
Routing in Distributed Networks:Overview and Open ProblemsCyril Gavoille�January 30, 2001AbstratThis artile fouses on routing messages in distributed networks with eÆient data strutures.After an overview of the various results of the literature, we point some interestingly openproblems.1 Statement of the Problem1.1 The routing problemDelivering messages between pairs of proessors is a basi and primary ativity of any distributedommuniation network. This task is performed using a routing sheme, whih is a mehanismworking in a distributed fashion for routing messages in the network. The routing mehanism anbe invoked at any soure node and be required to deliver a message to some destination node.Unlikely to the design network problem that is onsidered usually early in the proess of settingup a new network, the problem of designing the management and ontrol systems of the network,inluding routing, an be designed and optimized after the network onstrution. The routingproblem an be stated as follows: given a graph (the underlying topology of a ommuniation net-work) �xed in advane, design in eah node (i.e., eah router of the network) a routing algorithm aseÆient as possible. It is required to expliit what we mean by \routing algorithm" and \eÆient".A routing algorithm is a (omputable) funtion that for eah message arriving at a node determinesthe link on whih the message has to be transmitted, and this as funtion of its destination orany other information ontained in the header of the message. The term \eÆient" groups a setof desirable quality fators like: the routes generated by the algorithm are (near) shortest pathsin the graph; the time to ompute the funtion is low; the number of routes using a same link islow; the size of the data strutures required by the algorithm is small; the routing sheme is faulttolerant; and so on.The way we stated the routing problem is the stati version: the graph is given in advaneand the problem onsists to pre-proess the graph in order to �nd some eÆient routing shemeson the graph. The dynami version allows addition and deletion of nodes and/or links in order tomodel node/link failure and network growing. In this artile we will onentrate our attention onthe stati ase. The dynami ase an be takled by paying more attention on the pre-proessingalgorithm in harge of the routing algorithm designing. Depending on when failures our, one an�LaBRI, Universit�e Bordeaux I, 351, ours de la Lib�eration, 33405 Talene Cedex, Frane. E-mail: gavoille�labri.u-bordeaux.fr. 1



run a distributed pre-proessing algorithm to update the routing sheme and to make it adaptive todynami networks. It is willing that this maintaining algorithm has low message or time omplexity.For more details on the dynami ase, we invite the reader to onsult [1, 11℄, and [2, 5, 28℄ for end-to-end ommuniation problems, where the goal is to guarantee ommuniations between a �xedpair of nodes in spite of link failures with the minimum memory spae in the nodes and minimumommuniation messages.To illustrate the (stati) routing problem, let us onsider the following example: the standardrouting algorithm in the Hyperube1. Let x denote the binary name of the urrent node (possiblythe soure), and let y denote the destination forming also the header of the message urrentlyloated in x.Route(x; y): If x = y, then the message is arrived at destination. Otherwise forward it on theedge of dimension i if x and y di�er at position i.If every router possesses a opy of this algorithm, then we obtain a distributed algorithm. Thealgorithm Route is said a shortest path routing algorithm beause, one an hek that the routegenerated by the algorithm is the shortest possible one. Let us denote Rx(y) the funtion thatreturns, for eah destination y, the integer i de�ned by Route(x; y). The funtion Rx(�) has anargument, y, but the algorithm de�ning Rx(�) depends on x only. In other words the funtionRx(�) an be implemented by a program2 of length log n + O(1) bits in eah node, n being thenumber of nodes of the Hyperube. Indeed, it suÆes to store the name x in the data strutureof the program implementing Rx(�) and a onstant number of omputer basi instrutions. Notethat suh a routing algorithm has therefore a relatively \ompat" implementation, and a onstanttime omplexity if basi operations like \=", xor and integer log3 are available on O(logn) bitintegers.1.2 Model and terminologyThe omplexity results are strongly dependent of the routing model (ability to relabel and to assignnew addresses to the nodes, size of the addresses, size of the headers, ability to rewrite the headers,et.). So let us de�ne more preisely all these terms.Let G be a graph representing a ommuniation network. For the disussion, we assume thatgraphs are onneted, undireted and have n nodes. However, most of the results an be naturallyextended to more general model of graphs. Eah node u of G has a name, an unique identityinteger denoted ID(u). In what follows, we informally onfuse between the node u and its nameID(u). However, the routing mehanism uses a routing-label or address, unique