
Fast Parallel Implementationof Lazy Languages {The EQUALS Experience1Owen KaserDepartment of Mathematics, Statistics and Computer ScienceUniversity of New Brunswick at Saint JohnSaint John, NB E2L 4L5, Canada.owen@unbsj.caShaunak PawagiC.R. RamakrishnanI.V. RamakrishnanDepartment of Computer ScienceSUNY at Stony Brook, NY 11794.fshaunak, cram, ramg@cs.sunysb.eduR.C. SekarBellcore, 445 South StreetMorristown, NJ 07962.sekar@thumper.bellcore.comAbstractThis paper describes equals, a fast parallel implementation of a lazy functional languageon a commercially available shared-memory parallel machine, the Sequent Symmetry. Incontrast to previous implementations, we detect parallelism automatically using strictnessanalysis. Another important di�erence between equals and previous implementations isthe use of reference counting for memory management, instead of garbage collection. Ourimplementation shows that reference counting leads to very good scalability, low memoryrequirements and improved locality. We compare our results with other sequential (SML/NJ)and parallel (h�;Gi-machine and GAML) implementations of functional languages.1 IntroductionIt is well known that functional languages o�er a conceptually simple vehicle for program-ming parallel computers. The main reason for this is that expressions may be evaluated inany order, due to the absence of side-e�ects. Therefore, detection as well as exploitation ofparallelism is much simpler than in imperative languages. This fact has been exploited in1A preliminary version of this paper appeared in LFP'92.1

many previous parallel implementations such as ALICE [Dar81], FLAGSHIP [WW87], GRIP[PJ87], Buckwheat [Gol88a], the h�;Gi-machine [Aug89] and GAML [Mar91]. Whereas AL-ICE, FLAGSHIP and GRIP make use of specialized hardware, the other three implementa-tions are based on commercially available shared-memory multiprocessors. In this paper, wefocus on the latter approach and describe equals, a fast parallel implementation of a lazyfunctional language2 on Sequent Symmetry.One of the earliest lazy parallel implementations on a shared-memory multiprocessor wasBuckwheat. It demonstrated the feasibility of parallel implementation, but was not tunedfor performance. On the other hand, the h�;Gi-machine and GAML showed performanceimprovement over sequential implementations such as LML [Aug84], starting from two pro-cessors. Both these implementations were able to reduce parallel overheads, and consequentlytheir performance continued to improve even when the number of processors was increasedto ten or more. However, these implementations do not satisfactorily exploit one of theprimary advantages of functional languages for parallel evaluation, namely, automatic detec-tion of parallelism. For instance, the h�;Gi-machine and GAML use program annotations asthe only means to identify parallelism. These annotations can be quite cumbersome for theprogrammer. The approach used in Buckwheat relies on strictness information to identifyparallelism, but the strictness information used is based on head-normal form (HNF)3 andis not su�cient (as we show later) to identify signi�cant parallelism in most programs. Toalleviate this problem they make assumptions such as cons and append being strict, whichruns counter to the goals of lazy evaluation.A second problem with the h�;Gi-machine and GAML is that they use memory man-agement techniques that do not scale well. The h�;Gi-machine uses a sequential garbagecollector and its performance �gures given in [Aug89] do not include garbage collection times.GAML uses a parallelized garbage collector, but it scales poorly, e.g., one of the garbage col-lector speedup curves attens at a speedup of 2 when the number of processors is increasedto 7 or 8. The equals implementation overcomes both these drawbacks as follows:� Automatic detection of parallelism by propagating exhaustive demand as far as possible.We accomplish this using ee-strictness analysis developed in [SPR90]4. As we show insection 2, exhaustive evaluation also increases task granularity by packing several HNFtasks into one task. It also improves sequential performance by avoiding repeatedtraversals of the graph.� Using reference counting for memory management. Our implementation results showthat it scales well and also has low memory requirements without compromising e�-ciency.A brief overview of the equals system is presented below.2In a lazy functional language, only those computations that are necessary to obtain the normal form of an inputexpression are performed [HL93].3We use HNF and weak HNF interchangeably.4Most of the other strictness methods do not deal with (exhaustive) normal form demands. For the parallelismdetection discussed here, any strictness method that deals with normal form demands can be used.2

