Off-Line and On-Line Call-Scheduling
in Stars and Trees*

Thomas Erlebach! and Klaus Jansen?

! Institut fiir Informatik, TU Miinchen, D-80290 Miinchen,
erlebach@informatik.tu-muenchen.de
2 Fachbereich IV Mathematik, Universitit Trier, Postfach 3825, D 54286 Trier,

jansen@dm3.uni-trier.de

Abstract. Given a communication network and a set of call requests,
the goal is to find a minimum makespan schedule for the calls such that
the sum of the bandwidth requirements of simultaneously active calls us-
ing the same link does not exceed the capacity of that link. In this paper
the call-scheduling problem is studied for star and tree networks. Lower
and upper bounds on the worst-case performance of List-Scheduling (LS)
and variants of it are obtained for call-scheduling with arbitrary band-
width requirements and either unit call durations or arbitrary call du-
rations. LS does not require advance knowledge of call durations and,
hence, is an on-line algorithm. It has performance ratio (competitive
ratio) at most 5 in star networks. A variant of LS for calls with unit du-
rations is shown to have performance ratio at most 2% In tree networks
with n nodes, a variant of LS for calls with unit durations has perfor-
mance ratio at most 6, and a variant for calls with arbitrary durations
has performance ratio at most 5logn.

1 Introduction

Call-scheduling problems arise naturally in modern communication networks,
e.g., ATM networks. ATM (asynchronous transfer mode) is a network protocol
that allows high-bandwidth connections with a guaranteed quality of service [15].
A connection request (call) can specify a certain bandwidth requirement, and
the network guarantees that, once the connection is established, this bandwidth
is available to it as long as it remains active. Consequently, this bandwidth
must be reserved on all links along a path that connects the endpoints of the
call in the network. The high bandwidth and guaranteed quality of service in
ATM networks are essential for upcoming applications like multimedia servers
or real-time medical imaging.

Formally, the communication network is given by a connected, undirected
graph G = (V, E) such that each edge e € E has a certain capacity c(e). We
assume that all edges have the same capacity, and that this capacity is normalized
to 1. A call request r is a tuple (u,., vy, by, d,.), where u, and v, are different nodes

* Partly supported by German Science Foundation (DFG), Contract: SFB 342 TP A7.

of G representing the endpoints of the connection, b, €]0;1] is the requested
bandwidth, and d, € IN is the duration of the call. Given a graph G and a
(multi-)set R of call requests, a feasible schedule S assigns to each request r € R
a starting time t, € INg and an undirected path P, from u, to v, in G such
that the sum of bandwidths of simultaneously active calls using the same edge
does not exceed the capacity of that edge. Precisely speaking, call r is active
during the time interval [t,;t, + d,[, and it occupies bandwidth b, on all edges
of P, during that time. Several active calls can share an edge if the sum of their
bandwidth requirements is at most, 1.

The length |S| of a schedule S is the latest finishing time of all calls, i.e.,
|S| = max,ecgtr + d,. We denote by OPT = OPT(R) the length of a shortest
feasible schedule for R, and by A(R) the length of the schedule produced by algo-
rithm A. Since it is in general N'P-hard to compute a minimum makespan sched-
ule [5], one is interested in polynomial-time approximation algorithms with prov-
able performance guarantee. An algorithm A has performance ratio at most p if
A(R) < p- OPT(R) for all request sets R.

If an algorithm does not require advance knowledge of call durations, we
refer to it as an on-line algorithm even if it requires that all call requests are
given to the algorithm at once. Such batch-style on-line algorithms can easily
be converted into fully on-line algorithms, i.e., algorithms that can deal with
additional call requests that arrive on-line while other calls have already been
scheduled, increasing the competitive ratio by no more than a factor 2 [14, 7].
An on-line algorithm has competitive ratio p if it always produces a schedule
with makespan at most a factor p longer than the optimum (off-line) schedule.

If G is a tree, the path P, is already completely determined by u, and v,.. For
an edge e of a tree network and a request set @ we call L(e) = cp..cp. br-dr
the load of edge e. Furthermore, L,,,, is the maximum of L(e) over all e € E.
Obviously, Ly,qz is a lower bound for the optimum schedule length. A special
case of a tree is a graph that consists of a central node ¢ and an arbitrary number
of nodes vy, vs, ..., v that are adjacent to ¢ but not adjacent to each other. We
refer to such graphs as stars. In the following, we will always assume that G
is a star or a tree. Scheduling calls with unit bandwidth requirements in stars
with unit edge capacities is equivalent to scheduling multiprocessor tasks with
prespecified processor allocations if each task requests one or two processors [11].

One of the earliest heuristics for the solution of scheduling problems was
List-Scheduling (LS), introduced by Graham [9]. In the call-scheduling context,
the input to LS is a star or tree network G and a set R of call requests arranged
in a list L. LS starts to schedule calls at time 0. If there is a call r in L such that
bandwidth b, is available on all edges along path P,, LS schedules the first such
call r in L and removes it from L; otherwise, it waits until one of the active calls
finishes. This is repeated until all calls have been scheduled.

One important property of list-schedules is that, if a call request r is estab-
lished at time ¢,, it follows that at any time prior to ¢, at least one of the edges
on path P, did not have bandwidth > b, available. We will use this property as a
tool to prove performance guarantees for list-schedules. Note that this property

holds only because there are no precedence constraints for the call requests.

