
On-the-Fly Analysis of Systems withUnbounded, Lossy FIFO ChannelsParosh Aziz Abdulla1, Ahmed Bouajjani2, and Bengt Jonsson11 Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden,fparosh,bengtg@docs.uu.se2 VERIMAG, Centre Equation, 2 av. de Vignate 38610 Gieres, France,Ahmed.Bouajjani@imag.frAbstract. We consider symbolic on-the-y veri�cation methods for sys-tems of �nite-state machines that communicate by exchanging messagesvia unbounded and lossy FIFO queues. We propose a novel representa-tion formalism, called simple regular expressions (SREs), for representingsets of states of protocols with lossy FIFO channels. We show that theclass of languages representable by SREs is exactly the class of down-ward closed languages that arise in the analysis of such protocols. Wegive methods for (i) computing inclusion between SREs, (ii) an SRE rep-resenting the set of states reachable by executing a single transition in asystem, and (iii) an SRE representing the set of states reachable by anarbitrary number of executions of a control loop of a program. All theseoperations are rather simple and can be carried out in polynomial time.With these techniques, one can construct a semi-algorithm which ex-plores the set of reachable states of a protocol, in order to check varioussafety properties.1 IntroductionOne of the most popular models for specifying and verifying communicationprotocols is that of Communicating Finite State Machines (CFSM) [10, 8]. Thismodel consists of �nite-state processes that exchange messages via unboundedFIFO queues. Several veri�cation methods have been developed for CFSMs [10,11, 15, 18{20]. However, since all interesting veri�cation problems are undecid-able [10], there is in general no completely automatic veri�cation method forthis class of systems.A way to obtain a decidable veri�cation problem is to consider lossy channelsystems, where the unbounded FIFO channels are assumed to be lossy, in thesense that they can at any time lose messages. This restricted model covers alarge class of communication protocols, e.g., link protocols. In our earlier work[2], we showed the decidability and provided algorithms for veri�cation of safetyproperties and some forms of liveness properties for lossy channel systems. Ouralgorithm for verifying safety properties is global, in the sense that it performsa backward search, starting from a set of \bad" states and trying to reach someinitial state. In contrast, many e�cient veri�cation methods are so-called on-the-y algorithms [17, 13], in which the state-space is explored in a forward search,



starting from the initial states. In this paper, we therefore consider how forwardveri�cation can be carried out for lossy channel systems.For that we adopt a symbolic veri�cation approach. One of the main chal-lenges in developing veri�cation methods for a class of systems is to choose asymbolic representation of (possibly in�nite) sets of states of a system. Thesymbolic representation should be expressive, yet allow e�cient performanceof certain operations which are often used in symbolic veri�cation algorithms.Examples of such operations include checking for inclusion, and computing thestates that can be reached by executing a transition of the system. In order tospeed up the search through the state space, it is also desirable to be able to cal-culate, in one step, the set of states that can be reached by executing sequencesof transitions. For instance, we can consider the set of sequences correspondingto an arbitrary number of executions of a control loop. This technique to speedup the reachability search has been applied e.g. for systems with counters[9] andperfect channel systems [3, 5]. Once a symbolic representations has been obtainedit can used for many types of veri�cation and model checking problems.In this paper, we propose a novel representation formalism, called simple reg-ular expressions (SREs), for use in verifying protocols modelled as lossy channelsystems. SREs constitute a simple subclass of regular expressions. To our knowl-edge, this class has not been studied before. Because of the lossiness, we needonly to represent sets of channel contents that are closed with respect to the sub-sequence relation. For example, if a channel can contain the sequence abc, thenit can also contain the sequences ab, ac, bc, a, b, c, and �. It is well-known thatdownward closed languages are always regular. We strengthen this result andshow that in fact the class of downward closed languages corresponds exactlyto those recognized by SREs. This implies that for any lossy channel systemwe represent the set of reachable states as an SRE. We suggest methods forcomputing:{ inclusion between SREs, which can be done in quadratic time,{ an SRE obtained by executing a single transition, and{ an SRE obtained by an arbitrary number of executions of a control loop ofa program. It turns out that this operation is not very complicated and canbe carried out in polynomial time.With these techniques, one can straightforwardly construct an algorithm whichexplores the set of reachable states of a protocol, in order to check various prop-erties. This algorithm is parametrized by the set of control loops that are used tospeed up the reachability set computation. We also show how one can performmodel-checking of LTL properties, using a standard construction of taking thecross-product of the protocol and a B�uchi automaton that recognizes the comple-ment of the LTL property in question. It should be noted that all these methodsare incomplete, i.e., they may sometimes not terminate. The incompleteness ofour methods is unavoidable despite the facts that reachability is decidable forlossy channel systems, and that the set of reachable states is representable by anSRE. This is due to a basic result [12] saying that there is no general algorithmfor generating the set of reachable states.



