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is no need to overwrite the closure with the result of evalu-ation.Enabling data structure update: If it is determined that astructure such as a `cons' cell or an array is accessed at mostonce, then the structure may safely be updated in place.The last of these application areas has received consider-able attention, the second of these some attention, and the�rst almost none. This is quite surprising, since expressioninlining is central to a wide range of program transforma-tions. In particular, our method provides a sound basis for anumber of transformations that were previously dealt within an ad hoc manner in the Glasgow Haskell Compiler, and asolution to a problem that has bedevilled those attemptingto extend Deforestation to higher order.Previous analyses to determine when a value is used atmost once have been based on either call-by-name (Wrightand Baker-Finch [WB93], Courtenage and Clack [CC94]) orcall-by-need (Launchbury et al. [Lau92], Marlow [Mar93]).The call-by-name analyses have been proved sound, but arenot well-suited for optimisation of lazy languages. Our anal-ysis is the �rst call-by-need analysis to be proved sound, andsometimes provides more accurate information than othercall-by-need analyses. Our proof of soundness is based onthe operational semantics of Launchbury [Lau93] and thecall-by-need calculus of Ariola et al. [AFMOW95].The type system presented here is based on ideas takenfrom the linear logic of Girard [Gir87] and its successorthe Logic of Unity [Gir93]. However, it turns out to beconvenient to present this work without reference to linearlogic. Some of the connections are traced in a companionpaper [MOTW95], which relates linear logic to the call-by-need calculus of Ariola et al.We modify the Hindley-Milner type system [Hin69,DM82] by attaching uses to types. Type judgements includea constraint set relating uses, similar to the constraint setsrelating subtypes in the work of Mitchell [Mit84, Mit91].As with the Hindley-Milner system, there is an algorithmthat determines a principal type for an expression. Rep-resenting usage information as type annotations providesa convenient mechanism for communicating usage informa-tion across module boundaries, since typed languages suchas Haskell already import type information from separately-compiled modules.A small modi�cation to our analysis enables it to deter-mine when variables are used exactly once (as opposed to atmost once), making it suitable for use with call-by-value (asopposed to call-by-need) evaluation.



1.1 The problemSome examples may help to illustrate the nature of the prob-lem solved.We wish to attach uses to values. The use 1 indicatesthat a value is used at most once, while the use ! indicatesthat a value may be used any number of times.Consider the following. (Example 1.)let x = 1 + 2 inlet y = x+ 3 iny + yHere it is safe to replace x by 1 + 2 within the body of theouter `let'. But it is not safe to replace y by x+ 3 withinthe body of the inner `let', as the resulting program wouldcompute x + 3 twice rather than once. Our type systemattaches use 1 to x and use ! to y.Our argument depends crucially on the use of call-by-need. Under call-by-name x+3 is computed twice regardless.Hence a call-by-name analysis must attach a use equivalentto ! to both x and y, showing why such analyses are notsuited for our purpose.At �rst glance, it may seem child's play to determine ifa value is used at most once under call-by-need. Surely, if avariable appears at most once in a program, then the valueit is bound to is used at most once? In fact, this is not thecase.Consider the following. (Example 2.)let x = 1 + 2 inlet f = �z: x+ z inf 3 + f 4Even though x appears only once in the body of the outer`let', replacing x by 1+2 is unsafe, as the resulting programwill compute 1+2 twice rather than once. Our type systemattaches use ! to both x and f .Consider the following. (Example 3.)let x = 1 + 2 inlet f = (let y = x+ 3 in �z: y + z) inf 4 + f 5Here, again, one can safely replace the one occurrence of xby 1 + 2, although it may require a moment's thought toconvince oneself this is the case. Indeed, this example issu�ciently di�cult that the analyses proposed by Launch-bury et al. [Lau92] and by Marlow [Mar93] are both overlyconservative, and in e�ect attach use ! to x. However, ourtype system attaches use 1 to x and use ! to y and f .1.2 Call-by-needOur work is based on the operational semantics of call-by-need proposed by Launchbury [Lau93], and on the call-by-need lambda calculus of Ariola et al. [AFMOW95]. A corre-spondence between these two approaches has already beenshown in the latter work.Launchbury's rules include an explicit treatment of clo-sure update. By modifying his rules to allow some closuresto be non-updating, we verify that our type system can beused to avoid unnecessary closure updates.The soundness of our type system is established by show-ing that it satis�es a subject reduction property: applying acall-by-need reduction to a term leaves its type unchanged,including type information regarding usage.