for eah node anddenoted by `(u), potentially di�erent of ID(u).A routing funtion R on G is a distributing algorithm whose role is to deliver messages betweennodes of the network. The algorithm builds a path from the soure to the destination, seleting ateah intermediate node the next link onto forward the message. Spei�ally, R onsists of a pair offuntions (P;H) where P is the port funtion and H is the header funtion. For any two distint4nodes u and v, R produes a path or route u = u0; u1; : : : ; ur = v, a sequene h0; h1; : : : ; hr of1The nodes of this graph are the n = 2k binary words of k bits. The node xk : : : xi : : : x1 is onneted to the nodexk : : : xi : : : x1, for eah i = 1 : : : k, forming the edge of dimension i.2By \program" we mean the set of all data strutures and all the ontrol instrutions. The log funtion we onsiderin this artile are in base two.3In order to extrat the position of the most signi�ant bit in the result of x xor y.4Traditionally, we never onsider the routing from u to it-self, this beause it is assumed that the host proessoronneted to the router has enough information and omputational power to avoid this kind of useless ommuniations.2



headers, and a sequene p0; p1; : : : ; pr of output port numbers. The length of the route, denoted�R(u; v), is the ost of the path from u to v if G is weighted, and otherwise �R(u; v) = r. The portnumbers identify the links onneted to a node. It is a loal name, so that a link onneting x to ymay have a di�erent name in x (output port) and in y (input port). The port numbers are uniqueintegers taken from the set f1; : : : ; dg, where d is the number of ports orresponding to the degreeof the urrent node5. A message with header hi arriving at node ui through input port qi is givena new header hi+1 = H(ui; qi; hi), and is forwarded on the output port pi = P (ui; qi; hi). Thus, werequire that for every i 2 f0; : : : ; r � 1g, H(ui; qi; hi) = hi+1, P (ui; qi; hi) = pi and that the link(ui; ui+1) has output port number pi at ui, and input port number qi+1 at ui+1 (see Fig. 1). On eahrouter, there exists a speial link numbered 0. It insures the ommuniation between the routerand its host assoiated at the node ui. This allows us to omplete the desription by imposing theonstraints that q0 = pr = 0, as well as h0 = `(v), thus �xing the initial header, whih is providedto the router from its host (see Fig. 1).
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router piqi qi+1hi+1uihi Figure 1: A general model of router.This mathematial formulation allows us to ompare in a preise way all the results (speiallythe lower bound results) and all the routing strategies of the literature.A routing strategy is an algorithm that omputes for a graph G a routing funtion R on G.Hene the strategy onsists of a pre-proessing during the set-up time of the graph and is responsibleof the addresses assignment, port labeling, and distributed data strutures onstrution requiredby the routing sheme. (We use the term routing sheme to deal with an implementation of arouting funtion.) A routing sheme, and more generally, a routing strategy is name-independentif \names" does not hange in the pre-proessing, that is, the address `(u) is simply its originalname ID(u). A strategy is universal if it provides a routing sheme for any graph. We denote Ruthe restrition of R to u, so-alled loal routing funtion.A routing funtion that, in eah node, does depend of the header only, and not of the inputport, is said oblivious. And, an oblivious funtion that depends of the destination only, i.e., suhthat h0 = h1 = � � � = hr = `(v), is a diret routing sheme. Finally, a diret sheme that uses theaddress range [1; n℄ is alled a routing table.All theses re�nements and onsiderations have an impat on the implementation of the routingshemes. The ability of header modi�ation for instane, an be ostly for optial networks thatwould require eletroni-opti onversions. Diret shemes are the simplest ones and have also theMoreover, the ase v = u makes troubles for the de�nition of the streth fator for whih the distane from u to v istaken as the denominator of a fration.5In direted graphs, we have to onsider the in- and out-degree.3



loop-less property: the messages following the route an never yles, sine otherwise they wouldloop forever ontraditing the routing funtion de�nition (there must exist a path between any pairof nodes).1.3 Complexity measuresAs we will see there are relationship between the length of the routes generated (near or far fromthe shortest paths) and the size of the loal data strutures used by a routing sheme (i.e., theavailable knowledge). Atually, the trade-o� between the omputational power and the size of theknowledge is a entral theme in Theory of Distributed Computing. Routing with the most ompatdistributed data strutures is a perfet illustration of this paradigm6.Let R be a routing sheme on a graph G. The streth fator of R is the value de�ned bymaxu6=v �R(u; v)=dG(u; v), where dG(u; v) denotes the length of a shortest path from u to v in G(the ost of a minimum path in the