A fully abstract semantics
for concurrent graph reduction:
extended abstract

ALAN JEFFREY

ABSTRACT. This paper presents a formal model of the concurren-
t graph reduction implementation of non-strict functional program-
ming. This model differs from other models in that:

e It represents concurrent rather than sequential graph reduction.

o It represents low-level considerations such as garbage collection.

e It uses techniques from concurrency theory to simplify the pre-
sentation.

There are three presentations of this model:

e An operational semantics based on graph reduction.
e A denotational semantics in the domain D ~ (D — D).
e A program logic and proof system based on COPPO types.

We can then use ABRAMSKY and ONG’s techniques from the lazy A-
calculus to show that the denotational semantics is fully abstract for
the operational semantics. This proof requires some results about
the operational semantics:

e Since the operational semantics includes garbage collection, re-
duction is not confluent. We find a confluent reduction strategy
which has the same convergence properties as graph reduction.

e We use a sequential reduction strategy to show that concurrent
and sequential graph reduction have the same convergence prop-
erties.

e We use simulation between nodes in a graph to show referential
transparency.

These properties are important in implementations as well as in show-
ing full abstraction.

Address: COGS, University of Sussex, Brighton BN1 9QH, UK
Email: alanje@cogs.susx.ac.uk
Copyright (© 1993 Alan Jeffrey
This work has been funded by SERC project GR/H 16537.

1 Introduction

This paper is about the relationship between two fields of
computer science: full abstraction, and concurrent graph
reduction. Full abstraction is the study of relating deno-
tational and operational semantics. Concurrent graph
reduction is an efficient parallel implementation tech-
nique for non-strict functional programming languages.

Furr ABSTRACTION. Full abstraction, originally de-
fined by MILNER (1977), explores the relationship be-
tween an operational semantics and its models. The op-
erational view of a programming language is given by:

e A set of syntactic terms T, and a subset of terms
called programs. The programs are then given an
operational semantics as a reduction relation.

e A set of tests together with an operational definition
of when a term passes a test. This induces the testing
preorder on terms t Co u iff every test ¢ passes is
passed by wu.

A model of such an operational view is:

e A partially ordered set (D, <).
e A function [-] : T'— D. This induces the denotational
preorder on terms ¢t Cp w iff [t] < [u].

We characterize such models:

e D is correct iff t Co u implies t Cp u.
e D is complete iff t Cp u implies t Cp u.
e D is fully abstract iff it is correct and complete.

For example, in ABRAMSKY (1989) and ONG’s (1988)
analysis of the untyped A-calculus:

e A term is an untyped A-calculus term, and a program
is a closed term. The operational semantics is given
as leftmost—outermost reduction between programs
M — N.

e A test is a closing context C[-]. A term M passes C[]
iff C[M] evaluates to weak head normal form, that is
a A-term Aw . N.

This is then given a denotational semantics in the do-
main D ~ (D — D). ABRAMSKY and ONG showed that
this denotational semantics is correct but not complete,
and that the completeness problem can be reduced to de-
finability, in that there is no untyped A-calculus ‘parallel

convergence test’ term P with the semantics:
1 iffz]o =[yJlo =L
[z]o otherwise

[Pzyz]o = {

and that if such a term is added (and given an appro-
priate operational semantics) then the semantics is com-
plete.

CONCURRENT GRAPH REDUCTION. Graph reduction is
an efficient implementation technique for non-strict func-

tional programming languages, such as AUGUSTSSON’s
(1984) Lazy ML, FAIRBURN’s (1982) Ponder, JONES’s
(1992) Gofer, TURNER’s (1985) Miranda', and Haskell
(HUDAK et al., 1992).

It was developed by wADSWORTH (1971) as an imple-
mentation of leftmost outermost reduction. He observed
that leftmost—outermost reduction can take exponential
time to evaluate an expression, due to loss of sharing
information. For example, if we define:

A=Az .zx
M"N = M(M"N)

l=Xzx.x
M°N =N
Then the evaluation of A®*1| —* | is, where ‘@’ denotes
function application:

Syt
b

Thus, A™ | takes 2" — 2 reductions to terminate. WADS-
WORTH observed that this inefficiency can be removed
by reducing syntax graphs rather than trees. The graph
evaluation of A"t!| —* | is, where ‘V’ denotes an in-
direction, ! denotes a node which has been tagged for
evaluation, and 7 denotes a note which is untagged and
is not, currently being evaluated:

%%o
(. .
|

Thus, A™I takes 6n reductions to terminate.

