
Speci�cation of real-time and hybrid systemsin rewriting logic ?Peter Csaba �Olveczky a;b;1 and Jos�e Meseguer aaComputer Science Laboratory, SRI International, Menlo Park, USAbDept. of Informatics, University of Bergen, NorwayAbstractThis paper explores the application of rewriting logic to the executable formal mod-eling of real-time and hybrid systems. We give general techniques by which suchsystems can be speci�ed as ordinary rewrite theories, and show that a wide range ofreal-time and hybrid system models, including object-oriented systems, timed au-tomata [4], hybrid automata [2], timed and phase transition systems [28], and timedextensions of Petri nets [1,37], can indeed be expressed in rewriting logic quite nat-urally and directly. Since rewriting logic is executable and is supported by severallanguage implementations, our approach complements property-oriented methodsand tools less well suited for execution purposes. The relationships with the timedrewriting logic approach of Kosiuczenko and Wirsing [24,25] are also studied.
1 IntroductionThis paper explores the application of rewriting logic to the executable formalmodeling of real-time and hybrid systems. The general conceptual advantageof using a logic instead of using a speci�c model is that many di�erent modelscan be speci�ed in the same logic, each in its own terms, rather than bymeans of possibly awkward translations into a �xed model. The advantagesof using rewriting logic as a semantic framework for concurrency models hasbeen amply demonstrated (see the surveys [34,35]). This work shows that a? Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312,by DARPA and NASA through Contract NAS2-98073, by O�ce of Naval Re-search Contract N00014-96-C-0114, and by National Science Foundation GrantCCR-9633363.1 Supported by The Norwegian Research Council.Preprint submitted to Elsevier Preprint 7 April 1999



number of well-known models of real-time and hybrid systems can likewise benaturally speci�ed in the rewriting logic framework.Thus, rewriting logic can be used to specify many di�erent formal models ofsuch systems in a uni�ed logic. But, since rewriting logic is executable, and issupported by several language implementations [13,10,18], these models canbe executed and can be formally analyzed in a variety of ways. This is incontrast to the most well-known formal methods tools for real-time and hy-brid systems such as Kronos [17], STeP [9,30], and UPPAAL [7]. These aremodel checking tools which require the user to specify both the system andthe formal properties the system should satisfy. The tools then try to checkwhether the system satis�es a given abstract property. However, these toolsare not well suited for directly executing the system itself. The same can besaid about HyTech [22], which takes a hybrid system description with some pa-rameters unspeci�ed, and returns the concrete values of the parameters whichwould make the system satisfy some given property. Of course, model check-ing tools have important strengths of their own. The point is that executablespeci�cation methods and tools can complement those strengths in new ways.To see how rewriting logic complements more abstract speci�cations such astemporal logic as well as more concrete, automaton-based ones, one can thinkof it as covering an intermediate level, that can substantially help in bridgingthe gap between more abstract, property-oriented, speci�cations and actualimplementations by providing:� a precise mathematical model of the system (the initial model [32]) againstwhich more abstract speci�cations can be proved correct by means of in-ductive theorem proving, model checking, and other techniques;� support for other useful techniques of automated or semi-automated formalreasoning and analysis at the rewriting logic and equational logic levels,such as coherence [44], conuence, and strategy-based formal analysis;� support for executable speci�cation, rapid prototyping, and symbolic simu-lation;� the possibility of generating correct implementations from speci�cations bytheory transformations and code generation techniques.We show that ordinary rewrite theories are su�cient to specify real-time sys-tems in a natural way. Essentially, all we need is to include in the speci�cationa Time data type satisfying appropriate equational properties. However, it issometimes useful to highlight the real-time aspect by making explicit the du-ration information for some rewrite rules. We formalize this idea in Section 2by means of real-time rewrite theories; but we show that, by adding an explicitclock, they are reducible to ordinary rewrite theories in a way that preservesall the expected properties. 2



The naturalness of the speci�cation method, and its smooth integration withrewriting logic's support for object-oriented speci�cation, is explored and il-lustrated with examples in Section 3, in which we also address the question ofhow generally and naturally rewriting logic can be used to express a variety ofreal-time and hybrid system models. We show in detail how, besides object-oriented real-time systems, a wide range of such models, including timed au-tomata [4], hybrid automata [2], timed and phase transition systems [28], andtimed extensions of Petri nets [1,37], can indeed be expressed in rewriting logicquite naturally and directly.The �rst important research contribution exploring the application of rewrit-ing logic to real-time speci�cation has been the work of Kosiuczenko andWirsing on timed rewriting logic (TRL) [24,25], an extension of rewriting logicwhere the rewrite relation is labeled with time stamps. TRL has been shownwell-suited for giving object-oriented speci�cations of complex hybrid systemssuch as the steam-boiler [38], and has also been applied to give semanticsto the SDL telecommunications speci�cation language [42]. In fact, rewritinglogic object-oriented speci�cations in the Maude language [33] have a naturalextension to TRL object-oriented speci�cations in Timed Maude [24,38].The approach taken here is di�erent. As already mentioned, we argue thatreal-time systems can be speci�ed in ordinary rewriting logic, and that rea-soning about their behavior does not require a special inference system of theirown, such as the one proposed in TRL. Even when special notation highlight-ing real-time aspects|such as that provided by real-time rewrite theories|isused, we show that this can essentially be regarded as syntactic sugar. This hasthe conceptual advantage of remaining within a simpler theoretical framework,and the practical advantage of being able to use the existing language imple-mentations of rewriting logic to execute speci�cations. Therefore, it seems bothconceptually and practically useful to study the relationships between our ap-proach and TRL. We do so in Section 4, where we show that there is a map oflogics M : TRL�! RWL sending each TRL speci�cation to a correspondingrewrite theory in such a way that logical entailment is preserved. However,the translated theory M(T ) can in general prove additional sentences. Thisis due to some intrinsic conceptual di�erences between both formalisms thatour analysis reveals.1.1 Prerequisites on rewriting logic and MaudeWe assume familiarity with the basic concepts of rewriting logic as presented in[32,35]. We recall here only the most basic notions that we shall use. Rewritinglogic speci�cations are rewrite theories of the form R = (�;E ;L;R), where(�;E ) is an equational theory, L is a set of labels, and R is a collection of3



labeled rewrite rules of the form[l ] : t �! t 0 if n̂i=1 ui �! vi ^ m̂j=1wj = w 0j ;with l 2 L, which is implicitly universally quanti�ed by the variables appearingin the �-terms t , t 0, ui , vi , wj , and w 0j . In this paper the equational theory(�;E ) will always be assumed to be order-sorted [19]. That is, the set ofsorts comes equipped with a partial order relation, with s � s 0 interpretedas subset inclusion As � As0 in a model A. Furthermore, operation symbolscan be subsort overloaded (as for example the addition symbol + for naturals,integers, and rationals). Such overloaded operators are required to yield thesame result for the same arguments, regardless of the overloaded operator thatis applied.We make frequent use of the initial model construction TR associated to arewrite theory R, in which rewrite proofs � : t �! t 0, derivable from the rulesin R using the rules of deduction of rewriting logic, are equated modulo anatural notion of proof equivalence [32,35]. However, TR has to be understoodin an order-sorted sense, so that for each sort s we have an associated category(TR)s , with arrows � : t �! t 0 equivalence classes of proofs with t , t 0 groundterms of sort s, and with arrow composition corresponding to application ofthe transitivity rule.Throughout the text we often use Maude-like notation [13] to present speci�crewrite theories. For the most part this notation is self-explanatory. In the caseof object-oriented modules, we explain their syntax and basic assumptions inSection 3.5.
2 Time models and real-time rewrite theoriesAfter specifying equationally the general requirements for the models of timethat we will consider (Section 2.1) we propose a general notion of real-timerewrite theory, consisting of an ordinary rewrite theory, where rewrite rulesa�ecting the whole system have associated time-duration expressions (Sec-tion 2.2). We then show that real-time rewrite theories form a category (Sec-tion 2.3) and that they can be reduced to ordinary rewrite theories by addingan explicit clock to the global state in a way that preserves all the expectedproperties (Section 2.4). We �nish the section with a discussion of several is-sues and speci�cation techniques for real-time rewrite theories (Section 2.5).4



2.1 Time ModelsTime is modeled abstractly by a commutative monoid (Time;+; 0) with ad-ditional operators �, <, and �� (\monus") satisfying the following Maudetheory.fth TIME isprotecting BOOLsort Timeop 0 : ! Timeop + : Time Time! Time [assoc comm id : 0]ops < ; � : Time Time! Boolop �� : Time Time! Timevars xr ; yr ; zr ;wr : Timeceq xr = 0 if (xr + yr ) == 0ceq yr = zr if xr + yr == xr + zreq (xr + yr)�� yr = xrceq xr �� yr = 0 if not(yr � xr )eq xr � xr + yr = trueeq (xr < xr) = falseeq (xr � yr ) = (xr < yr) or (xr == yr )ceq xr + yr � zr + wr = true if xr � zr and yr � wrceq (xr �� yr ) + yr = xr if yr � xrendftIn this theory, it can for example be proved that the relation � is a partialorder, that for all xr ; yr : Time, 0 � xr = true, and that yr � xr if and only ifthere exists a unique zr (namely xr �� yr ) such that xr = yr + zr .For simulation and executable speci�cation purposes we will be interestedin computable models of the above theory TIME . This means that all theoperations are computable. By the Bergstra-Tucker Theorem [8], such modelsare �nitely speci�able as initial algebras for a set E of Church-Rosser andterminating equations. For example, the nonnegative rational numbers can beso speci�ed as a model of TIME by adding a subsort Rat+ to the speci�cationof rationals in [19], and extending it with an order and a monus operation in theobvious way. Similarly, the real algebraic numbers with the standard order arealso computable [40], and therefore have a �nite algebraic speci�cation withChurch-Rosser and terminating equations. Note that just taking a constructiveversion of the real numbers will not yield a computable data type, because theequality and order predicates on the constructive reals are not computable [6].We will in some examples in this paper need to extend the time domain witha new value1 and/or to require that the time domain is linear. The following5



