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Abstract

This paper describes EQUALS, a fast parallel implementation of a lazy functional language
on a commercially available shared-memory parallel machine, the Sequent Symmetry. In
contrast to previous implementations, we detect parallelism automatically using strictness
analysis. Another important difference between EQUALS and previous implementations is
the use of reference counting for memory management, instead of garbage collection. Our
implementation shows that reference counting leads to very good scalability, low memory
requirements and improved locality. We compare our results with other sequential (SML/NJ)
and parallel ({v, G)-machine and GAML) implementations of functional languages.

1 Introduction

It is well known that functional languages offer a conceptually simple vehicle for program-
ming parallel computers. The main reason for this is that expressions may be evaluated in
any order, due to the absence of side-effects. Therefore, detection as well as exploitation of
parallelism is much simpler than in imperative languages. This fact has been exploited in

! A preliminary version of this paper appeared in LFP’92.



many previous parallel implementations such as ALICE [Dar81], FLAGSHIP [WW87], GRIP
[PJ8T7], Buckwheat [Gol88a], the (v, G)-machine [Aug89] and GAML [Mar91]. Whereas AL-
ICE, FLAGSHIP and GRIP make use of specialized hardware, the other three implementa-
tions are based on commercially available shared-memory multiprocessors. In this paper, we
focus on the latter approach and describe EQUALS, a fast parallel implementation of a lazy
functional language? on Sequent Symmetry.

One of the earliest lazy parallel implementations on a shared-memory multiprocessor was
Buckwheat. It demonstrated the feasibility of parallel implementation, but was not tuned
for performance. On the other hand, the (v, G)-machine and GAML showed performance
improvement over sequential implementations such as LML [Aug84], starting from two pro-
cessors. Both these implementations were able to reduce parallel overheads, and consequently
their performance continued to improve even when the number of processors was increased
to ten or more. However, these implementations do not satisfactorily exploit one of the
primary advantages of functional languages for parallel evaluation, namely, automatic detec-
tion of parallelism. For instance, the (v, G)-machine and GAML use program annotations as
the only means to identify parallelism. These annotations can be quite cumbersome for the
programmer. The approach used in Buckwheat relies on strictness information to identify
parallelism, but the strictness information used is based on head-normal form (HNF)? and
is not sufficient (as we show later) to identify significant parallelism in most programs. To
alleviate this problem they make assumptions such as cons and append being strict, which
runs counter to the goals of lazy evaluation.

A second problem with the (v, G)-machine and GAML is that they use memory man-
agement techniques that do not scale well. The (v, G)-machine uses a sequential garbage
collector and its performance figures given in [Aug89] do not include garbage collection times.
GAML uses a parallelized garbage collector, but it scales poorly, e.g., one of the garbage col-
lector speedup curves flattens at a speedup of 2 when the number of processors is increased
to 7 or 8. The EQUALS implementation overcomes both these drawbacks as follows:

e Automatic detection of parallelism by propagating exhaustive demand as far as possible.
We accomplish this using ee-strictness analysis developed in [SPR90]*. As we show in
section 2, exhaustive evaluation also increases task granularity by packing several HNF
tasks into one task. It also improves sequential performance by avoiding repeated
traversals of the graph.

o Using reference counting for memory management. Our implementation results show
that it scales well and also has low memory requirements without compromising effi-
ciency.

A brief overview of the EQUALS system is presented below.

%In a lazy functional language, only those computations that are necessary to obtain the normal form of an input
expression are performed [HL93].

3We use HNF and weak HNF interchangeably.

*Most of the other strictness methods do not deal with (exhaustive) normal form demands. For the parallelism

detection discussed here, any strictness method that deals with normal form demands can be used.



1.1 Overview of the Implementation

The EQUALS system consists of a compiler and a runtime support system. The runtime
support system is broadly divided into subsystems for I/O, memory management, and task
management. The I/O subsystem reads an input term from the user, parses it, and creates
an initial graph structure. After the input term has been evaluated to normal form, the
subsystem invokes a pretty-printer to display the result. Since such support facilities are
straightforward, they will not be discussed further. Instead, the remainder of the paper
describes the compiler, memory management, and task management, beginning with an
overview of each of these modules.

The EQUALS compiler uses ee-strictness analysis to detect parallelism. This information
is used in translating the source program into a combinator-based intermediate language.
The intermediate language includes constructs for creating parallel tasks and synchronizing
among them. The goal of compiled code is to normalize a given input expression. If multiple
subterms need to be evaluated in order to normalize the input expression, these subterms can
be evaluated in parallel. Subterms that are evaluated in parallel are taken up by individual
tasks, which execute the compiled code on their private stacks. Since there may be many
more parallel tasks than the resources available (e.g., processors, shared memory), tasks are
created only when they are deemed useful. Some of these decisions are made at compile
time itself; for instance, the compiler will never emit code to create a new task, unless it
can generate code for work to be done concurrently by the existing task. At runtime, on the
other hand, opportunities for additional parallelism will be passed up, if many parallel tasks
already exist.

Although these tasks can be executed as UNIX processes, it is very expensive to do so.
EQUALS implements a mechanism for managing light-weight tasks, where tasks are executed
under the control of evaluator processes (one per processor). All runnable tasks are placed
in a global ready queue. If a task needs the value of a subterm that is currently being
evaluated by another task, then the first task is suspended, awaiting the evaluation of the
subterm. The evaluator then begins execution of a task from the ready queue. Once the
evaluation of a term is completed, all tasks awaiting its evaluation are put back in the global
queue. The size of the global ready queue is used to share and balance the system load.
Task management is discussed in section 5.

Heap space needed for evaluation of a task is allocated out of a block of free space
maintained by the corresponding evaluator. When an evaluator runs out of free space, it
allocates a block from a global pool. Heap space freed by a task is released into the free
space of the corresponding evaluator. When an evaluator accumulates more than a preset
amount of free space, it returns the excess to the global pool. Stacks and other structures
used by the tasks are also allocated and freed in the same manner. A detailed description
of the memory management scheme appears in section 4.

The rest of this paper is organized as follows. The next section elaborates on the issues
of parallelism detection and memory management. The EQUALS compiler is described in
section 3. Sections 4 and 5 describe our memory and task management schemes. A de-
tailed discussion of performance of EQUALS is presented in section 6. Our results show that



sequential performance is comparable to SML/NJ, one of the fastest functional language im-
plementations. The parallel performance of EQUALS is about the same as the (v, G)-machine,
even though EQUALS times include memory management whereas the (v, G)-machine times
exclude garbage collection time. Results also show that reference counting mechanism scales
well, uses less memory and has better memory locality than copying garbage collection.
Concluding remarks about our experience with EQUALS appear in section 7.

