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Summary

At CERN, the European laboratory for particle physics, the fundamental structure of matter is studied
using particle accelerators. Accelerated particles are collided head-on inside large detectors, which
measure the collision products. The measurements are studied using large computer systems. One of
the next-generation particle physics detectors, called CMS (Compact Muon Solenoid), will produce 1
Petabyte (1.000.000.000 Megabytes) of data each year, starting from 2005. This data volume pushes
the limits of current database technology. The data storageand analysis software will be based on
object technology, in particular on an object database. On the hardware side, CERN plans to use tape
robots, large hard disk farms, and large CPU farms, all connected by a fast network.

The goal of the design project was to collaborate on finding methods for efficiently storing, managing,
and retrieving the CMS detector data. Early on in the project, it was decided to focus on the issue of
using large disk farms efficiently.

First, the relation between disk access patterns and disk efficiency was studied, in particular with
respect to the types of access done in physics data processing. Measurements for different scenarios
were made on current disk hardware, and were extrapolated tofuture hardware. The results of these
performance studies, which were often very counter-intuitive, were then fed into a design phase.
In this phase, a number of complementary storage managementand optimisation mechanisms were
produced. Together, these mechanisms keep performance high while database access patterns change.
The designs were validated by making prototype implementations of the parts which were critical to
performance.
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Management Summary

This documents reports on research and prototyping work forCMS storage management and optimi-
sation, in particular with respect to the efficient use of large disk farms in physics analysis jobs.

Chapter 4 reports on disk performance measurements important for physics analysis applications. It is
shown that the layout of physics data on disk (clustering) has a significant impact on performance. In
developing the CMS physics analysis system, a significant amount of work will need to be devoted to
the creation of mechanisms for optimising the clustering ofdata. The required clustering optimisations
are not provided by the object database, nor by any other commercial hardware or software component
in the system.

Chapter 5 reports on prototyping activities which were performed to test the usefulness of the IRIS
Explorer software framework for creating CMS physics analysis software. It is concluded that IRIS
Explorer is not useful for this.

Chapter 6 reports on prototyping activities connected to storage management, in particular with re-
spect to the clustering services shown to be needed in chapter 4. Chapter 6 contains an analysis of the
requests which will be made on the object data store by physics analysis applications, and presents
the global design of a storage management mechanism which would fulfil the stated CMS needs.

Results obtained in this project indicate that it will be possible to create a storage management system
which maintains high performance, while meeting the flexibility requirements in the CMS computing
technical proposal. For analysis efforts which repetitively access the same dataset, it will be possible
to automatically optimise the placement of data on disk, to alevel at which access speeds are close to
the maximum disk access speeds as specified by hardware vendors.

In this project, the tests for finding performance and scalability problems were done on a medium-size
hardware configuration (6 processor machine with two disk farms), using the Objectivity/DB database
on top of the UNIX file system. Tests with larger hardware configurations and more software layers
may reveal additional problems, which are not addressed by the optimisation services presented in
chapter 6.
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Chapter 1

Introduction

The CMS (Compact Muon Solenoid) detector is a next-generation particle physics detector which
will be built at CERN. The detector will be ready in 2005, and has a planned operational lifetime
of 15 years. The detector will produce 1 Petabyte (1.000.000.000 Megabytes) of permanently stored
physics data each year. Teams of physicists will search and process this data to extract new physics
results. For every Petabyte of raw data, some 0.1 to 0.2 Petabytes of derived data will be produced
and stored by various physics analysis efforts. Unlike the raw data, derived data can exist in multiple
versions.

The CMS data store requirements pose several key issues. Thelarge data volume means that the data
storage and processing system uses a significant amount of hardware (tape robots, disk farms, CPU
farms), so that hardware failures can be expected daily if not hourly. Also, jobs which process the
data have to be executed on a massively parallel platform, ifthey are to finish in reasonable time. To
achieve the desired database throughput, a storage hierarchy will have to be used. At the bottom of
the hierarchy will be tape robots which can hold all data, buthave low throughput and high latency.
At the next level is a disk farm, which has a much higher throughput (about a factor of 100 higher),
and much lower latency, but which can only hold about 0.2 Petabytes of data. A large amount of
memory based on RAM chips will be at the top of the hierarchy. Methods have to be developed for
managing the migration and replication of physics data through the hierarchy. A final key issue is that
the performance characteristics of 2005 hardware are not yet known. Some technology tracking is
being done, but it cannot account for dramatically new developments. Much of the development work
takes the most conservative technology predictions as a basis.

To address the key issues connected to the management of the data store, several prototyping activities
are being done by CMS, often in collaboration with other groups having similar storage needs. The
prototyping work reported on in this document focused mainly on the issue of data management at the
disk farm level of the storage hierarchy. The prototyping efforts aimed at reconciling the data access
needs of physics analysis jobs with the performance characteristics of disk drives, in such a way that
the greatest possible throughput is achieved.

Chapter 2 contains environment and background informationrelevant for the work. Chapter 3 states
the project goal, and discusses the project organisation which was chosen, and the management of
risks in the project. Chapter 4 reports on measurements of disk performance characteristics which
were made to support the subsequent design and prototyping work. Chapter 5 reports on prototyping
activities which were done to test the usefulness of the IRISExplorer software framework for creating
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6 CHAPTER 1 INTRODUCTION

CMS physics analysis software. This chapter concludes thatnot using IRIS Explorer is the better
alternative design decision, and we thus did not use Explorer in subsequent prototyping activities.
Chapter 6 reports on our design and prototyping activities for CMS storage management and optimi-
sation. It also describes the storage management design which was made. The first part of the chapter
presents an analysis of the nature of physics data processing, and explains how this analysis led us
to choose certain design alternatives. The rest of the chapter reports on design activities which were
steered, not so much by a requirements analysis effort, but by prototyping efforts aimed at discovering
various relevant properties of hard disks, and the operating system and database kernel layers above
them. It presents performance measurements done on prototype implementations, and shows how
these measurements led to subsequent design decisions. Chapter 7 has conclusions.



Chapter 2

Environment

2.1 CERN

At CERN, the European laboratory for particle physics, the fundamental structure of matter is studied
using particle accelerators. The acronym CERN comes from the earlier French title: ”Conseil Eu-
ropeen pour la Recherche Nucleaire”. CERN currently has thelargest accelerator in the world, the
LEP (Large Electron Positron) accelerator [1] which is a ring with a circumference of 26.7 km. The
successor of LEP is called the LHC (Large Hadron Collider) [2]. The LHC startup is scheduled in
2005. Currently, a large share of CERN’s resources goes intothe design and construction of the LHC
accelerator, and of its two main detectors, ATLAS (A Toroidal LHC Apparatus) [3] and CMS (The
Compact Muon Solenoid) [4].

2.2 Particle physics

In accelerators like LEP and LHC, particles can be accelerated to near-light speed, and collided head-
on. Such high-energy collisions happen inside detectors, which detect some of the products of the
collision (particles and energy quanta) which emanate fromthe collision point. Figure 2.1 shows an
example of such a collision, which is commonly referred to asan ‘event’.

By studying the types, speeds, and directions of the collision products in the event record, physicists
can learn more about the exact nature of the particles and forces which were involved in the collision.
Because of the large amount of data involved, events are studied with large computer systems.

In many physics analysis efforts, a large amount of time (andcomputing power) is spent in taking a
large set of events, and narrowing it down to a much smaller set of interesting events.

For example, to learn more about Higgs bosons, one can study events in which a collision produced
a Higgs boson which then decayed into four charged leptons. (A Higgs boson cannot be observed
directly, only its decay products can be observed.) A Higgs boson analysis effort can therefore start
with isolating the set of events in which four charged leptons were produced. Not all events in this
set will correspond to the decay of a Higgs boson: there are many other physics processes which also
produce charged leptons. Therefore, subsequent isolationsteps are needed, in which ‘background’
events, in which the leptons were not produced by a decaying Higgs boson, are eliminated as much
as possible. Background events can be identified by looking at other observables in the event record,
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Figure 2.1: A CMS event (simulation)

like the non-lepton particles which were produced, or the speeds at which various particles left the
collision point. Once enough background events have been eliminated, properties of the Higgs boson
can be determined by doing a statistical analysis on the set of events which are left.

The process of narrowing down an event set is done in multiplesteps, where each step is referred to
as a ‘cut’. The data reduction rate of the cutting process canbe enormous. The final event set in the
above example may contain only a few hundreds of events, selected from the4 � 1014 events which
occurred in one year in the CMS detector. This gives a data reduction factor of about 1 in1012.

The study of matter with accelerators is part of the field of high energy physics (HEP). A lot of the
technology, including software technology, used in the HEPfield is developed specifically for HEP.

2.3 CMS

The CMS detector (figure 2.2) is one of the two main detectors of the LHC accelerator. It is being
designed and built, and will be used, by a world-wide collaboration which currently consists of some
130 institutes, which contribute funds and manpower. The institutes will also be the users of the
detector when it is finished. CERN is one of the institutes in the CMS collaboration.

In normal operation, the LHC accelerator will let two bunches of particles cross each other inside
the CMS detector 40.000.000 times each second. At the highest power levels, there will be about 20
collisions of two particles in each bunch crossing. In CMS terminology, an ‘event’ corresponds to a
bunch crossing with collisions, and the combined measurements of the collisions products, done by
the detector elements in the CMS, are called the ‘raw event data’. The size of the raw event data for a
single CMS event is about 1 MB.

There are two main systems in CMS data processing: the onlinesystem and the offline system (figure
2.3). The online system is a real-time system, which has the task of selecting (filtering out) the 100
most interesting events out of the4 � 107 events in every second. These 100 most interesting events
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Figure 2.2: The CMS detector

will be recorded on long-term storage maintained by the offline system. The output of the online
system is thus 100 MB/s data stream, containing raw events ofabout 1 MB each.

The detector takes data for about1=3 of the time of each year, which corresponds to about107 seconds.
Thus, in a year,109 events will be recorded in the offline system, which corresponds to 1 PB (Petabyte,
or 1015 bytes) of data. The total running time of the LHC will be about15 years. The LHC data
volumes are the largest of any known project in the time frameinvolved [5]. One of the big challenges
in CMS computing is to invent methods and techniques which scale to the Petabyte level.

2.4 CMS offline data processing

The stored events will be analysed by about 20 groups of physicists in the CMS collaboration, using a
large computing system known as the offline system. The activity of physics analysis is an example of
a data mining [6]. Note however that physics analysis has been done long before the term data mining
became popular.