theory gives an abstract speci�cation of the time domain extended with avalue 1.fth TIME1 isincluding TIMEsort Time1subsortTime � Time1op 1 : ! Time1op � : Time1 Time1! Boolop �� : Time1 Time1!Time1op + : Time1 Time1! Time1 [assoc comm id : 0]var xr : Timeeq xr � 1 = trueendftLinear time can be speci�ed by the following theory:fth LTIME isincluding TIMEop min : Time Time! Time [comm]vars xr ; yr : Timeceq xr = yr if not(xr < yr ) and not(yr < xr)ceq min(xr ; yr) = yr if yr � xrendftThis theory can also be extended with a time value 1 as follows:fth LTIME1 isincluding LTIME, TIME1op min : Time1 Time1!Time1 [comm]var xr : Time1eq min(1; xr) = xrendftNotation:We will use symbols r ; r 0; r1; : : : to denote time values and xr ; yr ; : : :to denote variables of the sort of the time domain.2.2 Real-time rewrite theoriesAfter recalling the notion of a theory morphism between equational theories,we de�ne real-time rewrite theories; they are used to specify real-time systemsin rewriting logic and contain duration information for some rules. Rules aredivided into tick rules, that model the elapse of time on a system, and in-stantaneous rules, that model change that can be approximated to take zero6



time. Having a tick rule t �! t 0 could lead to rewrites f (t ; u)�! f (t 0; u), i.e.,rewrites where time only elapses in a part of the system under consideration.To ensure uniform time elapse we introduce a new sort System, with no sub-sorts, and a free constructor f g : State ! System with the intended meaningthat ftg denotes the whole system, which is in state t . Uniform time elapseis ensured if the global state always has the form ftg and every tick rule is ofthe form ftg �! ft 0g.De�nition 1 An equational theory morphism H : (�;E )! (�0;E 0) consistsof a map H : sorts(�)! sorts(�0), and a mapping sending each functionsymbol 2 f : s1 : : : sn ! s in � to a �0-term H (f ) of sort H (s), such that itsset of variables is contained in the set x1 :H (s1); : : : ; xn :H (sn), and such thatfor each axiom (8y1 :s1; : : : ; yk :sk) l = r if C in E,E 0 j= (8y1 :H (s1); : : : ; yk :H (sk)) H �(l) = H �(r) if H �(C )holds, for H � the straightforward extension of H to terms and to equations inthe condition C .De�nition 2 A real-time rewrite theory R�;� is a tuple (R; �; �), where R =(�;E ;L;R) is a rewrite theory, such that 3 :� � is an equational theory morphism � : TIME ! (�;E ) where TIME is thetheory de�ned in Section 2.1,� the time domain is functional; that is, whenever � : r �! r 0 is a rewriteproof in R and r is a term of sort �(Time), then � is equivalent to theidentity proof r ,� (�;E ) contains a designated sort that we usually call State and a speci�csort System with no subsorts or supersorts and with only one operatorf g : State! Systemwhich satis�es no non-trivial equations, and� � is an assignment of a term �l(x1; : : : ; xn) of sort �(Time) to each rewriterule in R of the form(y) [l ] : u(x1; : : : ; xn)�! u 0(x1; : : : ; xn) if C (x1; : : : ; xn)where u and u 0 are terms of sort System.2 Since the variables x1; : : : ; xn are ordered, the assignment f 7! H (f ) can alterna-tively be understood as an assignment f (x1; : : : ; xn) 7! H (f ).3 We give a de�nition based on loose semantics of rewrite theories. Real-time rewritetheories can be de�ned in a similar way in an initial semantics setting.7



Notation: We will write[l ] : u(x1; : : : ; xn) �l (x1;:::;xn)�! u 0(x1; : : : ; xn) if C (x1; : : : ; xn)for a rule l of sort System with duration �l . If �l(x1; : : : ; xn) equals �(0), therule l will often be written[l ] : u(x1; : : : ; xn)�! u 0(x1; : : : ; xn) if C (x1; : : : ; xn):We will also write Time�, 0�, and +� for, respectively, �(Time), �(0), and�(+).We call rules of the form (y) global rules. A global rule l is a tick rule if itsduration �l(x1; : : : ; xn) is di�erent from 0� for some instances of its variables,and is an instantaneous rule otherwise. The rules not of the form (y) are calledlocal rules, because they do not act on the system as a whole, but only on somesystem components. They are always instantaneous. Intuitively, instantaneousrules take zero time.The total time elapse �(�) of a rewrite � : ftg �! ft 0g of sort System isde�ned as the sum of the time elapsed in each tick rule application in �, andcan easily be extracted from the proof:De�nition 3 Let (R; �; �) be a real-time rewrite theory with R = (�;E ;L;R)and let Time denote the time domain (T�;E )Time� viewed as a monoid andtherefore as a category with a single object 0, and with the time values asarrows in the usual way. The time extraction functor� : TRSystem ! Timewhich gives the total time elapse �(�) of a proof � : t �! t 0, with t ; t 0 groundterms of sort System, is de�ned as follows:� �(t) = 0� for every term (seen as an arrow) in TRSystem ,� �(f�g) = 0� for a proof term whose top operator is the constructor f g,� �(l(�1; : : : ; �n)) = �l(t1; : : : ; tn) if l is a (system) rule of the form (y) and�1 : t1 �! t 01; : : : ; �n : tn �! t 0n are proofs, and� �(�; �) = �(�) +� �(�) for proofs � and �.This de�nition does not depend on the choice of representative proof terms.That is, if � and � are two equivalent proofs of terms of sort System in areal-time rewrite theory (R; �; �), then �(�) = �(�).Given a real-time rewrite theoryR, a computation is a non-extensible sequencet0 �! t1 �! � � � �! tn or an in�nite sequence t0 �! t1 �! � � � of one-step R-8



rewrites ti �! ti+1, with ti and t 0i ground terms, starting with a given initialterm t0 of sort System. It should be noted that since we model time elapseexplicitly (by rewrite rules), the requirement that the total time elapse in acomputation is in�nite is not needed. Time elapse is totally up to the speci�er{ we allow both terminating computations and in�nite computations with�nite total time elapse.2.3 A category of real-time rewrite theoriesThe notion of theory morphism { also called theory interpretation { betweenreal-time rewrite theories plays an important role in this work. We give a def-inition of theory morphism between real-time rewrite theories based on loosesemantics and preservation of durations of rewrites. Morphisms based on prop-erties of the initial models of theories, and morphisms having less restrictiverequirements on the relationships between the durations in the rewrites couldbe de�ned in a similar way. We begin by de�ning theory morphisms betweenordinary rewrite theories.De�nition 4 A rewrite theory morphism from a rewrite theory R = (�;E ;L;R)to another rewrite theory R0 = (�0;E 0;L0;R0) consists of:� an equational theory morphism H : (�;E )! (�0;E 0), and� a map H : L�! L0 of labels such that for each rule [l ] : t �! t 0 if C in Rthe rule [H (l)] : H �(t)�! H �(t 0) if H �(C )is in R0 up to a renaming of its variables.Rewrite theory morphisms compose in the expected way and de�ne a categoryRWTh of rewrite theories.De�nition 5 A real-time rewrite theory morphism from a real-time rewritetheory (R; �; �) to a real-time rewrite theory (R0; �0; � 0) is a rewrite theorymorphism H : R!R0 such that:� �0 = H � �,� H maps the designated sort of the states in R to the designated state sortin R0, maps the sort System to itself, and leaves the constructor f g un-changed, and� H preserves the duration of the tick rules in the sense that for each rule lin R of sort System,E 0 ` H �(�l(x1 :s1; : : : ; xn :sn)) = � 0H (l)(x1 :H (s1); : : : ; xn :H (sn)):9



It is easy to check that the usual composition of rewrite theory morphismsde�nes a category RTRWTh with real-time rewrite theories as objects andreal-time rewrite theory morphisms as arrows.2.4 Real-time theories internalized in rewriting logicBy adding a clock to the state, a real-time theory (R; �; �) can be transformedinto an ordinary rewrite theory without losing timing information. A state insuch a clocked system is of the form ht ; ri with t the global state of sortSystem, and r a value of sort Time�, which intuitively is supposed to denotethe total time elapse in a computation if in the initial state the clock had value0�.De�nition 6 The internalizing functor ( )C from the category RTRWTh ofreal-time rewrite theories to the category RWTh of rewrite theories takes a real-time rewrite theory (R; �; �) to a rewrite theory RC�;� = (�C�;� ;EC�;� ;LC�;� ;RC�;� )as follows:� the sorts in �C�;� are those in R together with a new sort ClockedSystem,� the operations in �C�;� are those in R together with a new free constructorh ; i : System Time� ! ClockedSystem;� the axioms in EC�;� are unchanged from those in R,� RC�;� contains the local rules in R of sorts other than System, together witha rule 4[lC�;� (x1; : : : ; xn ; xr)] : hu(x1; : : : ; xn); xri �!hu 0(x1; : : : ; xn); xr +� �r (x1; : : : ; xn)i if C (x1; : : : ; xn)for each rule[l(x1; : : : ; xn)] : u(x1; : : : ; xn)�! u 0(x1; : : : ; xn) if C (x1; : : : ; xn)in R of sort System, where xr is a variable of sort Time� which is not inthe list x1; : : : ; xn .The internalizing functor is de�ned as expected on arrows in RTRWTh; i.e.,an arrow H in RTRWTh is mapped to H C , which coincides with H on R,4 In the unlikely case that any condition C of a rule in R contains a con-junct v �! v 0 of sort System, each such conjunct is replaced by a conjuncthv ; 0�i �! hv 0; yr i in the condition in RC�;� , where yr is a fresh variable of sortTime�. 10