Launchbury restricts functions to be applied to variables,while Ariola et al. allow functions to be applied to arbi-trary expressions. As we explain in Section 5, the di�erencebetween these approaches is signi�cant for our chosen im-plementation, the Glasgow Haskell Compiler [PHHPW93],which is closely based on the STG-machine of PeytonJones [Pey92]. Therefore, in this paper we adopt Launch-bury's syntax (which was in
uenced by the Haskell compilerand the STG machine), and adapt the results of Ariola etal. to it.1.3 Program transformationIf we want to use program transformation as the basis ofe�cient compilation of a functional language, it is not onlyimportant that transformation preserves meaning but thatthe transformed program executes at least as fast as theoriginal.Consider Church's beta rule:(�x: e0) e1 =) [e1=x]e0:This rule is good in that it eliminates one application step,but bad in that it may duplicate some computation. (Inparticular, computation of e1 may be duplicated if x is usedmore than once in e0.)The call-by-need calculus of Ariola et al. addresses thisproblem by modifying the above rule:(�x: e0) e1 =) let x = e1 in e0:This rule, together with a number of rules for manipulating`let', allow us to safely transform programs, without the riskof duplicating work.However, there are a number of transformation that areuseful and safe and which are not part of the call-by-needcalculus. The most important of these is that the beta rule(�x: e0) e1 =) [e1=x]e0is safe when x has use 1. Another is that the rulelet x = e0 in �y: e1 =) �y: let x = e0 in e1is safe when the function �y: e1 has use 1. Both of thesetransformations are used extensively in the Glasgow HaskellCompiler. Until now, their safety was ensured only byad hoc techniques. And the ad hoc techniques were notadequate { an unsafe version of the second rule was al-lowed, with the result that the compiler itself (which is boot-strapped) was slowed by as much as one third [SP95].Another example of program transformation is the de-forestation algorithm [Wad90a]. In order to ensure safety,this algorithm requires that variables are used at most once.The de�nition of `used at most once' is easy because de-forestation applies to a �rst-order language. Attempts toapply deforestation to higher-order [MW92] have been hin-dered by the lack of a suitable de�nition of `used at mostonce' at higher-order. This paper provides such a de�nition.1.4 OutlineThis paper is organised as follows. Section 2 introducesthe language used and its semantics. Section 3 describesthe fundamentals of the type system. Section 4 discussesprincipal types and polymorphism. Section 5 summarisesthe call-by-need reduction rules. Section 6 discusses how toadapt the analysis so that it is appropriate for a call-by-value language. Section 7 describes related work. Section 8concludes.2



Var-Once jxj = 1 hH0i e + hH1i vhH0; let x = e; H2ix + hH1; H2i vVar-Many jxj= ! hH0i e + hH1i vhH0; let x = e; H2ix + hH1; let x = v; H2i vVar-Rec hH0; letrec x = v; H1ix + hH0; letrec x = v; H1i vAbs hHi�x: e + hHi�x: e App hH0i e0 + hH1i�x: e1 hH1i [y=x]e1 + hH2i vhH0i e0 x + hH2i vInt hHin + hHin Plus hH0i e0 + hH1in0 hH1i e1 + hH2in1hH0i e0 + e1 + hH2in0 + n1Nil hHinil + hHinil Cons hHi cons x y + hHi cons x yCase-Nil hH0i e0 + hH1inil hH1i e1 + hH2i vhH0i case e0 of fnil ! e1; cons x y ! e2g + hH2i vCase-Cons hH0i e0 + hH1i cons y0 y1 hH1i [y0=x0; y1=x1]e2 + hH2i vhH0i case e0 of fnil ! e1; cons x0 x1 ! e2g + hH2i vLet fresh x0 hH0; let x0 = e0i [x0=x]e1 + hH1i vhH0i let x = e0 in e1 + hH1i v Letrec fresh x0 hH0; letrec x0 = [x0=x]vi [x0=x]e + hH1i vhH0i letrec x = v in e + hH1i vFigure 1: Natural semantics2 LanguageWe now present the syntax and operational semantics of acall-by-need lambda calculus extended with integers, lists,and recursion. For the sake of brevity other constructs havebeen omitted, but there would be no di�culty in includingthem.2.1 TermsThe syntax of the language is given below. We use the syn-tax of Launchbury [Lau93] where arguments in applicationsand in cons are restricted to variables.Variables x; y; zValues v ::= �x: e j n j nil j cons x yTerms e ::= v j x j e x j e0 + e1 jcase e0 of fnil ! e1; cons x y ! e2g jlet x = e0 in e1 j letrec x = v in eIt is trivial to translate terms with the standard syntaxfor application and cons into the restricted syntax, for ex-ample we can translate `e0 e1' to `let x = e1 in e0 x'. Thesyntax closely resembles the STG language [Pey92].Our syntax di�ers from Launchbury in three respects.First, we distinguish between non-recursive `let' and recur-sive `letrec' bindings; second, we allow only a single bindingin `letrec', rather than several mutually recursive bindings;and, third, we restrict the de�niens of `letrec' to be a value.The third restriction is required to permit the second, sinceotherwise reducing a single recursive binding, such asletrec y = (let x = e0 in e1) in e2;

may introduce a mutually recursive binding, such asletrec x = e0 and y = e1 in e2:The restricted `letrec' is still powerful enough to de�ne recur-sive functions and cyclic lists. Without these three changesthe typing and reduction rules would need to be rather morecomplex; for instance, see Ariola et al. [AFMOW95] for thereduction rules required for mutual recursion. We feel thatthe slight loss of expressiveness in the language is justi�edby the considerably simpler presentation that it makes pos-sible.2.2 Use annotationsThe operational semantics of this section and the reductionrules of Section 5 require that let-bound variables are anno-tated with uses, and the type rules of Sections 3 and 4 allowus to infer such annotations.Each let-bound variable x is annotated with a use jxj,which is either 1 or !. If jxj = 1, then x is used at mostonce during evaluation, and if jxj = ! then x may be usedany number of times. No annotation is required for letrec-bound variables, as they always have use !.2.3 HeapsA heap abstracts the state of the store at a point in the com-putation. It consists of a sequence of bindings associatingvariables with terms.Heaps H ::= B1; : : : ;BnBindings B ::= let x = e j letrec x = v3