Allowing arbitrary bandwidth requirements, we will show that DBLS(L) <
8OPT(L) for calls with unit durations in stars, that LS(L) < 5- OPT(L) for
calls with arbitrary durations in stars, that LLS(L) < 6 - OPT(L) for calls
with unit durations in trees, and that LSL(L) < 5logn - OPT(L) for calls with
arbitrary durations in trees with n nodes. DBLS, LLS, and LSL are variants of
LS that will be defined later.

1.1 Related Work

Wavelength Allocation. The off-line call-scheduling problem with unit dura-
tions and unit bandwidth requirements is equivalent to the wavelength allocation
problem in all-optical networks with wavelength-division multiplexing, where a
minimum makespan schedule corresponds to a wavelength assignment with the
minimum number of distinct wavelengths. Routing and wavelength allocation in
all-optical networks have received considerable attention lately, see, e.g., [1] and
the references contained in there.

A variation of the problem dealing with directed instead of bidirectional
calls has also been studied. Here, calls using the same edge can receive the same
wavelength if they use the edge in different directions. The best approximation
algorithm known up to now requires ngM wavelengths in the worst case [12].
It is known that the bidirectional call-scheduling problem with unit durations
and unit bandwidths is ANP-hard in trees of arbitrary degree, but solvable in
polynomial time in trees whose degree is bounded by a constant [5, 6]. The
directed version is N'P-hard already for binary trees [6].

In the on-line version of the wavelength allocation problem the algorithm
is given requests one by one and must assign wavelengths immediately without
knowledge about future requests. Bartal and Leonardi [3] obtain deterministic
on-line algorithms with competitive ratio O(logn) for networks with n proces-
sors whose topology is that of a tree, a tree of rings, or a mesh. In addition,
they present a matching lower bound of £2(logn) for all on-line algorithms for
wavelength allocation in meshes, and a lower bound of Q(lol"lgorg"n) for trees. Note
that the on-line version of the wavelength allocation problem corresponds to a
call-scheduling problem where the algorithm must assign starting times to call
requests one by one before the first call is established. Hence, the lower bounds
in [3] do not apply to the call scheduling problem we study in this paper. Fur-
thermore, their algorithms work for the call-scheduling problem only in the case
of unit durations and unit bandwidths.

Scheduling File-Transfers. Coffman et al. study a file-transfer scheduling
problem that corresponds to call-scheduling in a star with varying edge capac-
ities and calls with unit bandwidth requirements and arbitrary durations [4].
They present complexity results for various restricted versions of the problem,
approximation results, and distributed implementations. Many of their results
for arbitrary edge capacities and unit bandwidth requirements do not apply to
our call-scheduling problem with unit edge capacities and arbitrary bandwidth
requirements, however.

Previous Work on On-Line Call-Scheduling. Feldmann et al. initiated
research on on-line call-scheduling in [7] and [8]. They analyze the GREEDY
algorithm (equivalent to LS) and show that running GREEDY once on the
calls with bandwidth requirements < % and once on the calls with bandwidth
requirements > % yields an on-line algorithm for call-scheduling in binary trees
with competitive ratio 12logn. In addition, they obtain results for linear array

networks, meshes, complete graphs, and graphs with small separators.

2 Approximation Results for Stars

Stars are the subgraphs of trees that are induced by an arbitrary node of the tree
and its neighbors. Hence, call-scheduling problems in stars are encountered as
subproblems of call-scheduling in trees. Note that there are two kinds of calls in
a star G. First, there are calls that connect the central node to one of the other
nodes. Second, there are calls that connect two nodes that are both adjacent to
the central node. We refer to these calls as 1-calls and 2-calls, respectively.

In the case of calls with unit durations (d, = 1 for all r € R) and unit
bandwidths (b, = 1 for all r € R), call-scheduling in a star is equivalent to edge-
coloring a multigraph and thus NP-hard [5]. The algorithm from [13] colors
any multigraph G with at most |1.1- OPT(G) + 0.8] colors and can be used
for the call-scheduling problem with the same performance guarantee, even in
trees [5]. The equivalence between call-scheduling and edge-coloring is lost once
we allow arbitrary bandwidth requirements or arbitrary call durations. It is
known, however, that the performance ratio of LS for call-scheduling with unit
bandwidth requirements and arbitrary durations in a star is 2 [4, Corollary 12.2].

2.1 Unit Durations and Arbitrary Bandwidth Requirements

In this section we assume that all call durations are 1, while bandwidth re-
quirements can be arbitrary numbers in]0;1]. Note that call-scheduling with
arbitrary bandwidth requirements is a generalization of bin-packing and hence
NP-complete in the strong sense, even if the network is a single link. Theorem 7,
which will be proved in Sect. 2.2, implies that the worst-case performance of LS
for calls with unit durations is at most 5. The following tighter result can be
proved similar to Lemma 2 below.

Theorem 1. LS has performance ratio at most 4.875 for call-scheduling with
arbitrary bandwidth requirements and unit durations in stars.

Given a schedule S computed by LS for a list L of call requests, it turns out that
estimates on the performance ratio of LS on that particular instance L depend
heavily on the smallest bandwidth requirement of a call that finishes last in .S,
i.e., at time |S|. The following lemmas make this relationship clearer.

