
A fully abstrat semantisfor onurrent graph redution:extended abstratAlan JeffreyAbstrat. This paper presents a formal model of the onurren-t graph redution implementation of non-strit funtional program-ming. This model di�ers from other models in that:� It represents onurrent rather than sequential graph redution.� It represents low-level onsiderations suh as garbage olletion.� It uses tehniques from onurreny theory to simplify the pre-sentation.There are three presentations of this model:� An operational semantis based on graph redution.� A denotational semantis in the domain D ' (D!D)?.� A program logi and proof system based on oppo types.We an then use abramsky and ong's tehniques from the lazy �-alulus to show that the denotational semantis is fully abstrat forthe operational semantis. This proof requires some results aboutthe operational semantis:� Sine the operational semantis inludes garbage olletion, re-dution is not onuent. We �nd a onuent redution strategywhih has the same onvergene properties as graph redution.� We use a sequential redution strategy to show that onurrentand sequential graph redution have the same onvergene prop-erties.� We use simulation between nodes in a graph to show referentialtranspareny.These properties are important in implementations as well as in show-ing full abstration.Address: COGS, University of Sussex, Brighton BN1 9QH, UKEmail: alanje�ogs.susx.a.ukCopyright 1993 Alan Je�reyThis work has been funded by SERC projet GR/H 16537.

1 IntrodutionThis paper is about the relationship between two �elds ofomputer siene: full abstration, and onurrent graphredution. Full abstration is the study of relating deno-tational and operational semantis. Conurrent graphredution is an eÆient parallel implementation teh-nique for non-strit funtional programming languages.Full abstration. Full abstration, originally de-�ned by milner (1977), explores the relationship be-tween an operational semantis and its models. The op-erational view of a programming language is given by:� A set of syntati terms T , and a subset of termsalled programs. The programs are then given anoperational semantis as a redution relation.� A set of tests together with an operational de�nitionof when a term passes a test. This indues the testingpreorder on terms t vO u i� every test t passes ispassed by u.A model of suh an operational view is:� A partially ordered set (D;�).� A funtion [[�℄℄ : T!D. This indues the denotationalpreorder on terms t vD u i� [[t℄℄ � [[u℄℄.We haraterize suh models:� D is orret i� t vO u implies t vD u.� D is omplete i� t vD u implies t vO u.� D is fully abstrat i� it is orret and omplete.For example, in abramsky (1989) and ong's (1988)analysis of the untyped �-alulus:� A term is an untyped �-alulus term, and a programis a losed term. The operational semantis is givenas leftmost{outermost redution between programsM ! N .� A test is a losing ontext C[�℄. A termM passes C[�℄i� C[M ℄ evaluates to weak head normal form, that isa �-term �w : N .This is then given a denotational semantis in the do-main D ' (D!D)?. abramsky and ong showed thatthis denotational semantis is orret but not omplete,and that the ompleteness problem an be redued to de-�nability, in that there is no untyped �-alulus `parallelonvergene test' term P with the semantis:[[P xyz℄℄� = (? if [[x℄℄� = [[y℄℄� = ?[[z℄℄� otherwiseand that if suh a term is added (and given an appro-priate operational semantis) then the semantis is om-plete.Conurrent graph redution. Graph redution isan eÆient implementation tehnique for non-strit fun-

tional programming languages, suh as augustsson's(1984) Lazy ml, fairburn's (1982) Ponder, jones's(1992) Gofer, turner's (1985) Miranda1, and Haskell(hudak et al., 1992).It was developed by wadsworth (1971) as an imple-mentation of leftmost{outermost redution. He observedthat leftmost{outermost redution an take exponentialtime to evaluate an expression, due to loss of sharinginformation. For example, if we de�ne:I = �x : x � = �x : xxM0N = N Mn+1N =M(MnN)Then the evaluation of �n+1 I!� I is, where `�' denotesfuntion appliation:
� �nI� ����������R��	 ?r rr r r����! �nI�nI � ����������R��	 ?r rr r r����!2n�2 I �nI� ����������R��	 ?r rr r r����! �nI?r����!2n�2 I?r����Thus, �n I takes 2n � 2 redutions to terminate. wads-worth observed that this ineÆieny an be removedby reduing syntax graphs rather than trees. The graphevaluation of �n+1 I !� I is, where `r' denotes an in-diretion, ! denotes a node whih has been tagged forevaluation, and ? denotes a note whih is untagged andis not urrently being evaluated:!�n+1Ir?�Æ �! ?�nI!� !� rrr rr ?��	 ��R������������ ! HHHj?�nI!� !� rrr rr ?��R������������! !�nIHHHj!� !� rrr rr ?��R������������ !6n ! IHHHj!� !� rrr rr ?��R������������! ! I!� rr rr ?��R������������!r ! ! I ! I!� r rr ?������������! ! Ir?����Thus, �n I takes 6n redutions to terminate. Note that1When used as the name of a programming language, Miranda isa trademark of Researh Software Limited1