We distinguish between non-recursive bindings (written`let x = e') and recursive bindings (written `letrec x = v').A con�guration pairs a heap with a term, and is writtenhHi e.The expression e in the heap `H0; let x = e;H1' can onlyrefer to variables bound in H0. Similarly, the value v in theheap H0; letrec x = v;H1 can only refer to the recursively-de�ned variable x and the variables bound in H0.2.4 Evaluation rulesFigure 1 presents a natural semantics for lazy evaluation,which closely resembles the one given by Launchbury. Thekey di�erence is that the evaluation of a let-bound variabledepends on its use annotation.Evaluation rules have the form hH0i e + hH1i v, meaningthat evaluating expression e in initial heap H0 returns valuev and �nal heap H1.Rule Var-Once evaluates a variable that is used at mostonce. Look up the expression e that is bound to the variablex in the heap then evaluates e. As the variable will no longerbe used, it is removed from the heap.Rule Var-Many evaluates a variables that may be usedmany times. Look up the expression e that is bound to thevariable x in the heap, evaluates e, and update the heapto bind x to the resulting value. Note that the expressione in the heap H0; let x = e;H2 can refer only to variables.In practice, the update required by Var-Many may have asigni�cant cost, whereas Var-Once avoids this cost.Rule Var-Rec evaluates recursively bound variables: lookup the value v that is bound to the variable x in the heap. Itis simpler because `let' binds a term, while `letrec' can onlybind a value.Rule Abs evaluates abstractions: it is trivial since alambda expression is already a value.Rule App evaluates applications: evaluate the functionto yield a lambda abstraction, then evaluate the body of theabstraction with the argument substituted for the boundvariable of the abstraction.Rules Int and Plus are easy. Rules Nil and Cons aretrivial since both `nil' and `cons xy' are already values. Thetwo Case rules are again straightforward.Rules Let and Letrec are similar, each creating a newbinding on the heap. In these rules x0 is a fresh name notappearing in the expression or the heap.Observe that all bindings added to the heap are to freshvariables, so it trivially follows that all bindings in the heapare unique. This property is not quite as trivial in Launch-bury's formulation, where renaming occurs during variableaccess rather than during evaluation of a binding construct.3 A use type systemWe now present a type system which indicates when valueswill be accessed at most once. For simplicity, the type sys-tem is monomorphic; extensions which allow polymorphismare discussed in Section 4.3.1 UsesTypes will be annotated with uses. A type is annotatedwith use 1 if each value of that type is used at most once,and annotated with ! otherwise. Thus, 1 and ! stand forupper bounds on the number of times a value can be used.

To enable type inference, we also allow use variables (rangedover by j;k; l;m). Let � range over uses.Uses � ::= j j 1 j !3.2 ConstraintsWe use � to record the constraints generated by our typingrules. We de�ne � to be a set of constraints of the formj � fk1; : : : ; kng.The following rules de�ne an ordering on uses, parame-terised on a constraint set �:Omega � �� ! One 1 �� � Re
 � �� �Taut (j � fk1; : : : ; kng) 2 �j �� ki3.3 TypesTypes include type variables (let a; b; c range over these),function types, integers, and list types.Types � ::= a� j � !� � 0 j Int� j [� ]�The type a� indicates that the type variable a ranges overtypes with use �. The type � !� � 0 denotes functions fromtype � to type � 0 that can be used at most � times, Int�denotes integer values that can be used at most � times,and [� ]� denotes lists with elements of type � , where the listcan be accessed at most � times.Write j� j for the use attached to type � , de�ned as below:j� !� � 0j = � jInt�j = � j[� ]�j = � ja�j = �We impose the following well-formedness condition onlist types:The type [� ]� is well-formed only if � �� j� j.In other words, if a list can be accessed many times, then itselements also might be accessed many times (through thelist). A similar restriction appears in the type systems ofGuzm�an and Hudak [GH90] and Wadler [Wad90b, Wad91].3.4 ContextsA context associates a type with each variable that mayappear in a term, and is represented by a list of entries ofthe form x : � .Contexts �;� ::= x1 : �1; : : : ; xn : �nEach variable in a context must be distinct. If x : � isin �, we say that x has use � if j� j = �. If � and � arecontexts containing no variables in common, write �; � todenote the concatenation of the two contexts.We extend our ordering on uses so that it applies tocomplete contexts, written � �� j�j and de�ned as below:� �� jx1 : �1; : : : ; xn : �nj i� � �� j�ij for all iConsider the constraint � � j�j. If � = 1, then no constraintis placed on any use in �. But if � = ! then for every entryxi : �i in �, our de�nition implies that j�ij = !.4