2" 2

Note that

'When used as the name of a programming language, Miranda is
a trademark of Research Software Limited

a graph may contain a number of tagged nodes, which
allows for concurrent execution. The tagged nodes cor-
respond to PEYTON JONES’s (1987) program annotations,
and also record the blocking information of the graph.

FULL ABSTRACTION AND GRAPH REDUCTION. There
has been a number of papers showing full abstraction for
tree reduction, notably PLOTKIN’s (1977) full abstraction
for pCF with parallel conditionals, ABRAMSKY (1989) and
ONG’s (1988) full abstraction for the lazy A-calculus, and
BOUDOL’s (1992) full abstraction for a A-calculus with
call-by-value abstraction and parallel evaluation.

There has also been a number of papers showing the
correctness of graph reduction, notably by WADSWORTH
(1971), BARENDREGT et al. (1987), KENNAWAY et al.
(1993), LESTER (1989), LAUNCHBURY (1993), PURUSHO-
THAMAN and SEAMAN (1992), and the author (1993).

However, there have been no proofs of full abstraction
for concurrent graph reduction. In this paper, we will
follow ABRAMSKY (1989) when he said:

Since current practice is well-motivated by effi-
ciency considerations and is unlikely to be aban-
doned readily, it makes sense to see if a good mod-
ified theory can be developed for it.

OVERVIEW. In this paper we present a formal treat-
ment of concurrent graph reduction, based on BERRY and
BOUDOL’s (1990) Chemical Abstract Machine (CHAM).
This operational semantics includes:

e Tagged and untagged nodes.
e Garbage collection.
e Deadlocked graphs.

We also present a denotational semantics in the domain
D ~ (D — D), in which:

e Whether a node is tagged or not is irrelevant.
e Garbage collection is semantically unimportant.
e Deadlock and divergence are identified.

We then apply ABRAMSKY (1989) and ONG’s (1988) tech-
niques to show that this semantics is correct, and that
by including parallel convergence nodes in the syntax,
the semantics is complete.

2 The A-calculus with recursive declarations
Terms from the A-calculus with rec are:

e Vz is an indirection pointing to x.

e @y is an application applying the function pointed
to by = to the argument pointed to by y.

e zVy is a fork which evaluates the terms pointed to
by x and y and returns the identity function if one
of them reaches weak head normal form. This is
the parallel convergence operator P xy of the lazy \-
calculus.

e \x .M is an abstraction.
e rec D in M is a local recursive declaration of D in M.

Declarations are:

e z:=!M is an tagged node declaring x to be M, and
that M should be evaluated immediately.

e ¢ := ?M is an untagged node declaring = to be M,

and that M should not be evaluated until it is needed.

€ is the empty declaration.

D, E is the concatenated declaration of D and E.

vz . D is the declaration D with a local variable x.

An ezpression is a term or a declaration. For example,
the term:

recz:="TM,y:=7N in zQy
declares = to be M and y to be N, then applies z to y.
This can be contrasted with the term:

recz :=!M,y :=!N in zQy

which is semantically equivalent, but allows evaluation
of M and N to be performed concurrently. In the dec-
laration:
oy =My, ..., 2y = My,
Y1 = ?Nl, ey Yn = ?Nn
the terms M; are tagged, and so they can all be evaluated
concurrently, whereas the terms /V; are untagged, and so
are evaluated when they are needed. All declarations are

considered to be recursive, for example the fixed point
of M is:

rece :=!M,y :=1zQy iny

We have only allowed local declarations in terms, not
in declarations. However, since we have allowed local
variables vz . D, we can define the local declaration
recD in E. For example, rec(z = ?M) in (y = 7N)
is:

ve . (z:=7M,y:=7N)

The handling of local variables here is similar to scope
in MILNER’s (1991) polyadic 7-calculus, and indeed has
a very similar operational semantics.