a graph may ontain a number of tagged nodes, whihallows for onurrent exeution. The tagged nodes or-respond to peyton jones's (1987) program annotations,and also reord the bloking information of the graph.Full abstration and graph redution. Therehas been a number of papers showing full abstration fortree redution, notably plotkin's (1977) full abstrationfor pf with parallel onditionals, abramsky (1989) andong's (1988) full abstration for the lazy �-alulus, andboudol's (1992) full abstration for a �-alulus withall-by-value abstration and parallel evaluation.There has also been a number of papers showing theorretness of graph redution, notably by wadsworth(1971), barendregt et al. (1987), kennaway et al.(1993), lester (1989), launhbury (1993), purusho-thaman and seaman (1992), and the author (1993).However, there have been no proofs of full abstrationfor onurrent graph redution. In this paper, we willfollow abramsky (1989) when he said:Sine urrent pratie is well-motivated by eÆ-ieny onsiderations and is unlikely to be aban-doned readily, it makes sense to see if a good mod-i�ed theory an be developed for it.Overview. In this paper we present a formal treat-ment of onurrent graph redution, based on berry andboudol's (1990) Chemial Abstrat Mahine (ham).This operational semantis inludes:� Tagged and untagged nodes.� Garbage olletion.� Deadloked graphs.We also present a denotational semantis in the domainD ' (D!D)? in whih:� Whether a node is tagged or not is irrelevant.� Garbage olletion is semantially unimportant.� Deadlok and divergene are identi�ed.We then apply abramsky (1989) and ong's (1988) teh-niques to show that this semantis is orret, and thatby inluding parallel onvergene nodes in the syntax,the semantis is omplete.2 The �-alulus with reursive delarationsTerms from the �-alulus with re are:� rx is an indiretion pointing to x.� x�y is an appliation applying the funtion pointedto by x to the argument pointed to by y.� x_y is a fork whih evaluates the terms pointed toby x and y and returns the identity funtion if oneof them reahes weak head normal form. This isthe parallel onvergene operator Pxy of the lazy �-alulus.

� �x : M is an abstration.� reD inM is a loal reursive delaration of D inM .Delarations are:� x := !M is an tagged node delaring x to be M , andthat M should be evaluated immediately.� x := ?M is an untagged node delaring x to be M ,and thatM should not be evaluated until it is needed.� � is the empty delaration.� D;E is the onatenated delaration of D and E.� �x : D is the delaration D with a loal variable x.An expression is a term or a delaration. For example,the term: rex := ?M; y := ?N in x�ydelares x to be M and y to be N , then applies x to y.This an be ontrasted with the term:rex := !M; y := !N in x�ywhih is semantially equivalent, but allows evaluationof M and N to be performed onurrently. In the de-laration: x1 := !M1; : : : ; xm := !Mm;y1 := ?N1; : : : ; yn := ?Nnthe termsMi are tagged, and so they an all be evaluatedonurrently, whereas the terms Ni are untagged, and soare evaluated when they are needed. All delarations areonsidered to be reursive, for example the �xed pointof M is: rex := !M; y := !x�y in yWe have only allowed loal delarations in terms, notin delarations. However, sine we have allowed loalvariables �x : D, we an de�ne the loal delarationreD in E. For example, re(x = ?M) in (y = ?N)is: �x : (x := ?M; y := ?N)The handling of loal variables here is similar to sopein milner's (1991) polyadi �-alulus, and indeed hasa very similar operational semantis.Definition. Lam and De are de�ned:M ::= rx j x�y j x_y j �x : M j reD inMD ::= x := !M j x := ?M j � j D;D j �x : DLet D = E mean D and E are syntatially idential.2Examples. Given a vetor ~x = x1 : : : xn, we de�ne:�~x : D = �x1 : : : : : �xn : DWe implement the blak hole term:0 = rex := !rx in x2