Var x : � `� x : � Exch �; x : �0; y : �1; � `� e : ��; y : �1; x : �0; � `� e : �Cont �; x : �; y : � `� e : � 0 j� j = !�; z : � `� [z=x; z=y]e : � 0 Weak � `� e : � 0�; x : � `� e : � 0Abs �; x : � `� e : � 0 � �� j�j� `� �x: e : � !� � 0 App � `� e : � !� � 0 � `� x : ��; � `� e x : � 0Int `� n : Int� Plus � `� e0 : Int�0 � `� e1 : Int�1�; � `� e0 + e1 : Int�Nil `� nil : [� ]� Cons � `� x : � � `� y : [� ]��; � `� cons x y : [� ]�Case � `� e0 : [� ]� � `� e1 : � 0 �; x : �; y : [� ]� `� e2 : � 0�; � `� case e0 of fnil ! e1; cons x y ! e2g : � 0Let � `� e : � �; x : � `� e0 : � 0�; � `� let x = e in e0 : � 0 Letrec �; x : � `� v : � �; x : � `� e : � 0 j� j = !�; � `� letrec x = v in e : � 0Figure 2: Type rules3.5 Typing judgementsTyping judgements take the form � `� e : � , indicatingthat in context �, and under the constraints �, the terme has type � . The type rules are shown in Figure 2. Asusual, these consist of zero or more hypotheses above and aconclusion below the line.The type rules are quite similar to the usual rules forlambda calculus, and so we concentrate on explaining theunusual features: the structural rules, and the constraintson uses.3.6 Structural rulesThe manipulation of contexts is carefully designed so thatif any variable is used more than once this will be indicatedby the presence of the structural rule contraction (Cont),which introduces the use !.Terms that may be evaluated together are typed in dif-ferent contexts which are then combined, as can be seen inrules App, Plus, Cons, Case, and Let. As all variables in acontext must be distinct, the only way for the same variableto be used more than once is via the Cont rule. In this rule,the substitution [z=x; z=y]e replaces all occurrences of theplaceholder variables x and y in term e by the variable z.The type of z (and its placeholders x and y) must be anno-tated with the usage !. For instance, here is a type tree forthe term z + z. Varx : Int! `� x : Int! Vary : Int! `� y : Int! Plusx : Int! ; y : Int! `� x+ y : Intj Contz : Int! `� z + z : IntjAs one would expect, the variable z has use !. The usevariable j on the result type may be instantiated to 1 or !,depending on how the result of the addition is used.If a variable is never used, this is indicated by the pres-ence of the structural rule weakening (Weak). This rule

places no constraints on the use, since the use 1 (at mostonce) and the use ! (any number of times) are both com-patible with not being used at all. However, the weakeningrule may be helpful in devising a type system for strictnessanalysis, and is certainly important in usage analysis forcall-by-value languages (see Section 6).The last structural rule, exchange (Exch), simply indi-cates that the order of bindings in a context is irrelevant.The contraction, weakening, and exchange rules are notsyntax directed, but do not pose an impediment to the exis-tence of principal types since it easy to devise an algorithmwhich determines whether contraction or weakening mustbe used on each variable, placing these rules as close to theroot of the type tree as possible.A subtlety in the manipulation of contexts is revealedby the Case rule. In the Case rule, the term e0 is alwaysevaluated, and then either e1 or e2 is evaluated. Hence itmakes sense to type e0 in a di�erent context from e1 and e2,but to type e1 or e2 in the same context. For instance, thefollowing is a valid typing.xs : [Int1]1; y : Int1 `�case xs of fnil ! y; cons x xs0 ! x+ yg : Int1Although y appears twice in the term, it is only labelled asbeing used once, which is correct because only one branchof the `case' term will be evaluated.3.7 Term rulesIn rule Abs, the constraint � � j�j re
ects the fact that if afunction abstraction may be accessed more than once, thenevery free variable of that abstraction may be accessed morethan once.Consider again this example from the introduction.let x = 1 + 2 inlet f = �z: x+ z inf 3 + f 45



Since f appears twice in f 3 + f 4 it has use !. Since x is afree variable of a lambda abstraction with use !, it is in turnforced to have use !. Thus, despite appearing only once inthe term, x must be labelled with use !, as indeed it shouldbe since it will be accessed twice in the course of evaluation.Note that the Nil and Cons implicitly include the condi-tion � �� j� j because of our global well-formedness condi-tion on list types (see Section 3.3).The term `consxy' does not create any closures. It does,however, refer to the variables x and y, which can be thoughtof as pointers to closures. Consider the following example,where the term `cons x y' is used twice.let l = cons x y incase l of � � � case l of � � �Our typing rules give `cons xy' the type [a!]! which in turnforces x to have type a! and y to have type [a! ]! as ex-pected, since both x and y may be accessed twice.The Plus rule deserves some explanation. Our additionoperator is strict, so the result of evaluating e0 + e1 willsimply be an integer constant which will not refer to anypart of the results of evaluating e0 and e1. Therefore, theusage assigned to the expression e0+ e1 need not depend atall on the usages �0 and �1. A similar argument applies tothe App rule, since application is strict in its �rst argument.3.8 RecursionFinally, in a recursive de�nition, even a single access to avariable may allow additional accesses via the recursion (ac-tually the use of the letrec bound variable in both the bodyand the letrec bound expression requires an implicit con-traction). Hence in rule Letrec, the type of the recursivelybound variable must have use !.Note that this does not mean that whenever recursion isinvolved that all uses must degenerate to !. If a function isde�ned recursively, the argument and result of the functionmay still have use 1. Here is a function to append two lists.letrec append= �xs: �zs:case xs of fnil ! zscons y ys! let as = append ys zs in cons y asgin � � �It has the (principal) type[aj]k !! [aj ]l !m [aj ]lwith the set of constraintsk � fjg; l � fjg; m � fkgThe constraints k � fjg and l � fjg are generated by ourglobal well-formedness condition on list types, and indicatesthat if the argument or result list are accessed more thanonce, then the elements of those lists may also be accessedmore than once. The constraint m � fkg is generated bythe Abs rule, and indicates that if append is partially appliedand then used more than once, the �rst argument list maybe accessed more than once.One instance of the above type is[Int! ]! !! [Int! ]! !! [Int!]!

