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Abstract

This paper explores the application of rewriting logic to the executable formal mod-
eling of real-time and hybrid systems. We give general techniques by which such
systems can be specified as ordinary rewrite theories, and show that a wide range of
real-time and hybrid system models, including object-oriented systems, timed au-
tomata [4], hybrid automata [2], timed and phase transition systems [28], and timed
extensions of Petri nets [1,37], can indeed be expressed in rewriting logic quite nat-
urally and directly. Since rewriting logic is executable and is supported by several
language implementations, our approach complements property-oriented methods
and tools less well suited for execution purposes. The relationships with the timed
rewriting logic approach of Kosiuczenko and Wirsing [24,25] are also studied.

1 Introduction

This paper explores the application of rewriting logic to the ezecutable formal
modeling of real-time and hybrid systems. The general conceptual advantage
of using a logic instead of using a specific model is that many different models
can be specified in the same logic, each in its own terms, rather than by
means of possibly awkward translations into a fixed model. The advantages
of using rewriting logic as a semantic framework for concurrency models has
been amply demonstrated (see the surveys [34,35]). This work shows that a
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number of well-known models of real-time and hybrid systems can likewise be
naturally specified in the rewriting logic framework.

Thus, rewriting logic can be used to specify many different formal models of
such systems in a unified logic. But, since rewriting logic is executable, and is
supported by several language implementations [13,10,18], these models can
be executed and can be formally analyzed in a variety of ways. This is in
contrast to the most well-known formal methods tools for real-time and hy-
brid systems such as Kronos [17], STeP [9,30], and UPPAAL [7]. These are
model checking tools which require the user to specify both the system and
the formal properties the system should satisfy. The tools then try to check
whether the system satisfies a given abstract property. However, these tools
are not well suited for directly executing the system itself. The same can be
said about HyTech [22], which takes a hybrid system description with some pa-
rameters unspecified, and returns the concrete values of the parameters which
would make the system satisfy some given property. Of course, model check-
ing tools have important strengths of their own. The point is that executable
specification methods and tools can complement those strengths in new ways.

To see how rewriting logic complements more abstract specifications such as
temporal logic as well as more concrete, automaton-based ones, one can think
of it as covering an intermediate level, that can substantially help in bridging
the gap between more abstract, property-oriented, specifications and actual
implementations by providing:

e a precise mathematical model of the system (the initial model [32]) against
which more abstract specifications can be proved correct by means of in-
ductive theorem proving, model checking, and other techniques;

e support for other useful techniques of automated or semi-automated formal
reasoning and analysis at the rewriting logic and equational logic levels,
such as coherence [44], confluence, and strategy-based formal analysis;

e support for executable specification, rapid prototyping, and symbolic simu-
lation;

e the possibility of generating correct implementations from specifications by
theory transformations and code generation techniques.

We show that ordinary rewrite theories are sufficient to specify real-time sys-
tems in a natural way. Essentially, all we need is to include in the specification
a Time data type satisfying appropriate equational properties. However, it is
sometimes useful to highlight the real-time aspect by making explicit the du-
ration information for some rewrite rules. We formalize this idea in Section 2
by means of real-time rewrite theories; but we show that, by adding an explicit
clock, they are reducible to ordinary rewrite theories in a way that preserves
all the expected properties.



The naturalness of the specification method, and its smooth integration with
rewriting logic’s support for object-oriented specification, is explored and il-
lustrated with examples in Section 3, in which we also address the question of
how generally and naturally rewriting logic can be used to express a variety of
real-time and hybrid system models. We show in detail how, besides object-
oriented real-time systems, a wide range of such models, including timed au-
tomata [4], hybrid automata [2], timed and phase transition systems [28], and
timed extensions of Petri nets [1,37], can indeed be expressed in rewriting logic
quite naturally and directly.

The first important research contribution exploring the application of rewrit-
ing logic to real-time specification has been the work of Kosiuczenko and
Wirsing on timed rewriting logic (TRL) [24,25], an extension of rewriting logic
where the rewrite relation is labeled with time stamps. TRL has been shown
well-suited for giving object-oriented specifications of complex hybrid systems
such as the steam-boiler [38], and has also been applied to give semantics
to the SDL telecommunications specification language [42]. In fact, rewriting
logic object-oriented specifications in the Maude language [33] have a natural
extension to TRL object-oriented specifications in Timed Maude [24,38].

The approach taken here is different. As already mentioned, we argue that
real-time systems can be specified in ordinary rewriting logic, and that rea-
soning about their behavior does not require a special inference system of their
own, such as the one proposed in TRL. Even when special notation highlight-
ing real-time aspects such as that provided by real-time rewrite theories is
used, we show that this can essentially be regarded as syntactic sugar. This has
the conceptual advantage of remaining within a simpler theoretical framework,
and the practical advantage of being able to use the existing language imple-
mentations of rewriting logic to execute specifications. Therefore, it seems both
conceptually and practically useful to study the relationships between our ap-
proach and TRL. We do so in Section 4, where we show that there is a map of
logics M : TRL — RWL sending each TRL specification to a corresponding
rewrite theory in such a way that logical entailment is preserved. However,
the translated theory M(T) can in general prove additional sentences. This
is due to some intrinsic conceptual differences between both formalisms that
our analysis reveals.

1.1 Prerequisites on rewriting logic and Maude

We assume familiarity with the basic concepts of rewriting logic as presented in
[32,35]. We recall here only the most basic notions that we shall use. Rewriting
logic specifications are rewrite theories of the form R = (3, E, L, R), where
(3, E) is an equational theory, L is a set of labels, and R is a collection of



labeled rewrite rules of the form

n m
[:t—t if Nui— oA N\ w=uw),
i=1 j=1

with [ € L, which is implicitly universally quantified by the variables appearing
in the Y-terms ¢, t', u;, v;, w;, and w]. In this paper the equational theory
(X, F) will always be assumed to be order-sorted [19]. That is, the set of
sorts comes equipped with a partial order relation, with s < s’ interpreted
as subset inclusion A, C Ay in a model A. Furthermore, operation symbols
can be subsort overloaded (as for example the addition symbol + for naturals,
integers, and rationals). Such overloaded operators are required to yield the
same result for the same arguments, regardless of the overloaded operator that
is applied.

We make frequent use of the initial model construction 7Tz associated to a
rewrite theory R, in which rewrite proofs . : t — ¢', derivable from the rules
in R using the rules of deduction of rewriting logic, are equated modulo a
natural notion of proof equivalence [32,35]. However, Tz has to be understood
in an order-sorted sense, so that for each sort s we have an associated category
(Tr)s, with arrows a : t — t’ equivalence classes of proofs with ¢, ¢’ ground
terms of sort s, and with arrow composition corresponding to application of
the transitivity rule.

Throughout the text we often use Maude-like notation [13] to present specific
rewrite theories. For the most part this notation is self-explanatory. In the case
of object-oriented modules, we explain their syntax and basic assumptions in
Section 3.5.

2 Time models and real-time rewrite theories

After specifying equationally the general requirements for the models of time
that we will consider (Section 2.1) we propose a general notion of real-time
rewrite theory, consisting of an ordinary rewrite theory, where rewrite rules
affecting the whole system have associated time-duration expressions (Sec-
tion 2.2). We then show that real-time rewrite theories form a category (Sec-
tion 2.3) and that they can be reduced to ordinary rewrite theories by adding
an explicit clock to the global state in a way that preserves all the expected
properties (Section 2.4). We finish the section with a discussion of several is-
sues and specification techniques for real-time rewrite theories (Section 2.5).



2.1 Time Models

Time is modeled abstractly by a commutative monoid (Time,+,0) with ad-
ditional operators <, <, and = (“monus”) satisfying the following Maude
theory.

fth TIMFE is
protecting BOOL
sort Time
op 0: — Time
op _+ _: Time Time — Time [assoc comm id : 0]
ops - < _,_< _: Time Time — Bool
op _ = _: Time Time — Time
vars T, Yr, 2, Wy . 1ime
ceq 2z, =0if (z, +y,) ==0
ceq Yr = 2 if-rr+yr == I + 2
eq (7, +y) = Yy =1
ceq z, — y, = 0 if not(y, < =)
eq z, <z, 4y, = true
eq (z < z,) = false
eq (557‘ < yr) - (-Tr < yr) or (-Tr - yr)
ceq z, + yr < 2z, + w, = true if z, < 2. and y, < w,
ceq (7, ~ y,) +yr=m if y <,
endft

In this theory, it can for example be proved that the relation < is a partial
order, that for all z,, y, : Time, 0 < z,, = true, and that y, < z, if and only if
there exists a unique z, (namely z, = y,) such that z, = y, + z,.

For simulation and executable specification purposes we will be interested
in computable models of the above theory TIME. This means that all the
operations are computable. By the Bergstra-Tucker Theorem [8], such models
are finitely specifiable as initial algebras for a set £ of Church-Rosser and
terminating equations. For example, the nonnegative rational numbers can be
so specified as a model of TIMFE by adding a subsort Rat, to the specification
of rationals in [19], and extending it with an order and a monus operation in the
obvious way. Similarly, the real algebraic numbers with the standard order are
also computable [40], and therefore have a finite algebraic specification with
Church-Rosser and terminating equations. Note that just taking a constructive
version of the real numbers will not yield a computable data type, because the
equality and order predicates on the constructive reals are not computable [6].