We implement abramsky and ong's lazy �-alulus as(when x and y do not our in M or N):x = rxMN = rex := !M; y := ?N in x�yPMN = rex := !M; y := !N in x_yFor example, we an de�ne the diagonal and unsolvableterms: � = �x : xx
 = ��We shall see that 0 is deadloked whereas
 is divergen-t. 2Unfortunately, at the moment, there is nothing to pre-vent inonsistent delarations suh as:x := !M;x := !Nor delarations with dangling pointers suh as:�y : (x := !ry)We would like to avoid suh terms, sine their semantisis by no means obvious. We ahieve this by restritingour attention to well-formed expressions, with no inon-sisteny or dangling pointers.Definition. The written variables of a delaration are:wv(x := !M) = fxg wv(x := ?M) = fxg wv � = ;wv(D;E) = wvD [wvE wv(�x : D) = wvD n fxgAn expression is well-formed i�:� every subexpression D;E has wvD \ wvE = ;.� every subexpression �x : D has x 2 wvD.From now on, we shall only onsider well-formed expres-sions. 2Similarly, we de�ne the read variables and free variablesof an expression.Definition. The read variables of an expression are:rv(rx) = fxg rv(x�y) = fx; ygrv(x_y) = fx; yg rv(�x : M) = rvM n fxgrv(reD inM) = (rvM [rvD) n wvDrv(x := !M) = rvM rv(x := ?M) = rvM rv � = ;rv(D;E) = rvD [rvE rv(�x : D) = rvD n fxgThe free variables of an expression are:fvM = rvM fvD = rvD [wvDA delaration is losed i� rvD � wvD. 2In implementation terms, the read variables of a dela-ration are the pointers leading out of it, and the writtenvariables are pointers leading into it. For example, x isa pointer into x := !ry and y is a pointer out of it.Definition. A renaming is a funtion � : V ! V whihis almost everywhere the identity. De�ne:

� M [�℄ is M with any read variable x replaed by �x.� D[�℄ is D with any read variable x replaed by �x.� [�℄D is D with any written variable x replaed by �x.In eah ase we apply appropriate �-onversion to avoidapture of free variables. 2Examples. Some example renamings are:(x := !rx)[y=x℄ = (x := !ry)[y=x℄(x := !rx) = (y := !rx)[y=x℄(x := !rx)[y=x℄ = (y := !ry)(�y : (y := !rx))[y=x℄ = �z : (z := !ry)If wvD and wvE are disjoint then we de�ne a loalizeddelaration as:reD in E = �(wvD) : (D;E)this an be generalized to any D and E by �-onvertingD �rst. If wvD = fx1; : : : ; xng and y1; : : : ; yn are freshthen: reD in E = �~y : ([~y=~x℄D[~y=~x℄; E[~y=~x℄)for example:re(x := ?rx) in (x := !�w : x)= �y : (y := ?ry; x := !�w : y)We shall see below that x := !(reD inM) is semanti-ally equivalent to reD in (x := !M). 2Definition. We an draw a delaration as a graph,in the fashion of milner's (1989) ow graphs for s.A delaration x := !M with read variables y1; : : : ; yn isdrawn: y1 � � � yn!Mx�Æ �rr rSimilarly, a delaration x := ?M is drawn:?Mrr rxy1 � � � yn�Æ �When M is ry, y�z or y_z we usually elide the readvariables, drawing x := !ry, x := !y�z and x := !y_zas: zy zyyx x x rrr����!_rr����!r rrr����!�A delaration � is drawn as the empty graph.A delaration D;E is drawn by superimposing D onE. A delaration �x:D is drawn by drawing D and eras-ing any ourrene of x.Whenever we have the same variable being read andwritten in a graph, we draw an arrow from the read3

variable to the written variable. 2Examples. The appliation of � to M is drawn:x := !y�z;y := !�;z := ?M !�����r ?M����r��R��	 !�����r r rxy z �yz :(x := !y�z;y := !�;z := ?M) !�����r ?M����r��R��	 !�����r r rxThe appliation of M to itself, with sharing is drawn:x := !u�v;u := !rz;v := ?rz;z := ?M ��	��R ?r����rr!r����rr r����?M��R��	 rrr����!�xu vz z �uvz :(x := !u�v;u := !rz;v := ?rz;z := ?M) ����r
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	?MA yli graph is drawn:x := !ry;y := !ry yx ����?!r��

��rr!r����rr �y :(x := !ry;y := !ry) x ����?!r��
��rr!r����rrWe shall see that suh tight yli graphs give rise todeadlok. 23 Operational semantisIn this setion, we give a formal presentation of the on-urrent graph redution algorithm desribed by peytonjones (1987). We shall use delarations to representgraphs, and give the operational semantis as a redu-tion relation D ! E between delarations.We give our operational semantis in two parts, basedon berry and boudol's (1990) Chemial Abstrat Ma-hine. We shall �rst de�ne a syntati equivalene � ondelarations, and then de�ne an operational semantison delarations up to �. This allows us to abstrat awayfrom syntati details suh as assoiativity of onate-nation, and present the `bare bones' of the operationalsemantis.A similar approah has been taken by milner (1991)in presenting the �-alulus, and we shall follow his ex-ample more losely than that of berry and boudol.Definition. � is given in Table 1. 2We use the equivalene � to simplify the operationalsemantis for graph redution. This is given as eight ax-ioms and three strutural rules. The axioms are brokendown into four phases:

� Graph building, in whih a reursive delaration isexpanded into a graph, for example:!vvrr����??
xrr����?rr����!� ! r����!�rr����?r?

x!�����r r r��	 ��Rrr����!r rr����?r��R ��	
� Spine traversal, in whih an untagged node pointedto by a tagged node beomes tagged, for example:

r����!�rr����?r?
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	 ! !rrrr����!�?

x!�����r r r��	 ��Rrr����!r rr����?r��R ��	����There are three axioms, depending on whether thetagged node is an indiretion, an appliation, or afork.� Updating, in whih a node pointing to an abstrationis updated, for example:
!rrrr����!�?
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	����! r����!�r����!�

x!�����r r r��	 ��Rrr����!r rr����?r��R ��	
There are three axioms, depending on whether thenode is an indiretion, an appliation, or a fork.� Garbage olletion, in whih a sub-graph with no in-

4

(asso) D; (E;F) � (D;E); F(omm) D;E � E;D(unit) D; � � D(�) �x : D � �z : ([z=x℄D[z=x℄)(�swap) �x : �y : D � �y : �x : D(�mig) D; �z : E � �z : (D;E)(_omm) x := !(y_z) � x := !(z_y)(refl) D � D
(symm) D � EE � D(trans) D � E � FD � F(l) D � ED;F � E;F(r) D � EF;D � F;E(�) D � E�x : D � �x : ETable 1. The de�nition of � (when z 62 fvD)oming pointers is removed, for example:

r����!�r����!�
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	 ! !�����r ��	��R ?r����rr!r����rr ��R��	 rrr����!�x

These phases are not sequential, and there may be morethan one axiom whih an be applied at any one point.Sine eah axiom (apart from garbage olletion) uses asmall number of nodes, there is muh sope for onur-reny, for example:
r����!�r����!�
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	 ! !�����r ?

x!�����r r r��	 ��R rr����?rr����!�r����!�
#
!�����r ��	��R ?r����rr!r����rr ��R��	 rrr����!�x ! !�����r !�����r?r����rr��R��	 rrr����!�x ?Definition. 7! is given in Table 2, and D ! E i�

D �7!� E. 2Examples. For any M , the redution:x := !�M!5 �uvz : (x := !u�v; u := !rz; v := ?rz; z := !M)is drawn:r�Æ �!�Mx ! !�����r ?M����r��R��	 !�����r r rx ! !�����r ����!zzx?M����rrr?! ?rrr����?Mx!zz����! ����r
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	?M ! ��	��R ?r����rr!r����rr ��R��	 rrr����!�xr����!MThe redution: (x := !
)!1 is drawn:

!
xr����!� !�����r ��	��R ?r����rr!r����rr ��R��	 rrr����!�x ! !�����r !�����r?r����rr��R��	 rrr����!�x ?! !vvrr����??
xrr����?rr����!�r����!�

5

(build) x := !(reD inM) 7! reD in (x := !M)(rtrav) x := !ry; y := ?M 7! x := !ry; y := !M(�trav) x := !y�z; y := ?M 7! x := !y�z; y := !M(_trav) x := !y_z; y := ?M 7! x := !y_z; y := !M(rupd) x := !ry; y := !�w : M 7! x := !�w : M; y := !�w : M(�upd) x := !y�z; y := !�w : M 7! x := !M [z=w℄; y := !�w : M(_upd) x := !y_z; y := !�w : M 7! x := ! I; y := !�w : M() �(wvD) : D 7! �
(l) D 7! ED;F 7! E;F(r) D 7! EF;D 7! F;E(�) D 7! E�x : D 7! �x : ETable 2. The de�nition of 7!