1.1 Overview of the ImplementationThe equals system consists of a compiler and a runtime support system. The runtimesupport system is broadly divided into subsystems for I/O, memory management, and taskmanagement. The I/O subsystem reads an input term from the user, parses it, and createsan initial graph structure. After the input term has been evaluated to normal form, thesubsystem invokes a pretty-printer to display the result. Since such support facilities arestraightforward, they will not be discussed further. Instead, the remainder of the paperdescribes the compiler, memory management, and task management, beginning with anoverview of each of these modules.The equals compiler uses ee-strictness analysis to detect parallelism. This informationis used in translating the source program into a combinator-based intermediate language.The intermediate language includes constructs for creating parallel tasks and synchronizingamong them. The goal of compiled code is to normalize a given input expression. If multiplesubterms need to be evaluated in order to normalize the input expression, these subterms canbe evaluated in parallel. Subterms that are evaluated in parallel are taken up by individualtasks, which execute the compiled code on their private stacks. Since there may be manymore parallel tasks than the resources available (e.g., processors, shared memory), tasks arecreated only when they are deemed useful. Some of these decisions are made at compiletime itself; for instance, the compiler will never emit code to create a new task, unless itcan generate code for work to be done concurrently by the existing task. At runtime, on theother hand, opportunities for additional parallelism will be passed up, if many parallel tasksalready exist.Although these tasks can be executed as UNIX processes, it is very expensive to do so.Equals implements a mechanism for managing light-weight tasks, where tasks are executedunder the control of evaluator processes (one per processor). All runnable tasks are placedin a global ready queue. If a task needs the value of a subterm that is currently beingevaluated by another task, then the �rst task is suspended, awaiting the evaluation of thesubterm. The evaluator then begins execution of a task from the ready queue. Once theevaluation of a term is completed, all tasks awaiting its evaluation are put back in the globalqueue. The size of the global ready queue is used to share and balance the system load.Task management is discussed in section 5.Heap space needed for evaluation of a task is allocated out of a block of free spacemaintained by the corresponding evaluator. When an evaluator runs out of free space, itallocates a block from a global pool. Heap space freed by a task is released into the freespace of the corresponding evaluator. When an evaluator accumulates more than a presetamount of free space, it returns the excess to the global pool. Stacks and other structuresused by the tasks are also allocated and freed in the same manner. A detailed descriptionof the memory management scheme appears in section 4.The rest of this paper is organized as follows. The next section elaborates on the issuesof parallelism detection and memory management. The equals compiler is described insection 3. Sections 4 and 5 describe our memory and task management schemes. A de-tailed discussion of performance of equals is presented in section 6. Our results show that3

sequential performance is comparable to SML/NJ, one of the fastest functional language im-plementations. The parallel performance of equals is about the same as the h�;Gi-machine,even though equals times include memory management whereas the h�;Gi-machine timesexclude garbage collection time. Results also show that reference counting mechanism scaleswell, uses less memory and has better memory locality than copying garbage collection.Concluding remarks about our experience with equals appear in section 7.2 Issues in ParallelismThe novelty the equals implementation among other shared memory implementations liesin the detection and control of parallelism and in memory management. In this section, weelaborate on these issues.2.1 Detection of ParallelismThere have been two approaches to identifying parallelism in lazy languages. One approach,used in the h�;Gi-machine and GAML, requires programs to be annotated for parallelism.These annotations are di�erent from strictness annotations and can be cumbersome sincethey are always required. Moreover, to ensure that laziness is not compromised, the taskscheduler must have a mechanism to ensure that the normal order branch of computationmakes progress. This requires preemption of all resources { processor, heap and stacks.An alternative approach is followed in equals and uses strictness information to identifyparallel components. Since strictness identi�es only those computations that are neededfor the input expression to be normalized, no additional mechanism is necessay to ensureprogress of normal order branches. This approach has been used in earlier implementationssuch as [Geo89] and [Gol88b]. However, they could not extract much parallelism fromstrictness information alone, since their model of computation was based on (repeated) headevaluation and not on exhaustive evaluation. Hence, the strictness information they usealso deals with head-normal forms alone5. This strictness information is not su�cient (asshown below) to detect signi�cant parallelism in many programs. In order to get su�cientparallelism, they assume that even non-strict functions such as cons and append are strict.To illustrate why strictness based upon HNF alone is not su�cient to identify paral-lelism, consider the QuickSort example shown in �gure 1. In that example, the functionsplit partitions a list (�rst argument) based on a pivot (second argument) into two lists.The function qs1 takes these partitioned lists, sorts the individual lists and puts them to-gether using append. Thus qs(l) �rst splits the list into l1 and l2 and subsequently callsappend(qs(l1); qs(l2)). Hence, a HNF demand on qs results in a HNF demand on append.By the de�nition of append, a HNF demand on its output results in a HNF demand on its�rst argument and no demand on its second argument. Hence, qs(l2) would be invoked onlyafter qs(l1) is completely evaluated. All the parallelism in QuickSort arises from sorting both5i.e., it provides information about which arguments of a function are to be head-normalized in order to head-normalize the function application. 4

