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Abstract

We investigate a certain distributional extension of the group of spatial diffeomor-
phisms in Loop Quantum Gravity. This extension, which is given by the automor-
phisms Aut(P) of the path groupoid P, was proposed by Velhinho and is inspired
by category theory. This group is much larger than the group of piecewise analytic
diffeomorphisms. In particular, we will show that graphs with the same combina-
torics but different generalized knotting classes can be mapped into each other. We
describe the automorphism-invariant Hilbert space and comment on how a combi-
natorial formulation of LQG might arise.

1 Introduction

Loop Quantum Gravity is an attempt to quantize the theory of general relativity
(see [1, 2, 3, 4] and references therein). This is done by casting classical GR into a
hamiltonian formulation, in which it becomes a constrained theory with fields on a
Cauchy hypersurface Σ. These fields are an su(2)-connection AI

a(x) (the Ashtekar
connection) and its canonically conjugate Ea

I (x), which is the analogue of the elec-
tric field in SU(N)-Yang-Mills theory. Modulo physical constants, which can be
absorbed into the definition of Ea

I (x), the Poisson structure reads

{

AI
a(x), E

b
J(y)

}

= δb
a δ

I
J δ(x, y). (1.1)

The connection A plays the rôle of the configuration variable, and E is the canoni-
cally conjugate momentum. The classical configuration space is the space of smooth
connections A.

By going over to the quantum regime, the space A is extended to A, by adding
also connections which are “distributional” in the sense that they can have support
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on lower-dimensional subspaces of Σ. The space A can be endowed with a topology
that turns it into a compact Hausdorff space, and a regular, normalized Borel mea-
sure µAL, the Ashtekar-Isham-Lewandowski-measure. The quantum theory is then
formulated in the kinematical Hilbert space Hkin = L2(A, dµAL). The space A is
topologically dense in A, but measure-theoretically thin: A is contained in a set of
measure zero.[4]

This is analogous to the case of quantum field theory: Consider the case of the
Euclidean free scalar field. Then the path integral formalism proposes to write the
partition function Z([J ]) as an integral over all field configurations

Z[J ] = Z[0]

∫

Dφ e−
R

[φ∗(2+m2)φ + iφJ] (1.2)

In this case, the integration ranges over a set of field configurations φ, in which the
smooth fields lie dense. The set of these fields, however, are contained in a set of
measure zero.

In the Hamiltonian formulation of GR employed in Loop Quantum Gravity, the
dynamics is contained in the constraint functions, which are phase space functions
that generate a Hamiltonian flow on the constraint hypersurface. Two of the con-
straints, the Gauss- and the Diffeomorphism- constraint, encode the invariance of
the theory under change of SU(2)-gauge and diffeomorphisms on Σ. Consequently,
their Hamiltonian flows generate gauge-transformations and diffeomorphisms on Σ,
respectively. Classically, the corresponding group of smooth gauge transformations
G and diffeomorphisms Diff(Σ) act on A:

αg : A −→ A, g ∈ G (1.3)

αφ : A −→ A, φ ∈ Diff(Σ).

The action of the groups G and Diff(Σ) can be easily extended to the quantum
configuration space A. But also the groups themselves can be extended to groups of
generalized gauge transformations and generalized diffeomorphisms, G and Diff(Σ),
to give

αg : A −→ A, g ∈ G (1.4)

αφ : A −→ A, φ ∈ Diff(Σ).

The group of generalized gauge transformation G is taken to be the group of all
maps from Σ to SU(2), i.e.

G = SU(2)Σ. (1.5)

Although classical GR is not invariant under this group, in the quantum theory this
arises as a natural candidate for the extension of the smooth gauge transformations.

There are reasons to believe that also the diffeomorphisms have to be extended:
First, the Hilbert space Hdiff of states invariant under diffeomorphisms, is not sepa-
rable and contains many degrees of freedom (the so-called moduli) that are believed

2



to be unphysical [4, 5]. Also, there are other physical reasons to believe that the
group of diffeomorphisms is too small [6]. For an extension of the diffeomorphisms
Diff(Σ) to Diff(Σ), several suggestions have been made.

In [5], it was shown that already a slight extension of the group of diffeomor-
phisms gives rise to a separable diff-invariant Hilbert space. In [7], Ashtekar and
Lewandowski discussed Cn-diffeomorphisms on Σ, which are analytic except for
lower-dimensional subsets of Σ. The proof of the uniqueness of the diffeomorphism-
invariant state ωAL on the holonomy-flux-algebra for Loop Quantum Gravity uses
these for n ≥ 1 [8]. In [6], the stratified diffeomorphisms, introduced earlier by
Fleischhack have been investigated. In [9] the piecewise analytic diffeomorphisms
have been introduced, which are bijections on Σ that leave the set of analytical
graphs Γ invariant. In [10], the graphomorphisms extended this concept to the
smooth and other categories.

In [11, 12], it was displayed how the basic ingredients of Loop Quantum Gravity
can be formulated naturally as concepts of category theory, i.e. as morphisms, func-
tors and natural transformations. In this language, the connections arise as functors
from the path groupoid P of Σ to the suspension of the gauge group Susp(SU(2)),
and the generalized gauge transformations are in one-to-one correspondence to the
natural transformations of these functors. Furthermore, the diffeomorphisms acting
on Σ can be naturally interpreted as elements in the automorphism group Aut(P),
i.e. as invertible functors from P to itself. Velhinho pointed out that in the light
of category language, Aut(P) arises as a candidate for an extension of the diffeo-
morphisms Diff(Σ), and this extension appears to be natural, at least from the
mathematical point of view.

In this article, we will investigate the consequences of choosing Diff(Σ) = Aut(P).
The automorphisms φ ∈ Aut(P) are invertible functors on the path groupoid P,
i.e. they permute points in Σ, and also the paths between them in a consistent
way. We will, however, encounter elements in Aut(P) that can not be interpreted
as bijections of Σ. By this, the elements in Aut(P) will also be able to map graphs
into each other that have the same combinatorics, but lie in different generalized
knotting classes. By this, a combinatorial picture emerges, which is a desirable
feature for a quantum theory of gravity [4, 13, 14].

The emphasis of this article lies on two topics: First, we will prove that the au-
tomorphisms Aut(P) leave the Ashtekar-Isham-Lewandowski measure µAL invari-
ant, and hence have a well-defined unitary action on the kinematical Hilbert space
Hkin = L2(A, dµAL). Second, we will have a closer look at the automorphisms and
the orbits of its action on Hkin, in order to describe the automorphism-invariant
Hilbert space.

We will start in chapter 2 by reviewing the basic concepts of Loop Quantum
Gravity, with emphasis on the categorial formulation, and for general gauge group
G. We introduce the concept of a (primitive) metagraph, which will be useful in
the investigation of the automorphisms Aut(P). We will continue by presenting two
kinds of nontrivial automorphisms in section 3, which will both be not induced by
a bijection on Σ, but are most useful in what follows. In particular, with the help
of these automorphisms we will prove in chapter 4 that the automorphisms leave
the Ashtekar-Isham-Lewandowski measure invariant, but also be able to show that
any two graphs (in fact, hyphs) with the same combinatorics can be mapped into
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each other by an automorphism. It is in particular this fact which suggests that by
using the automorphisms, a combinatorial picture emerges.

In section 5 we will investigate the orbits of vectors in Hkin under the action
of Aut(P). For a certain choice of rigging map, we will define the Hilbert space of
vectors invariant under the action of Aut(P). For the case of abelian Loop Quantum
Gravity, i.e. G = U(1), an explicit orthonormal basis will be given. for G = SU(2),
we will comment on how to obtain such a basis.

In the appendix, we will, after briefly presenting notions from category theory
and combinatorial group theory, present a way of how to write the exponentiated
fluxes in category language, and present a categorial version of the Weyl- and the
holonomy-flux algebra.

2 Basics

Loop Quantum Gravity rests on the observation that, instead of knowing a g-
connection Aa, it is equivalent to know, for every possible path p, its parallel trans-
port A(p) = P exp

∫

pAadx
a along p, which is an element of the gauge group G.

These parallel transports, or holonomies, form the configuration space A of the
classical theory, which is extended to A, the set of generalized connections, in the
quantum theory. The close relation to lattice gauge theory is rooted in this formal-
ism.

2.1 Curves, ways and paths

In the following chapter we will review the basic notions to deal with the set of
generalized connections, as well as their categorical formulation1. For a more de-
tailed mathematical treatment and the omitted proofs, see e.g. [4, 15, 16]. Also, we
will restrict ourselves to the category of piecewise analytic paths, which is usually
employed in Loop Quantum Gravity. In all what follows, Σ will denote an analytic,
connected, closed manifold of dimension n > 2.

Definition 2.1 Let Σ be an analytic, connected, closed manifold of dimension n >
2. A (piecewise analytic) curve in Σ is a map c : [0, 1] → Σ, such that there exist
0 = t0 < t1 < . . . < tn = 1, so that c restricted to [tk, tk+1] is an analytic embedding.
Denote the set of all curves as C. Write

• s(c) := c(0)

• t(c) := c(1)

• r(c) := c([0, 1]) ⊂ Σ.

Some curves can be concatenated, and all of them can be inverted:

Definition 2.2 Let c1, c2 ∈ C such that t(c1) = s(c2). Then

c1 ◦ c2(t) :=

{

c1(2t) t ∈ [0, 1
2 ]

c2(1 − 2t) t ∈ [12 , 1]
(2.1)

1We follow the notation of [4], where the concatenation of, say, two curves c1, and c2 is denoted as
c1 ◦ c2, rather than c2 ◦ c1, which is usually employed in category theory texts.
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defines an element in C, which is called the product of c1 and c2. Furthermore, for
any c ∈ C:

c−1(t) := c(1 − t) (2.2)

also defined an element in c−1 ∈ C which is called the inverse of c.

All this endows C with some structure, but so far the multiplication ◦ is not asso-
ciative.

Definition 2.3 Define an equivalence relation on curves: c1 ∼ c2 if there is a
piecewise analytic, monotonically increasing function ϕ : [0, 1] → [0, 1] such that
c1(t) = c2(ϕ(t)). So two curves c1, c2 are equivalent if and only if there is a sequence
of curves d1, . . . , dn ∈ C such that dk ∼ dk+1 in the above sense and d1 = c1, dn = c2.

The set of all equivalence classes [c] is called the set of ways, and is denoted by
C̃. For w = [c] ∈ C̃, s(w) := s(c), t(w) := t(c) and r(w) := r(c) are well-defined.

The set C̃ carries the structure of a category in the following way: The objects of
C̃ are points in Σ: |C̃| = Σ. For x, y ∈ Σ the set of morphisms MorC̃(x, y) is given
by the set of all ways w starting at x and ending at y, i.e. s(w) = x, t(w) = y.
The concatenation [c1] ◦ [c2] := [c1 ◦ c2] is well-defined and associative, since ways
do not depend on a parametrization. Also [c]−1 := [c−1] defines an involution on C̃.
For each x ∈ Σ the identity idx is given by the equivalence class [c] of the constant
curve c(t) = x.

Definition 2.4 Let x, y ∈ Σ. On the elements of MorC̃(x, y) define an equivalence
relation by: Let w1 ≈ w2 if there are ways v, v1, v2 such that w1 = v1 ◦ v2 and
w2 = v1 ◦ v ◦ v

−1 ◦ v2. This generates an equivalence relation ≈ on MorC̃(x, y). The
set of equivalence classes [[w]] are called paths. The set of paths is denoted by P.

The category which is defined by |P| := |C̃| and MorP(x, y) := MorC̃(x, y)
/

≈,
as well as [[w]] ◦ [[v]] := [[w ◦ v]] is called the path groupoid, and will also be denoted
by P.

Usually, P is defined by defining an equivalence relation ∼≈ on C by combining
the two equivalence relations above, and directly go from the curves c to their
equivalence classes p = [[[c]]]. However, in this work it will turn out to be more
convenient at some points to work with the category C̃, so we also define it here.

Also note that s([[w]]) := s(w) and t([[w]]) := t(w) can also be defined in P, but
r([[w]]) = r(w) is not well-defined. One can define

r(p) :=
⋂

p=[[w]]

r(w), (2.3)

but this has the property that r(p ◦ q) 6= r(p) ∪ r(q). But r(p ◦ q) = r(p) ∪ r(q) is a
desirable property if one wants to speak about “points x ∈ Σ lying on p”. It is this
particular fact that makes the set of automorphisms of P much larger than the set
of automorphisms of C̃.
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Definition 2.5 Let p be a path in Σ. If there is a representative c ∈ C with p =
[[[c]]], such that from c(t) = c(t′) it follows that either t = t′ or t = 0, t′ = 1 or
t = 1, t′ = 0, then p is said to have no self-intersections.

Note that for paths without self-intersections it is easier to talk about points lying on
that path. Let c be a representative of such a path, then r(p) := r(c) is well-defined
and gives the same result as (2.3). We will use this notion in some constructions
later.

Definition 2.6 A path e ∈ P is called an edge if there is a representative c ∈ Cyl

with e = [[[c]]], such that c is analytic, and e has no self-intersections.

The edges are special elements in P. They are the equivalence classes of analytic
curves that do not self-intersect (unless they start and end at the same point). By
definition, every path p can be decomposed into finitely many edges, which will be
crucial for the rest of the work.

Edges are the key to gain access to the analytic structure of Loop Quantum
Gravity.

Definition 2.7 Let γ = {e1, . . . , eE} be a set of edges in P, such that the following
holds: For each ek there is a representative ek = [[[ck]]] in C such that the ck mutually
intersect at most in their beginning- or endpoints. Then γ is called a graph. Denote
the set of all graphs by Γ.

Lemma 2.1 Given two graphs γ1, γ2, such that each edge in γ1 is a finite product
of edges and their inverses of γ2. Then one writes γ1 ≤ γ2. This defines a partial
ordering, in particular for any two graphs γ1, γ2 there is a graph γ3 such that γ1 ≤ γ3

and γ2 ≤ γ3.

This Lemma has an important corollary: Given any finite number of paths
{p1, . . . , pn} in P, there is always a graph γ such that each pk is a product of edges
(and their inverses) in γ. For this to hold, the piecewise analyticity of the curves
in C is essential. In particular, the same does not hold if one drops the condition
of analyticity and works in the smooth category. However, one can work with the
so-called webs, or hyphs, which can also be used in this context and which generalize
the concept of graphs. In the analytic category, the definition of hyphs is as follows:

Definition 2.8 Let v = (p1, . . . , pn) be a finite sequence of paths with the following
property:

For each k ∈ {1, . . . , n} the path pk has a segment which is free with respect to
the pl, l ∈ {1, . . . , k − 1}. This means that, given a graph γ such that each pk is a
product of edges in γ and their inverses, then in the decomposition pk = ek1◦. . .◦eknk

there is one edge ekl
(or its inverse) which appears exactly once, and which does not

appear in the decompositions of all pl, l ∈ {1, . . . , k − 1}.
Denote the set of all hyphs by V.

The set of hyphs is also partially ordered. Since all graphs are also hyphs, this is
trivial in the analytic category, but stays true in other cases, such as the smooth
category as well [16]. Note that in the original definition of a hyph, the additional
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condition that each pk has no self-intersections. This is a much stronger condition,
but we will need the weaker definition presented here later.

In Loop Quantum Gravity, GR is written in terms of a gauge theory, i.e. the
notion of a compact, connected, semisimple Lie Group G is employed. The following
definition a priori depends on this gauge group. For LQG, the cases G = SU(2)
and G = U(1) are the most important.

Definition 2.9 Let G be a semisimple, connected, compact Lie group. Let further-
more µ = {p1, . . . , pM} be a set of paths in P that are algebraically independent. This
means that for each set {g1, . . . , gM}, gk ∈ G, there is a functor A : P → Susp(G)
such that

A(pk) = gk. (2.4)

Then µ is called a metagraph. Denote the set of all metagraphs by M.

Note that this notion depends on G: Consider for instance two loops l1 6= l2 and
p = l1 ◦ l2 ◦ l−1

1 ◦ l−1
2 . Then {p} is a metagraph for G = SU(2), but is not for

G = U(1).
For the gauge groups in question, however, one can show that Γ ⊂ V ⊂ M.

So, each graph is a hyph, and each hyph is a metagraph, but not the other way
round2. Define a partial ordering on M by the same rule as for graphs or hyphs:
µ1 ≤ µ2 iff every path p ∈ µ1 can be composed by paths in µ2, or their inverses.
Since for every finite set of paths {pk} one can find a graph γ so that each pk can
be composed of edges in γ and their inverses, and each graph is again a metagraph,
≤ defines a partial ordering on M.