Some parts of physics analysis are highly CPU-intensive, other parts rely heavily on the I/O bandwidth
which can be achieved when accessing precomputed results. It is expected that the physicists in the
collaboration will be able to use whatever computing power the offline system makes available to
them: an increase in computing power means an increase in thepotential for interesting physics
discoveries, because analysis jobs can look for more subtleeffects.

The CMS offline system will be based on a persistent object store. Physicists will access event data via
an Object Database Management System that will be automatically available from the CMS software.
Neither the tapes nor disk files should be accessed explicitly.

The offline system will rely on massive parallelism and special optimisation techniques to get the most
out of standard hardware. The hardware will be upgraded through time to profit from new advances in
computing technology. Performance could grow with severalorders of magnitude from 2005 to 2020,
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and the system architecture and database model will have to take this into account.

In addition to the central CMS data processing system at CERN, there may be a small number of
regional computing centres around the globe, which host smaller, but still considerable, CPU and
storage capacities. Processing tasks are automatically scheduled to be executed at the most convenient
location.

2.4.1 System dimensions

The following are estimates for the initial offline system in2005, taken from [7]. Exact figures cannot
be given: these will depend on the particular price/performance ratios for hardware at that time.

Processing power. The offline system will have about107 MIPS of processing power, and will heavily
rely on parallelisation to achieve the desired speeds.

Storage capacity. The system will have a robotic tape store with a capacity of several PB, and a disk
cache of several hundred TB (Terabyte, or1012 bytes).

I/O throughput rates. For the central data store at CERN, the maximum integrated throughput from
the disks to processors will to of the order 100 GB/s, whereasthe integrated tape-disk throughput may



2.4 CMS OFFLINE DATA PROCESSING 11

be of the order 1 GB/s (32 PB/year) spread over some tens of devices.

The table below lists estimated data rates between the persistent object store and the different online
and offline system components in figure 2.3.

Component name Data rate from/to Persistent Object Store

Slow control � 0.1 MB/s (during detector operation)
L2/L3 � 100 MB/s (during detector operation)
L4 � 110 MB/s (keeping up with detector operation)
Simulation � 2 MB/s (occasional writing over the year)
Calibrations, group analyses (continuous use of+ � 100 GB/s whatever resources
User analysis can be obtained)

Note that the data rate for the two analysis components far outweighs all other data rates. Thus, if one
is concerned with efficiently using the available hardware resources, only these two components need
to be considered.

With respect to storage management and optimisation, the ‘Calibrations, Group Analyses’ component
is the least problematic one of the two. This component typically runs large batch jobs which will
process all data in a huge dataset, writing another huge dataset. Jobs will mostly be tape-bound, and
will read data in a sequential way. The techniques for optimising the data flow for such jobs are
relatively simple, and well-understood in the physics dataprocessing community.

The ‘User analysis’ component, on the other hand, will depend on storage management techniques
which are novel in physics data processing. Jobs run by this component are typically short, sometimes
even interactive, and will be concerned with analysing increasingly narrow subsets of all event data.
These jobs produce semi-random data access patterns which are subject to gradual change. To keep the
performance for these jobs high, the persistent storage manager will have to dynamically reorganise
(re-cluster) data on disk to match the changing patterns.

2.4.2 Types of data

We can recognise a number of different types of data in physics analysis. All types of data below will
be stored in the persistent object store of the offline system.

Raw data. For every event, the raw data is the record of all detector measurements done for this
particular event. No processing has been done on the raw dataapart from some lossless compression.
In CMS, the raw data for a single event will have a size of about1 MB. In experimental terms, the raw
data for an event is a direct record of an observation, which serves as a basis for later interpretations.
After having been recorded, it will never be changed.

Calibration data. The calibration data is used in interpreting the raw data. Calibration values, which
can be queried for each event, record things like the exact geometric position of detector elements
inside the CMS detector, and factors needed to interpret theoutput of various analog-to-digital con-
verters, as recorded in the raw data blocks. Unlike the raw data, the calibration data records interpreta-
tions and judgements made by humans, usually with the aid of statistical analysis programs. When the
interpretation process is refined, new versions of the calibration values can be stored in the database.
Calibration values are not stored on an event-by-event basis, every value will be stored with a valid-
ity interval which will span many events. Querying of the calibration values will usually be on an
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event-by-event basis.

Reconstructed data. The reconstructed data for an event represents an interpretation of the raw data
and calibrations for an event in terms of physics phenomena.There are several types of reconstructed
data. For example, the set ofreconstructed tracksfor an event is a set of particle trajectories which can
be observed in the raw data, by connecting the ‘points’ measured by the individual detector elements.
A reconstructed track record for an event has a size of about 100 KB. The record is produced with
a track reconstruction algorithm. Good track reconstruction algorithms are very CPU-intensive. It is
expected that the majority of CPU resources in the CMS offlinesystem will be devoted to running
track reconstruction algorithms. Another type of reconstructed data are reconstructedjets. A jet is a
collection of tracks with the same origin and about the same direction, which is produced by a physics
interaction at the quark level.

Event summary data. An event summary object has a size of about 10 KB, and summarises important
features of the event. It is largely based on the reconstructed data. The record may for example
contain information about those reconstructed tracks which were produced by particles with very
high energies.

Event tag data. An event tag object has a size of about 200 bytes, and containsa very compact
summary of the nature of an event.

In the CMS data model [7], the distinction between the different types and sizes of reconstructed and
summary data is not very rigid. It is possible that some physics analysis effort is best done with event
summary data blocks of 50 KB, and the offline system should take this possibility into account. At the
database interface level, there will be no distinction between reconstructed, summary, and tag data:
all will be accessed through the same mechanism.

As seen in section 2.2 in physics analysis a sample of events is narrowed down to a smaller set of
interesting events in a number of steps, where each step is referred to as a cut. For Higgs analysis,
with a data reduction factor of1012, the online system will account for a reduction factor of4� 105,
the offline system for a factor of about2:5 � 106. The first cuts in the offline system will make use
of the small event tag objects, later cuts will gradually access larger objects for each remaining event.
The final cuts may even need the raw event data itself.

2.4.3 Object databases

The CMS offline system will be based on a persistent object store. In the CMS computing strategy [7],
which was developed in close collaboration with the RD45 project (see section 2.5), the choice was
made to implement this persistent object store on top of a commercial object database management
system (ODBMS). The ODBMS should be compliant with the emerging ODMG [8] standard for
object databases. This choice is in line with the general strategy of using commercial software as
much as possible, rather than developing software in-house. The existence of the ODMG standard,
for which multiple vendors are making implementations, ensures that CMS will not be bound to a
single object database vendor. This is important for two reasons. First, it ensures that the continuity
of the CMS data store and its data management software is not dependent on the survival of a single
vendor or product line until 2020. Second, it improves CERN’s position in negotiating the price of
the database license.

The Objectivity/DB object database [9] was chosen as the basis for all prototyping efforts in CMS
in the 1996-2000 timeframe. The final choice for a productiondatabase will be made later. Objec-
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tivity/DB was found to be the product best suited for use by CMS: its internal architecture can cope
with extremely large databases, and it has facilities for building distributed systems. Also, the vendor,
Objectivity Inc, has been shown to provide good support for its products. CERN currently has the
status of an Objectivity beta testing site.

From a C++ programmer’s viewpoint, an object database offers the service of creating and managing
persistent objects. A persistent object has the property that, unless explicitly deleted, it will continue
to exist after the termination of the program which created it. Aside from that, persistent objects can
have all the features one can expect in a normal C++ object. They can inherit from other objects, and
can have private and public data members, methods, and virtual functions. A non-persistent object
can maintain references to persistent objects, and a persistent object can maintain references to other
persistent objects. Compared to programming for a relational database, programming for an object
database has the advantage that an object oriented data design will map naturally onto the object
database facilities. There is no need for code which ‘flattens’ the object structure into something like
relational database tables.

The ODMG standard for object databases contains a language-independent model for objects in the
database. This object model defines, among other things, persistent object naming and identity, in-
heritance, locking, and the relations between objects which can be maintained by the database. The
ODMG standard defines language bindings for C++, Smalltalk,and Java. These language bindings
define facilities for object creation, naming, manipulation and deletion. Individual vendors can extend
the facilities offered by the language bindings to areas which are not covered by the standard. Objec-
tivity, for example, extends the C++ language binding with a‘clustering’ mechanism, by which the
application programmer can, to some extent, control the physical placement of objects on the database
media. An optimal physical placement of objects is important to get high performance on reading.

2.5 Organisational environment

The project was performed in the CMC (CMS computing) group ofthe ECP (Electronics and Comput-
ing for Physics) division of CERN. This group contributes tothe global computing work in the CMS
collaboration. This arrangement has a matrix organisationstructure (figure 2.4): the ECP division is
on the vertical axis, and the CMS collaboration is on the horizontal axis, extending beyond CERN.

ECP

CERN

CMS computingCMC
collaboration

CMS

Figure 2.4: Position of CMC group in the organisation matrix

In the field of storage management for HEP, CMS is not the only experiment with Petabyte require-
ments. To pool the efforts whenever possible, a joint project between the LHC experiments, called
the RD45 project (subtitle: A Persistent Storage Manager for HEP) [10], was created. In addition,
to providing a common R&D forum for the future experiments atCERN, the RD45 project has ties
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with a number of particle physics experiments in preparation outside of CERN. An example is the
BaBar experiment at SLAC (The Stanford Linear Accelerator Center) [11], which starts in 1999 and
will store 100 TB of event data per year, using Object Database technology. Another research project
with ties to RD45 is the CMS Caltech/CERN/HP joint project [12], which is constructing a large-scale
prototype of a CMS regional computing centre. Figure 2.5 shows the structure of the RD45 project.

Etc...

ATLAS computing

CMS computing

BaBar computing

RD45

CERN IT division

Etc...

Figure 2.5: Structure of RD45 the project

Another important joint project is the LHC++ (Libraries for
HEP Computing) project [13], which addresses the produc-
tion of HEP-specific software libraries, and the licensing of
commercial software. The organisational structure of the
LHC++ project is similar to that of the RD45 project.

The activities in the design project were done in the CMS
computing group, and the main goal was to contribute to the
CMS computing milestones as recorded in [7]. A secondary
goal was to contribute to the RD45 milestones, as part of the
CMS contribution to RD45. Due to the strong overlap be-
tween the CMS computing and the RD45 milestones, many
work items in the design project contributed to both mile-
stones.

2.6 CMS software process

The CMS software process differs from ‘textbook’ software processes in a number of ways.