leaves the new sort and operator unchanged, and takes a label l c�;� of a rule ofsort ClockedSystem to the label (H (l))C .For the sake of a simpler exposition, in the rest of the paper we will assumethat no condition of a rewrite rule in a real-time theory contains a rewriteconjunct of sort System. We also assume, without loss of generality, that novariable of sort System is introduced in the condition of a rule.Proposition 7 The mapping ( )C above de�nes a functor from RTRWTh toRWTh.Proposition 8 Let U be the forgetful functor from the category RTRWTh ofreal-time rewrite theories to the category RWTh of rewrite theories de�ned byU ((R; �; �)) = R and U (H ) = H :Then the map of rewrite theories �(R;�;�) : RC�;� !R de�ned by:� mapping each sort and operator in �C�;� other than ClockedSystem and h ; iidentically to themselves,� mapping ClockedSystem to System, mapping the operator h ; i to the termx1 :System, and� mapping each label lC�;� to the label lde�nes a natural transformation � : ( )C ) U .Since a rewrite theory morphism H : R!R0 induces a forgetful functor UH :R0-Sys !R-Sys in the opposite direction for the corresponding categories ofmodels, our natural rewrite theory morphism � : RC�;� !R induces a forgetfulfunctor U� : R-Sys !RC�;� -Sys. In particular, the initial model TR is sent tothe RC�;� -system U�(TR) and, by initiality of TRC�;� , we have a unique RC�;� -homomorphism � : TRC�;� ! U�(TR) such that:� � takes objects and arrows of every sort except ClockedSystem to themselves,� �(ht ; ri) = t for each object ht ; ri in (TRC�;� )ClockedSystem ,� �(h�; �i : ht ; ri �! ht 0; r 0i) = � : t �! t 0,� �(lC�;�(�1; : : : ; �n ; �n+1) : ht ; ri �! ht 0; r 0i) = l(�1; : : : ; �n) : t �! t 0, and� �(�; �) = �(�); �(�).The map � expresses the essential semantic equivalence between the initialmodels of a real-time theory (R; �; �) and that of its clocked representationRC�;� in the precise sense that, as we shall see:(1) if � : t �! t 0 is an arrow in TRSystem with �(�) = r , then, for each valuer 0 of sort Time� there is a unique arrow �0 : ht ; r 0i �! ht 0; r 0 +� ri in11



(TRC�;� )ClockedSystem such that �(�0 : ht ; r 0i �! ht 0; r 0 +� ri) = � : t �! t 0,and(2) whenever � : ht ; ri �! ht 0; r 0i is an arrow in (TRC�;� )ClockedSystem then r 0 =r +� �(�(�)).These two properties are immediate consequences of the followingTheorem 9 Let (R; �; �) be a real-time rewrite theory and let � : t �! t 0 bean arrow in TRSystem (therefore, with t and t 0 ground terms of sort System).Then, for each value r in the time domain, there is a unique arrow�0 : ht ; ri �! ht 0; r 0iin (TRC�;� )ClockedSystem such that �(�0) = �, and, in addition, r 0 = r +� �(�).The theorem can be proved by induction on the structure of the proof termsby �rst proving the theorem for one-step rewrites, and then proving it for allproofs between terms of sort System using the facts that every proof factorizesinto a sequence of one-step rewrites and that � distributes over one-step rewriteproofs.The above theorem implies that, whenever � : ht ; ri �! ht 0; r 0i is an arrowin TRC�;� , then the arrow �(�) : t �! t 0 satis�es r +� �(�(�)) = r 0. It alsoimplies that �, viewed as a functor � : (TRC�;� )ClockedSystem ! (TR)System , is fulland faithful and is an op�bration [5].2.5 DiscussionWe discuss several system speci�cation issues and techniques, including thetime of local actions, tick rules, and rewrite strategies.2.5.1 The time when local actions occur is generally underdeterminedFor simulation purposes it may be desirable to observe the time at which aninstantaneous local action takes place in a rewrite. However, an arrow in theinitial model, that is, an equivalence class of proofs, does not give the exacttime (relative to the initial state) when such a local action is applied. If, forexample, [l ] : a �! b and [tick ] : ff (x ; yr)g 2�! ff (x ; yr + 2)g are two rules,then the moment in time (relative to ff (a; 0)g) when the instantaneous ac-tion l took place in the rewrite tick(l ; 0) : ff (a; 0)g �! ff (b; 2)g of duration2 is underdetermined. This is because, by the exchange law { that equatesequivalent proofs in rewriting logic { this rewrite is equivalent to the rewrite12



proofs ff (r ; 0)g; tick(b; 0) and tick(a; 0); ff (r ; 2)g, representing the rewritesequences ff (a; 0)g �! ff (b; 0)g �! ff (b; 2)g and ff (a; 0)g �! ff (a; 2)g�! ff (b; 2)g, where the local action l takes place in a rewrite of duration0 and either at time 0 or at time 2. By the sequentialization property ofrewrite proofs [32], it is always possible to extract from a proof the possiblerelative times when a certain rule could have been applied in the proof.2.5.2 Specifying the tick rulesFor simulation of a system having a continuous time domain, the tick ruleswill in general be of the formftg xr�! ft 0(xr )g if xr � mte(t) and C (t)or otherwise of the exact same form, but replacing xr � mte(t) by xr <mte(t), where xr denotes the time advanced by the tick, mte(t) computes themaximum time elapse permissible to ensure timeliness of time-critical actions,and the condition xr � mte(t) (resp. xr < mte(t)) ensures that time elapsemay halt temporarily for the possible application of a non-time-critical rule,that is, a rule modeling an action which could occur somewhat \arbitrarily"in time. The introduction of the variable xr in the righthand side requiresadditional execution strategies for its instantiations, which is not surprising,since it models behavior which is nondeterministic in time. Allowing for realnondeterminism in timed behavior in this way may lead to Zeno behaviorof the system and it is up to the strategy to instantiate the righthand sidevariable so as to avoid that, whenever possible.2.5.3 Eager and lazy rulesIn general, it is not su�cient to ensure that time elapse \stops" whenevernecessary. It must also be ensured that time does not tick past each stopbefore all the necessary instantaneous actions are performed. In particular,an application of a rule often enables a lot of other instantaneous rules thatmust be taken immediately, and it must be ensured that all these actionsare performed before time elapses again. A rule may, for example, produce amessage which must be consumed before time elapses again.In many cases it is possible to add conditions on the tick rules such that timewill not elapse if some time-critical rule is enabled, but this may considerablycomplicate the speci�cation. Instead of computing the enabledness condition ofevery time-critical rule explicitly, it seems more convenient to use the rewritinglogic notion of internal rewrite strategy [13,11,12,15,14], whose execution is wellsupported by Maude's reective features, to deal with these enabledness and13



priority aspects using a simple strategy.The idea is to divide the rules in a real-time rewrite theory into eager andlazy rules and restrict possible rewrites by requiring that lazy rules are appliedsequentially, and a lazy rule may only be applied when no eager rule is enabled.The intuition is that the eager rules are the time-critical rules thatmust alwaysbe taken when enabled, i. e., time may not elapse while an eager rule is enabled.Tick rules and non-time-critical instantaneous rules are lazy. Our treatmentof timed Petri nets in Section 3.8 gives an example of the convenience of usingthis strategy.Notation:Whenever an eager strategy should be used, the eager and lazy ruleswill be preceded by the keywords eager and lazy, respectively.3 Specifying models of real-time and hybrid systems in rewritinglogicThis section discusses how a variety of models of real-time and hybrid systemscan be obtained as special cases of real-time rewriting.3.1 Timed automataWe show how a timed automaton (see, e.g., [4,3]) can be speci�ed in rewritinglogic. Omitting details about initial states and acceptance conditions, a timedautomaton consists of:� a �nite alphabet �,� a �nite set S of states,� a �nite set C of clocks,� a set �(C ) of clock constraints de�ned inductively by� ::= c � k j k � c j :� j �1 ^ �2where c is a clock in C , and k is a constant in the set of nonnegativerationals, and� a set E � S � S � � � 2C � �(C ) of transitions. The tuple hs; s 0; a; �; �irepresents a transition from state s to state s 0 on input symbol a. The set� � C gives the clocks to be reset with this transition, and � is a clockconstraint over C .Given a timed word (i.e., a sequence of tuples hai ; rii where ai is an inputsymbol and ri is the time at which it occurs), the automaton starts at time 014



with all clocks initialized to 0. As time advances, the values of all clocks change,reecting the elapsed time; that is, the state of the automaton can change notonly by the above transitions, but also by the passage of time, with all theclocks being increased by the same amount. At time ri the automaton changesstate from s to s 0 using some transition of the form hs; s 0; ai ; �; �i reading inputai , if the current values of the clocks satisfy �. With this transition the clocksin � are reset to 0, and thus start counting time again.A run � of a timed automaton with n clocks is an in�nite sequence� : fs0; v01 ; : : : ; v0ng �!a1�1 fs1; v11 ; : : : ; v1ng �!a2�2 fs2; v21; : : : ; v2ng �!a3�3 � � �for states s0; s1; : : :, values v0i ; v1i ; : : : of clock i such that v0j = 0 for all j ,and such that for i � 1 there is a transition hsi�1; si ; ai ; �i ; �ii where the clockvaluation hv(i�1)1+�i��i�1; : : : ; v(i�1)n+�i��i�1i satis�es the clock constraint�i , and vik is 0 if clock i is in �i and vik = v(i�1)k + �i � �i�1 otherwise.A timed automaton can be naturally represented in rewriting logic as fol-lows. The time domain and its associated constraints �(C ) are equationallyaxiomatized in an abstract data type satisfying the theory TIME . The termfs; c1; : : : ; cng represents an automaton in state s such that the values of theclocks in C are c1; : : : ; cn . Each transition hs; s 0; a; �; �i is expressed as aninstantaneous rewrite rule[a] : fs; c1; : : : ; cng �! fs 0; c 01; : : : ; c 0ng if �(c1; : : : ; cn)where c 0i = 0 if ci 2 �, and c 0i = ci otherwise. In addition, a rule[tick ] : fx ; c1; : : : ; cng xr�! fx ; c1 + xr ; : : : ; cn + xrg(where x ; xr ; c1; : : : ; cn are all variables) is added to represent the elapse oftime.The rewriting logic translation simulates the timed automaton in the precisesense that there is a run � of the automaton as de�ned above if and only ifthere is a rewrite sequencefs0; 0; : : : ; 0g �1�! fs1; v11; : : : ; v1ng �2�! fs2; v21; : : : ; v2ng �3�! � � �such that �i is equivalent to a proof term of the form �i ; ai(: : :), with �i a(possibly empty) sequence of tick applications, and where �(�i) = �i � �i�1for �i ; �i�1 the corresponding time values in the run �.15