DEFINITION. Lam and Dec are defined:
M :=Vz|zQy|zVy | Ax. M |recD in M
Diu=xz:=M|z:="M|e|D,D |vz.D
Let D = E mean D and F are syntactically identical. O
EXAMPLES. Given a vector # = x ...x,, we define:
vi.D=vxy.....vz,.D
We implement the black hole term:

UO=recx:=!Vzinz

We implement ABRAMSKY and ONG’s lazy A-calculus as
(when z and y do not occur in M or N):

z=Vz
MN =recx :=!M,y:=7N in zQy
PMN =recx :=!M,y:=!N inzVy

For example, we can define the diagonal and unsolvable
terms:

A=)\x.zx 0 =AA

We shall see that U is deadlocked whereas (Q is divergen-
t. O

Unfortunately, at the moment, there is nothing to pre-
vent inconsistent declarations such as:

z:=!M,z:=IN
or declarations with dangling pointers such as:
vy . (z :=1Vy)

We would like to avoid such terms, since their semantics
is by no means obvious. We achieve this by restricting
our attention to well-formed expressions, with no incon-
sistency or dangling pointers.

DEFINITION. The written variables of a declaration are:
wyv(z :=IM)={z} wv(z:=7M)={z} wve=1
wv(D,E) =wwDUwvE wv(vz.D)=wvD)\ {z}

An expression is well-formed iff:

e every subexpression D, E has w D Nwv E = ().
e every subexpression vz . D has x € wv D.

From now on, we shall only consider well-formed expres-
sions. 0

Similarly, we define the read variables and free variables
of an expression.

DEFINITION. The read variables of an expression are:
W(Va) = {o} (o) = {z,y}
rv(zvy) ={z,y} whz. . M)=rwM\ {z}
rv(recD in M) = (rv M Urv D)\ wvD
wz:=M)=rwM r(z:=7M)=rvM
v(D,E)=rwDUrwE r(ve.D)=rD)\{z}
The free variables of an expression are:
fvM=wM fvD=rwwDUwvD
A declaration is closed iff rv D C wv D. O

rve={

In implementation terms, the read variables of a decla-
ration are the pointers leading out of it, and the written
variables are pointers leading into it. For example, z is
a pointer into z := !Vy and y is a pointer out of it.

DEFINITION. A renaming is a function p : V — V which
is almost everywhere the identity. Define:

e M|[p] is M with any read variable z replaced by pz.
e D[p] is D with any read variable z replaced by pz.
e [p]D is D with any written variable z replaced by pz.

In each case we apply appropriate a-conversion to avoid
capture of free variables. O

EXAMPLES. Some example renamings are:
(x :=Vz)ly/z] = (x :=Vy)
ly/z](z :==Vz) = (y := Vx)
ly/z](z = Vz)[y/2] = (y := Vy)
(vy . (y:=Vx))[y/z] =vz.(z :=Vy)
If wv D and wv E are disjoint then we define a localized
declaration as:

recDin E=v(wvD).(D,E)
this can be generalized to any D and E by a-converting

D first. f wD = {x;,...,z,} and y1,...,yn are fresh
then:

rec D in E = vif. ([7/#DI/7), El7/7)
for example:
rec(z := ?Vz) in (z := \w . z)
=vy.(y:=7Vy,z:=Nw.y)

We shall see below that z := !(rec D in M) is semanti-
cally equivalent to rec D in (z := M). O

DEFINITION. We can draw a declaration as a graph,
in the fashion of MILNER’s (1989) flow graphs for ccs.

A declaration x := !M with read variables y1,...,yn is
drawn:
T
Y1 ---Yn

Similarly, a declaration x := ?M is drawn:

x

i)

Y1 Yn

When M is Vy, y@z or yVz we usually elide the read
variables, drawing x := Vy, z := ly@Qz and z := lyVz

as:
T T T
Y y =z y =z

A declaration € is drawn as the empty graph.

A declaration D, E is drawn by superimposing D on
E.

A declaration vz. D is drawn by drawing D and eras-
ing any occurrence of x.