Lemma 2. Let S be a list-schedule for a list L of calls with arbitrary bandwidth
requirements and unit durations. If there is a call r with bandwidth requirement

by < 5 that finishes last in S, then |S| < [3.875- OPT(L)].

T } T T T T } T T T T T time

Fig. 1. List-Schedule S, b, < 3, b, <

w| =

1
29

Proof. Assume that r is a 2-call. (If r is a 1-call, the proof is much simpler.)
If o, < —, it follows that at least one of the two edges used by r has less than
1 bandwidth available during at least [¢, /21 (not necessarily consecutive) time
q‘repq prior to t,. Hence, OPT > [f /2] - 2 L and |S|=t,+1<3-O0PT in
this case. Therefore, assume that * 3 <by < 5 Conqider all calls with bandwidth
requirement <] ‘rha‘r use at leaq‘r one edge ‘rha‘r is also used by r. Assume that
there are such calls and let ¢ be a call with latest finishing time ¢. + 1 among
them. Furthermore, assume that c is a 2-call and that c uses only one edge that
is also used by 7. (The cases that no call ¢ exists, that ¢ is a 1-call, or that ¢
is a 2-call using the same edges as r can be treated in a similar way.) Let the
edges used by r be e; and es, and let the edges used by ¢ be e; and e3. Introduce
the following variables (cf. Fig. 1): a = (number of) time steps during which ¢
is blocked on ey; b = time steps during which c is blocked on ez, but not on es;
b1 = time steps prior to t. during which r is blocked on es, but not ¢; bs = time
steps prior to ¢, during which r is blocked on e, but not on es; ¢; = time steps
after ¢, during which r is blocked on ey by a single call; co = time steps after %,
during which r is blocked on e; by a combination of at least two calls; d; = time
steps after t. during which r is blocked on e; by a single call, but not blocked
on ey; dy = time steps after ¢, during which r is blocked on e; by a combination
of at least two calls, but not blocked on es. Note that the time steps accounted
for by these variables need not be consecutive. Using these definitions, it is clear
that |S| = a+b1+b2+r1+r2+d1 +dy+ 2. If a+co +dy < 20PT, the
easily observed inequalities OPT > (b1 + by) (follows from b > by + be and the
load on e3), OPT > ¢; + 1, and OPT > dy + 1 imply |S| < 3.875- OPT. If
a+co+ds > %OPT, consider the sum of the loads on e; and ey (note that there
is load >]3 on e; or ey at time ¢.):

2 1
L(€1)+L(€2)>g((l+€2+d2)+§(b1+bg+cl+d1+1) (].)

Since L(e1) + L(e2) < 2- OPT, we get |S| —1 < 4- OPT — +(a+ ¢z + ds) <
3.875- OPT. Hence, |S| < [3.875- OPT1. O

Lemma 3. There are stars and lists of calls with arbitrary bandwidth require-
ments and unit durations such that the schedule computed by LS is longer than
the optimum schedule by a factor arbitrarily close to 3.7. The call scheduled last
by LS has bandwidth requirement %

Proof. We use a well-known worst-case input to first-fit bin-backing (cf. [10, pp.
211-213]) with ratio a2 = to construct a call-scheduling input with ratio ~ 3.7.
For any positive integer ¢ divisible by 17, we obtain a list L of calls with optimum
schedule length 10¢/17 + 1 and list-schedule length 37¢/17 + 1. The worst-case
input to first-fit bin-packing consists of 30¢/17 items with sizes approximately
%, %, and % The optimum packing uses at most 10¢/17 + 1 bins for these items,
while first-fit requires exactly £ bins. Furthermore, each bin is filled to at least
% + § in the packing produced by first-fit, where 4 is a parameter that must be
chosen sufficiently small.

A list of 30¢/17 calls with bandwidth requirements equal to the item sizes in
such a bin-packing instance is called a 1.7-list. Let ¢/ = 10£/17. The input list
L for LS contains calls in a star with 2 4+ 2¢' + 3¢'(¢' + 1) nodes adjacent to the
central node c. These nodes are denoted u, u1,...,up, vo,..., v, and w; ; for

0<i<{ and1<j <3/ Thelist L contains the following calls (¢ < 1/(6¢')):

(2% o FEEEIXXIXX]
vo I I—\
V1 I I—|_|X

Ve I 1]

v CTTTTTTL
weae CTTTTTT e

{
~ 9

£+1

Fig. 2. Example with LS(L)/OPT(L) =~ 3.7

1. For 1 <i </, i—1 calls with bandwidth 1 connecting u; and c.
2. For 1 < i < /', a call with bandwidth]5 — € connecting u and ¢ and a call
with bandwidth 3e connecting u and w;.

3. For0 <i</{ and 1< j <3¢, ¢ calls with bandwidth 1 connecting w; ;
and c.

4. For 0 <4 < ', a 1.7-list of calls connecting v; and some node w; ;, such that
no two calls connect v; to the same w; ;.

