
Routing in Distributed Networks:Overview and Open ProblemsCyril Gavoille�January 30, 2001Abstra
tThis arti
le fo
uses on routing messages in distributed networks with eÆ
ient data stru
tures.After an overview of the various results of the literature, we point some interestingly openproblems.1 Statement of the Problem1.1 The routing problemDelivering messages between pairs of pro
essors is a basi
 and primary a
tivity of any distributed
ommuni
ation network. This task is performed using a routing s
heme, whi
h is a me
hanismworking in a distributed fashion for routing messages in the network. The routing me
hanism 
anbe invoked at any sour
e node and be required to deliver a message to some destination node.Unlikely to the design network problem that is 
onsidered usually early in the pro
ess of settingup a new network, the problem of designing the management and 
ontrol systems of the network,in
luding routing, 
an be designed and optimized after the network 
onstru
tion. The routingproblem 
an be stated as follows: given a graph (the underlying topology of a 
ommuni
ation net-work) �xed in advan
e, design in ea
h node (i.e., ea
h router of the network) a routing algorithm aseÆ
ient as possible. It is required to expli
it what we mean by \routing algorithm" and \eÆ
ient".A routing algorithm is a (
omputable) fun
tion that for ea
h message arriving at a node determinesthe link on whi
h the message has to be transmitted, and this as fun
tion of its destination orany other information 
ontained in the header of the message. The term \eÆ
ient" groups a setof desirable quality fa
tors like: the routes generated by the algorithm are (near) shortest pathsin the graph; the time to 
ompute the fun
tion is low; the number of routes using a same link islow; the size of the data stru
tures required by the algorithm is small; the routing s
heme is faulttolerant; and so on.The way we stated the routing problem is the stati
 version: the graph is given in advan
eand the problem 
onsists to pre-pro
ess the graph in order to �nd some eÆ
ient routing s
hemeson the graph. The dynami
 version allows addition and deletion of nodes and/or links in order tomodel node/link failure and network growing. In this arti
le we will 
on
entrate our attention onthe stati
 
ase. The dynami
 
ase 
an be ta
kled by paying more attention on the pre-pro
essingalgorithm in 
harge of the routing algorithm designing. Depending on when failures o

ur, one 
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run a distributed pre-pro
essing algorithm to update the routing s
heme and to make it adaptive todynami
 networks. It is willing that this maintaining algorithm has low message or time 
omplexity.For more details on the dynami
 
ase, we invite the reader to 
onsult [1, 11℄, and [2, 5, 28℄ for end-to-end 
ommuni
ation problems, where the goal is to guarantee 
ommuni
ations between a �xedpair of nodes in spite of link failures with the minimum memory spa
e in the nodes and minimum
ommuni
ation messages.To illustrate the (stati
) routing problem, let us 
onsider the following example: the standardrouting algorithm in the Hyper
ube1. Let x denote the binary name of the 
urrent node (possiblythe sour
e), and let y denote the destination forming also the header of the message 
urrentlylo
ated in x.Route(x; y): If x = y, then the message is arrived at destination. Otherwise forward it on theedge of dimension i if x and y di�er at position i.If every router possesses a 
opy of this algorithm, then we obtain a distributed algorithm. Thealgorithm Route is said a shortest path routing algorithm be
ause, one 
an 
he
k that the routegenerated by the algorithm is the shortest possible one. Let us denote Rx(y) the fun
tion thatreturns, for ea
h destination y, the integer i de�ned by Route(x; y). The fun
tion Rx(�) has anargument, y, but the algorithm de�ning Rx(�) depends on x only. In other words the fun
tionRx(�) 
an be implemented by a program2 of length log n + O(1) bits in ea
h node, n being thenumber of nodes of the Hyper
ube. Indeed, it suÆ
es to store the name x in the data stru
tureof the program implementing Rx(�) and a 
onstant number of 
omputer basi
 instru
tions. Notethat su
h a routing algorithm has therefore a relatively \
ompa
t" implementation, and a 
onstanttime 
omplexity if basi
 operations like \=", xor and integer log3 are available on O(logn) bitintegers.1.2 Model and terminologyThe 
omplexity results are strongly dependent of the routing model (ability to relabel and to assignnew addresses to the nodes, size of the addresses, size of the headers, ability to rewrite the headers,et
.). So let us de�ne more pre
isely all these terms.Let G be a graph representing a 
ommuni
ation network. For the dis
ussion, we assume thatgraphs are 
onne
ted, undire
ted and have n nodes. However, most of the results 
an be naturallyextended to more general model of graphs. Ea
h node u of G has a name, an unique identityinteger denoted ID(u). In what follows, we informally 
onfuse between the node u and its nameID(u). However, the routing me
hanism uses a routing-label or address, unique for ea
h node anddenoted by `(u), potentially di�erent of ID(u).A routing fun
tion R on G is a distributing algorithm whose role is to deliver messages betweennodes of the network. The algorithm builds a path from the sour
e to the destination, sele
ting atea
h intermediate node the next link onto forward the message. Spe
i�
ally, R 
onsists of a pair offun
tions (P;H) where P is the port fun
tion and H is the header fun
tion. For any two distin
t4nodes u and v, R produ
es a path or route u = u0; u1; : : : ; ur = v, a sequen
e h0; h1; : : : ; hr of1The nodes of this graph are the n = 2k binary words of k bits. The node xk : : : xi : : : x1 is 
onne
ted to the nodexk : : : xi : : : x1, for ea
h i = 1 : : : k, forming the edge of dimension i.2By \program" we mean the set of all data stru
tures and all the 
ontrol instru
tions. The log fun
tion we 
onsiderin this arti
le are in base two.3In order to extra
t the position of the most signi�
ant bit in the result of x xor y.4Traditionally, we never 
onsider the routing from u to it-self, this be
ause it is assumed that the host pro
essor
onne
ted to the router has enough information and 
omputational power to avoid this kind of useless 
ommuni
ations.2