As an illustration of the applicability of our methods and the SRE represen-tation, we look at a few communication protocols that have been veri�ed earlierin the literature. It turns out that the sets of reachable states of these protocolscan be conveniently represented as SREs.RelatedWork There are several other results on symbolic veri�cation of perfectchannel systems. Pachl [18] proposed to represent the set of reachable states ofa protocol as a recognizable set. A recognizable set is a �nite union of Cartesianproducts of regular sets. Pachl gave no e�cient algorithms for computing such arepresentation. In [14] a symbolic analysis procedure is proposed using a class ofregular expressions which is not comparable with SRE's. However, the computedreachability set by this procedure is not always exact.Boigelot and Godefroid [3, 5] use �nite automata (under the name QDDs)to represent recognizable sets of channel contents. In [5] it has been shown thatthe e�ect of every loop is recognizable for a system with a single �fo-channel. Assoon as two channels are considered, the e�ect of a loop may be non-recognizable(i.e., not QDD representable). This is due to the fact that the repeated executionof a loop may create constraints between the number of occurrences of symbolsin di�erent channels. For instance, the iteration of a loop where a message is sentto two di�erent channels generates pairs of sequences with the same length (as-suming the channel is initially empty). In [5] a complete characterization is givenof the types of loops which preserve recognizability. To compute and representthe e�ect of any loop in a perfect �fo-channel, a representation structure, calledCQDDs (constrained QDDs), combining �nite automata with linear arithmeti-cal constraints is needed [7]. In the case of lossy channels, the links between thenumber of occurrences in di�erent channels are broken due to lossiness, and thissimpli�es the computation of the e�ect of loops, conceptually and practically(i.e., from the complexity point of view).We argue that SREs o�er several advantages when used as a symbolic rep-resentation in the context of lossy channel systems. First, the operations onQDD's and CQDD's are of exponential complexity and are performed by quitenon-trivial algorithms (see e.g. [4, 6]), whereas all operations on SRE's can beperformed by much simpler algorithms and in polynomial time. Moreover, wedescribe a normal form for SREs, and provide a polynomial procedure to trans-form an SRE to an equivalent normal SRE. While QDD's admit a canonicalform via minimization, a corresponding result is not known for CQDD's. Also,SREs are closed under the performance of any loop, while QDDs are closed onlyunder certain restricted types of loops.Finally, although the data structures (QDDs and CQDDs) used in [3, 5, 7] aremore general than SREs, the algorithms in [3, 5, 7] are not able to simulate theones we present in this paper. The reason is that the lossy transitions are implicitin our model, whereas all transitions are explicitly represented in the algorithmsin [3, 5, 7]. Thus to simulate in [3, 5, 7] the e�ect of iteration of a loop in the lossychannel model, we have to add transitions explicitly to model the losses. Thesetransitions add in general new loops to the system, implying that a loop in the



lossy channel system is simulated by a nested loop in the perfect channel system.However analysis of nested loops is not feasible in the approaches of [3, 5, 7].Outline In the next section we give some preliminaries. In Section 3 we intro-duce the class Simple Regular Expressions (SREs). In Section 4 we describe howto check entailment among SREs. In Section 5 we give a normal form for SREs.In Section 6 we de�ne operations for computing post-images of sets of con�gu-rations, represented as SREs. In Section 7 we show how to use SREs to performon-the-y veri�cation algorithms for lossy