weighted ase). A routing sheme of streth fator 1 is termeda shortest path routing sheme.The memory spae of R is the size (in bits) of all the data strutures it uses. One an distinguishthe loal memory spae of R in a node u, and the total memory spae of R, de�ned as the sum ofthe loal memory spae of all the nodes of G. As we will see, the memory spae may depend of thesize of the headers and the size of the addresses. Note that, a priori, it is not required that the sizeof loal memory spae of u is at least as large than the size of the address of u.The routing time (sometimes alled lateny) is the maximum of the worst-ase time omplexityof Ru, the maximum taken over all node u of G. The total routing time is the maximum of thesum of the time omplexity for the loal routing deisions performed along a route, the maximumtaken over all the routes.2 Overview2.1 Universal routing shemesFirst, remark that every graph has a shortest path routing sheme with (loal) memory spae ofsize O(n log d) bits for eah node of degree d: it suÆes to use routing tables. (One an list in eahsoure the right output port for the n� 1 possible destinations. The diretion of eah destinationan be determined by rooting a minimum spanning tree in the soure.) Thus, the use of routingtables is an universal routing strategy.After this remark, one may naturally ask whether there exists universal routing strategy thatare more ompat? Say more ompat than O(n log d) bit per node.There are at least two ways of designing shortest path and ompat routing tables: �nd asuitable address set and a suitable system of shortest paths for eah soure. The idea behindnaming nodes with a suitable address is to enode useful information about the network and thento make use of this impliit information when performing the routing. Clearly, a routing strategythat does not allow renaming of nodes of a ring annot avoid a 
(n) bit lower bound for thememory spae. (If the nodes are permuted at random, a soure x needs to store 
(1) bit for eahdestination y to determine whether a message has to be forwarded to its left or to its right.) Notethat the original node name an always be kept in the �nal address of the router, for instane settingaddress(u) = hID(u); `(u)i where `(u) is the routing-label. That is why we pay more attention on6The \Best Student Paper Awards" of the 1996 and 2000 editions of the annal Symposium on Priniples ofDistributed Computing (PODC) deal with ompat routing, f. [25, 26℄.4



`(u), and try to minimize its size. Shortest path seletion by the routing strategy is desirable aswell. A routing strategy that does not give this ability provides a 
(n) bit lower bound of memoryspae for a K2;n�2 (a omplete bipartite graph). (Consider two nodes x,y of the largest part. Ifthe shortest path from x to y is �xed by a oin ip (there are two shortest paths from x to y usingdistint �rst edges) and is not optimized by he routing strategy, x would require to store 
(1) bitsfor y.) Obviously, rings and omplete bipartite graphs support shortest path routing shemes withO(log n) bits of memory spae if renaming and shortest path seletion is allowed.These two kinds of optimizations makes interesting the problem, in partiular for spei� fam-ilies of graphs like trees [34, 35℄, outer-planar and bounded genus graphs [17, 23℄, k-trees [31℄, et.However, most of the routing strategies proposed are rather spei�, and thus not universal. Unfor-tunately, in [25℄, we negatively answer to the question of universal and ompat routing strategies.We showed that for every integer d, 3 6 d 6 n=2, every shortest path universal routing strategyrequires 
(n2 log d) bits of total memory spae for some worst-ase graph of maximum degree d, as-suming that addresses an be optimized by the strategy and are taken in the set f1; : : : ; ng. (Notethat port numbers and shortest paths are also seleted and optimized by the routing strategy.)Therefore, this shows, up to a onstant multipliative fator, the inompressibility of shortest pathrouting tables. The result an be extended to any routing strategy generating optimal addressesup to  log n bits, for every onstant  > 1, and whatever is the header size.It turns out that memory spae an be redued only if we aept to relax at least two onstraints:the shortest paths and the size of the addresses.2.2 Memory spae vs. streth fatorThe issue of saving spae in routing shemes by settling near-shortest routes was �rst raised in [27℄.The proof of a trade-o� between the memory spae and the streth fator has been given in [32, 33℄.For every k, it is shown that every universal routing strategy of streth fator �(k) requires a totalmemory spae of 
(n1+1=�(k)). This result is ompleted by a universal routing strategy of strethfator �(k) with total memory spae O(n1+1=�(k)). Though this strategy is almost optimal in termsof its eÆieny-spae trade-o�, it has few drawbaks.Looking in more details the hidden onstants with the � notation, we an observe that thebounds are not tight. More preisely, the memory spae lower bound is 