We will in some examples in this paper need to extend the time domain with
a new value oo and/or to require that the time domain is linear. The following



theory gives an abstract specification of the time domain extended with a
value oo.

fth TIME is
including TIME

sort Times
subsort Time < Times,
op 00 — Times
op _ < _: Timey Times, — Bool
op _ = _: Timey Timesy, — Times
op _+ _: Timey Timey — Timey, [assoc comm id : 0]
var z, : Time
eq T, < 00 = true
endft

Linear time can be specified by the following theory:

fth LTIMFE is
including TIME
op min: Time Time — Time [comm]
vars z,, 4, : Time
ceq z, =y, if not(z, < y,) and not(y, < z,)
ceq min(z.,y,) =y, if y, < z,
endft

This theory can also be extended with a time value oo as follows:

fth LTIME,, is

including LTIME, TIME,,
op min: Timey Times — Times, [comm]
var z, : Times
eq min(oo,z,) = =,

endft

Notation: We will use symbols r, 7', 71, ... to denote time values and z,., y,,...
to denote variables of the sort of the time domain.

2.2  Real-time rewrite theories

After recalling the notion of a theory morphism between equational theories,
we define real-time rewrite theories; they are used to specify real-time systems
in rewriting logic and contain duration information for some rules. Rules are
divided into tick rules, that model the elapse of time on a system, and in-
stantaneous rules, that model change that can be approximated to take zero



time. Having a tick rule ¢ — ¢’ could lead to rewrites f (¢, u) — f(t', u), i.e.,
rewrites where time only elapses in a part of the system under consideration.
To ensure uniform time elapse we introduce a new sort System, with no sub-
sorts, and a free constructor {_} : State — System with the intended meaning
that {t} denotes the whole system, which is in state ¢. Uniform time elapse
is ensured if the global state always has the form {t¢} and every tick rule is of
the form {t} — {t'}.

Definition 1 An equational theory morphism H : (3, E) — (X', E') consists
of @ map H : sorts(X) — sorts(¥'), and a mapping sending each function
symbol® f 8 ... 8, — 8 in Y to a ¥'-term H(f) of sort H(s), such that its
set of variables is contained in the set x: H(s1),...,%,: H(s,), and such that
for each axiom (Ny;:81,...,yp:8) [ =r if C in E,

B (Y H(s)), .y Hse)) H(1) = H*(r) if H*(C)

holds, for H* the straightforward extension of H to terms and to equations in
the condition C'.

Definition 2 A real-time rewrite theory Ry ; is a tuple (R, ¢, 7), where R =
(3, E, L, R) is a rewrite theory, such that® :

e ¢ is an equational theory morphism ¢ : TIME — (X, E) where TIME is the
theory defined in Section 2.1,

e the time domain is functional; that is, whenever o : v — 1" is a rewrite
proof in R and r is a term of sort ¢(Time), then « is equivalent to the
identity proof r,

e (X, E) contains a designated sort that we usually call State and a specific
sort System with no subsorts or supersorts and with only one operator

{_} : State — System
which satisfies no non-trivial equations, and
e 7 is an assignment of a term T;(z1, ..., T,) of sort ¢(Time) to each rewrite
rule in R of the form

1) [ wlz, .. zm) — uw' (2, w,) i Cay, .., 3p)

where v and v’ are terms of sort System.

2 Since the variables z1,. .., 7, are ordered, the assignment f — H(f) can alterna-
tively be understood as an assignment f(z,...,z,) — H(f).

3 We give a definition based on loose semantics of rewrite theories. Real-time rewrite
theories can be defined in a similar way in an initial semantics setting.



Notation: We will write

T(Z1 5. )
—

] u(m, ..., o) u' (21, ... 1) if C(a,. .., 1)

for a rule I of sort System with duration 7,. If 7y(z1, ..., z,) equals ¢(0), the
rule [ will often be written

1] w(z, .o m) — u/ (o, w) i Cm, ... 2y).

We will also write Timeg, 0,, and +4 for, respectively, ¢(Time), ¢(0), and
O(+)-

We call rules of the form (f) global rules. A global rule [ is a tick rule if its
duration 7(z1, ..., z,) is different from 0, for some instances of its variables,
and is an instantaneous rule otherwise. The rules not of the form () are called
local rules, because they do not act on the system as a whole, but only on some
system components. They are always instantaneous. Intuitively, instantaneous
rules take zero time.

The total time elapse 7(«) of a rewrite « : {t} — {t'} of sort System is
defined as the sum of the time elapsed in each tick rule application in «, and
can easily be extracted from the proof:

Definition 3 Let (R, ¢, 7) be a real-time rewrite theory with R = (X, E, L, R)
and let Time denote the time domain (szE)Time(ﬁ viewed as a monoid and
therefore as a category with a single object 0, and with the time values as
arrows in the usual way. The time extraction functor

T TRsystem — Time

which gives the total time elapse T(«) of a proof a: t — t', with t,t' ground
terms of sort System, is defined as follows:

t) = 0y for every term (seen as an arrow) in Try,.,...,

{a}) =0, for a proof term whose top operator is the constructor {_},
lon,...,an)) = 1(t, ..., t,) if | is a (system) rule of the form (1) and
ap ity — ), ..., t, —> t] are proofs, and

a; ) = 1() +4 7(B) for proofs a and .

This definition does not depend on the choice of representative proof terms.
That is, if @ and [ are two equivalent proofs of terms of sort System in a
real-time rewrite theory (R, ¢, 7), then 7(a) = 7(5).

Given a real-time rewrite theory R, a computation is a non-extensible sequence
tg —» t —> --- —> t,, or an infinite sequence ty —> t; — - - - of one-step R-



rewrites t; — t;41, with ¢; and ¢/ ground terms, starting with a given initial
term t; of sort System. It should be noted that since we model time elapse
explicitly (by rewrite rules), the requirement that the total time elapse in a
computation is infinite is not needed. Time elapse is totally up to the specifier

we allow both terminating computations and infinite computations with
finite total time elapse.

2.8 A category of real-time rewrite theories

The notion of theory morphism — also called theory interpretation — between
real-time rewrite theories plays an important role in this work. We give a def-
inition of theory morphism between real-time rewrite theories based on loose
semantics and preservation of durations of rewrites. Morphisms based on prop-
erties of the initial models of theories, and morphisms having less restrictive
requirements on the relationships between the durations in the rewrites could
be defined in a similar way. We begin by defining theory morphisms between
ordinary rewrite theories.

Definition 4 A rewrite theory morphism from a rewrite theory R = (X, E, L, R)
to another rewrite theory R' = (X', E', L', R") consists of:

e an equational theory morphism H : (X, FE) — (X', E'), and
e a map H : L — L' of labels such that for each rule [l] : t — t" if C in R
the rule

[H(1)]: H*(t) — H*(t') if H*(C)
is in R' up to a renaming of its variables.

Rewrite theory morphisms compose in the expected way and define a category
RWTh of rewrite theories.

Definition 5 A real-time rewrite theory morphism from a real-time rewrite
theory (R, ¢, 7) to a real-time rewrite theory (R',¢',7') is a rewrite theory
morphism H : R — R’ such that:

« ¢ =Hoo,

e H maps the designated sort of the states in R to the designated state sort
in R', maps the sort System to itself, and leaves the constructor {_} un-
changed, and

e H preserves the duration of the tick rules in the sense that for each rule |
i R of sort System,

E'FH (i(m:81, 0, 8080)) = Ty (w1 H(81), s w0 H(sn)).



It is easy to check that the usual composition of rewrite theory morphisms
defines a category RTRWTh with real-time rewrite theories as objects and
real-time rewrite theory morphisms as arrows.

2.4 Real-time theories internalized in rewriting logic

By adding a clock to the state, a real-time theory (R, ¢, 7) can be transformed
into an ordinary rewrite theory without losing timing information. A state in
such a clocked system is of the form (¢,r) with ¢ the global state of sort
System, and 1 a value of sort Timegy, which intuitively is supposed to denote
the total time elapse in a computation if in the initial state the clock had value
0¢.

Definition 6 The internalizing functor ()¢ from the category RTRWTh of
real-time rewrite theories to the category RW'Th of rewrite theories takes a real-
time rewrite theory (R, ¢, 7) to a rewrite theory RS, = (5§ ., Ef LY . R{)
as follows:

the sorts in ch):T are those in R together with a new sort ClockedSystem,
the operations in Eg’T are those in R together with a new free constructor

(-, -) : System Timey — ClockedSystem,

the axioms in EQET are unchanged from those in R,
Rdf:T contains the local rules in R of sorts other than System, together with
a rule?

[ (1, Ty )] (o 20), ) —

(u' (21, .. @), 2 o T (2, .o ) i O, .0, 2)
for each rule
(z1, . ymn)] s w(ag, . mn) —d (21, ) iE C (2, ... @)

in R of sort System, where x, is a variable of sort Time, which is not in
the list x1,...,o,.

The internalizing functor is defined as expected on arrows in RTRWTh; i.e.,
an arrow H in RTRWTh is mapped to H¢, which coincides with H on R,

4 In the unlikely case that any condition C of a rule in R contains a con-
junct v — v" of sort System, each such conjunct is replaced by a conjunct
(v,04) — (v',y,) in the condition in Rgﬁ, where y, is a fresh variable of sort
Timeg.
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leaves the new sort and operator unchanged, and takes a label I3 . of a rule of

sort ClockedSystem to the label (H(1))¢.

For the sake of a simpler exposition, in the rest of the paper we will assume
that no condition of a rewrite rule in a real-time theory contains a rewrite
conjunct of sort System. We also assume, without loss of generality, that no
variable of sort System is introduced in the condition of a rule.

Proposition 7 The mapping (1)¢ above defines a functor from RTRWTh to
RWTh.

Proposition 8 Let U be the forgetful functor from the category RTRWTh of
real-time rewrite theories to the category RWTh of rewrite theories defined by

U(R,¢,7)) =R and U(H)=H.