channel systems. In Section 8 we illus-trate our method with an example. Finally, in Section 9 we present conclusionsand directions for future work.2 PreliminariesAssume a �nite alphabet M . For x; y 2M� we let x�y denote the concatenationof x and y. We use xn to denote the concatenation of n copies of x. The emptystring is denoted by �. We use x � y to denote that x is a (not necessarilycontiguous) substring of y.Consider a system modeled by a �nite set of �nite-state machines, that com-municate through sending and receiving message via a �nite set of unboundedFIFO channels. The channels are assumed to be lossy in the sense that they cannondeterministically lose messages. We model such a system as a lossy channelsystem.De�nition 1. A Lossy Channel System L is a tuple hS; sinit ; C;M; �i, whereS is a �nite set of (control) states. The control states of a system with n �nite-state machines is formed as the Cartesian product S = S1 � � � � � Sn of thecontrol states of each �nite-state machine.sinit 2 S is an initial state, The initial state of a system with n �nite-state ma-chines is a tuple hsinit 1; : : : ; sinitni of initial states of the components.C is a �nite set of channels,M is a �nite set of messages,� is a �nite set of transitions, each of which is a triple of the form hs1;Op; s2i,where s1 and s2 are states, and Op is a mapping from C to (channel) oper-ations. An operation is either a send operation !a, a receive operation ?a, oran empty operation nop, where a 2M . 2A transition of form hs1;Op; s2i represents a change of the control state from s1to s2 while performing all the operations in Op. The operations !a, ?a, nop rep-resent sending a to the channel, receiving a from the channel, and not changingthe content of the channel, respectively.Global states of a lossy channel system are represented by con�gurations. Acon�guration  of L is a pair hs; wi, where s 2 S is a control state and w is amapping from C to M�. For two mappings w and w0 from C to M�, we usew � w0 to denote that w(c) � w0(c) for each c 2 C. We use � to denote themapping where each channel is assigned �. The initial con�guration init of Lis the pair hsinit ; �i. For each transition hs1;Op; s2i 2 �, we de�ne a transition



relation hs1;Op;s2i�! on con�gurations, such that hs1; w1i hs1;Op;s2i�! hs2; w2i if andonly if for each channel c 2 C we have{ if Op(c) =!a, then w2(c) = w1(c) � a.{ if Op(c) =?a, then a � w2(c) = w1(c).{ if Op(c) = nop, then w2(c) = w1(c).We de�ne a weak transition relation on con�gurations: hs1; w1i hs1;Op;s2i=) hs2; w2iif and only if there are w01 and w02 such that w01 � w1 and w2 � w02 andhs1; w01i hs1;Op;s2i�! hs2; w02i. Intuitively, hs1; w1i hs1;Op;s2i=) hs2; w2i denotes thaths2; w2i can be obtained from hs1; w1i by �rst losing messages from the channels,then performing the transition hs1;Op; s2i and thereafter losing messages fromchannels. We let hs1; w1i =) hs2; w2i denote that there is a transition hs1;Op; s2isuch that hs1; w1i hs1;Op;s2i=) hs2; w2i. We let �=) denote the reexive transitiveclosure of =). A con�guration 0 is said to be reachable from a con�guration if  �=) 0. A con�guration  is said to be reachable if  is reachable from theinitial con�guration init . For a state s, we de�ne R(s) = nw j init �=) hs; wio.In symbolic veri�cation, we are interested in manipulating sets of con�gura-tions, e.g., in order to compute R(s). Let � be a set of con�gurations. We use� (s) to denote the set fw j hs; wi 2 �g. and post(hs1;Op; s2i ; � ) to denote theset �0 j 9 2 [[� ]]:  hs1;Op;s2i=) 0�.3 Simple Regular Expressions (SREs)We de�ne a class of languages which can be used to describe the set of reachablecon�gurations of a lossy channel system. Let M be a �nite alphabet. We de�nethe set of regular expressions (REs), and the languages generated by them in thestandard manner. For a regular expression r, we use [[r]] to denote the languagede�ned by r. For