headers, and a sequen
e p0; p1; : : : ; pr of output port numbers. The length of the route, denoted�R(u; v), is the 
ost of the path from u to v if G is weighted, and otherwise �R(u; v) = r. The portnumbers identify the links 
onne
ted to a node. It is a lo
al name, so that a link 
onne
ting x to ymay have a di�erent name in x (output port) and in y (input port). The port numbers are uniqueintegers taken from the set f1; : : : ; dg, where d is the number of ports 
orresponding to the degreeof the 
urrent node5. A message with header hi arriving at node ui through input port qi is givena new header hi+1 = H(ui; qi; hi), and is forwarded on the output port pi = P (ui; qi; hi). Thus, werequire that for every i 2 f0; : : : ; r � 1g, H(ui; qi; hi) = hi+1, P (ui; qi; hi) = pi and that the link(ui; ui+1) has output port number pi at ui, and input port number qi+1 at ui+1 (see Fig. 1). On ea
hrouter, there exists a spe
ial link numbered 0. It insures the 
ommuni
ation between the routerand its host asso
iated at the node ui. This allows us to 
omplete the des
ription by imposing the
onstraints that q0 = pr = 0, as well as h0 = `(v), thus �xing the initial header, whi
h is providedto the router from its host (see Fig. 1).
0 0

host
processor

router piqi qi+1hi+1uihi Figure 1: A general model of router.This mathemati
al formulation allows us to 
ompare in a pre
ise way all the results (spe
iallythe lower bound results) and all the routing strategies of the literature.A routing strategy is an algorithm that 
omputes for a graph G a routing fun
tion R on G.Hen
e the strategy 
onsists of a pre-pro
essing during the set-up time of the graph and is responsibleof the addresses assignment, port labeling, and distributed data stru
tures 
onstru
tion requiredby the routing s
heme. (We use the term routing s
heme to deal with an implementation of arouting fun
tion.) A routing s
heme, and more generally, a routing strategy is name-independentif \names" does not 
hange in the pre-pro
essing, that is, the address `(u) is simply its originalname ID(u). A strategy is universal if it provides a routing s
heme for any graph. We denote Ruthe restri
tion of R to u, so-
alled lo
al routing fun
tion.A routing fun
tion that, in ea
h node, does depend of the header only, and not of the inputport, is said oblivious. And, an oblivious fun
tion that depends of the destination only, i.e., su
hthat h0 = h1 = � � � = hr = `(v), is a dire
t routing s
heme. Finally, a dire
t s
heme that uses theaddress range [1; n℄ is 
alled a routing table.All theses re�nements and 
onsiderations have an impa
t on the implementation of the routings
hemes. The ability of header modi�
ation for instan
e, 
an be 
ostly for opti
al networks thatwould require ele
troni
-opti
 
onversions. Dire
t s
hemes are the simplest ones and have also theMoreover, the 
ase v = u makes troubles for the de�nition of the stret
h fa
tor for whi
h the distan
e from u to v istaken as the denominator of a fra
tion.5In dire
ted graphs, we have to 
onsider the in- and out-degree.3



