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Abstract

A number of useful optimisations are enabled if we can de-
termine when a value is accessed at most once. We extend
the Hindley-Milner type system with uses, yielding a type-
inference based program analysis which determines when
values are accessed at most once. Our analysis can han-
dle higher-order functions and data structures, and admits
principal types for terms.

Unlike previous analyses, we prove our analysis sound
with respect to call-by-need reduction. Call-by-name reduc-
tion does not provide an accurate model of how often a value
is used during lazy evaluation, since it duplicates work which
would actually be shared in a real implementation.

Our type system can easily be modified to analyse usage
in a call-by-value language.

1 Introduction

This paper describes a method for determining when a value

is used at most once. Our method is based on a simple

modification of the Hindley-Milner type system. Each type

is labelled to indicate whether the corresponding value is

used at most once, or may possibly be used many times.
Our type system has a number of applications:

Program transformation: If it is determined that a variable
is accessed at most once, then one may safely inline the
expression bound to the variable without reducing efficiency.
In particular, we can determine when it is safe to inline an
expression into the body of a function.

Avoiding closure update: Implementations of lazy languages
use updates to share the evaluation of closures. If it is de-
termined that a closure is accessed at most once, then there
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is no need to overwrite the closure with the result of evalu-
ation.

Enabling data structure update: If it is determined that a
structure such as a ‘cons’ cell or an array is accessed at most
once, then the structure may safely be updated in place.

The last of these application areas has received consider-
able attention, the second of these some attention, and the
first almost none. This is quite surprising, since expression
inlining is central to a wide range of program transforma-
tions. In particular, our method provides a sound basis for a
number of transformations that were previously dealt with
in an ad hoc manner in the Glasgow Haskell Compiler, and a
solution to a problem that has bedevilled those attempting
to extend Deforestation to higher order.

Previous analyses to determine when a value is used at
most once have been based on either call-by-name (Wright
and Baker-Finch [WB93], Courtenage and Clack [CC94]) or
call-by-need (Launchbury et al. [Lau92], Marlow [Mar93]).
The call-by-name analyses have been proved sound, but are
not well-suited for optimisation of lazy languages. Our anal-
ysis is the first call-by-need analysis to be proved sound, and
sometimes provides more accurate information than other
call-by-need analyses. Our proof of soundness is based on
the operational semantics of Launchbury [Lau93] and the
call-by-need calculus of Ariola et al. [AFMOW95].

The type system presented here is based on ideas taken
from the linear logic of Girard [Gir87] and its successor
the Logic of Unity [Gir93]. However, it turns out to be
convenient to present this work without reference to linear
logic. Some of the connections are traced in a companion
paper [MOTW95], which relates linear logic to the call-by-
need calculus of Ariola et al.

We modify the Hindley-Milner type system [Hin69,
DMS&2] by attaching uses to types. Type judgements include
a constraint set relating uses, similar to the constraint sets
relating subtypes in the work of Mitchell [Mit84, Mit91].
As with the Hindley-Milner system, there is an algorithm
that determines a principal type for an expression. Rep-
resenting usage information as type annotations provides
a convenient mechanism for communicating usage informa-
tion across module boundaries, since typed languages such
as Haskell already import type information from separately-
compiled modules.

A small modification to our analysis enables it to deter-
mine when variables are used ezactly once (as opposed to at
most once), making it suitable for use with call-by-value (as
opposed to call-by-need) evaluation.



1.1 The problem

Some examples may help to illustrate the nature of the prob-
lem solved.

We wish to attach uses to values. The use 1 indicates
that a value is used at most once, while the use w indicates
that a value may be used any number of times.

Consider the following. (Example 1.)

let z=14+2in
let y=2 +3in
y+y

Here it is safe to replace & by 1 4+ 2 within the body of the
outer ‘let’. But it is not safe to replace y by 4+ 3 within
the body of the inner ‘let’, as the resulting program would
compute x + 3 twice rather than once. Our type system
attaches use 1 to x and use w to y.

Our argument depends crucially on the use of call-by-
need. Under call-by-name 243 is computed twice regardless.
Hence a call-by-name analysis must attach a use equivalent
to w to both z and y, showing why such analyses are not
suited for our purpose.

At first glance, it may seem child’s play to determine if
a value is used at most once under call-by-need. Surely, if a
variable appears at most once in a program, then the value
it 1s bound to is used at most once? In fact, this is not the
case.

Consider the following. (Example 2.)

letx=14+2in
let f=Az. 2+ zin
f3+r4

Even though x appears only once in the body of the outer
‘let’, replacing & by 14 2 is unsafe, as the resulting program
will compute 14 2 twice rather than once. Our type system
attaches use w to both z and f.

Consider the following. (Example 3.)

let z=14+2in
let f=(let y=2z+3in Az.y+2)in
F4+715

Here, again, one can safely replace the one occurrence of &
by 1 + 2, although it may require a moment’s thought to
convince oneself this is the case. Indeed, this example is
sufficiently difficult that the analyses proposed by Launch-
bury et al. [Lau92] and by Marlow [Mar93] are both overly
conservative, and in effect attach use w to . However, our
type system attaches use 1 to  and use w to y and f.

