
O�-Line and On-Line Call-Schedulingin Stars and Trees?Thomas Erlebach1 and Klaus Jansen21 Institut f�ur Informatik, TU M�unchen, D{80290 M�unchen,erlebach@informatik.tu-muenchen.de2 Fachbereich IV { Mathematik, Universit�at Trier, Postfach 3825, D{54286 Trier,jansen@dm3.uni-trier.deAbstract. Given a communication network and a set of call requests,the goal is to �nd a minimum makespan schedule for the calls such thatthe sum of the bandwidth requirements of simultaneously active calls us-ing the same link does not exceed the capacity of that link. In this paperthe call-scheduling problem is studied for star and tree networks. Lowerand upper bounds on the worst-case performance of List-Scheduling (LS)and variants of it are obtained for call-scheduling with arbitrary band-width requirements and either unit call durations or arbitrary call du-rations. LS does not require advance knowledge of call durations and,hence, is an on-line algorithm. It has performance ratio (competitiveratio) at most 5 in star networks. A variant of LS for calls with unit du-rations is shown to have performance ratio at most 2 23 . In tree networkswith n nodes, a variant of LS for calls with unit durations has perfor-mance ratio at most 6, and a variant for calls with arbitrary durationshas performance ratio at most 5 log n.1 IntroductionCall-scheduling problems arise naturally in modern communication networks,e.g., ATM networks. ATM (asynchronous transfer mode) is a network protocolthat allows high-bandwidth connections with a guaranteed quality of service [15].A connection request (call) can specify a certain bandwidth requirement, andthe network guarantees that, once the connection is established, this bandwidthis available to it as long as it remains active. Consequently, this bandwidthmust be reserved on all links along a path that connects the endpoints of thecall in the network. The high bandwidth and guaranteed quality of service inATM networks are essential for upcoming applications like multimedia serversor real-time medical imaging.Formally, the communication network is given by a connected, undirectedgraph G = (V;E) such that each edge e 2 E has a certain capacity c(e). Weassume that all edges have the same capacity, and that this capacity is normalizedto 1. A call request r is a tuple (ur; vr; br; dr), where ur and vr are di�erent nodes? Partly supported by German Science Foundation (DFG), Contract: SFB 342 TPA7.

of G representing the endpoints of the connection, br 2]0; 1] is the requestedbandwidth, and dr 2 IN is the duration of the call. Given a graph G and a(multi-)set R of call requests, a feasible schedule S assigns to each request r 2 Ra starting time tr 2 IN0 and an undirected path Pr from ur to vr in G suchthat the sum of bandwidths of simultaneously active calls using the same edgedoes not exceed the capacity of that edge. Precisely speaking, call r is activeduring the time interval [tr; tr + dr[, and it occupies bandwidth br on all edgesof Pr during that time. Several active calls can share an edge if the sum of theirbandwidth requirements is at most 1.The length jSj of a schedule S is the latest �nishing time of all calls, i.e.,jSj = maxr2R tr + dr. We denote by OPT = OPT (R) the length of a shortestfeasible schedule for R, and by A(R) the length of the schedule produced by algo-rithm A. Since it is in generalNP-hard to compute a minimum makespan sched-ule [5], one is interested in polynomial-time approximation algorithms with prov-able performance guarantee. An algorithm A has performance ratio at most � ifA(R) � � �OPT (R) for all request sets R.If an algorithm does not require advance knowledge of call durations, werefer to it as an on-line algorithm even if it requires that all call requests aregiven to the algorithm at once. Such batch-style on-line algorithms can easilybe converted into fully on-line algorithms, i.e., algorithms that can deal withadditional call requests that arrive on-line while other calls have already beenscheduled, increasing the competitive ratio by no more than a factor 2 [14, 7].An on-line algorithm has competitive ratio � if it always produces a schedulewith makespan at most a factor � longer than the optimum (o�-line) schedule.If G is a tree, the path Pr is already completely determined by ur and vr. Foran edge e of a tree network and a request set R we call L(e) =Pr2R:e2Pr br � drthe load of edge e. Furthermore, Lmax is the maximum of L(e) over all e 2 E.Obviously, Lmax is a lower bound for the optimum schedule length. A specialcase of a tree is a graph that consists of a central node c and an arbitrary numberof nodes v1; v2; : : : ; vk that are adjacent to c but not adjacent to each other. Werefer to such graphs as stars. In the following, we will always assume that Gis a star or a tree. Scheduling calls with unit bandwidth requirements in starswith unit edge capacities is equivalent to scheduling multiprocessor tasks withprespeci�ed processor allocations if each task requests one or two processors [11].One of the earliest heuristics for the solution of scheduling problems wasList-Scheduling (LS), introduced by Graham [9]. In the call-scheduling context,the input to LS is a star or tree network G and a set R of call requests arrangedin a list L. LS starts to schedule calls at time 0. If there is a call r in L such thatbandwidth br is available on all edges along path Pr, LS schedules the �rst suchcall r in L and removes it from L; otherwise, it waits until one of the active calls�nishes. This is repeated until all calls have been scheduled.One important property of list-schedules is that, if a call request r is estab-lished at time tr, it follows that at any time prior to tr at least one of the edgeson path Pr did not have bandwidth � br available. We will use this property as atool to prove performance guarantees for list-schedules. Note that this property