There are at least two ways of modifying the speci�cation to simulate thebehavior of the automaton on only those timed words satisfying a given accep-tance condition. It is possible to de�ne a computable predicate has computation,so that has computation(s; r1; : : : ; rn) holds if and only if there exist an ac-cepted timed word \starting" in state s with (rational-numbered) values r1; : : : ; rnof the clocks c1; : : : ; cn (such a predicate is computable, and therefore �nitelyspeci�able by Church-Rosser and terminating equations [8], since de�ningsuch a predicate reduces to the emptiness problem for timed automata whichis decidable [4]). In this way, we obtain a rewrite theory whose computa-tions simulate the behavior of the automaton on accepted timed words byadding the condition if has computation(x 0; c 01; : : : ; c 0n) to every rule of theform fx ; c1; : : : ; cng �! fx 0; c 01; : : : ; c 0ng, including the tick rule.A more modular, alternative way of restricting the rewrites to simulate au-tomata behavior on accepted words only would be to encode the acceptingstates (or sets of states for Muller-automata) as predicates in the rewrite the-ory, and then use the internal strategies at the metalevel of rewriting logic torestrict the application of the rules, so that only accepted timed words areexecuted.3.2 Hybrid AutomataThe time model of hybrid automata [2] (also called just hybrid systems) isthe nonnegative real numbers. However, to get a computable data type, weshould replace the reals by a computable sub�eld R+ , such as the ratio-nals or the algebraic real numbers. A hybrid automaton is given by a tuplehVD ;Loc;Lab;Act ; Inv ;Edgi where:� VD is a �nite set of data variables, each ranging over a given data sort,de�ning the data space �D , that is, �D is the set of sort-consistent valuationsv of VD .� Loc is a �nite set of locations (corresponding to \states" in untimed au-tomata).� The state space of a hybrid automaton is Loc � �D .� Lab is a set of synchronization labels, including the label � .� Act is a labeling function that assigns to each location l 2 Loc a set Actl ofactivities. An activity is a function from R+ to �D . For each activity f in land each time value r there is an activity f r in l de�ned by f r (r 0) = f (r+r 0).� Inv is a labeling function that assigns to each location l 2 Loc an invariantInv(l) � �D .� Edg is a �nite set of transitions. Each transition e = (l ; �; l 0; a) consists ofa source location l , a target location l 0, a transition relation � � �2D , anda synchronization label a. For each location l there is a stutter transition16



(l ; Id ; l ; �) where Id = f(v ; v) j v 2 �Dg.The state of an automaton can change in two ways: (1) by an instantaneoustransition that changes the entire state according to the transition relation,or (2) by elapse of time that changes only the values of data variables in acontinuous manner, according to the activities of the current location, wherestate fl ; vg evolves to fl ; f (r)g in time r whenever f is an activity of locationl such that v = f (0). The system may stay at a location only if the invariantat that location remains true. The invariants of a hybrid automaton thusenforce the progress of the underlying discrete transition system. That is,some transition must be taken before the invariant of the location is false.A run of a hybrid automaton is a �nite or in�nite sequence� : fl0; v0g 7!r0f0 fl1; v1g 7!r1f1 fl2; v2g 7!r2f2 � � �where l0; l1; : : : denote locations, v0; v1; : : : denote valuations of the variablesVD , r0; r1; : : : denote time values, and f0; f1; : : : denote activities in respectivelocations l0; l1; : : :, and such that for all i it is the case that fi(0) = vi , fi(r) 2Inv(li) for all 0 � r � ri , and that the state fli+1; vi+1g is obtained by takinga transition from the state fli ; fi(ri)g.We specify hybrid automata in rewriting logic by representing a sort-consistentvaluation v = fx1 7! v1; : : : ; xm 7! vmg by a term hv1; : : : ; vmi in a sortValuation, and by representing a global state fl ; vg of a hybrid automatonby the term fl ; hv1; : : : ; vmig of sort System. However, since the de�nitionof hybrid automata is very general, we restrict our treatment to a subclass ofhybrid automata satisfying some natural requirements. Speci�cally, we requirethat the set of activities Actl for a location l must be generated by a �nite setActGenl = ff li : �D � R+ ! �D j 1 � i � nlgof computable functions, called activity generators, where each f li satis�es theproperty f li (f li (v ; r); r 0) = f li (v ; r + r 0) if f li (v ; 0) = v :Then, the set Actl of activities for a location l is generated from ActGenl asfollows, Actl = ff : R+ !�D j (9 f li 2 ActGenl ; v 2 �D ; r 2 R+)f li (v ; 0) = v ^ f = �xr :f li (v ; r + xr )g:17



Furthermore, we require that for each location l and activity generator f li 2ActGenl , there is a computable functionmax stayf li : �D ! R+ [ f1gwhere max stayf li (v) denotes the amount of time a system in state hl ; vi canstay at location l performing the activity-function f li , without violating theinvariant of location l . We also require that there is a computable predicateInv : Loc � �D ! Boolwhere Inv(l ; v) holds if and only if the state v does not violate the invariant oflocation l . Finally, we require that each transition (l ; �; l 0; a) in Edg can be ex-pressed by a �nite number of rewrite rules of the form [a] : fl ; hv1; : : : ; vnig �!fl 0; hv 01; : : : ; v 0nig if C , with the vi and v 0i possibly containing variables.The class of hybrid automata satisfying the above requirements can be repre-sented by real-time rewrite theories as follows. The functions f li , max stayf li ,and Inv can be given a �nitary equational axiomatization since they are as-sumed computable [8]. For each transition (l ; �; l 0; a) in the hybrid automaton,the translation of a hybrid automaton contains the corresponding rule(s)[a] : fl ; hv1; : : : ; vnig �! fl 0; hv 01; : : : ; v 0nig if C ^ Inv(l 0; hv 01; : : : ; v 0ni) = truewhere the last conjunct in the condition must be added to the translationof the (underlying \untimed") transition to ensure that the resulting statesatis�es the invariant of location l 0. The tick rules of the system associate toeach location l and each activity generator f li a rewrite rule of the form[tick li ] : fl ;V g xr�! fl ; f li (V ; xr)g if xr � max stayf li (V ) and f li (V ; 0) = V ;where V is a variable of sort Valuation.Note that eager/lazy strategies are not needed here, since a transition becomes\eager" in a hybrid automaton when max stay of the location is 0, in whichcase time cannot advance. Due to the presence of idle transitions in hybridautomata, there is a run � as above in the automaton if and only if there is acomputation fl0; v0g �0�! fl1; v1g �1�! fl2; v2g �2�! � � �(of one-step rewrites) in the rewrite translation with �(�i) = ri for each i .18



3.3 Timed transition systemsA timed transition system (TTS) [28,27] consists of a �nite set of data variablesde�ning the state space �D of all sort-consistent valuations v of the variables,and a �nite number of transitions a : �D ! 2�D . Each transition a is equippedwith a \lower bound" la and an \upper bound" ua where 0 � la � ua � 1.A transition a cannot be taken if it has not been enabled uninterruptedlyfor at least time la , and if a is enabled at any time r , then a must be takensomewhere in the interval [r ; r + ua ], unless it is disabled during this time bysome other transition.Again, we assume that the underlying untimed transition system can be spec-i�ed in rewriting logic, and that a valuation v = fx1 7! v1; : : : ; xm 7! vmg isrepresented in rewriting logic by a tuple hv1; : : : ; vmi of sort Valuation. A TTScan then be represented in rewriting logic by just adding to each state oneclock for each transition, such that the state in the rewriting translation is aterm fhv1; : : : ; vmi; c1; : : : ; cng;where hv1; : : : ; vmi is the state of the transition system and each ci is a \clock"value which is nil if transition ai is not enabled, and is ri if the transition ai hasbeen enabled continuously for time ri (without being taken). The symbol nilis an element of a supersort of the sort Time of the time domain, satisfying theequation nil + xr = nil for xr :Time. We also assume that for each transitionai , there is a predicate enabledi such that enabledi(v) is true if transition ai isenabled on state v and false otherwise.Assuming that each transition ai in the underlying untimed transition systemcan be modeled by (zero or more) rewrite rules of the form [ai ] : hv1; : : : ; vmi �!hv 01; : : : ; v 0mi if C , we model each such transition ai in the timed system by thecorresponding instantaneous rewrite rule(s)[ai ] : fhv1; : : : ; vmi; c1; : : : ; cng �! fhv 01; : : : ; v 0mi; c 01; : : : ; c 0ng if C ^ (ci � lai )for all i = 1; : : : ; n, where for each j = 1; : : : ; n, cj is a time variable, andc 0j = if not(enabledj (hv 01; : : : ; v 0mi)) then nilelse if cj == nil or i == j then 0 else cj :The following tick rule ensures, for each transition ai , that time will not elapsepast the moment when ai would have been enabled for time uai without being19



taken: [tick ] : fV ; c1; : : : ; cng xr�! fV ; c1 + xr ; : : : ; cn + xrgif Vi(ci + xr � uai or ci == nil);again, for V ; c1; : : : ; cn , and xr variables of the appropriate sorts.It is then easy to show that there is a computationfv0; 0; : : : ; 0g �1�! fv1; r11; : : : ; r1ng �2�! fv2; r21 ; : : : ; r2ng �3�! � � �of one-step rewrites �i in the rewriting logic speci�cation of a timed transitionsystem if and only if there is a discrete trace [28]hv0; 0i ! hv1; r1i ! hv2; r2i ! � � �(with possibly bounded total time elapse) of pairs of states vi and time valuesri such that for all i , either vi = vi+1 or vi+1 2 a(vi) holds for some transitiona in the corresponding timed transition system which has been continuouslyenabled for at least its minimum delay la , and such that transitions are nevercontinuously enabled for a time longer than their maximum time delay withoutbeing taken. Furthermore, �(�i) = ri � ri�1 (where r0 = 0). Notice, that theimplicit eagerness of a transition is due to its upper bound uai , so that timewill not elapse if such an eager transition does not �re. Therefore, there is noneed for introducing explicit eager/lazy strategies.3.4 Phase transition systemsPhase transition systems (PTSs) [28,27] extend timed transition systems tohybrid systems 5 . We give here only a brief overview of a representation ofPTSs in rewriting logic. The reference [39] gives more details about the trans-lation. Intuitively, the PTS model extends the TTS model by letting time acton each valuation according to a function� : �D � R+ !�Dwhere �(v ; r) denotes the state of the PTS after time has acted on a systemin state v for time r . The set T of instantaneous transitions is, as in the TTS5 Note that some authors instead use the expression phase transition system forthe hybrid systems extension of the clocked transition system [29,23] model.20