1.2 Call-by-need

Our work is based on the operational semantics of call-by-
need proposed by Launchbury [Lau93], and on the call-by-
need lambda calculus of Ariola et al. [AFMOW95]. A corre-
spondence between these two approaches has already been
shown in the latter work.

Launchbury’s rules include an explicit treatment of clo-
sure update. By modifying his rules to allow some closures
to be non-updating, we verify that our type system can be
used to avoid unnecessary closure updates.

The soundness of our type system is established by show-
ing that it satisfies a subject reduction property: applying a
call-by-need reduction to a term leaves its type unchanged,
including type information regarding usage.

Launchbury restricts functions to be applied to variables,
while Ariola et al. allow functions to be applied to arbi-
trary expressions. As we explain in Section 5, the difference
between these approaches is significant for our chosen im-
plementation, the Glasgow Haskell Compiler [PHHPW93],
which 1s closely based on the STG-machine of Peyton
Jones [Pey92]. Therefore, in this paper we adopt Launch-
bury’s syntax (which was influenced by the Haskell compiler
and the STG machine), and adapt the results of Ariola et
al. to it.

1.3 Program transformation

If we want to use program transformation as the basis of
efficient compilation of a functional language, it is not only
important that transformation preserves meaning but that
the transformed program executes at least as fast as the
original.

Consider Church’s beta rule:

(Az.e0) e1 = [e1/x]eo.

This rule is good in that it eliminates one application step,
but bad in that it may duplicate some computation. (In
particular, computation of e; may be duplicated if z is used
more than once in eg.)

The call-by-need calculus of Ariola et al. addresses this
problem by modifying the above rule:

(Az.eg) ey = let x = e in ep.

This rule, together with a number of rules for manipulating
‘let’, allow us to safely transform programs, without the risk
of duplicating work.

However, there are a number of transformation that are
useful and safe and which are not part of the call-by-need
calculus. The most important of these is that the beta rule

(Az.eg) er = [e1/x]eo
is safe when z has use 1. Another is that the rule
let z = epin Ay.e; = Ay.let £ = egin e

is safe when the function Ay.e; has use 1. Both of these
transformations are used extensively in the Glasgow Haskell
Compiler. Until now, their safety was ensured only by
ad hoc techniques. And the ad hoc techniques were not
adequate — an unsafe version of the second rule was al-
lowed, with the result that the compiler itself (which is boot-
strapped) was slowed by as much as one third [SP95].
Another example of program transformation is the de-
forestation algorithm [Wad90a]. In order to ensure safety,
this algorithm requires that variables are used at most once.
The definition of ‘used at most once’ is easy because de-
forestation applies to a first-order language. Attempts to
apply deforestation to higher-order [MW92] have been hin-
dered by the lack of a suitable definition of ‘used at most
once’ at higher-order. This paper provides such a definition.

1.4 Outline

This paper is organised as follows. Section 2 introduces
the language used and its semantics. Section 3 describes
the fundamentals of the type system. Section 4 discusses
principal types and polymorphism. Section 5 summarises
the call-by-need reduction rules. Section 6 discusses how to
adapt the analysis so that it is appropriate for a call-by-
value language. Section 7 describes related work. Section 8
concludes.
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Figure 1: Natural semantics
2 Language may introduce a mutually recursive binding, such as

We now present the syntax and operational semantics of a
call-by-need lambda calculus extended with integers, lists,
and recursion. For the sake of brevity other constructs have
been omitted, but there would be no difficulty in including
them.

2.1 Terms

The syntax of the language is given below. We use the syn-
tax of Launchbury [Lau93] where arguments in applications
and in cons are restricted to variables.

Variables z,y, z
Values vi= Az.e|n|nil|conszy
Terms ex= vl|xz|ex|eter|

case eg of {nil — e1; conszy — ez} |
let £ =epin e1 |letrec z = v in e

It is trivial to translate terms with the standard syntax
for application and cons into the restricted syntax, for ex-
ample we can translate ‘eg e1” to ‘let £ = €1 in eg ’. The
syntax closely resembles the STG language [Pey92].

Our syntax differs from Launchbury in three respects.
First, we distinguish between non-recursive ‘let’ and recur-
sive ‘letrec’ bindings; second, we allow only a single binding
in ‘letrec’, rather than several mutually recursive bindings;
and, third, we restrict the definiens of ‘letrec’ to be a value.
The third restriction is required to permit the second, since
otherwise reducing a single recursive binding, such as

letrec y = (let © = egin €1) in ez,

letrec x = eg and y = e; in ex.

The restricted ‘letrec’ is still powerful enough to define recur-
sive functions and cyclic lists. Without these three changes
the typing and reduction rules would need to be rather more
complex; for instance, see Ariola et al. [AFMOW95] for the
reduction rules required for mutual recursion. We feel that
the slight loss of expressiveness in the language is justified
by the considerably simpler presentation that it makes pos-

sible.

2.2 Use annotations

The operational semantics of this section and the reduction
rules of Section 5 require that let-bound variables are anno-
tated with uses, and the type rules of Sections 3 and 4 allow
us to infer such annotations.