The metagraphs are a useful concept when investigating the automorphisms
Aut(P), since Aut(P) leaves M invariant, which can be seen easily. In contrast, we
will encounter explicit examples of elements φ ∈ Aut(P) that do not leave Γ or V
invariant. So, the mathematical concept of metagraphs will be quite useful in order
to investigate the action of Aut(P) on P.

2.2 Notions from Loop Quantum Gravity

We now briefly review how the concept of the path groupoid P is used in Loop
Quantum Gravity, in particular how to define the quantum configuration space A.
We will do this in terms staying as close as possible to category language. For a
brief introduction to category notions, see appendix A.

Definition 2.10 Let P be the path groupoid of Σ, and G a compact, connected,
semisimple Lie group. Then a functor A : P → Susp(G) is called a (generalized)
connection3. This means that A maps paths in P to elements in G such that

A(p ◦ q) = A(p) ·A(q) (2.5)

A(p−1) = A(p)−1.

2We will see, for instance, that for every path p with s(p) 6= t(p), {p} is a metagraph.
3In the literature, this space is also denoted as Hom(P , G), the set of groupoid homomorphisms from

P to G.
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The set of all connections is denoted by A.

It is clear that every smooth su(2)-connection AI
a(x) gives rise to such a functor, by

mapping each path p ∈ Σ to the holonomy of AI
a along p:

A(p) := P exp

∫

p
AI

a

τI

2
dxa (2.6)

In this sense the set of all smooth connections A is a subset of A.
Under a gauge transformation g ∈ G = C∞(Σ, SU(2)), the holonomy A(p) along

a path p changes as

A(p) −→ gxA(p) g−1
y , (2.7)

if p starts at x ∈ Σ and ends at y ∈ Σ, and gx is the value of the function g at
x ∈ Σ. This motivates the following definition:

Definition 2.11 A natural transformation g on functors A ∈ A is called a (gener-
alized) gauge transformation. The set of all such gauge transformations is denoted
by G.

Recall that functors A1 and A2 can be related by a natural transformation, if there
is for every object x ∈ |P| = Σ a morphism gx : A1(x) → A2(x) such that the
following diagram commutes for all p ∈ MorP(x, y):

A1(x)
A1(p)
−−−−→ A1(y)

gx





y





y

gy

A2(x)
A2(p)
−−−−→ A1(y)

Since Susp(G) has only one object ∗, A(x) = ∗ for all A and x. This amounts to
say that for each x ∈ Σ there is an element gx ∈ G such that

A1(p) = gxA2(p) g
−1
y . (2.8)

This justifies the name gauge transformation, and shows that the set G ≃ GΣ.
Thus, given a functor A and {gx}x∈Σ ∈ G, (2.8) can be seen as a definition of the
gauge-transformed functor αgA(p) := gs(p) A(p) g−1

t(p). So the set G acts on A.

This immediately shows that G = SU(2)Σ, i.e. the set of all maps from Σ to
SU(2), without any smoothness (or continuity, measurability) condition. It is clear
that this is a tremendous extension to a symmetry group which is not a symmetry
of classical GR anymore. This shows that the quantum theory is in fact invariant
under larger groups, having to do with the fact that space-time becomes discrete in
some sense: Gauging can happen at each point in space completely independent of
each other. The same can be done for the diffeomorphisms: Every, say analytical,
diffeomorphism φ acts in the path groupoid P in the following way: points are
mapped to points, and paths to paths:

x 7−→ φ(x) (2.9)

p 7−→ φ(p)
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with φ([[[c]]]) := [[[φ ◦ c]]] for representative curves c ∈ C. If p starts at x and ends
at y, then φ(p) starts at φ(x) and ends at φ(y). This means that φ induces a functor
on the path groupoid P, which is invertible since φ is as a map.

Definition 2.12 Let φ : P → P be an invertible functor. Then φ is called an
automorphism of P. Denote the set of all automorphisms by Aut(P).

Note that Aut(P) also acts on A, via αφA(p) := A(φ(p)). By this, Aut(P) appears
as an extension of Diff(Σ).

It is this set of automorphisms Aut(P) that we will focus our attention on for
the rest of the article. The automorphisms extend the analytic diffeomorphisms,
and is the largest possible extension [12]. We will comment on the actual size of
Aut(P) in contrast to Diff(Σ) later in this article. It should be noted that each
invertible functor ζ : C̃ → C̃, i.e. ζ ∈ Aut(C̃) induces also an element φζ ∈ Aut(P).
In particular, the set {φζ |ζ ∈ Aut(C̃)} forms a subgroup of Aut(P), which has been
investigated in the literature [10, 13], called “piecewise analytic diffeomorphisms”,
or “graphomorphisms”. However this is a proper subgroup: As we will see later,
there are many automorphisms in Aut(P) which are no graphomorphisms.

The reason for this can be seen as follows: The automorphisms permute points
of Σ, and also permutes the paths between points, in a consistent way. Consistent
means that if p ∈ MorP(x, y), then φ(p) ∈ MorP(φ(x), φ(y)). However, a path
itself consists (if it is without self-intersection) of many points. So one could feel
that for z lying on p (more precisely: z ∈ r(p)), then also φ(z) should lie on φ(p).
Even more, since p can be decomposed into p1 ◦ p2, where p1 is the part of p
which goes from x to z, and p2 is the remainder, which goes from z to y. Since
φ(p) = φ(p1 ◦ p2) = φ(p1) ◦ φ(p2), one might think that, since φ(p1) ends at φ(z),
and φ(p2) starts at z, φ(p) should pass through φ(z). But this is not the case, as
the following picture shows:

x

y

z

p1

p2

p = p1 ◦ p2

φ(x)
φ(y)

φ(z)

φ(p) = φ(p1) ◦ φ(p2)

φ(p1)

φ(p2)

Figure 2.1: Here z lies on r(p), but φ(z) does not lie on r
(

φ(p)
)

.

Let p be a path without self-intersections, which is composed of p = p1 ◦ p2, i.e.
p passes through z := t(p1). The images of p1 and p2 under φ are given by the
dashed lines, the solid line is φ(p). φ(p1) ends at φ(z) and φ(p2) starts at it, but
since φ(p1) ◦ φ(p2) contains a retracing, φ(p) = φ(p1) ◦ φ(p2) does not pass through
z. We see that the fact that retracings cancel out in P, the ill-definedness of r(p),
and the existence of automorphisms which are not induced by maps from Σ to Σ,
are deeply interrelated to each other.
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2.3 Automorphisms and connections

In this section we will investigate the metagraphs further, and their relation to the
automorphisms. We will extend the LQG-notions for graphs [15] to metagraphs,
and in particular show that the topology on A can also be defined in terms of
metagraphs. This will allow to prove i.e. continuity of the action of automorphisms
Aut(P) on the set of connections A. So, fix a compact, connected and semisimple
Lie group G for the rest of this section. We will refer to G as the gauge group.

The partial ordering defined on the set of metagraphs M has a category theory
background, which we will use in the following.

Definition 2.13 Let P be the path groupoid of Σ, and µ ∈ M a metagraph. Then
define Pµ to be the subgroupoid of P which is generated by the elements in µ.

This groupoid contains the elements in µ, their inverses, the identities ids(pk), idt(pk),
and all products that can be formed of them. Thus all Pµ are finitely generated
subgroupoids of P4. Note that by this definition, also Pγ for γ ∈ Γ and Pv for v ∈ V
are declared.

We immediately conclude:

Corollary 2.1 For two metagraphs µ1, µ2 ∈ M, we have that µ1 ≤ µ2 if and only
if Pµ1 is a subgroupoid of Pµ2 .

The same holds for graphs and hyphs. In fact, a topology on the set A of generalized
connections A, or equivalently functors A : P → Susp(G) is defined by convergence
on the finitely generated subgroupoids Pγ for al γ ∈ Γ. In [16] it was shown that
the same topology is defined if one replaces Γ by V. In fact, defining the topology
on A by using the metagraphs leads to the same result, as we will briefly indicate
in the following.

Definition 2.14 Let P be the path groupoid, and A the set of all morphisms A :
P → Susp(G). For a metagraph µ denote the set of all morphisms from Pµ to
Susp(G) by Aµ. Define the projection

πµ : A 7−→ Aµ (2.10)

(πµA)(pk) := A(pk)

For µ1 ≤ µ2 define the projections πµ1µ2 : Aµ2 → Aµ1 via

(

πµ1µ2A
)

(p) := A(q1) · . . . ·A(qn) (2.11)

if p ∈ µ1 can be written by p = q1 ◦ . . . ◦ qn, the qk being elements in µ2 or their
inverses.

It is easy to show that πµ1,µ2 ◦ πµ2 = πµ1 for µ1 ≤ µ2. By the definition of
metagraphs, each Aµ, µ = {p1, . . . , pM} comes with a natural bijection A 7−→
(A(p1), . . . , A(pM )). Pulling the topology of GM back to Aµ makes all the Aµ into
compact Hausdorff spaces.

4But not the other way round, as the example for G = U(1) above suggests.
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Definition 2.15 Define the topology on A to be the weakest topology such that all
the projections πµ are continuous.

One can show that with this topology A becomes a compact Hausdorff space. The
proof goes entirely along the same lines as in the case for graphs or hyphs [4, 10],
and rests crucially on the compactness of G. We will not repeat the proof here.

In fact, this topology coincides with the topology which is defined by the condi-
tion that all πγ for γ ∈ Γ are continuous.

Lemma 2.2 Let T1 be the weakest topology such that for all µ ∈ M the map πµ is
continuous. Let T2 be the weakest topology such that for all graphs γ ∈ Γ the map
πγ is continuous. Then the identity map between the two topological space

id : (A,T1) −→ (A,T2) (2.12)

is a homeomorphism.

Proof: Since π−1
γ (U) are a basis for T2, it is sufficient to show that id−1(π−1

γ (U))
are open in T1. But this is clear, since every graph is also a metagraph. Thus, id is
a continuous bijection between compact Hausdorff spaces, hence also a homeomor-
phism.

Thus, defining the topology on A by means of metagraphs is completely anal-
ogous to defining it by graphs. However, since the invertible functors φ ∈ Aut(P)
leave the set of metagraphs invariant, unlike the set of graphs, in this formulation
it is much easier to prove that the automorphisms act continuously on A.

Lemma 2.3 Let φ : P → P be an invertible functor, i.e. φ ∈ Aut(P). Then the
map

αφ : A −→ A (2.13)

(αφA)(p) := A(φ(p))

is a homeomorphism.

Proof: Let µ = {p1, . . . , pM} be a metagraph. In the following, we deliberately use
the homeomorphism Aµ ≃ GM . For A ∈ A we have

πµ(A) =
(

A(p1), . . . , A(pM )
)

(2.14)

=
(

αφ−1A
(

φ(p1)
)

, . . . , αφ−1A
(

φ(pM )
)

)

= πφ(µ)

(

αφ−1A
)

,

i.e. we get

πµ ◦ αφ = πφ(µ). (2.15)

From this it follows that, for each open U ∈ Aµ ≃ Aφ(µ), one has

(πφ(µ))
−1(U) = (αφ)−1

(

(πµ)−1(U)
)

. (2.16)
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But since the (πµ)−1(U) form a basis of the topology on A, preimages of open sets
under αφ are open, hence αφ is continuous. Since this is true for all automorphisms
φ ∈ Aut(P) and each φ is invertible, all automorphisms αφ : A → A are homeomor-
phisms. This concludes the proof.

There is also a normalized regular Borel measure µAL on A, which is called the
Asthekar-Isham-Lewandowski measure. It is uniquely determined by the condition
that its push-forward (πγ)∗µAL = µH is the normalized Haar measure on Aγ ≃ G|γ|.
One could think that the metagraphs µ ∈ M could now used in a similar way to
define a measure on A, which then would automatically be µAL. However, the
concept of metagraphs is slightly too broad for this: There is in general no measure
ν on A such that (πµ)∗ν = µH on Aµ. This can be seen as follows: Choose
G = SU(2) and l ∈ P be a nontrivial loop, which is also an edge, i.e. l ∈ MorP(x, x)
for some x ∈ Σ. Then µ1 := {l} as well as µ2 := {l2} are metagraphs, since one can
take square roots in SU(2). Now (πµ1)∗µAL = µH on SU(2), but (πµ2)∗µAL = µH

would imply

∫

SU(2)
dµH(h) F (h) =

∫

SU(2)
dµH(h) F (h2) (2.17)

for all continuous functions F on SU(2). But this is wrong! So, in order to define
µAL on A without referring to graphs of hyphs, we need the following notion:

Definition 2.16 Let µ ∈ M be a metagraph such that the push-forward of the
Ashtekar-Isham-Lewandowksi measure µAL by πµ is

(πµ)∗µAL = µH (2.18)

the normalized Haar measure µH on Aµ ≃ GM . Then µ is called a primitive
metagraph.

This notion is the first which is not defined entirely in terms of category theory, but
makes use of the analytic structure on Σ, through the use of the Ashtekar-Isham-
Lewandowski measure, which is defined in terms of graphs (or hyphs). Thus, it is
not at all clear whether the automorphisms Aut(P) preserve the set of primitive
metagraphs. Note that this is equivalent to (αφ)∗µAL = µAL, i.e. the question
whether the automorphisms leave µAL invariant, or the question whether the in-
duced operators on Hkin = L2(A, dµAL), given by (Û(φ)ψ)(A) := ψ(αφA) are all
unitary.

We will provide a proof for this assertion in section 4. For this proof some ex-
plicit examples of automorphisms will play a crucial rôle, which will be presented
in the following section.

3 Examples for automorphisms

It is obvious that every analytic diffeomorphism φ : Σ → Σ induces an automor-
phism φ ∈ Aut(P). In this sense, Diff(Σ) is a subgroup of Aut(P). But also all
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invertible functors on C̃, which are in one-to-one correspondence with maps from Σ
to Σ mapping hyphs to hyphs, descend to automorphisms on P by φ[[w]] := [[φ(w)]].

But, there are many automorphisms φ ∈ Aut(P) that are not induced by a map
Σ → Σ. The reason for this is deeply connected to the groupoid structure of P.
By declaring retracings to be equivalent to the identity [[δ ◦ δ−1]] = [[ids(δ)]], one
disconnects the paths from the points: If p is a path that passes through a point
x, i.e. x ∈ r(p), the path p ◦ q does not necessarily also have this property. Thus,
there is no good notion for a point x lying on a path p. This is the reason why there
are automorphisms φ ∈ Aut(P) that have actions on points (objects) and paths
(morphisms) which are not compatible with each other. In the following, we will
give two extreme examples for this:

The first example are the natural transformations of the identity, which arbi-
trarily permute the points in Σ, while leaving the paths essentially invariant. These
will be crucial in the proof that the automorphisms act unitarily on the kinematical
Hilbert space Hkin.

The second example for non-trivial automorphisms will be the edge-interchangers,
which interchange two edges with identical beginning- and endpoints, but leave all
objects (points x ∈ Σ) invariant, as well as all paths intersecting the two given edges
at most in finitely many points. These will be most helpful in determining the size
of the orbits of vectors in Hkin under the action of Aut(P), in order to compute the
automorphism-invariant Hilbert space HAut.

3.1 Natural transformations of the identity

Recall from category theory that, given two functors F,G : C → D, the two are
called to be natural transformations from each other, if for each object X in C there
is a morphism gX : F (X) → G(X) such that the following diagram commutes:

F (X)
F (f)

−−−−→ F (Y )

gX





y





y

gY

G(X)
G(f)

−−−−→ G(Y )

In the context of functors A : P → Susp(SU(2)), two such functors (generalized
connections) A1, A2 are natural transformations of each other if and only if the
one is a gauge transformed of the other. But also automorphisms can be natural
transformations of each other. In particular, two automorphisms φ1, φ2 ∈ Aut(P)
are natural transformations of each other, if and only if there is a bijection b : Σ → Σ
and for each x ∈ Σ a path px ∈ Mor(x, b(x)), such that for every path p ∈ Mor(x, y):

φ2(p) = p−1
φ1(x) ◦ φ1(p) ◦ pφ1(y) (3.1)

Note that this requires b(x) = φ2 ◦ φ
−1
1 (x). Given φ1, b and {px}x∈Σ, this can also

be seen as a definition of the transformed functor φ2. One special case occurs for
φ1 = id being the identity functor.

Definition 3.1 Let b : Σ → Σ be a bijection and, for every x ∈ Σ a path px ∈
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Mor(x, b(x)) be given. The functor φb,p defined by

φb,p(x) := b(x) (3.2)

φb,p(p) := p−1
s(p) ◦ p ◦ pt(p) (3.3)

is called a natural transformation of the identity.