2 Issues in Parallelism

The novelty the EQUALS implementation among other shared memory implementations lies
in the detection and control of parallelism and in memory management. In this section, we
elaborate on these issues.

2.1 Detection of Parallelism

There have been two approaches to identifying parallelism in lazy languages. One approach,
used in the (v, G)-machine and GAML, requires programs to be annotated for parallelism.
These annotations are different from strictness annotations and can be cumbersome since
they are always required. Moreover, to ensure that laziness is not compromised, the task
scheduler must have a mechanism to ensure that the normal order branch of computation
makes progress. This requires preemption of all resources — processor, heap and stacks.
An alternative approach is followed in EQUALS and uses strictness information to identify
parallel components. Since strictness identifies only those computations that are needed
for the input expression to be normalized, no additional mechanism is necessay to ensure
progress of normal order branches. This approach has been used in earlier implementations
such as [Geo89] and [Gol88b|. However, they could not extract much parallelism from
strictness information alone, since their model of computation was based on (repeated) head
evaluation and not on exhaustive evaluation. Hence, the strictness information they use

also deals with head-normal forms alone®

. This strictness information is not sufficient (as
shown below) to detect significant parallelism in many programs. In order to get sufficient
parallelism, they assume that even non-strict functions such as cons and append are strict.

To illustrate why strictness based upon HNF alone is not sufficient to identify paral-
lelism, consider the QuickSort example shown in figure 1. In that example, the function
split partitions a list (first argument) based on a pivot (second argument) into two lists.
The function gsl takes these partitioned lists, sorts the individual lists and puts them to-
gether using append. Thus g¢s(l) first splits the list into /; and I, and subsequently calls
append(gs(l1),qs(lz)). Hence, a HNF demand on gs results in a HNF demand on append.
By the definition of append, a HNF demand on its output results in a HNF demand on its
first argument and no demand on its second argument. Hence, gs(l5) would be invoked only

after gs(l1) is completely evaluated. All the parallelism in QuickSort arises from sorting both

®i.e., it provides information about which arguments of a function are to be head-normalized in order to head-
normalize the function application.



(z:2s) — qsl(split(zs,z,nil, nil))
qs (nil) — il
split(e : ®s,y,u,v) — if(e >y, split(zs,y, 2 :u,v),
split(zs, y, u, @ : v))
split(nil, y,u,v) — <u,y,v>
gsl(< z,y,2>) — append(gs(z),y: qs(2))
append(z : ®s,y) — @ :append(zs,y)
append(nil,y) — y

Figure 1: QuickSort program (‘:’ denotes the cons operator)

the partitioned lists in parallel, and propagating HNF demand alone is unable to extract any
of this parallelism.

We now illustrate how even the extreme measure of declaring append as strict in both
arguments (under HNF demand) does not lead to any significant parallelism. This is because
not only is the HNF strictness insufficient to extract much parallelism, but the HNF evalu-
ation mechanism is unable to exploit the parallelism. If append is strict in both arguments
then ¢s(l;) and gs(ls) could be invoked in parallel. However, gs(l5) would be evaluated in
parallel with ¢s(l;) only until their HNFs are obtained. Evaluation of ¢s(l3) would then be
suspended until append consumes all of its first argument — i.e., until ¢s({;) is completely
evaluated. Hence little parallelism results even when append is declared to be strict. To
exploit all the parallelism in quicksort while performing repeated HNF evaluations alone,
cons has to be considered strict — which runs counter to the goals of lazy evaluation.

2.1.1 Propagating NF Demand and its Merits

In EQUALS, we follow the model of exhaustive (NF) evaluation, instead of repeated HNF
evaluation. We identify two extents to which a term may be evaluated — to HNF or to NF
— based on the context of evaluation (the demand). Observe that if the output of append
(or cons) is demanded in NF then both its arguments are needed in NF. In other words,
append and cons are ee-strict (see [SPR90] for details) in their arguments. By propagat-
ing NF demand in this manner and utilizing ee-strictness information, we can identify all
the parallelism in the examples discussed in this paper. The advantages on NF demand
propagation are described below.

In previous implementations, tasks compute weak head-normal forms of terms. (Hence-
forth, we use “terms”, “graphs” and “expressions” interchangeably.) However, HNF tasks
are typically fine grained and therefore can easily lead to significant overheads. Although
this problem can be alleviated to a large extent by a careful design of task management (as
is done in [Aug89] and [Mar91]), nevertheless it is advantageous to use larger grained tasks.
Use of NF demand (also called exhaustive or e-demand) helps achieve this, since it packs
several HNF tasks into a single task.

Propagating exhaustive demand also increases the efficiency of sequential evaluation since
it avoids repeated closure construction and context switching. For instance, observe that in



the QuickSort example, ¢s(l) eventually reduces® to
append(append(- - - append(t1,t) - --)

If we do propagate only HNF demand, then the request to head normalize the outermost
append results in another call to head-normalize the inner append. This proceeds all the way
to the innermost append, which then outputs a single element. This element is consumed by
the next outer append and so on until the top-level append outputs one element. The rest
of the computation is represented in a closure, which is invoked only after the first element
is consumed. In contrast, if we propagate NF demand then the top-level append will force
complete evaluation of inner append, which in turn will force full evaluation of its inner
append and so on. Hence, we avoid repeated closure constructions and context switches.
Moreover, due to NF demand propagation, EQUALS code is similar to that generated by a
strict language and hence its sequential performance is comparable to strict implementations.
In summary, propagating NF demand leads to:

e casier detection of parallelism

o larger task granularity

e avoidance of repeated closure building and context switching.

We remark that propagation of exhaustive demand does not translate into inability to
deal with lazy streams. In particular, functions that induce such behavior do not propagate
exhaustive demand, and hence will be evaluated lazily in our system. For instance, consider
the term first10(gs(l)), where firstl0 returns the first ten elements of its argument list.
Since firstl0 does not propagate normal form demand, ¢s(l) will be evaluated lazily, so
that we do not spend time to sort the entire list, but only to identify as many elements as
necessary. Even in the context of a function that propagates exhaustive demand, we may
like to “force” stream behavior, so that the function produces its output incrementally. In
a parallel implementation such as ours, this can be accomplished without sacrificing the
advantages of exhaustive demand propagation, by using vertical parallelism (i.e., evaluation
of a function and its argument in parallel).