case, equipped with upper and lower bounds. Furthermore, time cannot elapsepast a moment when the enabling condition of a transition changes. Since theaction of time can change the enabling of transitions, we assume that there isa computable function enabling change : �D ! R+ [ f1gwhich takes a state as argument and gives the maximum time the system canproceed without changing the enabling of a transition.The global state and the (instantaneous) transitions in T are modeled inrewriting logic as for the TTS case. That is, the global state has the formfhv1; : : : ; vmi; c1; : : : ; cng with hv1; : : : ; vmi a valuation, and each ci a time valuedenoting how long transition ai has been continuously enabled (which is nilif ai is not enabled). The functions � and enabling change are de�ned onterms of the sort Valuation. The following tick rule ensures, in addition to theTTS requirement, that time cannot elapse beyond the latest moment whena transition must be taken, that all state components are updated accordingto their continuous behavior, and that the corresponding clocks are updatedwhen an enabling condition changes:[tick ] : fV ; c1; : : : ; cng xr�! f�(V ; xr); c 01; : : : ; c 0ngif Vi(ci + xr � uai or ci == nil) ^ (xr � enabling change(V ))again, for V , c1; : : : ; cn , and xr variables of appropriate sorts, where for allk = 1; : : : ; n,c 0k = if not(enabledk(�(V ; xr)) then nil else if ck == nil then 0 else ck + xr :3.5 Object-oriented real-time systemsIn a concurrent object-oriented system, the concurrent state, which is usuallycalled a con�guration, has typically the structure of a multiset made up ofobjects and messages. Therefore, we can view con�gurations as built up by abinary multiset union operator which we can represent with empty syntax as: Con�guration Con�guration! Con�guration [assoc comm id : null ]where the multiset union operator is declared to satisfy the structural lawsof associativity and commutativity and to have identity null . The subsort21



declaration Object ; Msg � Con�gurationstates that objects and messages are singleton multiset con�gurations, so thatmore complex con�gurations are generated from them by multiset union. Asort ObjCon�guration denoting con�gurations without messages can be ob-tained by adding the subsort declarationObject � ObjCon�guration � Con�gurationand the operator declaration: ObjCon�guration ObjCon�guration ! ObjCon�guration[assoc comm id : null ]:Objects are terms (of sort Object) of the formhO : C j att1 : val1; : : : ; attn : valnidenoting an object namedO , where O belongs to a setOId of object identi�ers,of class C in a state having values val1; : : : ; valn for the attributes att1; : : : ; attn .The dynamic behavior of concurrent object systems is axiomatized by speci-fying each of its concurrent transition patterns by a rewrite rule. For example,the rule m(O ;w) hO : C jatt1 : x ; att2 : y ; att3 : z i �!hO : C jatt1 : x + w ; att2 : y ; att3 : z im 0(y ; x + w)de�nes a (family of) transition(s) in which a message m having arguments Oand w is consumed by an object O of class C , with the e�ect of altering theattribute att1 of the object and of generating a new message m 0(y ; x +w). Byconvention, attributes, such as att3 in our example, whose values do not changeand do not a�ect the next state of other attributes need not be mentionedin a rule. Attributes like att2 whose values inuence the next state of otherattributes or the values in messages, but are themselves unchanged, may beomitted from righthand sides of the rules. Thus the above rule could also bewrittenm(O ;w) hO : C jatt1 : x ; att2 : yi �! hO : C jatt1 : x + wim 0(y ; x + w):22



Real-time object-oriented systems can be speci�ed by means of real-timerewrite theories by extending this setting with a sort System and an oper-ator f g : Con�guration! System:Even though the tick rule will force the objects to synchronize in their timeelapse, the system may still exhibit concurrency in its local transitions, whichmay occur between tick applications. We illustrate this style of speci�cationof real-time object-oriented systems with a simple example.3.5.1 Example: A single-thermostat systemA single-thermostat system consists of a thermostat object and zero or more\user" objects, de�ning the environment. The thermostat regulates the tem-perature by turning its heater on and o�, and has to provide a temperaturewhich is within 5 degrees of the user's desire, whenever this is possible. Thetemperature increases by 2 degrees per time unit when the heater is turnedon, and decreases by 1 degree per time unit when the heater is turned o�. Theuser may request a new desired temperature at any time by sending a messageto the thermostat.We assume that the speci�cation includes a speci�cation of Time, which sat-is�es the theory TIME , and a sort Temp denoting possible temperature val-ues together with all the necessary operations. A sort OnO� contains theconstants on and o� , describing the state of the heater associated with thethermostat. A thermostat object has attributes curr temp and desired tempof sort Temp, denoting the current and desired temperatures, as well as anattribute heater , denoting the state of its heater. A user object is an objectwith an empty set of attributes.In the following, let U and TS be variables of the sort Oid of object names,let xr be a variable of sort Time, let y and z be variables of sort Temp, and letOC be a variable of the sort ObjCon�guration of messageless con�gurations.At any time, a user may request a new desired temperature:[new temp] : hU : Useri �! hU : Useri(set temp(y)):The thermostat object should treat such a message by recording the new23



desired temperature (followed by the changing of the heater state if necessary):[read request ] : (set temp(y))hTS : Thermostat jdesired temp : z i �!hTS : Thermostat jdesired temp : yi:The thermostat must turn o�/on the heater, either when time has acted on asystem such that the current temperature is exactly the desired temperatureplus/minus 5 degrees, or when the system must change due to the adjustmentof the desired temperature, in which case the current temperature may bemore than 5 degrees o� the desired temperature:[on] : hTS : Thermostat jcurr temp : y ; desired temp : z ; heater : o� i �!hTS : Thermostat jheater : oni if y � z � 5[o� ] : hTS : Thermostat jcurr temp : y ; desired temp : z ; heater : oni �!hTS : Thermostat jheater : oni if y � z + 5:The following tick rules model the e�ect of time elapse on a system and ensurethat:(1) time elapse can \stop" at any moment, reecting the fact that the rulenew temp could be applied at any time,(2) time does not elapse past the moments the heater state should be changed,and(3) time does not elapse while there are any messages in the system (i.e., therequested temperature should be recorded at the time it is sent).[tickon ] :fhTS : Thermostat jcurr temp : y ; desired temp : z ; heater : oniOCg xr�!fhTS : Thermostat jcurr temp : y + xr + xriOCg if y + xr + xr � z + 5[ticko� ] :fhTS : Thermostat jcurr temp : y ; desired temp : z ; heater : o� iOCg xr�!fhTS : Thermostat jcurr temp : y � xriOCg if y � xr � z � 5:The speci�cation will work as expected, provided that the initial state containsexactly one thermostat object. A speci�cation of a many-thermostat systemis given in Section 3.7.2. 24



3.6 Time as an action on the whole systemWhen the state of a system has a rich structure, it may be both natural andnecessary to let a function denote the e�ect of time elapse on the whole state ofa system, in contrast to, for example, the single-thermostat system in Section3.5.1 where time elapse only a�ected one object in the system. The function� denoting the action of time on a system has the form� : State Time! Stateinvolving the designated sorts State and Time. The action � should be amonoid action, that is, it seems natural to require that it satis�es the axioms:�(x ; 0) = x�(�(x ; yr); zr) = �(x ; yr + zr ):Tick rules should then be of the form(y) ftg r�! f�(t ; r)g if C :Using the action � to describe the e�ect of the passage of time on a dynamicevolution of a system is not without possible pitfalls. If done carelessly, it mayallow \going back in time" to perform a rewrite. Suppose that t = �(t 0; r)holds and that the \aged" term t 0 rewrites to t 00. Then, there would also bean \aged" rewrite ftg =E f�(t 0; r)g �! f�(t 00; r)g:For executable speci�cation purposes it is important to require that the set Eof equations in a rewrite theory is divided into a set E 0 of simplifying equationsand a set Ax of structural axioms, in such a way that the equations in E 0 de�nea Church-Rosser and terminating set of equations modulo the set Ax , and suchthat the set of rules R is coherent [13,44,33] wrt. E 0 ]Ax . A rewrite theory iscoherent if for every one-step sequential rewrite t �! t1 modulo the structuralaxioms Ax , there is also a rewrite t !E 0 �! t 01 modulo Ax , for t !E 0 an E 0-normalform of t modulo Ax , such that t1 and t 01 are E -equivalent. A coherent systemdoes not allow \going back in time," since coherence would imply that thatthere is a \well-timed" rewrite ftg �! ft1g modulo the structural axioms Axwhich is E -equivalent to the rewrite f�(t 0; r)g �! f�(t 00; r)g above, assumingthat f�(t 0; r)g reduces to ftg when the equations are oriented.25



A commonly occurring state structure for which we want the action of time todistribute over the di�erent state components is a multiset distributed struc-ture. For example, object-oriented systems and Petri nets have that structure.For multiset distributed systems we can give a general treatment of time ac-tions that avoids coherence problems.A simple solution to avoid coherence problems is to let each rule rewrite termsof sort System only, which would solve the coherence problem wrt. the symbol�, since each rewrite would occur at the top. However, concurrency would belost by this solution. Our idea is instead to use special tokens of the form`�' and let the extended state be a term in a supersort ExtendedState of thedesignated sort State, consisting of the multiset union of the original state anda multiset of tokens. The system operator f g should take arguments of thesort ExtendedState, while � is left unchanged. If multiset union is denoted byjuxtaposition, the tick rules would be of the form(z) [tick ] : fT tg r�! fT �(t ; r)g if C ;for T a variable of a sort Tokens, denoting multisets of tokens, and t a termof sort State. Each local rule should then have the form� t �! � � � � � t 0 if C :Since one token appears in the lefthand side of each local rule, the globalstate must contain at least n tokens for n local rewrites to �re concurrently.For object-oriented systems, the number of tokens in a con�guration couldsuitably equal the number of objects in a con�guration, since the number ofrewrites �ring concurrently is bounded by the number of objects present inthe global state, under the assumption that at least one object appears inthe lefthand side of each rule. Coherence wrt. the symbol � is now triviallyunproblematic, since every instance of a lefthand side of a local rule has leastsort ExtendedState, and therefore cannot be an argument to �.To summarize, a monoid action � denoting the e�ect of time elapse on thewhole state may be useful for specifying real-time systems where the stateof the system can have a rich distributed structure, but we must require co-herence, since this ensures that � does not cause counterintuitive rewritesresulting from \going back in time." The class of coherent real-time rewritetheories with a monoid action � describing the e�ect of time elapse on a systemand where the tick rules are of the form (y), or of the form (z) for multisetdistributed systems, will be denoted �-RTRWTh.26