5. For 1 <i </, a call with bandwidth % + € connecting u and v;.

6. A call with bandwidth % connecting u and vy.

It is easy to verify that LS will produce the schedule sketched in Fig. 2. The edge
{u, ¢} is occupied by a call with bandwidth % — ¢ and a call with bandwidth 3¢
during each of the first ¢’ time steps. All 1.7-lists are scheduled in time steps ¢
to £' + £ — 1, because every call in a 1.7-list is blocked during the first ¢’ time
steps on an edge {w;;,c}. The calls with bandwidth 1 + e connecting u and v
are scheduled in time steps £/ + £ to 2¢' + £ — 1, because they are blocked on
{u, ¢} during the first £’ time steps and subsequently on {v;, ¢} during the next
¢ time steps. (Recall that the 1.7-lists occupy at least % + § bandwidth in time
steps ¢’ to ' +£—1 on all edges {v;, c}.) Finally, the call (u, vo, %, 1) is scheduled
at time step 2¢' + (. Hence, LS(L) = 37¢/17 + 1.

On the other hand, it is clear that L can be scheduled in ¢’ + 1 time steps.
In particular, on edge {u,c} one can schedule one call with bandwidth % —€
and one call with bandwidth % + ¢ during each of the first £’ time steps. Since
€ has been chosen small enough, all calls with bandwidth 3¢ together with the
call (u,wvo,]5, 1) can then be scheduled together at time ¢'. The 1.7-lists can be
scheduled in ¢’ + 1 time steps, such that one of the time steps has bandwidth
> % + ¢ available. Hence, the schedule for the 1.7-list on v; can be arranged such
that the call connecting u and v; is scheduled at that time step. Finally, the
remaining 1-calls can be filled in without making the schedule longer. Therefore,
OPT(L) < ¢' + 1. The ratio between LS(L) and OPT(L) is at least 3T¢-17

100417 >
which is arbitrarily close to 3.7 for large /. O

Note that Lemma 2 and Lemma 3 show that the exact bound on the worst-
case performance ratio of LS lies between 3.7 and 3.875 if a call with bandwidth
requirement <]3 finishes last in the list-schedule. Next, we investigate the case
that a call with bandwidth requirement < % for some k > 3 finishes last in a
list-schedule.

Lemmad4. Let S be a list-schedule for a list L of calls with arbitrary bandwidth

requirements and unit durations. If there is a call r with bandwidth requirement
b, < % for some k > 3, k € IN, that finishes last in S, then |S| < [szk] OPT-‘.

Proof. Since r is blocked during the first ¢, time steps, at least one of the edges
used by r has less than b, < + bandwidth available during at least [t,/2] time
steps. Hence, the load on that edge is greater than [¢,/2] - k% < OPT, and we

obtain ¢, < £ OPT and, consequently, |S| =t, +1 < [% OPT-‘. 0

In [10, pp. 217 219], first-fit bin-packing is analyzed under the restriction

that all items have size < « for some o < 3. With k' = |1/a], it is shown

that, for any list L of items with sizes < «, FF(L) < ’“lk—f]()PT + 2 and that

there are examples with F'F(L) > k'k—Tl OPT — % We adapt the construction of
these examples to obtain call-scheduling inputs that show that the bound from
Lemma 4 is tight.

Lemma5. For every k > 3, k € IN, there are stars and lists L of calls with unit

durations and bandwidth requirements < such that a call with bandwidth
LS(L
OP'I(“(l}/)

1
k1
requirement < % finishes last in the list-schedule for L and is arbitrarily

2k
close to =5 .

Proof. Let k' = k— 1. Let ¢ be a positive integer such that k' divides £(k'+1) — 1.
We construct a list L of calls with optimum schedule length ¢ + 1 and list-

schedule length 22801 Lot b0 = 1/(k' +1) — k16 (j = 1,2,...,£— 1) and

aj;=---= ai,j =1/(k'+1)+k"?5 (j =1,2,...,¢), where § is chosen sufficiently
small. A list of calls with exactly one call with bandwidth requirement bf; for
each 7 = 1,2,...,¢ — 1 and one call with bandwidth requirement afi for each

i=1,2,...,k" and j = 1,2,...,(is called a 6-list if the calls are ordered as
follows: the afj—calls appear in order of non-increasing bandwidths, the b?—calls

)

appear in order of strictly increasing bandwidths, there are k' a?,-calls between

ij
every pair of successive bj-—calls, and the call with bandwidth requirement b;Ll
is the second call in the list. Note that a d-list contains I(k¥' + 1) — 1 calls.

Consider a d-list Lg such that all calls in L are 1-calls using the same edge e.
Since first-fit bin-packing is equivalent to LS for calls with unit durations on
one edge, [10, pp. 217-219] implies LS(L;) = “44D=1 and OPT(Ls) = ¢.
Furthermore, LS schedules exactly k' calls in every time step, and no time step
has more than 1/(k' + 1) — k'36 bandwidth available on edge e in the resulting
schedule. In addition, the call with bandwidth b} < k']ﬁ = % is scheduled in the
last time step.

We use £(k' + 1) — 1 such d-lists with 1-calls on separate edges (one edge for
each ¢-list). These d-lists come first in the list L. At the end of L, we append
one additional ¢'-list Ly, with ¢’ such that k2¢~'§" < k'3§. Let v be a node of
the star that has not been used by any of the 1-calls. The calls in Lg all connect
the node v to one of the nodes used by the ¢(k' + 1) — 1 ¢-lists, such that no
two calls in L connect v to the same node v'. Obviously, LS will schedule the

! ’
calls in Ly in % Lk 2,1)7]

the list-schedule has length QM, whereas OPT = ¢ + 1. Therefore, the

kl
performance ratio of LS is arbitrarily close to % = ,ka] a

successive time steps starting from . Hence,

While our best general upper bound for the worst-case performance of LS for
calls with unit durations and arbitrary bandwidth requirements in stars is 4.875,
a slightly modified algorithm gives a much better performance guarantee. The
algorithm Decreasing-Bandwidth List-Scheduling (DBLS) behaves just like stan-
dard List-Scheduling, but it sorts the given list of call requests according to
non-increasing bandwidth requirements before it begins to schedule the calls.