2.2 Memory Management

Most previous implementations of lazy languages on shared-memory machines use variants
of mark-and-sweep or copying garbage collectors to reclaim storage. Memory management
using garbage collection has the following advantages: it is transparent, can manage memory
in presence of imperative updates, and furthermore handles variable size allocations while
avoiding loss due to fragmentation. However, for parallel evaluation, this approach suffers
from several drawbacks. First, the garbage collector scales poorly when the number of
processors is increased. This is because there are certain inherently sequential components
and hot spots in the copying phase of the collector such as the need to lock every structure

6This term may not be constructed explicitly in its entirety; parts of it (e.g., its spine) may be on the stack.



before moving’. This problem is compounded by the fact that the garbage collectors traverse
much of the heap space and consequently produce a considerable amount of paging activity.

Another problem with the garbage collection approach is that it can lead to poor locality
of reference, which is important in a virtual memory/cache environment. When evaluating
functional programs, we often build structures that are used just once. With garbage collec-
tion, this space is not reused until after the next collection. This means that a page may be
brought in from the disk, accessed very few times and then written back.

An alternative to mark-and-sweep or copying garbage collectors reclaims memory through
the use of reference counting, and is used in EQUALS. Reference counts have been used in
other lazy functional language implementations, such as ALFALFA [Gol88b]. However, its
efficiency compared to garbage collection and its effectiveness in a parallel implementation
have not been established. The EQUALS implementation shows that reference counting avoids
memory contention and improves locality due to immediate reclamation and reuse of free
space. It also reduces memory use and is very eflicient. For instance, our sequential run
times are comparable to those of SML/NJ (with dereferencing typically taking less than
20% of the time) and heap space usage is typically 15 to 25% of that used by SML/NJ.

Reference counting implementations are usually limited to acyclic structures only. Note
that this is a limitation of individual implementations and not the approach itself. Intuitively,
reference counts can be used in presence of cycles by detecting when back edges are created
(thus creating cycles) and not counting the back edges. For instance, the general algorithm
in [Hug83| collects cyclic structures using reference counts. Unfortunately, the overhead of
such algorithms is high since during the addition of every edge, we must check whether this is
a back edge. In a lazy, purely functional language such as EQUALS, cyclic data structures can
always be coded as output of infinite functions. For example ones() =1 : ones(); = = ones()
evaluates the same structure as « = 1 : . However, the corresponding cyclic representation
is more efficient than the infinite function form (see page 188 in Bird and Wadler’s text
[BWS88]). Note that in declarations of the form let = = 1 : @, creation of back edges can
be detected statically, at compile time. Hence we can avoid placing the usual reference
increment instruction at such points, thereby naturally handling cycles with no additional
overhead.

3 Compiler

An EQUALS program consists of a set of functions defined by pattern match. The abstract
syntax of the source language of EQUALS is given in figure 2. Each function definition in the
program is translated into a corresponding function in the intermediate language, and its
body is translated into a sequence of intermediate code statements. The constructs in the
intermediate language are given in figure 3. Note that this language bears some similarities

7 Although some recent concurrent collectors (e.g., [WGHY2]) do not lock when copying, they require additional
memory and add overhead to node access and allocation. Moreover, note that collectors such as the Appel-Ellis-
Li [AEL88] collector are sequential; the concurrency arises from a single process performing collection while other
(mutator) process(es) are executing the program.



program := fundef;---;fundef
fundef := f(pat,...,pat) = expr
expr :— if expr then expr else expr
| d(expr, ..., expr)
| =
pat := c(pat,...,pat)
| =

Notes:

f: function symbol,
c: constructor,
d: functor or a constructor, and

®: a variable.

Figure 2: EQUALS source language syntax

to the G-machine, but differs in many ways, such as explicitly named variables and functions,
and constructs for demand propagation. The target language (C) influenced some constructs;
for instance, compound expressions were permitted since they are allowed in C and hence can
be more efficiently compiled than an equivalent sequence of simple expressions. Furthermore,
the structure of the intermediate language permits compilation to be a simple translation
followed by a series of optimization steps.

3.1 Compilation Algorithm

First, the pattern matching constructs of EQUALS are transformed to case expressions,
using the Huet-Levy [HL93] algorithm for lazy pattern matching®. After pattern matching,
the only change to the structure of the source is the introduction of case expressions. The
code generator (see figure 4) takes these transformed function definitions and produces inter-
mediate code. It consists of several functions listed below. Most of them take as parameters
the fragment of the source program to be translated and extent, which specifies the demand
on this fragment. The value of extent can be UNK, which means that the demand is not
known statically, or one of NF or HNF. This parameter extent is not to be confused with
context: the former is a compiler parameter used to propagate demand statically at compile
time whereas the latter is a parameter to functions in intermediate code and is used to propa-
gate demand at run-time. In the figure, best(extent, context) stands for ‘NF’if extent = NF
and ‘contexrt’ otherwise. The function GetFreshVariable generates unique variable names.

F: the top-level code generator for a function.

E: translates an expression. It takes three parameters: the expression to be translated,
the name of the variable into which the value of the expression is to be stored (y) and extent.

8Qur current system does not handle prioritized patterns. It can be done using the techniques of Laville [Lav88],

Puel and Suarez [PS90] and those in Sekar et al. [SRR92].



Function f(context,z1,...2,):
Header for function f. Every function in the intermediate code takes a

parameter named context. This parameter specifies (at runtime) the extent
to which the output of (the current invocation of) a function needs to be
evaluated. Using this parameter we propagate demand at runtime.

Assign var, expr.

If expr then block; else block,.

Switch z { case ¢ : blocky,..., case ¢, : block,, }.

Eval z to context at location.

FunctionEval f(vq,...,v,) to context at location result z.
BuildTerm d(v1,...,v,) result .

GetChild ¢ of z result y.

WaitFor contezt of =.

Deref 2.

Return z.

Notes:
extent : the extent of evaluation (NF or HNF)

expr : constants, variables or compound expressions using predefined functions, such as +
block : a sequence of statements in intermediate code.

location : either local or remote and specifies whether a task is to be evaluated locally or
at a remote site (i.e., on another processor).

Figure 3: EQUALS intermediate language

P: is like £, but handles pattern-matching.

A: generates code for evaluating argument expressions to a function. A takes five ar-
guments: the expression e to be evaluated, the argument position of e, the name d of the
function that has e as an argument, the name of the variable y into which the result is stored
and extent. A differs from £ in that it takes the strictness of d into account to determine
the demand on e.

B: generates code to build the graph representing its argument e. The result is stored
into the argument y.