3.7 Object-oriented �-systemsThe elapse of time a�ects one (functional) attribute in the single-thermostatsystem in Section 3.5.1. The tick rules could therefore be given by specify-ing directly the e�ect of time on that attribute. However, in more generalobject-oriented systems there can be an unbounded number of objects in acon�guration which are a�ected by the elapse of time, in which case a �nitenumber of tick rules cannot specify the elapse of time directly on the func-tional attributes. A simple solution is to use a function � denoting the actionof time on a con�guration. The important class of real-time object-orientedsystems where the objects have only functional attributes are multiset dis-tributed systems. Therefore, we can use the techniques described in Section 3.6to circumvent coherence problems wrt. � without sacri�cing concurrency. Thefollowing declarations should be added to the general framework for specifyingobject-oriented real-time systems given in Section 3.5, with f g rede�ned asstated below.sorts Tokens; �Con�gurationsubsorts Tokens; Con�guration � �Con�gurationop � : ! Tokensop : Tokens Tokens! Tokens [assoc comm id : null ]op : �Con�guration �Con�guration! �Con�guration[assoc comm id : null ]op f g : �Con�guration! Systemop � : Con�guration Time! Con�guration.As already mentioned, the tick rules should be of the form[tick ] : fT tg r�! fT �(t ; r)g if C ;where T is a variable of sort Tokens, and t is a term of sort Con�guration.Each instantaneous rule should have the form 6[l ] : � t �! � � � � � t 0;for t , t 0 terms of sort Con�guration, and where the number of tokens � in therighthand side should equal one plus the number of objects created by therule, minus the number of objects deleted by the rule. The initial state of a6 In systems where the number of objects created by a rule application depends onthe state, the condition on the form of the rules could be relaxed so that � � � � � canbe given by a term of sort Tokens, computing the number of tokens as a functionof the state. 27



system should be of the form f� � � � � tg, where the number of tokens equalsthe number of objects in the term t of sort Con�guration.3.7.1 Distribution over con�gurationsAn operator � acting on con�gurations provides, as we have just seen, a naturalway of expressing the action of time on object systems where the number ofobjects in a con�guration upon which time has an e�ect is unbounded. Inthese cases, � should typically distribute over the elements, or over groups ofelements, in the con�guration. The former case can be modeled by the axioms�(null ; xr) = null�(C C 0; xr) = �(C ; xr) �(C 0; xr) if C 6= null and C 0 6= null(for C ;C 0 variables of sort Con�guration), to which the de�nition of the spe-ci�c e�ect of time on single objects and on messages must be added to com-pletely specify �. The condition that C and C 0 be di�erent from null ensuresthat the two equations above de�ne a terminating rewrite system moduloassociativity, commutativity, and identity (null) of the con�guration unionoperator, when oriented from left to right.In systems parameterized by LTIME1 theories, a functionmte giving the max-imum time elapse of an object and message can be extended to con�gurationsby the axiomsmte(null)=1mte(C C 0)=min(mte(C );mte(C 0)) if C 6= null and C 0 6= null :3.7.2 Example: A multi-thermostat systemA multi-thermostat system can have an arbitrary number of rooms, eachequipped with a thermostat that works as in the single-thermostat system.Each user object is extended to contain a list of the thermostats to which ithas access.Let the speci�cation be parameterized by the theory LTIME1. Furthermore,let A, TS , and U be variables of sort OId , let S be a variable of a sort ofsets of OIds, let C be a variable of sort Con�guration, let T be a variableof sort Tokens, let xr be a variable of sort Time, and let y and z be vari-ables of sort Temp, modeling the temperature domain. Then, the function� : Con�guration Time!Con�guration denoting the action of time, and thefunction mte : Con�guration! Time1 computing the maximum time elapse28



in a tick both distribute over con�gurations according to the equations de-scribed above, and are de�ned for singleton con�gurations as follows:�(set temp(A; y); xr) = set temp(A; y)�(hU : Useri; xr) = hU : Useri�(hTS : Thermostat jcurr temp : y ; heater : oni; xr) =hTS : Thermostat jcurr temp : y + xr + xr ; heater : oni�(hTS : Thermostat jcurr temp : y ; heater : o� i; xr) =hTS : Thermostat jcurr temp : y � xr ; heater : o� imte(set temp(A; y)) = 0mte(hU : Useri) =1mte(hTS : Thermostat jcurr temp : y ; desired temp : z ; heater : oni) =((z + 5)�� y)=2mte(hTS : Thermostat jcurr temp : y ; desired temp : z ; heater : o� i) =((z + 5)�� y)=2.The system's transition rules can then be given as follows:[new temp] : � hU : User jthermostats : A S i �!� hU : Useri (set new temp(A; y))[set temp] : � (set temp(A; y)) hA : Thermostat jdesired temp : z i �!� hA : Thermostat jdesired temp : yi[turn on] : � hTS :Thermostat jcurr temp : y ; desired temp : z ; heater : o� i�! � hTS : Thermostat jheater : oni if y � z � 5[turn o� ] : � hTS :Thermostat jcurr temp : y ; desired temp : z ; heater : oni�! � hTS : Thermostat jheater : o� i if y � z + 5[tick ] : fT Cg xr�! fT �(C ; xr)g if xr � mte(C ):3.8 Timed Petri netsA Petri net [41] is usually presented as a set of places (each place representing acertain kind of resource), a disjoint set of transitions, and a relation of causalitybetween them that associates to each transition the set of resources consumedand produced by its �ring. Meseguer and Montanari recast this idea in analgebraic framework in [36], viewing the distributed states of the net, calledmarkings, as multisets of places, and viewing the transitions as the arrows ofan ordinary graph whose nodes are markings. In [32,35] it has been shownhow Petri net computations can be expressed by rewriting of markings, that29



is, of multisets over the set of places.Petri nets have been extended to model real-time systems in di�erent ways(see e. g. [1,37,21]). Three of the most frequently used time extensions are thefollowing, from which other timed versions of Petri nets can be obtained eitheras special cases or by combining the extensions:(1) Each transition � has an associated time interval [l�; u�]. A transition�res as soon as it can, but the resulting resources (also called tokens) aredelayed, that is, when a transition � �res, the resulting resources are notvisible in the system until after some time r 2 [l�; u�].(2) Each place p has a duration rp . A resource of kind p cannot participatein a transition until it has been at place p for at least time rp .(3) Each transition � is associated with a time interval [l�; u�], and the tran-sition � cannot �re before it has been continuously enabled for at leasttime l�. Also, the transition � cannot have been enabled continuously formore than time u� without being taken.We only treat the �rst two cases. The third case can be given a treatmentsimilar to that of timed and phase transition systems.Some of the timed extensions of Petri nets, such as interval timed coloredPetri nets, appear in the context of colored Petri nets, where instead of havingatomic places one has structured data. In this exposition, we abstract awayfrom the colors of the tokens to concentrate on real-time features (see e.g.,[43] for a treatment in rewriting logic of an important class of colored nets,namely, algebraic Petri nets).The translation into rewriting logic of these �rst two cases is based on therewriting logic representation of untimed Petri nets given in [35,32,34], wherethe state of a Petri net is represented by a multiset of places called a marking{ where if place p has multiplicity n we interpret this as the presence of ntokens in that place { and where the transitions correspond to rewrite ruleson the corresponding multisets of pre- and post-places.There are two kinds of \tokens" in our translation of timed Petri nets: A termconsisting of the place p represents a \visible" occurrence of a token at placep. A token that will be visible at place p in time r is represented by the termdly(p; r):Clearly, we want the equation dly(p; 0) = p. A state, or marking, of a timedPetri net is a multiset of these two forms of places, where multiset union isrepresented by juxtaposition.The number of delayed tokens in a marking, upon which time acts, is not30



known in advance. Timed Petri nets are therefore best modeled by �-real-time theories using the techniques for specifying multiset distributed �-systemsgiven in Section 3.6. The action � : Marking Time!Marking which modelsthe e�ect of time elapse on a marking (without any occurrence of the spe-cial symbol `�'), distributes over the elements in a marking and is de�ned asfollows: �(p; xr) = p�(dly(p; xr); yr ) = dly(p; xr �� yr )�(null ; xr) = null�(M M 0; xr) = �(M ; xr) �(M 0; xr) if M 6= null and M 0 6= null :Transitions are represented by rewrite rules whose lefthand side requires anextra token of the form `�' and with new extra such tokens added on therighthand side according to the increase in cardinality from the preset tothe postset. In version (1), also known as interval timed Petri nets [1], eachtransition � has an associated interval [l�; u�]. Assume that the transition �consumes two tokens from place a, and one token from place b, and producesone token at each of the places c and d . Since the duration of the transitionis any time in the interval [l�; u�], the resulting tokens are not visible for atime within this interval. Hence, the transition � can be represented by thefollowing rewrite rule:eager [�] : � a a b �! � dly(c; xr) dly(d ; xr) if l� � xr � u�:In version (2), each place p has an associated duration rp , and a token musthave been at a place p for at least time rp before it can be used in anytransition. This is equivalent to saying that the produced token cannot bevisible before time rp after the producing transition took place. Hence, thetransition that consumes two tokens from place a and one from place b, andwhich produces one token each at c and d is represented by the ruleeager [�] : � a a b �! � dly(c; rc) dly(d ; rd):As usual, the elapse of time (in both versions) is modeled by tick rules. In orderto ensure that time does not proceed beyond the time when a transition could�re (that is, when time has acted on a token dly(p; r) for time r), the functionmte is used. It takes as argument a marking (without �), and returns the least31