indicating that append can take two lists to which there maybe multiple pointers, and return a list to which there maybe multiple pointers. Another instance is[Int1]1 !! [Int1]1 !1 [Int1]1indicating that appendmay be applied multiple times to twolists to each of which there is only one pointer, returning alist to which there is only one pointer. (Attaching the use 1to the second arrow guarantees that one cannot create extrapointers to the �rst argument list by creating and duplicat-ing a partial application.) For this version of append it ispossible to generate code that reuses the `cons' cells of the�rst argument in producing the result.3.9 TypeabilityThe ordinary rules for simply typed lambda calculus canbe derived by simply omitting all use annotations and useconstraints from the rules given here. It follows that if aterm is typeable in this system, it is typeable in simply typedlambda calculus. Conversely, if a term is typeable in simplytyped lambda calculus, then it is also typeable in this system(just take all uses to be !).4 Principal types and polymorphismBefore discussing what it means for a type to be principalfor a given term, we �rst need to de�ne when a type is aninstance of another type. Our de�nition of instantiation isclosely related to Mitchell's de�nition of instantiation for atype system with simple subtypes [Mit84, Mit91].4.1 InstantiationA substitution is a pair of �nite maps. One component mapstype variables to types, while the other maps use variablesto uses.Type substitutions TS ::= fa�11 7! �1; : : : ; a�nn 7! �ngUse substitutions US ::= fk1 7! �1; : : : ; kn 7! �ngSubstitutions S ::= (TS;US)Whenever a type variable is replaced by a type, the newtype must have the same usage: for each (a�ii 7! �i) 2 S wehave S(�i) = j�ij.We can derive an instance of the typing derivation � `�e : � by applying a substitution S to � and � , and replacing� with a stronger constraint set �0. The behaviour of S ontypes and contexts is de�ned in the usual way. We de�nethe conditions under which �0 is stronger than � (under thesubstitution S) below:�0 j= S� i� for each (j � fk1; : : : ; kng) 2 � we have thatS(j) ��0 S(ki) for each i.A straightforward induction on the structure of typingderivations proves the following substitution lemma.Lemma 4.1.1 (Type substitution)If � `� e : � and �0 j= S� then S� `�0 e : S� .6



4.2 Uni�cationIt is easy to modify Robinson's uni�cation algorithm sothat it uni�es types containing usage information. However,whenever we unify a usage variable with another usage, weneed to update the current constraint set. Suppose � is thefollowing constraint set:j � flg; k � fmg; l � fmg; m � fgIf we unify the types aj and Intk we get the substitution:(faj 7! Intkg; fj 7! kg)Since we have uni�ed j and k, we must modify the constraintset � so that it merges the constraints for j and k:k � fl;mg; l � fmg; m � fgSimilarly, if we unify the types aj and Int! we get the sub-stitution: (faj 7! Int!g; fj 7! !g)We have instantiated j to !, which in turn forces us to alsoinstantiate l and m to !. The constraint k � fmg thensimpli�es to k � f!g, which can be eliminated, since ! isthe maximal usage.If we unify usage variables with other usage variables, orwith !, we can always derive a new constraint set, as ex-plained above. We can only fail to produce a new constraintset if we unify use variables with 1 (for instance, we mightunify j with ! and l with 1, generating the unsatis�able con-straint ! � 1). Fortunately, it is easy to show that, duringtype inference, we never need to make such constraints.4.3 Principal typesEvery term e has a principal type judgement � `� e : � , ofwhich all other type judgements for e are instances.Proposition 4.3.1 (Principal types)If � `� e : � then there exist �0, �0 and � 0 such that �0 `�0e : � 0 and for all �00, �00 and � 0 such that �00 `�00 e : � 00there exists a substitution S such that S�0 � �00, S� 0 = � 00and �00 j= S�0.The result is proved, as usual, by exhibiting an algorithmthat computes principal types.4.4 AnnotationsThe operational semantics of Section 2 and the reductionrules of Section 5 require that each let-bound variable x isannotated with a use jxj which is either 1 or !. Such anno-tations may be inferred as follows. First, determine a princi-pal typing for the given term, and a corresponding principaltype derivation. The typing will include a constraint set �,and we may choose any substitution S of use variables suchthat fg j= S�. Naturally, we choose the substitution thatmaps each use variable to 1, since this yields the best usageinformation.Since in the end all of the use variables are set to 1, onemight wonder why we bother with constraint sets at all? Buta moment's thought will show that we need the constraintinformation in order to infer the principal typing of a termfrom the principal typing of its subterms. This is becausein general the usage of a subterm depends on the context inwhich it appears, and the constraints on use variables allowus to propagate this information.