Each let-bound variable x is annotated with a use |z|,
which is either 1 or w. If |z| = 1, then z is used at most
once during evaluation, and if |z| = w then  may be used
any number of times. No annotation is required for letrec-
bound variables, as they always have use w.

2.3 Heaps

A heap abstracts the state of the store at a point in the com-
putation. It consists of a sequence of bindings associating
variables with terms.

H
B

Bi,...,Bn

let = e |letrec z = v

Heaps
Bindings




We distinguish between non-recursive bindings (written
‘let &+ = €’) and recursive bindings (written ‘letrec x = v’).
A configuration pairs a heap with a term, and is written
(H)e.

The expression e in the heap ‘Ho,let * = ¢, H;’ can only
refer to variables bound in Hy. Similarly, the value v in the
heap Ho,letrec £ = v, H; can only refer to the recursively-
defined variable x and the variables bound in Hg.

2.4 Evaluation rules

Figure 1 presents a natural semantics for lazy evaluation,
which closely resembles the one given by Launchbury. The
key difference is that the evaluation of a let-bound variable
depends on its use annotation.

Evaluation rules have the form (Ho)e | (H1) v, meaning
that evaluating expression e in initial heap Ho returns value
v and final heap H;.

Rule Var-Once evaluates a variable that is used at most
once. Look up the expression e that is bound to the variable
z in the heap then evaluates e. As the variable will no longer
be used, it is removed from the heap.

Rule Var-Many evaluates a variables that may be used
many times. Look up the expression e that is bound to the
variable z in the heap, evaluates e, and update the heap
to bind z to the resulting value. Note that the expression
e in the heap Ho,let + = e, H2 can refer only to variables.
In practice, the update required by Var-Many may have a
significant cost, whereas Var-Once avoids this cost.

Rule Var-Rec evaluates recursively bound variables: look
up the value v that is bound to the variable = in the heap. It
is simpler because ‘let’ binds a term, while ‘letrec’ can only
bind a value.

Rule Abs evaluates abstractions: it is trivial since a
lambda expression is already a value.

Rule App evaluates applications: evaluate the function
to yield a lambda abstraction, then evaluate the body of the
abstraction with the argument substituted for the bound
variable of the abstraction.

Rules Int and Plus are easy. Rules Nil and Cons are
trivial since both ‘nil” and ‘cons z y’ are already values. The
two Case rules are again straightforward.

Rules Let and Letrec are similar, each creating a new
binding on the heap. In these rules 2’ is a fresh name not
appearing in the expression or the heap.

Observe that all bindings added to the heap are to fresh
variables, so it trivially follows that all bindings in the heap
are unique. This property is not quite as trivial in Launch-
bury’s formulation, where renaming occurs during variable
access rather than during evaluation of a binding construct.

3 A use type system

We now present a type system which indicates when values
will be accessed at most once. For simplicity, the type sys-
tem is monomorphic; extensions which allow polymorphism
are discussed in Section 4.

3.1 Uses

Types will be annotated with wuses. A type is annotated
with use 1 if each value of that type is used at most once,
and annotated with w otherwise. Thus, 1 and w stand for
upper bounds on the number of times a value can be used.

To enable type inference, we also allow use variables (ranged
over by 7,k,l, m). Let k range over uses.

Uses & == jJ|1l]|w

3.2 Constraints

We use O to record the constraints generated by our typing
rules. We define © to be a set of constraints of the form
j S {k17"'7kn}'

The following rules define an ordering on uses, parame-
terised on a constraint set ©:

Omega W One W Refl

(G<{ki,... kn}) €O
J <o ki

Taut

3.3 Types

Types include type variables (let a,b, ¢ range over these),
function types, integers, and list types.

Types 7 == o |7 =7 |Int"|[7]"

The type a” indicates that the type variable a ranges over
types with use x. The type T =" 7’ denotes functions from
type 7 to type 7' that can be used at most x times, Int”
denotes integer values that can be used at most k times,
and [7]" denotes lists with elements of type 7, where the list
can be accessed at most k times.

Write |7| for the use attached to type 7, defined as below:

[T =" 1=k |Int"| = & [[7]"] =& la®| = &

We impose the following well-formedness condition on
list types:

The type []” is well-formed only if k <e |7].

In other words, if a list can be accessed many times, then its
elements also might be accessed many times (through the
list). A similar restriction appears in the type systems of

Guzmdn and Hudak [GH90] and Wadler [Wad90b, Wad91].

3.4 Contexts

A context associates a type with each variable that may
appear in a term, and is represented by a list of entries of
the form = : 7.

Contexts 7,A &= x1:71,...,%n:Tn

Fach variable in a context must be distinct. If  : 7 is
in 7, we say that & has use x if |[7| = k. If 7 and A are
contexts containing no variables in common, write 7, A to
denote the concatenation of the two contexts.