loop-less property: the messages following the route 
an never 
y
les, sin
e otherwise they wouldloop forever 
ontradi
ting the routing fun
tion de�nition (there must exist a path between any pairof nodes).1.3 Complexity measuresAs we will see there are relationship between the length of the routes generated (near or far fromthe shortest paths) and the size of the lo
al data stru
tures used by a routing s
heme (i.e., theavailable knowledge). A
tually, the trade-o� between the 
omputational power and the size of theknowledge is a 
entral theme in Theory of Distributed Computing. Routing with the most 
ompa
tdistributed data stru
tures is a perfe
t illustration of this paradigm6.Let R be a routing s
heme on a graph G. The stret
h fa
tor of R is the value de�ned bymaxu6=v �R(u; v)=dG(u; v), where dG(u; v) denotes the length of a shortest path from u to v in G(the 
ost of a minimum path in the weighted 
ase). A routing s
heme of stret
h fa
tor 1 is termeda shortest path routing s
heme.The memory spa
e of R is the size (in bits) of all the data stru
tures it uses. One 
an distinguishthe lo
al memory spa
e of R in a node u, and the total memory spa
e of R, de�ned as the sum ofthe lo
al memory spa
e of all the nodes of G. As we will see, the memory spa
e may depend of thesize of the headers and the size of the addresses. Note that, a priori, it is not required that the sizeof lo
al memory spa
e of u is at least as large than the size of the address of u.The routing time (sometimes 
alled laten
y) is the maximum of the worst-
ase time 
omplexityof Ru, the maximum taken over all node u of G. The total routing time is the maximum of thesum of the time 
omplexity for the lo
al routing de
isions performed along a route, the maximumtaken over all the routes.2 Overview2.1 Universal routing s
hemesFirst, remark that every graph has a shortest path routing s
heme with (lo
al) memory spa
e ofsize O(n log d) bits for ea
h node of degree d: it suÆ
es to use routing tables. (One 
an list in ea
hsour
e the right output port for the n� 1 possible destinations. The dire
tion of ea
h destination
an be determined by rooting a minimum spanning tree in the sour
e.) Thus, the use of routingtables is an universal routing strategy.After this remark, one may naturally ask whether there exists universal routing strategy thatare more 
ompa
t? Say more 
ompa
t than O(n log d) bit per node.There are at least two ways of designing shortest path and 
ompa
t routing tables: �nd asuitable address set and a suitable system of shortest paths for ea
h sour
e. The idea behindnaming nodes with a suitable address is to en
ode useful information about the network and thento make use of this impli
it information when performing the routing. Clearly, a routing strategythat does not allow renaming of nodes of a ring 
annot avoid a 
(n) bit lower bound for thememory spa
e. (If the nodes are permuted at random, a sour
e x needs to store 
(1) bit for ea
hdestination y to determine whether a message has to be forwarded to its left or to its right.) Notethat the original node name 
an always be kept in the �nal address of the router, for instan
e settingaddress(u) = hID(u); `(u)i where `(u) is the routing-label. That is why we pay more attention on6The \Best Student Paper Awards" of the 1996 and 2000 editions of the annal Symposium on Prin
iples ofDistributed Computing (PODC) deal with 
ompa
t routing, 
f. [25, 26℄.4



`(u), and try to minimize its size. Shortest path sele
tion by the routing strategy is desirable aswell. A routing strategy that does not give this ability provides a 
(n) bit lower bound of memoryspa
e for a K2;n�2 (a 
omplete bipartite graph). (Consider two nodes x,y of the largest part. Ifthe shortest path from x to y is �xed by a 
oin 
ip (there are two shortest paths from x to y usingdistin
t �rst edges) and is not optimized by he routing strategy, x would require to store 
(1) bitsfor y.) Obviously, rings and 
omplete bipartite graphs support shortest path routing s
hemes withO(log n) bits of memory spa
e if renaming and shortest path sele
tion is allowed.These two kinds of optimizations makes interesting the problem, in parti
ular for spe
i�
 fam-ilies of graphs like trees [34, 35℄, outer-planar and bounded genus graphs [17, 23℄, k-trees [31℄, et
.However, most of the routing strategies proposed are rather spe
i�
, and thus not universal. Unfor-tunately, in [25℄, we negatively answer to the question of universal and 
ompa
t routing strategies.We showed that for every integer d, 3 6 d 6 n=2, every shortest path universal routing strategyrequires 
(n2 log d) bits of total memory spa
e for some worst-
ase graph of maximum degree d, as-suming that addresses 
an be optimized by the strategy and are taken in the set f1; : : : ; ng. (Notethat port numbers and shortest paths are also sele
ted and optimized by the routing strategy.)Therefore, this shows, up to a 
onstant multipli
ative fa
tor, the in
ompressibility of shortest pathrouting tables. The result 
an be extended to any routing strategy generating optimal addressesup to 
 log n bits, for every 
onstant 
 > 1, and whatever is the header size.It turns out that memory spa
e 
an be redu
ed only if we a

ept to relax at least two 
onstraints:the shortest paths and the size of the addresses.2.2 Memory spa
e vs. stret
h fa
torThe issue of saving spa
e in routing s
hemes by settling near-shortest routes was �rst raised in [27℄.The proof of a trade-o� between the memory spa
e and the stret
h fa
tor has been given in [32, 33℄.For every k, it is shown that every universal routing strategy of stret
h fa
tor �(k) requires a totalmemory spa
e of 
(n1+1=�(k)). This result is 
ompleted by a universal routing strategy of stret
hfa
tor �(k) with total memory spa
e O(n1+1=�(k)). Though this strategy is almost optimal in termsof its eÆ
ien
y-spa
e trade-o�, it has few drawba
ks.Looking in more details the hidden 
onstants with the � notation, we 
an observe that thebounds are not tight. More pre
isely, the memory spa
e lower bound is 
(n1+1=(2s+4)) for arbi-trary stret
h s > 1. The upper bound results of hierar
hi
al 
luster de
omposition providing ane�e
tive stret
h fa
tor s = 12k + 3 for some integer parameter k > 1, for a total memory spa
e ofO(k3n1+1=k log n), for addresses of size O(log2 n) bits, and for headers of size7 O(log n) bits. Forinstan
e, if we would like to design routing s
hemes with total memory spa
e smaller than routingtable one, i.e., smaller than O(n2 logn) bits, we must 
hoose k = 2 in order to obtain O(n1:5 logn)bits of spa
e but we pay in this 
ase a stret
h s = 27. On the other hand, the memory spa
e lowerbound for s = 27 is 
(n1+1=58) only. This motivated several works for improving the trade-o�bounds.At the present time, the best lower bounds indi
ate that for every s < 1:4 the total memoryspa
e has to be 
(n2 log n) [25℄, and, for s < 3, the total memory spa
e has to be 
(n2) [22℄.The strategy proposed in [32℄ is not name-independent, assume unit 
ost on the link of the net-work, and does not bound the lo
al memory spa
e (the lo
al spa
e 
an be as larger than O(n logn)bits for some nodes).7The reader should not be surprised by headers shorter than addresses. The sour
e node, upon re
eption of thedestination address, say h0, 
oming from the host on input port 0, has the opportunity to modify h0, and to 
reatethe �rst header h1 of shorter size. 5