regular expressions r1 and r2, we use r1 � r2 (r1 v r2) todenote that [[r1]] = [[r2]] ([[r1]] � [[r2]]). By r1 < r2 we mean that r1 v r2 andr1 6� r2. In case r1 v r2 we say that r1 entails r2. We use �(r) to denote the setof elements of M appearing in r.We de�ne a subset of the set of regular expressions, which we call the set ofsimple regular expressions, as follows.De�nition 2. Let M be a �nite alphabet. An atomic expression over M is aregular expression of the form{ (a+ �), where a 2M , or of the form{ (a1 + : : :+ am)�, where a1; : : : ; am 2M .A product p over M is a (possibly empty) concatenation e1 � e2 � � � � � en ofatomic expressions e1; : : : ; en over M . We use � to denote the empty product,and assume that [[�]] = f�g.A simple regular expression (SRE) r over M is of the form p1 + : : : + pn,where p1; : : : ; pn are products over M . We use ; to denote the empty SRE, and



assume that [[;]] is the empty language ;. A language L is said to be simplyregular if it is representable by an SRE.Let C and M be �nite alphabets. A C-indexed language overM is a mappingfrom C to languages over M . A C-indexed RE (SRE) R over M is a mappingfrom C to the set of REs (SREs) over M . The expression R de�nes a C-indexedlanguage K over M where w 2 K if and only if w(c) 2 [[R(c)]] for each c 2C. The entailment relation is extended to indexed REs in the obvious manner.An indexed language is said to be simply recognizable if it is a �nite union oflanguages recognized by indexed SREs. 2De�nition 3. Let M and C be �nite alphabets. For a language L � M�, wesay that L is downward closed if x 2 L and y � x imply y 2 L. The de�nitionis generalized in the natural way to C-indexed languages over M . 2Theorem 1. For a �nite alphabets M and C and a C-indexed language L overM , if L is downward-closed then L is simply recognizable.Proof. It is well-known that each downward-closed language is regular. The re-sult follows from Higman's theorem [16] which states the following: for any �nitealphabet M , and for any in�nite sequence x1; x2; : : : of strings over M , thereare i < j such that xi � xj .Using induction on the set of REs, we can show that for each RE r, if [[r]] isdownward-closed, then there is an SRE r0 such that r0 � r. The result followsimmediately. 2Since the set of reachable con�gurations of a lossy channel system is downward-closed, we get the following.Corollary 1. For a lossy channel system L and a state s in L, the set R(s) issimply recognizable.However, it is shown in [12] that we cannot in general compute a represen-tation of R(s). The uncomputability of R(s) is shown through a reduction toan undecidable problem reported in [1]. More precisely, in [1] we show the un-decidability of the recurrent state problem: given a lossy channel system L anda state s in L, is there a computation of L visiting s in�nitely often? In [12] theuncomputability of a representation of R(s) is reduced to the recurrent stateproblem as follows. We add a new channel c to the lossy channel system. When-ever a computation reaches s, an arbitrary message is sent to c. Suppose that wecan compute an indexed SRE R such that [[R]] = R(s). It is clear that the ex-istence of a computation visiting s in�nitely often is equivalent to the �nitenessof [[R(c)]].Theorem 2. [12] For a lossy channel system L and a state s in L, there is, ingeneral, no algorithm for computing a representation of R(s).Although we can compute a representation of the set of con�gurations fromwhich a given con�guration is reachable ([2]), we cannot in general compute