Theorem 6. DBLS has performance ratio at most 3 s for call-scheduling with
arbitrary bandwidth requirements and unit durations in stars There are instances
for which the performance ratio of DBLS is arbitrarily close to 2 9

Proof. First, we prove the upper bound. Given a set R of call requests, let
L = L(R) be the list of call requests obtained by sorting R in order of non-
increasing bandwidth, and denote by S the schedule produced by DBLS. Note
that a call ¢ scheduled at time ¢, in S is blocked during all time steps prior to
t. entirely by calls that precede ¢ in L. (This holds only because we assume unit
call durations.) For a call ¢ € R, denote by L. the sublist of L that contains
all requests from the beginning of the list up to and including ¢. Taking into
account the above argument, it is clear that all calls in L. are scheduled at the
same time step in a list-schedule for L and in a list-schedule for L..

We claim that the finishing time ¢. + 1 of any call ¢ € R with bandwidth
requlrement be > 3 L satisfies t.+1 < 2- OPT(R). If ¢ has bandwidth requirement
be > —, no two callq in L. can be scheduled at the same time if they use the same
edge. Therefore, scheduling L, is just like scheduling calls with unit bandwidth
requirements, and [4, Corollary 12.2] implies t. + 1 = LS(0) <2- OPT(LC) <
2- OPT(R). If ¢ has bandwidth requirement b, satisfying 7 < b § , note that
during all time steps prior to t. more than 1 — b, bandwidth was occupied by
other calls from L, on at least one of the edges used by c. Hence, an edge e was
occupied to this extent during at least [¢./2] time steps prior to ¢.. During each
such time step, that edge must have been used either by a single call occupying
more than 1—b, bandwidth or by two calls occupying at least b, bandwidth each.
It is clear that even an optimum schedule requires [t./2] time steps for these calls
and an additional time step for ¢, and thus t.+1 < 2- OPT(L.) <2- OPT(R).

Now let r be a call with maximum bandwidth requirement among the calls
that finish last in S. If b, > &, the previous argument shows that |S| = £, +1 <
2. OPT. If b, < i note that an edge used by r has less than b, bandwidth

4
available during at least [t,/2] time steps prior to t,. Hence, [t,/2]- (1 —1b,) <

OPT, implying t, < 1=~ OPT and, therefore, |S| =1, +1 < [OPT-‘ With

b, < %, this implies \S| g {5 ()PT].

Finally, consider the case that 1 7 <b < é If r is a 1-call, the edge used
by r is occupied to more than ; during all time steps prior to ¢,., and we have
2t, < OPT, implying |S| < [2 ()PT] If r is a 2-call, denote by C the set of all
calls with bandwidth requirement > 3 L that use at least one edge also used by 7.
If C is empty, r is blocked during the first ¢, time steps entirely by calls d with
bandwidth requirement b, satisfying b, < by < é In addition, it is clear that two
such calls are not enough to block 7, because 2 - 15 + b, < 1. Therefore, whenever
r is blocked on an edge during one of the first ¢, time steps, that edge is occupied
to at least 3b,.. Since r is blocked on an edge during at least [t,./2] time steps,

we have [1,/2]-3b, < OPT. This implies ¢, +1< |2 OPT| < [SOPT], where
the last inequality follows from b, > %

If C is not empty, let ¢ be a call with the latest finishing time among all calls
in C. Note that t. +1 < 2. OPT. Furthermore, note that starting from ¢, + 1

call r is blocked entirely by calls d with bandwidth requirement b, satisfying
b, < by < %, and that three such calls are necessary in each time step to
block r. Hence, the sum of the loads on the two edges used by r is more than
(te+1)(1—by) + (tr —t. —1)3b, 4+ 2b, < 2- OPT. This can simply be transformed
into 3br(tr—t671+%+t6+1) < 2-OPT+(t.+1)(4b.—1). Using t.+1 < 2-OPT
and 4b, —1 > 0, we obtain ¢, +% < % -OPT and, consequently, ¢, +1 < % -OPT.
This concludes the proof of the upper bound.

Now we give the construction of the instances L that provide the lower bound,
using a well-known family of worst-case instances I for first-fit-decreasing bin-
packing with FFD(I) = &L OPT(I) [10, p. 220, Fig. 5.40]. The calls in L have
bandwidth requirements o = %-{—5, 8= %-{— 2e, v = %+5, and § = % —2¢. For a
given n € IN, let N = 62208n° +3888n° +30n and M = 5184n* +252n2+ 1, and
consider a star with N+ M edges ey, ...,en, f1,--., far- L contains the following
calls: (1) fori =1,..., N, we have 6n calls with bandwidth « using only edge e;;
(2) fori=1,...,M and j = 0,...,6n — 1, we have one call with bandwidth «
using edges f; and en_(j_1).6n—;; (1') for i = 1,..., N, we have 6n calls with
bandwidth § using only edge e;; (2°) fori = 1,...,M and j = 0,...,6n — 1,
we have one call with bandwidth § using edges f; and en_ar.6n—(i—1)-6n—j; (3)
fori =1,...,N — M -12n = 864n® + 18n and j = 0,...,6n — 1, we have one
call with bandwidth v using edges e; and far—(i—1).6n—j; (4) fori=1,..., M —
(864n3 + 18n) - 6n = 144n2 + 1 and j = 0,...,6n — 1, we have one call with
bandwidth v using edges f; and en_nr12n—(i—1).6n—j; (5) for i = 1,...,12n
and j = 0,...,12n — 1, we have one call with bandwidth § using edges e; and
fot(i—1)12n+j; (6) for j = 0,...,12n — 1, we have one call with bandwidth §
using edges fi and eiy;. It is not difficult to show that DBLS(L) = 22n and
OPT(L) = 9n + 1. An optimum schedule can combine calls such that the full
capacity of the edges is exploited most of the time. (Note that & +~v+d = 1 and
28 + 2§ = 1.) Details are omitted. O