(n1+1=(2s+4)) for arbi-trary streth s > 1. The upper bound results of hierarhial luster deomposition providing ane�etive streth fator s = 12k + 3 for some integer parameter k > 1, for a total memory spae ofO(k3n1+1=k log n), for addresses of size O(log2 n) bits, and for headers of size7 O(log n) bits. Forinstane, if we would like to design routing shemes with total memory spae smaller than routingtable one, i.e., smaller than O(n2 logn) bits, we must hoose k = 2 in order to obtain O(n1:5 logn)bits of spae but we pay in this ase a streth s = 27. On the other hand, the memory spae lowerbound for s = 27 is 
(n1+1=58) only. This motivated several works for improving the trade-o�bounds.At the present time, the best lower bounds indiate that for every s < 1:4 the total memoryspae has to be 
(n2 log n) [25℄, and, for s < 3, the total memory spae has to be 
(n2) [22℄.The strategy proposed in [32℄ is not name-independent, assume unit ost on the link of the net-work, and does not bound the loal memory spae (the loal spae an be as larger than O(n logn)bits for some nodes).7The reader should not be surprised by headers shorter than addresses. The soure node, upon reeption of thedestination address, say h0, oming from the host on input port 0, has the opportunity to modify h0, and to reatethe �rst header h1 of shorter size. 5



Other methods that overome these problems ahieve an inferior eÆieny-spae tradeo�. Thehierarhial routing strategy presented in [4℄ uses O(k n1=k log n) bits of loal memory and guaran-tees a streth fator O(k2 9k). The routing strategy presented in [6℄ retains the advantages of theformer one, while regaining the polynomial trade-o�. In partiular it guarantees, for every integerk > 1, a streth fator of O(k2), while using O(k n1=k log2 n logD) bits of loal memory, where Dis the weighted diameter of the network.The major disadvantage of all the proposed hierarhial routing strategies is that they arerather omplex, and thus they might be impratial espeially for high-speed networks for whih therouting time in eah node must be very short. Broadly speaking, the hierarhial routing strategiesare based on tehniques for generating a sparse over of lusters for the underlying graph. In orderto implement the routing sheme, there are k = O(log n) levels of overs with inreasing radii.Intuitively, higher levels are responsible for routing to farther destinations. A message is �rst senton the lowest level, on the hope that the destination is nearby. If this is not the ase, then thetransmission might fail, in whih ase the message will boune bak to the originator. This stepmay be viewed as one \phase" of the routing proess. One reeiving the message bak (with anoti�ation of failure), the originator tries to send it on a higher level, and so on, until the routingproess sueeds in delivering the message. Clearly, the implementation of this proedure in everyrouter results in a omplex deision funtion; the number of the present phase has to be oded intothe header of the message, thus a new message header must be reomputed and rewritten by theoriginator upon eah retransmission, i.e., in every phase of the algorithm. Moreover, intermediaterouters must also hange the message header, for example, in order to notify that a failure ourred.(Another possibility is to send only a failure noti�ation, but in this ase the message originatormust keep a opy, and an intermediate router has to generate additional messages). In addition,those strategies treat the nodes of the network non-uniformly, in the sense that di�erent nodes playdi�erent roles, thus the deision funtion ould be substantially di�erent at di�erent nodes. Ashigh-speed networks gain popularity and inrease in size, these drawbaks beome ruial, sinethe main routing bottlenek in these networks is often the deision funtion in the nodes andnot the propagation delay. Therefore, simple routing shemes, like diret shemes whih ould beimplemented in hardware may be preferable in pratie.2.3 Diret routing shemes and low streth fatorSubsequently to the previous disussion, onsiderable attention is given reently to an opposingdesign philosophy, fousing on simple and diret shemes. These shemes employ a simple \transmitand forget" type deision funtion in the nodes, depending only on the destination of the message,and the destination is the only information oded in the message header (whih is determined oneand for all by the originating router, and is never hanged afterwards.) They are loop-free and anbe implemented by some routing tables (that are sometimes ompated, but with a relatively lowrouting time). That is why, other routing strategies have been designed, in partiular some routingstrategies with small streth fator s 2 [2; 5℄.In this framework, [10℄ proposed diret loop-free routing shemes for weighted graphs withO(n2=3 log4=3 n) loal memory spae. The streth is at most s = 3, and addresses and headersare of size 3 log n. The spae bound an be redued to O(pn log3=2 n) bits if one aept a smallinreasing on the streth to s = 5 [12℄. The latter routing strategy is based on routing tables (thetables are ompated into intervals of integers, namely these are interval routing shemes, f. [21℄for a survey of this tehnique). Thus they are loop-free, and use headers/addresses whih are takenfrom the set f1; : : : ; ng, i.e., on log n bits exatly. It is also remarked that the streth is, in average6