We extend our ordering on uses so that it applies to
complete contexts, written x <e |7 | and defined as below:

k<o |z1:71, .., Tn o] T Kk <o |7 for all ¢

Consider the constraint x < |7|. If x = 1, then no constraint
is placed on any use in 7. But if kK = w then for every entry
x; : 7 in 7, our definition implies that |7;| = w.
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Figure 2: Type rules

3.5 Typing judgements

Typing judgements take the form ? te e : 7, indicating
that in context 7, and under the constraints ©, the term
e has type 7. The type rules are shown in Figure 2. As
usual, these consist of zero or more hypotheses above and a
conclusion below the line.

The type rules are quite similar to the usual rules for
lambda calculus, and so we concentrate on explaining the
unusual features: the structural rules, and the constraints
on uses.

3.6 Structural rules

The manipulation of contexts is carefully designed so that
if any variable is used more than once this will be indicated
by the presence of the structural rule contraction (Cont),
which introduces the use w.

Terms that may be evaluated together are typed in dif-
ferent contexts which are then combined, as can be seen in
rules App, Plus, Cons, Case, and Let. As all variables in a
context must be distinct, the only way for the same variable
to be used more than once is via the Cont rule. In this rule,
the substitution [z/z,z/yle replaces all occurrences of the
placeholder variables x and y in term e by the variable z.
The type of z (and its placeholders = and y) must be anno-
tated with the usage w. For instance, here is a type tree for
the term z + z.

Var Var
z:IntY Fo z: Int¥ y: It ke y: Int”
Plus
z:IntY, y: It Fo 2 4y : Int’
Cont
z:Int* Fe 2z 4+ z : Int’
As one would expect, the variable z has use w. The use

variable j on the result type may be instantiated to 1 or w,
depending on how the result of the addition is used.

If a variable is never used, this is indicated by the pres-
ence of the structural rule weakening (Weak). This rule

places no constraints on the use, since the use 1 (at most
once) and the use w (any number of times) are both com-
patible with not being used at all. However, the weakening
rule may be helpful in devising a type system for strictness
analysis, and is certainly important in usage analysis for
call-by-value languages (see Section 6).

The last structural rule, exchange (Exch), simply indi-
cates that the order of bindings in a context is irrelevant.

The contraction, weakening, and exchange rules are not
syntax directed, but do not pose an impediment to the exis-
tence of principal types since it easy to devise an algorithm
which determines whether contraction or weakening must
be used on each variable, placing these rules as close to the
root of the type tree as possible.

A subtlety in the manipulation of contexts is revealed
by the Case rule. In the Case rule, the term eq is always
evaluated, and then either e; or ez is evaluated. Hence it
makes sense to type ep in a different context from e; and ez,
but to type e; or ez in the same context. For instance, the
following is a valid typing.

ws: [Int']', y: Int' Fe
case xs of {nil = y; cons z &5’ = = + y} : Int’

Although y appears twice in the term, it is only labelled as
being used once, which is correct because only one branch
of the ‘case’ term will be evaluated.

3.7 Term rules

In rule Abs, the constraint x < |7 | reflects the fact that if a
function abstraction may be accessed more than once, then
every free variable of that abstraction may be accessed more
than once.

Consider again this example from the introduction.

let z=14+2in
let f=Az. 2+ zin
f3+r4



Since f appears twice in f 3 + f4 it has use w. Since z is a
free variable of a lambda abstraction with use w, it is in turn
forced to have use w. Thus, despite appearing only once in
the term,  must be labelled with use w, as indeed it should
be since it will be accessed twice in the course of evaluation.

Note that the Nil and Cons implicitly include the condi-
tion k <e |7| because of our global well-formedness condi-
tion on list types (see Section 3.3).

The term ‘consx y’ does not create any closures. It does,
however, refer to the variables « and y, which can be thought
of as pointers to closures. Consider the following example,
where the term ‘cons z y’ is used twice.

let I = cons x yin
case [ of --- casel of ---

Our typing rules give ‘cons z 3’ the type [¢“]¥ which in turn
forces = to have type a” and y to have type [a“]” as ex-
pected, since both  and y may be accessed twice.

The Plus rule deserves some explanation. Our addition
operator 1s strict, so the result of evaluating eo 4+ €1 will
simply be an integer constant which will not refer to any
part of the results of evaluating eq and e;. Therefore, the
usage assigned to the expression eo + e1 need not depend at
all on the usages ko and k1. A similar argument applies to
the App rule, since application is strict in its first argument.

3.8 Recursion

Finally, in a recursive definition, even a single access to a
variable may allow additional accesses via the recursion (ac-
tually the use of the letrec bound variable in both the body
and the letrec bound expression requires an implicit con-
traction). Hence in rule Letrec, the type of the recursively
bound variable must have use w.