a representation of the set of con�guration which are reachable from a givencon�guration (Theorem 2). This means that we can have a complete algorithmfor performing backward reachability analysis in lossy channel systems, whileany procedure for performing forward reachability analysis will necessarily beincomplete.4 Entailment among SREsIn this section, we consider how to check entailment between SREs. First, weshow a preliminary lemma about entailment.Lemma 1. For products p; p1; : : : ; pn, if p v p1+ : : :+ pn then p v pi for somei 2 f1 : : : ng.Proof. Given any natural number k, we de�ne a sequence x such that x 2 [[p]]and x 62 [[p0]], for any product p0, where p 6v p0 and where p0 contains at mostk atomic expressions. The result follows immediately. Let p = e1 � � � � � em. Wede�ne x = y1 � � � � �ym, where yi is de�ned as follows. If ei = (a+ �) then yi = a.If ei = (a1 + : : :+ a`)� then yi = (a1 � � � � � a`)k+1. 2Let us identify atomic expressions of form (a1 + : : : + am)� which have thesame set a1; : : : ; am of symbols. Then v is a partial order on atomic expressions.It is the least partial order which satis�es(a+ �) v (a1 + : : :+ am)� if a 2 fa1; : : : ; amg(a1 + : : :+ am)� v (b1 + : : :+ bn)� if fa1; : : : ; amg � fb1; : : : ; bngLemma 2. Entailment among products can be checked in linear time.Proof. The result follows from the fact that � v p, p 6v � if p 6= �, and e1 � p1 ve2 � p2 if and only if one of the following holds:{ e1 6v e2 and e1 � p1 v p2.{ e1 = e2 = (a+ �) and p1 v p2.{ e2 = (a1 + � � �+ an)�, e1 v e2, and p1 v e2 � p2. 2Lemma 3. Entailment among SREs can be checked in quadratic time.Proof. The proof follows from Lemma 1 and Lemma 2. 2Corollary 2. Entailment among indexed SREs can be checked in quadratic time.5 Normal Forms for SREsIn this section, we show how to compute normal forms for SREs. First we de�nea normal form for products.De�nition 4. A product e1�� � ��en is said to be normal if for each i : 1 � i < nwe have ei � ei+1 6v ei+1 and ei � ei+1 6v ei. 2



Lemma 4. For each product p, there is a unique normal product, which wedenote p, such that p � p. Furthermore, p can be derived from p in linear time.Proof. We can de�ne p from p by simply deleting atomic expressions which areredundant according to De�nition 4. 2Similarly, we can de�ne a normal form for SREs.De�nition 5. An SRE r = p1+: : :+pn is said to be normal if each pi is normalfor i : 1 � i � n, and pi 6v pj , for i; j : 1 � i 6= j � n. 2In the following, we shall identify SREs if they have the same sets of products.Lemma 5. For each SRE r, there is a unique (up to commutativity of products)normal SRE, which we denote by r, such that r � r. Furthermore, r can bederived from r in quadratic time.Proof. The proof follows from Lemma 2, Lemma 1 and Lemma 4. 26 Operations on SREsIn this section, we will de�ne operations for computing post-images of sets ofcon�gurations, represented as SREs, with respect to transitions of a lossy chan-nel system. We will also de�ne operations for computing post-images of sets ofcon�gurations with respect to an arbitrary number of repetitions of an arbitrarycontrol loop in a lossy channel system.Throughout this section, we assume a �xed �nite set C of channels and a�nite alphabet M . We will �rst consider operations on SREs corresponding tosingle transitions, and thereafter consider loops.6.1 Computing the E�ect of Single TransitionsConsider a language L and an operation op 2 f!a; ?a;nopg. We de�ne L
 op tobe the smallest downward closed language such that y 2 (L
 op) if there is anx 2 L satisfying one of the following three conditions: (i) op =!a, and y = x � a;or (ii) op =?a, and a � y = x; or (iii) op = nop, and y = x.For an indexed language K, and a mapping Op from C to operations, wede�ne K
Op to be the indexed language where (K
Op)(c) = K(c)
Op(c), foreach c 2 C. Notice that, for a lossy channel system L, a transition hs1;Op; s2i,and a set � of con�gurations in L, the set post(hs1;Op; s2i ; � ) is given byfhs2; wi j w 2 (� (s1)
Op)g.The following propositions show how to compute the e�ect of single opera-tions on SREs.Lemma 6. For an SRE r and an operation op, there is an SRE, which wedenote r
op, such that [[r
op ]] = [[r]]
op. Furthermore, r
op can be computedin linear time.



