is concerned, thaghsgillustrate the importance of
good clustering, especially for (reconstructed) objentalter than 8 KB. If the clustering is bad, the
database performance will, in the worst case, degrade tothle random read scenario.

After an analysis of hard disk technology trends ([20], [42R]) we found that the large gap between
the sequential and random scenarios will grow even largduature. Extrapolating trends, we can
predict that the gap will grow from a factor 7 to a factor 208068 KB objects, and from a factor 50
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to a factor 150-250 for 1 KB objects,

The size of the gap has a big impact on the design parametestofage management and optimisa-
tion mechanisms: as degradation to a random read scenagoyisostly, considerable resources can
be invested to avoid such degradation.

A system which spends 90% of its resources performing opétitins which avoid a degradation to
the random read scenario may end up being faster than a systkaut such optimisations.

4.3 Selective reading

To determine the performance of selective reading for variaverage object sizes, we need to take
into account that Objectivity/DB does its reading at theablase page level, not at the object level. If,
on average, every page holds 5 objects, and the objectisieist 10%, then this results in the reading
of 51% of all database pages. The relation between the plagigity S, , the object selectivitys,,; ;,

and the number of objects per palyg, is as follows:

Spg =1- (1 — Sobj)Npg

We thus first measured the raw disk performance for variolgegeofS,, and various page sizes, end
then extrapolated the results for different combinatioh§p; and V.

In measuring the raw performance associated with varkysvalues, we first used the default Ob-
jectivity/DB page size of 8 KB.

The left hand graph in figure 4.5 shows the performance fdouarS,, values, with 8 KB database
page sizes (8 KB is the default page size in Objectivity/DBbserving the graph, we see that the
performance decreases rapidly when the reading of pagesrescmore selective. Also, the curve
only levels out when the performance level of the worst-caselom read scenario is reached.

Bandwidth vs. page selectivity, 8 KB pages
T T T T T

Query speedup factor vs. Page selectivity. 8 KB pages
T T T T T T T

Speedup = Bandwidth / Selectivity / 5.4 MB/s

* sequential: 5.4 MB/s
X random: 0.7 MB/s

IS
T

Bandwidth (MB/s)
w

N
T

0.5

0 I I I I I I I I I 0 . . . . . . . . .
100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0
Page selectivity (%) Page selectivity (%)

Figure 4.5: Performance for selective reading of 8 KB pages

To interpret these performance measurements, it is usefulbt them as a speedup curve. The right
hand side of figure 4.5 shows the speedup when going from theestal reading of all data, as in
thet = 0 scenario in figure 4.2, to the selective reading of part ofdhi, as in the > 0 scenarios.
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We can conclude that (at least for this disk and this pagé, Se&ective reading is only interesting as
an optimisation technique if the page selectivity, is less than 15%.

By extrapolating thes,,, results for different combinations &f,,; andNV,,, we get the curve in figure
4.6. This curve shows, for different object sizes, the gl at which the analysis job becomes
faster than the sequential reading analysis job inithe 0 scenario. Note the double logarithmic
scale.

Selective reading performance turning point vs. Object size
100 T T T
50 N

Here, selective reading is
as fast as sequential reading

=N
o O O
T T T

Selectivity (%)
N

o
a1
T

Here, selective reading is
faster than sequential reading .

0.2r
0.1
0.05

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Average object size (bytes)

Figure 4.6: Selectivity at which jobs start to outperforngsential reading

The curve in figure 4.6 is based on raw performance measutsrfe@ra database page size of 8 KB.
Raw performance measurements for other page sizes shoateth¢hcurve does not change much if
an other page is chosen. Also, measurements on another ftyligks, a study of disk technology,
and a comparison of the disk specifications supplied by rdiffemanufacturers, indicated that this
rather negative results applies to all types of commodisk thiardware: the curve in figure 4.6 may
shift a bit for other disks, but it does not change fundamisnt&or a RAID array [23], in which the
data is striped across multiple disks, the curve will als@beut the same: striping improves both
sequential and selective reading performance with the $acher. Finally, a study of disk technology
trends showed that, barring radically new hardware inriomat the curve will even move down, to
smaller selectivities, in future. Note however that the oowdity/desktop market, which is expected to

drive innovation, is largely dominated by sequential ragdihere is little market pressure to improve
random and selective reading.
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4.4 Conclusions and followup

4.4.1 Impact on design

In the end, we can conclude that, at least for small objeetssizard disks are best treated as little
tape drives in disguise. For the majority of disk-bound jtg/analysis jobs, selective reading is inef-
fective as an optimisation mechanism: an implementatigh selective reading will not outperform
an implementation which simply reads sequentially throaljldata, discarding the unwanted data on
the fly.

Of course, this does not mean that selective reading mexharare useless. Compared to sequential
reading, selective reading will use less CPU resourceshelfréading of database pages goes via a
network, selective reading will save network resourcesmyg is low enough, which is roughly for
object sizes bigger than 1 KB. Also, selective reading véiter perform worse than random reading,
and will usually perform better.

If the goal is to make the= 1 and¢ = 2 jobs in figure 4.2 faster than thie= 0 job, selective reading
is useless. Any other technique which is solely based orpsigpover unwanted data will be as least
at useless: as selective reading is the technique whichatossly mimics the sequential scenario, we
can only expect even faster degradation toward randomrgau#irformance for other partial reading
techniques. To make the duration of a job linear with the efzthe requested data, one will have to
physically move the unwanted data out of the way.

4.4.2 Followup in design and prototyping activities

At the end of the disk measurements phase, we were left wittcdimclusion that efficient storage
management would have to rely heavily on the art and scieheloistering. As very little of this art
existed, developing the art and science of reclusteringiderstified as an important goal for future
design and prototyping activities.

4.4.3 Documentation of results

The results of the disk measurements phase were documangefrm accessible to CMS and RDA45,
as part of [5]. The material in [5] differs from this chapterthat it places a stronger emphasis on
exploring the design consequences of the measured perioawharacteristics, and less emphasis on
the raw measurement results.

The results were also reported in a number of talks at the etiteghase. They were used to explain
a some unexpected performance breakdowns observed inymresodeveloped by other members of
the RD45 project.



Chapter 5

IRIS Explorer

IRIS explorer is a data visualisation framework, which isdiby various communities in science and
industry, for example the computational fluidics communitymake 3D visualisations of complex
datasets. It is currently not in use in the HEP community,itstintroduction is considered as part of
the LHC++ [13] strategy. IRIS explorer was originally demeéd by Silicon Graphics, but is currently
being maintained by NAG (The Numerical Algorithms Group L24], which also supplies various
numerical libraries to CERN.

To produce a 2D or 3D graph or picture from
some data set, an IRIS explorer user cahz
build a ‘map’ (see figure 5.1), which is a pr
gram in Explorer's graphical programmin :
language. Explorer programming consists @f « -
selecting modules, setting various para i
ters in the modules, and drawing data fl
paths between the modules. The last m
ule in a data flow chain will generally be oné
which produces a picture in a separate win-
dow.