Note that this does not mean that whenever recursion is
involved that all uses must degenerate to w. If a function is
defined recursively, the argument and result of the function
may still have use 1. Here is a function to append two lists.

letrec append = Axs. Azs.
case s of {
nil — zs
cons y ys — let as = append ys zsin cons y as}
in .-

It has the (principal) type
[@']" = [a') =™ [«
with the set of constraints
k<{s} 1<{s}, m<A{k}

The constraints k < {j} and I < {j} are generated by our
global well-formedness condition on list types, and indicates
that if the argument or result list are accessed more than
once, then the elements of those lists may also be accessed
more than once. The constraint m < {k} is generated by
the Abs rule, and indicates that if appendis partially applied
and then used more than once, the first argument list may
be accessed more than once.
One instance of the above type is

[mt“]* = [nt*]” —* [Int“]*

indicating that append can take two lists to which there may
be multiple pointers, and return a list to which there may
be multiple pointers. Another instance is

[Int']" = [Int']" =" [Int']"

indicating that append may be applied multiple times to two
lists to each of which there is only one pointer, returning a
list to which there is only one pointer. (Attaching the use 1
to the second arrow guarantees that one cannot create extra
pointers to the first argument list by creating and duplicat-
ing a partial application.) For this version of append it is
possible to generate code that reuses the ‘cons’ cells of the
first argument in producing the result.

3.9 Typeability

The ordinary rules for simply typed lambda calculus can
be derived by simply omitting all use annotations and use
constraints from the rules given here. It follows that if a
term is typeable in this system, it is typeable in simply typed
lambda calculus. Conversely, if a term is typeable in simply
typed lambda calculus, then it is also typeable in this system
(Just take all uses to be w).

4 Principal types and polymorphism

Before discussing what it means for a type to be principal
for a given term, we first need to define when a type is an
instance of another type. Our definition of instantiation is
closely related to Mitchell’s definition of instantiation for a
type system with simple subtypes [Mit84, Mit91].

4.1 Instantiation

A substitution is a pair of finite maps. One component maps
type variables to types, while the other maps use variables
to uses.

Type substitutions TS ::= {af* — 71,...,a5" = 7o}
Use substitutions US = {ki— K1,...,kn — Kn}
Substitutions S == (TS, US)

Whenever a type variable is replaced by a type, the new
type must have the same usage: for each (a* — 7;) € S we
have S(k;) = |7

We can derive an instance of the typing derivation ? Fe
e : 7 by applying a substitution S to ? and 7, and replacing
© with a stronger constraint set ©’. The behaviour of S on
types and contexts is defined in the usual way. We define
the conditions under which ©' is stronger than © (under the
substitution S) below:

©' = SO iff for each (j < {k1,...
S(j) <er S(ki) for each 1.

,kn}) € © we have that

A straightforward induction on the structure of typing
derivations proves the following substitution lemma.

Lemma 4.1.1 (Type substitution)
If? Foe:7 and ©® = SO then S? Fgire: ST.



4.2 Unification

It 1s easy to modify Robinson’s unification algorithm so
that it unifies types containing usage information. However,
whenever we unify a usage variable with another usage, we
need to update the current constraint set. Suppose © is the
following constraint set:

3<AL E<m} 1< {m}, m < {}
If we unify the types o’ and Int* we get the substitution:
({a’ = Int"}, {5 — k})

Since we have unified 7 and k, we must modify the constraint
set © so that it merges the constraints for j and k:

k<Al,m}, 1 <{m}, m < {}

Similarly, if we unify the types a’ and Int” we get the sub-

stitution:
({a’ = Int“},{j = w})

We have instantiated j to w, which in turn forces us to also
instantiate ! and m to w. The constraint k& < {m} then
simplifies to k < {w}, which can be eliminated, since w is
the maximal usage.

If we unify usage variables with other usage variables, or
with w, we can always derive a new constraint set, as ex-
plained above. We can only fail to produce a new constraint
set if we unify use variables with 1 (for instance, we might
unify 7 with w and [ with 1, generating the unsatisfiable con-
straint w < 1). Fortunately, it is easy to show that, during
type inference, we never need to make such constraints.

4.3 Principal types

Every term e has a principal type judgement ? e e : 7, of
which all other type judgements for e are instances.

Proposition 4.3.1 (Principal types)

If? Fo e: 7 then there exist ?', ©' and 7' such that 7' g,
e: 7 and for all ?", " and 7' such that ?" Fgon e : 7"
there exists a substitution S such that S?' C?", St/ = 1"
and ©" |= S©'.

The result is proved, as usual, by exhibiting an algorithm
that computes principal types.

4.4 Annotations

The operational semantics of Section 2 and the reduction
rules of Section 5 require that each let-bound variable x is
annotated with a use |z| which is either 1 or w. Such anno-
tations may be inferred as follows. First, determine a princi-
pal typing for the given term, and a corresponding principal
type derivation. The typing will include a constraint set ©,
and we may choose any substitution S of use variables such
that {} |E S©. Naturally, we choose the substitution that
maps each use variable to 1, since this yields the best usage
information.

Since in the end all of the use variables are set to 1, one
might wonder why we bother with constraint sets at all? But
a moment’s thought will show that we need the constraint
information in order to infer the principal typing of a term
from the principal typing of its subterms. This is because
in general the usage of a subterm depends on the context in
which it appears, and the constraints on use variables allow
us to propagate this information.