4.5 PolymorphismThe next step is to use `let' terms to introduce polymor-phism in the usual way. There are two possibilities. The�rst is to allow polymorphism only on type variables. Forinstance, the polymorphic type for append would be:8aj : [aj]k !! [aj]l !m [aj]lwith the same constraints as before. This allows appendto be used on lists of di�erent types, but every occurrenceof append in the program must have the same usage la-belling. For instance, if the labelling indicated that the �rstlist passed to append always had use 1, then the code for ap-pend could be optimised to reuse the `cons' cells of that list.Although crude, an analysis of this sort may be suitable forsome purposes, such as removing unnecessary closures. Anexisting analyser for this purpose, based on abstract inter-pretation, has a similar limitation but has proved reasonablye�ective [Mar93].The second possibility is to allow polymorphism on bothtype and use variables. For instance, the polymorphic typefor append would be8j:8k � fjg:8l � fjg:8m � fkg:8aj : [aj]k !! [aj]l !m [aj]lIn order to maximise the potential for optimisation, the com-piler needs to generate di�erent versions of append for di�er-ent instantiations of the use variables. A similar technique isused in Haskell compilers to specialise code involving over-loaded functions, and experience to date suggests that thisis feasible and does not necessarily lead to an explosion incode size [Aug93, Jon93]. In some situations, instead of spe-cialising append for di�erent uses, we might consider havingjust one version of append, and interpret the use variablesj; k; l;m as additional arguments to the append function, en-abling run-time selection of the behaviour of append.The trade-o� between these two possibilities is similar tothe trade-o� between monovariant and polyvariant bindingtime analysis in partial evaluation. Further experimentationwill be necessary to better understand the strengths andweaknesses of each approach.5 Reduction and subject-reductionWe previously described the semantics of our language us-ing Launchbury's operational semantics of call-by-need. Wenow give an alternative characterisation of that semanticsusing a modi�cation of the call-by-need calculus of Ariola etal. Working in the framework of a calculus with reductionrules simpli�es our proof of subject-reduction, but more im-portantly, gives a set of rules which can be used by a com-piler to optimise programs without danger of duplicatingwork (or returning the wrong result). We show how our us-age information enables additional \safe" reduction rules tobe formulated, allowing more aggresive optimisation whenvalues are known to be used at most once.5.1 Reduction rulesIn the call-by-need calculus of Ariola et al. [AFMOW95]a closure is created for the argument of each function ap-plication, whereas in the operational semantics of Launch-bury [Lau93] a closure is created only by the appearance of7



Contexts C ::= [ ] j C x j : : : �x:C j let x = C in e j let x = e in C j letrec x = C in e j letrec x = v in C jC + e j e+C j case C of fnil ! e1; cons x y ! e2g j case e0 of fnil ! C; cons x y ! e2g jcase e0 of fnil ! e1; cons x y ! CgLet contexts L ::= [ ] x j let x = [ ] in e j [ ] + e j e+ [ ] j case [ ] of fnil ! e1; cons x y ! e2gFigure 3: Call-by-need contextsn0 + n1 =) n0 + n1(�x: e) y =) [y=x]ecase nil of fnil ! e1; cons x y ! e2g =) e1case (cons y0 y1) of fnil ! e1; cons x0 x1 ! e2g =) [y0=x0; y1=x1]e2let x = v in C[x] =) let x = v in C[v] if jvj = !let x = e0 in e =) fe0=xge if jxj = 1letrec x = v in C[x] =) letrec x = v in C[v]L[let x = e0 in e] =) let x = e0 in L[e]L[letrec x = v in e] =) letrec x = v in L[e]let x = e0 in e =) e if x =2 fv(e)letrec x = v in e =) e if x =2 fv(e)Figure 4: Call-by-need reductions`let'. This di�erence is signi�cant: it means that the modelof Ariola et al. may create many more closures than themodel of Launchbury. For example, consider the following.letrec f = �xs: �y:case xs of fnil ! y; cons x xs0 ! f xs0 ygin let xs = e0 in let y = e1 in f xs yHere the model of Launchbury only creates closures for theoriginal call, and for each element of the list e0. In contrast,the model of Ariola et al. also creates two two extra closuresfor each recursive call of f .Fortunately, it is straightforward to adapt the calculusof Ariola et al. to correspond to the model of Launchbury.The required contextual forms are given in Figure 3, andthe reduction rules are given in Figure 4.A context C is a term with a hole. Note a hole cannotappear as the argument of an application or cons, since theseare restricted to variables and cannot be replaced by arbi-trary terms. A let context L has a hole in a strict position(the function of an application, the selector of a case, or anargument of plus) or in the de�niens of a let.The rules are the compatible closure of the rules shownin Figure 4. That is, if e =) e0 then also C[e] =) C[e0] forany context C. Capture of free variables is disallowed, socontext C should not bind x in the two rules containing C,and context L should not have x as a free variable in the tworules containing L. The rules containing L correspond to theseveral let-
oating rules of Ariola et al., which are necessaryto guarantee that every closed term can be reduced to aweak head normal form.The key change from the work of Ariola et al. involvesthe rule that allows substitution of a value,let x = v in C[x] =) let x = v in C[v]; if jxj = !:This rule is safe because, since v is already a value, the sub-stitution cannot duplicate computation. However, in orderto guarantee that reductions preserve use types, we mustrestrict this rule to the case where all free variables of vhave use !; otherwise we may duplicate a variable with use1 resulting in an ill-typed term. An adequate restriction