Then the map of rewrite theories T(g ¢ r) R¢T — R defined by:

o mapping each sort and operator in 5 other than ClockedSystem and (_, _)
wdentically to themselves,

e mapping ClockedSystem to System, mapping the operator (_, ) to the term
21 : System, and

e mapping each label ldfT to the label |

T

defines a natural transformation 7 : ()¢ = U.

Since a rewrite theory morphism H : R — R’ induces a forgetful functor Uy :
R'-Sys — R-Sys in the opposite direction for the corresponding categories of
models, our natural rewrite theory morphism 7 : Rgﬁ — R induces a forgetful
functor U, : R-Sys — Rg,T—Sys. In particular, the initial model 7% is sent to
the R -system U(Tg) and, by initiality of TRG;OT’ we have a unique R -
homomorphism 7 : TRgT — Uy (Tg) such that:

7 takes objects and arrows of every sort except ClockedSystem to themselves,
7({t, r)) =t for each object (t,r) in (TRgT)ClockedSystem,
o ({0, B): (t,r) — (t',r)) =a:t— 1,
o m(ly, (o, ..,an,an) i (t,r) — (t', 1)) =l(an,...,a,) 1 t — ', and
(

g
a: 8) = w(a); 7(8).

The map 7 expresses the essential semantic equivalence between the initial
models of a real-time theory (R, ¢, 7) and that of its clocked representation
Rgﬁ in the precise sense that, as we shall see:

e T

(1) if a1 t —t" is an arrow in Tgy,,,. . With 7(a) = r, then, for each value
r’ of sort Time, there is a unique arrow o' : (t,r') — (t',r" +, r) in

11



(TRg,T)ClockedSystem such that w(a/ : (¢, r") — (', 1" +4 1) =a:t — 1,
and

(2) whenever a: (¢, ) — (#', r') is an arrow in (TRgT)Clockedsystem then ' =
r+4 7(m()).

These two properties are immediate consequences of the following

Theorem 9 Let (R, ¢, 7) be a real-time rewrite theory and let ao: t — t' be
an arrow in Trg,,.. (therefore, with t and t' ground terms of sort System,).
Then, for each value r in the time domain, there is a unique arrow

o (t,r)y — (¢, r")

in (TRg ) Clockedsystem SUuch that w(a') = «, and, in addition, r' = r 4+, 7().

The theorem can be proved by induction on the structure of the proof terms
by first proving the theorem for one-step rewrites, and then proving it for all
proofs between terms of sort System using the facts that every proof factorizes
into a sequence of one-step rewrites and that 7 distributes over one-step rewrite
proofs.

The above theorem implies that, whenever « : (¢, r) — (', ') is an arrow
in TRg , then the arrow w(a) : t — t' satisfies r +, 7(7w(a)) = . It also
implies that 7, viewed as a functor 7 : (TRg ) Clockedsystem — (TR) system 1s full

and faithful and is an opfibration [5].
2.5 Discussion

We discuss several system specification issues and techniques, including the
time of local actions, tick rules, and rewrite strategies.

2.5.1 The time when local actions occur is generally underdetermined

For simulation purposes it may be desirable to observe the time at which an
instantaneous local action takes place in a rewrite. However, an arrow in the
initial model, that is, an equivalence class of proofs, does not give the exact
time (relative to the initial state) when such a local action is applied. If; for
example, [I] 1 a — b and [tick] . {f(z,y,)} — {f(z,y, + 2)} are two rules,
then the moment in time (relative to {f(a,0)}) when the instantaneous ac-
tion [ took place in the rewrite tick(l,0) : {f(a,0)} — {f(b,2)} of duration
2 is underdetermined. This is because, by the exchange law that equates
equivalent proofs in rewriting logic — this rewrite is equivalent to the rewrite

12



proofs {f(r,0)};tick(b,0) and tick(a,0); {f(r,2)}, representing the rewrite
sequences {f(a,0)} — {f(b,0)} — {f(0,2)} and {f(a,0)} — {f(a,2)}
~— {f(b,2)}, where the local action [ takes place in a rewrite of duration
0 and either at time 0 or at time 2. By the sequentialization property of
rewrite proofs [32], it is always possible to extract from a proof the possible
relative times when a certain rule could have been applied in the proof.

2.5.2  Specifying the tick rules

For simulation of a system having a continuous time domain, the tick rules
will in general be of the form

{t} = {#(2,)} if 2, < mte(t) and C(t)

or otherwise of the exact same form, but replacing =, < mite(t) by z, <
mte(t), where z, denotes the time advanced by the tick, mte(t) computes the
mazximum time elapse permissible to ensure timeliness of time-critical actions,
and the condition z, < mte(t) (resp. z, < mte(t)) ensures that time elapse
may halt temporarily for the possible application of a non-time-critical rule,
that is, a rule modeling an action which could occur somewhat “arbitrarily”
in time. The introduction of the variable z, in the righthand side requires
additional execution strategies for its instantiations, which is not surprising,
since it models behavior which is nondeterministic in time. Allowing for real
nondeterminism in timed behavior in this way may lead to Zeno behavior
of the system and it is up to the strategy to instantiate the righthand side
variable so as to avoid that, whenever possible.

2.5.8 FEager and lazy rules

In general, it is not sufficient to ensure that time elapse “stops” whenever
necessary. It must also be ensured that time does not tick past each stop
before all the necessary instantaneous actions are performed. In particular,
an application of a rule often enables a lot of other instantaneous rules that
must be taken immediately, and it must be ensured that all these actions
are performed before time elapses again. A rule may, for example, produce a
message which must be consumed before time elapses again.

In many cases it is possible to add conditions on the tick rules such that time
will not elapse if some time-critical rule is enabled, but this may considerably
complicate the specification. Instead of computing the enabledness condition of
every time-critical rule explicitly, it seems more convenient to use the rewriting
logic notion of internal rewrite strategy [13,11,12,15,14], whose execution is well
supported by Maude’s reflective features, to deal with these enabledness and

13



priority aspects using a simple strategy.

The idea is to divide the rules in a real-time rewrite theory into eager and
lazy rules and restrict possible rewrites by requiring that lazy rules are applied
sequentially, and a lazy rule may only be applied when no eager rule is enabled.
The intuition is that the eager rules are the time-critical rules that must always
be taken when enabled, i. e., time may not elapse while an eager rule is enabled.
Tick rules and non-time-critical instantaneous rules are lazy. Our treatment
of timed Petri nets in Section 3.8 gives an example of the convenience of using
this strategy.

Notation: Whenever an eager strategy should be used, the eager and lazy rules
will be preceded by the keywords eager and lazy, respectively.

3 Specifying models of real-time and hybrid systems in rewriting
logic

This section discusses how a variety of models of real-time and hybrid systems
can be obtained as special cases of real-time rewriting.

3.1 Timed automata

We show how a timed automaton (see, e.g., [4,3]) can be specified in rewriting
logic. Omitting details about initial states and acceptance conditions, a timed
automaton consists of:

a finite alphabet X,

a finite set S of states,

a finite set C' of clocks,

a set ®(C) of clock constraints defined inductively by

¢ZZ:C§]{}|]€§C|_|¢‘¢1/\¢2

where ¢ is a clock in C, and k is a constant in the set of nonnegative
rationals, and

e aset £ C S x8xXYx2¢x ®(C) of transitions. The tuple (s, s', a, A, @)
represents a transition from state s to state s’ on input symbol a. The set
A C C gives the clocks to be reset with this transition, and ¢ is a clock
constraint over C.

Given a timed word (i.e., a sequence of tuples (a;, ;) where g; is an input
symbol and r; is the time at which it occurs), the automaton starts at time 0
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with all clocks initialized to 0. As time advances, the values of all clocks change,
reflecting the elapsed time; that is, the state of the automaton can change not
only by the above transitions, but also by the passage of time, with all the
clocks being increased by the same amount. At time r; the automaton changes
state from s to s’ using some transition of the form (s, s’ a;, A, ¢) reading input
a;, if the current values of the clocks satisfy ¢. With this transition the clocks
in A are reset to 0, and thus start counting time again.

A run p of a timed automaton with n clocks is an infinite sequence

p: {80,1)01,...,’1)0"} j‘i) {Slavlla"'avln} Z‘j) {827,“217"'11)2"} :'2) e

for states sg, s1,..., values v, vy,,... of clock i such that vy, = 0 for all j,
and such that for ¢ > 1 there is a transition (s; 1, $;, a;, \;, ¢;) where the clock
valuation <U(z>1)1 +Ti—Ti1y e Uiy, T — ;1) satisfies the clock constraint
¢i, and v;, is 0 if clock ¢ is in A; and v;, = Ui-1), + Ti — Ti—1 otherwise.

A timed automaton can be naturally represented in rewriting logic as fol-
lows. The time domain and its associated constraints ®(C) are equationally
axiomatized in an abstract data type satisfying the theory TIME. The term
{s,¢1,..., ¢y} represents an automaton in state s such that the values of the
clocks in C are cy,...,c,. Each transition (s,s',a, A, ¢) is expressed as an
instantaneous rewrite rule

[a] : {s,c1,...,cn} —> {s' ¢l .. el if d(er, ..., cn)

where ¢, =0 if ¢; € A, and ¢ = ¢; otherwise. In addition, a rule

[tick] : {z,c1,...,cn} = {z, 01+ Ty ..., Cp + 7}
(where z,z,,¢1,..., ¢, are all variables) is added to represent the elapse of

time.
The rewriting logic translation simulates the timed automaton in the precise
sense that there is a run p of the automaton as defined above if and only if
there is a rewrite sequence

{80,0,...,0}& {sl,vh,...,vln}% {82,U21,...,v2n} ﬂ>
such that «; is equivalent to a proof term of the form 3;;q;(...), with §; a

(possibly empty) sequence of tick applications, and where 7(3;) = 7; — 734
for 7;, 7;_1 the corresponding time values in the run p.
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There are at least two ways of modifying the specification to simulate the
behavior of the automaton on only those timed words satisfying a given accep-
tance condition. It is possible to define a computable predicate has_computation,
so that has_computation(s,ry,...,r,) holds if and only if there exist an ac-
cepted timed word “starting” in state s with (rational-numbered) values ry, ..., r,
of the clocks ¢, ..., ¢, (such a predicate is computable, and therefore finitely
specifiable by Church-Rosser and terminating equations [8], since defining
such a predicate reduces to the emptiness problem for timed automata which
is decidable [4]). In this way, we obtain a rewrite theory whose computa-
tions simulate the behavior of the automaton on accepted timed words by

adding the condition if has_computation(z', ¢}, ..., c!) to every rule of the

rn

form {z,c1,...,cn} — {2', ¢}, ..., c}, including the tick rule.