Given two bijections b1, b2 and p1
x ∈ Mor(x, b1(x)) and p2

x ∈ Mor(x, b2(x)), then one
has

φb1,p2 ◦ φb1,p1 = φb,p (3.4)

with b := b2 ◦ b1 and px ∈ Mor(x, b2(b1(x))) given by px := p1
x ◦ p

2
b1(x). In particular,

by choosing b2 = b−1
1 and p2

x =
(

p1
b1(x)

)−1
, one sees that every such functor is

invertible, hence an automorphism.

Corollary 3.1 The natural transformations of the identity form a subgroup N of
Aut(P).

The natural transformations of the identity will be of particular importance later
on. In particular the group structure will play a prominent role in the proof that
all automorphisms act unitarily on Hkin.

3.2 Edge-interchanger

The following example of an automorphism will prove to be most important in order
to compute the automorphism-invariant Hilbert space HAut. It will be an example
of a functor which acts trivially on Σ, but modifies the morphisms. In particular,
it will interchange two edges (or paths without self.intersections)) e1, e2 with the
same starting- and ending point. On the other hand, it will leave every edge which
intersects e1, e2 in at most finitely many points invariant. It will therefore be termed
“edge-interchanger”.

Let e1, e2 be two paths in Mor(x, y) for x 6= y without self-intersection, and such
that they do not mutually intersect, apart from their beginning- and endpoints.
First, choose representative curves c1, c2 ∈ C, i.e. [[[c1]]] = e1, [[[c2]]] = e2, which
contain no retracings, i.e. the maps c1, c2 : [0, 1] → Σ are injective. Furthermore,
choose for any t ∈ (0, 1) a path pt ∈ MorP(c1(t), c2(t)), such that all paths pt

have a representative that intersects r(c1), r(c2) only at the respective beginning-
and endpoints. Define p0 = ids(e1) and p1 = idt(e1) to be the constant paths. For

t1, t2 ∈ [0, 1] denote by ct1,t2
1 the curve

c
t1,t2
1 : [0, 1] ∋ t 7−→ c1(t1 + t(t2 − t1)), (3.5)

and a similar definition of ct1,t2
2 . Note that this definition also makes sense for

t1 > t2, in particular ct1,t2
1 = (ct2,t1

1 )−1.

With this data, we now build a functor φ̃ : C̃ → P as follows:
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Lemma 3.1 Let w ∈ MorC̃(x, y) be a way in Σ. Then divide w according to the
edges e1, e2:

w = w1 ◦ w2 ◦ . . . ◦ wn. (3.6)

where the wk falls into either of the following categories:

• r(wk) ∩ r(e1,2) = r(wk) ⇔ wk = [ct1,t2
1 ] or [ct1,t2

2 ]

• r(wk) ∩ r(e1,2) ⊂ {s(wk), t(wk)}.

Then the following assignment

φ̃(w) := φ̃(w1) ◦ . . . ◦ φ̃(wn) ∈ MorP(x, y) (3.7)

with

wk = [ct1,t2
1 ] ⇒ φ̃(wk) := pt1 ◦ [[[ct1,t2

2 ]]] ◦ p−1
t2

wk = [ct1,t2
2 ] ⇒ φ̃(wk) := p−1

t1 ◦ [[[ct1,t2
1 ]]] ◦ pt2

r(wk) ∩ r(e1,2) ⊂ {s(wk), t(wk)} ⇒ φ̃(wk) := [[wk]]. (3.8)

defines a functor φ̃ : C̃ → P.

Proof: What has to be shown first is that the above assignment is well-defined,
i.e. does not depend on the manner the way w ∈ MorC̃(x, y) is decomposed w.r.t.
the edges e1, e2. First we note that, given two decompositions w1 ◦ . . . ◦ wn and
w′

1 ◦ . . . ◦w
′
m of w, there is a decomposition w′′

1 ◦ . . . ◦w
′′
N of w such that each wk, w

′
l

is a product of the w′′
r . Thus, if we can show that φ̃(w) defined by one decompo-

sition of w does not change if we decompose the decomposition further, we are done.

So let w = w1 ◦ . . . ◦wn and w = w′
1 ◦ . . . ◦w

′
M be two decompositions of w w.r.t.

the edges e1 and e2, such that each wk is a product of the w′
l. We need to show that

φ̃(w1) ◦ . . . ◦ φ̃(wn) = φ̃(w′
1) ◦ . . . ◦ φ̃(w′

m) (3.9)

where the φ̃(wk), φ̃(w′
l) are defined according to (3.8). Let now wk = [ct1,t2

1 ], and
wk = w′

l ◦ . . . ◦ w
′
l+l′ . Then there are points t1 = tl < tl+1 < . . . < tl+l′+1 = t2 such

that w′
l+j = [c

tl+j ,tl+j+1

1 ].5 Then we have

φ̃(w′
l) ◦ . . . ◦ φ̃(w′

l+l′) = ptl ◦ [[[c
tl ,tl+1

2 ]]] ◦ p−1
tl+1 ◦ ptl+1 ◦ [[[c

tl+1,tl+2

2 ]]] ◦ p−1
tl+2

◦ . . .

. . . ◦ p−1
tl+l′

◦ ptl+l′
◦ [[[c

tl+1,tl+2

2 ]]] ◦ p−1
tl+l′+1

= ptl ◦ [[[c
tl ,tl+1

2 ]]] ◦ . . . ◦ [[[c
tl+1,tl+2

2 ]]] ◦ p−1
tl+l′+1

(3.10)

= pt1 ◦ [[[c
tl,tl+1

2 ◦ . . . ◦ c
tl+1,tl+2

2 ]]] ◦ p−1
t2

= pt1 ◦ [[[ct1,t2
2 ]]] ◦ p−1

t2

= φ̃(wk).
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w6

p
φ(p)

e1

e2

Figure 3.1: The action of an edge-interchanger. The solid line shows some path p, the dashed
line shows φ(p).

Analogous relations hold in the case that wk = [[[ct1,t2
2 ]]].

Let now wk be such that r(wk) ∩ r(e1,2) ⊂ {s(wk), t(wk)}, and wk = w′
l ◦w

′
l+l′ .

Then obviously also r(w′
l+j) ∩ r(e1,2) ⊂ {s(w′

l+j), t(w
′
l+j)} for all j ∈ {1, . . . , l′}.

By (3.8) we immediately see that

φ̃(w′
l) ◦ . . . ◦ φ̃(w′

l+l′) = φ̃(wk). (3.11)

Since these are the only cases occurring, we conclude that φ̃ is a well-defined map
of morphisms in MorC̃(z, z

′) to morphisms in MorP(z, z′) for all z, z′ ∈ Σ.

The properties of a functor remain to be shown. But given two morphisms v,w in
C̃ such that t(v) = s(w), and decompositions v = v1 ◦ . . . ◦ vn and w = w1 ◦ . . . ◦wm

w.r.t. e1 and e2, then v ◦ w = v1 ◦ . . . ◦ vn ◦ w1 ◦ . . . ◦ wm is a decomposition of
v ◦ w w.r.t. e1 and e2. By (3.7) we see that

φ̃(v ◦ w) = φ̃(v) ◦ φ̃(w). (3.12)

Since φ leaves beginning- and endpoints of paths invariant, we conclude that the
map induces a functor φ̃ : C̃ → P that acts trivially on the objects |C̃| = |P| = Σ.

Lemma 3.2 For v,w morphisms in C̃ with [[v]] = [[w]], one has φ̃(v) = φ̃(w).
Thus, φ̃ descends to a functor φ : P → P. Furthermore, one has φ2 = idP , i.e.
φ ∈ Aut(P).

Proof: If [[v]] = [[w]], then by definition one can reach w by starting with v and
deleting or inserting ways u ◦ u−1. Hence we need to show φ̃(w−1) = φ̃(w)−1.
Since for ways w, v in C̃ one has (v ◦ w)−1 = w−1 ◦ v−1, we have only to show

5This only holds if t1 < t2. If t1 > t2 then the corresponding points have the property that t1 = tl >

tl+1 > . . . > tl+l′+1 = t2. The proof is then analogous.
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φ̃(w−1) = φ̃(w)−1 for w being of one of the types (3.8). But for w = [ct1,t2
1 ] this

follows from the fact that

[ct1,t2
1 ]−1 = [(ct1,t2

1 )−1] = [ct2,t1
1 ], (3.13)

with an analogous relation for ct1,t2
2 . For w touching the edges e1 and e2 at most at

its beginning- and endpoint, the assertion is trivial. We thus get φ̃(v) = φ̃(w) for
[[w]] = [[v]]. Thus, φ̃ descends to a functor φ : P → P.

It remains to show that φ2 = idP . Take a path p in P. Choose a representative
w in C̃, i.e. p = [[w]]. Then φ(p) = φ̃(w). Decompose w w.r.t the edges e1, e2:

w = w1 ◦ . . . ◦ wn (3.14)

where wk are of the type (3.8). Assume wk to meet the edges e1 and e2 at most at
their endpoints. Then

φ2([[wk]]) = φ(φ̃(wk)) = [[wk]]. (3.15)

Let now wk = [ct1,t2
1 ]. Then

φ̃(wk) = pt1 ◦ [ct1,t2
2 ] ◦ p−1

t2 (3.16)

By construction, the pt are such that they have a representative in C̃ which touches
the edges e1, e2 only at their beginning- and endpoints s(pt), t(pt). It follows that
φ(pt) = pt for all t ∈ [0, 1]. So we have

φ2([[wk]]) = φ
(

pt1 ◦ [[[ct1 ,t2
2 ]]] ◦ p−1

t2

)

= pt1 ◦ p−1
t1 ◦ [[[ct1,t2

1 ]]] ◦ pt2 ◦ p−1
t2 (3.17)

= [[[ct1 ,t2
1 ]]] = [[wk]].

Analogously for wk = [ct1,t2
2 ]. We conclude that φ2 = idP . So φ ∈ Aut(P).

From the definition is immediate that φ(e1) = e2 and vice versa. This justifies the
name “edge-interchanger”, although not only edges can be interchanged, but every
two paths without self-intersection that do not self-intersect. Note that φ is an
automorphism that acts trivially on the points in Σ, but nontrivially on the paths.
Every path, however, that is composed of edges that meet e1, e2 in at most finitely
many points is left invariant under φ. Note further that φ depends on a chosen
parametrization of e1, e2, as well as a choice {pt}t∈(0,1). This shows that there are
many such automorphisms that interchange e1 and e2.
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4 Unitarity of automorphisms

In section 2.3 we have seen that the set of metagraphs is suitable for addressing
topological questions on A. However, for the measure theory on A, the concept of
metagraphs is too broad: Not every metagraph µ ∈ M has the property that

(πµ)∗µAL = µH . (4.1)

The metagraphs that have this property are called primitive metagraphs. But since
this definition rests on analytical terms, it is a priori not clear whether the automor-
phisms preserve the set of primitive metagraphs. The proof for this will be delivered
in this section. As an immediate consequence, the operators on Hkin induced by
elements Aut(P) will all be unitary.

For the abelian gauge group G = U(1) this is quite easy to see, and we will
give the short proof for this, before we will turn to the general case and prove the
assertion for general gauge group G.

4.1 The kinematical Hilbert space

In this section we review the kinematical Hilbert space Hkin for general gauge groups
G, and discuss the action of the automorphisms on it.

Definition 4.1 Let µ = {p1, . . . , pE} be a metagraph. Then a function f : A → C

is called cylindrical over µ, iff there is a function F : GE → C such that

f(A) = F
(

A(p1), . . . , A(pE)
)

. (4.2)

If F is continuous (differentiable, smooth) then f is called a continuous (differ-
entiable, smooth) cylindrical function over µ. The set of all smooth cylindrical
functions over µ is denoted by Cyl(µ). The set of all smooth cylindrical functions
is denoted by Cyl.

Obviously, if f ∈ Cyl(µ), then f ∈ Cyl(µ′) for all metagraphs µ′ such that µ ≤ µ′.
Thus, every cylindrical function is cylindrical over a graph. The advantage of the
cylindrical functions lies in the following lemma.

Lemma 4.1 The set of cylindrical functions Cyl is a dense subspace in the set of
all continuous functions C(A), and hence also in Hkin = L2(A, dµAL).

In the analytical category, the concept of graphs provides an orthonormal basis of
Hkin.

Lemma 4.2 Let G be a semisimple, compact and connected gauge group. Let
γ = {e1, . . . , eE} be a minimal graph, i.e. there is no other graph γ̃ ≤ γ. Let fur-
thermore {πk}

E
k=1 be a sequence of irreducible representations of G, and mk, nk ∈

{1, . . . ,dimπk} be numbers. Then the function

Tγ,~π,~n,~m(A) :=

E
∏

k=1

√

dimπk πk(A(ek))nkmk
(4.3)

is cylindrical over γ. The set of all these functions provide an orthonormal basis
for Hkin.
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In the case of G = SU(2), the corresponding functions (4.3) are called spin-network
functions (SNF), and are denoted by Tγ,~j,~n,~m, where each of the jk is a half-integer
corresponding to an irreducible representation of SU(2), and mk, nk ∈ {−j,−j +
1, . . . , j}. In the case of G = U(1), where all representations are one-dimensional,
the functions Tγ,~n are called charge-network functions, and the nk ∈ Z denote
irreducible representations of U(1).

Lemma 4.3 Let φ ∈ Aut(P) be an automorphism of the path groupoid, and Tγ,~n a
charge-network function. Then the function

(

Û(φ)Tγ,~n

)

(A) := Tγ,~n(αφA) (4.4)

is again a charge-network function.

Proof: If γ is a minimal graph, then φ(γ) is not necessarily one, only a metagraph.
But there is a minimal graph γ′ = {e′1, . . . , e

′
E′} such that φ(γ) ≤ γ′. In particular

φ(ek) = e′l1
k
, ◦ . . . , ◦e′

l
mk
k

(4.5)

for each k ∈ {1, . . . , E}, and the e′l are edges (or their inverses) in γ′. With

Tγ,~n(A) =

E
∏

k=1

A(ek)nk (4.6)

we get

(

Û(φ)Tγ,~n

)

(A) = Tγ,~n(αφA) (4.7)

=
E
∏

k=1

A(e′l1
k
, ◦ . . . , ◦e′

l
mk
k

)nk .

But using the functorial properties of A, we get a product of A(e′lm
k

)nk , which we

can - due to the abelianess of U(1) - group together to obtain

Tγ,~n(αφA) =
E′

∏

l=1

A(e′l)
ml = Tγ′, ~m(A). (4.8)

So the automorphism map charge-network functions into charge-network functions.

Corollary 4.1 Let φ ∈ Aut(P) be an automorphism and Hkin be the kinematical
Hilbert space for the gauge group G = U(1). Then the operator

(

Û(φ)f
)

:= f(αφA) (4.9)

for any function f ∈ Hkin is unitary.
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Proof: By lemma 4.3 the map (4.9) is defined on the charge-network functions
Tγ,~n, and map this set into itself. Furthermore, the vector Ω, corresponding to the
constant function 1 on A, which can be written as Tγ,~0 for any graph γ, is trivially
left invariant by the φ ∈ Aut(P). Let now γ be a minimal graph and f ∈ Cyl(γ) a
smooth cylindrical function over γ. Then

f =
∑

~n∈ZE

c~n Tγ,~n. (4.10)

One has, by definition of µAL and the orthonormality of the charge-network func-
tions:

∫

A
dµAL(A) f(A) = c~0. (4.11)

On the other hand:
∫

A
dµAL(A) f(αφA) =

∑

~n∈Z

c~n

∫

A
dµAL(A) Tγ,~n(αφA) (4.12)

But if Tγ,~n 6= Tγ,~0, then also Û(φ)Tγ,~n 6= Tγ′,~0, since no not constant function on A

can be mapped to the constant function on A. Thus, since the integral over A of
all not constant charge-network functions is zero, we get

∑

~n∈Z

c~n

∫

A
dµAL(A) Tγ,~n(αφA) = c~0 =

∫

A
dµAL(A) f(A) (4.13)

So we have
∫

A
dµAL(A) f(αφA) =

∫

A
dµAL(A) f(A) (4.14)

for all functions f ∈ Cyl. But this is a set dense in the continuous functions w.r.t
the supremum norm on C(A), and since αφ : A → A is continuous, we conclude
that (4.14) holds for all continuous functions f ∈ C(A). Hence

(αφ)∗µAL = µAL, (4.15)

i.e. the integration measure os preserved under the action of φ ∈ Aut(P). Conse-
quently, Û(φ) defined by (4.9) is a unitary map on Hkin = L2(A, dµAL).