Proof. For a product p and an operation op, we have p
 (!a) = p � (a+ �), andp
 (nop) = p. Furthermore, �
 (?a) = ;. and if p = e � p1, thenp
 (?a) = 8<:p if e = (a1 + : : :+ an)� and a 2 fa1 + : : :+ angp1 if e = (a+ �)p1 
 (?a) otherwiseFor an SRE p1 + : : :+ pm we have(p1 + : : :+ pm)
 op = (p1 
 op) + : : :+ (pm 
 op)Lemma 6 can be generalized in the obvious manner to indexed SREs.6.2 Computing the E�ect of LoopsWe study methods to accelerate reachability analysis of lossy channels systems.The basic idea is that, rather than generating successor con�gurations withrespect to single =)-transitions, we shall consider the e�ect of performing setsof sequences of transitions in each step. We consider control loops, i.e., sequencesof transitions starting and ending in the same control state. If ops is the sequenceof channel operations associated with a control loop, then we shall calculate thee�ect on an SRE of performing an arbitrary number of iterations of ops . InLemma 7, we show that for each SRE and sequence ops , there is an n suchthat the set of all strings which can be obtained through performing n or moreiterations of ops on the SRE can be characterized by a (rather simple) SRE.In other words, the e�ect of the loop \stabilizes" after at most n iterations, inthe sense it only generates strings belonging to a single SRE. This implies thatthe e�ect of performing an arbitrary number of iterations of the loop can berepresented as the union of n SREs: one of them represents all iterations after n,while the remaining SREs each represents the e�ect of iterating the loop exactlyj times for j : 1 � j � n� 1. In Corollary 3 we generalize the result to indexedSREs.For strings x and y, we use x �c y to denote that there are x1 and x2 suchthat x = x1 � x2 and x2 � x1 � y. The relation �c can be decided in quadratictime. We use x �+ y to denote that there is a natural number m � 1 suchthat xm+1 � ym. It can be shown that if m exists then m can be found in theinterval 1 � m � jyj. It follows that the relation �+ can be checked in quadratictime. For a sequence ops = op1op2 � � � opn of operations, we de�ne L 
 ops tobe L
 op1
 op2
 � � � 
 opn. We use opsm (Opsm) to denote the concatenationof m copies of ops (Ops). By ops ! (ops?) we mean the subsequence of opswhich contains only send (receive) operations. For a product p, let jpj denote thenumber of atomic expressions in p.Lemma 7. For a product p and a sequence ops of operations, the followingholds. There is a natural number n and a product p0 such that either p
opsn = ;or p0 = [j�n[[p 
 opsj ]]. Furthermore, the value of n is linear in the size of p,and p0 can be computed in quadratic time.