! !vvrr����??
xrr����?rr����!� ! r����!�rr����?r?

x!�����r r r��	 ��Rrr����!r rr����?r��R ��	 ! !rrrr����!�?
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	����

! r����!�r����!�
x!�����r r r��	 ��Rrr����!r rr����?r��R ��	 ! !�����r ��	��R ?r����rr!r����rr ��R��	 rrr����!�x ! � � �

This an be ontrasted with the redution:
����r!0x ! x ����?!r��

��rr!r����rr 6!Thus the delaration x := !0 is deadloked rather thandivergent. Denotationally, we shall identify the terms 0and
, sine neither of them an reah weak head normalform, although operationally they are very di�erent. 2We de�ne x to be in weak head normal form (whnf) inD i� D ontains x := !�w : M .Definition.� x is in whnf in (x := !�w : M).� x is in whnf in (D;E) if x is in whnf in D or E.

� x is in whnf in �y :D if x is in whnf in D and x 6= y.2A variable x onverges in D i�, one it has been taggedfor evaluation, it an reah whnf.Definition. tagx is de�ned (when x 6= y) as:tagx(x := !M) = (x := !M)tagx(x := ?M) = (x := !M)tagx(y := !M) = (y := !M)tagx(y := ?M) = (y := ?M)tagx � = �tagx(D;E) = (tagxD); (tagxE)tagx(�x : D) = �x : Dtagx(�y : D) = �y : (tagxD)For losed D, D +x E i� tagxD !� E and x is in whnfin E, and D+x i� 9E : D +x E 2This provides us with the may-testing preorder :Definition. M vO N i� C[M ℄+x) C[N ℄+x for any xand losing ontext C. 24 Denotational semantisThe denotational semantis for Lam is given in the samedomain D ' (D ! D)? as abramsky and ong's lazy�-alulus.Definition. D is the initial solution of:D ' (D!D)?Let the ontinuous funtions unfold : D! (D!D)? andfold : (D!D)?!D form the above isomorphism.An environment is a funtion � : V ! D. Let � bethe domain of environments, ordered pointwise.This de�nition is made preise in the full paper. 2The semantis of a term M is given as an element [[M ℄℄�of D. The semantis of a delaration D is given as anelement [[D℄℄� of �. The main di�erene between the se-mantis of Lam and that of the lazy �-alulus is that theformer makes expliit use of reursion in the semantisof delarations.6

Definition. De�ne [[M ℄℄ : �!D as:[[rx℄℄� = �x[[x�y℄℄� = apply(�x)(�y)[[x_y℄℄� = fork(�x)(�y)[[�x : M ℄℄� = fold(lift([[M ℄℄ Æ update�x))[[reD inM ℄℄� = [[M ℄℄([[D℄℄�)De�ne [[D℄℄ : �!� as:[[x := !M ℄℄� = �x(setfxg(x := [[M ℄℄))�[[x := ?M ℄℄� = �x(setfxg(x := [[M ℄℄))�[[�℄℄� = �[[D;E℄℄� = �x(set(wv(D;E))([[D℄℄ Æ [[E℄℄))�[[�x : D℄℄� = new x[[D℄℄�where: fork ab = (? if a = b = ?fold(lift id) otherwiseapply ab = (fb if unfolda = lift f? otherwiseupdate�xay = (a if x = y�y otherwisenewxf�y = (�x if x = yf�y otherwise(x := f)�y = (f� if x = y�y otherwisesetXfg�x = (f(g�)x if x 2 X�x otherwise�x f = Wffn? j n in !gM vD N i� [[M ℄℄ � [[N ℄℄. 2The semantis agrees with abramsky and ong's lazy�-alulus: [[x℄℄� = �x[[MN ℄℄� = apply([[M ℄℄�)([[N ℄℄�)[[PMN ℄℄� = fork([[M ℄℄�)([[N ℄℄�)5 Program logiThe proof that D is fully abstrat for Lam proeeds inmuh the same way as for abramsky and ong's lazy �-alulus. We present the program logi of oppo type-s (barandregt et al., 1983) and use it as a link be-tween the denotational and operational semantis. Theprogram logi � has propositions:� !, satis�ed by any losed term.� � ^ , satis�ed by any term that satis�es � and .