on all the soure-destination pairs of the graph, bounded by �s = 3. Moreover, the longest routedoes not exeed 2D (D being the weighted diameter of the graph), and is even bounded by d1:5Dein the ase of uniform weights. The routing time is O(logn).Atually, the bound on the loal memory spae is almost optimal. It is shown in [12℄ that noloop-free routing strategy with address range [1; n℄ an guarantee a loal memory spae lower thanpn bits8 on every family of graphs inluding trees. The result holds for every streth fator, sineon trees a loop-free routing sheme of streth s is a routing sheme of streth 1. It follows that thetrade-o�s presented previously (for instane the name-independent hierarhial routing strategyof [6℄) annot pretend to loop-free routing shemes, thus require to hange and rewrite the headersat least one.Open question� What is the best trade-o� between loal memory spae and streth fator (or average strethfator) for universal diret routing shemes using addresses taken in f1; : : : ;mg, with m > n?The same question arise for universal k-phase routing strategies, namely strategies that providerouting shemes for whih the header of eah message an be rewritten at most k times along itsroute.2.4 Almost all the graphsWe just have seen that in the worst-ase a shortest path routing sheme requires �(n log n) bitsof loal memory spae (f. the result of [25℄ taking d = �(n)). But, are suh worst-ase networksrare? Is the situation better for the \average ase"? The answer is yes. Atually, surprisinglyenough, the networks that require a large memory spae for routing along shortest paths are notthe ones that possess the maximal entropy9. Graph strutures that make diÆult the routing arenot ompletely random. As we will see, on the ontrary, a graph with a fully random struture hasa shortest path routing sheme with O(n) bits of loal memory spae.Certain results in graph theory are valid for \almost all the graphs". The term \almost all"is statistial. It means that the fration of n-node graphs for whih the property holds tends to 1as n tends to in�nity. The tools to establish suh kind of results are probabilities, with the familyGn;p of random graphs10, or the Kolmogorov Complexity [29℄ with the Kolmogorov random graphs.These two tools are very lose in essene.In [13℄ the ability of random graphs in Gn;p, for some partiular values of p, to support shortestpath routing tables that an be ompated into intervals has been onsidered. More generally, andusing Kolmogorov random graphs, [9℄ showed that a fration of at least 1� 1=n3 of all the graphshas a shortest path routing table of size 3n+ o(n) bits (per node) under the assumption that nodeaddress range is [1; n℄ and node addresses are randomly permuted, and that eah node knows itsneighborhood for free. However, if the addresses are on  log2 n bits, where  is a onstant, then therouting table an be redued to  log2 n bits only. Other results are mentioned for streth fators > 1. Finally, in [24℄ the 3n+ o(n) bit upper bound has been slightly improved: for a fration ofat least 1� 1=n of all the graphs support shortest path routing tables of size n+O(log4 n) bits foraddresses taken in the range f1; : : : ; ng.8Preisely,  = (�p2=3)= ln 2 = 3:7006565593:::9This family of graphs is quite hazy, but it an be viewed as the set of graphs whose adjaeny matrix is notompressible in the Kolmogorov Complexity sense.10In this model, graphs have n nodes and with probability p there is an edge onneting two nodes of the graph,f. [7℄. 7



Open question� Is the n+ o(n) upper bound is the best possible one for a fration of 1� o(1) of all the graphs?Remark. To design suh a lower bound on the memory spae is harder than it looks. First, a nodedoes not need to know its neighborhood (even if the neighborhood results of a random hoie ofn=2 nodes among n� 1). We an relabel the ports aording to some information of the neighborsand it may derease the information even bellow the degree of the node (for instane, it is shownin [21℄ that trees have a O(pn) bit loal memory spae routing sheme even for large degree node).Seondly, in a random graph, node relabeling hanges the probability to have a onnetion betweentwo arbitrary nodes labeled respetively x and y in f1; : : : ; ng.2.5 Separator, planar and bounded genus graphsThere are strategies that are not universal, but very eÆient for spei� lass of graphs.In [19℄ it is presented routing shemes for the family of graphs that are reursively deomposableby a separator of size at most . A separator is a subset of nodes whose removal disonnet a graphin two (or more) onneted omponents, eah one of size at most 2=3 of the initial size of thegraph. More generally, the graph is said -deomposable if for every node weight assignment ofthe graph there exists a separator of size  that provides onneted omponents of weight (the sumof the weight of the nodes in the omponent) at most 2=3 of the weight of the whole graph. Thisde�nition implies a reursive deomposition of the graph with at most log3=2(n) hierarhial levels,f. [19℄. A separator insures that every route between two nodes of distint omponents has to rosssome nodes of the separator. If the separator is small in size, this allows to onentrate the routinginformation towards the nodes of the separator. Outer-planar graphs, and more generally, series-parallel graphs are 2-deomposable, graphs of treewidth bounded by k are O(k)-deomposable,planar graphs are O(pn)-deomposable, and more generally, graphs of genus bounded by g areO(pgn)-deomposable.More preisely, [19℄ proposed two routing strategies. The �rst one, appliable to edge-weightedgraphs, uses a total memory spae of O( n log2 n), a streth fator s = 3, and addresses of sizer logn bits, r > 1 being a small onstant. The seond one, with the same memory spae, dereasesthe streth to s = 1 + 2=�, where 1 < � 6 2 (thus s < 3) is the root of �d(+1)=2e � � = 2, for aninreasing of the addresses size to 3:42  log  logn bits. For  2 f2; 3g, � = 2, and for  2 f4; 5g,� 6 2:32. The routes are not neessary loop-free, the headers are supposed to be rewritable, andthe loal memory spae is not bounded.These strategies are eÆient only if  is onstant. For planar graphs,  = �(pn), the same au-thors proposed in [18℄ two better strategies. Still for weighted graphs, the �rst one has O(n4=3 logn)total memory spae and a streth fator of s = 3, for addresses and headers of size O(logn). Theseond one, for every onstant �, 0 < � < 1=3, provides a total memory spae of O((1=�)n1+� logn)bits for addresses of size O((1=�) log n), and a streth fator s = 7. Both strategies su�er ofthe previous drawbaks: they do not bound the loal memory spae (that an be as larger thanO(n log n)), and use rewritable headers and addresses of size stritly longer than logn. All thestrategies presented in [18℄ and in [19℄, have routing time linear in the size of addresses, that isO((1=�) log n).The ase of shortest path routing shemes for planar graphs (s = 1) has been studied in [23℄.It is proposed a diret routing sheme (a routing table with addresses and headers are taken inthe range [1; n℄) with loal memory spae 8n + o(n) bits and with O(log1+� n) routing time, forevery onstant � > 0. The sheme applies to weighted graphs, and to any given tree-routing8



family, i.e., a family of n spanning trees, eah tree being rooted in a unique node of the graphand de�ning the routes to all the destinations. In this model the strategy annot optimize theshortest path seletion, and thus the 
(n) lower bound of the omplete bipartite K2;n�2 ourshere (f. Paragraph 2.1). The result extends naturally to graphs of genus at most g, inreasing theloal memory spae to O(n log g) bits. All the shemes are extended, with the same performanesto graphs having at most o(n log g= log n) edge rossing. It is interesting to note that the resultsof [23℄ do not use ombinatorial separability of bounded genus graphs, but are obtained by the useof k-page embedding, a geometri representation of graphs.Open questions� What is the loal memory spae omplexity of shortest path routing tables in planar graphs?(The urrent lower bound is only 
(pn) bits [12℄ for strategies optimizing shortest paths, and theupper bound is O(n) [23℄).� More generally, what is the omplexity of the loal memory spae for shortest path routing tablesin graphs of genus bounded by g? (Indeed, it is not lear that O(n log g) is the best possible upperbound. A smaller dependeny in g is possible, no lower bound greater than 
(pn) exists).3 Some Key ProblemsIn this setion we stress several problems for routing in distributed networks.3.1 How to �nd the right interval?Assume that a graph has a routing tableR suh that, in eah soure, the set of addresses destinationsusing the same output port onsists of a single interval of onseutive integers, i.e., R an beimplemented by an interval routing sheme. The question is to onstrut an eÆient data struturefor this sheme. From pratial point of view, the answer is important.Let us onsider a node x of degree in this graph, and let [ai; bi℄ denote the interval assigned tothe ar (x; yi), i 2 f1; : : : ; dg, ordered suh that a1 < a2 < � � � < ad. To answer to the routing query,we need to ompute as quik as possible, the index i suh that y 2 [ai; bi℄, for every y 2 f1; : : : ; ng.Let us denote Rx(y) = i this funtion.A �rst solution simply onsists in storing the ai's in a table T suh that T [i℄ = ai. Theomputation Rx(y) onsists in a binary searh of y suh that ai 6 y < ai+1, beause the ai's form apartition of the range [1; n℄. The routing time of Rx is O(log d), and its memory spae is O(d log n)bits. However, if d > n= log n, one an do smaller and faster.The seond solution guarantees a memory spae of n+ o(n) bits with a O(1) routing time. ItsuÆes to represent the set of ai's by a binary string, B, suh that B[�℄ = 1 if � 2 fa1; : : : ; adgand B[�℄ = 0 otherwise. It turns out that Rx(y) = i if the number of ai's less or equal to y isexatly i. It orresponds also to the number of 1's in B up to position y. The memory spae is nbits (the string B) and the routing time is a priori O(y), the traversal time of B up to y. In [30℄it is shown that this type of queries an be solved in onstant time11 in the worst-ase, thanks toa data struture of size n+ o(n) bits (moreover onstrutible in polynomial time).11The omputation model is the word-RAM model in whih standard arithmeti and bitwise logi operations onintegers of O(log n) bits run in a unit of time. 9