Whenever we have the same variable being read and
written in a graph, we draw an arrow from the read

variable to the written variable. O

ExaMPLES. The application of A to M is drawn:

vyz
z = lyQz, Y
y:=!A

T . T
@ (z :=lyQz, @
3 1
_om y:=IA,
z:=1TM)

The application of M to itself, with sharing is drawn:

vuvz .
T
(z := lw@Qu,
w:
e @ (R
OF
v:=17Vz,
z:
z:=1TM)

A cyclic graph is drawn:

T

€T
RN C)
z:=1V
! v (z :=1Vy,
y:=1!1Vy
@ e

We shall see that such tight cyclic graphs give rise to
deadlock. |

3 Operational semantics

In this section, we give a formal presentation of the con-
current graph reduction algorithm described by PEYTON
JONES (1987). We shall use declarations to represent
graphs, and give the operational semantics as a reduc-
tion relation D — E between declarations.

We give our operational semantics in two parts, based
on BERRY and BOUDOL’s (1990) Chemical Abstract Ma-
chine. We shall first define a syntactic equivalence = on
declarations, and then define an operational semantics
on declarations up to =. This allows us to abstract away
from syntactic details such as associativity of concate-
nation, and present the ‘bare bones’ of the operational
semantics.

A similar approach has been taken by MILNER (1991)
in presenting the m-calculus, and we shall follow his ex-
ample more closely than that of BERRY and BOUDOL.

DEFINITION. = is given in Table 1. |

We use the equivalence = to simplify the operational
semantics for graph reduction. This is given as eight ax-
ioms and three structural rules. The axioms are broken
down into four phases:

e Graph building, in which a recursive declaration is
expanded into a graph, for example:

i

e Spine traversal, in which an untagged node pointed
to by a tagged node becomes tagged, for example:

o

There are three axioms, depending on whether the
tagged node is an indirection, an application, or a
fork.

e Updating, in which a node pointing to an abstraction
is updated, for example:

o

There are three axioms, depending on whether the
node is an indirection, an application, or a fork.

e Garbage collection, in which a sub-graph with no in-

(ASSOC) D,(E,F)=(D,E),F (syMM) g ig
(comm) D,E=E,D -
_ (TRANS) D=E=F
(unIT) D,e=D ANE D=F
() ve.D =vz.([z/z]D]z/z]) w) D=E
(vswaP) wvz.vy.D=wvy.ve.D D,F=EF
(vMIG) Dvz.E=vz.(D,E) (R) D=E
F.D=FFE
(VcomM) z:=1(yVz) = x :=(2Vy) D=E
(REFL) D=D) ve.D=vz . FE
TABLE 1. The definition of = (when z ¢ fv D)
coming pointers is removed, for example: D =—=F. O

ExAMPLES. For any M, the reduction:
=1AM

x

@ © T

@ =5 vuvz . (z = WwQu,u :=Vz,v:=7Vz, 2 := M)
@ @ is drawn:
~(v) () . ,
e, (o) (=2
Oy Dy :
()

These phases are not sequential, and there may be more
than one axiom which can be applied at any one point.
Since each axiom (apart from garbage collection) uses a
small number of nodes, there is much scope for concur- Q @ @
rency, for example:

(%)

The reduction: (z :=!Q) = is drawn:

D ® © : : x

K (o) (=) ()

(2) () :
H® @O @O ©

+ +

&4

DEFINITION. > is given in Table 2, and D — FE iff

c:=!(recD in M) — recD in (z := M)

(VTRAV) z:=WVy,y:="Mw—z:=Vy,y:=M Do B
(QTRAV) x:=lyQzy:=7M — z :=lyQz,y := M (L) D.F=EF
(VTRAV) z:=WyVz,y:="M —» z :=lyVz,y := M) D— E
(Vupd) z:=Wy,y:=Dw. M—z:=Nw.My:=Nw.M F,D— F,E
(Qupp) z:=lyQz,y:=Nw. M~ z:=M[z/w],y :=1hw. M (v) %
(vupp) z:=lyvz,y=Dw . M—z:=!ly:=Dw.M '

viwD).D e

TABLE 2. The definition of —

This can be contrasted with the reduction:

. ®
oM

Thus the declaration z := U is deadlocked rather than
divergent. Denotationally, we shall identify the terms U
and 2, since neither of them can reach weak head normal
form, although operationally they are very different. O

We define z to be in weak head normal form (whnf) in
D iff D contains z := hw . M.

DEFINITION.

e z is in whnf in (z := w . M).
e z is in whnf in (D, E) if z is in whof in D or E.

e zisin whnfin vy. D if z is in whnf in D and = # y.O

A variable x converges in D iff, once it has been tagged
for evaluation, it can reach whnf.