holds only because there are no precedence constraints for the call requests.Allowing arbitrary bandwidth requirements, we will show that DBLS(L) �83OPT (L) for calls with unit durations in stars, that LS(L) � 5 � OPT (L) forcalls with arbitrary durations in stars, that LLS(L) � 6 � OPT (L) for callswith unit durations in trees, and that LSL(L) � 5 logn �OPT (L) for calls witharbitrary durations in trees with n nodes. DBLS, LLS, and LSL are variants ofLS that will be de�ned later.1.1 Related WorkWavelength Allocation. The o�-line call-scheduling problem with unit dura-tions and unit bandwidth requirements is equivalent to the wavelength allocationproblem in all-optical networks with wavelength-division multiplexing, where aminimum makespan schedule corresponds to a wavelength assignment with theminimum number of distinct wavelengths. Routing and wavelength allocation inall-optical networks have received considerable attention lately, see, e.g., [1] andthe references contained in there.A variation of the problem dealing with directed instead of bidirectionalcalls has also been studied. Here, calls using the same edge can receive the samewavelength if they use the edge in di�erent directions. The best approximationalgorithm known up to now requires 53Lmax wavelengths in the worst case [12].It is known that the bidirectional call-scheduling problem with unit durationsand unit bandwidths is NP-hard in trees of arbitrary degree, but solvable inpolynomial time in trees whose degree is bounded by a constant [5, 6]. Thedirected version is NP-hard already for binary trees [6].In the on-line version of the wavelength allocation problem the algorithmis given requests one by one and must assign wavelengths immediately withoutknowledge about future requests. Bartal and Leonardi [3] obtain deterministicon-line algorithms with competitive ratio O(logn) for networks with n proces-sors whose topology is that of a tree, a tree of rings, or a mesh. In addition,they present a matching lower bound of
(logn) for all on-line algorithms forwavelength allocation in meshes, and a lower bound of
(lognlog log n) for trees. Notethat the on-line version of the wavelength allocation problem corresponds to acall-scheduling problem where the algorithm must assign starting times to callrequests one by one before the �rst call is established. Hence, the lower boundsin [3] do not apply to the call scheduling problem we study in this paper. Fur-thermore, their algorithms work for the call-scheduling problem only in the caseof unit durations and unit bandwidths.Scheduling File-Transfers. Co�man et al. study a �le-transfer schedulingproblem that corresponds to call-scheduling in a star with varying edge capac-ities and calls with unit bandwidth requirements and arbitrary durations [4].They present complexity results for various restricted versions of the problem,approximation results, and distributed implementations. Many of their resultsfor arbitrary edge capacities and unit bandwidth requirements do not apply toour call-scheduling problem with unit edge capacities and arbitrary bandwidthrequirements, however.

Previous Work on On-Line Call-Scheduling. Feldmann et al. initiatedresearch on on-line call-scheduling in [7] and [8]. They analyze the GREEDYalgorithm (equivalent to LS) and show that running GREEDY once on thecalls with bandwidth requirements � 12 and once on the calls with bandwidthrequirements > 12 yields an on-line algorithm for call-scheduling in binary treeswith competitive ratio 12 logn. In addition, they obtain results for linear arraynetworks, meshes, complete graphs, and graphs with small separators.2 Approximation Results for StarsStars are the subgraphs of trees that are induced by an arbitrary node of the treeand its neighbors. Hence, call-scheduling problems in stars are encountered assubproblems of call-scheduling in trees. Note that there are two kinds of calls ina star G. First, there are calls that connect the central node to one of the othernodes. Second, there are calls that connect two nodes that are both adjacent tothe central node. We refer to these calls as 1-calls and 2-calls, respectively.In the case of calls with unit durations (dr = 1 for all r 2 R) and unitbandwidths (br = 1 for all r 2 R), call-scheduling in a star is equivalent to edge-coloring a multigraph and thus NP-hard [5]. The algorithm from [13] colorsany multigraph G with at most b1:1 � OPT (G) + 0:8c colors and can be usedfor the call-scheduling problem with the same performance guarantee, even intrees [5]. The equivalence between call-scheduling and edge-coloring is lost oncewe allow arbitrary bandwidth requirements or arbitrary call durations. It isknown, however, that the performance ratio of LS for call-scheduling with unitbandwidth requirements and arbitrary durations in a star is 2 [4, Corollary 12.2].2.1 Unit Durations and Arbitrary Bandwidth RequirementsIn this section we assume that all call durations are 1, while bandwidth re-quirements can be arbitrary numbers in]0; 1]. Note that call-scheduling witharbitrary bandwidth requirements is a generalization of bin-packing and henceNP-complete in the strong sense, even if the network is a single link. Theorem 7,which will be proved in Sect. 2.2, implies that the worst-case performance of LSfor calls with unit durations is at most 5. The following tighter result can beproved similar to Lemma 2 below.Theorem1. LS has performance ratio at most 4:875 for call-scheduling witharbitrary bandwidth requirements and unit durations in stars.Given a schedule S computed by LS for a list L of call requests, it turns out thatestimates on the performance ratio of LS on that particular instance L dependheavily on the smallest bandwidth requirement of a call that �nishes last in S,i.e., at time jSj. The following lemmas make this relationship clearer.Lemma2. Let S be a list-schedule for a list L of calls with arbitrary bandwidthrequirements and unit durations. If there is a call r with bandwidth requirementbr � 12 that �nishes last in S, then jSj � d3:875 �OPT (L)e.