amount of time until one or more non-available tokens become available:mte(p) =1mte(dly(p; xr)) = xr if xr 6= 0mte(null) =1mte(M M 0) = min(mte(M );mte(M 0)) if M 6= null and M 0 6= null :The tick rule then allows time to elapse until the �rst dly-token becomesvisible: lazy [tick ] : fT M g xr�! fT �(M ; xr)g if xr � mte(M );where T is a variable of sort Tokens of multisets of `�', and M is a variableof sort Marking . Note that for simulation purposes, a tick rulelazy [tick ] : fT M gmte(M )�! fT �(M ;mte(M ))g if mte(M ) 6=1would be simpler, since no (non-tick) transition which is not currently enabledwill be enabled before time has elapsed at least mte(M ). The reason for thenondeterministic tick rule is to allow every moment in the time domain to bevisited.Transitions are supposed to �re as soon as possible in both versions of timedPetri nets. This is accomplished by the strategy described in Section 2.5.3that triggers all eager instantaneous rules until none of these can be applied,followed by one application of the tick rule.The correspondance between a version-(1) timed net and its rewriting logictranslation can be given as follows. For any net markings (i.e., markings with-out \delayed" tokens or �s) M0 and M1, the marking M1 can be reached intime r from the initial marking M0 in the net if and only if there is a rewrite� : f� � � � � M0g �! f� � � � � M 01gin the rewriting logic translation with �(�) = r , with the number of occur-rences of `�' in the lefthand side system greater or equal to the number of(non-�) tokens in M0, and with M1 obtained from M 01 by removing each de-layed token from M 01.In version (2), we have the correspondence that, for any net marking M0, thenet can reach a marking M1 in time r from the initial marking M0 if and only32



if there is a rewrite � : f� � � � � M 00g �! f� � � � � M 01gin the corresponding rewrite translation, where �(�) = r , where the number ofoccurrences of `�' in the lefthand side system greater or equal to the numberof (non-�) tokens in M0, where M 00 is obtained from M0 by replacing eachoccurrence of a token at place p by a delayed token dly(p; rp), and whereM1 can be obtained from M 01 by replacing each delayed token in M 01 by thecorresponding undelayed token.Our rewriting logic speci�cation of timed Petri nets illustrates the convenienceof using eager and lazy rules, which allow a simple condition on the tick rule,which would otherwise have to take into account the enabledness of everytransition in the system together with the mte part of the tick rule. Here, thetick rule only needs to compute the time until the next delayed token becomes\visible" and elapse time by that amount. After such a tick, the tick rule isagain enabled but will, due to its being lazy, not be applied if the introductionof the new token enabled an (eager) transition (which in turn could triggermore transitions in zero-time).3.9 The big pictureWe have shown how some well-known models of real-time and hybrid systemscan be naturally regarded as specializations of the real-time rewriting logicframework. Since we are interested in executable speci�cations, we have placedsome computability restrictions on some models. The relationships betweenthe models considered are summarized in Figure 1, where the arrows in thetree stand for specialization 7 , where the acronym OORTS stands for object-oriented real-time systems, �-RTRWTh for real-time rewrite action theories,and �-OORTS for real-time object-oriented action systems. Even though wehave not presented an exhaustive discussion of real-time models, we think thatthe models we have chosen are signi�cantly varied and well-known to suggestthat rewriting logic is a good semantic framework for real-time and hybridsystems.7 The timed automata model requires its computations to have unbounded totaltime elapse and to satisfy certain acceptance criteria, which is not the case for hybridautomata, explaining the missing arrow between these models.33



Timedautomata Hybridautomata systemstransitionTimedsystemstransition
RTRWTh OORTS �-RTRWTh�-OORTSPhase Timed Petri netsFig. 1. Specializations of real-time rewriting.4 Relationship to timed rewriting logicIn this section we investigate the relationship between Kosiuczenko and Wirs-ing's timed rewriting logic (TRL) [24,25] and the framework we have presentedfor specifying real-time systems directly in rewriting logic. After briey intro-ducing TRL in Section 4.1, we propose in Section 4.2 a translation from TRLinto rewriting logic. In this translation, the translation of any TRL-sequentderivable in a TRL theory is also derivable in the corresponding rewritinglogic theory. The converse is in general not true. We explain the reasons forthis discrepancy in Section 4.3. They are due to some conceptual di�erencesbetween TRL and our method of specifying real-time systems in rewritinglogic.4.1 Timed rewriting logicRewriting logic has been extended by Kosiuczenko and Wirsing to handle real-time systems in their timed rewriting logic (TRL) [24,25]. TRL has been shownwell-suited for giving object-oriented speci�cations of complex hybrid systemssuch as the steam-boiler [38] and has been illustrated by a number of spec-i�cations of simpler real-time systems. A translation into ordinary rewritinglogic can illuminate the conceptual relationships between both formalisms.A TRL theory (�;E ;L;TR) consists of an equational speci�cation (�;E )satisfying the theory TIME 8 , a set L of labels, and a set TR of timed rewriterules of the form [l ] : t r�! t 0, where r is a ground term of sort Time denotingthe duration of the rewrite. A TRL sequent has the form t r�! t 0 and itsintuitive meaning is that t evolves to t 0 in time r . More speci�cally, the setof sequents derivable from a TRL theory consists of all rules in the theory,8 They impose in some cases further requirements, such as TIME being anArchimedean monoid. This could of course be easily accommodated.34



Timed transitivity: t1 r1�! t2 t2 r2�! t3t1 r1+r2�! t3Synchronous replacement:t0 r�! t 00; ti1 r�! t 0i1 ; : : : ; tik r�! t 0ikt0(t1=x1; : : : ; tn=xn) r�! t 00(t 01=x1; : : : ; t 0n=xn)where fxi1; : : : ; xikg = V(t0) \ V(t 00).Compatibility with equality:t1 = u1; r1 = r2; t2 = u2; t1 r1�! t2u1 r2�! u2Renaming of variables:x r�! x for all x 2 X ; r 2 T�TimeFig. 2. Deduction rules in timed rewriting logic.and all sequents which can be derived by equational reasoning and by usingthe deduction rules in Figure 2, where V(t) denotes the set of free variablesin t . This deduction system extends and modi�es the rules of deduction inrewriting logic with time stamps as follows:� Reexivity is dropped as a general axiom, to allow specifying hard real-timesystems. Reexivity would not allow describing hard real-time systems since(parts of) the system could stay idle for an arbitrarily long period of time.� Transitivity yields the addition of the time stamps. If t1 evolves to t2 in timer1 and t2 evolves to t3 in time r2, then t1 evolves to t3 in time r1 + r2.� The synchronous replacement rule enforces uniform time elapse in all com-ponents of a system: a system rewrites in time r i� all its components doso.� The renaming rule assures that timed rewriting is independent of the namesof variables. Observe that the renaming axiom does not imply that t r�! tholds for all terms t .4.2 Timed rewriting logic in rewriting logicIn this section we de�ne a mapping M which takes any timed rewriting logictheory T to a real-time rewrite theory M(T ) such that T ` t r�! t 0 impliesthat M(T ) ` � : ftg �! ft 0g, for some � with �(�) = r , for all ground (T -)35



terms t ; t 0 of the designated sort State.The idea is to introduce for each sort s an operator � : s Time! s correspond-ing to the e�ect of time elapse. Then, a TRL sequent t r�! t 0 (\t evolves intime r to t 0") can be mapped to a rewriting logic sequent �(t ; r)�! t 0 (\iftime has acted on t for time r , then it rewrites to t 0") for ground terms t ; t 0.Rewrite rules must be used to de�ne �, since the e�ect of time on a TRL stateis not necessarily functional.Sort information is used to separate terms containing the symbol � from termsof the original signature, and a tick rule is added to the rules de�ning � suchthat for ground T -terms t ; t 0 of sort State, M(T ) ` � : ftg �! ft 0g holdsfor some � with �(�) = r if and only if M(T ) ` �(t ; r)�! t 0, which in turnholds whenever T ` t r�! t 0 holds. The resulting real-time rewrite theoryM(T ) is not easily executable, since the tick rule introduces two variables inits righthand side. This reects the fact that in TRL it is in general undecidablewhether a term rewrites in time r (r > 0), and, even if it is known that trewrites in time r , it is also in general undecidable whether t rewrites to agiven term t 0 in time r .We assume that the time domain is functional, that is, that no rewrites ofthe form t r�! t 0, with t 6= t 0 terms of sort Time, can be inferred from theTRL theory T , and restrict our treatment to TRL theories where no extravariables are introduced in the righthand side of a rule. The reason for thelatter restriction is that if f (x ) 2�! g(x ; y) and g(x ; y) 2�! h(y) are two rules,any system t 0 that appears in h(t) as a result of the second rule, must haveevolved for 2 time units from a system t in g(u; t). However, by transitivity ofthe rules, the sequent f (x ) 4�! h(y) is derivable, which means that any systemt could replace y in h(y), including the systems which have not evolved for 2time units.4.2.1 The mapping from TRL to real-time rewrite theoriesThe mapping M sends an order-sorted TRL theory T = (�;E ;L;TR) to areal-time rewrite theoryM(T ) = ((M(�);M(E );M(L);M(TR)); �(T ); �(T ))and sends a T -sequent t r�! t 0 to anM(T )-sequent M(t r�! t 0). It is de�nedas follows:� The signature morphism �(T ) in M(T ) takes Time to the sort Time in Tdenoting the time domain, and takes the functions in TIME to the corre-sponding functions in T .� The set of sorts inM(�) consists of all the sorts in �, plus a new sort s� foreach sort s in �, as well as a new sort System. For each sort s in �, s � s�,and if s � s 0 in �, then s� � s 0� in M(�).36