� �! , satis�ed by any term that onverges, and thatwhen applied to any term satisfying � the result sat-is�es .For example, a losed term satis�es = ! ! ! i� itonverges.Definition. � is de�ned as:� ::= ! j � ^ � j �! �A ontext � is a list x1 : �1; : : : ; xn : �n with distint xi.� Let wv(x1 : �1; : : : ; xn : �n) = fx1; : : : ; xng.� Let (�; x : �;�)(x) = �, and �(x) = ! whenx 62 wv�.� Let �^� be the ontext s.t. (�^�)(x) = �(x)^�(x).� Let �x : (�; x : �;�) = �;� and �x : � = � whenx 62 wv�. 2� is given a proof system for judgements of the form� `M : � and � ` D : �. This is �rst given as a preorder` � � , whih haraterizes when is a re�nement of�.Definition. The preorder � is given by axioms:(id) ` � � �(!i) ` � � !(^ea) ` � ^ � �(^eb) ` � ^ � (!!) ` �! ! � !! !(!^) ` (�!) ^ (�! �) � �! (^ �)and strutural rules:(trans) ` � � � �` � � � (^i) ` � � ` � � �` � � (^ �)(!�) ` �0 � � ` � 0` (�!) � (�0! 0)Let ` � = i� ` � � � � and ` � � � i�8x : ` �(x) � �(x). 2For example, we an show that ^ is ommutative, as-soiative, idempotent and has unit ! in the equivalene` � = . The partial order ` � � is used in de�ningthe proof system � ` M : �, sine all of the struturalrules (suh as ut, weakening and ontration) anbe given by one rule (�). The proof system indues apreorder on terms given by M vS N i� N satis�es anyproperty that M satis�es.Definition. The proof system � ` M : � is given byaxioms:(!i) `M : !(id) x : � ` rx : �(!e) (x : �!) ^ (y : �) ` x�y : (_a) x : ` x_y : �! �(_b) y : ` x_y : �! �7

and strutural rules:(^i) � `M : � � `M : � `M : (� ^)(�) ` � � � � `M : � ` � � � `M : (!i) �; x : � `M : � ` �x : M : �! (re) � ` D : � � `M : �� ` reD inM : �The proof system � ` D : � is given by axiom:(?) � ` D : �(wvD) : �and strutural rules:(^i) � ` D : � � ` D : �� ` D : (� ^�)(�) ` � � �0 �0 ` D : �0 ` �0 � �� ` D : �(!) � ` (x := !M) : � � `M : �� ` (x := !M) : (x : �)(?) � ` (x := ?M) : � � `M : �� ` (x := ?M) : (x : �)(l) � ` D;E : � � ` D : �� ` D;E : �(r) � ` D;E : � � ` E : �� ` D;E : �(�) �x : � ` D : �� ` �x : D : �x :�Then M vS N i� 8�; � : � `M : �) � ` N : . 26 ConueneIn the following three setions we onsider three proper-ties of the operational semantis for graph redution:� This setion looks at onuene.� Setion 7 looks at tagging.� Setion 8 looks at referential transpareny.These three properties are used in the proof that D isfully abstrat for Lam.Definition. A relation R is onuent i� x R�1R yimplies x RR�1 y. 2Conuene is very useful in proving results about anoperational semantis. There are two reasons why !�is not onuent. The �rst is due to garbage olletion,sine: ? Iry���� � ? Ir!r����rr?y����!� ! Ir!r����rr?y����

but there is no delaration D suh that:? Iry����!� D � ! Ir!r����rr?y����The seond is due to fork updating, sine:
! I! Ir���� ryx��	 rrr����!_��R���� � ! Ir���� ? Iryx��	 rrr����!_��R����!� ? I! I! Ir���� ryxr ��������but there is no delaration D suh that:! I! Ir���� ryx��	 rrr����!_��R����!� D � ? I! I! Ir���� ryxr ��������In the full paper, we present a redution strategy !,whih:� Does not use the garbage olletion axiom ().� Replaes the fork updating axiom (_upd) with ax-ioms whih only allow x := !y_z to be updated wheny and z have been tagged.We then show that ! is onuent, and that, for anylosed D:D+x i� tagxD !� E and x is in whnf in EOne orollary of this is that garbage olletion is seman-tially unimportant, sine a term onverges i� it on-verges without garbage olleting. This is unsurprising,sine garbage olletion is used to overome memory lim-itations.7 Independene from taggingThe denotational semantis for tagged (x := !M) anduntagged delarations (x := ?M) is the same, despitethe fat that tagged and untagged delarations have verydi�erent operational behaviour. For example the dela-ration: �y : (x := ! I; y := !
)diverges, whereas the delaration:�y : (x := ! I; y := ?
)does not. However, both of them an reah whnf at x,and sine the testing equivalene is based on reahingwhnf, they are testing equivalent. In the full paper, weshow that onvergene is independent of tagging, that is:D+x i� tagyD+x8

In order to show this, we present a redution strategy!x, where a redution D !x E takes plae only whenthe redution is needed in order to evaluate x. For ex-ample, we allow:
?M !r!r?rrr ?Nrrr?