jSjtrtc tc+10 timee3e2e1 rrcc d1 d2 c1 c2a b b1b2
Fig. 1. List-Schedule S, br � 12 , bc � 13Proof. Assume that r is a 2-call. (If r is a 1-call, the proof is much simpler.)If br � 13 , it follows that at least one of the two edges used by r has less than13 bandwidth available during at least dtr=2e (not necessarily consecutive) timesteps prior to tr. Hence, OPT > dtr=2e � 23 � tr3 and jSj = tr + 1 � 3 �OPT inthis case. Therefore, assume that 13 < br � 12 . Consider all calls with bandwidthrequirement � 13 that use at least one edge that is also used by r. Assume thatthere are such calls, and let c be a call with latest �nishing time tc + 1 amongthem. Furthermore, assume that c is a 2-call and that c uses only one edge thatis also used by r. (The cases that no call c exists, that c is a 1-call, or that cis a 2-call using the same edges as r can be treated in a similar way.) Let theedges used by r be e1 and e2, and let the edges used by c be e2 and e3. Introducethe following variables (cf. Fig. 1): a = (number of) time steps during which cis blocked on e2; b = time steps during which c is blocked on e3, but not on e2;b1 = time steps prior to tc during which r is blocked on e2, but not c; b2 = timesteps prior to tc during which r is blocked on e1, but not on e2; c1 = time stepsafter tc during which r is blocked on e2 by a single call; c2 = time steps after tcduring which r is blocked on e2 by a combination of at least two calls; d1 = timesteps after tc during which r is blocked on e1 by a single call, but not blockedon e2; d2 = time steps after tc during which r is blocked on e1 by a combinationof at least two calls, but not blocked on e2. Note that the time steps accountedfor by these variables need not be consecutive. Using these de�nitions, it is clearthat jSj = a + b1 + b2 + c1 + c2 + d1 + d2 + 2. If a + c2 + d2 � 38OPT , theeasily observed inequalities OPT > 23 (b1 + b2) (follows from b � b1 + b2 and theload on e3), OPT � c1 + 1, and OPT � d1 + 1 imply jSj � 3:875 � OPT . Ifa+ c2+d2 > 38OPT , consider the sum of the loads on e1 and e2 (note that thereis load > 12 on e1 or e2 at time tc):L(e1) + L(e2) > 23(a+ c2 + d2) + 12(b1 + b2 + c1 + d1 + 1) (1)Since L(e1) + L(e2) � 2 � OPT , we get jSj � 1 < 4 � OPT � 13 (a + c2 + d2) �3:875 �OPT . Hence, jSj � d3:875 �OPTe. ut

Lemma3. There are stars and lists of calls with arbitrary bandwidth require-ments and unit durations such that the schedule computed by LS is longer thanthe optimum schedule by a factor arbitrarily close to 3:7. The call scheduled lastby LS has bandwidth requirement 12 .Proof. We use a well-known worst-case input to �rst-�t bin-backing (cf. [10, pp.211-213]) with ratio � 1710 to construct a call-scheduling input with ratio � 3:7.For any positive integer ` divisible by 17, we obtain a list L of calls with optimumschedule length 10`=17 + 1 and list-schedule length 37`=17 + 1. The worst-caseinput to �rst-�t bin-packing consists of 30`=17 items with sizes approximately16 , 13 , and 12 . The optimum packing uses at most 10`=17+1 bins for these items,while �rst-�t requires exactly ` bins. Furthermore, each bin is �lled to at least12 + � in the packing produced by �rst-�t, where � is a parameter that must bechosen su�ciently small.A list of 30`=17 calls with bandwidth requirements equal to the item sizes insuch a bin-packing instance is called a 1:7-list. Let `0 = 10`=17. The input listL for LS contains calls in a star with 2 + 2`0 + 3`0(`0 + 1) nodes adjacent to thecentral node c. These nodes are denoted u, u1; : : : ; u`0 , v0; : : : ; v`0 , and wi;j for0 � i � `0 and 1 � j � 3`0. The list L contains the following calls (" < 1=(6`0)):u1u2 ...u`0uv0v1v`0w0;1 ...w`0;3`0
x x x x x x x x... xx x......| {z }`0 | {z }` | {z }`0+1Fig. 2. Example with LS(L)=OPT (L) � 3:71. For 1 � i � `0, i� 1 calls with bandwidth 1 connecting ui and c.2. For 1 � i � `0, a call with bandwidth 12 � " connecting u and c and a callwith bandwidth 3" connecting u and ui.