Other methods that over
ome these problems a
hieve an inferior eÆ
ien
y-spa
e tradeo�. Thehierar
hi
al routing strategy presented in [4℄ uses O(k n1=k log n) bits of lo
al memory and guaran-tees a stret
h fa
tor O(k2 9k). The routing strategy presented in [6℄ retains the advantages of theformer one, while regaining the polynomial trade-o�. In parti
ular it guarantees, for every integerk > 1, a stret
h fa
tor of O(k2), while using O(k n1=k log2 n logD) bits of lo
al memory, where Dis the weighted diameter of the network.The major disadvantage of all the proposed hierar
hi
al routing strategies is that they arerather 
omplex, and thus they might be impra
ti
al espe
ially for high-speed networks for whi
h therouting time in ea
h node must be very short. Broadly speaking, the hierar
hi
al routing strategiesare based on te
hniques for generating a sparse 
over of 
lusters for the underlying graph. In orderto implement the routing s
heme, there are k = O(log n) levels of 
overs with in
reasing radii.Intuitively, higher levels are responsible for routing to farther destinations. A message is �rst senton the lowest level, on the hope that the destination is nearby. If this is not the 
ase, then thetransmission might fail, in whi
h 
ase the message will boun
e ba
k to the originator. This stepmay be viewed as one \phase" of the routing pro
ess. On
e re
eiving the message ba
k (with anoti�
ation of failure), the originator tries to send it on a higher level, and so on, until the routingpro
ess su

eeds in delivering the message. Clearly, the implementation of this pro
edure in everyrouter results in a 
omplex de
ision fun
tion; the number of the present phase has to be 
oded intothe header of the message, thus a new message header must be re
omputed and rewritten by theoriginator upon ea
h retransmission, i.e., in every phase of the algorithm. Moreover, intermediaterouters must also 
hange the message header, for example, in order to notify that a failure o

urred.(Another possibility is to send only a failure noti�
ation, but in this 
ase the message originatormust keep a 
opy, and an intermediate router has to generate additional messages). In addition,those strategies treat the nodes of the network non-uniformly, in the sense that di�erent nodes playdi�erent roles, thus the de
ision fun
tion 
ould be substantially di�erent at di�erent nodes. Ashigh-speed networks gain popularity and in
rease in size, these drawba
ks be
ome 
ru
ial, sin
ethe main routing bottlene
k in these networks is often the de
ision fun
tion in the nodes andnot the propagation delay. Therefore, simple routing s
hemes, like dire
t s
hemes whi
h 
ould beimplemented in hardware may be preferable in pra
ti
e.2.3 Dire
t routing s
hemes and low stret
h fa
torSubsequently to the previous dis
ussion, 
onsiderable attention is given re
ently to an opposingdesign philosophy, fo
using on simple and dire
t s
hemes. These s
hemes employ a simple \transmitand forget" type de
ision fun
tion in the nodes, depending only on the destination of the message,and the destination is the only information 
oded in the message header (whi
h is determined on
eand for all by the originating router, and is never 
hanged afterwards.) They are loop-free and 
anbe implemented by some routing tables (that are sometimes 
ompa
ted, but with a relatively lowrouting time). That is why, other routing strategies have been designed, in parti
ular some routingstrategies with small stret
h fa
tor s 2 [2; 5℄.In this framework, [10℄ proposed dire
t loop-free routing s
hemes for weighted graphs withO(n2=3 log4=3 n) lo
al memory spa
e. The stret
h is at most s = 3, and addresses and headersare of size 3 log n. The spa
e bound 
an be redu
ed to O(pn log3=2 n) bits if one a

ept a smallin
reasing on the stret
h to s = 5 [12℄. The latter routing strategy is based on routing tables (thetables are 
ompa
ted into intervals of integers, namely these are interval routing s
hemes, 
f. [21℄for a survey of this te
hnique). Thus they are loop-free, and use headers/addresses whi
h are takenfrom the set f1; : : : ; ng, i.e., on log n bits exa
tly. It is also remarked that the stret
h is, in average6