In order to preserve simplicity, the code generator itself attempts no optimizations. Note
that all function evaluations have been labeled for possible remote evaluation, and no syn-
chronization barriers have been placed. Moreover, code for managing the free space (e.g.,
dereferences) has not been generated. These are generated after a flow analysis is performed
during optimization phases. Furthermore, sharing of common sub-expressions, elimination of
temporary variables, and unboxing of structures are handled in the subsequent optimization



F [f(z1,...,20) = €] = y «— GetFreshVariable()

= Function f(context,zy,...,zn);
€ [e] y UNK;
Return y
€ [case z in (pm1,...,pm4)] = Eval z to HNF at Remote;

y extent Switch z P [pmi] = y extent;

P [pmn] z y extent

€ [z] y extent = Eval z to best(eztent,context) at Remote;
Assign y, z;
€ [if e1 then e: else e;3] = € [ei] =z NFy
y extent If z then € [e:] y extent else € [es] y extent

€ [d(e1,...,en)] y extent = z; <« GetFreshVariable()

zn «— GetFresh Variable()
A [er] 1 d 21 extent;

A [en] n d zn extent;

BuildTerm d(z1,...,2,) result y if d is a constructor
Assign y, d(z1,...,24) if d is a predefined function
FunctionEval d(z1,...,2,) if d is a user-defined function

to best(extent, context)
at Remote result y
P [e(z1,...,2n) — €] = y extent = case ¢c: GetChild 1 of z result z;;

GetChild n of z result z,;
€ [e] y extent

€ [e] y NF if i** arg. of d is ee-strict and ectent = NF
If context = NF if i** arg. of d is ee-strict and eztent # NF
A [e] i d y extent = then € [e] y NF
else B [e] y
B el y otherwise
Blz] vy = Assign y,z

B [d(e1,...,ex)] ¥ = z; <« GetFreshVariable()

zn «— GetFresh Variable()
B [ei] z1;

B [en] zn;
BuildTerm d(z1,...,2,) result y;

Figure 4: Compilation Scheme

phases. The optimizations are a collection of known techniques that have been combined to
achieve good efficiency.
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3.2 Optimizations

1. Unboxing: Any boxing operation on a value followed by an unboxing operation is
removed, eliminating all unnecessary boxing operations. When a function needs a
parameter in a fully evaluated state (which is determined from strictness), it is passed
as an unboxed value. Also, functions return unboxed values whenever possible. In the
implementation of EQUALS, we found that such inter-procedural unboxing improves
speed by more than a factor of 2.

2. Lifetime Analysis: A variable is determined to be evaluated to different extents,
unevaluated, or in an unknown state at each point in the code, by a lifetime analysis
which is performed across basic blocks. Using this analysis, the following optimizations
are performed:

e Placement of Synchronization Barriers just before the point where the value is
needed.

e Remote vs. Local evaluation: If no significant work is done between a remote
evaluation and its corresponding WaitFor (e.g., only straight-line code), it is
changed to a local evaluation.

o Common Subexpression Sharing is done to share expressions with different evalu-
ation extents and across basic blocks.

e Immediate Reclamation of Free Space: The term pointed to by a variable is deref-
erenced immediately at the end of that variable’s lifetime. Our experience shows
that this significantly reduces heap space, e.g. heap-space requirement is brought
down by a factor of 4 in QuickSort.

o Reducing the Number of Temporary Variables using a graph-coloring heuristic.

3. Tail Recursion Elimination: Direct tail recursion and certain linear recursions (with
associative functions as outermost symbols) are converted into loops.

4. Generating two versions: Finally, we can eliminate the contezt parameter (together
with all the tests on its value) by generating two versions of the code for each function.
The two versions are invoked when the result is required in NF and HNF respectively.

An example EQUALS program (nfib) and its optimized, NF demand version of the interme-
diate code are given in figure 5. The unoptimized code for nfib is given in the appendix, to
indicate the effect of the optimizations.

4 Memory Management

Memory is divided into two sections, namely, heap space and stack space. We separate the
stacks from the heap, since stacks show greater locality and are simpler to manage. In the
following we first describe the implementation of the heap, including node design, allocation
policy, and deallocation via reference counting, followed by a description of stack-space
management.

11



nfib(n) = if (n < 2) +then 1
else nfib(n-1) + nfib(n-2) + 1

Function nfib_NF(z1)
If 21 < 2 then
Assign yl,1
else
Assign yl, (21 — 1)
FunctionEval nfib_NF(yl) at Remote result y2
Assign yl, (21 — 2)
FunctionEval nfib_NF(yl) at Local result y3
WaitFor NF of y2
Assign yl, (y2 + y3+ 1)
Return yl

Figure 5: An example EQUALS program (top) and its intermediate code (bottom)

Status ‘ Ref. count
Value
WaitQ Ptr Ptr to Child 1
Ptr to Child 2 | Ptr to Child 3+

Status fields include:

NF: Indicates whether the term rooted at this node is in normal form.

InProcess: Set if the term rooted at this node is in the process of being (head) normalized.
Lock: Used to serialize accesses to the node.

Overflow: Set if the current node has more than three children.

Type: Indicates whether the value of the node is a functor, constructor, integer, float, etc.

Figure 6: Structure of Heap Nodes

4.1 Node Design and Locking

When a term is normalized, it is overwritten with its normal form. If all graph nodes
are of equal size, this is easily achieved by overwriting the term’s root node. Under this
scheme, nodes of arbitrary arity are accommodated using a chain of overflow pointers to
reference additional children. Some systems, such as the (v, G)-machine, use variable-size
nodes; properly overwriting a smaller node with a larger node then requires overwriting with
an indirection node that points to the larger node. Thus, at runtime, certain node accesses

12



must be checked for indirection. The fixed-size scheme avoids this indirection cost and also
enables simple reference-counting collection without fragmentation.

The structure of the graph nodes is given in figure 4.1. If the node has more than three
children, the Overflow flag is set and the first two child pointers point to the first two
children; the third child pointer points to a list of overflow nodes, each of which contain
pointers to the other children. The Wait@) field points to the notification list of tasks, to be
awakened when the (head) normalization of the node is complete.

The locks we have implemented are shadow locks, in which we spin on the copy of the
lock bit in cache until it is reset and then try to obtain the lock [Seq87]. These locks use
the atomic test-and-set (btsw) instruction available on the Sequent and generate less bus
traffic than naive locks. In general, a node is accessed only after the lock is acquired. To
further reduce locking overheads, the design permits accessing a node without locking under
certain (common) conditions. Some of the strategies used to avoid locked access to nodes
are described below.

If a node has been normalized, the extent of its normalization guarantees that either the
entire term (if in NF), or just the root (if in HNF) will not require locking. The implemen-
tation ensures that the status flags indicating the extent of normalization can be safely read
without locking. For instance, consider the flag that indicates whether a term is in NF. Even
when the term is in an inconsistent state (i.e., partially overwritten), the implementation
guarantees that this flag is not set. Thus, it is safe to examine the flag and if set, all the
data fields in the node can be safely extracted without locking. Since EQUALS is a lazy
language, tests for normalization are done often and the above optimization is very impor-
tant. Another case when locking is not required arises when a node cannot be referenced
by another processor, e.g., when the node has just been allocated. Finally, the reference
count is manipulated exclusively with atomic increment and decrement instructions and the
normal locking convention is not used.