3. For 0 � i � `0 and 1 � j � 3`0, `0 calls with bandwidth 1 connecting wi;jand c.4. For 0 � i � `0, a 1:7-list of calls connecting vi and some node wi;j , such thatno two calls connect vi to the same wi;j .5. For 1 � i � `0, a call with bandwidth 12 + " connecting u and vi.6. A call with bandwidth 12 connecting u and v0.It is easy to verify that LS will produce the schedule sketched in Fig. 2. The edgefu; cg is occupied by a call with bandwidth 12 � " and a call with bandwidth 3"during each of the �rst `0 time steps. All 1:7-lists are scheduled in time steps `0to `0 + ` � 1, because every call in a 1:7-list is blocked during the �rst `0 timesteps on an edge fwi;j ; cg. The calls with bandwidth 12 + " connecting u and viare scheduled in time steps `0 + ` to 2`0 + ` � 1, because they are blocked onfu; cg during the �rst `0 time steps and subsequently on fvi; cg during the next` time steps. (Recall that the 1:7-lists occupy at least 12 + � bandwidth in timesteps `0 to `0+`�1 on all edges fvi; cg.) Finally, the call (u; v0; 12 ; 1) is scheduledat time step 2`0 + `. Hence, LS(L) = 37`=17+ 1.On the other hand, it is clear that L can be scheduled in `0 + 1 time steps.In particular, on edge fu; cg one can schedule one call with bandwidth 12 � "and one call with bandwidth 12 + " during each of the �rst `0 time steps. Since" has been chosen small enough, all calls with bandwidth 3" together with thecall (u; v0; 12 ; 1) can then be scheduled together at time `0. The 1:7-lists can bescheduled in `0 + 1 time steps, such that one of the time steps has bandwidth� 12 + " available. Hence, the schedule for the 1:7-list on vi can be arranged suchthat the call connecting u and vi is scheduled at that time step. Finally, theremaining 1-calls can be �lled in without making the schedule longer. Therefore,OPT (L) � `0 + 1. The ratio between LS(L) and OPT (L) is at least 37`+1710`+17 ,which is arbitrarily close to 3:7 for large `. utNote that Lemma 2 and Lemma 3 show that the exact bound on the worst-case performance ratio of LS lies between 3:7 and 3:875 if a call with bandwidthrequirement � 12 �nishes last in the list-schedule. Next, we investigate the casethat a call with bandwidth requirement � 1k for some k � 3 �nishes last in alist-schedule.Lemma4. Let S be a list-schedule for a list L of calls with arbitrary bandwidthrequirements and unit durations. If there is a call r with bandwidth requirementbr � 1k for some k � 3, k 2 IN, that �nishes last in S, then jSj � l 2kk�1OPTm.Proof. Since r is blocked during the �rst tr time steps, at least one of the edgesused by r has less than br � 1k bandwidth available during at least dtr=2e timesteps. Hence, the load on that edge is greater than dtr=2e � k�1k < OPT , and weobtain tr < 2kk�1OPT and, consequently, jSj = tr + 1 � l 2kk�1OPTm. utIn [10, pp. 217{219], �rst-�t bin-packing is analyzed under the restrictionthat all items have size � � for some � � 12 . With k0 = b1=�c, it is shown

that, for any list L of items with sizes � �, FF (L) � k0+1k0 OPT + 2 and thatthere are examples with FF (L) � k0+1k0 OPT � 1k0 . We adapt the construction ofthese examples to obtain call-scheduling inputs that show that the bound fromLemma 4 is tight.Lemma5. For every k � 3, k 2 IN, there are stars and lists L of calls with unitdurations and bandwidth requirements � 1k�1 such that a call with bandwidthrequirement � 1k �nishes last in the list-schedule for L and LS(L)OPT(L) is arbitrarilyclose to 2kk�1 .Proof. Let k0 = k�1. Let ` be a positive integer such that k0 divides `(k0+1)�1.We construct a list L of calls with optimum schedule length ` + 1 and list-schedule length 2 `(k0+1)�1k0 . Let b�j = 1=(k0+1)�k02j+1� (j = 1; 2; : : : ; `�1) anda�1j = � � � = a�k0j = 1=(k0+1)+k02j� (j = 1; 2; : : : ; `), where � is chosen su�cientlysmall. A list of calls with exactly one call with bandwidth requirement b�j foreach j = 1; 2; : : : ; ` � 1 and one call with bandwidth requirement a�ij for eachi = 1; 2; : : : ; k0 and j = 1; 2; : : : ; ` is called a �-list if the calls are ordered asfollows: the a�ij -calls appear in order of non-increasing bandwidths, the b�j -callsappear in order of strictly increasing bandwidths, there are k0 a�ij-calls betweenevery pair of successive b�j -calls, and the call with bandwidth requirement b�̀�1is the second call in the list. Note that a �-list contains l(k0 + 1)� 1 calls.Consider a �-list L� such that all calls in L� are 1-calls using the same edge e.Since �rst-�t bin-packing is equivalent to LS for calls with unit durations onone edge, [10, pp. 217{219] implies LS(L�) = `(k0+1)�1k0 and OPT (L�) = `.Furthermore, LS schedules exactly k0 calls in every time step, and no time stephas more than 1=(k0 + 1)� k03� bandwidth available on edge e in the resultingschedule. In addition, the call with bandwidth b�1 < 1k0+1 = 1k is scheduled in thelast time step.We use `(k0 +1)� 1 such �-lists with 1-calls on separate edges (one edge foreach �-list). These �-lists come �rst in the list L. At the end of L, we appendone additional �0-list L�0 , with �0 such that k02`�1�0 < k03�. Let v be a node ofthe star that has not been used by any of the 1-calls. The calls in L�0 all connectthe node v to one of the nodes used by the `(k0 + 1) � 1 �-lists, such that notwo calls in L�0 connect v to the same node v0. Obviously, LS will schedule thecalls in L�0 in `(k0+1)�1k0 successive time steps starting from `(k0+1)�1k0 . Hence,the list-schedule has length 2 `(k0+1)�1k0 , whereas OPT = ` + 1. Therefore, theperformance ratio of LS is arbitrarily close to 2(k0+1)k0 = 2kk�1 . utWhile our best general upper bound for the worst-case performance of LS forcalls with unit durations and arbitrary bandwidth requirements in stars is 4:875,a slightly modi�ed algorithm gives a much better performance guarantee. Thealgorithm Decreasing-Bandwidth List-Scheduling (DBLS) behaves just like stan-dard List-Scheduling, but it sorts the given list of call requests according tonon-increasing bandwidth requirements before it begins to schedule the calls.