First, there is the large timescale involved: the offline software has to be ready in 2005, and will be
used at least up to 2020. The large lead time has made room for ambitious requirements. The LHC
data volumes are the largest of any know project in the time frame involved [5], and this makes it
necessary for the software process to actively push the limits of storage management technology.

The CMS software process [7] recognises the following (overlapping) phases in offline software de-
velopment:

1995 – 1998 Research, selection and testing of commercial software components
Initial prototyping of parts of the system

1998 – 2000 Research, selection and testing of commercial software components
Development of full prototype of the system

2000 – 2002 Selection and testing of commercial software components
Development of first version of the Operational Phase software
Choice of the final the software environment, including commercial components

2002 – 2004 Development of production version of the Operational Phase software
Deployment of production operational phase software

2005 – 2020 Maintenance of operational phase software
(Maintenance involves re-optimising to exploit new developments in hardware)

It must be noted that in the current phase of the software process, a detailed overall design does not
yet exist. Also, the system requirements have not been fixed:requirements are stated in terms of
‘the system must use the available 2005 hardware effectively’, rather than ‘the system must supply



2.6 CMS SOFTWARE PROCESS 15n MIPS of processing power’. In the end, the 2005 system performance will be a function of the
price/performance ratios of 2005 hardware, the CMS hardware budget (which is more or less fixed),
and the effectiveness of (the optimisation algorithms in) the software.

Second, the dispersed nature of the CMS collaboration also makes the software process different from
textbook cases. Though there is a core software team at CERN,other development activities are done
in smaller teams, or by individuals, in other European countries, and in the US. The flat nature of
the collaboration implies that there can be no centralised control structure: decisions are made on the
basis of consensus. The core team at CERN can play a coordinating role at best.

Third, HEP software has traditionally been developed in FORTRAN, and the field is currently in the
middle of making a slow transition to the use of object technology and a higher reliance on commercial
software components. Many people in staff and management are only slowly making the shift to
the new design and programming paradigms. As a result, thereexists no clear, unified view on the
potentials and limitations of object technology, and on thepotentials and limitations of the chosen
software components. As a result, a lot of time is spent in investigating and reporting on issues
which would, in a more mature environment, have been identified beforehand as minor, non-critical,
or irrelevant. It is recognised though that at least some of this is an inevitable by-product of traversing
the organisational learning curve.

The CMS software strategy is to exploit commercial softwarecomponents as much as possible. An
important part of this strategy is to provide early directions and feedback to vendors of such software
components, to ensure that the CMS needs are met in the long term. Providing early feedback can be
particularly valuable in the ODBMS market. This market is still small, while it is expected to grow
rapidly. Also, standardisation efforts for ODBMS systems are still underway. Feedback is mostly
provided through the RD45 and LHC++ joint projects.
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Chapter 3

Project Organisation

3.1 Project goal

The goal of the design project is to do research and prototyping for CMS storage management and
optimisation. Various access and optimisation services will be designed and prototypedon top of the
basic mechanisms of Objectivity/DB [9], in order to evaluate if and how an ODBMS can be used for
implementing functions specific to the CMS computing technical proposal [7].

The prototypes will also aim to integrate Objectivity/DB with various other software components in
the LHC++ [13] library. The goal of integrating with these other components is twofold: first, one
wants to know if the component is a good choice among various options, and second, one wants
to provide feedback and directions to the component authors. The activities are performed in close
collaboration with the RD45 project [10].

3.2 Project planning

The project planning needed to address two major project risk factors: technological risks and organ-
isational risks.

The technological risks are caused by a number of technical uncertainties. First, the research activities
will (naturally) explore unknown terrain, and the problemswhich may be encountered cannot be
known beforehand. Second, the prototyping activities dealwith commercial software components
which have not yet been evaluated fully, and for which unexpected integration problems may arise.
The technological risks cause large uncertainties in the time budget for different project activities.

The organisational risks stem from the characteristics of the CMS software process. There is no ‘hard’
requirements document, and, in the 1997 phase, there is alsono detailed software design. As a result,
the design project goal is stated in broad, loose terms.

To address the risks, the planning follows the spiral model [14]. Risks are identified, and questions
corresponding to these risks are formulated. The answers tothese questions are used to address the
risks. We use a cyclic prototyping approach with a variable number of cycles (figure 3.1). Each cycle
should take no longer than 10 working weeks, though the actual time from the start to the end of a
cycle may be a bit longer, because some overlap in the phases is allowed.

17
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Final report

Plan prototype

Evaluate prototype

Build prototype

Document prototype

Project startup

Figure 3.1: Project plan with cyclic prototyping

The planning of each prototype happens at the start of a cycle, not earlier. This makes it possible to
take the latest information about the needs of the CMS collaboration into account when committing
resources. Thus, frequent course corrections can be made, lowering the organisational risk that the
project drifts away from the CMS mainstream.

The plan for each prototype clearly defines� the functionality of the prototype,� the software components which are tested or integrated by the prototype,� a set of prototype evaluation metrics.

There is no requirement that the ‘Build prototype’ phase ends with a working prototype. If software
integration problems turn out to be very big, then it is possible to end the building phase with a
negative result, and a report on integration problems.

For every prototype, any bugs in software components, and integration problems between compo-
nents, will be reported to the relevant party or parties. Depending on the nature of the problem,
relevant parties can be the RD45 project, the LHC++ project,or the support groups of the various
software component vendors.

The prototype documentation phase delivers the prototype source code, a discussion of relevant de-
sign decisions, and a report on the evaluation of metrics. The prototype will in general be throw-away
prototypes.
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The project startup phase has the following goals:� Gather knowledge about the organisational environment at CERN� Gather knowledge about the methods in High Energy Physics, in particular with respect to
computing� Gather knowledge about the CMS software process� Study relevant documents produced at CERN, in particular the CMS Technical Proposal [4],
the CMS Computing Technical Proposal [7], and relevant RD45reports [10]� Learn to program for the Objectivity/DB [9] ODBMS, and studyin particular those parts of the
ODBMS which relate to performance� Gather relevant hardware performance figures� Study existing data management techniques developed in theHigh Energy Physics community
and outside it, in wider the field of data mining.

The ‘final report’ phase of the project has, of course, the goal of writing the final report required by
the OOTI course.
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Chapter 4

Disk Measurements

In the project startup phase, it was found that not all hardware performance figures which were relevant
for CMS storage management could be found in literature. It turned out that the standard sources, like
[15], [16], [17], [18] and [19], did not contain enough information to accurately predict performance
in some important disk-bound HEP data access scenarios. Also, it was found that none of the CMS
and RD45 members of CMS were already performing, or planningto perform, a detailed study of
disk-bound data access.

It was therefore decided to add an extra ‘disk measurements’phase to the project, directly following
the startup phase. The structure of the ‘disk measurements’phase (figure 4.1) was similar to that of a
single prototyping cycle.

Document measurements

Perform measurements

Evaluate measurements

Plan measurements

Figure 4.1: Planning for disk measurements phase

4.1 HEP data access scenarios

As seen in section 2.4.2, physics analysis jobs refer to reconstructed objects of events. The jobs in
successive stages of a physics analysis process refer to less and less events. This leads to a data access
pattern as in figure 4.2: the selectivity in reading data grows over time (the grey blocks represent
objects which are being read by the jobs at a certain time).
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Figure 4.2: Increasing selectivity over time

One obvious way to optimise disk access performance for thet = 0 scenario in figure 4.2 is to cluster
all objects on disk in the order in which they will be read. In this scenario, the job will perform a
sequential readover the disk.

Now, the question arises what will happen to the performancein the t = 1 and t = 2 scenarios,
assuming that� the data is not reclustered, but kept on disk as it was in thet = 0 scenario� thet = 1 andt = 2 jobs read events in the same order as thet = 0 jobs.

Under these assumptions thet = 1 and t = 2 jobs will perform aselective read(figure 4.3): the
objects are read in a sequential ‘left to right’ order, but some objects are skipped.

Figure 4.3: Selective reading

It turns out that literature does not answer the question of how to compute the disk performance for
selective reading scenarios. The importance of these scenarios in HEP was the motivation for the disk
measurement phase in the design project.

We measured the disk performance of selective reading for various selectivities and object sizes. For
background and validation, we also measured sequential andrandom reading scenarios, even though
the resulting curves, which are important in their own right, could also have been calculated using
literature alone.

All measurements were performed on disks (2.1-GB 7200-rpm fast-wide SCSI-2, Seagate ST-32550W)
which can be considered typical for the high end of the 1994 commodity disk market. All measure-
ments are of raw disk performance, without any optimisationby an operating system cache.
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4.2 Sequential and random reading

We measured the raw disk performance for sequential and random reading. The results, translated
to performance rates for various average (reconstructed) object sizes, are in figure 4.4. Note that this
figure predicts the overall system performance only in the case that the disks are the bottleneck. For
object sizes below1000 bytes, the CPU usage requirements of Objectivity/DB will more often be the
limiting factor, at least in the case that only one process isreading from disk.
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Figure 4.4: Performance for sequential and random reading scenarios

Observing the results in figure 4.4, we see that the random read speed is much lower than the sequential
read speed. For example, it is about a factor 7 lower for 8 KB objects. As can be seen in the Objects
per seconds plot, the random read time is completely dominated by the hard disk seek time for small
object sizes.

As far as the design of a storage manager is concerned, these graphs illustrate the importance of
good clustering, especially for (reconstructed) objects smaller than 8 KB. If the clustering is bad, the
database performance will, in the worst case, degrade to that of the random read scenario.

After an analysis of hard disk technology trends ([20], [21], [22]) we found that the large gap between
the sequential and random scenarios will grow even larger infuture. Extrapolating trends, we can
predict that the gap will grow from a factor 7 to a factor 20-30for 8 KB objects, and from a factor 50
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to a factor 150-250 for 1 KB objects,

The size of the gap has a big impact on the design parameters for storage management and optimisa-
tion mechanisms: as degradation to a random read scenario isvery costly, considerable resources can
be invested to avoid such degradation.

A system which spends 90% of its resources performing optimisations which avoid a degradation to
the random read scenario may end up being faster than a systemwithout such optimisations.

4.3 Selective reading

To determine the performance of selective reading for various average object sizes, we need to take
into account that Objectivity/DB does its reading at the database page level, not at the object level. If,
on average, every page holds 5 objects, and the object selectivity is 10%, then this results in the reading
of 51% of all database pages. The relation between the page selectivity Spg, the object selectivitySobj,
and the number of objects per pageNpg is as follows:Spg = 1� (1� Sobj)Npg
We thus first measured the raw disk performance for various values ofSpg and various page sizes, end
then extrapolated the results for different combinations of Sobj andNpg.
In measuring the raw performance associated with variousSpg values, we first used the default Ob-
jectivity/DB page size of 8 KB.