Our implementation seeks to keep heap nodes reasonably small (32 bytes). Since most
of the space is occupied by pointers, we used 16-bit pointers to reduce the size. Being a
prototype, the limit on the the number of nodes (2'¢) is acceptable. (Even this represents
a 2Mb heap, half the physical memory of the machine on which development was begun.)
Apart from the ceiling on the memory use and the overhead of shift and add instructions
on every access, the other disadvantages of this scheme include the need to pad node sizes
to a power of two, enlarged object-code size, and the inability to allocate nodes with known
lifetimes on the stack. In the future implementations, though, we plan to redesign the nodes
to accommodate full-length pointers.

4.2 Heap Allocation

In order to avoid contention when allocating memory, the heap is managed as a two-level

9

structure”. The lower-level structure is a linked list of free nodes, called a block and the

higher-level structure is a locked global pool of blocks.

° A two-level allocation strategy, involving garbage collection, was also used in GAML.
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Initially, a block from the global pool is given to each evaluator, which privately allocates
from (and deallocates to) its block. Blocks are permitted to grow to a certain maximum size,
after which they become full. When this occurs, the evaluator begins a new block. The full
block may either be returned to the global pool, or the evaluator may keep it for possible
later use. Blocks may also become empty, if an evaluator allocates more than it deallocates.
If the evaluator thus exhausts its current block, it will use a full block that it has kept for
such possible use; if it has no such block, it will obtain one from the global pool.

In the current implementation, an evaluator keeps two full blocks on hand before it begins
returning them to the global pool. This hysteresis (i.e., empty on zero and full on two) avoids
thrashing on the global pool. For instance, without hysteresis (i.e., full on one), when an
evaluator has exactly one full block it would return the block to the global pool. If it must
next perform a node allocation, immediately it would have to obtain a block from the global
pool; hence, an alternating sequence of allocations and deallocations would lead to thrashing
at the global pool.

4.3 Reference Counting

As mentioned before, reference counting is used to reclaim free space. Since there is no sep-
arate phase in which all processes collect free space, opportunities for contention at memory
reclamation are minimized. Moreover, reference counts permit the following trick to avoid
locking when a node is freed. Observe that a node about to be freed (i.e., a node being
dereferenced with reference count = 1) will be referred to only by the current evaluator.
Thus, there is no need to lock it before freeing. Since many dereferences satisfy this condi-
tion (e.g., 45% of the dereferences in the Fuler example), this trick is important in practice.
In contrast, since the reference information is not available for a garbage collector, this trick
cannot be used to avoid locking at copying time.

Using reference counting we can immediately reclaim freed space. This results in greatly
reducing the heap space usage. Furthermore, by maintaining the free list as a LIFO, we
immediately reuse memory that is freed. Since nodes are created and destroyed very quickly
in typical programs, this strategy greatly increases the chances of using the same set of
memory locations repeatedly, thus improving locality.

4.4 Stack Management

The stack space is divided into stacks of several different sizes, and initially each task is
allocated a small stack. There can be many suspended tasks at any time, many of them
waiting without having performed much computation. Allocating a small stack initially
reduces the space wasted by such tasks. Stacks are used in the usual manner during execution
of the C code to evaluate a term, and thus an activation record is usually allocated adjacent
to its parent in memory, unless overflow occurs.

There are two possible mechanisms to handle stack overflows. In the first, when a task’s
stack overflows, it is extended by linking another stack. Checking for stack overlow is per-
formed at every entry to a function. At every exit from a function, the stack has to be
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checked for underflow. In case of an underflow, the current stack is unlinked and the return
value passed to the old stack.

In the second approach, the stack is expanded on overflow; there is no need to check
for underflow. In this approach, overflow triggers the allocation of a larger stack, and the
contents of the smaller stack are moved to the new stack, with appropriate adjustments to
stored frame pointers. Moving the old stack’s contents can be achieved by adjusting the
virtual-to-physical address translation tables. This approach incurs some overhead from
copying and adjustment, but it has certain advantages relative to linking; for instance, we
need not check for underflow. Moreover, it avoids the possibility of repeatedly linking a new
stack, using it minimally, underflowing and unlinking it, and then immediately overflowing
the old stack again.

In EQUALS, we used the second approach of expanding stacks, to avoid the overhead of
underflow checks. Unfortunately, on the Sequent Symmetry, the virtual-to-physical address
translation tables are inaccessible to nonpriviledged programs, and the operating system
interface to them imposes unacceptable limitations on the allowable memory layout. Hence,
in the EQUALS implementation, we have been forced to copy the contents of the smaller stack
onto the larger stack. Initially, tasks are given stacks whose size is 16kb. When overflow is
imminent (within 1200 bytes of the stack limit'?), the stack’s contents is copied to a 256kb
stack. Later overflowing by the task will, each time, double the size of its stack. Although
the initial 16kb stacks are pre-allocated, larger stacks are dynamically allocated. Note that
choosing a geometrically increasing sequence of sizes bounds the worst-case overhead of the
copying technique.

A major disadvantage of the copying process is the burst of bus traffic, including many
writes, that it generates. However, stack overflow is rare and does not seem to be a serious
bottleneck''. We are currently investigating linked stacks (the first approach), seeking ways
to reduce the underflow checks and hysterisis effects, and studying the relative efficiency of
the two approaches.

5 Task Management

The task management subsystem provides mechanisms for the creation, synchronization,
and load-balancing of tasks. Each of these mechanisms is described in detail below.

5.1 Task Creation

Recall that the purpose of a task is to evaluate a term to either NF or HNF. Task creation
consists of building the term to be evaluated (if it does not already exist) and allocating a
stack on which to begin its evaluation.

1°This is enough of a buffer to permit most runtime support routines from having to check for stack overflow.
1 The sizes chosen for stacks are a factor; in almost all examples discussed later, only the small initial stacks (and
not many of them) overflow. Relative to the total accesses made to stack locations, the amount from copying is

almost negligible.
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In contrast with our scheme for task creation, the (v, G)-machine intermingles the stack
and graph, by allocating stack space in each function-apply node in the graph. Since the
stack and heap accesses show different behavior (e.g., stacks accesses show better locality)
we chose to keep the stack and heap spaces distinct. Furthermore, creating stack frames
on the heap requires variable-size graph nodes, leading to fragmentation and its associated
problems when reference counting is used.