qs(x : xs) ! qs1(split(xs; x; nil; nil))qs(nil) ! nilsplit(x : xs; y; u; v) ! if(x > y; split(xs; y; x : u; v);split(xs; y; u; x : v))split(nil; y; u; v) ! < u; y; v >qs1(< x; y; z >) ! append(qs(x); y : qs(z))append(x : xs; y) ! x : append(xs; y)append(nil; y) ! yFigure 1: QuickSort program (`:' denotes the cons operator)the partitioned lists in parallel, and propagating HNF demand alone is unable to extract anyof this parallelism.We now illustrate how even the extreme measure of declaring append as strict in botharguments (under HNF demand) does not lead to any signi�cant parallelism. This is becausenot only is the HNF strictness insu�cient to extract much parallelism, but the HNF evalu-ation mechanism is unable to exploit the parallelism. If append is strict in both argumentsthen qs(l1) and qs(l2) could be invoked in parallel. However, qs(l2) would be evaluated inparallel with qs(l1) only until their HNFs are obtained. Evaluation of qs(l2) would then besuspended until append consumes all of its �rst argument { i.e., until qs(l1) is completelyevaluated. Hence little parallelism results even when append is declared to be strict. Toexploit all the parallelism in quicksort while performing repeated HNF evaluations alone,cons has to be considered strict { which runs counter to the goals of lazy evaluation.2.1.1 Propagating NF Demand and its MeritsIn equals, we follow the model of exhaustive (NF) evaluation, instead of repeated HNFevaluation. We identify two extents to which a term may be evaluated { to HNF or to NF{ based on the context of evaluation (the demand). Observe that if the output of append(or cons) is demanded in NF then both its arguments are needed in NF. In other words,append and cons are ee-strict (see [SPR90] for details) in their arguments. By propagat-ing NF demand in this manner and utilizing ee-strictness information, we can identify allthe parallelism in the examples discussed in this paper. The advantages on NF demandpropagation are described below.In previous implementations, tasks compute weak head-normal forms of terms. (Hence-forth, we use \terms", \graphs" and \expressions" interchangeably.) However, HNF tasksare typically �ne grained and therefore can easily lead to signi�cant overheads. Althoughthis problem can be alleviated to a large extent by a careful design of task management (asis done in [Aug89] and [Mar91]), nevertheless it is advantageous to use larger grained tasks.Use of NF demand (also called exhaustive or e-demand) helps achieve this, since it packsseveral HNF tasks into a single task.Propagating exhaustive demand also increases the e�ciency of sequential evaluation sinceit avoids repeated closure construction and context switching. For instance, observe that in5