A more modular, alternative way of restricting the rewrites to simulate au-
tomata behavior on accepted words only would be to encode the accepting
states (or sets of states for Muller-automata) as predicates in the rewrite the-
ory, and then use the internal strategies at the metalevel of rewriting logic to
restrict the application of the rules, so that only accepted timed words are
executed.

3.2 Hybrid Automata

The time model of hybrid automata [2] (also called just hybrid systems) is
the nonnegative real numbers. However, to get a computable data type, we
should replace the reals by a computable subfield R,, such as the ratio-
nals or the algebraic real numbers. A hybrid automaton is given by a tuple
(Vp, Loc, Lab, Act, Inv, Edg) where:

e Vp is a finite set of data variables, each ranging over a given data sort,
defining the data space X p, that is, > is the set of sort-consistent valuations
v of Vp.

e Loc is a finite set of locations (corresponding to “states” in untimed au-
tomata).

e The state space of a hybrid automaton is Loc x ¥p.

e Lab is a set of synchronization labels, including the label 7.

e Act is a labeling function that assigns to each location [ € Loc a set Act; of
activities. An activity is a function from R, to Xp. For each activity f in [
and each time value r there is an activity f" in [ defined by f"(r') = f(r+71").

e Inv is a labeling function that assigns to each location [ € Loc an invariant
Inv(l) C Xp.

e Fdg is a finite set of transitions. Each transition e = (I, u, ', a) consists of
a source location [, a target location [', a transition relation y C 3%, and
a synchronization label a. For each location [ there is a stutter transition
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(I,1d,1,7) where Id = {(v,v) | 7€ Xp}.

The state of an automaton can change in two ways: (1) by an instantaneous
transition that changes the entire state according to the transition relation,
or (2) by elapse of time that changes only the values of data variables in a
continuous manner, according to the activities of the current location, where
state {[, T} evolves to {l,f(r)} in time r whenever f is an activity of location
[ such that 7 = f(0). The system may stay at a location only if the invariant
at that location remains true. The invariants of a hybrid automaton thus
enforce the progress of the underlying discrete transition system. That is,
some transition must be taken before the invariant of the location is false.

A run of a hybrid automaton is a finite or infinite sequence

p: (0T} o {07} o (BT} of

where [y, [;, ... denote locations, Ty, 77, ... denote valuations of the variables
Vp, 19,11, ... denote time values, and fy, fi, ... denote activities in respective
locations ly, I, . . ., and such that for all i it is the case that f;(0) =7, fi(r) €
Inv(l;) for all 0 < r < r;, and that the state {/;;1,7;11} is obtained by taking
a transition from the state {l;, f;(r;)}.

We specify hybrid automata in rewriting logic by representing a sort-consistent
valuation 7 = {z — uv,..., T, — v,} by a term (vy,...,v,) in a sort
Valuation, and by representing a global state {l,7} of a hybrid automaton
by the term {l, (vi,...,v,)} of sort System. However, since the definition
of hybrid automata is very general, we restrict our treatment to a subclass of
hybrid automata satisfying some natural requirements. Specifically, we require
that the set of activities Act; for a location [ must be generated by a finite set

ActGeny = {f! : 2p xRy = %p [1< i < ny}

of computable functions, called activity generators, where each f! satisfies the
property

fHf @) ) = @+ o) if f1(7,0) =7

Then, the set Act; of activities for a location [ is generated from ActGen; as
follows,

Actiy ={f R, = 3p| (3f' € ActGen;, 7 € ¥p,r € R,)
fHw,0) =T Af =Xy fl (v, r + )}
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Furthermore, we require that for each location [ and activity generator f! €
ActGeny, there is a computable function

maz_stayp : Xp — Ry U {oc}

where maz _stay; () denotes the amount of time a system in state (/,7) can

stay at location [ performing the activity-function f!, without violating the
invariant of location [. We also require that there is a computable predicate

Inv : Loc x Xp — Bool

where Inv(l,7) holds if and only if the state T does not violate the invariant of
location [. Finally, we require that each transition ([, u, I, a) in Edg can be ex-
pressed by a finite number of rewrite rules of the form [a] : {[,(v1,..., v,)} —
{U',{vy,...,v.)} if C, with the v; and v] possibly containing variables.

The class of hybrid automata satisfying the above requirements can be repre-
sented by real-time rewrite theories as follows. The functions f/, maz _stay.,
and Inv can be given a finitary equational axiomatization since they are as-
sumed computable [8]. For each transition (I, y, I, @) in the hybrid automaton,
the translation of a hybrid automaton contains the corresponding rule(s)

[a] : {0, (vr, .. o)} — {U' (o), ..., 0)} if CAInv(l',{vy,... v,

n

)) = true

where the last conjunct in the condition must be added to the translation
of the (underlying “untimed”) transition to ensure that the resulting state
satisfies the invariant of location [’. The tick rules of the system associate to
each location [ and each activity generator f! a rewrite rule of the form

[tick!] . {1, V} " {L AV, 2)}if 2, < maz_stay; (V) and vV, 0=V,

where V is a variable of sort Valuation.

Note that eager/lazy strategies are not needed here, since a transition becomes
“eager” in a hybrid automaton when max_stay of the location is 0, in which
case time cannot advance. Due to the presence of idle transitions in hybrid
automata, there is a run p as above in the automaton if and only if there is a
computation

{ZOJv_O} ﬂ) {llav_l} & {ZQJv_Q} % e
(of one-step rewrites) in the rewrite translation with 7(a;) = r; for each .
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3.8  Timed transition systems

A timed transition system (TTS) [28,27] consists of a finite set of data variables
defining the state space ¥ of all sort-consistent valuations T of the variables,
and a finite number of transitions a : ¥p — 2*7. Each transition a is equipped
with a “lower bound” [, and an “upper bound” wu, where 0 < [, < u, < o0.
A transition a cannot be taken if it has not been enabled uninterruptedly
for at least time [,, and if a is enabled at any time r, then a¢ must be taken
somewhere in the interval [r, 7 + u,], unless it is disabled during this time by
some other transition.

Again, we assume that the underlying untimed transition system can be spec-
ified in rewriting logic, and that a valuation 7 = {z — wv,..., T, — vy} 18
represented in rewriting logic by a tuple (vy, ..., vy,) of sort Valuation. A TTS
can then be represented in rewriting logic by just adding to each state one
clock for each transition, such that the state in the rewriting translation is a
term

{1,y 0m)s 1y ey Cr by

where (vy, ..., v,) is the state of the transition system and each ¢; is a “clock”
value which is nil if transition a; is not enabled, and is r; if the transition a; has
been enabled continuously for time r; (without being taken). The symbol nil
is an element of a supersort of the sort Twme of the time domain, satisfying the
equation nil + x,. = nil for z,: Time. We also assume that for each transition
a;, there is a predicate enabled; such that enabled;(7) is true if transition a; is
enabled on state T and false otherwise.

Assuming that each transition a; in the underlying untimed transition system
can be modeled by (zero or more) rewrite rules of the form [a;] : (v, ..., vpm) —

(vf,...,vl ) if C, we model each such transition a; in the timed system by the

corresponding instantaneous rewrite rule(s)

lai] © {(v1,. . om), ey ent— {{v), ..ol ), e, el b AEC A (¢ > 1)

forall i =1,...,n, where for each j = 1,...,n, ¢; is a time variable, and

c; = if not(enabled;((vy, ..., v,,))) then nil

else if ¢; == nil or i == j then 0 else ¢;.

The following tick rule ensures, for each transition a;, that time will not elapse
past the moment when a; would have been enabled for time u,, without being
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taken:

[tick] - {V,c1,...,ca} = {V,c1+Tp, ..., Cn + 1, }

if Ai(ci + 2 < g, or ¢; == nil),

again, for V, ¢, ..., ¢,, and z, variables of the appropriate sorts.
It is then easy to show that there is a computation

{U_UJOJ"'JO}ﬂ> {7)_1,7’11,...,7"1”}&{v_27r21;-";7’2n}£>

of one-step rewrites «; in the rewriting logic specification of a timed transition
system if and only if there is a discrete trace [28]

<U_U= 0> — <U_1= T1> — <U_27 r2> —

(with possibly bounded total time elapse) of pairs of states 7; and time values
r; such that for all 7, either 7; = ;37 or U577 € a(7;) holds for some transition
a in the corresponding timed transition system which has been continuously
enabled for at least its minimum delay [,, and such that transitions are never
continuously enabled for a time longer than their maximum time delay without
being taken. Furthermore, 7(«;) = r; — ;1 (where 5 = 0). Notice, that the
implicit eagerness of a transition is due to its upper bound u,, so that time
will not elapse if such an eager transition does not fire. Therefore, there is no
need for introducing explicit eager/lazy strategies.