The left hand graph in figure 4.5 shows the performance for variousSpg values, with 8 KB database
page sizes (8 KB is the default page size in Objectivity/DB).Observing the graph, we see that the
performance decreases rapidly when the reading of pages becomes more selective. Also, the curve
only levels out when the performance level of the worst-caserandom read scenario is reached.
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Figure 4.5: Performance for selective reading of 8 KB pages

To interpret these performance measurements, it is useful to plot them as a speedup curve. The right
hand side of figure 4.5 shows the speedup when going from the sequential reading of all data, as in
the t = 0 scenario in figure 4.2, to the selective reading of part of thedata, as in thet > 0 scenarios.
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We can conclude that (at least for this disk and this page size), selective reading is only interesting as
an optimisation technique if the page selectivitySpg is less than 15%.

By extrapolating theSpg results for different combinations ofSobj andNpg, we get the curve in figure
4.6. This curve shows, for different object sizes, the selectivity at which the analysis job becomes
faster than the sequential reading analysis job in thet = 0 scenario. Note the double logarithmic
scale.
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Figure 4.6: Selectivity at which jobs start to outperform sequential reading

The curve in figure 4.6 is based on raw performance measurements for a database page size of 8 KB.
Raw performance measurements for other page sizes showed that the curve does not change much if
an other page is chosen. Also, measurements on another type of disks, a study of disk technology,
and a comparison of the disk specifications supplied by different manufacturers, indicated that this
rather negative results applies to all types of commodity disk hardware: the curve in figure 4.6 may
shift a bit for other disks, but it does not change fundamentally. For a RAID array [23], in which the
data is striped across multiple disks, the curve will also beabout the same: striping improves both
sequential and selective reading performance with the samefactor. Finally, a study of disk technology
trends showed that, barring radically new hardware innovations, the curve will even move down, to
smaller selectivities, in future. Note however that the commodity/desktop market, which is expected to
drive innovation, is largely dominated by sequential reading: there is little market pressure to improve
random and selective reading.
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4.4 Conclusions and followup

4.4.1 Impact on design

In the end, we can conclude that, at least for small object sizes, hard disks are best treated as little
tape drives in disguise. For the majority of disk-bound physics analysis jobs, selective reading is inef-
fective as an optimisation mechanism: an implementation with selective reading will not outperform
an implementation which simply reads sequentially throughall data, discarding the unwanted data on
the fly.

Of course, this does not mean that selective reading mechanisms are useless. Compared to sequential
reading, selective reading will use less CPU resources. If the reading of database pages goes via a
network, selective reading will save network resources when Spg is low enough, which is roughly for
object sizes bigger than 1 KB. Also, selective reading will never perform worse than random reading,
and will usually perform better.

If the goal is to make thet = 1 andt = 2 jobs in figure 4.2 faster than thet = 0 job, selective reading
is useless. Any other technique which is solely based on skipping over unwanted data will be as least
at useless: as selective reading is the technique which mostclosely mimics the sequential scenario, we
can only expect even faster degradation toward random reading performance for other partial reading
techniques. To make the duration of a job linear with the sizeof the requested data, one will have to
physically move the unwanted data out of the way.

4.4.2 Followup in design and prototyping activities

At the end of the disk measurements phase, we were left with the conclusion that efficient storage
management would have to rely heavily on the art and science of reclustering. As very little of this art
existed, developing the art and science of reclustering wasidentified as an important goal for future
design and prototyping activities.

4.4.3 Documentation of results

The results of the disk measurements phase were documented,in a form accessible to CMS and RD45,
as part of [5]. The material in [5] differs from this chapter in that it places a stronger emphasis on
exploring the design consequences of the measured performance characteristics, and less emphasis on
the raw measurement results.

The results were also reported in a number of talks at the end of the phase. They were used to explain
a some unexpected performance breakdowns observed in prototypes developed by other members of
the RD45 project.



Chapter 5

IRIS Explorer

IRIS explorer is a data visualisation framework, which is used by various communities in science and
industry, for example the computational fluidics community, to make 3D visualisations of complex
datasets. It is currently not in use in the HEP community, butits introduction is considered as part of
the LHC++ [13] strategy. IRIS explorer was originally developed by Silicon Graphics, but is currently
being maintained by NAG (The Numerical Algorithms Group Ltd) [24], which also supplies various
numerical libraries to CERN.

Figure 5.1: IRIS explorer map editor, with a map of five mod-
ules, and a picture window

To produce a 2D or 3D graph or picture from
some data set, an IRIS explorer user can
build a ‘map’ (see figure 5.1), which is a pro-
gram in Explorer’s graphical programming
language. Explorer programming consists of
selecting modules, setting various parame-
ters in the modules, and drawing data flow
paths between the modules. The last mod-
ule in a data flow chain will generally be one
which produces a picture in a separate win-
dow.

One of the strengths of Explorer is that it al-
lows the visualisation program to be devel-
oped in an explorative way: the user interface
makes it very easy to tune the various module
parameters, and to change or extend the map,
in order to isolate or enhance certain features
of the data. If a change is made, the Explorer
framework will automatically perform the re-
calculations which have to be done to update
the display. Thus, working with explorer is in
some ways similar to working with a spread-
sheet application.

Explorer offers a few hundred modules for the use to choose from when constructing a map. Some
of the modules are part of the base package, others have been developed over time by various user
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communities.

Within the LHC++ project, two observations were made with respect to the use of Explorer. First,
by building some HEP-specific modules, it would be possible to make Explorer useful as a HEP data
visualisation tool. Second, as event filtering can be modelled as a data flow computation, it would be
possible to write Explorer modules for event filtering. Thiswould allow physicists to do both filtering
and visualisation under a single unified GUI.

Though the use of Explorer looked attractive, in early 1997 the LHC++ project had not yet validated
the above observations by performing prototyping experiments. As a contribution to LHC++, it was
decided to collaborate in such experiments as part of the design project. If successful, the prototype
could be re-used as a GUI for further prototypes in the designproject.

5.1 Prototype

Below, we cover the prototype which was built by covering themain definitions in the prototype plan.

Functionality. The prototype provides an event filtering chain toolkit based on Iris Explorer mod-
ules. The modules have the following functions:� Thesource modulecan be used to select a test beam run, and it outputs all eventsin that run� A filter moduleonly forwards those events which match the filter predicate of the module. The

filter predicate is a C++ expression� Theend moduledisplays the number of events which are left at the end of the filter chain.

Figure 5.2 shows an event filtering chain built from the prototype modules. The source module (called
RunList) is at the front of the chain, followed by three filtermodules, containing three different filter
predicates, followed by the end module, which displays a count of 16 events selected by the filter.

Figure 5.2: Screenshot of the IRIS Explorer filtering prototype
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On the implementation side, a requirement is that, for efficiency reasons, all event database access
has to be done by a single explorer module. Another requirement is that the filtering has to be imple-
mented by dynamically compiling and loading the C++ filter predicates. (This requirement verifies
the feasibility of dynamic compiling and loading, which plays an important role in the system design
of the CMS computing technical proposal [7].)

Software components For the source module, an already existing LHC++ prototype module is
used. For the end module, a standard Explorer module is used.The filtering module makes use of
the following software components IRIS explorer, Objectivity/DB, Rogue Wave tools.h++, standard
SunOS C++ compiler, SunOS dynamic linking and loading facilities. The event database model is the
database model of the CMS testbeam prototype.

Evaluation metrics Metrics are: the interactive response time of the filter application, and the
usability of IRIS Explorer as a software framework for developing CMS (filtering) applications.

5.2 Design

Most of the prototype design parameters were already fixed bythe prototype requirements. To meet
the requirement that all event database access is done by a single module, we used a mechanism in
which the data flowing between the modules was not a collection of events, but a description of the
selected run together with the filtering predicates so far. The filtering module at the end of the chain
would, after detecting that it was at the end, take this description, turn it into compilable C++ code,
and compile, load, and execute the code, thus running all filter predicates against the event database.

5.3 Conclusions

Based on the design above we were able to build a prototype meeting all requirements. With respect
to the metrics, interactive response time was good, in the order of 1 second, in the case that a different
run was selected, but bad, in the order of 40 seconds, in the case that a filter predicate was altered. The
bad response time was due to the long time needed to compile the generated C++ code. The compiler
spent most of its time processing the 750 KB of C++ header filesincluded by the loadable code. A
large explosion in header files is definitely a risk when integrating many commercial components. It
seems attractive to reduce the need for recompilation by techniques which isolate the constants in the
filter predicate and treat them separately: this way, a change in a constant would not require a costly
recompile.

To meet the Objectivity/DB derived efficiency requirement that all database access is done in a single
module, we had to use the Explorer dataflow facilities in an a-typical way. Though we had little
problems implementing this a-typical use pattern, it also prevented us from exploiting much of the
refined services offered by the Explorer framework. While the programmer of a more typical Explorer
module could have left all control flow decisions and data dependency administration to the Explorer
framework, we were forced to implement these things ourselves inside our modules.

Software frameworks, like IRIS Explorer, are designed to take the implementation of complex but
common administration tasks out of the hands of the application programmer. However, as we have
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seen, due to database usage constraints, Explorer could nottake such tasks out of our hands in our
case. We basically ended up using Explorer not as a framework, but as a GUI toolkit. As Explorer is
not the nicest GUI toolkit around (for a start, it provides a C, not a C++ API), it can be concluded that
using Explorer to build event filtering software is more trouble than it is worth. Providing an event
filtering package based on another GUI toolkit, with a coupling to an Explorer-based visualisation
package, seems a more promising approach.



Chapter 6

Storage Management and Optimisation

This chapter reports on the design and prototyping efforts with respect to storage management. These
activities were done in two prototyping cycles. The first prototyping cycle, which roughly corresponds
to sections 6.1, 6.2 and 6.3, was mainly concerned with analysing the physics analysis application
domain. The second prototyping cycle, which roughly corresponds to sections 6.4 and 6.5, was mainly
concerned with clustering and reclustering strategies. Inthe first cycle, the physicist was at the focus
of attention. In the second cycle, the focus of attention shifted to disk access patterns.

We have seen in section 2.4.1 that, of the two types of jobs which will take the majority of system re-
sources, the ‘user analysis’ jobs were the least well understood. We therefore focused our prototyping
efforts on these jobs. The jobs are disk-bound: the execution time is dominated by the time needed
for reading physics objects, as described in section 2.4.2,from the persistent object store.