Obviously, the ideal solution would be a ompat representation of the set fa1; : : : ; adg by adata struture of size12 log �nd� = �(d log(n=d)) allowing onstant routing time. In the same spirit,[8℄ proposed a quasi-optimal oding of integer sets (up to a multipliative onstant) with onstanttime for membership queries. The question of omputing the rank of an element is open.Open question� Is it possible to �nd a data struture of size at most O(d log (n=d)) bits per node of degree d, anda onstant routing time for graphs supporting an interval routing sheme?3.2 Total routing timeWe saw that it is not easy to design a ompat data struture for a minimal routing time, even forthe ase of interval routing sheme. An alternative would be to onsider the total routing time ona route of length L.Consider the \standard" shortest path routing in the de Bruijn graph. The nodes of this graphare the n = 2k binary words of length k. The node xkxk�1 : : : x2x1 is onneted to the nodesxk�1 : : : x2x1�, for � 2 f0; 1g. It onsists to ompute the largest pre�x of the destination addressthat is a suÆx of the soure address (addresses orrespond to node names). This pre�x onstitutesthe �rst header. At eah intermediate node, the �rst bit of the urrent header is extrated: if thebit is 0 the message is forwarded to output port 1, if the bit is 1 it is forwarded to port 2 (this graphis direted and has only two outgoing ars). In both ases, the extrated bit is destroyed and thenew header is one bit less. The message arrives at destination when the header is empty. The totalrouting time on a route of length L is O(L+logn), the logn term oming from the omputation ofthe �rst header that an be performed by the Boyer-Moore's algorithm [3℄. Note that the routingtime is onstant exepted in the soure. Sine L 6 logn (the diameter is k), the total routing timenever exeeds O(log n).The problem to design a ompat data struture in order to optimized the total routing timehas been �rst pointed in [16℄. For weighted outer-planar graphs (that all support a shortest pathinterval routing), he presents a data struture of size O(d log n), mainly based on intervals withauxiliary tables in a way that the total routing time never exeeds O(L+log n) for messages betweennodes at distane L.Expressed in an other omplexity measure, the bit-operations model, [14℄ showed that everygraph of diameter D support a routing sheme with routing time O(log n) bit-operations and withtotal routing time O(D + n1=k log n) bit-operations, where k > 2 is an arbitrary onstant. Notethat in this omplexity measure, standard routing tables have total routing time �(D log n) bit-operations. Indeed, reading of ` bits in a table of size t osts O(`+log t) time, thus it osts �(log n)bit-operation to read the output port in a standard routing table13. The tehnique to save timeis therefore to take few routing deisions (at most O(n1=k) for some parameter k). Most of therouters takes their own deision from few bits of the header only. Note that in the result [14℄ theroutes are not shortest paths, but their length are bounded by O(D).12This is an optimal oding sine there are �nd� possible sets.13In this model, reading or writing a single bit of header osts one unit of time. However, the message and the bitsof the header that are not read an be opied and transmitted onto the outgoing link without any penalties { in thede Bruijn example, the routing time is O(1) bit-operations though headers are non onstant
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Open question� Is there any universal routing strategy with total routing time bounded by O(D + log n) bit-operations?3.3 Routing in treesRouting in trees is a basi and important problem. Indeed, most of the hierarhial routing strate-gies are based on tree overing. Often, at the �nal phase of the routing protool, the problem toroute in a small region spanned by a tree ours. It is quite easy to design spae-eÆient routingsheme for trees. For instane, interval-based routing (assuming addresses �xed by a DFS traversalnumbering, eah sub-tree de�nes an interval of onseutive addresses) ahieves a total memoryspae of O(n logn), thus O(log n) bits per node in average. This sheme is easy to implementand the routing time is O(log n). however one an objet the two following remarks: (1) the loalmemory spae is not bounded by O(log n) when the degree is large; (2) one ould expet a onstantrouting time with a better data struture.In Paragraph 3.1, we saw that in the ase of interval routing sheme, one an get a loal memoryspae O(d