� M(�) contains function declarations f : s1 : : : sn ! s and f : s�1 : : : s�n ! s�for each function f : s1 : : : sn ! s in �, a constructor f g : State ! Systemfor the designated sort State in �, and a function � : s� Time! s� for eachsort s in �.� M(E ) contains an axiom e� for each axion e in E , where e� is the axiome where each variable x : s is replaced by x : s�. The set M(E ) must alsode�ne � to be a monoid action, that is, it contains the axioms�(xs� ; 0�) = xs��(�(xs� ; yr); zr) = �(xs� ; yr +� zr )for each sort s� in M(�) and variable xs� of sort s�, and variables yr ; zr ofsort Time.� The mappingM from TRL-sequents to rewriting logic sequents is given byM(t(x1 :s1; : : : ; xn :sn) r�! t 0(x1 :s1; : : : ; xn :sn)) =�(t(x1 :s�1 ; : : : ; xn :s�n); r)�! t 0(�(x1 :s�1 ; r)=x1; : : : ; �(xn :s�n ; r)=xn)where the free variables in t are x1; : : : ; xn and contain those of t 0.The set of rules M(TR) consists of a rule [l ] :M(t r�! t 0) if C � for eachtimed rule [l ] : t r�! t if C in TR, and a tick rule[tick ] : fxg yr�! fx 0g if �(x ; yr)�! x 0for variables x , x 0 of sort State and yr of sort Time.The theorem below shows that M can be naturally understood as a map oflogics. Speci�cally, as a map M : TRL�! RWL from the entailment system[31] of TRL to that of rewriting logic.Theorem 10 Let T be a TRL speci�cation and let M be de�ned as above.Then, for all terms t ; t 0; r 2 T�(X ),T ` t r�! t 0 implies M(T ) ` M(t r�! t 0):As a corollary to this theorem, which can be easily proved by induction onthe size of the proof t r�! t 0, we obtain that T ` t r�! t 0 implies M(T ) `�(t ; r)�! t 0 for all ground terms t , t 0, and r , which in turn gives a rewriteM(T ) ` � : ftg �! ft 0g with �(�) = r when t and t 0 are of sort State byapplying the tick rule. It is also easy to see that M(T ) ` � : ftg �! ft 0gimplies M(T ) ` �(t ; �(�))�! t 0 for ground T -terms t ; t 0 of sort State.37



4.3 Di�erences between TRL and its rewriting logic translationEven though t r�! t 0 implies �(t ; r)�! t 0 for ground terms, the converse is notnecessarily true. In this section we discuss the di�erences between deductionin TRL and in its translation into rewriting logic.4.3.1 Zero-time idlingIn the rewriting logic translation, a TRL sequent t 0�! t translates to �(t ; 0)�!t(�(x1; 0)=x1; : : : ; �(xn ; 0)=xn), which, due to the axiom �(x ; 0) = x , is equal tot �! t , which is always deducible in rewriting logic. However, in TRL, t 0�! tis not necessarily valid. This obviously indicates a di�erence between both sys-tems, since the notion of \zero-time idling" is always available in our approachbut not in TRL.4.3.2 Non-right-linear rulesGiven the TRL theory ff (x ) 2�! g(x ; x ); a 2�! b; a 2�! cg, the term f (a)rewrites to either g(b; b) or g(c; c) in time two, but will not rewrite to g(b; c).In the rewriting logic translationf �(f (x ); 2)�! g(�(x ; 2); �(x ; 2)); �(a; 2)�! b; �(a; 2)�! c ;fyg xr�! fy 0g if �(y ; xr)�! y 0 g;where y and y 0 are variables of the designated state sort and range over �-free terms, there is a rewrite �(f (a); 2)�! g(�(a; 2); �(a; 2))�! g(b; c), andtherefore also a rewrite � : ff (a)g �! fg(b; c)g with �(�) = 2.The di�erence depends on how the fork of a process is modeled. The rulef (x ) r�! g(x ; x ) can be understood as a fork of the (sub)process t in thesystem f (t). In the TRL setting, the actual \fork" (the point in time whenthe two instances of the process x can behave independently of each other)is taking place at the end of the time period of length r in the rule. In therewriting logic setting, the \forking" took place at the beginning of the timeperiod of duration r 9 .9 Note that in the rewriting logic setting, adding a rule �(k(x ); 2) �! f (�(x ; 2)) tothe system above gives �(k(x ); 4) �! g(�(x ; 4); �(x ; 4)), hence a \fork" which tookplace too early. Such behavior can be avoided by requiring that the variable x inthe rule �(f (x ); 2) �! g(�(x ; 2); �(x ; 2)) has a \non-�-sort".38



4.3.3 Problems related to synchrony in TRLAnother aspect in which TRL and our rewriting logic translation are di�erentis illustrated by the following TRL speci�cation:ff (a; y) 2�! g(a; y); g(x ; y) 2�! h(x ; y); h(x ; c) 2�! k(x ; c); a 4�! d ; b 4�! cg:Due to the strong synchrony requirements in TRL, f (a; b) cannot be rewritten,even though the b (in the place of y), and a (for x ), could be rewritten in time4. In many cases, it would however be natural to assume that the systemrepresented by f (a; b) rewrites to k(d ; c) in time 6. In the rewriting logictranslation, �(f (a; b); 6) rewrites to k(d ; c).4.4 Aging in TRLTo overcome the strong requirements of synchrony in TRL, which caused thedi�erences in Sections 4.3.2 and 4.3.3, the special symbol age is introduced in[24,25]. It aims at making a term t , which rewrites in time r 0, \accessible" tosynchronous rewrites in time r with r 0 � r , by making it visible as age(t ; r).Formally, with aging, the following two deduction rules are added to the TRLdeduction rules given in Figure 2. In both deduction rules, t r+r 0�! t 0 is assumedto be a timed rewrite rule in the speci�cation.age1 : t r�! age(t ; r) age2 : age(t ; r) r 0�! t 0The age operator also satis�es the axiom age(age(t ; r); r 0) = age(t ; r + r 0) forall terms t and time values r ; r 0.With aging, the \fork" di�erences disappear, since (assuming g(x ; y) 0�!g(x ; y)) we have f (a) 2�! g(age(a; 2); age(a; 2)) 0�! g(b; c) for the system inthe example of Section 4.3.2, and the strong synchrony is loosened, as illus-trated by the fact that in Section 4.3.3, f (a; b) 6�! k(d ; c) is derivable, sincef (a; b) 2�! g(a; age(b; 2)); g(a; age(b; 2)) 2�! h(age(a; 2); c), and h(age(a; 2); c)2�! k(d ; c) are derivable.Unfortunately, the deduction rules for aging lead to counterintuitive results,as illustrated by the following example:Example 11 In a TRL theory ff (x ) 2�! g(x ); f (b) 2�! g(c); a 2�! bg, onewould expect f (a) 2�! g(c) not to be derivable. However, f (x ) 2�! age(f (x ); 2)39



and age(f (x ); 2) 0�! g(x ) are derivable, and so are f (b) 2�! age(f (b); 2) andage(f (b); 2) 0�! g(c).The sequents f (x ) 2�! age(f (x ); 2) and a 2�! b give f (a) 2�! age(f (b); 2) bysynchronous replacement, which in turn rewrites to g(c) using age(f (b); 2)0�! g(c). Transitivity gives the undesired sequent f (a) 2�! g(c).We can summarize the situation as follows. We have seen that the rewritingtranslation of a TRL theory T is looser than T itself, in some cases with somepleasant consequences. If we attempt to tighten the correspondence betweenboth systems by adding aging rules to TRL, we get indeed closer, but weunfortunately encounter paradoxical examples in the reformulation of TRL.5 Concluding RemarksWe have presented a general method for specifying real-time and hybrid sys-tems in rewriting logic in an executable way, have shown how a wide range ofreal-time and hybrid system models can be naturally expressed in rewritinglogic, and have illustrated the ideas with several examples. This work shouldbe further extended in several directions.The systems that we have considered can be distributed and can exhibit con-current computations, in which several components of the state can changesimultaneously and independently. However, time is still in some sense global,since time acts on the global state, even though its e�ects can be local anddistributed|for example, by advancing the local clocks of di�erent distributedobjects. The situation is entirely similar to that in some real-time models fordistributed systems such as Lynch's general timed automata [26], where timealso acts uniformly on all the distributed components. In fact, although wehave not discussed general timed automata in this paper, they can also bespeci�ed within our general framework. Although the current framework canalready be used for specifying and reasoning about a range of distributed time-based systems, it would be worth investigating how the assumption of globaltime action could be relaxed to local or distributed time actions.We have explored what we think is a representative range of real-time andhybrid system models. However, the general timed (I/O) automata modelmentioned above, real-time dataow models such as Lustre's [20], and a vari-ety of other models should also be speci�ed in detail in rewriting logic. Theinterest is not merely conceptual: by using a formal meta-tool such as Maude[16], one can turn the rewriting logic speci�cation of a model into a tool forexecuting and analyzing formal speci�cations in that model. Since at presentsome formalisms lack execution and analysis environments, this o�ers a way40



of developing new formal tools with considerably less e�ort than what wouldbe required for conventional implementations.Execution of rewriting logic speci�cations for real-time and hybrid systems isalso another area deserving further work. Since the speci�cations are rewritetheories, and we assume that the underlying data types are computable, theycan of course be executed in a rewriting logic language. The point, however,is that the rewrite rules are often nondeterministic, with extra new variablesappearing on the righthand side. Therefore, they should be executed withappropriate strategies, to guide both the application of the rules and the choiceof instantiations for the extra variables in a match. Strategies of this kind canbe de�ned without any problem in languages such as ELAN [10] and Maude[13], but the development of a good library of such strategies suitable forreal-time and hybrid system applications|leading perhaps to a specializedexecution and analysis tool for them|remains to be done.Another important research issue is the integration of di�erent proof and anal-ysis methods. On the one hand, veri�cation of property-oriented speci�cationsshould be supported. This can be done either by inductive methods, based onthe initial model of the rewriting logic speci�cation, or by temporal logic rea-soning, which in important cases can be supported by abstraction and modelchecking techniques. On the other hand, once we have an executable speci-�cation we can subject it to other forms of analysis, ranging from executionwith a default strategy, to exploration of di�erent computation paths withmore sophisticated strategies, and to full symbolic simulation with techniquessuch as narrowing. Studying how all these di�erent methods and their toolscan best be combined to make system analysis and veri�cation easier seems apromising research direction. Examples and case studies can help very muchin this task.
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