Theorem6. DBLS has performance ratio at most 83 for call-scheduling witharbitrary bandwidth requirements and unit durations in stars. There are instancesfor which the performance ratio of DBLS is arbitrarily close to 229 .Proof. First, we prove the upper bound. Given a set R of call requests, letL = L(R) be the list of call requests obtained by sorting R in order of non-increasing bandwidth, and denote by S the schedule produced by DBLS. Notethat a call c scheduled at time tc in S is blocked during all time steps prior totc entirely by calls that precede c in L. (This holds only because we assume unitcall durations.) For a call c 2 R, denote by Lc the sublist of L that containsall requests from the beginning of the list up to and including c. Taking intoaccount the above argument, it is clear that all calls in Lc are scheduled at thesame time step in a list-schedule for L and in a list-schedule for Lc.We claim that the �nishing time tc + 1 of any call c 2 R with bandwidthrequirement bc > 13 satis�es tc+1 � 2 �OPT (R). If c has bandwidth requirementbc > 12 , no two calls in Lc can be scheduled at the same time if they use the sameedge. Therefore, scheduling Lc is just like scheduling calls with unit bandwidthrequirements, and [4, Corollary 12.2] implies tc + 1 = LS(Lc) � 2 �OPT (Lc) �2 �OPT (R). If c has bandwidth requirement bc satisfying 13 < bc � 12 , note thatduring all time steps prior to tc more than 1 � bc bandwidth was occupied byother calls from Lc on at least one of the edges used by c. Hence, an edge e wasoccupied to this extent during at least dtc=2e time steps prior to tc. During eachsuch time step, that edge must have been used either by a single call occupyingmore than 1�bc bandwidth or by two calls occupying at least bc bandwidth each.It is clear that even an optimum schedule requires dtc=2e time steps for these callsand an additional time step for c, and thus tc+1 � 2 �OPT (Lc) � 2 �OPT (R).Now let r be a call with maximum bandwidth requirement among the callsthat �nish last in S. If br > 13 , the previous argument shows that jSj = tr +1 �2 � OPT . If br � 14 , note that an edge used by r has less than br bandwidthavailable during at least dtr=2e time steps prior to tr. Hence, dtr=2e � (1� br) <OPT , implying tr < 21�brOPT and, therefore, jSj = tr+1 � l 21�brOPTm. Withbr � 14 , this implies jSj � � 83OPT�.Finally, consider the case that 14 < br � 13 . If r is a 1-call, the edge usedby r is occupied to more than 23 during all time steps prior to tr, and we have23 tr < OPT , implying jSj � � 32OPT�. If r is a 2-call, denote by C the set of allcalls with bandwidth requirement > 13 that use at least one edge also used by r.If C is empty, r is blocked during the �rst tr time steps entirely by calls d withbandwidth requirement bd satisfying br � bd � 13 . In addition, it is clear that twosuch calls are not enough to block r, because 2 � 13 + br � 1. Therefore, wheneverr is blocked on an edge during one of the �rst tr time steps, that edge is occupiedto at least 3br. Since r is blocked on an edge during at least dtr=2e time steps,we have dtr=2e�3br < OPT . This implies tr+1 � l 23brOPTm � � 83OPT�, wherethe last inequality follows from br > 14 .If C is not empty, let c be a call with the latest �nishing time among all callsin C. Note that tc + 1 � 2 � OPT . Furthermore, note that starting from tc + 1