4.5 Polymorphism

The next step is to use ‘let’ terms to introduce polymor-
phism in the usual way. There are two possibilities. The
first is to allow polymorphism only on type variables. For
instance, the polymorphic type for append would be:

Ya’. [aj]k —“ [aj]l —m [aj]l

with the same constraints as before. This allows append
to be used on lists of different types, but every occurrence
of append in the program must have the same usage la-
belling. For instance, if the labelling indicated that the first
list passed to append always had use 1, then the code for ap-
pend could be optimised to reuse the ‘cons’ cells of that list.
Although crude, an analysis of this sort may be suitable for
some purposes, such as removing unnecessary closures. An
existing analyser for this purpose, based on abstract inter-
pretation, has a similar limitation but has proved reasonably
effective [Mar93].

The second possibility is to allow polymorphism on both
type and use variables. For instance, the polymorphic type
for append would be

ViV < {j} V< () vm < (k).
val . [a’]* =< [a/]" =™ [a/]

In order to maximise the potential for optimisation, the com-
piler needs to generate different versions of append for differ-
ent instantiations of the use variables. A similar technique is
used in Haskell compilers to specialise code involving over-
loaded functions, and experience to date suggests that this
is feasible and does not necessarily lead to an explosion in
code size [Aug93, Jon93]. In some situations, instead of spe-
cialising append for different uses, we might consider having
just one version of append, and interpret the use variables
7, k,l, m as additional arguments to the append function, en-
abling run-time selection of the behaviour of append.

The trade-off between these two possibilities is similar to
the trade-off between monovariant and polyvariant binding
time analysis in partial evaluation. Further experimentation
will be necessary to better understand the strengths and
weaknesses of each approach.

5 Reduction and subject-reduction

We previously described the semantics of our language us-
ing Launchbury’s operational semantics of call-by-need. We
now give an alternative characterisation of that semantics
using a modification of the call-by-need calculus of Ariola et
al.

Working in the framework of a calculus with reduction
rules simplifies our proof of subject-reduction, but more im-
portantly, gives a set of rules which can be used by a com-
piler to optimise programs without danger of duplicating
work (or returning the wrong result). We show how our us-
age information enables additional “safe” reduction rules to
be formulated, allowing more aggresive optimisation when
values are known to be used at most once.

5.1 Reduction rules

In the call-by-need calculus of Ariola et al. [AFMOW95]
a closure 1s created for the argument of each function ap-
plication, whereas in the operational semantics of Launch-
bury [Lau93] a closure is created only by the appearance of



Contexts

C:u=[]|Cx|... z.Clletz=Cine|let s =ein C |letrec = C in e | letrec z = v in C' |

C+ele+C|case C of {nil — e;; consz y — ez} | case g of {nil = C; conszy — ez} |

case eg of {nil — e1; conszy — C}

Let contexts L:u=[]z|let z =[]ine|[]+e]|e+][]]|case[]of {nil —e;; conszy — ez}

Figure 3: Call-by-need contexts

no + N1
(Az.e)y

case nil of {nil — e;; conszy — e2}

case (cons yg y1) of {nil — e;; cons xp x1 — ez}

let z = vin C[x]
let x =¢"in e
letrec z = v in C[x]
Lllet x = €’ in €]
L[letrec z = v in €]
let x =¢"in e
letrec s =vine

— notm

— Ty/ele

— €1

= [vo/w0,y1/w1]e2

= let £ =vin C[] if [v]=w
= {e'/z}e if|lz] =1
= letrec z = v in C[o]

= let . =¢'in L[e]

= letrec z = v in L[e]

= e if v ¢ fo(e)
= e if v ¢ fo(e)

Figure 4: Call-by-need reductions

‘let’. This difference is significant: it means that the model
of Ariola et al. may create many more closures than the
model of Launchbury. For example, consider the following.

letrec f= Azs. Ay.
case xs of {nil — y; cons & vs' — f s’ y}
inlet zs=eoinlet y=e;in frsy

Here the model of Launchbury only creates closures for the
original call, and for each element of the list eg. In contrast,
the model of Ariola et al. also creates two two extra closures
for each recursive call of f.

Fortunately, it is straightforward to adapt the calculus
of Ariola et al. to correspond to the model of Launchbury.
The required contextual forms are given in Figure 3, and
the reduction rules are given in Figure 4.

A context C'is a term with a hole. Note a hole cannot
appear as the argument of an application or cons, since these
are restricted to variables and cannot be replaced by arbi-
trary terms. A let context I has a hole in a strict position
(the function of an application, the selector of a case, or an
argument of plus) or in the definiens of a let.

The rules are the compatible closure of the rules shown
in Figure 4. That is, if e = €’ then also Cle] = Cle'] for
any context C. Capture of free variables is disallowed, so
context C should not bind x in the two rules containing C,
and context L should not have x as a free variable in the two
rules containing L. The rules containing L correspond to the
several let-floating rules of Ariola et al., which are necessary
to guarantee that every closed term can be reduced to a
weak head normal form.

The key change from the work of Ariola et al. involves
the rule that allows substitution of a value,

let z =vin Clz] = let x = vin Cv], if |z| =w.