3.4 Phase transition systems

Phase transition systems (PTSs) [28,27] extend timed transition systems to
hybrid systems®. We give here only a brief overview of a representation of
PTSs in rewriting logic. The reference [39] gives more details about the trans-
lation. Intuitively, the PTS model extends the T'T'S model by letting time act
on each valuation according to a function

6:ZD><R+—>ED

where §(7, r) denotes the state of the PTS after time has acted on a system
in state T for time r. The set 7 of instantaneous transitions is, as in the TTS

® Note that some authors instead use the expression phase transition system for
the hybrid systems extension of the clocked transition system [29,23] model.
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case, equipped with upper and lower bounds. Furthermore, time cannot elapse
past a moment when the enabling condition of a transition changes. Since the
action of time can change the enabling of transitions, we assume that there is
a computable function

enabling_change : ¥p — R, U {oo}

which takes a state as argument and gives the maximum time the system can
proceed without changing the enabling of a transition.

The global state and the (instantaneous) transitions in 7 are modeled in
rewriting logic as for the TTS case. That is, the global state has the form
{{v1,...;0m), c1,y ..oy cp} with (v, ..., v,) avaluation, and each ¢; a time value
denoting how long transition a; has been continuously enabled (which is nil
if a; is not enabled). The functions § and enabling_change are defined on
terms of the sort Valuation. The following tick rule ensures, in addition to the
TTS requirement, that time cannot elapse beyond the latest moment when
a transition must be taken, that all state components are updated according
to their continuous behavior, and that the corresponding clocks are updated
when an enabling condition changes:

(tick] - {V,c,...,ca} == {6(V,1,),¢},...,c}

if A;(ci + 2, < ug, or ¢; == nil) A (z, < enabling_change(V))

again, for V, ¢,..., c,, and z, variables of appropriate sorts, where for all
k=1,...,n,

c;, = if not(enabledy(6(V, z,)) then nil else if ¢, == nil then 0 else ¢ + z,.

3.5 Object-oriented real-time systems

In a concurrent object-oriented system, the concurrent state, which is usually
called a configuration, has typically the structure of a multiset made up of
objects and messages. Therefore, we can view configurations as built up by a
binary multiset union operator which we can represent with empty syntax as

__: Configuration Configuration — Configuration [assoc comm id: null]

where the multiset union operator __ is declared to satisfy the structural laws
of associativity and commutativity and to have identity null. The subsort
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declaration

Object, Msqg < Configuration

states that objects and messages are singleton multiset configurations, so that
more complex configurations are generated from them by multiset union. A
sort ObjConfiguration denoting configurations without messages can be ob-
tained by adding the subsort declaration

Object < ObjConfiguration < Configuration

and the operator declaration

__: ObjConfiguration ObjConfiguration — ObjConfiguration

[assoc comm id: null].

Objects are terms (of sort Object) of the form

(O C|atty: valy, ..., att,: val,)

denoting an object named O, where O belongs to a set Old of object identifiers,
of class C in a state having values valy, . . ., val, for the attributes att,, ..., att,.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its concurrent transition patterns by a rewrite rule. For example,
the rule

m(0,w) (0 : Clatt,: z, atty: y, alty: z) —
(O Clatty: z + w, atly: y, atty: z) m'(y, z + w)

defines a (family of) transition(s) in which a message m having arguments O
and w is consumed by an object O of class C, with the effect of altering the
attribute att; of the object and of generating a new message m'(y, z + w). By
convention, attributes, such as atts3 in our example, whose values do not change
and do not affect the next state of other attributes need not be mentioned
in a rule. Attributes like att; whose values influence the next state of other
attributes or the values in messages, but are themselves unchanged, may be
omitted from righthand sides of the rules. Thus the above rule could also be
written

m(0,w) (0 : Clatt,: z, atty: y) — (O : Clatty: z + w) m'(y,z + w).
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Real-time object-oriented systems can be specified by means of real-time
rewrite theories by extending this setting with a sort System and an oper-
ator

{_} : Configuration — System.

Even though the tick rule will force the objects to synchronize in their time
elapse, the system may still exhibit concurrency in its local transitions, which
may occur between tick applications. We illustrate this style of specification
of real-time object-oriented systems with a simple example.

3.5.1 FExample: A single-thermostat system

A single-thermostat system consists of a thermostat object and zero or more
“user” objects, defining the environment. The thermostat regulates the tem-
perature by turning its heater on and off, and has to provide a temperature
which is within 5 degrees of the user’s desire, whenever this is possible. The
temperature increases by 2 degrees per time unit when the heater is turned
on, and decreases by 1 degree per time unit when the heater is turned off. The
user may request a new desired temperature at any time by sending a message
to the thermostat.

We assume that the specification includes a specification of Tume, which sat-
isfies the theory TIMFE, and a sort Temp denoting possible temperature val-
ues together with all the necessary operations. A sort OnOff contains the
constants on and off, describing the state of the heater associated with the
thermostat. A thermostat object has attributes curr_temp and desired_temp
of sort Temp, denoting the current and desired temperatures, as well as an
attribute heater, denoting the state of its heater. A user object is an object
with an empty set of attributes.

In the following, let U and TS be variables of the sort Oid of object names,
let z, be a variable of sort Time, let y and 2z be variables of sort Temp, and let
OC be a variable of the sort ObjConfiguration of messageless configurations.

At any time, a user may request a new desired temperature:

[new_temp] : (U : User) — (U : User)(set_temp(y)).

The thermostat object should treat such a message by recording the new
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desired temperature (followed by the changing of the heater state if necessary):

[read _request] : (set_temp(y))(TS : Thermostat|desired_temp: z) —
(TS : Thermostat|desired_temp: y).

The thermostat must turn off/on the heater, either when time has acted on a
system such that the current temperature is exactly the desired temperature
plus/minus 5 degrees, or when the system must change due to the adjustment
of the desired temperature, in which case the current temperature may be
more than 5 degrees off the desired temperature:

[on] : (TS : Thermostat|curr_temp: y, desired _temp: z, heater: off ) —
(TS : Thermostat|heater: on) if y <z —5

[off] - (TS : Thermostat|curr_temp: y, desired_temp: z, heater: on) —
(TS : Thermostat|heater: on) if y > z + 5.

The following tick rules model the effect of time elapse on a system and ensure
that:

(1) time elapse can “stop” at any moment, reflecting the fact that the rule
new _temp could be applied at any time,

(2) time does not elapse past the moments the heater state should be changed,
and

(3) time does not elapse while there are any messages in the system (i.e., the
requested temperature should be recorded at the time it is sent).

[tick,y,)] :
{{TS : Thermostat|curr_temp: y, desired_temp: z, heater: on) OC} -
{{TS : Thermostat|curr_temp: y + z, + z,) OC} if y+ 2, + 2, < z+5

[tickoﬁ] .
{{TS : Thermostat|curr_temp: y, desired_temp: z, heater: off) OC} ==
{{TS : Thermostat|curr_temp: y —x,) OC} if y — 1z, < z — 5.

The specification will work as expected, provided that the initial state contains
exactly one thermostat object. A specification of a many-thermostat system
is given in Section 3.7.2.
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3.6 Time as an action on the whole system

When the state of a system has a rich structure, it may be both natural and
necessary to let a function denote the effect of time elapse on the whole state of
a system, in contrast to, for example, the single-thermostat system in Section
3.5.1 where time elapse only affected one object in the system. The function
0 denoting the action of time on a system has the form

§ : State Time — State

involving the designated sorts State and Time. The action § should be a
monoid action, that is, it seems natural to require that it satisfies the axioms:

d(z,0)
0(0(z, yr), 2)

T
6(z, yr + 2).

Tick rules should then be of the form

1) {t} -5 {d(t,r)} if C.

Using the action 0 to describe the effect of the passage of time on a dynamic
evolution of a system is not without possible pitfalls. If done carelessly, it may
allow “going back in time” to perform a rewrite. Suppose that ¢ = §(¢', )
holds and that the “aged” term ¢’ rewrites to ¢”. Then, there would also be
an “aged” rewrite

{t} = {0(',r)} — {o(#",r)}.

For executable specification purposes it is important to require that the set E
of equations in a rewrite theory is divided into a set E’ of simplifying equations
and a set Az of structural axioms, in such a way that the equations in E’ define
a Church-Rosser and terminating set of equations modulo the set Az, and such
that the set of rules R is coherent [13,44,33] wrt. E' & Az. A rewrite theory is
coherent if for every one-step sequential rewrite ¢ — ¢ modulo the structural
axioms Az, there is also a rewrite ! — ¢ modulo Az, for t!g an E'-normal
form of ¢ modulo Az, such that # and ¢ are E-equivalent. A coherent system
does not allow “going back in time,” since coherence would imply that that
there is a “well-timed” rewrite {t} — {¢;} modulo the structural axioms Az
which is E-equivalent to the rewrite {§(¢',r)} — {0(¢",r)} above, assuming
that {d(¢',r)} reduces to {t} when the equations are oriented.
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A commonly occurring state structure for which we want the action of time to
distribute over the different state components is a multiset distributed struc-
ture. For example, object-oriented systems and Petri nets have that structure.
For multiset distributed systems we can give a general treatment of time ac-
tions that avoids coherence problems.

A simple solution to avoid coherence problems is to let each rule rewrite terms
of sort System only, which would solve the coherence problem wrt. the symbol
0, since each rewrite would occur at the top. However, concurrency would be
lost by this solution. Our idea is instead to use special tokens of the form
‘“*’ and let the extended state be a term in a supersort ErtendedState of the
designated sort State, consisting of the multiset union of the original state and
a multiset of tokens. The system operator {_} should take arguments of the
sort FExtendedState, while § is left unchanged. If multiset union is denoted by
juxtaposition, the tick rules would be of the form

(1) [tick]: {T 1} - [Tt 7)) if O,

for T a variable of a sort Tokens, denoting multisets of tokens, and ¢ a term
of sort State. Each local rule should then have the form

xt— x---x tif C.