2.2 Arbitrary Durations and Arbitrary Bandwidth Requirements

In this section, call durations can be arbitrary positive integers, and bandwidth
requirements can be arbitrary numbers in]0; 1].

Theorem 7. If S is the schedule computed by LS for a list L of call requests
with arbitrary durations and bandwidth requirements in a star, then LS(L) <
5- OPT(L). If there is a call with bandwidth requirement < % that finishes last
in S, then |S| < 4- OPT(L). If there is a call with bandwidth requirement < %
that finishes last in S, then |S| < 3- OPT(L).

Proof. Let r be a call with the smallest bandwidth requirement b, among all
calls that finish last in S, i.e., at time |S|. Since call r is blocked during all
time steps prior to t,, the load on at least one edge used by r is more than
[t,/2] - (1 = by) 4+ dvb, < OPT. This implies t, < 2%~ OPT — 2d,, and we
obtain t, +d, < # OPT + 1113,)”” d,. For b, < % we have 1 —3b, > 0 and, using

d, < OPT, obtain |S| = t, +d, < 2LV OPT = 3. OPT; for £ < b, < 1,

% is at most 4, and with 1 — 3b, < 0 we obtain |S| = ¢, +d, < 4- OPT.
Assume now that b, > % and that r is a 2-call; if r is a 1-call, similar

arguments can be applied. Consider all calls with bandwidth requirement < %

r 7 N —N—
SR S R & o) I o
€2 ko Ik—1|#| by r

I T T T T T T T T T T T T time

Fig. 3. List-Schedule S, b, > %, be <

M

that use at least one edge that is also used by r. If there is no such call, at least
one of the edges used by r is blocked by a call with bandwidth > % in at least
[t./2] + d, < OPT time steps and, consequently, |S| = ¢, +d, < 2- OPT.
Otherwise, let ¢ be a call with the latest finishing time ¢. + d. among all such
calls. Assume that ¢ is a 2-call that uses only one edge that is also used by r.
(The cases that ¢ is a 1-call and that ¢ is a 2-call that uses the same edges
as r can be treated similarly.) Furthermore, assume that ¢ finishes before r is
established. (Otherwise, |S| < 5- OPT follows directly from ¢. +d. <4 - OPT
and d, < OPT.) Let the edges used by r be e; and es, and let the edges used
by ¢ be ez and e3. The list-schedule is partitioned into the following disjoint
time intervals: (A) T; time steps from the beginning of the schedule until ¢. (the
time when call ¢ is scheduled), (B) d. time steps during which call ¢ is active,
(C) T, time steps from the finishing time of ¢ until #, (the time when call r
is scheduled), and (D) d, time steps during which call r is active. Obviously,
|S| = T1 + d. + T> + d,.. Introduce the following variables (cf. Fig. 3): b, =
number of time steps in part (C) during which r is blocked on eq, but not on es;
by = number of time steps in part (C) during which 7 is blocked on eg; k1 =
number of time steps in part (A) during which r is blocked on es, but not ¢; ks =
number of time steps in part (A) during which ¢ (and r) is blocked on es; ¢ =
number of time steps in part (A) during which r is blocked on e;, but not on es.
Considering the load on edge e3, we obtain (k1 +¢1)(1 —b.) +d.b. < OPT. This
implies k1 +£; < ﬁ OPT — ﬂ—"mdc. Adding d. on both sides of this inequality,

we get ki + 6 +d. < 15~ OPT + $2P=d,. Since d, < OPT and 1 —2b. > 0,

this implies ki + 6 +d, < U226 OPT = 2. OPT. In addition, it is easy to

observe that ko + by < 2+ OPT and b; + d, < OPT. Taking into account that
|S| = k1 + ko + €1 + d. + b1 + b2 + d,, these inequalities can be combined to
obtain |S| < 5- OPT. |

For the case that a call with bandwidth requirement <]§ finishes last in a list-
schedule, the following lemma shows that the upper bound 3 on the worst-case
performance of LS is tight.

Lemma 8. For arbitrary k > 2, k € IN, there are stars and lists of call requests

with arbitrary durations and bandwidth requirements < k%] such that a call with

bandwidth requirement < % finishes last in the list-schedule and the performance
ratio of LS is arbitrarily close to 3.