on all the sour
e-destination pairs of the graph, bounded by �s = 3. Moreover, the longest routedoes not ex
eed 2D (D being the weighted diameter of the graph), and is even bounded by d1:5Dein the 
ase of uniform weights. The routing time is O(logn).A
tually, the bound on the lo
al memory spa
e is almost optimal. It is shown in [12℄ that noloop-free routing strategy with address range [1; n℄ 
an guarantee a lo
al memory spa
e lower than
pn bits8 on every family of graphs in
luding trees. The result holds for every stret
h fa
tor, sin
eon trees a loop-free routing s
heme of stret
h s is a routing s
heme of stret
h 1. It follows that thetrade-o�s presented previously (for instan
e the name-independent hierar
hi
al routing strategyof [6℄) 
annot pretend to loop-free routing s
hemes, thus require to 
hange and rewrite the headersat least on
e.Open question� What is the best trade-o� between lo
al memory spa
e and stret
h fa
tor (or average stret
hfa
tor) for universal dire
t routing s
hemes using addresses taken in f1; : : : ;mg, with m > n?The same question arise for universal k-phase routing strategies, namely strategies that providerouting s
hemes for whi
h the header of ea
h message 
an be rewritten at most k times along itsroute.2.4 Almost all the graphsWe just have seen that in the worst-
ase a shortest path routing s
heme requires �(n log n) bitsof lo
al memory spa
e (
f. the result of [25℄ taking d = �(n)). But, are su
h worst-
ase networksrare? Is the situation better for the \average 
ase"? The answer is yes. A
tually, surprisinglyenough, the networks that require a large memory spa
e for routing along shortest paths are notthe ones that possess the maximal entropy9. Graph stru
tures that make diÆ
ult the routing arenot 
ompletely random. As we will see, on the 
ontrary, a graph with a fully random stru
ture hasa shortest path routing s
heme with O(n) bits of lo
al memory spa
e.Certain results in graph theory are valid for \almost all the graphs". The term \almost all"is statisti
al. It means that the fra
tion of n-node graphs for whi
h the property holds tends to 1as n tends to in�nity. The tools to establish su
h kind of results are probabilities, with the familyGn;p of random graphs10, or the Kolmogorov Complexity [29℄ with the Kolmogorov random graphs.These two tools are very 
lose in essen
e.In [13℄ the ability of random graphs in Gn;p, for some parti
ular values of p, to support shortestpath routing tables that 
an be 
ompa
ted into intervals has been 
onsidered. More generally, andusing Kolmogorov random graphs, [9℄ showed that a fra
tion of at least 1� 1=n3 of all the graphshas a shortest path routing table of size 3n+ o(n) bits (per node) under the assumption that nodeaddress range is [1; n℄ and node addresses are randomly permuted, and that ea
h node knows itsneighborhood for free. However, if the addresses are on 
 log2 n bits, where 
 is a 
onstant, then therouting table 
an be redu
ed to 
 log2 n bits only. Other results are mentioned for stret
h fa
tors > 1. Finally, in [24℄ the 3n+ o(n) bit upper bound has been slightly improved: for a fra
tion ofat least 1� 1=n of all the graphs support shortest path routing tables of size n+O(log4 n) bits foraddresses taken in the range f1; : : : ; ng.8Pre
isely, 
 = (�p2=3)= ln 2 = 3:7006565593:::9This family of graphs is quite hazy, but it 
an be viewed as the set of graphs whose adja
en
y matrix is not
ompressible in the Kolmogorov Complexity sense.10In this model, graphs have n nodes and with probability p there is an edge 
onne
ting two nodes of the graph,
f. [7℄. 7



Open question� Is the n+ o(n) upper bound is the best possible one for a fra
tion of 1� o(1) of all the graphs?Remark. To design su
h a lower bound on the memory spa
e is harder than it looks. First, a nodedoes not need to know its neighborhood (even if the neighborhood results of a random 
hoi
e ofn=2 nodes among n� 1). We 
an relabel the ports a

ording to some information of the neighborsand it may de
rease the information even bellow the degree of the node (for instan
e, it is shownin [21℄ that trees have a O(pn) bit lo
al memory spa
e routing s
heme even for large degree node).Se
ondly, in a random graph, node relabeling 
hanges the probability to have a 
onne
tion betweentwo arbitrary nodes labeled respe
tively x and y in f1; : : : ; ng.2.5 Separator, planar and bounded genus graphsThere are strategies that are not universal, but very eÆ
ient for spe
i�
 