Since one token appears in the lefthand side of each local rule, the global
state must contain at least n tokens for n local rewrites to fire concurrently.
For object-oriented systems, the number of tokens in a configuration could
suitably equal the number of objects in a configuration, since the number of
rewrites firing concurrently is bounded by the number of objects present in
the global state, under the assumption that at least one object appears in
the lefthand side of each rule. Coherence wrt. the symbol ¢§ is now trivially
unproblematic, since every instance of a lefthand side of a local rule has least
sort FrtendedState, and therefore cannot be an argument to 9.

To summarize, a monoid action ¢ denoting the effect of time elapse on the
whole state may be useful for specifying real-time systems where the state
of the system can have a rich distributed structure, but we must require co-
herence, since this ensures that d does not cause counterintuitive rewrites
resulting from “going back in time.” The class of coherent real-time rewrite
theories with a monoid action § describing the effect of time elapse on a system
and where the tick rules are of the form (}), or of the form (f) for multiset
distributed systems, will be denoted o-RTRWTh.
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3.7  Object-oriented 0-systems

The elapse of time affects one (functional) attribute in the single-thermostat
system in Section 3.5.1. The tick rules could therefore be given by specify-
ing directly the effect of time on that attribute. However, in more general
object-oriented systems there can be an unbounded number of objects in a
configuration which are affected by the elapse of time, in which case a finite
number of tick rules cannot specify the elapse of time directly on the func-
tional attributes. A simple solution is to use a function ¢ denoting the action
of time on a configuration. The important class of real-time object-oriented
systems where the objects have only functional attributes are multiset dis-
tributed systems. Therefore, we can use the techniques described in Section 3.6
to circumvent coherence problems wrt. § without sacrificing concurrency. The
following declarations should be added to the general framework for specifying
object-oriented real-time systems given in Section 3.5, with {_} redefined as
stated below.

sorts Tokens, x Configuration

subsorts Tokens, Configuration < xConfiguration

op x 1 — Tokens

op __: Tokens Tokens — Tokens [assoc comm id: null]

op __:xConfiguration x Configuration — x Configuration
[assoc comm id : null]

op {_} : xConfiguration — System

op 0 : Configuration Time — Configuration.

As already mentioned, the tick rules should be of the form

ltick] - {Tt} > [T (¢, 1)} if C,

where T is a variable of sort Tokens, and ¢ is a term of sort Configuration.
Each instantaneous rule should have the form ®

0] e %t — %%t

for t, t' terms of sort Configuration, and where the number of tokens * in the
righthand side should equal one plus the number of objects created by the
rule, minus the number of objects deleted by the rule. The initial state of a

6 In systems where the number of objects created by a rule application depends on
the state, the condition on the form of the rules could be relaxed so that *--- % can
be given by a term of sort Tokens, computing the number of tokens as a function
of the state.
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system should be of the form {x---x% t}, where the number of tokens equals
the number of objects in the term ¢ of sort Configuration.

3.7.1 Distribution over configurations

An operator § acting on configurations provides, as we have just seen, a natural
way of expressing the action of time on object systems where the number of
objects in a configuration upon which time has an effect is unbounded. In
these cases, ¢ should typically distribute over the elements, or over groups of
elements, in the configuration. The former case can be modeled by the axioms

d(null, z,) = null
5C C'x)=6(C, ) 6(C", x,) if C # null and C' # null

(for C, C" variables of sort Configuration), to which the definition of the spe-
cific effect of time on single objects and on messages must be added to com-
pletely specify §. The condition that C and C' be different from null ensures
that the two equations above define a terminating rewrite system modulo
associativity, commutativity, and identity (null) of the configuration union
operator, when oriented from left to right.

In systems parameterized by LTIME,, theories, a function mte giving the max-
imum time elapse of an object and message can be extended to configurations
by the axioms

mte(null) = oo

mte(C C') =min(mte(C), mte(C")) if C # null and C' # null.

3.7.2  FExample: A multi-thermostat system

A multi-thermostat system can have an arbitrary number of rooms, each
equipped with a thermostat that works as in the single-thermostat system.
Each user object is extended to contain a list of the thermostats to which it
has access.

Let the specification be parameterized by the theory LTIME,, . Furthermore,
let A, TS, and U be variables of sort OId, let S be a variable of a sort of
sets of Olds, let C' be a variable of sort Configuration, let T be a variable
of sort Tokens, let z, be a variable of sort 7Twme, and let y and z be vari-
ables of sort Temp, modeling the temperature domain. Then, the function
0 : Configuration Time — Configuration denoting the action of time, and the
function mte : Configuration — Time,, computing the maximum time elapse
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in a tick both distribute over configurations according to the equations de-
scribed above, and are defined for singleton configurations as follows:

d(set_temp(A,y), z,) = set_temp(A, y)

S((U : User),z,) = (U : User)

S((TS : Thermostat|curr_temp: y, heater: on), z,) =
(TS : Thermostat|curr_temp: y + =, + x,, heater: on)

S((TS : Thermostat|curr_temp: y, heater: off ), z,) =

(TS : Thermostat|curr_temp: y — ., heater: off)

The system’s transition rules can then be given as follows:

[new_temp] : x (U : User|thermostats: A S) —

(
x (U : User) (set_new _temp(A,y))
[set_temp| : * (set_temp(A,y)) (A : Thermostat|desired_temp: z) —
(

x (A : Thermostat|desired_temp: y)

[turn_on] : (TS Thermostat|curr_temp: y, desired_temp: z, heater: off )
— * (TS : Thermostat heater: on) if y < z—5

[turn_off] . * (TS: Thermostat|curr_temp: y, desired_temp: z, heater: on)

— x (TS : Thermostat|heater: off) if y > 2 +5
[tick] : {T CYy-= {T§(C,z,)} if 7, < mte(C).

3.8 Timed Petri nets

A Petri net [41] is usually presented as a set of places (each place representing a
certain kind of resource), a disjoint set of transitions, and a relation of causality
between them that associates to each transition the set of resources consumed
and produced by its firing. Meseguer and Montanari recast this idea in an
algebraic framework in [36], viewing the distributed states of the net, called
markings, as multisets of places, and viewing the transitions as the arrows of
an ordinary graph whose nodes are markings. In [32,35] it has been shown
how Petri net computations can be expressed by rewriting of markings, that
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is, of multisets over the set of places.

Petri nets have been extended to model real-time systems in different ways
(see e. g. [1,37,21]). Three of the most frequently used time extensions are the
following, from which other timed versions of Petri nets can be obtained either
as special cases or by combining the extensions:

(1) Each transition o has an associated time interval [[,, u,]. A transition
fires as soon as it can, but the resulting resources (also called tokens) are
delayed, that is, when a transition « fires, the resulting resources are not
visible in the system until after some time 7 € [ly, tq].

(2) Each place p has a duration r,. A resource of kind p cannot participate
in a transition until it has been at place p for at least time r,.

(3) Each transition « is associated with a time interval [l,, u,|, and the tran-
sition « cannot fire before it has been continuously enabled for at least
time J,. Also, the transition o cannot have been enabled continuously for
more than time u, without being taken.

We only treat the first two cases. The third case can be given a treatment
similar to that of timed and phase transition systems.

Some of the timed extensions of Petri nets, such as interval timed colored
Petri nets, appear in the context of colored Petri nets, where instead of having
atomic places one has structured data. In this exposition, we abstract away
from the colors of the tokens to concentrate on real-time features (see e.g.,
[43] for a treatment in rewriting logic of an important class of colored nets,
namely, algebraic Petri nets).

The translation into rewriting logic of these first two cases is based on the
rewriting logic representation of untimed Petri nets given in [35,32,34], where
the state of a Petri net is represented by a multiset of places called a marking

where if place p has multiplicity n we interpret this as the presence of n
tokens in that place and where the transitions correspond to rewrite rules
on the corresponding multisets of pre- and post-places.

There are two kinds of “tokens” in our translation of timed Petri nets: A term
consisting of the place p represents a “visible” occurrence of a token at place
p. A token that will be visible at place p in time r is represented by the term

dly(p,r).

Clearly, we want the equation dly(p,0) = p. A state, or marking, of a timed
Petri net is a multiset of these two forms of places, where multiset union is
represented by juxtaposition.

The number of delayed tokens in a marking, upon which time acts, is not
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known in advance. Timed Petri nets are therefore best modeled by d-real-
time theories using the techniques for specifying multiset distributed d-systems
given in Section 3.6. The action § : Marking Time — Marking which models
the effect of time elapse on a marking (without any occurrence of the spe-
cial symbol ‘x’), distributes over the elements in a marking and is defined as
follows:

o(p, ) = p
o(dly(p, 2r), yr) = dly(p, 2 = yr)
d(null, z.) = null
S(M M' x,) =M, ) §(M', x,) if M # null and M' # null.

Transitions are represented by rewrite rules whose lefthand side requires an
extra token of the form ‘x> and with new extra such tokens added on the
righthand side according to the increase in cardinality from the preset to
the postset. In version (1), also known as interval timed Petri nets [1], each
transition « has an associated interval [l,, u,|. Assume that the transition «
consumes two tokens from place a, and one token from place b, and produces
one token at each of the places ¢ and d. Since the duration of the transition
is any time in the interval [l,, u,], the resulting tokens are not visible for a
time within this interval. Hence, the transition «. can be represented by the
following rewrite rule:

eager [o]: xaab— x dly(c,z,) dly(d, z,) if I, < z, < u,.