DEFINITION. tag, is defined (when x # y) as:

tag, (v :=1M) = (z := M)

tag,(x :=7M) = (xz := M)

tag, (y := M) = (y == IM)

tag, (y :=7M) = (y :=7M)
tag, e=¢€

tag, (D, E) = (tag, D), (tag, F)
tag,(ve. D) =vz . D
tag, (vy.D) =vy. (tag, D)

For closed D, D |}, E iff tag, D —* E and z is in whnf
in E,and D{, it 3E.D |, E O

This provides us with the may-testing preorder:

DEFINITION. M Cop N iff C[M]|, = C[N]{, for any =
and closing context C. O

4 Denotational semantics

The denotational semantics for Lam is given in the same
domain D ~ (D — D), as ABRAMSKY and ONG’s lazy
A-calculus.

DEFINITION. D is the initial solution of:
D~(D—- D),

Let the continuous functions unfold : D — (D — D), and
fold : (D — D), — D form the above isomorphism.

An environment is a function o : V. — D. Let X be
the domain of environments, ordered pointwise.

This definition is made precise in the full paper. O

The semantics of a term M is given as an element [M]o
of D. The semantics of a declaration D is given as an
element [D]o of ¥. The main difference between the se-
mantics of Lam and that of the lazy A-calculus is that the
former makes explicit use of recursion in the semantics
of declarations.

DEFINITION. Define [M] : ¥ — D as:
[Vz]o = oz
[26y]o = apply(oz)(oy)
[xVy]o = fork(ox)(oy)
[Mx . M]o = fold(lift([M] o update o))
[rec D in M]o = [M]([D]o)

Define [D] : ¥ — X as:
[z :=IM]o = fix(set{z}(x := [M]))o
[z :=?M]o = fix(set{z}(x := [M]))o
[e]lo =0
[D, E]o = fix(set(wv(D, E))([D] o [E]))o
[ve . D)o = newz[D]o
where:
L ifa=b=1
fork ab =
fold(liftid) otherwise
W b = fuif unfolda = lift f
applya 1 otherwise
{ ifx=y
update oxay
oy otherwise
ifx=y
newzfoy =
fay otherwise
| foitz=y
] oy otherwise
rifreX
set X fgor = {f(ga)rl ! .
ox otherwise
fix f =V{f"L|ninw}
M Cp N iff [M] < [N]. |

The semantics agrees with ABRAMSKY and ONG’s lazy
A-calculus:

[z]o = oz
[MN]o = apply([M]o)([N]o)
[P MNJo = fork([M]o)([N]o)

5 Program logic

The proof that D is fully abstract for Lam proceeds in
much the same way as for ABRAMSKY and ONG’s lazy A-
calculus. We present the program logic of COPPO type-
s (BARANDREGT et al., 1983) and use it as a link be-
tween the denotational and operational semantics. The
program logic ® has propositions:

e w, satisfied by any closed term.
e ¢ A1), satisfied by any term that satisfies ¢ and .

e ¢ — 1), satisfied by any term that converges, and that
when applied to any term satisfying ¢ the result sat-
isfies 4.

For example, a closed term satisfies v = w — w iff it
converges.

® is defined as:

pui=w|oNd|d—¢
t¢1, ..., %y 1 O with distinct ;.

e Let wv(zy : by,0 Son) ={x1,. .., T}

e Let (T',z : ¢, A)(r) = ¢, and T'(z) =
xgwvl.

e Let TAA be the context s.t. (CAA)(z) = T'(z)AA(x).

e Let ve.(T,z : $,A) =T,A and vz .T' = T when
g wvl. |

DEFINITION.

A context T is a list 1

w when

® is given a proof system for judgements of the form
'EM:¢pand T F D : A. Thisis first given as a preorder
F ¢ < ¢, which characterizes when v is a refinement of

o.