the QuickSort example, qs(l) eventually reduces6 toappend(append(� � � append(t1; t2) � � �)If we do propagate only HNF demand, then the request to head normalize the outermostappend results in another call to head-normalize the inner append. This proceeds all the wayto the innermost append, which then outputs a single element. This element is consumed bythe next outer append and so on until the top-level append outputs one element. The restof the computation is represented in a closure, which is invoked only after the �rst elementis consumed. In contrast, if we propagate NF demand then the top-level append will forcecomplete evaluation of inner append, which in turn will force full evaluation of its innerappend and so on. Hence, we avoid repeated closure constructions and context switches.Moreover, due to NF demand propagation, equals code is similar to that generated by astrict language and hence its sequential performance is comparable to strict implementations.In summary, propagating NF demand leads to:� easier detection of parallelism� larger task granularity� avoidance of repeated closure building and context switching.We remark that propagation of exhaustive demand does not translate into inability todeal with lazy streams. In particular, functions that induce such behavior do not propagateexhaustive demand, and hence will be evaluated lazily in our system. For instance, considerthe term first10(qs(l)), where first10 returns the �rst ten elements of its argument list.Since first10 does not propagate normal form demand, qs(l) will be evaluated lazily, sothat we do not spend time to sort the entire list, but only to identify as many elements asnecessary. Even in the context of a function that propagates exhaustive demand, we maylike to \force" stream behavior, so that the function produces its output incrementally. Ina parallel implementation such as ours, this can be accomplished without sacri�cing theadvantages of exhaustive demand propagation, by using vertical parallelism (i.e., evaluationof a function and its argument in parallel).2.2 Memory ManagementMost previous implementations of lazy languages on shared-memory machines use variantsof mark-and-sweep or copying garbage collectors to reclaim storage. Memory managementusing garbage collection has the following advantages: it is transparent, can manage memoryin presence of imperative updates, and furthermore handles variable size allocations whileavoiding loss due to fragmentation. However, for parallel evaluation, this approach su�ersfrom several drawbacks. First, the garbage collector scales poorly when the number ofprocessors is increased. This is because there are certain inherently sequential componentsand hot spots in the copying phase of the collector such as the need to lock every structure6This term may not be constructed explicitly in its entirety; parts of it (e.g., its spine) may be on the stack.6

before moving7. This problem is compounded by the fact that the garbage collectors traversemuch of the heap space and consequently produce a considerable amount of paging activity.Another problem with the garbage collection approach is that it can lead to poor localityof reference, which is important in a virtual memory/cache environment. When evaluatingfunctional programs, we often build structures that are used just once. With garbage collec-tion, this space is not reused until after the next collection. This means that a page may bebrought in from the disk, accessed very few times and then written back.An alternative to mark-and-sweep or copying garbage collectors reclaims memory throughthe use of reference counting, and is used in equals. Reference counts have been used inother lazy functional language implementations, such as Alfalfa [Gol88b]. However, itse�ciency compared to garbage collection and its e�ectiveness in a parallel implementationhave not been established. The equals implementation shows that reference counting avoidsmemory contention and improves locality due to immediate reclamation and reuse of freespace. It also reduces memory use and is very e�cient. For instance, our sequential runtimes are comparable to those of SML/NJ (with dereferencing typically taking less than20% of the time) and heap space usage is typically 15 to 25% of that used by SML/NJ.Reference counting implementations are usually limited to acyclic structures only. Notethat this is a limitation of individual implementations and not the approach itself. Intuitively,reference counts can be used in presence of cycles by detecting when back edges are created(thus creating cycles) and not counting the back edges. For instance, the general algorithmin [Hug83] collects cyclic structures using reference counts. Unfortunately, the overhead ofsuch algorithms is high since during the addition of every edge, we must check whether this isa back edge. In a lazy, purely functional language such as equals, cyclic data structures canalways be coded as output of in�nite functions. For example ones() = 1 : ones(); x = ones()evaluates the same structure as x = 1 : x. However, the corresponding cyclic representationis more e�cient than the in�nite function form (see page 188 in Bird and Wadler's text[BW88]). Note that in declarations of the form let x = 1 : x, creation of back edges canbe detected statically, at compile time. Hence we can avoid placing the usual referenceincrement instruction at such points, thereby naturally handling cycles with no additionaloverhead.3 CompilerAn equals program consists of a set of functions de�ned by pattern match. The abstractsyntax of the source language of equals is given in �gure 2. Each function de�nition in theprogram is translated into a corresponding function in the intermediate language, and itsbody is translated into a sequence of intermediate code statements. The constructs in theintermediate language are given in �gure 3. Note that this language bears some similarities7Although some recent concurrent collectors (e.g., [WGH92]) do not lock when copying, they require additionalmemory and add overhead to node access and allocation. Moreover, note that collectors such as the Appel-Ellis-Li [AEL88] collector are sequential; the concurrency arises from a single process performing collection while other(mutator) process(es) are executing the program. 7