It should be noted that the key for establishing this short proof is the fact that
the orthonormal basis elements Tγ,~n are mapped into themselves by the action of
Aut(P). This rested on the fact that G = U(1) is abelian, and is not true for non-
abelian gauge groups, such as G = SU(2). In these cases, the automorphisms also
act unitarily on the corresponding Hkin, however the proof is much more involved,
as we will see in the following section.
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4.2 Unitarity of Automorphisms

In the last section, we have seen that in the case of G = U(1) it is quite straight-
forward to show that the action of the automorphisms Aut(P) on Hkin is unitary.
However, this proof rested crucially on the abelianess of U(1). In the following, we
will prove unitarity for gauge group G = SU(2).

For showing unitarity for the automorphisms Aut(P) in the case G = SU(2), we will
make explicit use of the natural transformations of the identity φb,p ∈ N defined in
section 3.1

In this section we will prove that all natural transformations of the identity
φb,p ∈ N act unitarily on Hkin. The basic idea of the proof is as follows: Since
N is a group, every φb,p can be written as a sequence of other elements φb,p =
φbN ,pN

◦ . . . ◦ φb1,p1, each of which are not too different from the identity. For these
we will be able to prove that they act unitarily, because they do not change a graph
much, hence can be controlled.

Lemma 4.4 Let γ = {e1, . . . , eE} be a graph. Let furthermore v ∈ V (γ) be a vertex
in the graph, and ek1 ◦ . . . ◦ ekn

be a path in γ with the following properties:

• All the ekl
are edges in γ.

• All the ekl
are distinct.

• s(ek1) 6= t(ekn
).

Then the natural transformation of the identity φb,p defined by

b(s(ek1)) := t(ekn
), b(t(ekn

)) := s(ek1), b(x) := x else

pt(ekn ) :=
(

ek1 ◦ . . . ◦ ekn

)−1
, ps(ek1

) := ek1 ◦ . . . ◦ ekn
, px := idx else

acts unitarily on Hγ.

Proof: First we note that φb,p maps Hγ to itself. Since the definition of φb,p is such
that (φb,p)

2 = idP is the identity functor, so does its inverse. Thus, every edge ek is
mapped to a combination of edges:

φb,p(ek) = ϑk(e1, . . . , eE) (4.16)

where the ϑk(e1, . . . , eE) is a word of the {e1, . . . , eE}, i.e. a product of edges and
their inverses. Thus, φb,p induces an endomorphism φ on the free group FE in the
E letters {e1, . . . eE} (which is defined by φ(ek) = ϑk(e1, . . . , eE)). But since its
inverse also does, φ is invertible (it is in fact its own inverse), and hence defines an
automorphism on FE . By corollary B.1, we have

∫

SU(2)E

dµH (h1, . . . , hE) F (h1, . . . , hE) (4.17)

=

∫

SU(2)E

dµH(h1, . . . , hE) F
(

ϑ1(h1, . . . , hE), . . . , ϑE(h1, . . . , hE)
)

,
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and hence

∫

A
dµAL(A) f(A) =

∫

A
dµAL(A)αφb,p

f(A). (4.18)

Since f is cylindrical over γ, the immediate conclusion from (4.18) is that φb,p acts
unitarily on Hγ .

For f being cylindrical over a graph γ, and φb,p ∈ N be a natural transformation
of the identity functor, φb,p will generically not satisfy the conditions of lemma 4.4,
but it can be composed of a sequence of elements in N that do, which will be the
key part of the following lemma.

Lemma 4.5 Let f be a function cylindrical over a graph γ, and φb,p a natural
transformation of the identity. Then

∫

A
dµAL(A) f(A) =

∫

A
dµAL(A)αφb,p

f(A). (4.19)

Proof: Let e1, . . . , eE be the edges of the graph γ, and v1, . . . vV be the vertices.
Without loss of generality, we can decompose the edges which are loops, such that
their beginning- and endpoints do not coincide. Consider the paths pv1 , . . . , pvV

which enter the definition of φb,p. Now decompose the ek and the pvl
into smaller

edges e′1, . . . , e
′
E′ that form a graph γ′, such that all the ek and the pvl

can be
composed from edges in γ′ (and their inverses). Now decompose the edges e′k of
γ′ further into edges e′′k (forming a graph γ′′), such that the following holds: Each
path pvl

can be decomposed into a product of N paths ẽk

pvl
= ẽl1 ◦ ẽl2 ◦ . . . ẽlN (4.20)

such that

• Each ẽlm, l ∈ {1, . . . , V }, m ∈ {1, . . . , N} is a sequence of distinct edges e′′k (or
their inverses) in γ′′

• For each m ∈ {1, . . . , N} the 2V points s(ẽlm) and t(ẽlm) for all l ∈ {1, . . . , V }
are distinct.

Note that this decomposition is possible, even if some pvl
are the constant paths: In

this case, the paths in (4.20) cancel each other out such that each ẽl1 ◦ ẽl2 ◦ . . . ẽlm
is nontrivial, while ẽl1 ◦ ẽl2 ◦ . . . ẽlN is a constant path again.

Then we define a natural transformation of the identity φbl
m,pl

m
by the following

data:

blm
(

s(ẽlm)
)

= t(ẽlm), blm
(

t(ẽlm)
)

= s(ẽlm), blm(x) = x else

(pl
m)s(ẽl

m) = ẽlm, (pl
m)t(ẽl

m) = (ẽlm)−1

This defines an element in N , as one can readily see. Furthermore, we can see that,
for one fixed m ∈ {1, . . . , N}, the φbl

m,pl
m

for all l ∈ {1, . . . , V } commute, due to the

condition that all the ẽlm have distinct beginning- and endpoints. Now define
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φb̃,p̃ := φbV
N

,pV
N

◦ φbV −1
N

,pV −1
N

◦ . . . ◦ φb1
N

,p1
N

◦ φbV
N−1,pV

N−1
◦ . . . (4.21)

◦ φb1
N−1,p1

N−1
◦ φbV

N−2,pV
N−2

◦ . . . ◦ φb11,p1
1
.

Now let ek be an edge in γ, with starting point vl′ and ending point vl′′ . Then for
every m ∈ {1, . . . , N} we have

φbV
m,pV

m
◦ . . . ◦ φb1m,p1

m

(

(ẽl
′

m−1)
−1 ◦ . . . ◦ (ẽl

′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m−1

)

(4.22)

= (ẽl
′

m)−1 ◦ . . . ◦ (ẽl
′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m.

In order to show this, we first note that, since all the φbl
m,pl

m
commute for all

l ∈ {1, . . . , V } by construction, we can move φbl′
m,pl′

m
and φbl′′

m ,pl′′
m

to the left in (4.22).

Since all the starting- and endpoints of the ẽlm are different from s(ẽl
′

m) and s(ẽl
′′

m) by
construction, the action of the φbl

m,pl
m

on (ẽl
′

m−1)
−1 ◦ . . . ◦ (ẽl

′

1 )−1 ◦ ek ◦ ẽ
l′′
1 ◦ . . . ◦ ẽl

′′

m−1

for l 6= l′, l′′ is trivial. Thus we get

φbV
m,pV

m
◦ . . . ◦ φb1m,p1

m

(

(ẽl
′

m−1)
−1 ◦ . . . ◦ (ẽl

′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m−1

)

(4.23)

= φbl′
m,pl′

m
◦ φbl′′

m ,pl′′
m

(

(ẽl
′

m−1)
−1 ◦ . . . ◦ (ẽl

′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m−1

)

.

But starting- and endpoint of ẽl
′

m and ẽl
′′

m are all distinct, and hence, by definition
of the φbl

m,pl
m

, we get.

φbl′
m,pl′

m
◦ φbl′′

m ,pl′′
m

(

(ẽl
′

m−1)
−1 ◦ . . . ◦ (ẽl

′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m−1

)

(4.24)

= (ẽl
′

m)−1 ◦ . . . ◦ (ẽl
′

1 )−1 ◦ ek ◦ ẽl
′′

1 ◦ . . . ◦ ẽl
′′

m.

An immediate consequence from (4.22), together with (4.21), is that

φb,p(ek) = φb̃,p̃(ek) (4.25)

for all edges ek in the graph γ. But φb̃,p̃ is, by (4.21) a product of natural trans-
formations of the identity φbl

m,pl
m

, all of which satisfy the conditions of Lemma 4.4.
Thus, we get

∫

A
dµAL(A) αφb,p

f(A) =

∫

A
dµAL(A) αφ

b̃,p̃
f(A) =

∫

A
dµAL(A) f(A) (4.26)

for all functions f cylindrical over γ. This finishes the proof.

Corollary 4.2 All natural transformations of the identity φb,p ∈ N act unitarily
on Hkin.

Proof: From lemma 4.5 we get that

∫

A
dµAL(A) αφb,p

f(A) =

∫

A
dµAL(A) f(A) (4.27)
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holds for all functions f ∈ Cyl. Thus, αφb,p
induces an operator on Hkin which is

isometric on a dense subspace. Thus, it is also unitary on all of Hkin. So, all natural
transformations of the identity φb,p ∈ N act unitarily on Hkin.

With this, we can now make the next step in the proof that all automorphisms act
unitarily on Hkin.

Lemma 4.6 Let e be an edge which is no loop, i.e. s(e) 6= t(e). Let f ∈ Cyl(e) be
a function cylindrical over e. Then, for any automorphism φ ∈ Aut(P), one has

∫

A
dµAL(A) αφf(A) =

∫

A
dµAL(A) f(A) (4.28)

Proof: Let p = φ(e). Since s(e) 6= t(e), also s(p) 6= t(p). Now decompose p into
edges p = e1◦. . .◦eE . If necessary, decompose the edges ek further, until s(e1), t(e1)
and t(eE) are all distinct. Then define the natural transformation of the identity
φb,p by

b(t(e1)) := t(eE), b(t(eE)) := t(e1), b(x) = x else (4.29)

pt(e1) := e2 ◦ . . . ◦ eE , pt(eE) := e−1
E ◦ . . . ◦ e−1

2 , px = idx else.

Since f is cylindrical over the edge e, there is a function F such that

∫

A
dµAL(A) f(A) =

∫

SU(2)
dµH(h) F (h). (4.30)

But obviously αφb,p
◦ αφf is cylindrical over the edge e1. Since φb,p(φ(e)) = e1, we

have

∫

A
dµAL(A) αφb,p◦φf(A) =

∫

SU(2)
dµH(h) F (h), (4.31)

so

∫

A
dµAL(A) f(A) =

∫

A
dµAL(A) αφb,p

◦ αφf(A). (4.32)

But since all natural transformations of the identity φb,p ∈ N leave the Ashtekar-
Isham-Lewandowski measure invariant by lemma (4.5), we have

∫

A
dµAL(A) f(A) =

∫

A
dµAL(A) αφf(A), (4.33)

which was the claim.

Lemma 4.6 shows that for f, g being cylindrical over an edge e, one has

〈 Û (φ)f | Û (φ) g 〉 = 〈 f | g 〉. (4.34)

In fact, in the proof of lemma 4.6 we have shown that every path p with s(p) 6= t(p)
can be mapped to an edge by an automorphism (in fact, by an element of N ),
hence (4.34) holds also for functions f, g ∈ Cyl(p). In the following we will look at
arbitrary automorphisms φ ∈ Aut(P), and use their properties as maps from A to
A, as well as (4.34) in order to show that they act unitarily on Hkin.
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Lemma 4.7 Let φ ∈ Aut(P) and Û(φ) be the induced operator on Hkin, and Û(φ)†

be its adjoint. Define Îφ := Û(φ)†Û(φ), then there is a sequence of continuous
functions fn ∈ C(A) such that

lim
n→∞

âfn
= Îφ (4.35)

converges in the weak operator topology, where for a continuous function f ∈ C(A)
the operator âf denotes multiplication with f on Hkin.

Proof: Let f ∈ C(A) be a continuous function on A. Then αφf is also contin-
uous. Denote with f̄ the complex conjugate function, then αφf̄ = αφf . Since

Û(φ) âf Û(φ)−1 = âαφf , we have

Û(φ) âf̄ Û(φ)−1 = âαφf̄ = âαφf =
(

âαφf

)†
(4.36)

=
(

Û(φ) âf Û(φ)−1
)†

=
(

Û(φ)†
)−1

âf Û(φ)†.

Multiplying with the respective operators Û(φ)†, Û(φ) from the right and the left,
one gets

Û(φ)†Û(φ) âf = âf Û(φ)†Û(φ). (4.37)

So the operator Îφ commutes with all elements âf , for f ∈ C(A). Let Ω be the
cyclic and separating6 vector for C(A) (corresponding to the function f(A) ≡ 1,
then, since Ω is also cyclic for the cylindrical functions Cyl, there is a sequence of
cylindrical functions fn ∈ Cyl such that

lim
n→∞

âfn
Ω = ÎφΩ (4.38)

in the topology of Hkin. Thus, for any two continuous functions g, h ∈ C(A), one
has

〈g | Îφ h〉 = 〈g | Îφ âh Ω〉 = 〈g | âh Îφ Ω〉 (4.39)

= lim
n→∞

〈g | âh âfn
Ω〉 = lim

n→∞
〈g |âfn

h〉

since all the âh are continuous operators on Hkin and are mutually commuting.
Since the |g〉, |h〉 are a dense subset of Hkin, the statement follows.

Lemma (4.7) is in fact true for all invertible maps φ : A → A. That the
corresponding sequence of fn converges to the constant function on A however, is
a consequence of Lemma 4.6.

Lemma 4.8 Let φ ∈ Aut(P) and fn be a sequence in Cyl such that âfn
converges

weakly to Îφ = Û(φ)†Û(φ). Then, for every edge e with s(e) 6= t(e) there is an
n0 ∈ N such that fn depend trivially on all edges which are not e for all n > n0.

6For an introduction to the C∗-algebraic notions, see e.g. [4, 17]

25



Proof: Let f be a nontrivial function cylindrical over e. Then by lemma 4.6

〈f | Îφ f〉 = 〈Û (φ)f | Û (φ)f〉 = 〈f | f〉 = ‖f‖2 > 0 (4.40)

it follows with lemma 4.7 that 〈f | âfn
f〉 > 0 for some n > n0. But if fn would

depend nontrivially on any edge different from e, then so would the product fnf ,
but not f , so 〈f | âfn

f〉 would be zero. Hence, fn cannot depend on any edge not
being e for n > n0.

Corollary 4.3 There is an n0 ∈ N such that fn is the constant function 1 on A
for every n > n0.

Proof: Choose two different edges e1, e2 which have differing beginning- and end-
points. Then fn depend trivially on every edge not equal e1 for n > n1 and trivially
on every edge not equal to e2 for n > n2. But since e1 6= e2, fn depend trivially on
every edge for n > n0 := max(n1, n2). But the only cylindrical functions depending
trivially on every edge are the constant functions. But since Û(φ)Ω = Ω, we have

〈Ω | Îφ Ω〉 = 〈Ω |Ω〉 = 1, (4.41)

so âfn
must be the constant function 1 for all n > n0.

We conclude this section by stating the main result.

Theorem 4.1 For any automorphism φ ∈ Aut(P) the corresponding operator Û(φ)
on Hkin is unitary.

Proof: From corollary 4.3 it follows that the âfn
converge to the identity opera-

tor. But with lemma 4.7 we conclude that Îφ must be the identity operator. So

Û(φ)†Û(φ) = 1, and multiplying by Û(φ)−1 from the right gives the desired result.

5 The automorphism-invariant Hilbert space

We now review the definition of the Diff(Σ)-invariant Hilbert space for the case
G = SU(2) and Diff(Σ) being the group of analytical diffeomorphisms on Σ [1, 7].

Since there is no known nontrivial topology or Borel measure on Diff(Σ), the
group of (analytical) diffeomorphisms, defining the rigging map naively via the
group averaging:

η[ψ](χ) =

∫

Diff(Σ)
dµ(φ) 〈ψ |Û(φ)χ〉 (5.1)

is not possible. But there are other ways of defining a antilinear map

η : D −→ D∗
Diff (5.2)

from a dense subspace D ⊂ Hkin invariant under Diff(Σ) into the linear functionals
on D that are invariant under Diff(Σ). This is usually done as follows:
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For any φ ∈ Diff(Σ) and any graph γ, also φ(γ) is a graph. It follows that, in
the case of G = SU(2), which we consider here, spin network functions Tγ,~j,~n,~m are

mapped into spin network functions. So for two SNFs one has that 〈Tγ,~j~n,~m | Û(φ)Tγ′,~j′~n′, ~m′〉
is either 0 or 1, depending on φ ∈ Diff(Σ). Then η is defined by

η[Tγ,~j,~n~m](Tγ′,~j′~n′, ~m′) :=
∑

ϕ∈Diff(Σ)
/

Diffγ

F (|GSγ |)
∑

ϕ̃∈GSγ

〈

Û(ϕ ◦ ϕ̃)Tγ,~j,~n~m

∣

∣Tγ′,~j′~n′, ~m′

〉

(5.3)

where Diffγ is the set of diffeomorphisms which leave Pγ invariant. GSγ is the
group of graph symmetries, i.e. the quotient of Diffγ and the subgroup of Diff(Σ)
which leaves γ invariant. This is a finite group. F is a function, which can be
chosen arbitrarily. This defines an antilinear map from the span of the SNFs to
the Diff(Σ)-invariant linear functionals, which serves as rigging map, and defines a
Diff(Σ)-invariant inner product via

〈η[ψ] | η[χ]〉Diff := η[ψ](χ) (5.4)

In the case of Diff(Σ), an orthogonal basis for Hdiff is given by the set of equivalence
classes of SNFs under the action of Diff(Σ). The normalization of these vectors is a
nontrivial issue [18], and is governed by the function F in (5.3).