call r is blocked entirely by calls d with bandwidth requirement bd satisfyingbr � bd � 13 , and that three such calls are necessary in each time step toblock r. Hence, the sum of the loads on the two edges used by r is more than(tc+1)(1�br)+(tr�tc�1)3br+2br < 2 �OPT . This can simply be transformedinto 3br(tr�tc�1+ 23+tc+1) < 2�OPT+(tc+1)(4br�1). Using tc+1 � 2�OPTand 4br�1 � 0, we obtain tr+ 23 < 83 �OPT and, consequently, tr+1 � 83 �OPT .This concludes the proof of the upper bound.Now we give the construction of the instances L that provide the lower bound,using a well-known family of worst-case instances I for �rst-�t-decreasing bin-packing with FFD(I) = 119 OPT (I) [10, p. 220, Fig. 5.40]. The calls in L havebandwidth requirements � = 12 + ", � = 14 +2", = 14 + ", and � = 14 �2". For agiven n 2 IN, let N = 62208n5+3888n3+30n and M = 5184n4+252n2+1, andconsider a star with N+M edges e1; : : : ; eN ; f1; : : : ; fM . L contains the followingcalls: (1) for i = 1; : : : ; N , we have 6n calls with bandwidth � using only edge ei;(2) for i = 1; : : : ;M and j = 0; : : : ; 6n� 1, we have one call with bandwidth �using edges fi and eN�(i�1)�6n�j ; (1') for i = 1; : : : ; N , we have 6n calls withbandwidth � using only edge ei; (2') for i = 1; : : : ;M and j = 0; : : : ; 6n � 1,we have one call with bandwidth � using edges fi and eN�M�6n�(i�1)�6n�j ; (3)for i = 1; : : : ; N �M � 12n = 864n3 + 18n and j = 0; : : : ; 6n � 1, we have onecall with bandwidth using edges ei and fM�(i�1)�6n�j ; (4) for i = 1; : : : ;M �(864n3 + 18n) � 6n = 144n2 + 1 and j = 0; : : : ; 6n � 1, we have one call withbandwidth using edges fi and eN�M�12n�(i�1)�6n�j ; (5) for i = 1; : : : ; 12nand j = 0; : : : ; 12n � 1, we have one call with bandwidth � using edges ei andf2+(i�1)12n+j ; (6) for j = 0; : : : ; 12n � 1, we have one call with bandwidth �using edges f1 and e1+j . It is not di�cult to show that DBLS(L) = 22n andOPT (L) = 9n + 1. An optimum schedule can combine calls such that the fullcapacity of the edges is exploited most of the time. (Note that �++ � = 1 and2� + 2� = 1.) Details are omitted. ut2.2 Arbitrary Durations and Arbitrary Bandwidth RequirementsIn this section, call durations can be arbitrary positive integers, and bandwidthrequirements can be arbitrary numbers in]0; 1].Theorem7. If S is the schedule computed by LS for a list L of call requestswith arbitrary durations and bandwidth requirements in a star, then LS(L) �5 �OPT (L). If there is a call with bandwidth requirement � 12 that �nishes lastin S, then jSj � 4 � OPT (L). If there is a call with bandwidth requirement � 13that �nishes last in S, then jSj � 3 �OPT (L).Proof. Let r be a call with the smallest bandwidth requirement br among allcalls that �nish last in S, i.e., at time jSj. Since call r is blocked during alltime steps prior to tr, the load on at least one edge used by r is more thandtr=2e � (1 � br) + drbr < OPT . This implies tr � 21�brOPT � 2br1�br dr, and weobtain tr+dr � 21�brOPT + 1�3br1�br dr. For br � 13 , we have 1�3br � 0 and, using

dr � OPT , obtain jSj = tr + dr � 2+(1�3br)1�br OPT = 3 � OPT ; for 13 < br � 12 ,21�br is at most 4, and with 1� 3br < 0 we obtain jSj = tr + dr � 4 �OPT .Assume now that br > 12 and that r is a 2-call; if r is a 1-call, similararguments can be applied. Consider all calls with bandwidth requirement � 12
jSjtrtc tc+dc0 timee3e2e1 rrcc b1 b2k2 � k1 + `1k1`1T1z }| { dcz }| { T2z }| { drz }| {

Fig. 3. List-Schedule S, br > 12 , bc � 12that use at least one edge that is also used by r. If there is no such call, at leastone of the edges used by r is blocked by a call with bandwidth > 12 in at leastdtr=2e + dr � OPT time steps and, consequently, jSj = tr + dr � 2 � OPT .Otherwise, let c be a call with the latest �nishing time tc + dc among all suchcalls. Assume that c is a 2-call that uses only one edge that is also used by r.(The cases that c is a 1-call and that c is a 2-call that uses the same edgesas r can be treated similarly.) Furthermore, assume that c �nishes before r isestablished. (Otherwise, jSj � 5 � OPT follows directly from tc + dc � 4 � OPTand dr � OPT .) Let the edges used by r be e1 and e2, and let the edges usedby c be e2 and e3. The list-schedule is partitioned into the following disjointtime intervals: (A) T1 time steps from the beginning of the schedule until tc (thetime when call c is scheduled), (B) dc time steps during which call c is active,(C) T2 time steps from the �nishing time of c until tr (the time when call ris scheduled), and (D) dr time steps during which call r is active. Obviously,jSj = T1 + dc + T2 + dr. Introduce the following variables (cf. Fig. 3): b1 =number of time steps in part (C) during which r is blocked on e1, but not on e2;b2 = number of time steps in part (C) during which r is blocked on e2; k1 =number of time steps in part (A) during which r is blocked on e2, but not c; k2 =number of time steps in part (A) during which c (and r) is blocked on e2; `1 =number of time steps in part (A) during which r is blocked on e1, but not on e2.Considering the load on edge e3, we obtain (k1+ `1)(1� bc)+dcbc � OPT . Thisimplies k1+ `1 � 11�bcOPT � bc1�bc dc. Adding dc on both sides of this inequality,we get k1 + `1 + dc � 11�bcOPT + 1�2bc1�bc dc. Since dc � OPT and 1 � 2bc � 0,this implies k1 + `1 + dc � 1+(1�2bc)1�bc OPT = 2 � OPT . In addition, it is easy to