»»»»»»

One of the strengths of Explorer is that it al-
lows the visualisation program to be devel-
oped in an explorative way: the user interface
makes it very easy to tune the various module
parameters, and to change or extend the map,
in order to isolate or enhance certain features
of the data. If a change is made, the Explorer
framework will automatically perform the re- L T

calculations which have to be done to upda ) . . ,
the display. Thus, working with explorer is inIL—E‘;gure 5.1: IRIS explorer map editor, with a map of five mod-

some ways similar to working with a spreadl-"es’ and a picture window

sheet application.

Explorer offers a few hundred modules for the use to choasm fivhen constructing a map. Some
of the modules are part of the base package, others have keelopked over time by various user
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communities.

Within the LHC++ project, two observations were made witbpect to the use of Explorer. First,
by building some HEP-specific modules, it would be possiblmake Explorer useful as a HEP data
visualisation tool. Second, as event filtering can be mededs a data flow computation, it would be
possible to write Explorer modules for event filtering. Thisuld allow physicists to do both filtering
and visualisation under a single unified GUI.

Though the use of Explorer looked attractive, in early 1987 tHC++ project had not yet validated
the above observations by performing prototyping expentsieAs a contribution to LHC++, it was
decided to collaborate in such experiments as part of thigm@soject. If successful, the prototype
could be re-used as a GUI for further prototypes in the degigject.

5.1 Prototype

Below, we cover the prototype which was built by coveringitigin definitions in the prototype plan.

Functionality. The prototype provides an event filtering chain toolkit lthea Iris Explorer mod-
ules. The modules have the following functions:

e Thesource modulean be used to select a test beam run, and it outputs all emehtst run

¢ A filter moduleonly forwards those events which match the filter predicata@module. The
filter predicate is a C++ expression

e Theend modulaisplays the number of events which are left at the end of ttee ihain.

Figure 5.2 shows an event filtering chain built from the prgpe modules. The source module (called
RunList) is at the front of the chain, followed by three filtandules, containing three different filter
predicates, followed by the end module, which displays aatofil6 events selected by the filter.

RunList o J i
[ I | FilterEvents o O

l I | FilterEvents<2:» o Od
Vhreez==1 [ I |

nn=200

FilterEvents<3> |

[ I[ ]
: widgetsTextTypein
|1|me%5{21 | f 2 Dl

HE:

Figure 5.2: Screenshot of the IRIS Explorer filtering propes
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On the implementation side, a requirement is that, for eificy reasons, all event database access
has to be done by a single explorer module. Another requinéiisehat the filtering has to be imple-
mented by dynamically compiling and loading the C++ filteegicates. (This requirement verifies
the feasibility of dynamic compiling and loading, which ygaan important role in the system design
of the CMS computing technical proposal [7].)

Software components For the source module, an already existing LHC++ prototypelute is
used. For the end module, a standard Explorer module is uHeel filtering module makes use of
the following software components IRIS explorer, ObjatylDB, Rogue Wave tools.h++, standard
SunOS C++ compiler, SunOS dynamic linking and loading itéed. The event database model is the
database model of the CMS testbeam prototype.

Evaluation metrics Metrics are: the interactive response time of the filter Eagion, and the
usability of IRIS Explorer as a software framework for dexghg CMS (filtering) applications.

5.2 Design

Most of the prototype design parameters were already fixethé@yprototype requirements. To meet
the requirement that all event database access is done hgla siodule, we used a mechanism in
which the data flowing between the modules was not a colleafaevents, but a description of the
selected run together with the filtering predicates so fae filtering module at the end of the chain
would, after detecting that it was at the end, take this digthon, turn it into compilable C++ code,
and compile, load, and execute the code, thus running &l filedicates against the event database.

5.3 Conclusions

Based on the design above we were able to build a prototyp&nges! requirements. With respect
to the metrics, interactive response time was good, in teraf 1 second, in the case that a different
run was selected, but bad, in the order of 40 seconds, in #esthat a filter predicate was altered. The
bad response time was due to the long time needed to comeitgetierated C++ code. The compiler
spent most of its time processing the 750 KB of C++ header ifigsded by the loadable code. A
large explosion in header files is definitely a risk when iriéigg many commercial components. It
seems attractive to reduce the need for recompilation Bynigoes which isolate the constants in the
filter predicate and treat them separately: this way, a oham@ constant would not require a costly
recompile.

To meet the Objectivity/DB derived efficiency requirememdttall database access is done in a single
module, we had to use the Explorer dataflow facilities in agpéeal way. Though we had little
problems implementing this a-typical use pattern, it alsevgnted us from exploiting much of the
refined services offered by the Explorer framework. While pinogrammer of a more typical Explorer
module could have left all control flow decisions and dataetelency administration to the Explorer
framework, we were forced to implement these things oueseinside our modules.

Software frameworks, like IRIS Explorer, are designed tetthe implementation of complex but
common administration tasks out of the hands of the appicatrogrammer. However, as we have
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seen, due to database usage constraints, Explorer coutdkgosuch tasks out of our hands in our
case. We basically ended up using Explorer not as a framewatkas a GUI toolkit. As Explorer is
not the nicest GUI toolkit around (for a start, it provides anGt a C++ API), it can be concluded that
using Explorer to build event filtering software is more toteithan it is worth. Providing an event
filtering package based on another GUI toolkit, with a cauplio an Explorer-based visualisation
package, seems a more promising approach.



Chapter 6

Storage Management and Optimisation

This chapter reports on the design and prototyping effoitis k@spect to storage management. These
activities were done in two prototyping cycles. The firsttptgping cycle, which roughly corresponds
to sections 6.1, 6.2 and 6.3, was mainly concerned with amagjythe physics analysis application
domain. The second prototyping cycle, which roughly cqroesls to sections 6.4 and 6.5, was mainly
concerned with clustering and reclustering strategieshérfirst cycle, the physicist was at the focus
of attention. In the second cycle, the focus of attentioftesthito disk access patterns.

We have seen in section 2.4.1 that, of the two types of jobshwhill take the majority of system re-
sources, the ‘user analysis’ jobs were the least well utoleds We therefore focused our prototyping
efforts on these jobs. The jobs are disk-bound: the exattitioe is dominated by the time needed
for reading physics objects, as described in section 2frb@) the persistent object store.

6.1 Analysis of layers above the storage manager

The CMS physics analysis system is a layered system (figliyev@ith
the persistent storage manager somewhere in the middlee joroject
startup phase, and in the disk measurements phase of tkeetichap-

Job submitted by user

ter 4), we analysed the characteristics of the layers bebt@astorage Analysis framework
manager. In this section, we report on our analysis of somghef :
characteristics of the layers above. Reconstruction framework

The goal of this analysis effort was to get clarity about thieriface | Persistent storage manager

between the storage manager layer and the higher layerdeatieg —
guestions were: Objectivity/DB

HPSS

e What is the nature of the requests made on the storage manpger—
 How often are different types of requests made. Disk farms, tape robots

These questions are fundamentally aboutdiieamicside of storage Figure 6.1: Layers in the CMS
management: how do the contents of the data store, and thendemphysics analysis system

on the data store, change through time. It was found that & C

computing technical proposal [7] left these questions dpeifuture research. In fact, the comput-

ing technical proposal argues that existing storage managemethods and practices shonlot be
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taken as a basis for answering questions about the dynamuierat physics analysis, as the existing
methods were developed more to meet the constraints of tafes dhan to reflect the ‘natural’ way
of doing physics analysis.