6.1 Analysis of layers above the storage manager

Job submitted by user

Analysis framework

Reconstruction framework

Objectivity/DB

HPSS

Disk farms, tape robots

Persistent storage manager

Figure 6.1: Layers in the CMS
physics analysis system

The CMS physics analysis system is a layered system (figure 6.1), with
the persistent storage manager somewhere in the middle. In the project
startup phase, and in the disk measurements phase of the project (chap-
ter 4), we analysed the characteristics of the layers below the storage
manager. In this section, we report on our analysis of some ofthe
characteristics of the layers above.

The goal of this analysis effort was to get clarity about the interface
between the storage manager layer and the higher layers. Theleading
questions were:� What is the nature of the requests made on the storage manager� How often are different types of requests made.

These questions are fundamentally about thedynamicside of storage
management: how do the contents of the data store, and the demands
on the data store, change through time. It was found that the CMS
computing technical proposal [7] left these questions openfor future research. In fact, the comput-
ing technical proposal argues that existing storage management methods and practices shouldnot be
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taken as a basis for answering questions about the dynamic nature of physics analysis, as the existing
methods were developed more to meet the constraints of tape drives than to reflect the ‘natural’ way
of doing physics analysis.

To answer the leading questions, we thus had to approach storage management from a very high level.
In fact, we found that, to expose all possible forms of optimisation, we had no choice but to consider
physics analysis as a process in which a community of humans forms a judgement, using computers
as a tool.

The sections below report the results of our analysis, and ontheir consequences for storage manage-
ment and optimisation.

6.1.1 Data dependencies in physics analysis

Figure 6.2 shows, for a single event, some typical object types in physics analysis, as described in
section 2.4.2. The figure also shows the data dependencies between these objects: an arrow pointing
from A to B means that the value ofB depends on the value ofA. Note that algorithms are also
treated as objects in this figure.

Reconstruction
algorithm V5

algorithm V3
Jet finding

Raw event data

Calibrations V1

Reconstructed tracks

Reconstructed jets Reconstructed jets

Reconstructed tracks

Reconstructed jets

Reconstructed tracks

Reconstruction
algorithm V6

Calibrations V2

Jet finding
algorithm V4

Figure 6.2: Some object types and dependencies for one event

As observed in the computing technical proposal [7], the reconstructed objects in figure 6.2 have the
property that their values are uniquely determined by the values of all the objects they depend on.
This means that, if an object is deleted, it can be re-computed again, provided that� its type is still known� its dependency relations with other objects are still known� the values of these other objects are available, or can be re-computed again themselves.

The global system design in the computing technical proposal requires that, if an object is deleted, all
above conditions are always met, so that it can be re-createdon demand. The initial creation of an
object will also depend on dependency data.

According to the global system design in the computing technical proposal, a user program will obtain
reconstructed objects by making requests like

‘give me the reconstructed tracks object with dependenciesD for evente’
on the reconstruction framework layer (see figure 6.1). The request will contain all necessary data to
compute the object if it is not available in storage.



6.1 ANALYSIS OF LAYERS ABOVE THE STORAGE MANAGER 33

The global system design therefore foresees a close integration between the reconstruction framework
and the storage manager layers in figure 6.1. On receipt of a request like the one above, it will
be decided, by some optimisation service which spans the reconstruction and storage management
layers, whether the reconstructed object should be retrieved by the storage manager layer (assuming
it is stored somewhere), or whether is should be re-computedby the reconstruction framework layer.

In the general case, if a reconstructed object is in store, retrieving it from store will be cheaper than
recomputing it. This is because the data on which a reconstructed object depends is usually larger than
the object itself. For example, the size of a reconstructed tracks object will be about 100 KB, but the
size of the raw data on which it depends will be about 1 MB. In some cases however, reconstruction
will be faster than retrieval. Examples are:� A single reconstructed object is needed, and this object is only stored on a tape which is not in

any tape drive at the moment� A reconstructed object is only stored in a regional centre, which currently has a saturated net-
work link, while the objects it depend on are all stored locally.

The availability of an on demand reconstruction mechanism has important consequences for storage
management: it means that a storage manager can use a strategy of deleting reconstructed objects
to save space. Because of the availability of sufficient dependency data, deletion of a reconstructed
object can never cause permanent data loss, and deletion is transparent for the user.

It makes sense to think of the store of reconstructed objectsas acachewhich sits in front of the
reconstruction service. Many of the design principles and techniques for a cache manager apply to the
design of the storage manager, as far as managing reconstructed objects is concerned. The selection
of objects to delete could be based, for example, on a ‘least recently used’ algorithm. This makes for
a cheap service for freeing space, one that is much cheaper than garbage collection by reachability
analysis, which some other object databases are forced to use.

The availability of a cheap service for freeing space again has important consequences for storage
management: it means that we do not have to worry much about the cost of storing new reconstructed
objects. We do not need an on-the-fly algorithm to decide whether it is worthwhile to spend space
storing an object which has just been created by the reconstruction framework. We can simply always
store objects which are created: if they are not used, they will be deleted soon enough. The only
reason for not storing an object would be a shortage in disk resources and bandwidth for writing.

6.1.2 Physics analysis workcycle

As we have seen in section 2.4.2, a major part of a physics analysis effort consists of the construction
of successive cut predicates, where each predicate separates ‘interesting’ from ‘uninteresting’ events.
The construction of a single cut predicate can take a significant amount of time: from weeks to months.
In extreme cases, a team of physicists can spend more than a year constructing a cut predicate. The
construction of a cut predicate is an iterative process, in which one keeps refining the predicate (usually
by tuning one or more of its constants), until its effects on the event set under consideration are both
desirable and well-understood. The quality of a predicate is typically assessed by running it against
a collection of real or simulated events, or running it against a collection of special events, of which
the properties are better known than in the general case. Figure 6.3 gives a graphical overview of the
physics analysis process.
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Create cut predicate 1

Create cut predicate 2

Create cut predicate 3

Create cut predicate n

Refine predicate 3, step 1

Refine predicate 3, step 2

Refine predicate 3, step m

Create first version of predicate 3

Change predicate

Run job(s) with predicate

Analyse result(s) of job(s)

Analyse final set of interesting events

..etc....etc..

Figure 6.3: Physics analysis workcycle

During the iterative phase for a single cut predicate, the middle part in figure 6.3, one can expect
database usage in which the same sets of (real or simulated) events are accessed over and over again
while various constants are tuned. If the cut predicate involves some reconstruction algorithm, which
is being refined at the same time, one may also see occasional reconstruction jobs with newer versions
of the algorithm, and jobs comparing the results of the old and the new versions. Also, there may be
jobs which isolate some set of events for closer study.

When the final version of a cut predicate is constructed, the predicate is applied to the real set of events
under study, yielding a smaller event set for the next phase.

6.1.3 Granularity of access

Looking at the physics analysis workcycle, we can observe a number of things.

First, object access is not as random as in, for example, a library catalog database. Instead, during the
refinement of a single cut predicate, there will be several collections of objects, which are revisited
again and again by subsequent jobs. Each individual job willtraverse one or more of these collections.

This ‘working set of collections’ will only change radically when refinement is completed, and work
on a new predicate is begun. During refinement, we will only see small changes in the working set.
For example, the working set may be extended with a new collection by running a new version of a
reconstruction algorithm. Also, an analysis effort could sometimes shift focus from all objects in a
collection to only part of the objects, so that a subcollection of another collection becomes part of the
working set.

The storage manager should not try to make access to a single object in a collection fast, but on making
access to all objects in a single collection fast. As seen in chapter 4, this means that we have to make
sure that collection traversal leads to a sequential disk access patterns.

Inside a collection, the objects for all different events are independent from a physics standpoint. This
means that there is no reason for a physics analysis job to putany constraints on the order in which
the objects in a collection are traversed. The storage manager could use this lack of constraints to its
advantage.
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As far as the design of a storage manager is concerned, we willhave two levels of granularity of
access:

1. Access to a collection of objects

2. Access to a (compound) object which represents a single event, inside a collection

A storage manager will be able to spend considerable resources on every ‘request’ for a collection,
because such requests only happen once or a few times for eachjob. This makes it possible to use
storage management and optimisation algorithms with an unusually high (computational) complexity
at the collection level.

At the object level, on the other hand, the storage management overhead will have to be low. As a
general rule, whenever some management or optimisation mechanism can be moved from the object
level to the collection level, the design should do so.

6.1.4 Sharing data and changes in data

It will often happen that different analysis efforts use thesame data. Typical examples of data which
could be shared are calibration constants, and reconstructed particle tracks based on a particular ver-
sion of the calibration constants.

However, only data which has a read-only nature can be sharedsuccessfully. When refining a cut
predicate, one needs a stable dataset against which to run subsequent versions of the predicate. If the
dataset is not stable, one cannot accurately compare subsequent versions of the predicate by comparing
the results of subsequent runs.

As far as storage management is concerned, this read-only nature of shared data has important conse-
quences: as opposed to, for example, the data manager of an airline reservation system, which has to
ensure that all users see all changes immediately, the CMS data manager will have to ensure that, if
one user changes data, all other users willnotobserve a change.

Analysis jobs will not in general request the latest versions of some physics objects from the storage
manager, they will request the same, frozen, versions againand again. This leads to an architecture
in which a newer version of an object does not overwrite the old version, but is stored separately in
a new location. Note that with such an architecture, we can expect much less locking and hot spot
problems than with an average case multiuser database.

Of course, there has to be a service for letting users know about new versions. Such a service is
best implemented at a high level indexing and notification service, not as part of the storage manager.
The storage manager could however provide a user, who is considering switching to a new version,
with information on whether objects for the new version havealready been computed. If there are no
reconstructed tracks yet for the latest version of some calibration constants, then the user may want
to choose a less recent version of the calibration constants, for which the tracks have already been
computed.

6.1.5 User role in optimising the system

When choosing a less recent version of some calibration constants over the latest version, the user
is really making a tradeoff between quality and time: less accurate calibration constants are used (at
least, assuming that later constants are always more accurate) in order to save on the CPU time it
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would take to reconstruct all objects with the latest calibrations, and the space needed to store them.
Such tradeoffs can be crucial for system efficiency, but notethat they can only be made by the users
themselves.

Thus, in order to be effective, the CMS system will have to make it easy for the users to plan and
make tradeoffs like this. This can be done by providing a highlevel of tool support. For example, it
would be very useful to have a tool which can quickly estimatethe time needed to run a job if different
(combinations of) versions of reconstructed objects are used.