Proof. Fix arbitrary integers £ > 2 and ¢ > 1. We construct a list L of call
requests such that LS(L) = 3¢, OPT(L) = £ + 1, and the call that finishes last
in the list-schedule for L has bandwidth requirement %

The star used for the construction has kf + 3 nodes: the central node ¢
and nodes u, v, u1, ..., u, v1,...,04_1)¢ adjacent to c¢. The list L contains the
following call requests (¢ < 1):

(1) Fori=1,...,6: k—1 calls (u,c
(ui,u,z—:,l).

(2) Fori=1,...,(k— 1) kC calls (v;,c, 7, 1).

(3) Fori=0,...,—1:for j=1,..., k—l one call (v,v(r—1)+j,Bi,j,1)-

(4) One call z = (u,v, ,).

, k, 1), k(i — 1) calls (u;, ¢, %, 1), and one call

The bandwidth requirements 3; ; are defined by 3;1 = % +ké; and Bip =+ =
Bik—1 = % — d0;, where § = dg is chosen sufficiently small and §;41 = %62

What qchedule is produced by LS for the list L? The calls (1) fill the edge
{u,c} to 2L 4 ¢ during the first ¢ time steps. Each of the calls with bandwidth
€ is blocked on one of the edges {u;, c} in all time steps before its starting time.
The calls (2) fill the edges {v;,c} completely during the first £ time steps. The
calls (3) are scheduled in time steps £ to 2¢ — 1, because each call is blocked on a
different edge {v;,c} during the first £ time steps and blocked on the edge {v, ¢}
from time step ¢ up to its starting time. Exactly k — 1 calls (3) are scheduled
in each time step, because their bandwidths add up to ’“ L +26; and, therefore,
block all subsequent calls (3). Finally, call z is scheduled at time 2¢, because it
is blocked on {u, ¢} during the first £ time steps and on {v, ¢} during the second
¢ time steps. Hence, LS(L) = 3.

In an optimum schedule, call z is scheduled at time 0. In each of the first ¢
time steps, k—1 calls from (1) using edge {u, ¢} and with bandwidth requirement
+ can be scheduled together with z. All the calls from (1) with bandwidth e
are scheduled together at time . The remaining calls from (1) can easily be
scheduled in free time slots during the first ¢ time steps.

Among the calls from (3), the & — 1 calls with bandwidth requirements
Biz2, - Bik—1,Bi+1,1 are scheduled together in time step i, for 0 < ¢ < ¢ — 1.
(For i = £ — 1, there is no call with bandwidth £;41,1, and only k — 2 of the calls

from (3) are scheduled in time step £ — 1.) The bandwidths of the calls from (3)
scheduled during one of the time steps 0, ...,¢—1 add up to at most k% Hence,
they can be scheduled concurrently with call z. The call with bandwidth 3y is
scheduled at time £. The calls from (2) can easily be scheduled in the remaining
free time slots during the first £ 4+ 1 time steps. Therefore, OPT = ¢ + 1. O

3 Approximation Results for Trees

3.1 Unit Durations and Arbitrary Bandwidth Requirements

It is known that the performance of LS can be arbitrarily bad in trees or even
in chains if arbitrary bandwidth requirements are allowed. Feldmann et al. give
a list of call requests with unit durations on a chain with n + 1 nodes such that
the performance ratio of LS is 2(n) [7]. Therefore, we consider a variation of
the basic List-Scheduling algorithm. Pick an arbitrary node of the tree network
as the root and assign each node of the tree a level according to its distance
from the root. (The root has level 0.) Let m, be that node on P, (the path
corresponding to call r) whose level is minimum among all nodes on P,.. The
level of a call r is defined to be equal to the level of the node m,. We consider
the Level-List-Scheduling algorithm (LLS), which is identical to List-Scheduling
except that it sorts the list of calls according to non-decreasing levels before it
starts to schedule the calls.

Theorem 9. LLS has performance ratio at most 6 for call-scheduling with ar-
bitrary bandwidth requirements and unit durations in trees.

Proof. Let S be a schedule computed by LLS for a given set R of call requests.
First, we show that any call » with bandwidth requirement b, <]5 finishes no
later than at time 4 - OPT. To see this, consider the node m,., and let e; and e-
be the edges incident to m, that are used by r. (If 7 uses only one edge incident
to m,., it can be proved by similar arguments that ¢, +1 < 2- OPT.) It is clear
that call r is blocked either on edge e; or on edge ey by calls with equal or
smaller level during all time steps prior to t,.. Hence, at least one of these edges
has less than 1 bandwidth available during at least [%] time steps prior to t,.
Therefore, OPT > 1 - [&] and, consequently, ¢, + 1 < 4- OPT.

Now, let r be a call with minimum bandwidth requirement b,, among all calls
that finish last in S. If b, < i, the argument above implies |S| < 4 - OPT.
Therefore, assume that b, >]3 Let e; and es be the edges incident to m, that
are used by r. Again, it is clear that call r is blocked either on edge e; or on edge
es by calls with equal or smaller level during all time steps prior to t,.. Let ¢ be a
call with bandwidth requirement b, < % that has the latest finishing time among
all such calls. (If no such call exists, call r is blocked only by calls with smaller
or equal level and with bandwidth requirements > 1, and |S| < 2- OPT.) The
argument above implies t.+1 < 4- OPT, and t, —t. < 2- OPT follows from the
fact that call r is blocked by calls with bandwidth requirements >]5 either on
ey or on ey during all time steps from ¢, + 1 to t,.. Combining these inequalities,
we obtain [S| =t, +1<6- OPT. O

3.2 Arbitrary Durations and Arbitrary Bandwidth Requirements

Given a tree network 7' with n nodes, we use a well-known technique [2] based
on a tree separator [16] to assign levels to the nodes of T as follows:

1. Choose a node v whose removal splits T into subtrees T}, T, ..., Ty with at
most /2 nodes each. Assign node v the level 0.