To answer the leading questions, we thus had to approacdygstananagement from a very high level.
In fact, we found that, to expose all possible forms of optettion, we had no choice but to consider
physics analysis as a process in which a community of hunwanssfa judgement, using computers
as atool.

The sections below report the results of our analysis, anith@in consequences for storage manage-
ment and optimisation.

6.1.1 Data dependencies in physics analysis

Figure 6.2 shows, for a single event, some typical objectdyip physics analysis, as described in
section 2.4.2. The figure also shows the data dependendigedrethese objects: an arrow pointing
from A to B means that the value d® depends on the value of. Note that algorithms are also
treated as objects in this figure.

Reconstructed jets Reconstructed jets Reconstructed jets
Jet finding / \
algorithm V3 Jet finding
algorithm V4
Reconstructed tracks Reconstructed tracks Reconstructed tracks

/

Reconstruction
algorithm V5

/ Reconstruction
Calibrations V1 Calibrations V2 algorithm V6

Raw event data

Figure 6.2: Some object types and dependencies for one event

As observed in the computing technical proposal [7], themstructed objects in figure 6.2 have the
property that their values are uniquely determined by tHaesof all the objects they depend on.
This means that, if an object is deleted, it can be re-contpagain, provided that

e its type is still known
e its dependency relations with other objects are still known
¢ the values of these other objects are available, or can bemgputed again themselves.

The global system design in the computing technical prdpesaires that, if an object is deleted, all
above conditions are always met, so that it can be re-createtbmand. The initial creation of an
object will also depend on dependency data.

According to the global system design in the computing teehiproposal, a user program will obtain
reconstructed objects by making requests like

‘give me the reconstructed tracks object with dependeriBiéar evente’

on the reconstruction framework layer (see figure 6.1). Buriest will contain all necessary data to
compute the object if it is not available in storage.
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The global system design therefore foresees a close ititmgizetween the reconstruction framework
and the storage manager layers in figure 6.1. On receipt ofjaest like the one above, it will
be decided, by some optimisation service which spans threnséeiction and storage management
layers, whether the reconstructed object should be retlidy the storage manager layer (assuming
it is stored somewhere), or whether is should be re-compuyetie reconstruction framework layer.

In the general case, if a reconstructed object is in stotgevéng it from store will be cheaper than
recomputing it. This is because the data on which a recartettwobject depends is usually larger than
the object itself. For example, the size of a reconstruatecks object will be about 100 KB, but the
size of the raw data on which it depends will be about 1 MB. Ims@ases however, reconstruction
will be faster than retrieval. Examples are:

e A single reconstructed object is needed, and this objeatlisgiored on a tape which is not in
any tape drive at the moment

e A reconstructed object is only stored in a regional centtaictv currently has a saturated net-
work link, while the objects it depend on are all stored ltycal

The availability of an on demand reconstruction mechaniamimportant consequences for storage
management: it means that a storage manager can use aystatgeting reconstructed objects
to save space. Because of the availability of sufficient dégecy data, deletion of a reconstructed
object can never cause permanent data loss, and deleti@msparent for the user.

It makes sense to think of the store of reconstructed obgstacachewhich sits in front of the
reconstruction service. Many of the design principles aatiniques for a cache manager apply to the
design of the storage manager, as far as managing recaestroigjects is concerned. The selection
of objects to delete could be based, for example, on a ‘|leasintly used’ algorithm. This makes for
a cheap service for freeing space, one that is much cheagermgtrbage collection by reachability
analysis, which some other object databases are forceeto us

The availability of a cheap service for freeing space agais important consequences for storage
management: it means that we do not have to worry much abewoit of storing new reconstructed
objects. We do not need an on-the-fly algorithm to decide ket is worthwhile to spend space
storing an object which has just been created by the reaantistn framework. We can simply always
store objects which are created: if they are not used, théybeideleted soon enough. The only
reason for not storing an object would be a shortage in distinees and bandwidth for writing.

6.1.2 Physics analysis workcycle

As we have seen in section 2.4.2, a major part of a physicysiaaffort consists of the construction
of successive cut predicates, where each predicate separdaeresting’ from ‘uninteresting’ events.
The construction of a single cut predicate can take a sigmifiamount of time: from weeks to months.
In extreme cases, a team of physicists can spend more thar agmstructing a cut predicate. The
construction of a cut predicate is an iterative process hitlvone keeps refining the predicate (usually
by tuning one or more of its constants), until its effects loe ¢vent set under consideration are both
desirable and well-understood. The quality of a predicatiypically assessed by running it against
a collection of real or simulated events, or running it agaancollection of special events, of which
the properties are better known than in the general caserd-&3 gives a graphical overview of the
physics analysis process.
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Create cut predicate 1 Create first version of predicate 3
Create cut predicate 2 Refine predicate 3, step 1 Change predicate
Create cu{ predicate 3 Refine predifate 3, step 2 Run job(s) with predicate
..etc.. ..etc.. \ \L
Q/ \L Analyse result(s) of job(s)
Create cut predicate n Refine predicate 3, step m

Analyse final set of interesting events

Figure 6.3: Physics analysis workcycle

During the iterative phase for a single cut predicate, thddbei part in figure 6.3, one can expect
database usage in which the same sets of (real or simulatedijseare accessed over and over again
while various constants are tuned. If the cut predicatelu@gsome reconstruction algorithm, which
is being refined at the same time, one may also see occasémoalstruction jobs with newer versions
of the algorithm, and jobs comparing the results of the oldi #ue new versions. Also, there may be
jobs which isolate some set of events for closer study.

When the final version of a cut predicate is constructed, tadipate is applied to the real set of events
under study, yielding a smaller event set for the next phase.

6.1.3 Granularity of access

Looking at the physics analysis workcycle, we can observenaber of things.

First, object access is not as random as in, for exampleraryilcatalog database. Instead, during the
refinement of a single cut predicate, there will be severéctions of objects, which are revisited
again and again by subsequent jobs. Each individual jolirailerse one or more of these collections.

This ‘working set of collections’ will only change radicglivhen refinement is completed, and work
on a new predicate is begun. During refinement, we will only s@all changes in the working set.
For example, the working set may be extended with a new dmledy running a new version of a
reconstruction algorithm. Also, an analysis effort coutangtimes shift focus from all objects in a
collection to only part of the objects, so that a subcol@cof another collection becomes part of the
working set.

The storage manager should not try to make access to a sinjglet o a collection fast, but on making
access to all objects in a single collection fast. As seehm@pter 4, this means that we have to make
sure that collection traversal leads to a sequential disksgpatterns.

Inside a collection, the objects for all different events mdependent from a physics standpoint. This
means that there is no reason for a physics analysis job targutonstraints on the order in which
the objects in a collection are traversed. The storage neareagild use this lack of constraints to its
advantage.
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As far as the design of a storage manager is concerned, wénavil two levels of granularity of
access:

1. Access to a collection of objects
2. Access to a (compound) object which represents a singiet,gnside a collection

A storage manager will be able to spend considerable ressus every ‘request’ for a collection,
because such requests only happen once or a few times foljaacihis makes it possible to use
storage management and optimisation algorithms with asuaily high (computational) complexity
at the collection level.