Task Control Blocks: Each task’s information is stored in a task control block that in-
cludes not only the task’s stack, but also other vital information. It records the term under
evaluation, the base and limit of the task’s stack, and it has a field to store the stack pointer
when the task is suspended. Currently, there is a fixed maximum number, S, of tasks. This
lets us pre-allocate task control blocks in an fixed-length array, and again permits use of a
shorter task pointer (an index) than would otherwise be possible. This is useful, since each
graph node currently requires a field indicating the task processing it. The restriction on
the number of tasks could easily be avoided, but we have not observed any insurmountable
difficulties arising from it. Since the number is small, it sometimes provides a throttle on
the creation of tasks, because we avoid task creation unless a small-stack task is available.
(At most 20% of the tasks have large stacks.)

In an early version of EQUALS, this throttle on task creation led to the following interesting
situation: a program was executed where one task created another, and quickly suspended
awaiting it. Then, the new task behaved similarly. Rapidly, all small tasks were allocated,
and so the system switched to a sequential, stack-intensive mode of evaluation. Overflowing
its stack, a larger stack was given to the task. Then, its original stack was released to the
pool of available stacks. Now, unfortunately, the system was briefly able to switch out of
sequential mode, create a new task to run on the newly freed stack, and suspend the task
running on the large stack. Having no more stacks, evaluation (again on the small stack)
returned to sequential mode, and the process repeated until the the maximum number of
tasks was exceeded.

To overcome this problem, hysteresis is used in the current implementation, which uses
two thresholds S,eq and Spar. These thresholds control whether the runtime system will
permit creation of new, parallel tasks, or whether it will enforce sequential execution. When
parallel-task creation is allowed, it is permitted until more than S, tasks exist, at which
point sequential execution is enforced. Sequential execution then remains enforced until the
number of tasks becomes less than S,.,. We have found that good results are obtained by
setting Sseq and Spar to 80% and 50% of the total number of small stacks respectively.

5.2 Task Synchronization

While evaluating a term ¢, a task 7' may find that it must evaluate one of its subterms'?,

say s. Task T may create a new task, say S, for this subterm s, or T may evaluate s by
itself. Synchronization is clearly required in the first case, since T' may have to wait for the

12This subterm may not be a part of the original term, but instead be created during its evaluation.
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completion of S. Even in the second case, synchronization may be required: If s is already
being evaluated by another task, 7' must suspend itself until s is evaluated. In such cases, T
executes a WaitFor instruction that, in effect, enters it into a wait queue for s. (The actual
mechanism is discussed later in this section.) Its evaluator then proceeds to execute the next
task from the global ready queue. Note that there is no need to preempt tasks in EQUALS,
since we use a conservative approach that never generates work that is not required.

An important point to be noted here is that wait queues are associated with terms,
rather than tasks. This is because a task T created to evaluate a term s may also take up
many subterms sy, ..., 8, of s for (local) evaluation. Suppose that another task 7' needs to
evaluate s;. In this case, observe that 7' need wait only until s; is evaluated. However, T
will complete only after evaluating all of ss,..., g, s. Thus, parallelism from simultaneous
execution of T and 7" is lost if 7" waits on T instead of s;. Also, note that T selectively
waits for one or more subterms, and is not restricted to await all subterms that it has created
before it can resume from any one of them. (This restriction is imposed in [HS92], where it
necessitates additional measures to avoid deadlock.)

Since a term may be evaluated to different extents (HNF or NF) depending on the
demand, evaluation of shared subterms complicates matters. To see this, consider a term ¢
being evaluated to extent ext, by a task 7. Before its evaluation is complete, suppose a task
T, needs the same term ¢ to be evaluated, this time to extent exts. The following scenarios

arise:

o ext; = exty: Ty is added to the wait queue for ¢ and is awakened when ¢’s evaluation is
complete.

o crt;y = NF and ext; = HNF: T, is added to t’s wait queue, awaiting its NF, since the
code executed evaluating ¢ to NF does not produce an intermediate result in HNF.
This potentially reduces parallelism, since 75 is blocked longer then strictly necessary.
Nevertheless, efficiency is improved; often, 75 would soon request subterms of ¢ in HNF,
duplicating the work already being done to evaluate ¢ to NF.

o ext; = HNF and ext, = NF: T, is added to t’s wait queue, but will not be released
when t’s HNF is computed. We might create a new task to evaluate ¢ to NF, but to
prevent 7; from possibly overwriting the NF we would have to kill it, and all tasks it
has spawned. We avoid this difficulty by permitting 7T} to complete, at which time ¢ is
taken up for normalization. Though we might release terms awaiting ¢t’s HNF at this
time, for efficiency all tasks are made to await ¢’s NF.

Finally, we note that EQUALS implements the notification model of task creation, as
opposed to the advisory-sparking method used by a number of recent implementations
[Aug89, Geo89, Mar91]. In the advisory method, a task is not created until an evalua-
tor is free to run it: a pointer to the graph to be evaluated would be put into a spark pool
by T, but no guarantees are made that a task will ever be created. Rather than block for
a sparked graph for which no task has been created, T' would, with this method, evaluate
the graph itself. The main advantage of this technique is that the spark pool need not be
locked; however, the ready queue must still be locked.

17



Implementation of Synchronization Mechanism: The existing implementation does not
use an explicit wait queue to provide synchronization. Initially, we were concerned that the
following situation might impair performance too much. In this situation, two tasks have
been created, and both must be awaited. Using wait queues, two WaitFor instructions
would be required in series, possibly leading to unnecessary synchronization, where a task is
awakened only to re-suspend immediately. Instead, a more flexible scheme was implemented
for the runtime system. Owur experience shows, though, that this scheme is usually not
required, and examination of the code generated reveals that the full power of the scheme
is rarely useful. Thus, future implementations of EQUALS will use the simpler explicit wait
queue. However, for completeness we next explain the actual mechanism used.

Consider a task T which requires evaluation of subterm s, and creates a task to do this.
Then, T will be placed in a notification list for s, along with a pointer to a memory location
in T’s stack. Such a memory location is called a wait counter, and it is decremented when
the task for s completes. Though the wait-counter mechanism supported by the runtime
system allows a more general scheme, the compiled code currently uses binary values for
wait counters: zero indicates s has completed, and one indicates that it has not. Larger
values are possible, indicating more tasks are pending, and all of these tasks must complete
before wakeup can occur. Unlike the scheme described by [Geo89], T' can have several wait
counters: a single wait counter would imply that 7' must await all tasks it has spawned thus
far, even those not strictly required until later. In our scheme, whenever synchronization
between T and s is required, T" executes a WaitFor instruction, which examines the status
of s. If s has not yet completed, WaitFor marks ¢ as inactive. After s is evaluated, its
task will decrement the wait counters in its notification list. If a task’s counter becomes zero
and it was blocked awaiting this particular counter, the task is then moved to the global
ready queue. Note that this does not necessarily happen to all tasks whose wait counters
have become zero. Such tasks may be awaiting some other subterm, or may still be actively
running. Conceptually, such tasks are not in the wait queue for s, although they do need
to be notified of s’s evaluation. The major disadvantage of our current synchronization
technique is that it complicates the copying approach to stack overflow, and requires one
task to modify the contents of another task’s stack, thus necessitating additional locking.