In version (2), each place p has an associated duration r,, and a token must
have been at a place p for at least time r, before it can be used in any
transition. This is equivalent to saying that the produced token cannot be
visible before time r, after the producing transition took place. Hence, the
transition that consumes two tokens from place a and one from place b, and
which produces one token each at ¢ and d is represented by the rule

eager [o]: xaab— x dly(c,r.) dly(d, rq).

As usual, the elapse of time (in both versions) is modeled by tick rules. In order
to ensure that time does not proceed beyond the time when a transition could
fire (that is, when time has acted on a token dly(p, r) for time ), the function
mte is used. It takes as argument a marking (without %), and returns the least
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amount of time until one or more non-available tokens become available:

mte(p) =
mte(dly(p, z,)) =z, if 2, #0
mte(null) = oo
mte(M M') = min(mte(M), mte(M')) if M # null and M'" # null.

The tick rule then allows time to elapse until the first dly-token becomes
visible:

lazy [tick]: {T M} "> {T §(M,x,)} if z, < mte(M),

where T is a variable of sort Tokens of multisets of ‘x’, and M is a variable
of sort Marking. Note that for simulation purposes, a tick rule

lazy [tick] : {T MY™ 8 17 §(M, mte(M)} if mte(M) # oo

would be simpler, since no (non-tick) transition which is not currently enabled
will be enabled before time has elapsed at least mte(M). The reason for the
nondeterministic tick rule is to allow every moment in the time domain to be
visited.

Transitions are supposed to fire as soon as possible in both versions of timed
Petri nets. This is accomplished by the strategy described in Section 2.5.3
that triggers all eager instantaneous rules until none of these can be applied,
followed by one application of the tick rule.

The correspondance between a version-(1) timed net and its rewriting logic
translation can be given as follows. For any net markings (i.e., markings with-
out “delayed” tokens or *xs) My and M;, the marking M; can be reached in
time r from the initial marking M, in the net if and only if there is a rewrite

a: {x- % My} — {x---x M}

in the rewriting logic translation with 7(«) = r, with the number of occur-
rences of ‘x” in the lefthand side system greater or equal to the number of
(non-x) tokens in My, and with M; obtained from M| by removing each de-
layed token from M.

In version (2), we have the correspondence that, for any net marking M, the
net can reach a marking M; in time r from the initial marking M, if and only
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if there is a rewrite

B {xeox My} — {x---x M}

in the corresponding rewrite translation, where 7(3) = r, where the number of
occurrences of “x” in the lefthand side system greater or equal to the number
of (non-x) tokens in My, where M] is obtained from M; by replacing each
occurrence of a token at place p by a delayed token dly(p,r,), and where
M, can be obtained from M| by replacing each delayed token in M] by the
corresponding undelayed token.

Our rewriting logic specification of timed Petri nets illustrates the convenience
of using eager and lazy rules, which allow a simple condition on the tick rule,
which would otherwise have to take into account the enabledness of every
transition in the system together with the mte part of the tick rule. Here, the
tick rule only needs to compute the time until the next delayed token becomes
“visible” and elapse time by that amount. After such a tick, the tick rule is
again enabled but will, due to its being lazy, not be applied if the introduction
of the new token enabled an (eager) transition (which in turn could trigger
more transitions in zero-time).

3.9 The big picture

We have shown how some well-known models of real-time and hybrid systems
can be naturally regarded as specializations of the real-time rewriting logic
framework. Since we are interested in executable specifications, we have placed
some computability restrictions on some models. The relationships between
the models considered are summarized in Figure 1, where the arrows in the
tree stand for specialization ", where the acronym OORTS stands for object-
oriented real-time systems, -RTRWTh for real-time rewrite action theories,
and 9-OORTS for real-time object-oriented action systems. Even though we
have not presented an exhaustive discussion of real-time models, we think that
the models we have chosen are significantly varied and well-known to suggest
that rewriting logic is a good semantic framework for real-time and hybrid
systems.

" The timed automata model requires its computations to have unbounded total
time elapse and to satisfy certain acceptance criteria, which is not the case for hybrid
automata, explaining the missing arrow between these models.
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Fig. 1. Specializations of real-time rewriting.

4 Relationship to timed rewriting logic

In this section we investigate the relationship between Kosiuczenko and Wirs-
ing’s timed rewriting logic (TRL) [24,25] and the framework we have presented
for specifying real-time systems directly in rewriting logic. After briefly intro-
ducing TRL in Section 4.1, we propose in Section 4.2 a translation from TRL
into rewriting logic. In this translation, the translation of any TRIL-sequent
derivable in a TRL theory is also derivable in the corresponding rewriting
logic theory. The converse is in general not true. We explain the reasons for
this discrepancy in Section 4.3. They are due to some conceptual differences
between TRL and our method of specifying real-time systems in rewriting
logic.

4.1  Timed rewriting logic

Rewriting logic has been extended by Kosiuczenko and Wirsing to handle real-
time systems in their timed rewriting logic (TRL) [24,25]. TRL has been shown
well-suited for giving object-oriented specifications of complex hybrid systems
such as the steam-boiler [38] and has been illustrated by a number of spec-
ifications of simpler real-time systems. A translation into ordinary rewriting
logic can illuminate the conceptual relationships between both formalisms.

A TRL theory (X, E, L, TR) consists of an equational specification (X, F)
satisfying the theory TIME® | a set L of labels, and a set TR of timed rewrite
rules of the form [I] : + — #', where 7 is a ground term of sort Time denoting
the duration of the rewrite. A TRL sequent has the form ¢ — ¢’ and its
intuitive meaning is that ¢ evolves to ¢’ in time r. More specifically, the set
of sequents derivable from a TRL theory consists of all rules in the theory,

8 They impose in some cases further requirements, such as TIME being an
Archimedean monoid. This could of course be easily accommodated.
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Fig. 2. Deduction rules in timed rewriting logic.

and all sequents which can be derived by equational reasoning and by using
the deduction rules in Figure 2, where V(¢) denotes the set of free variables
in ¢£. This deduction system extends and modifies the rules of deduction in
rewriting logic with time stamps as follows:

Reflexivity is dropped as a general axiom, to allow specifying hard real-time
systems. Reflexivity would not allow describing hard real-time systems since
(parts of) the system could stay idle for an arbitrarily long period of time.
Transitivity yields the addition of the time stamps. If ¢, evolves to £, in time
r and ¢y evolves to f3 in time 1y, then t; evolves to t3 in time ry + 1.

The synchronous replacement rule enforces uniform time elapse in all com-
ponents of a system: a system rewrites in time r iff all its components do
SO.

The renaming rule assures that timed rewriting is independent of the names
of variables. Observe that the renaming axiom does not imply that ¢ — ¢
holds for all terms t.

4.2 Timed rewriting logic in rewriting logic

In this section we define a mapping M which takes any timed rewriting logic
theory 7 to a real-time rewrite theory M(T) such that 7 ¢t — ¢’ implies
that M(T) F a: {t} — {t'}, for some a with 7(a) = r, for all ground (7-)
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terms t,t" of the designated sort State.

The idea is to introduce for each sort s an operator o : s Time — s correspond-
ing to the effect of time elapse. Then, a TRL sequent ¢ — #' (“t evolves in
time r to ¢'”) can be mapped to a rewriting logic sequent 6(¢,r) — ¢ (“if
time has acted on ¢ for time r, then it rewrites to ¢"”) for ground terms ¢, ¢'.
Rewrite rules must be used to define ¢, since the effect of time on a TRL state
is not necessarily functional.

Sort information is used to separate terms containing the symbol ¢ from terms
of the original signature, and a tick rule is added to the rules defining ¢ such
that for ground T-terms ¢, ¢ of sort State, M(T) F « : {t} — {t'} holds
for some o with 7(a)) = r if and only if M(T) & 6(¢,r) — #', which in turn
holds whenever 7 + t = t' holds. The resulting real-time rewrite theory
M(T) is not easily executable, since the tick rule introduces two variables in
its righthand side. This reflects the fact that in TRL it is in general undecidable
whether a term rewrites in time r (r > 0), and, even if it is known that ¢
rewrites in time r, it is also in general undecidable whether ¢ rewrites to a
given term ¢’ in time 7.

We assume that the time domain is functional, that is, that no rewrites of
the form ¢ — #', with ¢ # #' terms of sort Time, can be inferred from the
TRL theory 7T, and restrict our treatment to TRL theories where no extra
variables are introduced in the righthand side of a rule. The reason for the
latter restriction is that if f(z) — g(z, y) and g(z,y) — h(y) are two rules,
any system t' that appears in h(f) as a result of the second rule, must have
evolved for 2 time units from a system ¢ in g(u, t). However, by transitivity of
the rules, the sequent f(z) — h(y) is derivable, which means that any system
t could replace y in h(y), including the systems which have not evolved for 2
time units.

4.2.1  The mapping from TRL to real-time rewrite theories

The mapping M sends an order-sorted TRL theory T = (X, E, L, TR) to a
real-time rewrite theory M(7T) = (M(X2), M(E), M(L), M(TR)), 6(T),7(T))
and sends a T-sequent ¢ — ¢’ to an M(T)-sequent M(t — t'). It is defined
as follows:

e The signature morphism ¢(7) in M(T) takes Time to the sort Time in T
denoting the time domain, and takes the functions in TIMFE to the corre-
sponding functions in 7.

e The set of sorts in M () consists of all the sorts in ¥, plus a new sort s° for
each sort s in ¥, as well as a new sort System. For each sort s in 3, s < 59,
and if s < s’ in X, then s’ < 5" in M(Z).
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e M(X) contains function declarations f : s; ... s, —sand f : s ... 80 — s°
for each function f : s ... s, — s in ¥, a constructor {_} : State — System
for the designated sort State in X, and a function § : s° Time — s° for each
sort s in .

e M(E) contains an axiom e’ for each axion e in E, where ¢’ is the axiom
e where each variable z : s is replaced by z : s°. The set M(E) must also
define § to be a monoid action, that is, it contains the axioms

5(.’)755, 0¢) = Tgs
8(0(zgs, yr), 2r) = 0(Zgs, Yr +¢ 2r)
for each sort s® in M(X) and variable z, of sort s°, and variables y,, 2, of

sort Time.
e The mapping M from TRL-sequents to rewriting logic sequents is given by

M(t(z1:81, 0 Ty 8n) > (21281, T 8y)) =
S(t(zy:80, ..., mp:80), 1) — t'(8(my:8d,r)/my, ..., 0(20 80, 1) /1)
where the free variables in ¢ are zy, ..., z, and contain those of ¢'.