DEFINITION. The preorder < is given by axioms:

(1D) o<
(wr) Fo<w
(AEa) Fon <o
(AED) Fony <y
(—w) Foow<w—ow
(=A) F@=29Y)A(@—=x) <o (YAX)
and structural rules:
o' <o Fy<y
e e T EaC =Yy
Let F ¢ = ¢ iff F ¢ < ¢p < ¢gand F T < A iff
Ve . FT(z) < A(z). |

For example, we can show that A is commutative, as-
sociative, idempotent and has unit w in the equivalence
F ¢ = 9. The partial order - ¢ < @ is used in defining
the proof system I' = M : ¢, since all of the structural
rules (such as CUT, WEAKENING and CONTRACTION) can
be given by one rule (<). The proof system induces a
preorder on terms given by M Cg N iff N satisfies any
property that M satisfies.

DEFINITION. The proof system I' - M : ¢ is given by
axioms:

(wr) FM:w
(D) x:¢oFVz:¢
(=E) (@:029)A(y:¢)F2Qy: 4
(Va) x:iykavVy:d— ¢

(Vb) y:ykFavy:¢p— ¢

and structural rules:

'-M:¢p TEM:y
TF M (GAD)
FI<A AFM:¢p Fo<u
'k M:v
Le:¢pbM:v
F'FXe . M:p—
''EFD:A AFM:¢
F'krecDinM:¢

(A1)

(<)

(=1)

(rec)
The proof system I' - D : A is given by axiom:
(L) TFD:v(wwD).T
and structural rules:
'FD:A THD:0O

) e e FY W)
(<) FLSI TED: A FA<A
= '-D:A
()Fl—(fn:) A AFM:¢
' Ik (z:=1M):(z:9¢)
() DH@=",) A AFM:¢
' Lk (z:="M):(z:¢)
(L)FI—D,E.A AFD:©
TFD,E:©
o DED.E:A AFE:6
' TFD,E.©
v . TFD:A

) T'tve.D:vx. A
Then M Cg Niff VI, ¢ . THM:¢p=>THF N : 4. O

6 Confluence

In the following three sections we consider three proper-
ties of the operational semantics for graph reduction:

e This section looks at confluence.
e Section 7 looks at tagging.
e Section 8 looks at referential transparency.

These three properties are used in the proof that D is
fully abstract for Lam.

DEFINITION. A relation R is confluent iff x R™'R y
implies z RR~! y. |

Confluence is very useful in proving results about an
operational semantics. There are two reasons why —*
is not confluent. The first is due to garbage collection,

since:
, (9 (O

" Yy — Yy

*

but there is no declaration D such that:

; ()
@—)* D«* Ty
The second is due to fork updating, since:
X X X
OO
®
but there is no declaration D such that:
Q
() ONO

In the full paper, we present a reduction strategy —,
which:

=% D «"

e Does not use the garbage collection axiom (7).

e Replaces the fork updating axiom (VUPD) with ax-
ioms which only allow z := lyVz to be updated when
y and z have been tagged.

We then show that —. is confluent, and that, for any
closed D:

Dl iff tag, D =} E and z is in whnf in E

One corollary of this is that garbage collection is seman-
tically unimportant, since a term converges iff it con-
verges without garbage collecting. This is unsurprising,
since garbage collection is used to overcome memory lim-
itations.

7 Independence from tagging

The denotational semantics for tagged (z := M) and
untagged declarations (z := ?M) is the same, despite
the fact that tagged and untagged declarations have very
different operational behaviour. For example the decla-
ration:

vy . (z:=1ly:=1Q)
diverges, whereas the declaration:
vy . (z:=1y:=7Q)

does not. However, both of them can reach whnf at =z,
and since the testing equivalence is based on reaching
whnf, they are testing equivalent. In the full paper, we
show that convergence is independent of tagging, that is:

Dy, iff tag, D,

In order to show this, we present a reduction strategy
— 4, where a reduction D —, FE takes place only when
the reduction is needed in order to evaluate x. For ex-
ample, we allow:

oot

since we need to evaluate M in order to evaluate x, but:

Soet

since we may not need to evaluate NV in order to evaluate
z. This reduction strategy corresponds to the leftmost—
outermost reduction strategy used in sequential graph
reduction. We then show that —, ignores tagging infor-
mation, in that:

if tag, tag, D =" F
then tag, D —* F'and E = tag, F'
and that:
DJ}, iff tag, D — E and z is in whnfin E
From this, it is simple to show that:
Dy, iff tag, DY,

One corollary of this is that tagging is semantically u-
nimportant, since a term converges irrespective of which
subterms have been tagged. This is unsurprising, since
tagging is used for efficiency reasons.