5.3 Load Balancing

In EQUALS, new or resumed tasks are placed in the global ready queue from which free
evaluators take up tasks'®. Thus, the global ready queue is the mechanism for load balancing.
To reduce contention at the global queue, we create tasks only when the system is lightly
loaded. When the number of tasks in the ready queue exceeds some threshold, the evaluators
avoid creating tasks and instead perform the intended computation locally. This technique
has been used previously [Mar91, Geo89], and details on the selected thresholds are given
later.

13 A task may be taken up by different evaluators during its lifetime. Thus, all memory accessed by a task, including
its stack, must be kept in shared memory.
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Note that the above technique reduces task creation, and consequently decreases parallel
overheads. However, it has been observed in [MKH90] that this may result in too few tasks
being created. Evaluators may become idle when parallel tasks could have been executed.
However, this has not been a significant problem in our experience. Our experiments indicate
that the evaluators are idle for less than 10% of the time. Even this may be due to the
presence of inherently sequential components in the computation.

Ready Queue: The global ready queue has been designed so that serialized access does not
create a bottleneck. Consider a simple ready queue that is a linked list of tasks. In order to
add or remove entries from the queue, the queue needs to be locked. Hence, the lock for the
ready queue can become a system bottleneck: Too much bus traffic is generated when all
idle evaluators race one another to retrieve a newly enqueued item. To avoid this difficulty,
the current version implements the queue in a novel way, which in spirit resembles the dual
queue used by [Geo89].

The queue is viewed as a series of slots, and each idle evaluator that arrives at the queue
is assigned a unique slot (e.g., next ‘free’ slot). If that slot holds a task, the evaluator runs
this task; note that once a slot is assigned, no locking is needed for dequeueing. If the slot
is empty, the evaluator busy waits on this slot until it is filled. Note that filling other slots
does not affect this evaluator’s behavior; hence, evaluators do not race one another. When
a task is placed in the queue, it is placed in the next empty slot. Note that such a queue
can be easily implemented as a circular array of task pointers, and note also that the locks
needed to enqueue and to dequeue are independent. Furthermore, the head (next free slot)
and tail (next empty slot) can be advanced with atomic locked-increment instructions. The
speedup curves shown in section 6 show that this implementation of the ready queue is not a
system bottleneck. (An initial implementation of EQUALS used a simple linked list of tasks,
which proved to be a bottleneck and lead to the abovementioned improvement.)

Queue Thresholds: As mentioned earlier, new tasks are generated only when the system
load is low, as indicated by a global flag. This flag indicates whether the system is in parallel
(low load) or sequential (high load) mode. The system switches between the two modes
by comparing the size of the ready queue, N, against two thresholds Ny, and Ny, as
follows: When the system is in parallel mode and N becomes larger than N, the system
enters sequential mode; in sequential mode, when N falls below Ny,., the system switches to
parallel mode. In parallel mode, the runtime system may be requested to create new tasks.
It may refuse, as described earlier, if there already are too many tasks. The values of the
two thresholds N, and N, have been determined through experiments, and though there
is no ideal setting for all programs, Ny, = 1 and N,eq = 20 yields good overall results. Note
that the flag indicating the system’s mode need be changed only when a task is enqueued
or dequeued. Furthermore, since this flag is advisory, it can be read or written without any
locking. Observe that most accesses are to read this flag and are satisfied by the local cache;
thus, this flag is not a system bottleneck.

19



EQUALS | SML/NJ
Euler 88.0 104
Nqueens 54.8 42.2
MatMult 19.7 14
Sieve 59.0 33
QuickSort 8.6 4

Table 1: Comparison of EQUALS and SML/NJ. (All timings in secs. on a Sun 3/260)

EQUALS | (v,G) | GAML
MatMult 22.6 NA NA
QuickSort 9.5 NA NA
Euler 116.9 | 128.4 430
Nqueens 64.0 73.9 467
Nfib 32.1 62.1 213

Table 2: Comparison of EQUALS with (v, G)-machine and GAML. (NA: Not Available)

6 Implementation Results and Discussion

In this section we present the results of our implementation based on example programs
adapted from [Geo89, Gol88a, Aug89, SPRI0]. First we study the sequential performance of
EQUALS and show that it is comparable to that of Standard ML of New Jersey (SML/NJ).
Following this we compare our speeds and scalability with that of (v, G)-machine and GAML.
We then discuss the impact of reference counting on scalability and performance. In partic-
ular, we provide experimental evidence to show that memory requirements are significantly
less and that locality is improved.

6.1 Sequential Performance of EQUALS

Table 1 compares the performance of EQUALS to SML/NJ (release 0.75)*. SML/NJ is
a sequential implementation of SML, a strict language, and is among the fastest functional
language implementations. In the table, Fuler computes the Euler totient function from 1
through 1000. In addition to performing substantial amounts of computation, this program
also spends a lot of time creating and destroying lists. MatMult computes the product of two
100 x 100 matrices. Sieve computes list of primes between 2 and 10,000. QuickSort sorts a
list of 5000 integers, and Nqueens finds all solutions to the n-queens problem on a 10 x 10
board.

Observe that speeds of SML/NJ and EQUALS are comparable in Fuler, MatMult and
Ngueens. By propagating exhaustive demand and generating two versions, our code is similar

'4These figures were first reported in [KPR+92].
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Figure 7: Speedup curves for EQUALS.

to that generated for a strict language, and hence the speeds are comparable. In QuickSort
and Sieve, where there are very few computation steps and most of the time is spent in
creating and destroying list structures, SML/NJ is significantly faster because it uses unboxed
lists, whereas EQUALS uses boxed lists'®. This is not a problem in the first three examples,
since the number of steps that access lists or perform any other computations are much
larger than those that create or destroy lists. (e.g., in MatMult there are 10° operations of
the first kind versus 10* list creation/deletion steps.). Boxing can increase the work involved
in copying by as much as 100%. Moreover, the performance of EQUALS can be substantially
improved by generating assembly code, as is done in SML/NJ. We are quite encouraged to
get performance comparable to SML/NJ in spite of these factors.

6.2 Parallel Performance

Table 2 shows wall-clock times for EQUALS, the (v, G)-machine and GAML on a single
processor. Timings for both EQUALS and the (v, G)-machine were obtained on Sequent
Symmetry with a 16 MHz clock. However, the (v, G)-machine timings do not include garbage
collection time, which can account for up to 30% of the total (sequential) time. GAML
timings were obtained on a Sequent Balance, which is considerably slower. This impedes
a reasonable comparison between our times and those of GAML. However, it is mentioned
in [Mar91] that the sequential execution times for GAML are roughly of the same order as
those of the (v, G)-machine.