At the object level, on the other hand, the storage manageavenhead will have to be low. As a
general rule, whenever some management or optimisatiomanésn can be moved from the object
level to the collection level, the design should do so.

6.1.4 Sharing data and changes in data

It will often happen that different analysis efforts use #aene data. Typical examples of data which
could be shared are calibration constants, and reconstryetrticle tracks based on a particular ver-
sion of the calibration constants.

However, only data which has a read-only nature can be stsreckssfully. When refining a cut
predicate, one needs a stable dataset against which tolsaacuent versions of the predicate. If the
dataset is not stable, one cannot accurately compare swdrgagrsions of the predicate by comparing
the results of subsequent runs.

As far as storage management is concerned, this read-oniseraf shared data has important conse-
quences: as opposed to, for example, the data manager ofiae eservation system, which has to
ensure that all users see all changes immediately, the CtéSanager will have to ensure that, if
one user changes data, all other users mallobserve a change.

Analysis jobs will not in general request the latest versiohsome physics objects from the storage
manager, they will request the same, frozen, versions agairagain. This leads to an architecture
in which a newer version of an object does not overwrite tltevelrsion, but is stored separately in
a new location. Note that with such an architecture, we cgreexmuch less locking and hot spot
problems than with an average case multiuser database.

Of course, there has to be a service for letting users knowtafew versions. Such a service is
best implemented at a high level indexing and notificatiomise, not as part of the storage manager.
The storage manager could however provide a user, who isdarirtgy switching to a new version,
with information on whether objects for the new version halready been computed. If there are no
reconstructed tracks yet for the latest version of soméGlbn constants, then the user may want
to choose a less recent version of the calibration constéotsvhich the tracks have already been
computed.

6.1.5 User role in optimising the system

When choosing a less recent version of some calibrationtaotssover the latest version, the user
is really making a tradeoff between quality and time: lessueate calibration constants are used (at
least, assuming that later constants are always more aefumaorder to save on the CPU time it
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would take to reconstruct all objects with the latest calilans, and the space needed to store them.
Such tradeoffs can be crucial for system efficiency, but tieé they can only be made by the users
themselves.

Thus, in order to be effective, the CMS system will have to endleasy for the users to plan and
make tradeoffs like this. This can be done by providing a éykel of tool support. For example, it
would be very useful to have a tool which can quickly estinthétime needed to run a job if different
(combinations of) versions of reconstructed objects aeelus

As far as storage management and optimisation is concethisdmeans that optimisation mecha-
nisms, the effects of which can be cheaply and accurateljigiesl beforehand, should be preferred
over mechanisms for which the effects are less predictablegstly to predict. If predictions are not
accurate, the users will loose trust in the optimisationstoand will stop using them, leading to a
system with much less sharing.

6.2 Design of jobs

Having done the analysis in section 6.1, we can now perforgntnssis step. We can make a high-
level object decomposition of the physics analysis systgnaefining classes to go along with each of
the user-level concepts we identified. The most importaagsas, and their most important relations
as far as storage management and optimisation is concemreeshown in figure 6.4.

Analysis
framework

is_submitted_to

1.n
Job yields Result

contains contains
is_a

Reconstruction Command
key .
contains
refers_to_ / \
versions_of 1.n
Operator EventSet %
1.n 1.n Event

Algorithm  Calibration

Figure 6.4: Job-centred high-level system decomposition

Of the design decisions which led to the decomposition inréidii4, the decisions concerned with
the decomposition of the job class are most interesting.ofther decompositions follow more or less
naturally and inevitably from the constraints and condigién the CMS computing technical proposal
[7] and in section 6.1.

As the criterion for decomposing jobs, we chose to sepan&t@arts which stay the same over multi-
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ple jobs from the parts which change in each job. We chosetitégion because it has two strengths:

1. A user interface built with this job decomposition as aibagill have a natural separation
between control elements corresponding to fast-changita, de. control elements which are
used often, and control elements which correspond to sltanging data and are not used often

2. This job decomposition is most suitable as a basis foridering data management and opti-
misation mechanisms later on.

Note that there is also a synergy between these two strentjsiser interface will guide the user
into formulating the job in such a way that it fits naturally ttee capabilities of the optimisation
mechanisms.

At the top level of the decomposition of a job, we separatedtioel reconstruction key, which rep-
resents the choices for different versions of algorithmg eadibration constants made by the user at
the start of a the cycle of refining a cut predicate (figure.6/3)econstruction key would record user
choices like:

For all reconstructed tracks in the job, use versiorof the track reconstruction algorithm with
versionY of the calibration constants.

This would allow a command to simply request
‘the reconstructed tracks’
relying on the reconstruction key to make this request unguaus.

The purpose of the reconstruction key is only to record lmrga decisions. If the goal of the job
would be to compare the results of two new track reconsuoaigorithms, then the versions of these
algorithms would be mentioned in the job commands, not inrg¢laenstruction key.

At the next level of job decomposition, we have one or moreramds, which are decomposed into
operators and event sets. A typical command would be:
make a histogram of thé values of the tracks of the events in the Bercut by the predicat® .

or, in a more mathematical notation:

result := histo( U Ao (tracks(e)) )
e€ENP(e)

In this command, there is one event #&tall other things are members of the operator class. Our
decomposition separates out the event set because it ispmtant type of object with respect to
storage management, and one which, unlike the cut predisdt@ot change often.

Our design allows multiple commands in a single job becawssesuwill often need multiple his-
tograms to analyse the effects of a new refinement step, tonple

1. the histogram of thel, values of the tracks of the events in the Betcut by the predicat®
2. the histogram of thel; values of the tracks of the events in the Betcut by the predicat®
3. the histogram of th&g values of the tracks of the events in the Betcut by the predicat®

Producing these histograms in three subsequent jobs wilirethe tracks to be accessed three times.
If they are produced in a single job, the tracks need to besseckonly once.
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6.3 Design of collections

This section is concerned with the management of storagerinst of collections. Recall that in
section 6.1.3, we identified a two-level granularity of & physics analysis:

1. Access to a collection of objects
2. Access to a (compound) object which represents a singlat gmside a collection

We noted that there will be a ‘working set of collections’ gy the refinement of a cut predicate, a
working set which only changed gradually, and that it woulaken sense to manage storage in terms
of collections which are persistent.

6.3.1 Refining the notion of collections

Using the decomposition of jobs in the previous section, arermow refine our notion of a persistent
collection. In a single command like

result := histo( U Ap(tracks(e)))
ecENP(e)

we can identify access to the following collection of redomsted track objects:

U tracks(e) .

e€ENAP(e)

This yields the following properties for a persistent coflen of objects:

e A persistent collectior consists of a set of (raw data or reconstructed) objectsesponding
to some event sef,

e All objects in the collection have the same type (for exanipbeks’ or ‘jets’)

¢ All object values in the collection have the same depen@sndhey are computed with the
same versions of reconstruction algorithms and calibmatio

From sections 6.1.1 and 6.1.4 we also obtain the property:

e Objects in a collection can never be updated: after creatiey become read-only objects.