x!�����r r r��	 ��R���������������� !x !M !r!r?rrr ?Nrrr?
x!�����r r r��	 ��R����������������sine we need to evaluate M in order to evaluate x, but:

?M !r!r?rrr ?Nrrr?
x!�����r r r��	 ��R���������������� 6!x !N��������������R��	 rrr����!�x ?rrrrrr?!r !r?M ����sine we may not need to evaluate N in order to evaluatex. This redution strategy orresponds to the leftmost{outermost redution strategy used in sequential graphredution. We then show that !x ignores tagging infor-mation, in that:if tagx tagyD !� Ethen tagxD !� F and E � tagy Fand that:D+x i� tagxD !�x E and x is in whnf in EFrom this, it is simple to show that:D+x i� tagyD+xOne orollary of this is that tagging is semantially u-nimportant, sine a term onverges irrespetive of whihsubterms have been tagged. This is unsurprising, sinetagging is used for eÆieny reasons.8 Referential transparenyReferential transpareny, introdued by evans (1968),means that the semantis of a term should be the sameas the semantis of a pointer to a term. In our semantisthis is the same as saying:[[x := !ry; y := !M ℄℄ = [[x := !M; y := !M ℄℄Denotationally, this is quite simple to prove (althoughit does require some non-trivial reasoning about �xedpoints). But to prove this operationally is muh harder.We need to show that opying a setion of graph is equiv-alent to making a pointer into a setion of graph. Muhof the work in showing this turns out to be in showing

that if two variables point to the same term, then we ansubstitute one for the other, that is:[[(D; x := !M; y := !M)[x=z℄℄℄= [[(D; x := !M; y := !M)[y=z℄℄℄In order to prove this operationally, we need to �nd someproperty of a delaration (D; x := !M; y :=M) whih wean use as an operational invariant, so:� If D satis�es the invariant and D[x=z℄ ! E thenE !� F [x=z℄, D[y=z℄!� F [y=z℄, and F satis�es theinvariant.We use this to show that if D[x=z℄+w then D[y=z℄+w.Unfortunately, we annot use `x and y point to synta-tially idential terms' as the invariant, sine:x := !(rew := !M in rw); y := !(rew := !M in rw)!2 �vw : (v := !M [v=w℄; w := !M;x := !rv; y := !rw)and although x and y are syntatially idential in thelhs, they are not syntatially idential in the rhs. How-ever, they are idential up to �-onversion, and we usethis as the basis of an invariant: simulation, based onmilner's (1989) de�nition of bisimulation between pro-esses. Informally, two variables x and y are similar i� xpoints to M , y points to N , and M and N are idential,up to substitution of similar variables. More formally,we de�ne a simulation for �-less delarations as:Definition. The �-less delarations are:� �, x := !M and x := ?M .� D;E when D and E are �-less.R � wvD�wvD is a �-less D-simulation i� D is �-less,and for any x R y:� If D � (x := !M;E)thenD � (y := !N [~y=~z℄; F),M = N [~x=~z℄, and ~x R ~y.� If D � (x := ?M;E)thenD � (y := ?N [~y=~z℄; F),M = N [~x=~z℄, and ~x R ~y.where ~x R ~y i� 8i : xi R yi. 2For example, if E is �-less, and D is the delaration:x := !M; y := !M;Ethen one �-less D-simulation is: f(x; y)g and so x is D-similar to y. We generalize simulation to any delarationD by onverting it into the form �~x : E, and �nding a�-less E-simulation:Definition.� �x :R = f(y; z) j x 6= y R z 6= xg.� R is a D-simulation i� D � �~x : E, R0 is a �-lessE-simulation, and R = �~x :R0.� D ` x � y i� there is a D-simulationR with x R y.2For example:(x := !M; y := !M;E) ` x � y9