8 Referential transparency

Referential transparency, introduced by EVANS (1968),
means that the semantics of a term should be the same
as the semantics of a pointer to a term. In our semantics
this is the same as saying:

[z :=!Vy,y :=M] = [z := M,y :=M]

Denotationally, this is quite simple to prove (although
it does require some non-trivial reasoning about fixed
points). But to prove this operationally is much harder.
We need to show that copying a section of graph is equiv-
alent to making a pointer into a section of graph. Much
of the work in showing this turns out to be in showing

that if two variables point to the same term, then we can
substitute one for the other, that is:

[(D,z:='M,y:=M)[z/z]]
= (D2 = M,y o= M) y/]]

In order to prove this operationally, we need to find some
property of a declaration (D, z := M,y := M) which we
can use as an operational invariant, so:

e If D satisfies the invariant and D[z/z] —. E then
E —? Flz/z], Dly/z] =% F[y/z], and F satisfies the
invariant.

We use this to show that if D[z/z]{},, then D[y/z]{,,
Unfortunately, we cannot use ‘z and y point to syntac-
tically identical terms’ as the invariant, since:

z = (recw =M in Vw),y := !(recw := M in Vw)
=2 vow . (v:=IM[v/w],w:=!M,z :=Vuv,y := Vw)

and although x and y are syntactically identical in the
LHS, they are not syntactically identical in the RHS. How-
ever, they are identical up to a-conversion, and we use
this as the basis of an invariant: simulation, based on
MILNER’s (1989) definition of bisimulation between pro-
cesses. Informally, two variables = and y are similar iff x
points to M, y points to N, and M and N are identical,
up to substitution of similar variables. More formally,
we define a simulation for v-less declarations as:

DEFINITION. The v-less declarations are:
e c,x:=!Mand xz:=7M.
e D,E when D and E are v-less.
R CwvD xwvD is a v-less D-simulation iff D is v-less,
and for any = R y:
e lf D=(x:=M,E)
then D = (y := IN[y/Z], F), M = N[Z/Z],and T R ¥.
e If D=(z:=7M,E)
then D = (y := ?’N[y/Z], F), M = N[Z/Z],and £ R §.
where £ R ¢ iff Vi . z; R y;. O
For example, if F is v-less, and D is the declaration:
z:=M,y:=!M,E

then one v-less D-simulation is: {(z,y)} and so z is D-
similar to y. We generalize simulation to any declaration
D by converting it into the form vZ . E, and finding a
v-less E-simulation:

DEFINITION.
e ve. R={(y,2) |s £y Rz #a}
e R is a D-simulation iff D = v¥ . E, R' is a v-less
E-simulation, and R = v# . R'.
e DI x ~ yiff there is a D-simulation R with z R y.O
For example:

(z: =M,y =M,E)Fz~y

In the full paper, we show that similar variables have the
same convergence, that is:

it D+ x~ythen Dy, & D,

We then use this to show referential transparency, in
that:

(D,z:=M,y:=M)|, iff (D,z:=Vy,y:=!M){,

9 Full abstraction

In the full paper, we show that D is fully abstract for Lam
in three stages. Firstly, we first define two alternative
interpretations of the program logic:

e A denotational interpretation [¢] : D and [I] : X.
e An operational interpretation I' |= M : ¢, based on
the operational semantics.

We then use the operational properties in Sections 6-8
to show that the three interpretations of the logic are
equivalent:

F'-M:¢iff [p] < [M][T]ifT =M : ¢
From this result, it is not difficult to show full abstrac-
tion:
MCo NIt MCg Nit MCp N

Thus, the techniques of ABRAMSKY and ONG can be
adapted to provide a fully abstract semantics for a prac-
tical implementation of the untyped A-calculus.

10 Conclusions

In this paper, we have investigated the relationship be-
tween the semantic notion of full abstraction and the
implementation technique of concurrent graph reduction.
We have shown that:

e Concurrent graph reduction can be given a simple
operational presentation in the style of BERRY and
BOUDOL’s (1990) chemical abstract machine.