As far as storage management and optimisation is concerned,this means that optimisation mecha-
nisms, the effects of which can be cheaply and accurately predicted beforehand, should be preferred
over mechanisms for which the effects are less predictable,or costly to predict. If predictions are not
accurate, the users will loose trust in the optimisation tools, and will stop using them, leading to a
system with much less sharing.

6.2 Design of jobs

Having done the analysis in section 6.1, we can now perform a synthesis step. We can make a high-
level object decomposition of the physics analysis system,by defining classes to go along with each of
the user-level concepts we identified. The most important classes, and their most important relations
as far as storage management and optimisation is concerned,are shown in figure 6.4.

Analysis
framework

Job

key
Reconstruction Command

Result

Algorithm Calibration

Operator EventSet
Event

1..n

0..n
1..n1..n

1..n

1..n

1..n
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versions_of
refers_to_

yields

Figure 6.4: Job-centred high-level system decomposition

Of the design decisions which led to the decomposition in figure 6.4, the decisions concerned with
the decomposition of the job class are most interesting. Theother decompositions follow more or less
naturally and inevitably from the constraints and conditions in the CMS computing technical proposal
[7] and in section 6.1.

As the criterion for decomposing jobs, we chose to separate the parts which stay the same over multi-
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ple jobs from the parts which change in each job. We chose thiscriterion because it has two strengths:

1. A user interface built with this job decomposition as a basis will have a natural separation
between control elements corresponding to fast-changing data, i.e. control elements which are
used often, and control elements which correspond to slow-changing data and are not used often

2. This job decomposition is most suitable as a basis for considering data management and opti-
misation mechanisms later on.

Note that there is also a synergy between these two strengths: the user interface will guide the user
into formulating the job in such a way that it fits naturally tothe capabilities of the optimisation
mechanisms.

At the top level of the decomposition of a job, we separated out the reconstruction key, which rep-
resents the choices for different versions of algorithms and calibration constants made by the user at
the start of a the cycle of refining a cut predicate (figure 6.3). A reconstruction key would record user
choices like:

For all reconstructed tracks in the job, use versionX of the track reconstruction algorithm with
versionY of the calibration constants.

This would allow a command to simply request

‘the reconstructed tracks’

relying on the reconstruction key to make this request unambiguous.

The purpose of the reconstruction key is only to record long-term decisions. If the goal of the job
would be to compare the results of two new track reconstruction algorithms, then the versions of these
algorithms would be mentioned in the job commands, not in thereconstruction key.

At the next level of job decomposition, we have one or more commands, which are decomposed into
operators and event sets. A typical command would be:

make a histogram of theA0 values of the tracks of the events in the setE, cut by the predicateP .

or, in a more mathematical notation:result := histo( [e2E^P (e)A0(tracks(e)) )
In this command, there is one event setE, all other things are members of the operator class. Our
decomposition separates out the event set because it is an important type of object with respect to
storage management, and one which, unlike the cut predicate, will not change often.

Our design allows multiple commands in a single job because users will often need multiple his-
tograms to analyse the effects of a new refinement step, for example

1. the histogram of theA0 values of the tracks of the events in the setE, cut by the predicateP
2. the histogram of theA1 values of the tracks of the events in the setE, cut by the predicateP
3. the histogram of theX8 values of the tracks of the events in the setE, cut by the predicateP

Producing these histograms in three subsequent jobs will require the tracks to be accessed three times.
If they are produced in a single job, the tracks need to be accessed only once.



38 CHAPTER 6 STORAGE MANAGEMENT AND OPTIMISATION

6.3 Design of collections

This section is concerned with the management of storage in terms of collections. Recall that in
section 6.1.3, we identified a two-level granularity of access in physics analysis:

1. Access to a collection of objects

2. Access to a (compound) object which represents a single event, inside a collection

We noted that there will be a ‘working set of collections’ during the refinement of a cut predicate, a
working set which only changed gradually, and that it would make sense to manage storage in terms
of collections which are persistent.

6.3.1 Refining the notion of collections

Using the decomposition of jobs in the previous section, we can now refine our notion of a persistent
collection. In a single command likeresult := histo( [e2E^P (e)A0(tracks(e)) )
we can identify access to the following collection of reconstructed track objects:[e2E^P (e) tracks(e) :
This yields the following properties for a persistent collection of objects:� A persistent collectionc consists of a set of (raw data or reconstructed) objects, corresponding

to some event setEc� All objects in the collection have the same type (for example‘tracks’ or ‘jets’)� All object values in the collection have the same dependencies, they are computed with the
same versions of reconstruction algorithms and calibrations

From sections 6.1.1 and 6.1.4 we also obtain the property:� Objects in a collection can never be updated: after creationthey become read-only objects.

Of course, the above refinement, on the basis of the form of a command, is not the only way possible
way to refine the collection concept: it represents a design decision. Though there were strong indi-
cators showing that this was the right decision, we could notcompletely justify it beforehand: there
was a risk that the decision would lead into a dead ally. We therefore employed the strategy of only
tentatively making this decision, and verifying, as we wentalong, that it did not cause any problems.
This was done for some other refinement strategies too.

The main questions which need to be answered in order to verify the design decision above are:

1. How does the storage manager find the right collections fora job?

2. How do new collections get created?
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3. What is the mechanism for deleting old collections?

4. If a job accesses more than one of these collections, it is possible to ensure efficient access, even
though the collections are managed separately?

Early on in the prototyping cycle, we did not try to answer allthese questions exhaustively. We
satisfied ourselves with tentative answers first. We will notreport on these tentative answers here.
Instead, we will only report on the definite answers. The firstquestion is answered in the next section.
The second and third questions are answered in section 6.5, the fourth in section 6.4.5.

6.3.2 Finding the right collection

Suppose that a job will access the reconstructed tracks objects with the dependenciesD, for all events
in the event setEj . Finding the right collection for this job can be with the following simple algorithm:

1. find all collections of tracks with the dependenciesD
2. pick the smallest of these collections for whichEj � Ec, whereEc is the event set correspond-

ing the collection.

To support the implementation of this algorithm, we need twothings. First, we need a database
index by which we can look up collections based on dependencies. The Objectivity/DB database has
facilities which make it easy to build and maintain such an index. Lookups will haveO(log n + f)
efficiency, wheren is the number of collections in the database, andf is the number of collections
found. This is certainly efficient enough.

Second, we need a mechanism to calculateEj � Ec for the various candidate collections. TheEc
term in this expression poses little problems: we can simplystore theEc of each collection with the
collection itself. Storing theEc as a set of event identifiers with each collection will not bring a very
large overhead: we expect event identifiers to have a size of 8bytes. Obtaining theEj term, for a
job which is about to run, can be more difficult. However, we will usually be able to get at least
anEes � Ej by taking the EventSet of the job object. UsingEes instead ofEj in the algorithm
above will usually still give good results. Also, we expect that we will often be able to find a better
approximationEcp with Ees � Eec � Ej by doing a symbolic analysis of the cut predicate in the job
command, comparing it against cut predicates in previous jobs for which we stored the event setsEcp
produced by their cut predicates.

Finally, provided that we store all set contents in a sorted order, the step of comparing two event sets
to see ifEj � Ec can be implemented inO(sj + sc) time, wheresj andsc are the sizes of the two
event sets. By comparing candidate collections in smallestto largest order, the comparisons can take
no longer thanO(f � scb) time, wheref is the number of candidate collections andscb is the size of
the event set of the best candidate collection which is eventually found. As the reading of the wanted
objects in the best collection will takeO(scb � sao) time wheresao is the average size of the objects
stored in the collection, we can expect that, except for verylargef and very smallsao, running though
candidate collections will not cost a significant amount of time compared to the actual reading of the
data. We also expect that it will often be possible to calculate E1 � E2 even faster, inO(1) time,
using symbolic comparison of the cut predicates associatedwithE1 andE2, or by maintaining a cache
of the results of earlier comparisons.

The above analysis shows that, in the worst case, the overhead of finding the right collection is small
compared to the execution of the whole job. The smallness of the overhead is mainly due to the fact
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that event identifiers, with a size of 8 bytes, are small. We can expect that it will be feasible to use
random access memory, rather than slower disks, to hold the representations of all but the largest
event sets associated with jobs and collections. With eventsets in RAM, the overhead of choosing the
right collection will be negligible, and it will be possibleto offer a service to physicists by which the
execution time of a proposed disk-bound job can be predictedvery quickly.

In this section, we have shown that there is a simple, robust,and efficient enough basic algorithm
for finding the right event set. We argued that symbolic analysis techniques will often be able to
make the basic algorithm much faster. Our goal was to show an existence proof of a collection finding
service, we do not propose that the basic algorithm is used, without any optimisations, in the real CMS
storage manager. Completely different collection finding mechanisms should also be considered, for
example a mechanism which does not try to find the best collection beforehand, but which aims to
switch to the best collection on the fly, using knowledge about the event set the job has accessed so
far. Also, a larger degree of sharing between different physics analysis efforts could by achieved by
using a collection finding algorithm which does not choose the single best collection, but the best set
of collectionsEc1 � � �Ecn , such thatEj � (Ec1 [ � � � [Ecn).
6.4 Design of collection data clustering

In this section, we report on our design and prototyping efforts with respect to the clustering of the
objects contained in collections on disk. In chapter 4, we identified clustering issues as a major risk
factor. We saw that breakdowns from the speed of a sequentialreading scenario to the speed of a
random reading scenario could come quickly and unexpectedly. Because of the lack of knowledge
about what would, and what would not cause such a breakdown, we chose a design and prototyping
strategy in which each step could be carefully checked by making measurements to detect a possible
breakdown. We decided to approach the problem in the following way.

1. Make a list of simplifying assumptions, which allow one todevelop a storage management
mechanism in which jobs will always yield sequential reading performance

2. Design such a mechanism and test, by prototyping, if the performance is indeed according to
the sequential reading scenario

3. Choose one of the simplifying assumptions, drop this assumption, and check, by prototyping,
if the performance is still according to a sequential reading scenario. If not, fix the perfor-
mance breakdown by adding additional optimisation mechanisms. Repeat until all simplifying
assumptions are dropped.

Of course, successful termination of step 3 in this strategycould not be guaranteed beforehand. It
could be possible that we would encounter a breakdown in step3 which could not be fixed, even not
by restarting the process at step 2. But even in case of failure, this strategy would at least leave us with
an accurate pinpointing of the reason why a breakdown to random reading was inevitable. Another
important strategy is that it does not introduce optimisations unless it is shown beforehand that they
are really required, thus keeping the system as simple as possible.