Proof. Let �(ops !) = fb1; : : : ; bkg. There are four cases. In the �rst two cases theloop can be iterated an in�nite number of times and the channel contents will beunbounded. In case 3 the loop can be iterated an in�nite number of times butthe channel contents will be bounded. In case 4 deadlock occurs after at most niterations.1. If (ops?)� � [[p]]. This means that either ops? is empty or there is an atomicexpression in p of the form (a1 + : : :+ am)� where �(ops?) � fa1; : : : ; amg.In case ops? is empty, we let n = 0 and p0 = p � (b1 + � � �+ bk)�. Otherwise,let e be the �rst expression in p (starting from the left) which satis�es theabove property, and let p = p1 � e � p2. We de�ne n = jp1j and p0 = e � p2 �(b1 + � � �+ bk)�.Intuitively, after consuming the words in p1, the loop can be iterated anarbitrary number of times producing and adding to the right a correspondingnumber of ops !. Hence, due to lossiness, the global e�ect is obtained byconcatenating to the right of e � p2 the downward closure of (ops !)�, whichis precisely (b1 + � � �+ bk)�.2. If (ops?)� 6� [[p]], ops? �+ ops !, and p
 ops 6= ;, then we de�ne n = jpj andp0 = (b1 + � � �+ bk)�.Intuitively, since (ops?)� 6� [[p]], the original contents of the channel will beconsumed after at most n iterations. Furthermore, ops? �+ ops ! implies thatthere is an m such that (ops?)m+1 � (ops !)m. Hence that contents of thechannel will grow by at least ops ! after each m + 1 iterations. By iteratingthe loop su�ciently many times we can concatenate any number of copies ofops ! to the end of the channel. Again, by lossiness, the total e�ect amounts to(b1+ � � �+ bk)�. The condition p
ops 6= ; guarantees that the �rst iterationof the loop can be performed. This is to cover cases where e.g. the channelis initially empty and the receive operations are performed �rst in the loop.3. If (ops?)� 6� [[p]], ops? 6�+ ops !, ops? �c ops !, and p 
 ops2 6= ;, thenn = jpj+ 1 p0 = p
 opsn+1.Although the loop can be iterated any number of times, the contents ofthe channel will not grow after the nth iteration. Observe that we demandp
 ops2 6= ;. The condition p
 ops 6= ; (in case 2) is not su�cient here. Acounter-example is p = ba and ops = (?b)(?a)(!a)(!b). We get p
 ops = aband p 
 ops2 = ;. An explanation is that, for strings x and y, the relationx �+ y (a condition of case 2) implies x � y, while x �c y (the correspondingcondition in case 3) implies x � y2 but not x � y.4. If conditions 1, 2, or 3 are not satis�ed, then n = jpj+1. We have p
opsn = ;.In this case the loop can be executed at most n times, after which thechannel becomes empty, and we deadlock due to inability to perform receiveoperations.Notice that the proof of Lemma 7 gives us a complete characterization of whethera loop can be executed in�nitely often from a certain con�guration (i.e., in cases1. - 3.), and whether in such a case the contents of channel grows unboundedlyor stays �nite.



Also, observe that in case we have an SRE (instead of a product) then wecan apply the lemma to each product separately.The result of Lemma 7 can be generalized to indexed SREs in a straightfor-ward manner: The loop can be executed in�nitely often if and only if the loopcan be executed in�nitely often with respect to each channel. If the loop can beexecuted in�nitely often, then we take the Cartesian products of the expressionscomputed according to Lemma 7. This gives us the following.Corollary 3. For an indexed SRE R and a sequence Ops of indexed operations,there is an indexed SRE, which we denote by R
Ops�, such that [[R
Ops�]] =[0�j [[R 
Opsj ]]. Furthermore, R
Ops� can be computed in quadratic time.7 Use in Veri�cation AlgorithmsThe SRE representation and the operations presented in this paper can be usedin on-the-y veri�cation algorithms for lossy channel systems. The techniquesare rather standard, so here we only provide a sketch.Suppose we want to check whether some set �F of con�gurations is reachable.We then search through the (potentially in�nite) set of reachable con�gurations,as follows.We use symbolic states to represent sets of con�gurations. A symbolic state �is a pair hs;Ri, where s is a control state , and R is an indexed SRE describingthe contents of the channels. The language [[�]] de�ned by � is the set of con-�gurations fhs; wi ; w 2 [[R]]g. We extend the entailment relation in the obviousway so that hs;Ri v hs0; R0i if and only if s = s0 and R v R0.We maintain a set V which we use to store symbolic states which are gener-ated during the search. At the start, the set V contains one unexplored symbolicstate