Of course, the above refinement, on the basis of the form ofrar@nd, is not the only way possible
way to refine the collection concept: it represents a desagpisibn. Though there were strong indi-
cators showing that this was the right decision, we couldcootpletely justify it beforehand: there

was a risk that the decision would lead into a dead ally. Weetbee employed the strategy of only
tentatively making this decision, and verifying, as we walohg, that it did not cause any problems.
This was done for some other refinement strategies too.

The main questions which need to be answered in order toptbefdesign decision above are:

1. How does the storage manager find the right collectiona job?
2. How do new collections get created?
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3. What is the mechanism for deleting old collections?

4. If ajob accesses more than one of these collections, diSsiple to ensure efficient access, even
though the collections are managed separately?

Early on in the prototyping cycle, we did not try to answer thiése questions exhaustively. We
satisfied ourselves with tentative answers first. We will regtort on these tentative answers here.
Instead, we will only report on the definite answers. The §gstion is answered in the next section.
The second and third questions are answered in sectiorh@.5urth in section 6.4.5.

6.3.2 Finding the right collection

Suppose that a job will access the reconstructed trackstshjgth the dependencids, for all events
in the event sel;. Finding the right collection for this job can be with thelling simple algorithm:

1. find all collections of tracks with the dependencigs

2. pick the smallest of these collections for whi€h C E., whereE, is the event set correspond-
ing the collection.

To support the implementation of this algorithm, we need things. First, we need a database
index by which we can look up collections based on dependendihe Objectivity/DB database has
facilities which make it easy to build and maintain such afei Lookups will have)(log n + f)
efficiency, wheren is the number of collections in the database, gnid the number of collections
found. This is certainly efficient enough.

Second, we need a mechanism to calculdfeC E, for the various candidate collections. The
term in this expression poses little problems: we can sirsfidye theFE,. of each collection with the
collection itself. Storing the®, as a set of event identifiers with each collection will nohgra very
large overhead: we expect event identifiers to have a sizebytels. Obtaining theZ; term, for a
job which is about to run, can be more difficult. However, wdl wsually be able to get at least
an E.; C E; by taking the EventSet of the job object. Usifj, instead ofE; in the algorithm
above will usually still give good results. Also, we expdtattwe will often be able to find a better
approximationt,, with E., C E.. C E; by doing a symbolic analysis of the cut predicate in the job
command, comparing it against cut predicates in previobs for which we stored the event séfs,
produced by their cut predicates.

Finally, provided that we store all set contents in a sortelip the step of comparing two event sets
to see ifE; C E,. can be implemented i®(s; + s.) time, wheres; ands,. are the sizes of the two
event sets. By comparing candidate collections in smatibelstrgest order, the comparisons can take
no longer tharO(f - s.) time, wheref is the number of candidate collections anglis the size of
the event set of the best candidate collection which is eadigtfound. As the reading of the wanted
objects in the best collection will tak@ (s, - sq0) time wheres,, is the average size of the objects
stored in the collection, we can expect that, except for laage f and very smalk,,, running though
candidate collections will not cost a significant amountimiet compared to the actual reading of the
data. We also expect that it will often be possible to cateulsy, C FE, even faster, in)(1) time,
using symbolic comparison of the cut predicates assocwittd; andEs,, or by maintaining a cache
of the results of earlier comparisons.

The above analysis shows that, in the worst case, the owkdidanding the right collection is small
compared to the execution of the whole job. The smallneskeobterhead is mainly due to the fact
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that event identifiers, with a size of 8 bytes, are small. Weegect that it will be feasible to use

random access memory, rather than slower disks, to holdefpesentations of all but the largest
event sets associated with jobs and collections. With esestin RAM, the overhead of choosing the
right collection will be negligible, and it will be possibte offer a service to physicists by which the
execution time of a proposed disk-bound job can be predicteglquickly.

In this section, we have shown that there is a simple, rolamt, efficient enough basic algorithm
for finding the right event set. We argued that symbolic asialyechniques will often be able to
make the basic algorithm much faster. Our goal was to showiateace proof of a collection finding
service, we do not propose that the basic algorithm is usildout any optimisations, in the real CMS
storage manager. Completely different collection findingchranisms should also be considered, for
example a mechanism which does not try to find the best caletteforehand, but which aims to
switch to the best collection on the fly, using knowledge ahbe event set the job has accessed so
far. Also, a larger degree of sharing between different fsyanalysis efforts could by achieved by
using a collection finding algorithm which does not choosedimgle best collection, but the best set
of collectionsEy, - - - E,,, such thatl; C (E., U---UE,,).

6.4 Design of collection data clustering

In this section, we report on our design and prototypingreffavith respect to the clustering of the
objects contained in collections on disk. In chapter 4, vemiified clustering issues as a major risk
factor. We saw that breakdowns from the speed of a sequeatiding scenario to the speed of a
random reading scenario could come quickly and unexpectd&ttcause of the lack of knowledge
about what would, and what would not cause such a breakdoemchase a design and prototyping
strategy in which each step could be carefully checked byimgakeasurements to detect a possible
breakdown. We decided to approach the problem in the fofigway.

1. Make a list of simplifying assumptions, which allow onedevelop a storage management
mechanism in which jobs will always yield sequential regdierformance

2. Design such a mechanism and test, by prototyping, if tmeance is indeed according to
the sequential reading scenario

3. Choose one of the simplifying assumptions, drop thisragsion, and check, by prototyping,
if the performance is still according to a sequential regdscenario. If not, fix the perfor-
mance breakdown by adding additional optimisation meamasi Repeat until all simplifying
assumptions are dropped.

Of course, successful termination of step 3 in this stratmyld not be guaranteed beforehand. It
could be possible that we would encounter a breakdown inZtepich could not be fixed, even not
by restarting the process at step 2. But even in case oféaillis strategy would at least leave us with
an accurate pinpointing of the reason why a breakdown tooranetading was inevitable. Another
important strategy is that it does not introduce optim@atiunless it is shown beforehand that they
are really required, thus keeping the system as simple ashpes

In the end, it turned out that the strategy did successfeligninate, without us having to go back to
step 2. In the next sections, we will describe our steps 1 arieh2h iteration through step 3 will be
described in a separate subsequent section.
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6.4.1 Initial simplifying assumptions

We made the following simplifying assumptions to ensuré tha could build an initial prototype
with sequential reading:

There will only be one job running on the system

All collection elements are on disk, not in RAM and not opea
There will be only one disk farm in the system

The job will access only one collection

The job will not be parallelised

The job does not do CPU-intensive computations, it is-disknd.

© 0 s~ W=

6.4.2 Initial design

Producing sequential reading under the above assumpsosasy. We made the following design
decisions:

e Subsequent jobs should always request the objects in @toiién the same order
e The objects in the collection are clustered in this orderisk d

To validate these design decisions, we designed and implech¢he following classes:

Event. Objects in this class are persistent. An event object reptssa single event. Its object
identifier (OID) in the database acts as a unique identifiettfe event. The object identifier is an 8
byte value.