lass of graphs.In [19℄ it is presented routing s
hemes for the family of graphs that are re
ursively de
omposableby a separator of size at most 
. A separator is a subset of nodes whose removal dis
onne
t a graphin two (or more) 
onne
ted 
omponents, ea
h one of size at most 2=3 of the initial size of thegraph. More generally, the graph is said 
-de
omposable if for every node weight assignment ofthe graph there exists a separator of size 
 that provides 
onne
ted 
omponents of weight (the sumof the weight of the nodes in the 
omponent) at most 2=3 of the weight of the whole graph. Thisde�nition implies a re
ursive de
omposition of the graph with at most log3=2(n) hierar
hi
al levels,
f. [19℄. A separator insures that every route between two nodes of distin
t 
omponents has to 
rosssome nodes of the separator. If the separator is small in size, this allows to 
on
entrate the routinginformation towards the nodes of the separator. Outer-planar graphs, and more generally, series-parallel graphs are 2-de
omposable, graphs of treewidth bounded by k are O(k)-de
omposable,planar graphs are O(pn)-de
omposable, and more generally, graphs of genus bounded by g areO(pgn)-de
omposable.More pre
isely, [19℄ proposed two routing strategies. The �rst one, appli
able to edge-weightedgraphs, uses a total memory spa
e of O(
 n log2 n), a stret
h fa
tor s = 3, and addresses of sizer logn bits, r > 1 being a small 
onstant. The se
ond one, with the same memory spa
e, de
reasesthe stret
h to s = 1 + 2=�, where 1 < � 6 2 (thus s < 3) is the root of �d(
+1)=2e � � = 2, for anin
reasing of the addresses size to 3:42 
 log 
 logn bits. For 
 2 f2; 3g, � = 2, and for 
 2 f4; 5g,� 6 2:32. The routes are not ne
essary loop-free, the headers are supposed to be rewritable, andthe lo
al memory spa
e is not bounded.These strategies are eÆ
ient only if 
 is 
onstant. For planar graphs, 
 = �(pn), the same au-thors proposed in [18℄ two better strategies. Still for weighted graphs, the �rst one has O(n4=3 logn)total memory spa
e and a stret
h fa
tor of s = 3, for addresses and headers of size O(logn). These
ond one, for every 
onstant �, 0 < � < 1=3, provides a total memory spa
e of O((1=�)n1+� logn)bits for addresses of size O((1=�) log n), and a stret
h fa
tor s = 7. Both strategies su�er ofthe previous drawba
ks: they do not bound the lo
al memory spa
e (that 
an be as larger thanO(n log n)), and use rewritable headers and addresses of size stri
tly longer than logn. All thestrategies presented in [18℄ and in [19℄, have routing time linear in the size of addresses, that isO((1=�) log n).The 
ase of shortest path routing s
hemes for planar graphs (s = 1) has been studied in [23℄.It is proposed a dire
t routing s
heme (a routing table with addresses and headers are taken inthe range [1; n℄) with lo
al memory spa
e 8n + o(n) bits and with O(log1+� n) routing time, forevery 
onstant � > 0. The s
heme applies to weighted graphs, and to any given tree-routing8



family, i.e., a family of n spanning trees, ea
h tree being rooted in a unique node of the graphand de�ning the routes to all the destinations. In this model the strategy 
annot optimize theshortest path sele
tion, and thus the 
(n) lower bound of the 
omplete bipartite K2;n�2 o

urshere (
f. Paragraph 2.1). The result extends naturally to graphs of genus at most g, in
reasing thelo
al memory spa
e to O(n log g) bits. All the s
hemes are extended, with the same performan
esto graphs having at most o(n log g= log n) edge 
rossing. It is interesting to note that the resultsof [23℄ do not use 
ombinatorial separability of bounded genus graphs, but are obtained by the useof k-page embedding, a geometri
 representation of graphs.Open questions� What is the lo
al memory spa
e 
omplexity of shortest path routing tables in planar graphs?(The 
urrent lower bound is only 
(pn) bits [12℄ for strategies optimizing shortest paths, and theupper bound is O(n) [23℄).� More generally, what is the 
omplexity of the lo
al memory spa
e for shortest path routing tablesin graphs of genus bounded by g? (Indeed, it is not 
lear that O(n log g) is the best possible upperbound. A smaller dependen
y in g is possible, no lower bound greater than 
(pn) exists).3 Some Key ProblemsIn this se
tion we stress several problems for routing in distributed networks.3.1 How to �nd the right interval?Assume that a graph has a routing tableR su
h that, in ea
h sour
e, the set of addresses destinationsusing the same output port 
onsists of a single interval of 
onse
utive integers, i.e., R 
an beimplemented by an interval routing s
heme. The question is to 
onstru
t an eÆ
ient data stru
turefor this s
heme. From pra
ti
al point of view, the answer is important.Let us 
onsider a node x of degree in this graph, and let [ai; bi℄ denote the interval assigned tothe ar
 (x; yi), i 2 f1; : : : ; dg, ordered su
h that a1 < a2 < � � � < ad. To answer to the routing query,we need to 
ompute as qui
k as possible, the index i su
h that y 2 [ai; bi℄, for every y 2 f1; : : : ; ng.Let us denote Rx(y) = i this fun
tion.A �rst solution simply 
onsists in storing the ai's in a table T su
h that T [i℄ = ai. The
omputation Rx(y) 
onsists in a binary sear
h of y su
h that ai 6 y < ai+1, be
ause the ai's form apartition of the range [1; n℄. The routing time of Rx is O(log d), and its memory spa
e is O(d log n)bits. However, if d > n= log n, one 
an do smaller and faster.The se
ond solution guarantees a memory spa
e of n+ o(n) bits with a O(1) routing time. ItsuÆ
es to represent the set of ai's by a binary string, B, su
h that B[�℄ = 1 if � 2 fa1; : : : ; adgand B[�℄ = 0 otherwise. It turns out that Rx(y) = i if the number of ai's less or equal to y isexa
tly i. It 
orresponds also to the number of 1's in B up to position y. The memory spa
e is nbits (the string B) and the routing time is a priori O(y), the traversal time of B up to y. In [30℄it is shown that this type of queries 
an be solved in 
onstant time11 in the worst-
ase, thanks toa data stru
ture of size n+ o(n) bits (moreover 
onstru
tible in polynomial time).11The 
omputation model is the word-RAM model in whi
h standard arithmeti
 and bitwise logi
 operations onintegers of O(log n) bits run in a unit of time. 9