If we now replace the diffeomorphisms Diff(Σ) by the automorphisms Aut(P),
we can try to use the same techniques to define an automorphism-invariant inner
product 〈·|·〉Aut and an automorphism-invariant Hilbert space HAut.

5.1 Graph combinatorics

The automorphisms Aut(P) act unitarily on the Hilbert space Hkin, as was demon-
strated in the last section. Furthermore, we have seen that there are many au-
tomorphisms φ ∈ Aut(P) that do not correspond simply to a piecewise analytic
map Σ → Σ. In particular, given any bijection b : Σ → Σ, any choice of paths
px ∈ Mor(x, b(x)) defines a functor φb,p ∈ N . On the other hand, each edge-
interchanger acts trivially on the objects in Σ, but changes morphisms. Thus the
automorphisms allow for a lot of freedom how to change metagraphs µ ∈ M. In
this section we will present a lemma that shows how large the orbit of a graph is
under the action of Aut(P).

Lemma 5.1 Given any two hyphs v1 = (p1, . . . , pH) and v2 = (q1, . . . , qH). Assume
the two are combinatorially the same, i.e. there is a bijection b between the vertices
b : V (v1) → V (v2) and a bijection c : {p1, . . . , pH} → {q1, . . . , qH} such that

s(c(pk)) = b(s(pk)), t(c(pk)) = b(t(pk)). (5.5)

Then there is an automorphism φ ∈ Aut(P) such that φ(v1) = v2.
7

7Note that this is slightly weaker than demanding that every automorphism between the subgroupoids
Pv1

→ Pv2
can be extended to an automorphism on P .
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Proof: We will explicitly construct this automorphism as a product of finitely many
natural transformations of the identity and edge-interchangers. First we show that
there is a sequence of edge-interchangers such that v1 can be mapped to a graph γ,
which has the same vertices as v1, as well as the same combinatorics as v1.

Choose a graph γ′ = {e′1, . . . , e
′
E′} such that v1 ≤ γ′. Then, by definition, there

is an edge e′l in γ′ such that e′l meets {p1, . . . , pH−1} at most in its endpoints.

pH = p̃1 ◦ e
′
l ◦ p̃2 (5.6)

Choose an analytic curve c (i.e. [[[c]]] is an edge) from s(pH) to t(pH) that does not
meet any of the e′k, apart from the points s(pH) and t(pH). Then choose two curves
c1 and c2 with the following properties:

• s(c1) = c(1
4 ) and t(c1) = s(e′l)

• s(c2) = c(3
4 ) and t(c2) = t(e′l)

• The curves c1, c2 are injective and r(c1), r(c2) do not intersect, as well as they
do not intersect with any of the r(c), r(e′k), apart from their beginning- and
endpoints.

For any curve c and 0 ≤ t1, t2 ≤ 1 denote by ct1,t2 the curve

ct1,t2(t) := c(t1 + t(t2 − t1)). (5.7)

Then by construction the following paths

e1 := [[[c
1
2
,1

1 ]]] ◦ e′l ◦ [[[c
1
2
,1

2 ]]]−1 (5.8)

e2 := [[[c
0, 1

2
1 ]]]−1 ◦ [[[c

1
4
, 3
4 ]]] ◦ [[[c

0, 1
2

2 ]]]

are paths without self-intersection that mutually intersect only at their beginning-
and endpoints. Furthermore, they intersect with the other edges e′k, k 6= l only
at most in s(e′l), t(e

′
l). Thus, by construction, the same is true for the paths

p1, . . . , pH−1, since they are built from the e′k, k 6= l.

Now choose representative curves d1 and d2 for e1 and e2 such that

• d1

(

1
4

)

= s(e′l) and d1

(

3
4

)

= t(e′l)

• d2

(

1
4

)

= c
(

1
4

)

and d1

(

3
4

)

= c
(

3
4

)

.

Finally choose for every t ∈ (0, 1)\
{

1
4 ,

3
4

}

a path pt that goes from d1(t) to d2(t),
and which does not meet e1, e2 apart from their respective beginning- and endpoint.
Furthermore, define

p 1
4

:= (p̃1)
−1 ◦ [[[c0, 1

4 ]]] (5.9)

p 3
4

:= p̃2 ◦ [[[c
3
4
,1]]]−1.

Now we have chosen two paths without self-intersections e1, e2 which meet only in
their beginning- and endpoint, a parametrization d1, d2 for each of the paths, and
for each t ∈ (0, 1) a path pt ∈ Mor(d1(t), d2(t)) that does not meet e1, e2, apart
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from its beginning- and endpoint. This data defines an automorphism φ ∈ Aut(P)
by lemma 3.1.

Since e1, e2 have been chosen to be such that they meet the p1, . . . , pH−1 only in at
most finitely many points, we conclude that φ(pk) = pk for k = 1, . . . ,H − 1. By
the definition of φ and (5.8), (5.9), we have

φ(pH) = φ(p̃1) ◦ φ(e′l) ◦ φ(p̃2)

= p̃1 ◦
(

p 1
4
◦ [[[c

1
4
, 3
4 ]]] ◦ p−1

3
4

)

◦ p̃2

= [[[c0, 1
4 ]]] ◦ [[[c

1
4
, 3
4 ]]] ◦ [[[c

3
4
,1]]] (5.10)

= [[[c]]].

So by this construction, all paths pk have been left invariant, except for pH which
has been mapped to an edge eH := [[[c]]], which meets the pk, k < H at most in its
beginning- and endpoint. For this construction it was crucial that pH had a free seg-
ment w.r.t all the other pk, k < H, but also w.r.t. eH , by construction. This means
that (eH , p1, . . . , pH−1) is also a hyph, i.e. each of the pk has a free segment w.r.t all
pl, l < k, but also w.r.t eH . So the same construction can be carried out once again
to obtain an automorphism φ′ ∈ Aut(P) that leaves eH as well as all pk, k > H − 1
invariant, but maps pH−1 to an edge eH−1 which meets eH , pk, k < H − 1 at most
in its beginning-and endpoint. This gives a hyph (eH−1, eH , p1, . . . , pH−2). By re-
peating this process, we arrive at a hyph (e1, . . . , eH), where all the ek are edges
and meet at most in their beginning- and endpoint. So γ := {e1, . . . , eH} is a graph.
Thus, we have constructed a finite sequence of automorphisms that map the hyph
(p1, . . . , pH) into the graph γ.

Now let γ′′ = {e′′1 , . . . , e
′′
H} be any graph which has the same combinatorics as

γ = {e1, . . . , eH}, but the edges of which do not intersect with the edges of γ.
V (γ) = {v1, . . . , vV } and V (γ′′) = {v′′1 , . . . , v

′′
V }, and

s(ek) = va, t(ek) = vb ⇔ s(e′′k) = v′′a , t(e
′′
k) = v′′b . (5.11)

Then construct an automorphism mapping one to the other by the following
method: For each vl ∈ V (γ) choose a path pvl

∈ Mor(vl, v
′′
l ) such that all pvl

are
without self-intersections, do not intersect each other, and intersect the ek, e

′′
k only

in the vertices vl, v
′′
l . Then define a natural transformation of the identity φb,p ∈ N

by the following data:

b(vl) := v′′l , b(v′′) := vl, b(x) = x else (5.12)

pvl
:= pvl

, pv′′
l

:= p−1
vl
, px = idx else

Then each of the p′k := φb,p(ek) is a path without self-intersections, and all the p′k
have free segments w.r.t each other (in particular the ek). So (p′1, . . . , p

′
H) is a hyph

with vertices v′′1 , . . . , v
′′
V . On the other hand, γ′′ is a graph, the edges e′′k of which

intersect all the p′k at most in the vertices v′′l . Since for each path p′k, the edge e′k
starts and ends at the same points as p′k by construction, there is a sequence of H
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edge-interchangers that maps each p′k to e′′k.

So we have started with a hyph v1 = (p1, . . . , pH), have mapped v1 to γ =
(e1, . . . , eH) by a sequence of H edge-interchangers, have mapped γ by a natural
transformation of the identity φb,p to the hyph v′1 = (p′1, . . . , p

′
H), and have mapped

v′1 by another sequence of H edge-interchangers to any other graph γ′′, of which
we only demanded that it has the same combinatorics as v1, and that it has empty
intersection with γ. By the same construction, we can show that we can map any two
graphs that have the same combinatorics but empty intersection into each other by a
sequence of automorphisms. But this shows that one can map any two hyphs v1, v2
having the same combinatorics into each other by a sequence of edge-interchangers
and natural transformations of the identity. Thus, the lemma is proven.

5.2 Orbits of the Automorphisms

In order to define the automorphism-invariant Hilbert space HAut, it is instructive
to get an idea of the orbits of vectors ψ ∈ Hkin under the action of Aut(P). First
we will investigate these orbits in the following for arbitrary gauge groups G, in
order to arrive at some general statements. Then, we will specialize to G = U(1)
and G = SU(2) in order to say something about the corresponding spaces HAut.

Lemma 5.2 Let f ∈ Cyl be a gauge-invariant cylindrical function. Then for any
natural transformation of the identity φb,p ∈ N one has

Û(φb,p)f = f (5.13)

Proof: Let f be cylindrical over the graph γ = {e1, . . . , eE}. For each v ∈ V (γ)
and each a ∈ A denote gA

v := A(pv) ∈ G. With

f(A) = F (A(e1), . . . , A(eE)) (5.14)

we get

(

Û(φb,p)f
)

(A) = f
(

αφb,p
A)

= F
(

A(p−1
s(e1) ◦ e1 ◦ pt(e1)), . . . , A(p−1

s(eE) ◦ eE ◦ pt(eE))
)

= F
(

(gA
s(e1))

−1A(e1) gt(e1), . . . , (g
A
s(eE))

−1A(eE) gt(eE)

)

(5.15)

= F
(

A(e1), . . . , A(eE)
)

= f(A).

Lemma 5.2 shows one important fact: Although φb,p can change graphs quite arbi-
trarily, the corresponding functions on that graph remain unchanged. The reason
for this is that a function cylindrically over a metagraph µ ∈ M does generally not
carry all of the information in order to reconstruct µ from its dependence A→ f(A).

Consider the following example: Given a metagraph µ = {p1, . . . , p4}, as in
picture 5.2.
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p1 p2

p3 p4

Figure 5.1: A metagraph µ (in fact a hyph) consisting of four paths and five vertices.

Note that the paths p1 ◦ p2 and p3 ◦ p4 each contain a retracing. Now consider the
function cylindrical over the metagraph µ by

f(A) = F
(

A(p1), A(p2), A(p3), A(p4)
)

(5.16)

with F (h1, h2, h3, h4) = F̃ (h1h2, h3h4) for some smooth function F̃ on G2. Note
that f does not depend on the parallel transports along all the p1, . . . , p4, but only
on the ones along p1 ◦ p2 and p3 ◦ p4. So in particular, f does not depend at all on
the parallel transports along the retracings. Consequently, f is cylindrical over the
graph γ, which consists of the following two edges:

p1 ◦ p2

p3 ◦ p4

Figure 5.2: The function f given by (5.16) is also cylindrical over the graph γ̃ ≤ µ, which only
consists of two edges and four vertices

So we see that the dependence of the function f is not on all of µ, but only of a
certain subgraph. This is of particular importance, since the following graph γ:
has the same combinatorics as µ. So, by lemma 5.1 there is an automorphism
φ ∈ Aut(P) mapping one to the other, i.e. φ(ek) = pk. Thus, a function f cylindrical
over γ is mapped into αφf , which is cylindrical over µ. But if f depends only on the
parallel transports along e1 ◦ e2 and e3 ◦ e4, then αφ is also cylindrical over γ̃ ≤ µ,
as we have just seen. So, although φ respects the number of vertices and paths
in a metagraph, Û(φ) can map a function which is cylindrical over a metagraph
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e1 e2

e3 e4

Figure 5.3: The metagraph µ can be mapped to this graph γ by an automorphism

to a function cylindrical over another metagraph, which does not have the same
combinatorics, such as γ and γ̃ in the example above.

Although this seem paradoxical at first, it is in fact quite natural: Consider the
function f , which is cylindrical over the graph γ, as in figure (5.2), and which de-
pends only on the parallel transports along e1◦e2 and e3◦e3. Then the function does
not “know” that it is cylindrical over a graph with four edges, in particular it does
not know anything about the middle vertex t(e1). For instance, it is automatically
gauge-invariant w.r.t. gauging at this vertex. This does, of course, not happen to an
arbitrary function g cylindrical over γ, whose dependence on the parallel transports
along all four edges e1, . . . , e4 is nontrivial.

We see that the cylindrical functions can carry much less information than the
graph that they are cylindrical over. In particular, the functions only carry infor-
mation about on how many parallel transports they depend, and which of these
start or end at the same points. It is exactly this information that is preserved by
the automorphisms.

This is of particular importance for the gauge-invariant functions, since these
carry only information about the first fundamental class of the graph, but not
about the graph topology itself, which is summarized by the following lemma.

Lemma 5.3 Let f ∈ Cyl be a gauge-invariant cylindrical function over a graph γ
with E edges and V vertices. Then there is a E − V + 1-flower graph γ̃ (a graph
with one vertex and E − V + 1 edges all starting and ending at that vertex) and an
automorphism φ ∈ Aut(P) such that Û(φ)f is a gauge-invariant function cylindrical
over γ̃.

Proof: Choose a maximal tree τ in the graph γ. Choose a vertex x ∈ V (τ) and for
each edge el ∈ E(γ)\E(τ) not belonging to the tree denote the unique path from x

to s(el) lying in τ as p1
l , and from v to t(el) as p2

l . Then define the E− V + 1 paths

pl := p1
l ◦ el ◦ (p2

l )
−1. (5.17)

Then v = (p1, . . . , pE−V +1) is a hyph, since each path pl contains el, which is a free
segment for all the other paths. Note that, due to gauge-invariance, the function
f only depends on the parallel transports along the paths pl (see, e.g. [19]). In
particular, f is cylindrical over the hyph v := (p1, . . . , pE−V +1): f ∈ Cyl(v). But
since all paths pl in v start and end in the vertex x, by lemma 5.1 there is an auto-
morphism mapping the hyph v to an E − V + 1-flower graph γ̃. So f gets mapped
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e1

e2

e3

. . .

eE

Figure 5.4: An E-flower graph.

to a function αφf being cylindrical over that flower graph.

Lemma 5.3 shows the tremendous size that the orbits of a vector under the
action of Aut(P) have. In the case of the abelian gauge group G = U(1), the size is
so large that one can in fact compute the orbits, in the sense that one can determine
the set of equivalence classes of vectors in Hkin under the action of Aut(P).

5.3 The automorphism-invariant Hilbert space for gauge

group G = U(1)

Cylindrical functions for gauge group G = U(1) carry particularly few information
about the graph they are cylindrical over.

Lemma 5.4 Let γ = {e1, . . . , eE} be an E-flower graph. Consider a word ϑ(e2, . . . , eE)
in the edges of γ, apart from e1. Since γ is a flower graph, ϑ is a path in the groupoid
Pγ , i.e. a path starting and ending at the one vertex in V (γ), and going through
the edges e2, . . . , eE in an order determined by the word ϑ. Then there is an auto-
morphism φ ∈ Aut(P) with the following properties:

φ : e1 7−→ e1 ◦ ϑ(e2, . . . , eE) (5.18)

ek 7−→ ek, for k ∈ {2, . . . , E}

Proof: Note that (e2, . . . , eE , e1 ◦ ϑ) is a hyph, since e1 ◦ ϑ(e2, . . . , eE) has a free
segment w.r.t. e2, . . . , eE (which is e1), and the remaining (e2, . . . , eE) form a graph.
Since (e1, . . . , eE) is also a hyph, having the same combinatorics, the assertion fol-
lows directly from lemma 5.1.