is to require that x has use !, since this implies that allfree variables of v also have use !, as the reader may eas-ily check (the two important cases are when v is a functionabstraction and when v is a cons).In the case where x has use 1, we can allow substitutionof not just a value but of any expression,let x = e0 in e =) fe0=xge; if jxj = 1:Since we cannot substitute an expression for a variable thatappears as the argument of an application or cons, we usea modi�ed form of substitution, written fe0=xge. The def-inition of fe0=xge is standard, except for the following twoclauses:fe0=xg(e x) = let x = e0 in e x;fe0=xg(cons y z) = let x = e0 in cons y z; if x = y or x = z:Note that the substitution rules together with let-
oatingrules introduce possible loops in reduction sequences. Forexample, let x = e0 in let z = cons x y in e=) let z = let x = e0 in cons x y in e=) let x = e0 in let z = cons x y in e:As we note below, compilers such as the Glasgow Haskellcompiler are often based on sets of reductions containingsuch loops. Nonetheless, it would be preferable to have areduction system without such loops, and we note this as aninteresting topic for future work.5.2 Con
uence, soundness, and completenessThe following results are straightforward adaptations of theresults of Ariola et al. The system is con
uent, and soundand complete with respect to Launchbury's operational se-mantics.Proposition 5.2.1 (Con
uence)If e0 =)� e1 and e0 =)� e2 then there exists a term e3 suchthat e1 =)� e3 and e2 =)� e3.8



If H is a heap as in the operational semantics, and e is aterm, then the con�guration hHie corresponds to the term`let hHi in e', de�ned as follows.let h i in e = elet hlet x = e0; Hi in e = let x = e0 in (let hHi in e)let hletrec x = v;Hi in e = letrec x = v in (let hHi in e)Proposition 5.2.2 (Soundness)If hHi e + hH 0i v0 then let hHi in e =)� let hH 0i in v0Proposition 5.2.3 (Completeness)If let hHi in e =)� let hH 00i in v00 then there exist H 0and v0 such that hHi e + hH 0i v0 and let hH 0i in v0 =)�let hH 00i in v00.The soundness and completeness results take an evensimpler form for terms of type integer.Corollary 5.2.4 (Soundness and completeness)There exists a heap H 0 such that hHi e + hH 0in if and onlyif let hHi in e =)� n.NB: We have checked in detail the proof of soundness; itis a straightforward adaptation of the proof given by Ariolaet al. We believe the proofs of con
uence and completenessshould also be straightforward adaptations of their proofs,but we have not checked these in detail.5.3 Subject ReductionUse types are preserved by reduction.Proposition 5.3.1 (Subject reduction)If � `� e : � and e =) e0 then � `� e0 : � .The proof is straightforward, verifying each rule in Fig-ure 4 separately, and structural induction over terms for thecompatible closure.Combining Propositions 5.3.1 and 5.2.2 yields a sound-ness result for our type system with respect to the opera-tional semantics.Corollary 5.3.2 (Operational subject reduction)If `� let hHi in e : � and hHi e + hH 0i v then`� let hH 0i in v : � .5.4 Additional transformationsThere are many useful reduction rules that we might add tothose appearing in Figure 4.For instance, it is helpful to have the reductionlet x = e0 in (let y = e1 in e2) =)let y = (let x = e0 in e1) in e2; if x =2 fv(e2);which avoids the creation of a closure for e0 if, say, y isnot evaluated at run time. By the way, note that the ruleL[let x = e0 in e] =) let x = e0 in L[e] has as an instancelet y = (let x = e0 in e1) in e2 =)let x = e0 in (let y = e1 in e2); if x =2 fv(e2);which is helpful if, say, further simpli�cation reduces e1 to avalue. The Glasgow Haskell compiler makes extensive use ofboth reductions [San92]. This explains why we are not toobothered by the existence of loops in our reduction rules, asnoted previously.Some useful additional transformations depend on usageinformation. The prime example is the reduction

let x = e0 in (�y: e) =) �y: (let x = e0 in e); if j�y: ej = 1:This requires adding a further use annotation to terms: weassume that each that each abstraction j�x: ej is annotatedwith a use of 1 or ! which we write j�x: ej. The use infor-mation is crucial for safety: the reduction might duplicatecomputation if j�y: ej = !. Again, this reduction is ex-tensively used in the Glasgow Haskell compiler. It turnsout to be particularly important for one form of deforesta-tion [GLP93].6 Use analysis for call-by-value calculiOur use analysis can easily be adapted for call-by-value cal-culi. In such calculi, we are interested in variables which areused exactly once (rather than at most once). For example,if f is used exactly once, and x is only used in the body off , then we can safely transformlet x = e in let f = �y: x+ 3 in : : :into let f = �y: e+ 3 in : : :(hopefully reducing the maximum amount of storage usedby the program). This transformation is clearly unsafe if f isnever used, since the expression e might be non-terminating.We would have transformed a non-terminating program intoa terminating program.Changing our type system to determine when a value isused exactly once is easy. We simply change the weakeningrule as below: Weak � ` e : � 0 j� j = !�; x : � ` e : � 0We can now interpret the use 1 as meaning that a valueis used exactly once. This transforms our type system intosomething much closer to a linear type system. In a com-panion paper [MOTW95], we elaborate on the connectionsbetween linear logic and call-by-value reduction, and a�nelogic and call-by-need reduction.We conjecture that usage-based program transformationin the presence of side-e�ects could be handled by combin-ing our usage analysis with an e�ect system [Luc87, LG88,JG91]. (E�ect systems can distinguish side-e�ecting com-putation from purely functional computation.)7 Related work7.1 Linear logicThe type system presented here is based on ideas taken fromthe linear logic of Girard [Gir87] and its successor the Logicof Unity [Gir93]. A companion paper describes the embed-ding of the call-by-need calculus into linear logic that un-derlies the type system used here [MOTW95]. Interestedreaders are referred to that paper for a survey of relatedwork on linear logic.7.2 Call-by-need analysesWe are aware of two other analyses that attempt to deter-mine when a value is used at most once under call-by-needevaluation. One is a type system due to Launchbury and9