observe that k2 + b2 � 2 � OPT and b1 + dr � OPT . Taking into account thatjSj = k1 + k2 + `1 + dc + b1 + b2 + dr, these inequalities can be combined toobtain jSj � 5 �OPT . utFor the case that a call with bandwidth requirement� 13 �nishes last in a list-schedule, the following lemma shows that the upper bound 3 on the worst-caseperformance of LS is tight.Lemma8. For arbitrary k > 2, k 2 IN, there are stars and lists of call requestswith arbitrary durations and bandwidth requirements � 1k�1 such that a call withbandwidth requirement � 1k �nishes last in the list-schedule and the performanceratio of LS is arbitrarily close to 3.Proof. Fix arbitrary integers k > 2 and ` > 1. We construct a list L of callrequests such that LS(L) = 3`, OPT (L) = `+ 1, and the call that �nishes lastin the list-schedule for L has bandwidth requirement 1k .The star used for the construction has k` + 3 nodes: the central node cand nodes u, v, u1; : : : ; u`, v1; : : : ; v(k�1)` adjacent to c. The list L contains thefollowing call requests ("� 1):(1) For i = 1; : : : ; `: k� 1 calls (u; c; 1k ; 1), k(i� 1) calls (ui; c; 1k ; 1), and one call(ui; u; "; 1).(2) For i = 1; : : : ; (k � 1)`: k` calls (vi; c; 1k ; 1).(3) For i = 0; : : : ; `� 1: for j = 1; : : : ; k � 1: one call (v; vi(k�1)+j ; �i;j ; 1).(4) One call z = (u; v; 1k ; `).The bandwidth requirements �i;j are de�ned by �i;1 = 1k + k�i and �i;2 = � � � =�i;k�1 = 1k � �i, where � = �0 is chosen su�ciently small and �i+1 = k�2k �i.What schedule is produced by LS for the list L? The calls (1) �ll the edgefu; cg to k�1k + " during the �rst ` time steps. Each of the calls with bandwidth" is blocked on one of the edges fui; cg in all time steps before its starting time.The calls (2) �ll the edges fvi; cg completely during the �rst ` time steps. Thecalls (3) are scheduled in time steps ` to 2`�1, because each call is blocked on adi�erent edge fvi; cg during the �rst ` time steps and blocked on the edge fv; cgfrom time step ` up to its starting time. Exactly k � 1 calls (3) are scheduledin each time step, because their bandwidths add up to k�1k +2�i and, therefore,block all subsequent calls (3). Finally, call z is scheduled at time 2`, because itis blocked on fu; cg during the �rst ` time steps and on fv; cg during the second` time steps. Hence, LS(L) = 3`.In an optimum schedule, call z is scheduled at time 0. In each of the �rst `time steps, k�1 calls from (1) using edge fu; cg and with bandwidth requirement1k can be scheduled together with z. All the calls from (1) with bandwidth "are scheduled together at time `. The remaining calls from (1) can easily bescheduled in free time slots during the �rst ` time steps.Among the calls from (3), the k � 1 calls with bandwidth requirements�i;2; : : : ; �i;k�1; �i+1;1 are scheduled together in time step i, for 0 � i � ` � 1.(For i = `� 1, there is no call with bandwidth �i+1;1, and only k� 2 of the calls

from (3) are scheduled in time step `� 1.) The bandwidths of the calls from (3)scheduled during one of the time steps 0; : : : ; `�1 add up to at most k�1k . Hence,they can be scheduled concurrently with call z. The call with bandwidth �0;1 isscheduled at time `. The calls from (2) can easily be scheduled in the remainingfree time slots during the �rst `+ 1 time steps. Therefore, OPT = `+ 1. ut3 Approximation Results for Trees3.1 Unit Durations and Arbitrary Bandwidth RequirementsIt is known that the performance of LS can be arbitrarily bad in trees or evenin chains if arbitrary bandwidth requirements are allowed. Feldmann et al. givea list of call requests with unit durations on a chain with n+1 nodes such thatthe performance ratio of LS is
(n) [7]. Therefore, we consider a variation ofthe basic List-Scheduling algorithm. Pick an arbitrary node of the tree networkas the root and assign each node of the tree a level according to its distancefrom the root. (The root has level 0.) Let mr be that node on Pr (the pathcorresponding to call r) whose level is minimum among all nodes on Pr. Thelevel of a call r is de�ned to be equal to the level of the node mr. We considerthe Level-List-Scheduling algorithm (LLS), which is identical to List-Schedulingexcept that it sorts the list of calls according to non-decreasing levels before itstarts to schedule the calls.Theorem9. LLS has performance ratio at most 6 for call-scheduling with ar-bitrary bandwidth requirements and unit durations in trees.Proof. Let S be a schedule computed by LLS for a given set R of call requests.First, we show that any call r with bandwidth requirement br � 12 �nishes nolater than at time 4 �OPT . To see this, consider the node mr, and let e1 and e2be the edges incident to mr that are used by r. (If r uses only one edge incidentto mr, it can be proved by similar arguments that tr + 1 � 2 �OPT .) It is clearthat call r is blocked either on edge e1 or on edge e2 by calls with equal orsmaller level during all time steps prior to tr. Hence, at least one of these edgeshas less than 12 bandwidth available during at least d tr2 e time steps prior to tr.Therefore, OPT > 12 � d tr2 e and, consequently, tr + 1 � 4 �OPT .Now, let r be a call with minimum bandwidth requirement br among all callsthat �nish last in S. If br � 12 , the argument above implies jSj � 4 � OPT .Therefore, assume that br > 12 . Let e1 and e2 be the edges incident to mr thatare used by r. Again, it is clear that call r is blocked either on edge e1 or on edgee2 by calls with equal or smaller level during all time steps prior to tr. Let c be acall with bandwidth requirement bc � 12 that has the latest �nishing time amongall such calls. (If no such call exists, call r is blocked only by calls with smalleror equal level and with bandwidth requirements > 12 , and jSj � 2 � OPT .) Theargument above implies tc+1 � 4 �OPT , and tr� tc � 2 �OPT follows from thefact that call r is blocked by calls with bandwidth requirements > 12 either one1 or on e2 during all time steps from tc+1 to tr. Combining these inequalities,we obtain jSj = tr + 1 � 6 �OPT . ut