Lemma 5.5 Let γ be an E-flower graph, ~n ∈ ZE and Tγ,~n be a charge network.
Let (m2, . . . ,mE) ∈ ZE−1, then there is an automorphism φ ∈ Aut(P) such that

Û(φ)Tγ,~n = Tγ,~n′ (5.19)
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with

n′1 = n1 (5.20)

n′k = nk + n1mk for k ∈ {2, . . . , E}

Proof: Choose the word

ϑ(e2, . . . , eE) = em2
2 ◦ . . . ◦ emE

E . (5.21)

Then, by lemma 5.4, there is an automorphism φ ∈ Aut(P) with

φ(e1) = e1 ◦ e
m2
2 ◦ . . . ◦ emE

E , (5.22)

and which leaves all other ek invariant. Thus we get

(

αφTγ,~n

)

(A) =

E
∏

k=1

A(αφek)
nk

=

[

A(e1)

E
∏

k=2

A(ek)
mk

]n1 E
∏

k=2

A(ek)
nk (5.23)

= A(e1)
n1

E
∏

k=2

A(ek)nk+n1mk

= Tγ,~n′(A),

where Tγ,~n′ is given by (5.20)

Lemma 5.6 Let γ be an E-flower graph, ~n ∈ ZE, and Tγ,~n a charge-network func-
tion. Then there is an automorphism φ ∈ Aut(P) such that

αφTγ,~n = Tγ,(p,0,0,...,0), (5.24)

where p ∈ Z is the greatest common divisor of the |n1|, . . . , |nE|.

Proof: First assume that all nk ≥ 0. If this is not the case, one can, by lemma 5.1,
find an automorphism that reverses the direction of all edges ek such that nk < 0:

φ(ek)=e−1
k if nk < 0

φ(ek) = ek else

We will consider a sequence of ’steps’ (5.20), each of which changes the charge
distribution among the edges e1, . . . , eE , and corresponds to the action of an auto-
morphism φ ∈ Aut(P). We will construct the sequence such that, at the end, the
charge distribution (n1, . . . , nE) will have changed into (p, 0, 0, . . . , 0).

First, assume that not all of the nk are zero, otherwise Tγ,~n = Ω is the vector
corresponding to the constant function f(A) ≡ 1, and we are done.
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Choose one of the smallest nk, which is without loss of generality n1. Then
choose another nl, l ≥ 1 with n1 ≤ nl. Then, define ml := −1, mk = 0 for
1 6= k 6= l. Then, by lemma 5.5 there is an automorphism φ(1) ∈ Aut(P) that maps

Tγ,~n to Tγ,~n(1) with n
(1)
k = nk, for k 6= l, and n

(1)
l = nl − nk ≥ 0. Continue with

choosing one of the smallest n
(1)
k (by renumbering, this is again wlog n

(1)
1 ), and

choose one n
(1)
l with n

(1)
1 ≤ n

(1)
l , define m

(1)
l = −1, m

(1)
k = 0 for 1 6= k 6= l. By

lemma 5.5 find an automorphism φ(2) mapping Tγ,~n(2) with n
(2)
k = n

(1)
k for k 6= l and

n
(2)
l = n

(1)
l −n

(1)
1 ≥ 0, choose the smallest nonzero n

(3)
k , and continue this algorithm.

Since each of the ~n(r) is a sequence of nonnegative numbers, and in each step

one of the numbers is reduced by some n
(r−1)
1 > 0, the algorithm stops after finitely

many steps, say after N ≤
∑

k nk steps. The algorithm cannot be continued further,

if after choosing the smallest n
(N)
1 , there is no other nonzero n

(N)
l , i.e. if all other

n
(N)
k are zero. Then, we have constructed a series of automorphisms mapping Tγ,~n

to some T
γ,(n

(N)
1 ,0,0,...,0)

:

Û(φ(N))Û(φ(N−1)) · · · Û(φ(1))Tγ,~n = Tγ,(p,0,0,...,0) (5.25)

with p = n
(N)
1 . It is easy to see that in each step, the greatest common divisor of the

nonzero n
(r)
k never changes. Thus, since p is its own greatest common divisor, it has

to be equal to the greatest common divisor of all the nonzero nk. This completes
the proof.

Lemma 5.7 Let γ be a one-flower graph. If for n,m ∈ Z there is an automorphism
φ ∈ Aut(P) such that Û(φ)Tγ,n = Tγ,m, then n = ±m.

Assume there is a φ ∈ Aut(P) such that Û(φ)Tγ,n = Tγ,m. Then φ(γ) is a metagraph
φ(γ) ≤ γ. Thus, φ(γ) ∈ Pγ . But Pγ = {γk | k ∈ Z}. Thus, φ(γ) = γk for some
k ∈ Z. Since Û(φ−1)Tγ,m = Tγ,n, we also have φ−1(γ) ≤ γ, i.e. φ−1(γ) = γl for
some l ∈ Z. On the other hand,

γ = φ
(

φ−1(γ)
)

= φ
(

γl
)

=
(

φ(γ)
)l

= γkl (5.26)

by the functorial properties of φ. Thus, kl = 1, but the only two pairs of integer
numbers k, l ∈ Z with this property are k = l = 1 and k = l = −1. So either
φ(γ) = γ or φ(γ) = γ−1. The claim follows.

By lemma 5.3, every gauge-invariant charge-network function can be mapped
by an automorphism to one on a flower graph (on which all charge-networks are
automatically gauge-invariant). In lemma 5.6 we have seen that for gauge group
G = U(1), each charge-network function on a flower graph can be mapped by an
automorphism into Tγ,n for some one-flower graph γ and some n ∈ Z. This n is
unique up to a sign, as we have seen in Lemma 5.7. We have thus determined the
complete set of orbits of charge-network states under the action of Aut(P).
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Lemma 5.8 Let D be the linear span of all charge-network states in Hkin. Then
the following map:

η : D −→ D∗
Aut(P) (5.27)

η[f ]g :=
∑

[φ]∈Aut(P)/∼

〈f | Û(φ)g〉

defines an antilinear map from D to the automorphism-invariant linear functionals
over D. Here φ1 ∼ φ2 if 〈f |Û(φ1)g〉 = 〈f |Û(φ2)g〉.

Proof: We have seen that for each charge-network state Tγ,~n there is a unique n ≥ 0
such that

[

Tγ,~n

]

=
[

©n

]

(5.28)

where © is a one-flower graph, ©n denotes the charge-network function on © given
by the one charge n, and [·] denotes the orbit of · under Aut(P). Denote this n by
ø(~n), then we have

∑

[φ]∈Aut(P)/∼

〈Tγ,~n | Û (φ)Tγ′,~n′〉 = δø(~n),ø(~n′), (5.29)

due to the fact that any φ ∈ Aut(P) maps a charge network into another charge
network, so 〈Tγ,~n | Û(φ)Tγ′,~n′〉 is either 0 or 1.

With this rigging map, an inner product 〈·|·〉Aut can be defined on the set of all
finite linear combinations of charge-network functions, and we thus see

Corollary 5.1 The automorphism-invariant inner product on η(D) given by the
rigging map (5.27) can be completed to the automorphism-invariant Hilbert space

HAut =

{

∞
∑

k=0

cn

[

©n

]

∣

∣

∣

∣

∣

∑

n

|cn|
2 <∞

}

(5.30)

Proof: This is clear from the fact that the orbit of every finite linear combination
f of charge networks is given by

[

f
]

=

N
∑

k=0

cn

[

©n

]

(5.31)

and
〈 [

©n

] ∣

∣

∣

[

©m

]〉

Aut
= δnm. (5.32)

As we have seen, the automorphism-invariant Hilbert space can be computed di-
rectly, for a certain choice of rigging map (5.27). For each charge-network function
Tγ,~n on a graph γ, there is a natural number n and an automorphism φ such that
αφTγ,~n = ©n. This shows how tremendously large the orbits of the automorphism
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group are in the case of G = U(1). The reason for this is the following: given any
graph γ with E edges and a charge-network function Tγ,~n, then

Tγ,~n(A) = ei(n1ϕ1+···+nEϕE) (5.33)

where eiϕk = A(ek) is the holonomy of A along the edge ek. Then, our previous
results show that there is a closed loop l in γ, i.e. a path consisting of edges in
γ and their inverses, which starts and ends at the same point, such that each ek
is traversed exactly nk times (counting going against the orientation of ek as −1).
Then

Tγ,~n(A) = eiϕ (5.34)

with ϕ = n1ϕ1 + · · · + nEϕE , and eiϕ = A(l) is the holonomy along l. So the
charge-network function Tγ,~n is cylindrical over the metagraph l. If l = l̃n for a

simple loop l̃, then Tγ,~n is also cylindrical over l̃, and we have shown that there is

an automorphism φ mapping the loop l̃ to a (say) circle ©, hence Tγ,~n to ©n.

The above consideration rests crucially on the abelianess of U(1). In particular,
it does not matter in which order l transverses the paths in γ, just how many times.
This will not be true for non-abelian gauge groups, such as G = SU(2), as we will
see in the following.

5.4 The automorphism-invariant Hilbert space for gauge

group G = SU(2).

In this section, we investigate the set of orbits of vectors in Hkin under the action
of Aut(P), in the case of G = SU(2). Ultimately, the goal is to compute the set of
linear functionals invariant under Aut(P) with some inner product, such as in the
case for G = SU(2), for example

η : D −→ D∗
Aut(P) (5.35)

η[f ]g :=
∑

[φ]∈Aut(P)/∼

〈f | Û(φ)g〉

Again, φ1 ∼ φ2 if 〈f |Û(φ1)g〉 = 〈f |Û(φ2)g〉.

To compute the set of orbits of vectors in Hkin under the action of Aut(P) for
the case of G = SU(2) is more difficult, due to the fact that for a spin network func-
tion Tγ,~j,~n,~m, the transformed αφTγ,~j,~n,~m is not necessarily a spin network function
anymore. The same holds for any gauge-invariant spin network function Tγ,~j,~I : If

one chooses, for each graph γ, an orthonormal basis of intertwiners ~I at each vertex,
then any such basis vector can be mapped to a finite linear combination of basis
vectors by an automorphism
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From this difficulty arises the phenomenon that, for two vectors Tγ,~,~I , Tγ′,~j′,~I′

the set of all possible overlaps

{

〈Tγ,~,~I |αφ Tγ′,~j′,~I′〉
∣

∣

∣ φ ∈ Aut(P)
}

(5.36)

is not just {0, 1}, as in the case for piecewise analytic diffeomorphisms, or for auto-
morphisms and gauge group G = U(1). We consider a simple example:

We have already seen in lemma 5.3 that every gauge-invariant function on a
graph can be mapped by an automorphism to a gauge-invariant function on a flower
graph. Thus, it is sufficient to consider the orbits of gauge-invariant functions on
flower graphs. Consider the8 2-flower graph γ = {e1, e2}.

e1 e2

j1
j2

Figure 5.5: The 2-flower graph

For fixed j1, j2 ∈ 1
2N, the intertwiner space is j1 + j2 − |j1 − j2| + 1-dimensional.

Assume j1 = j2 = 1
2 . Then the intertwiner space is two-dimensional. If we choose

the normalized vector

T1(A) := tr 1
2

(

A(e1)
)

tr 1
2

(

A(e2)
)

(5.37)

to be one of the two orthonormal basis vectors in the intertwiner space, and choose
some normalized T2 orthogonal to it, we get an orthonormal base of the intertwiner
space. On the other hand, consider the one-flower graph (in fact, a Wilson loop)
© = {e} having only one edge e, and the gauge-invariant function T0 cylindric on
© given by

T0(A) := tr 1
2

(

A(e)
)

. (5.38)

With the spin j = 1
2 on the edge e, there is only one gauge-invariant function on ©

(the intertwiner-space is one-dimensional), which is given exactly by T0. By lemma
5.1 however, we know that there is an automorphism φ such that φ(e) = e1 ◦ e2,
so αφT0 is cylindrical over the two-flower graph γ, and in fact can be decomposed
into T1, T2. Since

αφT0(A) = tr 1
2

(

A(e1) · A(e2)
)

, (5.39)

8Technically, there are many flower graphs, but all of them can be mapped into each other by the
automorphisms by Lemma 5.1, so in the following we speak of “the” 2-flower graph.
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a short calculation reveals that

〈

T1

∣

∣αφT0

〉

=
1

2
. (5.40)

So

αφT0 = cos
π

3
T1 + sin

π

3
T2. (5.41)

We see that, since there are nontrivial ways to embed an E-flower into an E′-
flower (with E < E′) by “wrapping loops”, certain basis vectors on the E-flower
will be mapped to nontrivial combinations of basis vectors on the E′-flower. All
these nontrivial overlaps will show up in the automorphism-invariant inner product
(5.35). To compute all the contributions is now a combinatorial task. We refrain
from doing so here, but simply state a conjecture about the nature of the set of
orbits of vectors in Hkin under the action of Aut(P).

In our example above, we have seen that the function T1 and αφT0 constitute a
basis of the intertwiner space for functions on a 2-flower graph with j1 = j2 = 1

2 .
Note that this is not an orthonormal basis, but by (5.40) have an angle of cos π

3
with respect to each other. Now consider again the two-flower graph γ = {e1, e2},
but with j1 = 1

2 , j2 = 1. Then again, the intertwiner space is two-dimensional, and
one normalized vector is

T3(A) := tr 1
2

(

A(e1)
)

tr1
(

A(e2)
)

. (5.42)

On the other hand, consider the automorphism φ′ ∈ Aut(P) mapping the closed
loop e to e1◦(e2)

2. One can then show that the projection of αφ′T0 to the intertwiner
space on the 2-flower graph with j1 = 1

2 , j2 = 1 is unequal T3, but has non-vanishing
inner product with T3. Thus, this projection (denote it as Π(αφ′T0)), together
with T3 form a basis for the intertwiner space for j1 = 1

2 , j1 = 1. Again, this
is no orthonormal basis, since the two vectors are only linearly independent, not
orthogonal.

For each E-flower graph γ = {e1, . . . , eE} with spins j1, . . . , jE there is a nor-
malized vector in the intertwiner space given by

TE,~j(A) :=

E
∏

k=1

trjk

(

A(ek)
)

. (5.43)

In a graphical notation similar to the one used in the last chapter, we write









©j1

©j2

©jE−1

©jE
· · ·









:= [TE,~j] (5.44)

Extending what we have just seen in the examples to higher flowers with higher
spins suggests that all other elements in the intertwiner space can be composed
by certain αφTE′,~j′ with E′ < E. This would mean that the orbits [TE,~j] would
constitute a basis for the set of orbits of all smooth cylindrical functions in Hkin.
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Since these vectors have nontrivial overlap, however, one would have to compute
their automorphism-invariant inner product by (5.35) and deduce an orthonormal
basis from them by the Gram-Schmidt-procedure. This would provide a way to find
an orthonormal basis for HAut.

This would suggest that the linear combinations of the form

ψ =
N

∑

E=0

∑

j1,...,jE

cE,~j









©j1

©j2

©jE−1

©jE
· · ·









(5.45)

form a dense set in HAut. If one could then derive a good formula for the inner
product between two such vectors, we would be able to write down an orthonormal
basis for HAut. So far, this has not been done due to the complicated combinatorics,
but we will address this point in a later publication.

6 Summary and Outlook

6.1 Summary of the work

In this publication, we have investigated the consequence of extending the group of
spatial diffeomorphisms Diff(Σ) to path groupoid automorphisms Aut(P) in Loop
Quantum Gravity. This extension is inspired by category theory, and contains
many elements that cannot be interpreted as diffeomorphisms from Σ to itself. This
mimics the extension of smooth to generalized gauge transformations: while the
first consists of smooth maps from Σ to the gauge group G, the latter one consists
of all such maps, without continuity or even measurability assumption.

An automorphism is given by a permutation of the points in Σ, and a permu-
tation of paths in Σ which are compatible with each other in the sense that if the
path p starts at x and ends at y, then the transformed path φ(p) starts at φ(x)
and ends at φ(y). But by the groupoid structure of P, the set of piecewise analytic
paths in Σ, this does not necessarily restrict what happens to points that lie “in
the middle” of p. So, the notion of a point lying on a path is not invariant under
automorphisms, which makes many nontrivial constructions possible. In particular,
some automorphisms simply cannot be interpreted as maps from Σ to itself.

We have given some explicit examples for automorphisms that do not arise as
diffeomorphisms on Σ. The first example was given by the natural transformations
of the identity, which are able to arbitrarily permute the points in Σ, but keep the
paths essentially the same (and which act, in particular, as identity on the gauge-
invariant part of the kinematical Hilbert space Hkin). The second example was
given by the edge-interchangers, which left all points invariant, but swapped two
edges e1, e2 with the same beginning- and endpoints. All paths that meet these
two edges at finitely many points are left invariant, however. In this sense, these
automorphisms have support only at two edges e1, e2, and hence can be viewed as
distributional.