This rule is safe because, since v is already a value, the sub-
stitution cannot duplicate computation. However, in order
to guarantee that reductions preserve use types, we must
restrict this rule to the case where all free variables of v
have use w; otherwise we may duplicate a variable with use
1 resulting in an ill-typed term. An adequate restriction

is to require that x has use w, since this implies that all
free variables of v also have use w, as the reader may eas-
ily check (the two important cases are when v is a function
abstraction and when v is a cons).

In the case where x has use 1, we can allow substitution
of not just a value but of any expression,

let z =e'in e = {e'/z}e, if |z]=1.

Since we cannot substitute an expression for a variable that
appears as the argument of an application or cons, we use
a modified form of substitution, written {¢’'/x}e. The def-
inition of {e’/w}e is standard, except for the following two
clauses:

{e'/z}(e x) =let x =¢’'in e,
{e//z}(consyz)=let z =c'inconsyz, f x =yorz =2z

Note that the substitution rules together with let-floating
rules introduce possible loops in reduction sequences. For
example,

let x =¢'inlet z =consx yin e
= let z=let r=¢'in conswyine
= let r=¢'inlet z = cons v yin e.

As we note below, compilers such as the Glasgow Haskell
compiler are often based on sets of reductions containing
such loops. Nonetheless, it would be preferable to have a
reduction system without such loops, and we note this as an
interesting topic for future work.

5.2 Confluence, soundness, and completeness

The following results are straightforward adaptations of the
results of Ariola et al. The system is confluent, and sound
and complete with respect to Launchbury’s operational se-
mantics.

Proposition 5.2.1 (Confluence)
Ifeo =" €1 and eo =" e3> then there exists a term ez such
that ey =" e3 and es =" e3.



If H is a heap as in the operational semantics, and e is a
term, then the configuration (H)e corresponds to the term

‘let (H)in €’, defined as follows.

let ()ine =e
let (et z =¢',H)ine =let x=¢"in (let (H)in e)
let (letrec £ = v, H)in e = letrec = v in (let (H)in €)

Proposition 5.2.2 (Soundness)
If (Hye U (H'Yv' thenlet (H)in e =" let (H')in v’

Proposition 5.2.3 (Completeness)

If let (HY ine =" let (H") in v" then there exist H'
and v’ such that (HYe | (H')v' and let (H') in v/ =*
let {(H")in v".

The soundness and completeness results take an even
simpler form for terms of type integer.

Corollary 5.2.4 (Soundness and completeness)
There exists a heap H' such that {H)e |} (H'Yn if and only
if let (H)in e =" n.

NB: We have checked in detail the proof of soundness; it
is a straightforward adaptation of the proof given by Ariola
et al. We believe the proofs of confluence and completeness
should also be straightforward adaptations of their proofs,
but we have not checked these in detail.

5.3 Subject Reduction
Use types are preserved by reduction.

Proposition 5.3.1 (Subject reduction)
If ?Fee:7ande=¢' then? ko e’ : 7.

The proof is straightforward, verifying each rule in Fig-
ure 4 separately, and structural induction over terms for the
compatible closure.

Combining Propositions 5.3.1 and 5.2.2 yields a sound-
ness result for our type system with respect to the opera-
tional semantics.

Corollary 5.3.2 (Operational subject reduction)
If Fe let (HYine:7 and (HYe | (H'Yv then
Fo let (H'Yin v: 7.

5.4 Additional transformations

There are many useful reduction rules that we might add to
those appearing in Figure 4.
For instance, it is helpful to have the reduction

let z =egin (let y =€y in e2) =
let y = (let £ = egin e1)in e2,

if o ¢ fo(e),

which avoids the creation of a closure for eq if, say, y is
not evaluated at run time. By the way, note that the rule
Lllet = €’ in €] = let # = ¢’ in L[e] has as an instance

let y=(let z =egine;)in e =
let £ =egin (let y = e in e3),

if v ¢ fo(e2),

which 1is helpful if, say, further simplification reduces e; to a
value. The Glasgow Haskell compiler makes extensive use of
both reductions [San92]. This explains why we are not too
bothered by the existence of loops in our reduction rules, as
noted previously.

Some useful additional transformations depend on usage
information. The prime example is the reduction

let z=¢"in (Ay.e) = Ay.(let z=¢"ine), if |Ay.e|=1.
This requires adding a further use annotation to terms: we
assume that each that each abstraction |Az.e| is annotated
with a use of 1 or w which we write |Az.e|. The use infor-
mation 1s crucial for safety: the reduction might duplicate
computation if |[Ay.e] = w. Again, this reduction is ex-
tensively used in the Glasgow Haskell compiler. It turns
out to be particularly important for one form of deforesta-

tion [GLP93].

6 Use analysis for call-by-value calculi

Our use analysis can easily be adapted for call-by-value cal-
culi. In such calculi, we are interested in variables which are
used ezactly once (rather than at most once). For example,
if f is used exactly once, and z is only used in the body of
f, then we can safely transform

let z =einlet f=Ay.z +3in ...
into
let f=MAy.e+3in ...

(hopefully reducing the maximum amount of storage used
by the program). This transformation is clearly unsafe if f is
never used, since the expression e might be non-terminating.
We would have transformed a non-terminating program into
a terminating program.