In the end, it turned out that the strategy did successfully terminate, without us having to go back to
step 2. In the next sections, we will describe our steps 1 and 2. Each iteration through step 3 will be
described in a separate subsequent section.
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6.4.1 Initial simplifying assumptions

We made the following simplifying assumptions to ensure that we could build an initial prototype
with sequential reading:

1. There will only be one job running on the system

2. All collection elements are on disk, not in RAM and not on tape

3. There will be only one disk farm in the system

4. The job will access only one collection

5. The job will not be parallelised

6. The job does not do CPU-intensive computations, it is disk-bound.

6.4.2 Initial design

Producing sequential reading under the above assumptions is easy. We made the following design
decisions:� Subsequent jobs should always request the objects in a collection in the same order� The objects in the collection are clustered in this order on disk

To validate these design decisions, we designed and implemented the following classes:

Event. Objects in this class are persistent. An event object represents a single event. Its object
identifier (OID) in the database acts as a unique identifier for the event. The object identifier is an 8
byte value.

EventList. Objects in this class are persistent. An EventList stores anEventSet object from the design
in figure 6.4. The list elements are ordered: iteration over an EventList will always visit the events in
the same order, which is the order in which they were stored inthe EventList.

RecObj. Objects in this class are persistent. A RecObj (reconstructed object) stores reconstructed
data about a single event. This is an abstract class, variousderived classes exist to store different types
of reconstructed data.

Collection. Objects in this class are persistent. A Collection stores a set of RecObjs, clustered in
the order in which they were added to the collection. The Collection has an iteration service which
allows for selective reading. If a job requests the RecObj for a particular event from a Collection, the
collection will return either a handle to this stored RecObj, or a status code indicating that no RecObj
was stored for that particular event.

After implementing these classes using Objectivity, the running of test jobs showed that we did indeed
get sequential reading access patterns. To validate that access patterns were indeed sequential, we
developed a tool which could trace and visualise the file system calls done by the object database. We
also did test runs on large datasets, measuring the actual performance. As expected, performance was
indeed according to the sequential reading scenario.
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6.4.3 Multiple jobs
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Figure 6.5: Performance effects of running
multiple jobs together.

We first dropped the simplifying assumption that there
would only be one job running on the system.

To test the performance effects of running multiple jobs to-
gether on the same hardware, we ran multiple copies of our
test implementation in parallel on a 6-processor machine.
Every job reads a different collection, but all collectionsare
on the same disk. The resulting performance graph, which
shows the combined throughput for all jobs, is shown in fig-
ure 6.5.

As can be seen, there is no performance breakdown: the
disk access pattern produced by running multiple sequential
reading jobs together is still sequential enough to maintain
high performance. This is an important result: it shows that
we can optimise each job individually, leaving the efficient
scheduling of the disk access operations performed by the
different jobs to the operating system. Of course, we do have
to take into account the possibility that the operating system
optimisations might break down if the individual jobs start
to access data in a less sequential way.

6.4.4 Multiple disks
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Figure 6.6: Effects of using two disk farms

To see if the simplifying assumption that there was only one
disk could be dropped, we repeated the test performed in
the previous section on a system which had two disk farms
connected to it, with multiple disks in each disk farm.

For the first test, we put all collections on a single disk farm.
For the second test, we put half on the collections on the first
disk farm, the other half on the second disk farm. The results
of the tests are shown in figure 6.6. As can be seen in this
figure, there is no performance breakdown: the use of two
disk farms nicely doubles the overall throughput, except of
course in the case of one job reading one collection, which
is on a single disk farm.
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6.4.5 Multiple collections in one job
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Figure 6.7: Reading multiple collections in
parallel

To test the effects of dropping the simplifying assumption
that a job only reads one collection at the same time, we did
tests with a single job reading many collections of 7 KB ob-
jects in parallel. First, the job reads the first object in every
collection, then the second object in every collection, andso
on. The resulting performance curve is shown in figure 6.7.
Here, we can see a definite performance breakdown.

Following our strategy in section 6.4, we tried to fix this per-
formance breakdown by adding an additional optimisation
mechanism. By tracing the disk read system calls performed
by the database on the operating system, we could determine
that the pattern of reads performed by the database jumped
wildly over the disk. The database did not bunch subsequent
page reads in the same collection together.

An example of a system call pattern we measured is on the
left hand size in figure 6.8. This graph shows the database
behaviour for a job which is reading three collections in par-
allel. Apparently, neither the operating system, nor the disk
controller were able to recognise the regularity in this pattern and schedule the appropriate read-aheads
which would have reduced the number of disk arm movements to be made.
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Figure 6.8: Read patterns produced by the database

To solve this performance breakdown, we implemented a smallread-ahead layer on top of the database.
We implemented this layer by refining the iterator class provided by the Collection class for accessing
the collection contents. We created a new iterator class, with the same interface, in which everyN th
call to the ‘get the next object’ function causes the nextN objects to be read from disk. Internally,
the new iterator objects maintain two of the old iterator objects: one for reading ahead, and one for
offering the regular iteration services to the calling job.The objects which are read ahead with the first
iterator will be found in database cache memory when requested through the second iterator. Thus,
all disk reads happen in bursts ofN objects.
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Figure 6.9: Fixing the performance break-
down with read-ahead iterators

The right hand side of figure 6.8 shows the database access
pattern if the new read-ahead iterators are used. Reading
now takes place in several sequential chunks, separated by
seeks to other collections. Figure 6.9 shows the resulting
performance curves, for a read-ahead of 20 objects and for a
read-ahead of 100 objects. With a 100 object read-ahead,
there is no noticeable performance degradation anymore:
the time spent in disk drive arm movements is negligible. In
the case of reading 10 collections in parallel, the 100 object
read-ahead will need 8 MB of object database cache mem-
ory to work. This 8 MB is a small enough amount by today’s
standards.

By fixing the performance breakdown with our special iter-
ators, we are now in a situation in which we can optimise
the access pattern for each collection individually. The op-
timisations do not have to take the possible reading of other
collections at the same time into account.

6.4.6 Parallelising jobs

We have seen in section 6.2 that a typical command in a job performs a calculation likeresult := histo( [e2E^P (e)A0(tracks(e)) )
This calculation can be parallelised quite naturally by partitioning E into subsetsE1 � � �En and cal-
culatingresult := histo( [e2E1^P (e)A0(tracks(e)) )� � � � � histo( [e2En^P (e)A0(tracks(e)) )
where the� operator ‘adds’ two histograms. Each subjob could calculate a singlehisto( [e2Ei^P (e)A0(tracks(e)) )
The final ‘adding’ of all histograms is a cheap operation. As far as data dependencies are concerned,
we have complete freedom in partitioningE into subsets.

The results in the previous sections show how this partitioning can be done without causing a per-
formance breakdown: we should cut the event sets into parts which cause the subjobs to perform
sequential reading. If we partition an event setE with a size of106 events into ten subsetsE1 � � �E10,
thenE1 should contain the105 events which would be read first by a single-process implementation
of the job,E2 the105 events which would be read after that, and so on.

To account for variations in the execution time of subjobs, it would be best to cut a job into at least
five times as many subjobs as there are processors, and to use aprocessor farming approach for
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executing the subjobs, keeping the processor farm loaded with, say,1:5 times as many subjobs as
there are processors. We have seen in sections 6.4.3 and 6.4.4 that running multiple disk-bound
(sub)jobs, which all do sequential reading on different data, on a 6 processor machine does not cause
any performance breakdown problems.

To ensure that the read-ahead mechanism in section 6.4.5 cankeep avoiding performance breakdowns,
everyEi for a subjob should refer to at least a few hundred kilobytes of data. But this minimum poses
no significant problem: parallelisation only becomes interesting for jobs which read at least tens of
megabytes of data. Disk-bound jobs which read less data willbe finished in a few seconds even
without parallelisation.

The above makes us confident that, at least on a platform whereall processors have equal bandwidth
to all disks, the scheduling of the efficient parallel execution of a job will be straightforward. If
completely symmetric bandwidth is not feasible because of technology or cost constraints, it would
be best to arrange disk and CPU farms as in figure 6.10, giving each disk farm a dedicated CPU farm
for executing subjobs which refer to data on that farm. In this arrangement, the event data would be
divided in some fashion over all disk farms, but all data for asingle event would be on a single disk
farm. Of course, in this case, the scheduler which divides a job into subjobs would have to take the
division of data over the disk farms into account, so that each subjob only uses data on a single farm.

Disk farm 1

CPU farm 1

Disk farm n

CPU farm n

Disk farm 2

CPU farm 2

Disk farm 3

CPU farm 3

Events
n00 000-
n99 9999

100 000 -
Events

199 999

Events

299 999
200 000-

Events 
0 -
99 999

network

Link to tape farm
and user workstations

Figure 6.10: Massively parallel system with dedicated CPU farms

6.4.7 Jobs which are CPU-bound, not disk-bound

The read-ahead mechanism from section 6.4.5 will ensure that CPU-bound jobs have the same burst-
like I/O behaviour as disk-bound jobs (see the right hand side of figure 6.8). We therefore expect that,
as far as storage management and optimisation is concerned,CPU-bound jobs will not introduce new
problems at the disk level. However, we have not verified by making measurements that CPU-bound
jobs, especially parallelised CPU-bound jobs, would not cause performance breakdowns in other parts
of the system: this was beyond the scope of our project.
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6.4.8 Jobs which also access collections on tape or in RAM

If a job starts to access a collection on tape, the High Performance Storage System (HPSS) [25]
beneath the Objectivity/DB database (see figure 6.1) will move the part of the database in which the
collection resides to disk first. The job will remain blockeduntil the move of data to disk is completed.
Thus, a job which uses data on tape will not produce a new type of disk access pattern: it will jump
between not doing any disk access and producing the read pattern of a regular disk-bound job. When
moving data from and to tape, the HPSS will perform strictly sequential reading and writing on both
the disks and the tapes. We expect that the management and optimisation techniques outlined above
will not break down for jobs which also accesses collectionson tape.

The reading of collection data from RAM will be much faster than the reading of collection data from
disk. Thus, a job which accesses both collections on disk andin RAM will remain disk-bound. The
use of a collection in RAM will not cause a qualitative changein the disk I/O behaviour, so we expect
that the management and optimisation techniques outlined above will not break down for jobs which
also accesses collections in RAM.