We have used these two types of automorphisms in order to show that every
two graphs with the same combinatorics can be mapped into each other by an
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automorphism φ ∈ Aut(P). This shows how little information about the differential
structure, and in fact even the topology of Σ is encoded in the path groupoid P.

We have delivered a proof that the action of Aut(P) on A, the set of (distribu-
tional) connections leave the Ashtekar-Isham-Lewandowski measure µAL invariant.
This was straightforward in the case of the abelian gauge group G = U(1), but
nontrivial for arbitrary gauge groups.

In the last part of this work, we have investigated the induced action of the
automorphisms Aut(P) on the kinematical Hilbert space Hkin. In particular, we
have showed that due to the size of automorphisms, the only information that is
conserved by acting with automorphisms on a cylindrical function, is the combina-
torics of paths, over which it is cylindrical. This information is highly redundant
in the description of function cylindrical over paths, and it is the use of graphs to
provide a way of finding a good representative in the set of collections of paths over
which a function is cylindrical. Since the automorphisms do not leave the set of
graphs invariant, functions cylindrical over one graph can be mapped to a function
cylindrical over another graph, although the graphs themselves are not mapped to
each other.

A gauge-invariant function on a graph γ does only depend on the holonomies
along a number of loops in γ, which correspond to the first fundamental class π1(γ).
Consequently, any gauge-invariant function on a graph can be mapped to a gauge-
invariant function on some flower graph. This enabled us to gain some control over
the size of the orbits of vectors in Hkin under the action of Aut(P). For some choice
of rigging map, we derived the automorphism-invariant Hilbert space HAut for the
gauge group G = U(1). It was found that the space is infinite-dimensional and
separable, the generic element being of the form

ψAut =
∞

∑

k=0

cn

[

©n

]

, (6.1)

with square-summable coefficients {cn}n∈N, and
[

©n

]

being the equivalence class
of one Wilson loop with charge n.

For G = SU(2), the combinatorics to work out the exact form of the orbits is
harder, due to the recoupling scheme of SU(2). However, we argued why we believe
an element of the automorphism-invariant Hilbert space would be of the form

ψAut =
∞
∑

E=0

∑

j1,...,jE

cE,~j









©j1

©j2

©jE−1

©jE
· · ·









, (6.2)

where the vectors are equivalence classes of E separate Wilson loops with spin
charges jk. These vectors will, however not be orthonormal to each other. Rather,
their inner product will be determined by embedding-combinatorics of E-flowers
into E′-flowers for E < E′, and the corresponding recoupling scheme. We will
return to a detailed analysis of this space in a future publication.
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6.2 Further directions

By the form of the vectors (6.1) and (6.2), we see that the information about the
degrees of freedom is completely delocalized, as one would have expected from a
diffeomorphism-invariant theory. However, in order to get a good physical intuition
for the meaning of the states in HAut, one would have the following possibility:
One can repeat the whole analysis, but with matter degrees of freedom coupled to
gravity. Note that the automorphism-invariant content of a cylindrical function for
pure gravity is just given by the combinatorics of paths, the holonomies of which
it depends on, but not on how these paths are embedded into space, i.e. if they
intersect, or are partially parallel. So the automorphism-invariant vectors do not
know about the vertices of a graph, for instance. Having matter degrees of freedom
coupled to gravity, this might change, due to the following reason: Consider a,
say, fermionic matter field coupled to gravity. This field, when quantized along
the lines of Loop Quantum Gravity, would become a field sitting on the vertices
of a graph, and is transformed by some nontrivial representation of SU(2). The
information about which field is situated at which vertex will still be contained in
the gauge-invariant sector of the theory. Shifting these gauge-invariant cylindrical
functions for matter plus gravity around by automorphisms would result in graphs
being mapped to other metagraphs, that look like different graphs, since the paths
can intersect, or partially overlap. But that some matter is excited at some vertex
will not be changed by this, so one would be able to distinguish the real vertices
(where matter is excited) from the ones that just appear as vertices, because the
paths are embedded into space in some peculiar way. This would provide a natural
mechanism of how matter could be used to localize gravitational degrees of freedom,
as has been advocated e.g. in [20].

Another important point is to see whether operators corresponding to physical
observables can be defined, i.e. like the volume operator. This would not only allow
for an interpretation of the automorphism-invariant states in terms of physical quan-
tities. Also, if one could define a volume operator on the automorphism-invariant
Hilbert space, one would be able to define the master constraint operator [21] on
the automorphism-invariant Hilbert space. Since the graph-changing version of the
master constraint changes in particular the first fundamental group of a graph, and
the automorphism-invariant vectors contain exactly this information, this might
provide a way to rephrase the quantum dynamics in some combinatorial way in
HAut. This would be particularly interesting, since one could make contact to [14],
where such an operator already exists, leading to a combinatorial version of the
dynamics.

One key step in this proof was theorem B.1, a classical result from combinatorial
group theory by Nielsen (’36). On the other hand, we also relied on the explicit
construction of the kinematical Hilbert space Hkin for this proof. From an aestheti-
cal point of view, however, this is unsatisfactory, since we feel that the fundamental
reason for the automorphisms to leave the measure µAL invariant is exactly Nielsen’s
theorem. It states a deep connection between automorphisms of free groups and
the symmetries of the Haar measure. We are convinced that one can write down a
proof that all automorphisms preserve µAL, with only relying on Nielsen’s theorem,
without referring to the analytical structure of the manifold Σ at all. This would
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enable us to transfer the proof to arbitrary groupoids P, not necessarily the path
groupoid of a spatial manifold Σ9. With this one might be able to quantize much
more general theories of connections on groupoids, not only on manifolds.

The path groupoid P, as a category, is a useful concept when investigation
quantizations of Riemannian metrics on 3-manifolds. It was indicated [22, 23, 24]
that for the investigation of Lorentzian metrics on 4-manifolds the notion of 2-
category is an appropriate concept. It would be interesting to investigate, in which
sense the analysis presented here could be repeated in such a framework, in order
to see space-time diffeomorphisms as automorphisms of 2-categories.
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A Elements from category theory

In this section, we will briefly review the basic notions of category theory that are
used in this article10. Details and more about categories can be found in [25].

Definition A.1 A category C consists of a class of objects X,Y,Z, . . ., denoted by
|C|, and, for each pair of objects X,Y ∈ |C| a class of morphisms f, g, h, . . ., denoted
by MorC(X,Y ). For these, the following rules hold:

• For each f ∈ MorC(X,Y ) and g ∈ MorC(Y,Z) there is a morphism g ◦ f ∈
MorC(X,Z) (the composite).

• Composition is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• For each object X ∈ |C| there is a morphism idX ∈ MorC(X,X) such that for
all morphisms f ∈ MorC(X,Y ) and g ∈ MorC(Z,X) one has

f ◦ idX = f, idX ◦ g = g

If f ∈ MorC(X,Y ), then the source and the target of f are denoted by s(f) := X

and t(f) := Y .

There are plenty of examples for categories:

• The category Set, the objects of which are sets, and the morphisms between
two sets X,Y are exactly all maps between these sets.

9At least as long as these groupoids are sets, since in these cases definitions of topology and measure
make sense.

10Note that in this appendix, we use the standard convention for the composition, i.e. f : X → Y and
g : Y → Z have a composition g ◦ f : X → Z. In the rest of the article, however, we will use the notation
f ◦ g for the composition, in order to stay consistent with large parts of LQG literature.
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• For a manifold Σ, the category Hom(Σ), the objects of which are the points
in Σ, and the morphisms of which are homotopy equivalence classes of curves
between points.

• For a manifold Σ, the category W(Σ), the objects of which are points in Σ,
and the morphisms between two points are all curves between these points,
modulo reparametrization.

• For a group G, the category Susp(G), called the suspension of G. This cat-
egory has only one object, denoted by ∗: |Susp(G)| = {∗}, and the mor-
phisms from ∗ to itself are in one-to-one correspondence with elements in G:
MorSusp(G)(∗, ∗) = G.

A category C in which every morphism has a right and a left inverse is called a
groupoid. In the above examples, Set and W(Σ) are no groupoids, but Hom(Σ)
and Susp(G) are.

It is customary in category theory to write statements as diagrams: Consider a
category C and objects X,Y,Z,W ∈ |C|. Then the following diagram

X
f

−−−−→ Y

g





y





y
h

Z
k

−−−−→ W

is said to commute, of f ∈ MorC(X,Y ), g ∈ MorC(X,Z), h ∈ MorC(Y,W ) and
k ∈ MorC(Z,W ), and k ◦ g = h ◦ f , as morphisms in MorC(X,W ). Working with
commuting diagrams makes reasoning in category theory fairly intuitive. Since the
proofs in this paper will be thoroughly analytical however, we will use commutative
diagrams only at some points, to point out some connections.

Consider two morphisms f, g in W(Σ) with s(g) = t(f) can be composed, i.e.
two curves (up to reparametrization) can be concatenated and again give a curve
modulo parametrization. It should be noted that, due to the above definitions,
the concatenation is denoted by g ◦ f . However, in the Loop Quantum Gravity
literature, this concatenation is usually denoted as f ◦ g. The reason is that with
this convention the generalized connections are functors from the path groupoid into
the suspension of the gauge group Susp(G), not its opposite category Susp(G)op.

This is just a matter of convention, of course, but it should be noted that,
throughout this paper, the composition of morphisms f, g will usually be denoted
as f ◦ g, not as g ◦ f .

Definition A.2 Let C, D be two categories. A functor is an assignment F : |C| →
|D| and F : MorC(X,Y ) → MorD(F (X), F (Y )), such that

• F (g ◦ f) = F (g) ◦ F (f)

• F (idX) = idF (X)

So a functor assigns objects to objects and morphisms to morphisms in a compatible
way. As an example, consider the category which has smooth manifolds as objects
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and smooth maps between them as morphisms. Then the Cartan differential is a
functor from this category in itself. In particular, let f : M → N and g : N → O

be smooth maps, then the chain rule guarantees that

d(g ◦ f) = dg ◦ df (A.1)

as maps df : TM → TN , i.e. dg : TN → TO.

Definition A.3 Let F : C → D and G : C → C be two functors. One calls these
two functors to be related by a natural transformation (or being natural trans-
formations from each other), if there is, for each object X ∈ |C| a morphism
gX ∈ MorD(F (X), G(X)) such that the following diagram commutes:

F (X)
F (f)

−−−−→ F (Y )

gX





y





y

gY

G(X)
G(f)

−−−−→ G(Y )

Note that, if D is a groupoid (i.e. its morphisms can be inverted), then given a
functor F and for each X ∈ |C| a morphism gX ∈ MorD(F (X), Y ), then

G(X) := t(gX) for all X ∈ |C|

G(f) = gY ◦ F (f) ◦ g−1
X for all f ∈ MorC(X,Y )

defines a functor G, which can be related to F by a natural transformation. We will
use this construction often for defining functors which are natural transformations
of other, given functors.

B Elements from combinatorial group theory

Going over from piecewise analytic diffeomorphisms Diff(Σ) to the automorphisms
Aut(P) is a significant enlargement of the gauge group. While the former preserves
notions of (generalized) knotting classes of a graph, the latter one only keeps com-
binatorial information of the graph, i.e. which vertices are attached to each other
by paths and which are not. Consequently, elements of combinatorial group theory
enter the description, as soon as automorphisms are considered. In this section we
review some basic notions from combinatorial group theory (details can be found
in [26]) and conclude with a classical result of Nielson, which shows a connection
between automorphisms of free groups and the symmetries of Haar measures. This
will be one key point in proving that the elements of Aut(P) act unitarily on Hkin.

Definition B.1 Let E ∈ N, and {e1, . . . , eE} be E abstract symbols, called letters.
A (finite) word in these letters is a (finite) sequence in these letters, i.e. e2, e4e1
or e1e1e7e1. A word in the 2E letters {e1, . . . , eE , e

−1
1 , . . . , e−1

E } is called reduced,
if no ek occurs next to its inverse e−1

k .
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It is clear that every word can be put into its reduced form, by successively elimi-
nating eke

−1
k or e−1

k ek from it.

Definition B.2 Consider the set of all reduced words in the 2E letters {e±1
1 , . . . , e±1

E },
together with the “empty word”, denoted by 1, and define multiplication between two
words as concatenating (and possibly reducing) them. The set of all these reduced
words form a group under this multiplication, which is called the free group in E

letters, and is denoted by FE.

Examples:

(

e1e2e3
)

·
(

e3e2e1
)

= e1e2e3e3e2e1 (B.1)
(

e1e2e3
)

·
(

e−1
3 e−1

2 e17
)

= e1e17 (B.2)

Similarly one can define the free group in zero F0 = {1} and in countable many
parameters Fω. Free groups play a prominent rôle in combinatorics, algorithm the-
ory and graph theory. Obviously, for E < E′, there is a natural inclusion of FE

as a subgroup FE′ . What is less intuitive is that the free group in two parameters
F2 has a subgroup isomorphic to Fω. As a consequence, every FE has a subgroup
isomorphic to FE′ for E < E′. This makes these groups more difficult than their
linear counterparts, the E-dimensional vector spaces.

A homomorphism φ from a free group FE into another group is completely de-
termined by its values on the basic letters, φ(e1), . . . , φ(eE). An invertible group
homomorphism from FE to itself is called an automorphism, and is completely de-
termined by the E words φ(ek) = ϑk(e1, . . . , eE) which are the images of the ek
under φ. The automorphisms of a free group are in fact well understood, which is
shown by the following theorem.

Theorem B.1 (Nielsen) Let φ be an automorphism on FE. Then φ can be written
as a finite product of “elementary” automorphisms

φ = ξn ◦ ξn−1 ◦ . . . ◦ ξ1 (B.3)

where every ξr is one of the following:

• A permutation (l 6= k ∈ {1, . . . , E}):

ξr(ek) = el, ξr(el) = er, ξr(em) = em else (B.4)

• An inversion (k ∈ {1, . . . E}):

ξr(ek) = e−1
k , ξr(el) = ξr(el) else (B.5)

• A shift (k 6= l ∈ {1, . . . , E}):

ξr(ek) = ekel, ξr(el) = ξr(el), ξr(em) = em else (B.6)

This important structural theorem has an immediate consequence:
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Corollary B.1 Let G be a compact Lie group with bi-invariant Haar measure dµH .
Let F ∈ L1

(

GE , dµ⊗E
H

)

, and φ be an automorphism on FE. Denote φ(ek) =
ϑk(e1, . . . , eE). Then

∫

GE

dµ⊗E
H (h1, . . . , hE) F (h1, . . . , hE) (B.7)

=

∫

GE

dµ⊗E
H (h1, . . . , hE) F

(

ϑ1(h1, . . . , hE), . . . , ϑE(h1, . . . , hE)
)

,

Proof: Nielson’s theorem tells us that the substitution

h1 7−→ ϑ1(h1, . . . , hE)

...
...

hE 7−→ ϑE(h1, . . . , hE)

(B.8)

can be achieved by successively applying the “elementary” substitutions (B.4),
(B.5), (B.6) (with the symbols hk, instead of the ek). But these are exactly the
substitutions under which the Haar measure dµ⊗E

H (h1, . . . , hE) is invariant. The
statement (B.7) follows.

C Categorical Weyl algebra of quantum grav-

ity

The holonomies and their transformations, i.e. gauge-transformations and diffeo-
morphisms, can be formulated in terms of category theory, and this formulation
suggests to enlarge the diffeomorphism group Diff(Σ) to the automorphisms of the
path groupoid Aut(P), which act unitarily on the kinematical Hilbert space Hkin of
Loop Quantum Gravity.

The field algebra of Loop quantum gravity, however, consists of holonomies as
well as fluxes, and the symmetry groups act on both. In this section, we will show
that also the fluxes can be formulated naturally in the languages of categories11 .

We will work with the exponentiated fluxes instead of the fluxes themselves,
which leads to the Weyl algebra of LQG, for technical reasons. The fluxes them-
selves can be recovered from these exponentiated versions easily.

C.1 Categorial formulation of oriented surfaces

We want to obtain the categorical formulation of an ”oriented surface”. An oriented
surface does in principle two things: First, it cuts a path into several pieces (wher-
ever a path intersects the surface), and second, it assigns to each of these pieces
two numbers in {−1, 0, 1}. These numbers depend on whether the the starting-
or, respectively, the end point of the piece meets the surface along or against the
orientation of the surface (±1), or whether the starting- or end part of the piece lies

11Again, we use the convention that the concatenation of two morphisms p and q is denoted as p ◦ q if
t(p) = s(q), in order to stay consistent with the notation in [4]
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entirely away from, or entirely within the surface (in which case it gets assigned 0).
We will now turn this intuition into a categorical language.