representing the initial con�guration. From each unexplored element in V ,we compute two sets of new elements: one which corresponds to performing singletransitions (Lemma 6), and another which describes the e�ect of a selected setof control loops. When a new element � is generated, it is compared with thosewhich are already in V . If � v �0 for some �0 2 V , then � is discarded (it will notadd new con�gurations to the searched state space). It is also checked whether� has a non-empty intersection with �F . This is easy if e.g., �F is a recognizableset. If the intersection is non-empty, the algorithm terminates. Otherwise, thealgorithm is terminated when no new symbolic states can be generated.When performing control loops during the analysis, there is a choice in howmany loops to explore. A reasonable strategy seems to be to investigate thesequences of transitions which correspond to simple control loops in the program.A simple control loop is a loop which enters each control state at most once. Byapplying these control loops we get new symbolic states which can be computedaccording to Corollary 3.During our search, it can happen that a new element � is added to V , al-though � will not add any new con�gurations to the explored state space. Thisis due to the fact that even if � 6v �0 for all �0 2 V , the relation [[�]] � S�02V [[�0]]may still hold. The test for discarding new SREs can therefore be modi�ed so



that � is discarded if and only if [[�]] � S�02V [[�0]]. This would make the algo-rithm terminate more often (fewer elements need to be added to V ). However, forindexed SREs (and hence for symbolic states), the above test has an exponentialcomplexity in the number of channels.From Theorem 2, we know that our algorithm is incomplete. The algorithmwill always �nd reachable con�gurations in �F , but it will not necessarily ter-minate if all con�gurations in �F are unreachable.In fact, we can use a slight extension of this procedure to check whether alossy channel system satis�es a linear temporal logic formula over the controlstates of the system. By standard techniques [21], we can transform this prob-lem into checking whether a lossy channel system, in which some control statesare designated as \accepting", has an in�nite computation which visits someaccepting control state in�nitely often. In our earlier work [1], we showed thatthis problem is undecidable. However, an incomplete check can be performedas part of the state-space generation in the previous paragraph. More precisely,when exploring a set of con�gurations with an accepting control state we can,as part of exploring the loops, check whether there is a control loop that can beexecuted an in�nite number of times. We only need to check whether one of thethree �rst conditions in the proof of Lemma 7 holds.8 ExampleIn this section we apply our algorithm (Table 1) to a sliding window protocol(shown in Figure 1). We use a symbolic representation of the form hsi; qj ; r1; r2i,where si and qj are the control states of the sender and the receiver, respec-tively, and r1 and r2 are SREs which describe the contents of the message andacknowledgement channels. We explore the state space as described in the pre-ceding section, investigating the e�ect of simple control loops in the program.In Figure 1, we start from hs1; q1; �; �i and apply the speed-up operationobtaining �0. From �0 we perform a single transition moving from q1 to q2, andthen perform the speed-up operation obtaining �1. In a similar manner we obtain�2 and �3 from �1, etc. Observe that, e.g. �5 entails �7, so �5 is discarded.9 ConclusionsWe present a method for performing symbolic forward reachability analysis ofunbounded lossy channel systems. In spite of the restriction of lossiness, we canmodel the behaviour of many interesting systems such as link protocols which aredesigned to operate correctly even in the case where the channels are lossy andcan lose messages. Also lossy channel systems o�er conservative approximationswhen checking linear time properties of systems with perfect channels. This isbecause the set of computations of a lossy channel system is a superset of the setof computations of the corresponding system with perfect channels, and henceif a linear time property holds in the �rst it will also hold in the second.In this paper, we accelerate the forward search of the state space, by consider-ing (besides single transitions) the e�ect of \meta-transitions" which are simpleloops entering each control state at most once. We intend to investigate more
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