log(n=d)). With a spae n+ o(n) one an even guarantee a onstant routing time. Is thespae O(d log(n=d)) bound optimal for trees?The answer is no: the right bound is O(pn). In [21℄ it is shown that, thanks to a DFSnumbering aording to the number of desendents of eah sub-tree, the loal routing funtion inx an be omputed from a sequenes Sx = (n1; : : : ; nd), with n1 6 � � � 6 nd. Here, ni is preiselythe number of desendents in the sub-tree rooted at the ith hild of x. Beause 1 6 n1 6 � � � 6 ndand Pdi=1 ni = n � 1, the sequene Sx an be oded with at most O(pn) bits, sine the numberof suh sequenes (alled partitions of n� 1) is bounded by 2�(pn). Thus the loal memory spaeof x is bounded by O(pn), and this is atually the optimal bound, f. [12℄. Roughly speaking,the routing funtion in x for a destination of address y onsists to ompute the index i suh thaty � x 2 (Pi�1j=1 nj;Pij=1 nj ℄.Open question� Design a ompat data struture for partitions of n using optimal spae, and allowing onstanttime rank query type?3.4 Exponential routing time and Cayley graphsIn an extension of [14℄, one an show that there are graphs having shortest path routing tables ofsize O(log n) for eah node with the following property: every shortest path routing sheme usingless than n logn bits of loal memory spae, for a suitable onstant  > 0, must have a routingtime greater than any onstant size stak of exponentials, i.e.,22:::2n :It is lear that if the data struture is to ompat, the time to extrat some piee of informationan be very large.Cayley graphs are preisely a family of graphs supporting a theoretial low loal memory spae.They have strong regularity property (based on a group struture), and thus are good andidatesfor ompat routing tables sine they their adjaeny matrix an be entirely desribed with a few11



number of bits. However, from suh global information (say, the matrix of the graph), there is noeÆient way to extrat a shortest path, or simply the �rst edge of a shortest path. Routing shemesneed loal information.More preisely, nodes of a Cayley graph are element of a group � and the ars14 are de�nedby a given set of generators S � �: x is onneted to y if there exists an element s 2 S suh thaty = x+ s.Consider the following example: � = Z (the additive group modulus n) and S = f�1;�1;�2gwith 1; 2 2 Z n f0; 1g (we make the graph symmetri taking opposed generators). The Cayleygraph (�; S) an be desribed by given the two integers 1 and 2. Hene, the shortest path routingan be solved with O(log n) bits of memory spae. Indeed, one an rebuild the whole graph (in therouter memory), and apply a standard shortest path algorithm in order to extrat the �rst edge ofa shortest path. The point is that this method would require 
(n) routing time, whereas one anexpet a poly-logarithmi routing time, the size of the input being O(log n). Unfortunately, oneneed to solve the minimal deomposition of an element in sum of generators, a diÆult problem.In fat, for S = f�1;�2g the problem an be solved in logO(1) n time, but is still open for S oflarger ardinality.Open question� What is the best routing time we an ahieve for shortest path routing sheme on Cayley graphsof degree k and de�ned on Abelian groups, if the loal memory spae if bounded by O(k logn).Remark. The allowed spaed is enough to store all the generators, and whole the graph informa-tion: there are O(k) generators in S, eah one an be desribed by an integer taken in [1; n℄, andone an show that there are at most nO(1) non-isomorphi Abelian groups with n elements.3.5 Routing and other distributed tasksIt is worth to observe that design a ompat data struture for routing in a distributed network isa diÆult task. For instane, to determine the minimum number of intervals for whih the graphhas a shortest path k-interval routing sheme is NP-hard (with at most k intervals per link). Thepre-proessing on the graph to optimize routing is time onsuming in general. A natural question isthus to ask if suh eÆient data strutures, one generated by the pre-proessing algorithm, ouldbe useful to other distributed tasks than routing, e.g., broadasting or leader-eletion? or if witha little e�ort one ould not modify the ompat data strutures allowing fast multiple queries inaddition to routing.In [15℄, we positively answer to this question for the ase of shortest path 1-interval routingshemes. Mainly, it is shown that there are simple broadast algorithms that allows broadastingmessage from any soure in at most a total of O(n) messages, and using the routing informationonly. It implies also O(n) message algorithm for leader-eletion improving the �rst ontribution inthis routing and eletion problem, [35℄. Note that with no spei� information, the leader-eletionproblem has already 
(n logn) message-omplexity lower bound for a ring [20℄.Open question� Does the message-omplexity remain in O(n) for s-strethed k-interval routing shemes for on-stant k and onstant s?14Cayley graphs are direted. However if �s 2 S for every s 2 S, one an onsidered them as undireted graphs.12
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