others [Lau92], the other is an abstract interpretation dueto Marlow [Mar93]. We note three points of comparison.First, unlike ours, neither of the other analyses possess aproof of soundness. Second, our system sometimes derivesmore precise information than the other two; see Example 3in Section 1.1. Third, unlike the above analyses, our typesystem does not detect the case where closures are neverused (we omitted the zero usage from our analysis so as tosimplify our usage constraints).Our next step is to implement our analysis in the Glas-gow Haskell compiler, allowing us to compare it directly withMarlow's. By observing how our analysis performs on realprograms we can test whether omitting zero usages has asigni�cantly impact.7.3 Call-by-name analysesWe also are aware of two analyses that determine usage in-formation for values under call-by-name, one due to Wrightand Baker-Finch [WB93], the other due to Courtenage andClack [CC94]. Both are based on type systems, and bothhave been argued to be sound. We note three points ofcomparison.First, choosing call-by-name evaluation instead of call-by-need prevents even fairly simple optimisations from beingdiscovered. For instance, in Example 1 of Section 1.1, thevariable x is used once under call-by-need, as our system dis-covers, but twice under call-by-name. Experience suggeststhis di�erence is signi�cant, as the situation encountered inExample 1 is fairly common.Second, even if we are satis�ed to limit our attentionto call-by-name, neither system provides an especially use-ful analysis. The Wright and Baker-Finch system discoverstoo much information: function types are annotated withnatural numbers which indicate the number of times a func-tion uses its argument, and this level of accuracy rendersthe type system undecidable. The Courtenage and Clacksystem discovers too little information: they can determinewhen an argument is used zero times, exactly once, or atleast once; but they do not determine when an argument isused at most once, which is most helpful for the problemswe are interested in.Third, unlike our system, the other systems also provideinformation about when a value is used at least once, whichis useful for strictness analysis. For this question, the dis-tinction between call-by-need and call-by-name is irrelevant,which may explain why the authors of these systems werewilling to settle for a call-by-name analysis.7.4 Data structure updateA number of analyses for in-place update of data structureshave been proposed, including those by Schmidt [Sch85],Hudak [Hud86], Baker [Bak90], Hudak and Guzm�an [GH90],and Wadler [Wad90b, Wad91]. These systems are not es-pecially well suited for enabling program transformationsor eliding closure update in call-by-need languages. Con-versely, our system is not the best possible for in-place up-date, as it can only determine when there is at most onepointer to a structure. For many purposes, it is better touse a weaker criterion which allows multiple pointers whenreading a structure but ensures there is at most one pointerwhen a structure is to be updated in place.

8 ConclusionsWe have presented a simple type system which can deter-mine when a value is used at most once, even in the presenceof higher-order functions and data structures. Our analy-sis is tailored to the precise reduction strategy used in theGlasgow Haskell compiler, and therefore yields more accu-rate results than analyses which assume call-by-name reduc-tion. We have proved our type system sound with respect toLaunchbury's natural semantics of lazy evaluation, and haveprovided safe reduction rules which the compiler can use totransform programs without risking duplicating work.A prototype type inference algorithm has already beenimplemented. Our next step is to incorporate our type sys-tem into the Glasgow Haskell compiler [PHHPW93]. Thiswill enable us to measure the e�ect of our optimisations onlarge Haskell programs. The Glasgow Haskell compiler usesan explicitly-typed core language to express most of its pro-gram transformations. By adding our usage information tothe core language type system we can conveniently provideinformation to the optimiser, enabling additional programtransformations, and allowing the code generator to omitunnecessary closure updates.Our annotated types provide a convenient way of com-municating usage information across module boundaries (wesimply add usage information to the user-level type informa-tion which is already exported from a module).We intend to further explore how our type system enablesin-place update of data structures. An interesting questionis how much of this should be done automatically by thecompiler, how much should be under the control of the user,and to what extent the type system acts as an e�ective mech-anism to let the user understand and control optimisations.9 AcknowledgementsThe ideas described here grew out of collaboration with theGlasgow functional programming group, especially SimonPeyton Jones, John Launchbury, Andy Gill, Simon Mar-low, Will Partain, Patrick Sansom, and Andre Santos. TheSemantique II working group provided helpful feedback, es-pecially Patrick Cousot, Sebastian Hunt, Torben Mogensen,Dave Sands, and Yan-Mei Tang.References[AFMOW95] Z. Ariola, M. Felleisen, J. Maraist, M. Oder-sky, and P. Wadler. A call-by-need lambda calculus. Sym-posium on Principles of Programming Languages, ACMPress, San Francisco, California, January 1995.[Aug93] L. Augustsson, Implementing Haskell overloading.In Functional Programming Languages and ComputerArchitecture, Copenhagen, Denmark, June 1993. ACMPress.[Bak90] H. Baker, Unify and conquer (garbage, updating,aliasing : : : ) in functional languages. In Conference onLisp and Functional Programming, ACM Press, Nice,June 1990.[CC94] S. A. Courtenage and C. D. Clack, Analysing re-source use in the �-calculus by type inference, In ACMSigplan Workshop on Partial Evaluation and Semantics-Based Program Manipulation, 1994.10
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