2. In each subtree T; with n; nodes, find a node v; whose removal splits T; into
subtrees with at most n;/2 nodes. Assign all such nodes v; the level 1.

3. Continue recursively until every node of T is assigned a level.

This way every node of T is assigned a level £, 0 < ¢ < logn. For each call
request r = (u,v,b,d) in T, the level of r is defined to be the smallest level of all
nodes on the path P, from u to v. In addition, the root node of r is defined to be
that node on P, whose level is equal to the level of r. (Note that the root node
is uniquely determined; if two nodes of equal level are on a path P, there must
exist a node of smaller level on P.) Given a list L of call requests in T', let L, be
the sublist of L that contains all call requests of level £, 0 < £ < logn. Note that
scheduling a list L, is equivalent to scheduling calls in a number of disjoint stars:
calls in L; with the same root node intersect if and only if they use the same edge
incident to that root node; calls in L; with different root nodes never intersect.
Therefore, LS(L;) < 5-OPT(L,) as a consequence of Theorem 7. The algorithm
List-Scheduling by Levels (LSL) simply uses List-Scheduling to schedule the lists
Ly, 0 < £ < logn one after another. (Liog is empty, because the root node of a
call can never have level logn.) LSL begins to schedule Ly, only when all calls
from L, have finished. Note that LSL is an on-line algorithm because it does
not require advance knowledge of call durations. Hence, we obtain the following
theorem:

Theorem 10. LSL is an on-line algorithm for scheduling calls with arbitrary
bandwidth requirements and arbitrary durations in trees. Its competitive ratio is
at most 5logn.

4 Conclusion

We have analyzed List-Scheduling and variants of it for the call-scheduling prob-
lem in stars and trees. It was shown that variants of LS have good, constant per-
formance ratio in all cases except for call-scheduling with arbitrary bandwidths
and arbitrary durations in trees, where the ratio is 5 log n. Hence, List-Scheduling
variants, which are easy to implement, can be applied in practice to schedule
connections in networks with guaranteed quality of service.

Regarding possible directions for future research, it will be interesting to
study call-scheduling algorithms for the cases that edge capacities may vary,
that directed and undirected calls as well as calls with release times are allowed,
and that the topology of the network is such that multiple paths between the
endpoints of each connection exist.

References

1.

10.

11.

12.

13.

14.

15.

16.

Y. Aumann and Y. Rabani. Improved bounds for all optical routing. In Proceed-
ings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 95,
pages 567-576, 1995.

. B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call

control. In Proceedings of the 5th Annual ACM SIAM Symposium on Discrete
Algorithms SODA 9/, pages 312-320, 1994.

Y. Bartal and S. Leonardi. On-line routing in all-optical networks. In Proceedings
of the 24th International Colloquium on Automata, Languages and Programming
ICALP ’97, LNCS 1256, pages 516-526. Springer-Verlag, 1997.

E. Coffman, Jr., M. Garey, D. Johnson, and A. Lapaugh. Scheduling file transfers.
SIAM J. Comput., 14(3):744 780, August 1985.

. T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks.

In Proceedings of the 4th Parallel Systems and Algorithms Workshop PASA ’96,
pages 13 32. World Scientific Publishing, 1997.

T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proceed-
ings of the 30th Hawaii International Conference on System Sciences HICSS-30,
volume 1, pages 221 222. IEEE Computer Society Press, 1997.

A. Feldmann, B. Maggs, J. Sgall, D. D. Sleator, and A. Tomkins. Competitive
analysis of call admission algorithms that allow delay. Technical Report CMU-CS-
95-102, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
January 1995.

A. Feldmann. On-line call admission for high-speed networks (Ph.D. Thesis).
Technical Report CMU-CS-95-201, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, October 1995.

R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416-429, March 1969.

R. Graham. Bounds on the performance of scheduling algorithms. In E. G. Coff-
man, Jr., editor, Computer and Job-Shop Scheduling Theory, pages 165 227. John
Wiley & Sons, Inc., New York, 1976.

J. Hoogeveen, S. van de Velde, and B. Veltman. Complexity of scheduling mul-
tiprocessor tasks with prespecified processor allocations. Discrete Appl. Math.,
55:259-272, 1994.

C. Kaklamanis, P. Persiano, T. Erlebach, and K. Jansen. Constrained bipartite
edge coloring with applications to wavelength routing. In Proceedings of the 24th
International Colloquium on Automata, Languages and Programming ICALP ’97,
LNCS 1256, pages 493-504. Springer-Verlag, 1997.

T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM J.
Disc. Math., 3(3):391-410, August 1990.

D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-
line. In Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science FOCS 91, pages 131-140, 1991.

The ATM Forum, Upper Saddle River, NJ. ATM User-Network Interface (UNI)
Specification Version 8.1., 1995.

J. van Leeuwen, editor. Handbook of Theoretical Computer Science. Volume A:
Algorithms and complezity. Elsevier North-Holland, Amsterdam, 1990.