Figure 7 shows speedup curves on all of the examples run using EQUALS. MatMult and
FEuler create large grain tasks and hence speedup is almost linear. Although task granularity
is very small in Nfib, we still scale well, showing that we have managed to keep down task
overheads and contention at the global queue. In Nqueens, however, we show saturation
when number of processors reaches 10, since, in that example, there is a lot of vertical

15 Currently EQUALS unboxes only primitive data types.
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parallelism which we do not currently exploit.

Figures 8, 9 and 10 compare the scalability of EQUALS with that of the (v, G)-machine
and GAML on FEuler, Nfib and Nqueens respectively. Observe that EQUALS scales as well as
the (v, G)-machine and GAML on Nfib. On Euler, it scales as well as the (v, G)-machine and
better than GAML. Nevertheless, both (v, G)-machine and GAML scale better in Nqueens
since they exploit vertical parallelism (unlike EQUALS) with the aid of the advisory-sparking
method. Furthermore, the (v, G)-machine timings do not include garbage collection times.
As can be seen from the results in GAML, garbage collection times scale poorly, e.g., in
FEuler, the garbage collection time decreases by only a factor of 2 when number of processors

increases to 8.
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EQUALS
SML/NJ | heap | stack
Euler 2.2 | 0.10 | 0.07
Nqueens 0.8 0.34 | 0.09
MatMult 0.8 | 0.64 | 0.01
Sieve 2.2 032 0.32
QuickSort 1.4 0.16 | 0.20

Table 3: Memory usage of EQUALS and SML/NJ (in MB’s).

6.3 Impact of EQUALS Memory Management

We had mentioned in the introduction that memory management was a crucial component
and that by using reference counting we can achieve very good scalability, low memory
requirement and improved locality. In this section we give empirical evidence for these

claims.

EQUALS | SML/NJ
Euler 1.66 2.16
Nqueens 2.16 3.12
MatMult 1.77 2.14
Sieve 1.76 2.42
QuickSort 1.97 4.75

Table 4: Ratio of Diskless Sun timings over Server timings.
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The FEuler program spends over 40% of the total time in memory allocation and deallo-
cation, creating and destroying as many as 3 million nodes. The nearly ideal speedup of this
program demonstrates the scalability of our memory manager. In contrast, the speedup of
GAML appears to saturate even for 5 processors, largely due to poor scaling of the memory
management techniques used. Table 3 shows the memory utilization of some programs in
EQUALS and SML/NJ. The table shows that EQUALS typically uses substantially less mem-
ory than SML/NJ. For EQUALS, we show stack and heap use separately. (Stack usage is less
critical, since it is easier to manage and its locality leads to less paging than comparable heap
use.) Table 4 shows the relative speeds of SML/NJ and EQUALS programs on a Sun 3/260 (a
server), in comparison to a diskless Sun 3/75. The slowdown of EQUALS is near 1.75, which
is the factor of difference in raw cpu power between the two machines used. In contrast, the
performance of SML/NJ degrades considerably more, due to excessive paging activity. This
demonstrates that memory utilization and locality of reference are much better in EQUALS
than in SML/NJ. The difference in degradation is large enough to make EQUALS perform
better than SML/NJ on most of these examples on a Sun 3/75.

7 Experience with EQUALS

The EQUALS implementation results show it is possible to automatically detect and effectively
exploit parallelism in functional programs by propagating exhaustive demand; there is no
need to make assumptions such as cons and append being strict in all contexts. Furthermore,
it establishes reference counting as a valid mechanism for memory management. Besides
using much less memory and possessing improved locality, reference counting scales well and
therefore appears appropriate for parallel implementation.

The implementation experience has also shown us the importance of minimizing task
creation and management overheads. We assumed that we can minimize the impact of
these overheads by minimizing task creation. We did succeed in reducing task creation: the
number of tasks created in EQUALS is less than 10% of the total number that would be
created without a throttle on task creation. Still, there is observable parallel overhead, and
the task creation time needs to be further reduced.

Moreover, simple and efficient techniques typically perform better than more general and
elaborate schemes. For instance, wait counter based synchronization (a generalization of
the scheme in [Geo89], where a task waits for multiple subtasks at a single barrier) was
initially implemented. Experience showed that most of the waits were performed on a single
task and use of the wait counter (with associated overheads of initialization, increment and
decrement) was wasteful.

The load balancing scheme used in EQUALS is quite simple, but may not always succeed
on more complex programs. We are currently exploring static analysis of programs for
sophisticated load balancing. The normal-form demand propagation leads to the problem
of efficient exploitation of vertical parallelism, and is a topic of current research. There are
several other sources of improvement in EQUALS such as direct generation of assembly code
instead of C-code. This will enable us to use registers effectively and reduce the overhead
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of function calls. We believe that the tighter code can result in considerable performance

improvement.
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Appendix

A Compiled code for nfib

The code generated using the compilation of rules of figure 4 for the nfib program (figure 5) is
given below. Note that all Eval’s and FunctionEval’s are marked Remote, no WaitFor’s
have been generated, and common subexpressions are not eliminated.

Function nfib(z1)

Eval 21 to NF at Remote

Assign yl, 21

BuildTerm 2 result y2

If (UnboxInt(y1l) < UnboxInt(y2)) then
BuildTerm 1 result y4
Assign y3, y4

else
Eval 21 to NF at Remote
Assign y5, 21
BuildTerm 1 result y6
Assign y7, BoxInt(UnboxInt(y5) — UnboxInt(y6))
FunctionEval nfib NF(y7) at Remote result y8
Eval 21 to NF at Remote
Assign 39, 21
BuildTerm 2 result y10
Assign y11, BoxInt(UnboxInt(y9) — UnboxInt(y10))
FunctionEval nfib_NF(yl11) at Remote result y12
Assign y13, BoxInt(UnboxInt(y8) + UnboxInt(y12))
BuildTerm 1 result y14
Assign y15, BoxInt(UnboxInt(y13) + UnboxInt(y14))
Assign y3, yl15

Assign y16, y3

Return y16

Optimizing this code results in the following code, which was shown in figure 5.

Function nfib_NF(z1)
If 21 < 2 then
Assign yl,1
else
Assign yl, (21 — 1)
FunctionEval nfib_NF(yl) at Remote result y2
Assign yl, (21 — 2)
FunctionEval nfib_NF(yl) at Local result y3
WaitFor NF of y2
Assign yl, (y2 +y3 + 1)
Return yl
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