EventList. Objects in this class are persistent. An EventList stordsvamtSet object from the design
in figure 6.4. The list elements are ordered: iteration oveEw@entList will always visit the events in
the same order, which is the order in which they were storeéterEventList.

RecObj. Objects in this class are persistent. A RecObj (recongdiobject) stores reconstructed
data about a single event. This is an abstract class, vatanged classes exist to store different types
of reconstructed data.

Collection. Objects in this class are persistent. A Collection storestadERecObjs, clustered in
the order in which they were added to the collection. The &ilbn has an iteration service which
allows for selective reading. If a job requests the RecObafparticular event from a Collection, the
collection will return either a handle to this stored Rec@ija status code indicating that no RecObj
was stored for that particular event.

After implementing these classes using Objectivity, thning of test jobs showed that we did indeed

get sequential reading access patterns. To validate tbhasagatterns were indeed sequential, we
developed a tool which could trace and visualise the fileesystalls done by the object database. We
also did test runs on large datasets, measuring the actdafrpance. As expected, performance was
indeed according to the sequential reading scenatrio.
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6.4.3 Multiple jobs

We first dropped the simplifying assumption that there
would only be one job running on the system. Speed vs. number of processes

To test the performance effects of running multiple jobs to-5
gether on the same hardware, we ran multiple copies of our |

test implementation in parallel on a 6-processor machine. \
Every job reads a different collection, but all collecticare g I
on the same disk. The resulting performance graph, whigh
shows the combined throughput for all jobs, is shown in figg

ure 6.5. g2
%)

As can be seen, there is no performance breakdown: th(i{
disk access pattern produced by running multiple sequentia
reading jobs together is still sequential enough to maintai - ‘ ‘
high performance. This is an important result: it shows that™ 1 2 5 10

we can optimise each job individually, leaving the efficient Number of brocesses

scheduling of the disk access operations performed by H?Sure 6.5: Performance effects of running
different jobs to the operating system. Of course, we do hqﬁﬁltiple jobs together.

to take into account the possibility that the operatingeyst

optimisations might break down if the individual jobs start

to access data in a less sequential way.

6.4.4 Multiple disks

To see if the simplifying assumption that there was only one

disk could be dropped, we repeated the test performed in Speed vs. number of processes
the previous section on a system which had two disk farm&*00 ‘ ‘
connected to it, with multiple disks in each disk farm. 1200f

For the first test, we put all collections on a single disk farrglooof N e,

For the second test, we put half on the collections on the figst
disk farm, the other half on the second disk farm. The res@s
of the tests are shown in figure 6.6. As can be seen in tgi$00- *
figure, there is no performance breakdown: the use of t};‘s%oo—
disk farms nicely doubles the overall throughput, except of :

. . . . . 1200 -- data.on 2 disks. ||
course in the case of one job reading one collection, which? —_data on 1 disk
is on a single disk farm. 0

12 5 10
Number of brocesses

Figure 6.6: Effects of using two disk farms
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6.4.5 Multiple collections in one job

To test the effects of dropping the simplifying assumption

that a job only reads one collection at the same time, we did Speed vs. number of collections
tests with a single job reading many collections of 7 KB ob-2] ‘ ‘
jects in parallel. First, the job reads the first object inrgve
collection, then the second object in every collection, smd 4/
on. The resulting performance curve is shown in figure 6.%
Here, we can see a definite performance breakdown.

3,

(MBI

Following our strategy in section 6.4, we tried to fix thisperg
formance breakdown by adding an additional optimisatio&z’
mechanism. By tracing the disk read system calls performed
by the database on the operating system, we could determink
that the pattern of reads performed by the database jumped
wildly over the disk. The database did not bunch subsequerf 1 2 5 10
page reads in the same collection together. Number of collections

An example of a system call pattern we measured is on E]Sure 6.7: Reading multiple collections in
left hand size in figure 6.8. This graph shows the datab?)%?allel

behaviour for a job which is reading three collections in-par

allel. Apparently, neither the operating system, nor trekdi

controller were able to recognise the regularity in thiggraitand schedule the appropriate read-aheads
which would have reduced the number of disk arm movements todde.

Reading 3 collections with Objectivity iterators Reading 3 collections with read—ahead iterators

633 633

450} ‘ | 450}

236

236/ ' |

Position of read in database file
Position of read in database file

64 64M
O0 100 200 300 400 500 600 O0 100 200 300 400 500 600
Time (1 unit = 1 read system call) Time (1 unit = 1 read system call)

Figure 6.8: Read patterns produced by the database

To solve this performance breakdown, we implemented a sewdl-ahead layer on top of the database.
We implemented this layer by refining the iterator class jgled by the Collection class for accessing
the collection contents. We created a new iterator clagh, tve same interface, in which eveNth

call to the ‘get the next object’ function causes the n¥xbbjects to be read from disk. Internally,
the new iterator objects maintain two of the old iteratoremlt§: one for reading ahead, and one for
offering the regular iteration services to the calling jdhe objects which are read ahead with the first
iterator will be found in database cache memory when reqdetsirough the second iterator. Thus,
all disk reads happen in bursts &f objects.
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The right hand side of figure 6.8 shows the database accmed vs. number of collections, speC|aI iterator
pattern if the new read-ahead iterators are used. Reading
now takes place in several sequential chunks, separated by
seeks to other collections. Figure 6.9 shows the resulting
performance curves, for a read-ahead of 20 objects and f@‘a
read-ahead of 100 objects. With a 100 object read- aheg&"
there is no noticeable performance degradation anymoge:
the time spent in disk drive arm movements is negligible. 82/
the case of reading 10 collections in parallel, the 100 abjec
read-ahead will need 8 MB of object database cache memt|
ory to work. This 8 MB is a small enough amount by today’s o

standards. 1 2 5 10
Number of collections

-+100 read—ahead
-- 20 read—ahead
—no read—ahead

By fixing the performance breakdown with our special iter-

ators, we are now in a situation in which we can optimiségure 6.9: Fixing the performance break-
the access pattern for each collection individually. The afiown with read-ahead iterators

timisations do not have to take the possible reading of other

collections at the same time into account.

6.4.6 Parallelising jobs

We have seen in section 6.2 that a typical command in a joloymesfa calculation like

result := histo( U Ap(tracks(e)))
ecENP(e)

This calculation can be parallelised quite naturally bytipaning E into subsets; - - - E,, and cal-
culating

result := histo( ]  Ao(tracks(e)) ) @ - @ histo( U  Aoltracks(e)))
ecFE1NP(e) e€FE,A\P(e)

where thed operator ‘adds’ two histograms. Each subjob could caleudegingle

histo( U Ap(tracks(e)))
e€E;AP(e)

The final ‘adding’ of all histograms is a cheap operation. &sds data dependencies are concerned,
we have complete freedom in partitionifgjinto subsets.

The results in the previous sections show how this partitprcan be done without causing a per-
formance breakdown: we should cut the event sets into parishwcause the subjobs to perform
sequential reading. If we partition an event Bawith a size ofl0° events into ten subsels,; - - - E;q,
then E; should contain the0® events which would be read first by a single-process implé¢atien

of the job, E, the 10° events which would be read after that, and so on.