Obviously, the ideal solution would be a 
ompa
t representation of the set fa1; : : : ; adg by adata stru
ture of size12 log �nd� = �(d log(n=d)) allowing 
onstant routing time. In the same spirit,[8℄ proposed a quasi-optimal 
oding of integer sets (up to a multipli
ative 
onstant) with 
onstanttime for membership queries. The question of 
omputing the rank of an element is open.Open question� Is it possible to �nd a data stru
ture of size at most O(d log (n=d)) bits per node of degree d, anda 
onstant routing time for graphs supporting an interval routing s
heme?3.2 Total routing timeWe saw that it is not easy to design a 
ompa
t data stru
ture for a minimal routing time, even forthe 
ase of interval routing s
heme. An alternative would be to 
onsider the total routing time ona route of length L.Consider the \standard" shortest path routing in the de Bruijn graph. The nodes of this graphare the n = 2k binary words of length k. The node xkxk�1 : : : x2x1 is 
onne
ted to the nodesxk�1 : : : x2x1�, for � 2 f0; 1g. It 
onsists to 
ompute the largest pre�x of the destination addressthat is a suÆx of the sour
e address (addresses 
orrespond to node names). This pre�x 
onstitutesthe �rst header. At ea
h intermediate node, the �rst bit of the 
urrent header is extra
ted: if thebit is 0 the message is forwarded to output port 1, if the bit is 1 it is forwarded to port 2 (this graphis dire
ted and has only two outgoing ar
s). In both 
ases, the extra
ted bit is destroyed and thenew header is one bit less. The message arrives at destination when the header is empty. The totalrouting time on a route of length L is O(L+logn), the logn term 
oming from the 
omputation ofthe �rst header that 
an be performed by the Boyer-Moore's algorithm [3℄. Note that the routingtime is 
onstant ex
epted in the sour
e. Sin
e L 6 logn (the diameter is k), the total routing timenever ex
eeds O(log n).The problem to design a 
ompa
t data stru
ture in order to optimized the total routing timehas been �rst pointed in [16℄. For weighted outer-planar graphs (that all support a shortest pathinterval routing), he presents a data stru
ture of size O(d log n), mainly based on intervals withauxiliary tables in a way that the total routing time never ex
eeds O(L+log n) for messages betweennodes at distan
e L.Expressed in an other 
omplexity measure, the bit-operations model, [14℄ showed that everygraph of diameter D support a routing s
heme with routing time O(log n) bit-operations and withtotal routing time O(D + n1=k log n) bit-operations, where k > 2 is an arbitrary 
onstant. Notethat in this 
omplexity measure, standard routing tables have total routing time �(D log n) bit-operations. Indeed, reading of ` bits in a table of size t 
osts O(`+log t) time, thus it 
osts �(log n)bit-operation to read the output port in a standard routing table13. The te
hnique to save timeis therefore to take few routing de
isions (at most O(n1=k) for some parameter k). Most of therouters takes their own de
ision from few bits of the header only. Note that in the result [14℄ theroutes are not shortest paths, but their length are bounded by O(D).12This is an optimal 
oding sin
e there are �nd� possible sets.13In this model, reading or writing a single bit of header 
osts one unit of time. However, the message and the bitsof the header that are not read 
an be 
opied and transmitted onto the outgoing link without any penalties { in thede Bruijn example, the routing time is O(1) bit-operations though headers are non 
onstant
10



Open question� Is there any universal routing strategy with total routing time bounded by O(D + log n) bit-operations?3.3 Routing in treesRouting in trees is a basi
 and important problem. Indeed, most of the hierar
hi
al routing strate-gies are based on tree 
overing. Often, at the �nal phase of the routing proto
ol, the problem toroute in a small region spanned by a tree o

urs. It is quite easy to design spa
e-eÆ
ient routings
heme for trees. For instan
e, interval-based routing (assuming addresses �xed by a DFS traversalnumbering, ea
h sub-tree de�nes an interval of 
onse
utive addresses) a
hieves a total memoryspa
e of O(n logn), thus O(log n) bits per node in average. This s
heme is easy to implementand the routing time is O(log n). however one 
an obje
t the two following remarks: (1) the lo
almemory spa
e is not bounded by O(log n) when the degree is large; (2) one 
ould expe
t a 
onstantrouting time with a better data stru
ture.In Paragraph 3.1, we saw that in the 
ase of interval routing s
heme, one 
an get a lo
al memoryspa
e O(d log(n=d)). With a spa
e n+ o(n) one 
an even guarantee a 
onstant routing time. Is thespa
e O(d log(n=d)) bound optimal for trees?The answer is no: the right bound is O(pn). In [21℄ it is shown that, thanks to a DFSnumbering a