3.2 Arbitrary Durations and Arbitrary Bandwidth RequirementsGiven a tree network T with n nodes, we use a well-known technique [2] basedon a tree separator [16] to assign levels to the nodes of T as follows:1. Choose a node v whose removal splits T into subtrees T1; T2; : : : ; Tk with atmost n=2 nodes each. Assign node v the level 0.2. In each subtree Ti with ni nodes, �nd a node vi whose removal splits Ti intosubtrees with at most ni=2 nodes. Assign all such nodes vi the level 1.3. Continue recursively until every node of T is assigned a level.This way every node of T is assigned a level `, 0 � ` � logn. For each callrequest r = (u; v; b; d) in T , the level of r is de�ned to be the smallest level of allnodes on the path Pr from u to v. In addition, the root node of r is de�ned to bethat node on Pr whose level is equal to the level of r. (Note that the root nodeis uniquely determined; if two nodes of equal level are on a path P , there mustexist a node of smaller level on P .) Given a list L of call requests in T , let L` bethe sublist of L that contains all call requests of level `, 0 � ` � logn. Note thatscheduling a list L` is equivalent to scheduling calls in a number of disjoint stars:calls in L` with the same root node intersect if and only if they use the same edgeincident to that root node; calls in L` with di�erent root nodes never intersect.Therefore, LS(L`) � 5 �OPT (L`) as a consequence of Theorem 7. The algorithmList-Scheduling by Levels (LSL) simply uses List-Scheduling to schedule the listsL`, 0 � ` < logn one after another. (Llogn is empty, because the root node of acall can never have level logn.) LSL begins to schedule L`+1 only when all callsfrom L` have �nished. Note that LSL is an on-line algorithm because it doesnot require advance knowledge of call durations. Hence, we obtain the followingtheorem:Theorem10. LSL is an on-line algorithm for scheduling calls with arbitrarybandwidth requirements and arbitrary durations in trees. Its competitive ratio isat most 5 logn.4 ConclusionWe have analyzed List-Scheduling and variants of it for the call-scheduling prob-lem in stars and trees. It was shown that variants of LS have good, constant per-formance ratio in all cases except for call-scheduling with arbitrary bandwidthsand arbitrary durations in trees, where the ratio is 5 logn. Hence, List-Schedulingvariants, which are easy to implement, can be applied in practice to scheduleconnections in networks with guaranteed quality of service.Regarding possible directions for future research, it will be interesting tostudy call-scheduling algorithms for the cases that edge capacities may vary,that directed and undirected calls as well as calls with release times are allowed,and that the topology of the network is such that multiple paths between theendpoints of each connection exist.

References1. Y. Aumann and Y. Rabani. Improved bounds for all optical routing. In Proceed-ings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms SODA '95,pages 567{576, 1995.2. B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros�en. Competitive non-preemptive callcontrol. In Proceedings of the 5th Annual ACM{SIAM Symposium on DiscreteAlgorithms SODA '94, pages 312{320, 1994.3. Y. Bartal and S. Leonardi. On-line routing in all-optical networks. In Proceedingsof the 24th International Colloquium on Automata, Languages and ProgrammingICALP '97, LNCS 1256, pages 516{526. Springer-Verlag, 1997.4. E. Co�man, Jr., M. Garey, D. Johnson, and A. Lapaugh. Scheduling �le transfers.SIAM J. Comput., 14(3):744{780, August 1985.5. T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks.In Proceedings of the 4th Parallel Systems and Algorithms Workshop PASA '96,pages 13{32. World Scienti�c Publishing, 1997.6. T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proceed-ings of the 30th Hawaii International Conference on System Sciences HICSS-30,volume 1, pages 221{222. IEEE Computer Society Press, 1997.7. A. Feldmann, B. Maggs, J. Sgall, D. D. Sleator, and A. Tomkins. Competitiveanalysis of call admission algorithms that allow delay. Technical Report CMU-CS-95-102, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,January 1995.8. A. Feldmann. On-line call admission for high-speed networks (Ph.D. Thesis).Technical Report CMU-CS-95-201, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, PA, October 1995.9. R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,17(2):416{429, March 1969.10. R. Graham. Bounds on the performance of scheduling algorithms. In E. G. Co�-man, Jr., editor, Computer and Job-Shop Scheduling Theory, pages 165{227. JohnWiley & Sons, Inc., New York, 1976.11. J. Hoogeveen, S. van de Velde, and B. Veltman. Complexity of scheduling mul-tiprocessor tasks with prespeci�ed processor allocations. Discrete Appl. Math.,55:259{272, 1994.12. C. Kaklamanis, P. Persiano, T. Erlebach, and K. Jansen. Constrained bipartiteedge coloring with applications to wavelength routing. In Proceedings of the 24thInternational Colloquium on Automata, Languages and Programming ICALP '97,LNCS 1256, pages 493{504. Springer-Verlag, 1997.13. T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM J.Disc. Math., 3(3):391{410, August 1990.14. D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line. In Proceedings of the 32nd Annual Symposium on Foundations of ComputerScience FOCS '91, pages 131{140, 1991.15. The ATM Forum, Upper Saddle River, NJ. ATM User-Network Interface (UNI)Speci�cation Version 3.1., 1995.16. J. van Leeuwen, editor. Handbook of Theoretical Computer Science. Volume A:Algorithms and complexity. Elsevier North-Holland, Amsterdam, 1990.