In the full paper, we show that similar variables have thesame onvergene, that is:if D ` x � y then D+x , D+yWe then use this to show referential transpareny, inthat:(D; x := !M; y := !M)+z i� (D; x := !ry; y := !M)+z9 Full abstrationIn the full paper, we show thatD is fully abstrat for Lamin three stages. Firstly, we �rst de�ne two alternativeinterpretations of the program logi:� A denotational interpretation [[�℄℄ : D and [[�℄℄ : �.� An operational interpretation � j= M : �, based onthe operational semantis.We then use the operational properties in Setions 6{8to show that the three interpretations of the logi areequivalent:� `M : � i� [[�℄℄ � [[M ℄℄[[�℄℄ i� � j=M : �From this result, it is not diÆult to show full abstra-tion: M vO N i� M vS N i� M vD NThus, the tehniques of abramsky and ong an beadapted to provide a fully abstrat semantis for a pra-tial implementation of the untyped �-alulus.10 ConlusionsIn this paper, we have investigated the relationship be-tween the semanti notion of full abstration and theimplementation tehnique of onurrent graph redution.We have shown that:� Conurrent graph redution an be given a simpleoperational presentation in the style of berry andboudol's (1990) hemial abstrat mahine.� The methods of abramsky (1989) and ong's (1988)lazy �-alulus an be used to show that the fullyabstrat model for leftmost-outermost redution isalso fully abstrat for onurrent graph redution.� To show full abstration, we disussed a onuent re-dution strategy, the relationship between onurrentand sequential redution, and referential transparen-y. These properties are also important in imple-mentations, and it is reassuring that showing full ab-stration and writing ompilers have so many issuesin ommon.The full paper disusses related work in the semantis ofgraph redution, and possible future work.

Referenesabramsky, s. (1989). The lazy lambda alulus. In turner, d.,editor, Delarative Programming. Addison-Wesley.augustsson, l. (1984). A ompiler for lazy ML. In Pro. ACMSymp. Lisp and Funtional Programming, pages 218{227.barandregt, h. p., oppo, m., and dezani-ianaglini, m.(1983). A �lter lambda model and the ompleteness of typeassignment. J. Symboli Logi, 48(4):931{940.barendregt, h. p., van eekelen, m. . j. d., glauert, j. r. w.,kennaway, j. r., plasmeijer, m. j., and sleep, m. r. (1987).Term graph rewriting. In Pro. PARLE 87, volume 2, pages141{158. Springer-Verlag. LNCS 259.berry, g. and boudol, g. (1990). The hemial abstrat ma-hine. In Pro. 17th Ann. Symp. Priniples of ProgrammingLanguages.boudol, g. (1992). Lambda-aluli for (strit) parallel funtions.Tehnial report 1387, INRIA Sophia-Antipolis.evans jr, a. (1968). PAL|a language for teahing programminglinguistis. In Pro. ACM 23rd Natl. Conf. Brandon/SystemsPress.fairburn, j. (1982). Ponder and its type system. Tehnial re-port 31, Cambridge University Computer Lab.hudak, p., peyton jones, s. l., wadler, p., et al.(1992). A reporton the funtional language Haskell. SIGPLAN Noties.jeffrey, a. (1993). A hemial abstrat mahine for graph redu-tion. In Pro. MFPS 93. Springer-Verlag. LNCS.jones, m. (1992). The Gofer tehnial manual. Part of the Goferdistribution.kennaway, j. r., klop, j. w., sleep, m. r., and de vries, f. j.(1993). The adequay of term graph rewriting for simulatingterm rewriting. In sleep, m. r., plasmeijer, m. j., and vaneekelen, m. . j. d., editors, Term Graph Rewriting: Theoryand Pratie, hapter 12. John Wiley and Sons.launhbury, j. (1993). A natural semantis for lazy evaluation.In Pro. ACM Sigplan{Sigat POPL.lester, d. (1989). Combinator Graph Redution: A Congrueneand its Appliations. D.Phil thesis, Oxford University.milner, r. (1977). Fully abstrat semantis of typed �-aluli.Theoret. Comput. Si., 4:1{22.milner, r. (1989). Communiation and Conurreny. Prentie-Hall.milner, r. (1991). The polyadi �-alulus: a tutorial. In Pro.International Summer Shool on Logi and Algebra of Spei-�ation, Marktoberdorf.ong, .-h. l. (1988). The Lazy Lambda Calulus: An Investigationinto the Foundations of Funtional Programming. PhD thesis,Imperial College, London University.peyton jones, s. l. (1987). The Implementation of FuntionalProgramming Languages. Prentie-Hall.plotkin, g. (1977). LCF onsidered as a programming language.Theoret. Comput. Si., 5:223{256.purushothaman, s. and seaman, j. (1992). An adequate opera-tional semantis of sharing in lazy evaluation. In Pro. ESOP92.turner, d. (1985). Miranda: A non-strit funtional languagewith polymorphi types. In Pro. IFIP Conf. Funtional Pro-gramming Languages and Computer Arhiteture. Springer-Verlag. LNCS 201.wadsworth, . p. (1971). Semantis and Pragmatis of the Lamb-da Calulus. D.Phil thesis, Oxford University.10