Definition C.1 Let C be a category. Then define the category OrCut(C ) as fol-
lows:

• The objects in both categories are the same: |OrCut(C )| = |C |.

• Let X, Y be objects in OrCut(C ). The morphisms Mor (X, Y ) in OrCut(C )
can be constructed as follows: Consider three finite sequences with all the same
length N : A sequence of paths p1, . . . , pN , as well as two sequences of natural
numbers m1, . . . ,mN and n1, . . . nN . We arrange these three sequences as





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 (C.1)

The paths have the properties that t(pk) = s(pk+1) for k = 1, . . . N − 1, as well
as s(p1) = X and t(pN ) = Y . We define an equivalence relation on these three
sequences, by





p1, . . . , pk, pk+1, . . . , pN

m1, . . . , mk, −n, . . . , mN

n1, . . . , n, nk+1, . . . , nN



 ∼





p1, . . . , pk ◦ pk+1, . . . , pN

m1, . . . , mk, . . . , mN

n1, . . . , nk+1, . . . , nN



 (C.2)

and





p1, . . . , id, . . . , pN

m1, . . . , m, . . . , mN

n1, . . . , n, . . . , nN



 ∼





p1, . . . , id, . . . , pN

m1, . . . , m+ k, . . . , mN

n1, . . . , n− k, . . . , nN



 (C.3)

for all k ∈ Z. The morphisms from X to Y then contain all equivalence classes
of these sequences, which we denote by





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 ∈ Mor(X, Y ) (C.4)

Concatenation of morphisms is obtained by just concatenating the sequences:





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 ◦





q1, . . . , qM
r1, . . . , rM
s1, . . . , sM



 :=





p1, . . . , pN , q1, . . . , qM
m1, . . . , mN , r1, . . . , rM
n1, . . . , nN , s1, . . . , sM



 (C.5)

while the identity functor in Mor (X,X) is given by

id :=





idX

0
0



 (C.6)
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It is straightforward to check that with these equivalence relations, the category
OrCut(C ) becomes a groupoid, if C is one, if one defines the inverse of a morphism
by





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN





−1

:=





p−1
N , . . . , p−1

1

−nN , . . . , −n1

−mN , . . . , −m1



 (C.7)

There is a projection functor

π : OrCut(C ) → C (C.8)

the action of which is given by the identity on the objects, and by

π :





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 7−→ p1 ◦ · · · ◦ pN . (C.9)

One checks quickly that this action is well-defined.

In the following, we will consider the path groupoid P and the category OrCut(P).
With the category OrCut(P) we have a notion at hand to say what ”cutting an edge”
p means in category language.

Definition C.2 Let P be the path groupoid of a manifold Σ. Then a functor

S : P −→ OrCut(P) (C.10)

is called a generalized oriented surface, if the following two conditions hold:

• The functor π ◦ S is the identity functor on P.

• For each primitive metagraph µ with morphisms q1, . . . , qn in P, there is a
primitive metagraph µ′ ≥ µ with morphisms p1, . . . , pm,such that each pk is
S-trivial, which means that

S(pk) =





pk

mk

nk



 (C.11)

for some natural numbers nl, ml.

The interpretation of the first condition is obvious: To each edge p, S assigns a
collection p1, . . . , pN such that p1 ◦ · · · ◦ pN = p, i.e. it cuts the path into pieces.
Furthermore, to each piece there are assigned two natural numbers, which determine
the position of the ends of the piece with respect to S. It is obvious that each oriented
surface in Σ, and also each quasi-surface together with an orientation function in
the sense of [27] determines a generalized surface in the above sense.
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The second condition ensures that the surface does not cut a path in a too ”wild”
way, and in particular cuts several different paths consistently with each other. It
is this condition that will ensure that the Weyl operators constructed from the gen-
eralized oriented surfaces will be unitarities.

Definition C.3 Let Σ be a manifold and P its path groupoid. Let G be a compact
Lie group and A be the set of all functors from P to Susp(G). Let furthermore S
be a generalized oriented surface and d : Σ → G be a map.

Then there is a transformation of functors

ΘS,d : A −→ A (C.12)

which is given by the following rule: If

S(p) =





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 (C.13)

then

ΘS,dA (p) :=
−−−−→

∏

k=1...N

d(s(pk))
mkA(pk)d(t(pk))nk (C.14)

:= d(s(p1))
m1A(p1)d(t(p1))

n1 · . . . · d(s(pN ))mNA(pN )d(t(pN ))nN .

It is easy to check that this action is well-defined, i.e. does not depend on the
representant of the equivalence class S(p). One can also readily see that this action
coincides with the action of the Weyl elements determined by oriented quasi-surfaces
[27].

Lemma C.1 Let S be a generalized oriented surface and d : Σ → G be a map.
Then ΘS,d given by definition C.3 has the following properties:

i) αφ ◦ ΘS,d ◦ αφ−1 = ΘαφS, d◦φ−1

ii) ΘS,d is continuous on A.

iii) ΘS,d leaves the Ashtekar-Isham-Lewandowski measure invariant, i.e. Θ∗
S,dµAL =

µAL.

Proof:

i) Each automorphism φ ∈ Aut(P) acts naturally on the set of generalized ori-
ented surfaces, by

S(p) =





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 ⇒ αφS
(

φ(p)
)

=





φ(p1), . . . , φ(pN )
m1, . . . , mN

n1, . . . , nN



(C.15)
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By direct computation we obtain

αφ ◦ ΘS,d ◦ α
−1
φ A

(

φ(p)
)

= ΘS,d ◦ α
−1
φ A (p)

=
∏

k=1,...,N

d(s(pk))
mk (α−1

φ A)(pk) d(t(pk))nk (C.16)

=
∏

k=1,...,N

(d ◦ φ−1)(s(φ(pk)))mk A(φ(pk)) (d ◦ φ−1)(t(φ(pk)))nk

= ΘαφS, d◦φ−1A (φ(p))

Since φ is an automorphism of P, it follows that

αφ ◦ ΘS,d ◦ α
−1
φ = ΘαφS, d◦φ−1 . (C.17)

ii) Since for each primitive metagraph µ there is a finer primitive metagraph
µ′ ≥ µ which consists only of S-trivial morphisms, the set of such metagraphs
is a partially ordered, directed set. As a consequence, the set of all

π−1
µ′

(

U1 × . . . × U|E(µ)|

)

⊂ A (C.18)

constitutes a basis for the topology on A, if the Uk ⊂ G are open.

iii) Let µ = {p1, . . . , pM} be a primitive metagraph and f ∈ Cyl(µ) smooth and
cylindrical over µ. Then

∫

A
dµAL(A) f(A) =

∫

GE

dµH(h1, . . . , hM ) F (h1, . . . , hM ) (C.19)

for some smooth function F on GM . Let µ′ = {q1, . . . , qM ′} be a metagraph
finer than µ with S-trivial paths qk. For each pk ∈ µ we can then find paths
qk
1 , . . . , q

k
nk

∈ µ′, such that

S(pk) =





qk
1 , . . . , q

k
nk

mk
1 , . . . , m

k
nk

nk
1, . . . , n

k
nk



 . (C.20)

Then by (C.14), ΘS,df is cylindrical over µ′, and one has

∫

A
dµAL(A) ΘS,df(A) =

∫

GM′

dµH(h1, . . . , hM ′) (C.21)

F





−−−−→
∏

l=1...n1

d(s(q1l ))
m1

l h1
l d(t(q

1
l ))

n1
l , . . . ,

−−−−→
∏

l=1...nM

d(s(qM
l ))m

M
l hM

l d(t(qM
l ))n

M
l





where the hk
l are the hm corresponding to the decomposition pk = qk

1 ◦ . . .◦q
k
nk

given by (C.20). Since the integration in (C.21) uses the bi-invariant Haar
measure on GM ′

, we can perform a shift of integration variables

hk
l −→ d(s(qk

l ))−mk
l hk

l d(t(q
k
l ))−nk

l (C.22)
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which gives us

∫

A
dµAL(A) ΘS,df(A) =

∫

GM′

dµH(h1, . . . , hM ′) F
(

h1
1 · · ·h

1
n1
, . . . , hM

1 · · · hM
nM

)

=

∫

GM

dµH(h1, . . . , hM ) F
(

h1 , . . . , hM

)

(C.23)

=

∫

AL
dµAL(A) f(A),

since µ ≤ µ′ is an inclusion of primitive subgraphs, and the integral of f
over A does not depend on the choice of primitive metagraph over which it is
cylindrical. Thus, we have

∫

A
dµAL(A) ΘS,df(A) =

∫

AL
dµAL(A) f(A) (C.24)

for all cylindrical functions f , which form a dense subset in C(A), and since
ΘS,d acts continuously on A, we have that (C.24) leaves µAL invariant.

The action of ΘS,d can naturally be pulled back to Hkin = L2(A, dµAL) by, where

they act as unitary operators Û(S, d). These operators generalize the exponentiated
fluxes that one can build from surfaces and smooth fields Ea

I on Σ. In fact, one can
recover generalized fluxes E(S) from the ΘS,d.

Lemma C.2 Let Σ be a manifold, G be a compact Lie group, S be a general-
ized oriented surface, and d1, d2 : Σ → G two pointwise commuting maps, i.e.
d1(x)d2(x) = d2(x)d1(x) for all x ∈ Σ. Then

ΘS,d1 ◦ ΘS,d2 = ΘS,d1d2 (C.25)

Proof: By direct calculation. Let p be a path in Σ, then by the definition of S,
there are S-trivial paths p1, . . . , pN with p = p1 ◦· · · ◦pN and numbers m1, . . . , mN ,
n1, . . . , nN such that

S(pk) =





pk

mk

nk



 (C.26)

Since S is a functor, we have

S(p) =





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 (C.27)

Thus we see that one can choose a representant of S(p) contains S-trivial paths
only. We now have
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ΘS,d1 ◦ ΘS,d2A (p) =
−−−−→

∏

k=1...N

d1(s(pk))
mk

(

ΘS,d2A
)

(pk) d1(t(pk))
nk (C.28)

=
−−−−→

∏

k=1...N

d1(s(pk))
mk

(

d2(s(pk))
mkA(pk)d2(t(pk))

nk

)

d1(t(pk))
nk

=
−−−−→

∏

k=1...N

(d1d2)(s(pk))
mk A(pk) (d2d1)(t(pk))

nk

= ΘS,d1d2A(p)

since d1 and d2 commute pointwise. Here the property that all pk are S-trivial was
essential for the proof.

We now show that a generalized flux can be obtained by differentiating the action
of the exponentiated fluxes.

Lemma C.3 Let Σ be a manifold, G be a compact Lie group, S a generalized
oriented surface and k : Σ → g be a map from Σ to the Lie algebra of G. Then the
operator

Ek(S) := −i
d

dt
Û

(

S, eitk
)

∣

∣

t=0

(C.29)

defines a self-adjoint operator on Hkin, the domain of definition of which contains
the cylindric functions Cyl on A.

Proof: Lemma C.2 shows that

ΘS,eitk ◦ ΘS,eisk = ΘS,ei(t+s)k, (C.30)

i.e. the map t 7−→ Û(S, eitk) defines a one-parameter family of unitarities on Hkin.
Thus, the Stone-von-Neumann theorem guarantees the existence of (C.30), if the
limits of matrix elements

lim
t→0

〈f | Û(S, eitk) |f ′〉 = 〈f | f ′〉 (C.31)

exist for all f, f ′ being in a dense set D ⊂ Hkin. Let f, f ′ ∈ Cyl be two smooth
cylindrical functions over a metagraph µ, which can, without loss of generality be
chosen to be the same for f and f ′. Then there is, by definition of S, a metagraph
µ′ ≥ µ consisting of S-trivial morphisms q1, . . . , qM . The functions f and f ′ are then
obviously also cylindrical over µ′, i.e. there are smooth functions F,F ′ : G −→ C

such that

f(A) = F (A(q1), . . . , A(qM ))

f ′(A) = F ′(A(q1), . . . , A(qM ))

53



Hence, since S(ql) =





ql
ml

nl



, we have

(

U(S, eitk)f ′
)

(A) = f ′
(

ΘS,eitkA
)

= F ′
(

eitm1ks
1A(q1)e

itn1kt
1, . . . , eitmM ks

MA(qM )eitnM kt
M

)

with ks
l := k(s(ql)) ∈ g and kt

l = k(t(ql)) ∈ g. From this it follows that

〈ψ|U(S, eitk) |φ〉 =

∫

GM

dµH(h1, . . . , hM )F (h1, . . . , hM )F ′
(

eitm1ks
1h1e

itn1kt
1, . . . , eitmM ks

MhMe
itnM kt

M

)

.

Since F, F ′ are smooth and G is compact, the expression is smooth in t. Since
the smooth cylindrical functions Cyl over metagraphs are dense in Hkin, the claim
follows from the Stone-von-Neumann theorem.

C.2 Algebra relations

The smooth cylindrical functions f ∈ Cyl and the maps ΘS,d generate an algebra,
which can be completed to a C∗-algebra Acat, similar to the Weyl algebra of quantum
geometry [10]. Cyl, which is an abelean subalgebra of Acat is generated by functions
cylindrical over just one morphism. Let f be a function cylindrical over p, i.e. there
is a smooth function F : G→ C with f(A) = F (A(p)). Let furthermore

S(p) =





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 (C.32)

The function f acts via multiplication on, say, C(A). Then, for any g ∈ C(A), we
have

ΘS,d f Θ−1
S,d g (A) =

(

f Θ−1
S,d g

)

(ΘS,dA) (C.33)

= f(ΘS,dA) · Θ−1
S,dg (ΘS,dA)

= f(ΘS,dA) · g(A)

which gives

ΘS,d f Θ−1
S,d = f ◦ ΘS,d, (C.34)

which is the usual algebraic relation which also determines the Weyl algebra of
quantum geometry. To cast (C.34) into a more frequently used form, we go over to
the (generalized) fluxes Ef (S). As operators on Hkin, (C.34) reads

Û(S, d) f̂ Û(S, d)−1 = ̂f ◦ ΘS,d (C.35)
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where f̂ is the operator corresponding to multiplication with f ∈ Cyl on Hkin. For
k : Σ → g any map, we get, by lemma C.3

− i
d

dt

[

Û(S, eitk) f̂ Û(S, eitk)−1
]

∣

∣

t=0

=
[

Êk(S), f̂
]

(C.36)

On the other hand, the derivative of the function f ◦ΘS,eitk with respect to t reads

− i
d

dt

[

f(ΘS,eitkA)
]

∣

∣

t=0

= −i
d

dt





−−−−→
∏

l=1,...,N

eitmlk
s
l A(pl) e

itnlk
t
l





∣

∣

∣

t=0

= F̃
(

A(p1), . . . , A(pN )
)

(C.37)

where ks
l = k(s(pl)), k

t
l = k(t(pl)) ∈ g. The function F̃ : GN → C is given by

F̃ (h1, . . . , hN ) =
N

∑

l=0

(nl +ml+1)F
(

h1 · . . . · kl k
t
l hl+1 · . . . · hN

)

. (C.38)

In this notation, kt
0 := ks

1 = k(s(p)). Furthermore n0 := mN+1 := 0, also h1 · . . . ·
h0 := 1, as well as hN+1 · . . . · hN := 1. We thus get

[

Êk(S), f̂
]

(A) =

N
∑

l=0

ε(S, pl) F
(

A(p1) · . . . · A(pl) k
t
l A(pl+1) · . . . ·A(pN )

)

(C.39)

Here ε(S, pl) := nl +ml+1. If S is an analytic surface and p is an edge, this formula
reduces to the one employed in the literature (modulo prefactors as l2p and the
Immirzi parameter, which can be absorbed into the definition of Ek(S)). We have

S(p) =





p1, . . . , pN

m1, . . . , mN

n1, . . . , nN



 , (C.40)

so S cuts the edge p into the pieces p1, . . . , pN , and thus the kt
l , l = 0, . . . , N are

the values of the smearing function k at the endpoints of p and the points where S
intersects p. At these points, the values kt

l ∈ g are inserted in the arguments of the
function F , and the sum is taken over all these points, with prefactors (nl +ml+1).
If one restricts the values of the intersection functions ml, nl to {0, ±1}, then the
factor ε(S, pl) keeps track of the way in which the segment pl touches S at s(pl) ∈ Σ.

Note that, since S(p) is an equivalence class, so strictly speaking F̃ depends on
the choice of the representant. With the precise definition of S(p) however, one can
easily see that the function f̃(A) = F̃

(

A(p1), . . . , A(pN )
)

does not.

This shows that (C.39) generalizes the canonical commutation relations for quan-
tum gravity to a ∗-algebra obtained from Acat, which is generated by smooth cylin-
drical functions f over metagraphs and generalized electric fluxes Ek(S).
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