To account for variations in the execution time of subjobsyduld be best to cut a job into at least
five times as many subjobs as there are processors, and to preeessor farming approach for
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executing the subjobs, keeping the processor farm load#dd say, 1.5 times as many subjobs as
there are processors. We have seen in sections 6.4.3 addtiéad.running multiple disk-bound
(sub)jobs, which all do sequential reading on differenaidah a 6 processor machine does not cause
any performance breakdown problems.

To ensure that the read-ahead mechanism in section 6.4keepravoiding performance breakdowns,
every E; for a subjob should refer to at least a few hundred kilobyfetata. But this minimum poses
no significant problem: parallelisation only becomes eséing for jobs which read at least tens of
megabytes of data. Disk-bound jobs which read less databeillinished in a few seconds even
without parallelisation.

The above makes us confident that, at least on a platform valiggeocessors have equal bandwidth
to all disks, the scheduling of the efficient parallel exanutof a job will be straightforward. If
completely symmetric bandwidth is not feasible becausediriology or cost constraints, it would
be best to arrange disk and CPU farms as in figure 6.10, givan disk farm a dedicated CPU farm
for executing subjobs which refer to data on that farm. I8 #titangement, the event data would be
divided in some fashion over all disk farms, but all data fairggle event would be on a single disk
farm. Of course, in this case, the scheduler which dividesbarjto subjobs would have to take the
division of data over the disk farms into account, so thahearbjob only uses data on a single farm.

Events Events Events Events
0- 100 000 - 200 000- n00 000-
99 999 199 999 299 999 n99 999

Disk farm 1 Disk farm 2
network | |
CPU farm 1 CPU farm 2 CPU farm 3 CPU farmn

Link to tape farm
and user workstations

Figure 6.10: Massively parallel system with dedicated C&lht

6.4.7 Jobs which are CPU-bound, not disk-bound

The read-ahead mechanism from section 6.4.5 will ensuteXAbl-bound jobs have the same burst-
like 1/0O behaviour as disk-bound jobs (see the right hand sidigure 6.8). We therefore expect that,
as far as storage management and optimisation is conceERdibound jobs will not introduce new
problems at the disk level. However, we have not verified bkintameasurements that CPU-bound
jobs, especially parallelised CPU-bound jobs, would nasegerformance breakdowns in other parts
of the system: this was beyond the scope of our project.
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6.4.8 Jobs which also access collections on tape or in RAM

If a job starts to access a collection on tape, the High Pedaoce Storage System (HPSS) [25]
beneath the Objectivity/DB database (see figure 6.1) willentbe part of the database in which the
collection resides to disk first. The job will remain blockeamtil the move of data to disk is completed.
Thus, a job which uses data on tape will not produce a new tpésk access pattern: it will jump
between not doing any disk access and producing the reaspafta regular disk-bound job. When
moving data from and to tape, the HPSS will perform strictggential reading and writing on both
the disks and the tapes. We expect that the management anmtsagibn techniques outlined above
will not break down for jobs which also accesses collectiomsape.

The reading of collection data from RAM will be much fasteantthe reading of collection data from
disk. Thus, a job which accesses both collections on diskraRAM will remain disk-bound. The
use of a collection in RAM will not cause a qualitative chamgéhe disk I/O behaviour, so we expect
that the management and optimisation techniques outlihedeawill not break down for jobs which
also accesses collections in RAM.

Note that the storage management techniques we developed af® not concerned with jobs which
only access data in RAM. For these jobs, radically different rgangent techniques could be more
optimal.

6.5 Design of collection data reclustering

In the previous sections, we talked about optimising actesxisting collections. Here, we will
answer the question, posed in section 6.3.1, of how newatimies get created.

We recognise two different forms of creation. First, as désed in section 6.1.1, if a job requests
objects which are stored in no existing collection, thegeab will have to be created by the recon-
struction framework layer of the CMS system (figure 6.1). Aaauded as the end of section 6.1.1,
it will almost always be attractive to store the new objenta new collection, so that they do not have
to be reconstructed again.

Second, new collections could be created by rearrangirdugtering) the objects in existing collec-
tions. As concluded at the end of chapter 4, this reclugiegmecessary to maintain good perfor-
mance as analysis jobs become more selective in their igadin

6.5.1 Reclustering patterns

If a job is reading a collection with a selectivity below ateén threshold, it becomes attractive to
copy the selected data to a new collection.

An example of this is shown in figure 6.11, in which
a job with a cut predicate oF, > 10 is creating a | \

histogram. Only 60% of the objects from the collec- ‘ Selective read 60%

tion are being read, so the storage manager has decided N Histogram Ex>10
to copy the selected objects to a new collection. The | ‘

copying can be done in parallel with creation of the New collection

histogram. If the copy is directed to different disks in
the disk farm, which are not currently involved in the Figure 6.11: Basic reclustering pattern
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reading of data, the copying will not add a performance ovadh If the same job is run again, the
storage manager can find and use the new collection, as skstussection 6.3.2.

A problem with this optimisation by copying is that ex-
tra disk space is used. We can address this probleni by \
extending the pattern as shown in figure 6.12. Here, JﬂOO%
the objects which are not selected are copied too, to40%\?bb Histogram Ex>10
another collection. After the creation of the two ney I ‘
collections, the original collection can be deleted with-
out losing any reconstructed objects. A job which re- Figure 6.12: Extended reclustering pattern
quests all data in the original collection, in the order
in which it was stored in the original collection, can be

i i i Histogram Ex>10
handled by reading the two collections at the same time 500% ﬁ g

and merging the data streams, as shown in figure 6.13- 40% I l

Experiments with a test implementation showed that \/

the merging of multiple collections did not cause a per- | Histogram of all
formance breakdown if the read-ahead iterators from

section 6.4.5 were used. A collection which was cut  Figure 6.13: Using the new collections
into ten parts could be accessed with about the same

speed as the original collection. During the creation
of the test implementation, some performance-relat
bugs were found in the Objectivity/DB database. Thes .
bugs have been reported to the vendor. — Histogram Ey>6

Figure 6.13 shows a clustering of collection data that— I I \
is optimal for two different jobs. If another job, with
another cut predicat&, > 6 is run on the data in the ,
original collection, this can again lead to selective reagellections

ing, this time on two collections. In that case, the ex-

tended reclustering pattern can be used again, leading Al

to a splitting into four collections, as shown in figure

6.14. The end result, in figure 6.15, is a clustering of /T\\
data which is optimal for three different jobs. This cut- l I | | | l
ting process could be repeated to create 8 and 16 collec- \ /
tions. Of course, the cutting process cannot be repeated Ey>6 Ex>10
indefinitely: with a cutinto 32 collections, the overhead

of for merging for a job which requests all data in the Figure 6.15: Optimal clustering for four jobs
original collection will probably become too large.

]

Figure 6.14: Splitting of two collections into four

A big advantage of this technique of reclustering is that
it can be done automatically, using the actual access patpeoduced by jobs. The method does not
rely on guidance from human operators.