Changing our type system to determine when a value is
used exactly once is easy. We simply change the weakening
rule as below:

?he:7 7| = w
?,riThe: T

Weak

We can now interpret the use 1 as meaning that a value
is used exactly once. This transforms our type system into
something much closer to a linear type system. In a com-
panion paper [MOTW95], we elaborate on the connections
between linear logic and call-by-value reduction, and affine
logic and call-by-need reduction.

We conjecture that usage-based program transformation
in the presence of side-effects could be handled by combin-
ing our usage analysis with an effect system [Luc87, L.G&8,
JG91]. (Effect systems can distinguish side-effecting com-
putation from purely functional computation.)

7 Related work

7.1 Linear logic

The type system presented here is based on ideas taken from
the linear logic of Girard [Gir87] and its successor the Logic
of Unity [Gir93]. A companion paper describes the embed-
ding of the call-by-need calculus into linear logic that un-
derlies the type system used here [MOTW95]. Interested
readers are referred to that paper for a survey of related
work on linear logic.

7.2 Call-by-need analyses

We are aware of two other analyses that attempt to deter-
mine when a value is used at most once under call-by-need
evaluation. One is a type system due to Launchbury and



others [Lau92], the other is an abstract interpretation due
to Marlow [Mar93]. We note three points of comparison.

First, unlike ours, neither of the other analyses possess a
proof of soundness. Second, our system sometimes derives
more precise information than the other two; see Example 3
in Section 1.1. Third, unlike the above analyses, our type
system does not detect the case where closures are never
used (we omitted the zero usage from our analysis so as to
simplify our usage constraints).

Our next step is to implement our analysis in the Glas-
gow Haskell compiler, allowing us to compare it directly with
Marlow’s. By observing how our analysis performs on real
programs we can test whether omitting zero usages has a
significantly impact.

7.3 Call-by-name analyses

We also are aware of two analyses that determine usage in-
formation for values under call-by-name, one due to Wright
and Baker-Finch [WB93], the other due to Courtenage and
Clack [CC94]. Both are based on type systems, and both
have been argued to be sound. We note three points of
comparison.

First, choosing call-by-name evaluation instead of call-
by-need prevents even fairly simple optimisations from being
discovered. For instance, in Example 1 of Section 1.1, the
variable z is used once under call-by-need, as our system dis-
covers, but twice under call-by-name. Experience suggests
this difference is significant, as the situation encountered in
Example 1 is fairly common.

Second, even if we are satisfied to limit our attention
to call-by-name, neither system provides an especially use-
ful analysis. The Wright and Baker-Finch system discovers
too much information: function types are annotated with
natural numbers which indicate the number of times a func-
tion uses its argument, and this level of accuracy renders
the type system undecidable. The Courtenage and Clack
system discovers too little information: they can determine
when an argument is used zero times, exactly once, or at
least once; but they do not determine when an argument is
used at most once, which is most helpful for the problems
we are interested in.

Third, unlike our system, the other systems also provide
information about when a value is used at least once, which
is useful for strictness analysis. For this question, the dis-
tinction between call-by-need and call-by-name is irrelevant,
which may explain why the authors of these systems were
willing to settle for a call-by-name analysis.

7.4 Data structure update

A number of analyses for in-place update of data structures
have been proposed, including those by Schmidt [Sch85],
Hudak [Hud&6], Baker [Bak90], Hudak and Guzman [GH90],
and Wadler [Wad90b, Wad91]. These systems are not es-
pecially well suited for enabling program transformations
or eliding closure update in call-by-need languages. Con-
versely, our system is not the best possible for in-place up-
date, as it can only determine when there is at most one
pointer to a structure. For many purposes, it is better to
use a weaker criterion which allows multiple pointers when
reading a structure but ensures there is at most one pointer
when a structure is to be updated in place.
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8 Conclusions

We have presented a simple type system which can deter-
mine when a value is used at most once, even in the presence
of higher-order functions and data structures. Our analy-
sis is tailored to the precise reduction strategy used in the
Glasgow Haskell compiler, and therefore yields more accu-
rate results than analyses which assume call-by-name reduc-
tion. We have proved our type system sound with respect to
Launchbury’s natural semantics of lazy evaluation, and have
provided safe reduction rules which the compiler can use to
transform programs without risking duplicating work.

A prototype type inference algorithm has already been
implemented. Our next step is to incorporate our type sys-
tem into the Glasgow Haskell compiler [PHHPW93]. This
will enable us to measure the effect of our optimisations on
large Haskell programs. The Glasgow Haskell compiler uses
an explicitly-typed core language to express most of its pro-
gram transformations. By adding our usage information to
the core language type system we can conveniently provide
information to the optimiser, enabling additional program
transformations, and allowing the code generator to omit
unnecessary closure updates.

Our annotated types provide a convenient way of com-
municating usage information across module boundaries (we
simply add usage information to the user-level type informa-
tion which is already exported from a module).

We intend to further explore how our type system enables
in-place update of data structures. An interesting question
is how much of this should be done automatically by the
compiler, how much should be under the control of the user,
and to what extent the type system acts as an effective mech-
anism to let the user understand and control optimisations.
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