Note that the storage management techniques we developed above are not concerned with jobs which
only access data in RAM. For these jobs, radically different management techniques could be more
optimal.

6.5 Design of collection data reclustering

In the previous sections, we talked about optimising accessto existing collections. Here, we will
answer the question, posed in section 6.3.1, of how new collections get created.

We recognise two different forms of creation. First, as discussed in section 6.1.1, if a job requests
objects which are stored in no existing collection, these objects will have to be created by the recon-
struction framework layer of the CMS system (figure 6.1). As concluded as the end of section 6.1.1,
it will almost always be attractive to store the new objects in a new collection, so that they do not have
to be reconstructed again.

Second, new collections could be created by rearranging (reclustering) the objects in existing collec-
tions. As concluded at the end of chapter 4, this reclustering is necessary to maintain good perfor-
mance as analysis jobs become more selective in their reading.

6.5.1 Reclustering patterns

If a job is reading a collection with a selectivity below a certain threshold, it becomes attractive to
copy the selected data to a new collection.

Selective read 60%

New collection

Histogram Ex>10

Figure 6.11: Basic reclustering pattern

An example of this is shown in figure 6.11, in which
a job with a cut predicate ofEx > 10 is creating a
histogram. Only 60% of the objects from the collec-
tion are being read, so the storage manager has decided
to copy the selected objects to a new collection. The
copying can be done in parallel with creation of the
histogram. If the copy is directed to different disks in
the disk farm, which are not currently involved in the
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reading of data, the copying will not add a performance overhead. If the same job is run again, the
storage manager can find and use the new collection, as discussed in section 6.3.2.

Histogram Ex>1060%40%
100%

Figure 6.12: Extended reclustering pattern

Histogram Ex>10
40% 60%

Histogram of all

Figure 6.13: Using the new collections

Histogram Ey>6

Figure 6.14: Splitting of two collections into four
collections

All

Ex>10Ey>6

Figure 6.15: Optimal clustering for four jobs

A problem with this optimisation by copying is that ex-
tra disk space is used. We can address this problem by
extending the pattern as shown in figure 6.12. Here,
the objects which are not selected are copied too, to
another collection. After the creation of the two new
collections, the original collection can be deleted with-
out losing any reconstructed objects. A job which re-
quests all data in the original collection, in the order
in which it was stored in the original collection, can be
handled by reading the two collections at the same time
and merging the data streams, as shown in figure 6.13.

Experiments with a test implementation showed that
the merging of multiple collections did not cause a per-
formance breakdown if the read-ahead iterators from
section 6.4.5 were used. A collection which was cut
into ten parts could be accessed with about the same
speed as the original collection. During the creation
of the test implementation, some performance-related
bugs were found in the Objectivity/DB database. These
bugs have been reported to the vendor.

Figure 6.13 shows a clustering of collection data that
is optimal for two different jobs. If another job, with
another cut predicateEy > 6 is run on the data in the
original collection, this can again lead to selective read-
ing, this time on two collections. In that case, the ex-
tended reclustering pattern can be used again, leading
to a splitting into four collections, as shown in figure
6.14. The end result, in figure 6.15, is a clustering of
data which is optimal for three different jobs. This cut-
ting process could be repeated to create 8 and 16 collec-
tions. Of course, the cutting process cannot be repeated
indefinitely: with a cut into 32 collections, the overhead
of for merging for a job which requests all data in the
original collection will probably become too large.

A big advantage of this technique of reclustering is that
it can be done automatically, using the actual access patterns produced by jobs. The method does not
rely on guidance from human operators.

6.5.2 Managing the set of collections

In section 6.1.1, we saw that it will always be possible to recompute deleted objects using dependency
data. We concluded that it would therefore make sense to manage the store of reconstructed objects as
acache. In terms of collection management, this means that collections are created whenever possible,
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and that some scoring mechanism is used to select collections for deletion, or for migration to the
slower tape store. For example, if a collection is split, we do not expect it to be deleted immediately.
Instead, we expect that its score will be lowered, so that it is more likely to be deleted. We expect
scores to be based on factors like� how often the collection is used� the degree of overlap with other collections� how often the collection has been split.

Similar scoring mechanisms could be used for deciding on whether to merge collections.

Because of the similarities to cache management, which is a well-understood field with little surprises,
we expect that the development of adequate collection management mechanisms will pose little prob-
lems. We can also expect, however, that the collection management system will have a significant
number of tuning parameters, and that tuning will make the difference between a merely adequate
collection management mechanism and a near-optimal mechanism. Such tuning can only be done
while the system is running, from 2005 on, and it may be economically feasible to devote a significant
manpower to it.



Chapter 7

Conclusions

In 1996 and 1997, the object store related work in CMS and the RD45 project was mainly concerned
with identifying and investigating possible problem areas. This focusing on problem areas was done
to prepare for the creation of fully functional prototypes,starting in 1998. Our project identified and
investigated the problem area of using disk farms efficiently while database access patterns change.
The choice for this area was at least partly coincidental: inthe project startup phase, studies of the
project environment and of literature revealed a number of open problems. The disk efficiency prob-
lem was only one of them, but it happened to be a problem on which no one else in CMS or RD45
was working at the time. Of course, the HEP community did haveprior projects aimed at optimis-
ing disk performance for physics analysis, but the efforts found in literature (for example [26], [27]),
were all concerned with taking a single job and making it as fast as possible, not with considering
optimisations for a succession of jobs as we did.

After having identified the physics analysis scenarios in figure 4.2, in which database access becomes
more selective through time, we measured the performance ofselective reading. We discovered, to our
initial surprise, that selective reading would in most cases not out-perform the currently used method
of reading the whole physics data set sequentially and throwing away the unwanted data. We con-
cluded that reclustering mechanisms were needed to maintain performance, and were then faced with
the problem of developing them. Our reading of [18] indicated that the object database community has
little experience with clustering, let alone reclustering, for our scenarios. No known object database
offers advanced clustering or reclustering services. Clustering and reclustering optimisations, if used
at all, are typically coded by hand, using application-specific knowledge. In view of this information,
we decided to proceeded by closely studying the specifics of our application, physics analysis, before
starting with the design of clustering and reclustering mechanisms.

The design of the clustering and reclustering mechanisms themselves was a very explorative process,
in which many alternative solutions were considered and rejected. Our design was developed concur-
rently with the measurements supporting it. New measurements were done to either validate tentative
design decisions, or to force a choice between alternative design decisions. This approach allowed us
to discover the ‘dead ends’ in the design tree as quickly as possible, and it also ensured that we did
not waste time on measurements which would be useless in retrospect. We believe that, with a less
closer coupling between design and measurements, it would have taken us much longer to obtain the
same end results.

49
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7.1 Results and limitations

In this project, we have identified and explored the problem area of object clustering for physics anal-
ysis. We have designed storage management and retrieval mechanisms which are robust, and which
maintain a high efficiency for typical physics analysis efforts, without placing unnatural constraints
on the physics analysis process. The design was validated bymeasurements on tests implementations.

The optimisation techniques we developed exploit some specific properties of physics analysis. The
most important of these properties is that subsequent jobs will access the same collections of objects
again and again, with the collections only gradually changing. Another important property we ex-
ploited is the lack of data dependencies between operationson individual events. We expect that our
techniques will only have limited applicability outside ofphysics analysis: most database applications
do not share the properties above. The reclustering patterns in section 6.5.1 may be applicable in other
data mining application domains, provided sufficiently efficient mechanisms for finding the right col-
lections can be built in these domains. Our optimisation mechanisms make it possible predict of the
duration of a disk-bound job beforehand. Such predictions are important because they allow users to
optimise their demands on the system.

The tests for performance and scalability problems were done on a medium-size hardware configura-
tion (6 processor machine with two disk farms), using the Objectivity/DB database on top of a UNIX
file system. Tests with larger hardware configurations and more software layers may reveal additional
problems, which are not addressed by the optimisation services we developed.

We did not consider the optimisation of physics analysis jobs which do a lot of writing besides read-
ing. Performance tests have shown that the creation and copying of objects is very CPU-intensive,
especially for small objects: Objectivity/DB spends significant CPU resources on various adminis-
tration tasks for each object and object reference. This often causes jobs which write or copy ob-
jects to be CPU-bound, rather than disk-bound, unless they are parallelised. The developments in
price/performance ratios for hardware may make this problem disappear over time however: CPU
speed is improving with a factor of1:9 every year [7], disk speed only with a factor of1:2 [22].

7.2 Future work

Obvious items for future work are performance tests on larger platforms, tests with more software
layers, and the development of more fully functional prototypes.

CERN will have an operational HPSS installation at the end of1997, and this will allow for tests on
larger data volumes, and tests spanning more of the softwareand hardware layers in figure 6.1.

Our prototyping efforts limited themselves to the parts of the design which were most critical for
performance. More fully functional prototypes can validate our assertions, made on other grounds,
about the feasibility of the collection finding service in section 6.3.2, and the collection management
mechanisms in section 6.5.2. Further prototyping may also expose additional bugs and performance
bottlenecks in Objectivity/DB, beyond the ones we already found.

Outside of the problem area of object clustering on disks, the problem area of data migration in a
multi-level hierarchy, especially in a hierarchy including regional centres, still requires significant
study by CMS and RD45. Once good migration mechanisms are found, they will have to be merged
with the collection management mechanisms outlined in section 6.5.2.
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Abbreviations

AIO Assistant In Training
API Applications Programmer Interface
ATLAS A Toroidal LHC Apparatus
CERN The European laboratory for particle physics
CMC CMS Computing
CMS Compact Muon Solenoid
CPU Central Processing Unit
ECP Electronics and Computing for Physics
GUI Graphical User Interface
HEP High Energy Physics
HP Hewlett Packard
HPSS High Performance Storage System
I/O Input/Output
LEP Large Electron Positron collider
LHC Large Hadron Collider
LHC++ Libraries for HEP Computing ++
LHCC Large Hadron Collider Committee
MIPS Mega (106) Instructions per Second
OO Object Oriented
OOTI Post-graduate programme on Software Design
ODBMS Object DataBase Management System
ODMG Object Database Management Group
TUE Eindhoven University of Technology
RAM Random Access Memory
RAID Redundant Array of Inexpensive Disks
RD45 Research and Development project 45 (A Persistent Storage Manager for HEP)
SAI Stan Ackermans Institute
SLAC Stanford Linear Accelerator Center

KB Kilobyte (103 bytes)
MB Megabyte (106 bytes)
GB Gigabyte (109 bytes)
TB Terabyte (1012 bytes)
PB Petabyte (1015 bytes)
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