ording to the number of des
endents of ea
h sub-tree, the lo
al routing fun
tion inx 
an be 
omputed from a sequen
es Sx = (n1; : : : ; nd), with n1 6 � � � 6 nd. Here, ni is pre
iselythe number of des
endents in the sub-tree rooted at the ith 
hild of x. Be
ause 1 6 n1 6 � � � 6 ndand Pdi=1 ni = n � 1, the sequen
e Sx 
an be 
oded with at most O(pn) bits, sin
e the numberof su
h sequen
es (
alled partitions of n� 1) is bounded by 2�(pn). Thus the lo
al memory spa
eof x is bounded by O(pn), and this is a
tually the optimal bound, 
f. [12℄. Roughly speaking,the routing fun
tion in x for a destination of address y 
onsists to 
ompute the index i su
h thaty � x 2 (Pi�1j=1 nj;Pij=1 nj ℄.Open question� Design a 
ompa
t data stru
ture for partitions of n using optimal spa
e, and allowing 
onstanttime rank query type?3.4 Exponential routing time and Cayley graphsIn an extension of [14℄, one 
an show that there are graphs having shortest path routing tables ofsize O(log n) for ea
h node with the following property: every shortest path routing s
heme usingless than 
n logn bits of lo
al memory spa
e, for a suitable 
onstant 
 > 0, must have a routingtime greater than any 
onstant size sta
k of exponentials, i.e.,22:::2n :It is 
lear that if the data stru
ture is to 
ompa
t, the time to extra
t some pie
e of information
an be very large.Cayley graphs are pre
isely a family of graphs supporting a theoreti
al low lo
al memory spa
e.They have strong regularity property (based on a group stru
ture), and thus are good 
andidatesfor 
ompa
t routing tables sin
e they their adja
en
y matrix 
an be entirely des
ribed with a few11



number of bits. However, from su
h global information (say, the matrix of the graph), there is noeÆ
ient way to extra
t a shortest path, or simply the �rst edge of a shortest path. Routing s
hemesneed lo
al information.More pre
isely, nodes of a Cayley graph are element of a group � and the ar
s14 are de�nedby a given set of generators S � �: x is 
onne
ted to y if there exists an element s 2 S su
h thaty = x+ s.Consider the following example: � = Z (the additive group modulus n) and S = f�1;�
1;�
2gwith 
1; 
2 2 Z n f0; 1g (we make the graph symmetri
 taking opposed generators). The Cayleygraph (�; S) 
an be des
ribed by given the two integers 
1 and 
2. Hen
e, the shortest path routing
an be solved with O(log n) bits of memory spa
e. Indeed, one 
an rebuild the whole graph (in therouter memory), and apply a standard shortest path algorithm in order to extra
t the �rst edge ofa shortest path. The point is that this method would require 
(n) routing time, whereas one 
anexpe
t a poly-logarithmi
 routing time, the size of the input being O(log n). Unfortunately, oneneed to solve the minimal de
omposition of an element in sum of generators, a diÆ
ult problem.In fa
t, for S = f�
1;�
2g the problem 
an be solved in logO(1) n time, but is still open for S oflarger 
ardinality.Open question� What is the best routing time we 
an a
hieve for shortest path routing s
heme on Cayley graphsof degree k and de�ned on Abelian groups, if the lo
al memory spa
e if bounded by O(k logn).Remark. The allowed spa
ed is enough to store all the generators, and whole the graph informa-tion: there are O(k) generators in S, ea
h one 
an be des
ribed by an integer taken in [1; n℄, andone 
an show that there are at most nO(1) non-isomorphi
 Abelian groups with n elements.3.5 Routing and other distributed tasksIt is worth to observe that design a 
ompa
t data stru
ture for routing in a distributed network isa diÆ
ult task. For instan
e, to determine the minimum number of intervals for whi
h the graphhas a shortest path k-interval routing s
heme is NP-hard (with at most k intervals per link). Thepre-pro
essing on the graph to optimize routing is time 
onsuming in general. A natural question isthus to ask if su
h eÆ
ient data stru
tures, on
e generated by the pre-pro
essing algorithm, 
ouldbe useful to other distributed tasks than routing, e.g., broad
asting or leader-ele
tion? or if witha little e�ort one 
ould not modify the 
ompa
t data stru
tures allowing fast multiple queries inaddition to routing.In [15℄, we positively answer to this question for the 
ase of shortest path 1-interval routings
hemes. Mainly, it is shown that there are simple broad
ast algorithms that allows broad
astingmessage from any sour
e in at most a total of O(n) messages, and using the routing informationonly. It implies also O(n) message algorithm for leader-ele
tion improving the �rst 
ontribution inthis routing and ele
tion problem, [35℄. Note that with no spe
i�
 information, the leader-ele
tionproblem has already 
(n logn) message-
omplexity lower bound for a ring [20℄.Open question� Does the message-
omplexity remain in O(n) for s-stret
hed k-interval routing s
hemes for 
on-stant k and 
onstant s?14Cayley graphs are dire
ted. However if �s 2 S for every s 2 S, one 
an 
onsidered them as undire
ted graphs.12



The problem is open for other representation of 
ompa
t routing s
hemes. For instan
e it is not
lear if a graph having low lo
al memory spa
e for routing, say O(logn) bits, has also some abilityto broad
ast or ele
t a leader with low message-
omplexity.Referen
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