6.5.2 Managing the set of collections

In section 6.1.1, we saw that it will always be possible t@mepute deleted objects using dependency
data. We concluded that it would therefore make sense togeaha store of reconstructed objects as
acache In terms of collection management, this means that cadlestare created whenever possible,
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and that some scoring mechanism is used to select collectwrdeletion, or for migration to the
slower tape store. For example, if a collection is split, vwendt expect it to be deleted immediately.
Instead, we expect that its score will be lowered, so that ihore likely to be deleted. We expect
scores to be based on factors like

¢ how often the collection is used
¢ the degree of overlap with other collections
e how often the collection has been spilit.

Similar scoring mechanisms could be used for deciding ortlveinéo merge collections.

Because of the similarities to cache management, which &launderstood field with little surprises,
we expect that the development of adequate collection nesnegt mechanisms will pose little prob-
lems. We can also expect, however, that the collection nmeanagt system will have a significant
number of tuning parameters, and that tuning will make ttfemince between a merely adequate
collection management mechanism and a near-optimal mischarSuch tuning can only be done
while the system is running, from 2005 on, and it may be ecacaliy feasible to devote a significant
manpower to it.



Chapter 7

Conclusions

In 1996 and 1997, the object store related work in CMS and thé3project was mainly concerned
with identifying and investigating possible problem areahis focusing on problem areas was done
to prepare for the creation of fully functional prototypegarting in 1998. Our project identified and
investigated the problem area of using disk farms efficjewthile database access patterns change.
The choice for this area was at least partly coincidentath@project startup phase, studies of the
project environment and of literature revealed a numberpainoproblems. The disk efficiency prob-
lem was only one of them, but it happened to be a problem onhwiicone else in CMS or RD45
was working at the time. Of course, the HEP community did haver projects aimed at optimis-
ing disk performance for physics analysis, but the effastenf in literature (for example [26], [27]),
were all concerned with taking a single job and making it & & possible, not with considering
optimisations for a succession of jobs as we did.

After having identified the physics analysis scenarios iarfigt.2, in which database access becomes
more selective through time, we measured the performanseleftive reading. We discovered, to our
initial surprise, that selective reading would in most caset out-perform the currently used method
of reading the whole physics data set sequentially and ihgaway the unwanted data. We con-
cluded that reclustering mechanisms were needed to naim¢giormance, and were then faced with
the problem of developing them. Our reading of [18] indickttgat the object database community has
little experience with clustering, let alone reclusterifigr our scenarios. No known object database
offers advanced clustering or reclustering services. t€tirgy and reclustering optimisations, if used
at all, are typically coded by hand, using application-#pe&nowledge. In view of this information,
we decided to proceeded by closely studying the specificsitofygplication, physics analysis, before
starting with the design of clustering and reclustering naggsms.

The design of the clustering and reclustering mechaniserasklves was a very explorative process,
in which many alternative solutions were considered arettefd. Our design was developed concur-
rently with the measurements supporting it. New measurésneere done to either validate tentative
design decisions, or to force a choice between alterna@g@d decisions. This approach allowed us
to discover the ‘dead ends’ in the design tree as quickly asiple, and it also ensured that we did
not waste time on measurements which would be useless ospeirt. We believe that, with a less
closer coupling between designh and measurements, it wawigl taken us much longer to obtain the
same end results.
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7.1 Results and limitations

In this project, we have identified and explored the probleeaaf object clustering for physics anal-
ysis. We have designed storage management and retrievAbmisms which are robust, and which
maintain a high efficiency for typical physics analysis gBpwithout placing unnatural constraints
on the physics analysis process. The design was validatatehgurements on tests implementations.

The optimisation techniques we developed exploit someifsp@coperties of physics analysis. The
most important of these properties is that subsequent jadbaasgess the same collections of objects
again and again, with the collections only gradually chaggiAnother important property we ex-
ploited is the lack of data dependencies between operatiomsdividual events. We expect that our
techniques will only have limited applicability outsidepdfysics analysis: most database applications
do not share the properties above. The reclustering patiesection 6.5.1 may be applicable in other
data mining application domains, provided sufficientlyaéint mechanisms for finding the right col-
lections can be built in these domains. Our optimisationlmaisms make it possible predict of the
duration of a disk-bound job beforehand. Such predictiomsraportant because they allow users to
optimise their demands on the system.

The tests for performance and scalability problems weredona medium-size hardware configura-
tion (6 processor machine with two disk farms), using thegbtiyity/DB database on top of a UNIX
file system. Tests with larger hardware configurations antkraoftware layers may reveal additional
problems, which are not addressed by the optimisation cesvive developed.

We did not consider the optimisation of physics analysis jaich do a lot of writing besides read-

ing. Performance tests have shown that the creation andngppy objects is very CPU-intensive,

especially for small objects: Objectivity/DB spends sipaint CPU resources on various adminis-
tration tasks for each object and object reference. Thisnofauses jobs which write or copy ob-
jects to be CPU-bound, rather than disk-bound, unless tteeyparallelised. The developments in
price/performance ratios for hardware may make this probtisappear over time however: CPU
speed is improving with a factor af9 every year [7], disk speed only with a factor b [22].

7.2 Future work

Obvious items for future work are performance tests on lapgatforms, tests with more software
layers, and the development of more fully functional prgpess.

CERN will have an operational HPSS installation at the entla8f7, and this will allow for tests on
larger data volumes, and tests spanning more of the sofavatdardware layers in figure 6.1.

Our prototyping efforts limited themselves to the parts lef lesign which were most critical for
performance. More fully functional prototypes can valelaur assertions, made on other grounds,
about the feasibility of the collection finding service ircien 6.3.2, and the collection management
mechanisms in section 6.5.2. Further prototyping may atpose additional bugs and performance
bottlenecks in Objectivity/DB, beyond the ones we alreaxiynfl.

Outside of the problem area of object clustering on disks,gfoblem area of data migration in a
multi-level hierarchy, especially in a hierarchy incluginegional centres, still requires significant
study by CMS and RD45. Once good migration mechanisms arelfabey will have to be merged
with the collection management mechanisms outlined in@eét5.2.
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Abbreviations

AIO
AP
ATLAS
CERN
CMC
CMS
CPU
ECP
GUI
HEP
HP
HPSS
110
LEP
LHC
LHC++
LHCC
MIPS
00
OOT|
ODBMS
ODMG
TUE
RAM
RAID
RD45
SAl
SLAC

KB
MB
GB
B
PB

Assistant In Training

Applications Programmer Interface

A Toroidal LHC Apparatus

The European laboratory for particle physics
CMS Computing

Compact Muon Solenoid

Central Processing Unit

Electronics and Computing for Physics
Graphical User Interface

High Energy Physics

Hewlett Packard

High Performance Storage System
Input/Output

Large Electron Positron collider

Large Hadron Collider

Libraries for HEP Computing ++

Large Hadron Collider Committee

Mega (10°) Instructions per Second

Object Oriented

Post-graduate programme on Software Design
Object DataBase Management System
Object Database Management Group
Eindhoven University of Technology
Random Access Memory

Redundant Array of Inexpensive Disks
Research and Development project 45 (A Persistent Storagedykr for HEP)
Stan Ackermans Institute

Stanford Linear Accelerator Center

Kilobyte (10? bytes)

Megabyte (0° bytes)
Gigabyte (0 bytes)
Terabyte (0'? bytes)
Petabyte (0'° bytes)
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