The set of rules M(TR) consists of a rule [[] : M(t — t') if C° for each
timed rule [I] : t — ¢ if C in TR, and a tick rule

[tick] : {z} 2 {2'} if §(z,y,) — 2
for variables z, 2’ of sort State and vy, of sort Time.

The theorem below shows that M can be naturally understood as a map of
logics. Specifically, as a map M : TRL — RWL from the entailment system
[31] of TRL to that of rewriting logic.

Theorem 10 Let T be a TRL specification and let M be defined as above.
Then, for all terms t,t',r € Ts(X),

TEt-t implies M(T)E M(t 5 t).

As a corollary to this theorem, which can be easily proved by induction on
the size of the proof ¢t — ', we obtain that 7 F ¢ " #' implies M(T)
§(t,r) — t' for all ground terms ¢, ', and r, which in turn gives a rewrite
M(T) F a: {t} — {t'} with 7(«) = r when ¢ and t' are of sort State by
applying the tick rule. It is also easy to see that M(T)  « : {t} — {¢'}
implies M(T) - 6(¢, 7(«)) — t' for ground T-terms ¢, ¢ of sort State.
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4.3 Differences between TRL and its rewriting logic translation

Even though ¢ — ¢’ implies 6(¢, r) — t' for ground terms, the converse is not
necessarily true. In this section we discuss the differences between deduction
in TRL and in its translation into rewriting logic.

4.83.1 Zero-time idling

In the rewriting logic translation, a TRL sequent ¢ %5 ¢ translates to 5(t,0) —
t(6(21,0)/m1, ..., 0(2,,0)/2,), which, due to the axiom §(z,0) = z, is equal to
t — t, which is always deducible in rewriting logic. However, in TRL, ¢ BN
is not necessarily valid. This obviously indicates a difference between both sys-

tems, since the notion of “zero-time idling” is always available in our approach
but not in TRL.

4.3.2  Non-right-linear rules

Given the TRL theory {f(z) EEIN g(z,z), a Z5b, a2 c}, the term f(a)
rewrites to either g(b, b) or g(c, ¢) in time two, but will not rewrite to ¢(b, ¢).
In the rewriting logic translation

{6(f(z),2) — g(6(z,2),0(x,2)), d(a,2) — b, §(a,2) — c,

{y} = {y'}if o(y, ) — '},

where y and y’ are variables of the designated state sort and range over o-
free terms, there is a rewrite 6(f(a),2) — ¢g(6(a,2),d(a,2)) — ¢(b, ¢), and
therefore also a rewrite av: {f(a)} — {g(b, ¢)} with 7(a) = 2.

The difference depends on how the fork of a process is modeled. The rule
f(z) - g(z,z) can be understood as a fork of the (sub)process ¢ in the
system f(t). In the TRL setting, the actual “fork” (the point in time when
the two instances of the process z can behave independently of each other)
is taking place at the end of the time period of length r in the rule. In the
rewriting logic setting, the “forking” took place at the beginning of the time
period of duration Y.

9 Note that in the rewriting logic setting, adding a rule §(k(z),2) — f(§(2,2)) to
the system above gives §(k(z),4) — ¢g(6(z,4),5(z,4)), hence a “fork” which took
place too early. Such behavior can be avoided by requiring that the variable z in
the rule 6(f(z),2) — ¢(§(z,2),0(x,2)) has a “non-d-sort”.
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4.3.8  Problems related to synchrony in TRL

Another aspect in which TRL and our rewriting logic translation are different
is illustrated by the following TRL specification:

{fla.y) = gla.y), g(z.y) > h(z.y), h(z,c) > k(z,c), a—>d, b c}.

Due to the strong synchrony requirements in TRL, f(a, b) cannot be rewritten,
even though the b (in the place of y), and a (for z), could be rewritten in time
4. In many cases, it would however be natural to assume that the system
represented by f(a,b) rewrites to k(d, c) in time 6. In the rewriting logic
translation, d(f(a, b), 6) rewrites to k(d, c).

4.4 Aging in TRL

To overcome the strong requirements of synchrony in TRL, which caused the
differences in Sections 4.3.2 and 4.3.3, the special symbol age is introduced in
[24,25]. It aims at making a term ¢, which rewrites in time 7', “accessible” to
synchronous rewrites in time r with 7' > r, by making it visible as age(¢, r).

Formally, with aging, the following two deduction rules are added to the TRL

deduction rules given in Figure 2. In both deduction rules, ¢ 7 4 is assumed
to be a timed rewrite rule in the specification.

age; : agesy :

t — age(t,r) age(t,r) Ly

The age operator also satisfies the axiom age(age(t, ), ") = age(t, r + ') for
all terms ¢ and time values r, r'.

With aging, the “fork” differences disappear, since (assuming g(z,y) SN
g(z,y)) we have f(a) = g(age(a,?2), age(a,?2)) LN g(b, ¢) for the system in
the example of Section 4.3.2, and the strong synchrony is loosened, as illus-
trated by the fact that in Section 4.3.3, f(a, b) SN k(d, c) is derivable, since
Fla, b) -3 g(a, age(b,2)), g(a, age(b,2)) —> h(age(a, 2), ¢), and h(age(a, 2), c)
25 k(d, ¢) are derivable.

Unfortunately, the deduction rules for aging lead to counterintuitive results,
as illustrated by the following example:

Example 11 In a TRL theory {f(z) — g(z), f(b) == g(c), a — b}, one
would expect f(a) — g(c) not to be derivable. However, f(z) — age(f(z),2)
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and age(f(z),2) — g(z) are derivable, and so are f(b) = age(f(b),2) and
age(f(b),2) = g(c).

The sequents f(z) — age(f(z),2) and a —= b give f(a) — age(f(b),2) b
synchronous replacement, which in turn rewrites to g(c) using age(f(b),2
SN g(c). Transitivity gives the undesired sequent f(a) 2, g(c).

y
)

We can summarize the situation as follows. We have seen that the rewriting
translation of a TRL theory 7 is looser than 7 itself, in some cases with some
pleasant consequences. If we attempt to tighten the correspondence between
both systems by adding aging rules to TRL, we get indeed closer, but we
unfortunately encounter paradoxical examples in the reformulation of TRL.

5 Concluding Remarks

We have presented a general method for specifying real-time and hybrid sys-
tems in rewriting logic in an executable way, have shown how a wide range of
real-time and hybrid system models can be naturally expressed in rewriting
logic, and have illustrated the ideas with several examples. This work should
be further extended in several directions.

The systems that we have considered can be distributed and can exhibit con-
current computations, in which several components of the state can change
simultaneously and independently. However, time is still in some sense global,
since time acts on the global state, even though its effects can be local and
distributed—for example, by advancing the local clocks of different distributed
objects. The situation is entirely similar to that in some real-time models for
distributed systems such as Lynch’s general timed automata [26], where time
also acts uniformly on all the distributed components. In fact, although we
have not discussed general timed automata in this paper, they can also be
specified within our general framework. Although the current framework can
already be used for specifying and reasoning about a range of distributed time-
based systems, it would be worth investigating how the assumption of global
time action could be relaxed to local or distributed time actions.

We have explored what we think is a representative range of real-time and
hybrid system models. However, the general timed (I/O) automata model
mentioned above, real-time dataflow models such as Lustre’s [20], and a vari-
ety of other models should also be specified in detail in rewriting logic. The
interest is not merely conceptual: by using a formal meta-tool such as Maude
[16], one can turn the rewriting logic specification of a model into a tool for
executing and analyzing formal specifications in that model. Since at present
some formalisms lack execution and analysis environments, this offers a way
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of developing new formal tools with considerably less effort than what would
be required for conventional implementations.

Execution of rewriting logic specifications for real-time and hybrid systems is
also another area deserving further work. Since the specifications are rewrite
theories, and we assume that the underlying data types are computable, they
can of course be executed in a rewriting logic language. The point, however,
is that the rewrite rules are often nondeterministic, with extra new variables
appearing on the righthand side. Therefore, they should be executed with
appropriate strategies, to guide both the application of the rules and the choice
of instantiations for the extra variables in a match. Strategies of this kind can
be defined without any problem in languages such as ELAN [10] and Maude
[13], but the development of a good library of such strategies suitable for
real-time and hybrid system applications leading perhaps to a specialized
execution and analysis tool for them—remains to be done.

Another important research issue is the integration of different proof and anal-
ysis methods. On the one hand, verification of property-oriented specifications
should be supported. This can be done either by inductive methods, based on
the initial model of the rewriting logic specification, or by temporal logic rea-
soning, which in important cases can be supported by abstraction and model
checking techniques. On the other hand, once we have an executable speci-
fication we can subject it to other forms of analysis, ranging from execution
with a default strategy, to exploration of different computation paths with
more sophisticated strategies, and to full symbolic simulation with techniques
such as narrowing. Studying how all these different methods and their tools
can best be combined to make system analysis and verification easier seems a
promising research direction. Examples and case studies can help very much
in this task.
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