The methods of ABRAMSKY (1989) and oNG’s (1988)
lazy A-calculus can be used to show that the fully
abstract model for leftmost-outermost reduction is
also fully abstract for concurrent graph reduction.

To show full abstraction, we discussed a confluent re-
duction strategy, the relationship between concurrent
and sequential reduction, and referential transparen-
cy. These properties are also important in imple-
mentations, and it is reassuring that showing full ab-
straction and writing compilers have so many issues
in common.

The full paper discusses related work in the semantics of
graph reduction, and possible future work.

10

References

ABRAMSKY, S. (1989). The lazy lambda calculus. In TURNER, D.,
editor, Declarative Programming. Addison-Wesley.

AUGUSTSSON, L. (1984). A compiler for lazy ML. In Proc. ACM
Symp. Lisp and Functional Programmsing, pages 218-227.

BARANDREGT, H. P., COPPO, M., and DEZANI-CIANCAGLINI, M.
(1983). A filter lambda model and the completeness of type
assignment. J. Symbolic Logic, 48(4):931 940.

BARENDREGT, H. P., VAN EEKELEN, M. C. J. D., GLAUERT, J. R. W.,
KENNAWAY, J. R., PLASMEIJER, M. J., and SLEEP, M. R. (1987).
Term graph rewriting. In Proc. PARLE 87, volume 2, pages
141 158. Springer-Verlag. LNCS 259.

BERRY, G. and BOUDOL, G. (1990). The chemical abstract ma-
chine. In Proc. 17th Ann. Symp. Principles of Programming
Languages.

BOUDOL, G. (1992). Lambda-calculi for (strict) parallel functions.
Technical report 1387, INRIA Sophia-Antipolis.

EVANS JR, A. (1968). PAL—a language for teaching programming
linguistics. In Proc. ACM 23rd Natl. Conf. Brandon/Systems
Press.

FAIRBURN, J. (1982). Ponder and its type system. Technical re-
port 31, Cambridge University Computer Lab.

HUDAK, P., PEYTON JONES, S. L., WADLER, P., et al.(1992). A report
on the functional language Haskell. SIGPLAN Notices.

JEFFREY, A. (1993). A chemical abstract machine for graph reduc-
tion. In Proc. MFPS 93. Springer-Verlag. LNCS.

JONES, M. (1992). The Gofer technical manual. Part of the Gofer
distribution.

KENNAWAY, J. R., KLOP, J. W., SLEEP, M. R., and DE VRIES, F. J.
(1993). The adequacy of term graph rewriting for simulating
term rewriting. In SLEEP, M. R., PLASMELJER, M. J., and VAN
EEKELEN, M. C. J. D., editors, Term Graph Rewriting: Theory
and Practice, chapter 12. John Wiley and Sons.

LAUNCHBURY, J. (1993). A natural semantics for lazy evaluation.
In Proc. ACM Sigplan Sigact POPL.

LESTER, D. (1989). Combinator Graph Reduction: A Congruence
and its Applications. D.Phil thesis, Oxford University.

MILNER, R. (1977). Fully abstract semantics of typed A-calculi.
Theoret. Comput. Sci., 4:1-22.

MILNER, R. (1989). Communication and Concurrency. Prentice-
Hall.

MILNER, R. (1991). The polyadic w-calculus: a tutorial. In Proc.
International Summer School on Logic and Algebra of Speci-
fication, Marktoberdorf.

ONG, C.-H. L. (1988). The Lazy Lambda Calculus: An Investigation
into the Foundations of Functional Programming. PhD thesis,
Imperial College, London University.

PEYTON JONES, S. L. (1987). The Implementation of Functional
Programming Languages. Prentice-Hall.

PLOTKIN, G. (1977). LCF considered as a programming language.
Theoret. Comput. Sci., 5:223 256.

PURUSHOTHAMAN, S. and SEAMAN, J. (1992). An adequate opera-
tional semantics of sharing in lazy evaluation. In Proc. ESOP
92.

TURNER, D. (1985). Miranda: A non-strict functional language
with polymorphic types. In Proc. IFIP Conf. Functional Pro-
gramming Languages and Computer Architecture. Springer-
Verlag. LNCS 201.

WADSWORTH, C. P. (1971). Semantics and Pragmatics of the Lamb-
da Calculus. D.Phil thesis, Oxford University.