program ::= fundef; � � � ; fundeffundef ::= f(pat; . . . ;pat) = exprexpr ::= if expr then expr else exprj d(expr; . . . ; expr)j xpat ::= c(pat; . . . ;pat)j xNotes: f : function symbol,c: constructor,d: functor or a constructor, andx: a variable.Figure 2: Equals source language syntaxto the G-machine, but di�ers in many ways, such as explicitly named variables and functions,and constructs for demand propagation. The target language (C) inuenced some constructs;for instance, compound expressions were permitted since they are allowed in C and hence canbe more e�ciently compiled than an equivalent sequence of simple expressions. Furthermore,the structure of the intermediate language permits compilation to be a simple translationfollowed by a series of optimization steps.3.1 Compilation AlgorithmFirst, the pattern matching constructs of equals are transformed to case expressions,using the Huet-Levy [HL93] algorithm for lazy pattern matching8. After pattern matching,the only change to the structure of the source is the introduction of case expressions. Thecode generator (see �gure 4) takes these transformed function de�nitions and produces inter-mediate code. It consists of several functions listed below. Most of them take as parametersthe fragment of the source program to be translated and extent, which speci�es the demandon this fragment. The value of extent can be UNK, which means that the demand is notknown statically, or one of NF or HNF. This parameter extent is not to be confused withcontext: the former is a compiler parameter used to propagate demand statically at compiletime whereas the latter is a parameter to functions in intermediate code and is used to propa-gate demand at run-time. In the �gure, best(extent; context) stands for `NF' if extent = NFand `context' otherwise. The function GetFreshVariable generates unique variable names.F : the top-level code generator for a function.E: translates an expression. It takes three parameters: the expression to be translated,the name of the variable into which the value of the expression is to be stored (y) and extent.8Our current system does not handle prioritized patterns. It can be done using the techniques of Laville [Lav88],Puel and Suarez [PS90] and those in Sekar et al. [SRR92].8

Function f(context; x1; . . .xn):Header for function f . Every function in the intermediate code takes aparameter named context. This parameter speci�es (at runtime) the extentto which the output of (the current invocation of) a function needs to beevaluated. Using this parameter we propagate demand at runtime.Assign var; expr.If expr then block1 else block2.Switch x f case c1 : block1; . . . ; case cn : blockn g.Eval x to context at location.FunctionEval f(v1; . . . ; vn) to context at location result x.BuildTerm d(v1; . . . ; vn) result x.GetChild i of x result y.WaitFor context of x.Deref x.Return x.Notes: extent : the extent of evaluation (NF or HNF)expr : constants, variables or compound expressions using prede�ned functions, such as +block : a sequence of statements in intermediate code.location : either local or remote and speci�es whether a task is to be evaluated locally orat a remote site (i.e., on another processor).Figure 3: Equals intermediate languageP: is like E, but handles pattern-matching.A: generates code for evaluating argument expressions to a function. A takes �ve ar-guments: the expression e to be evaluated, the argument position of e, the name d of thefunction that has e as an argument, the name of the variable y into which the result is storedand extent. A di�ers from E in that it takes the strictness of d into account to determinethe demand on e.B: generates code to build the graph representing its argument e. The result is storedinto the argument y.In order to preserve simplicity, the code generator itself attempts no optimizations. Notethat all function evaluations have been labeled for possible remote evaluation, and no syn-chronization barriers have been placed. Moreover, code for managing the free space (e.g.,dereferences) has not been generated. These are generated after a ow analysis is performedduring optimization phases. Furthermore, sharing of common sub-expressions, elimination oftemporary variables, and unboxing of structures are handled in the subsequent optimization9

F [[f(x1; . . . ; xn) = e]] = y GetFreshVariable()= Function f(context;x1; . . . ; xn);E [[e]] y UNK;Return yE [[case x in (pm1; :::; pmn)]] = Eval x to HNF at Remote;y extent Switch x P [[pm1]] x y extent;...P [[pmn]] x y extentE [[x]] y extent = Eval x to best(extent; context) at Remote;Assign y; x;E [[if e1 then e2 else e3]] = E [[e1]] z NF;y extent If z then E [[e2]] y extent else E [[e3]] y extentE [[d(e1; . . . ; en)]] y extent = z1 GetFreshVariable()...zn GetFreshVariable()A [[e1]] 1 d z1 extent;...A [[en]] n d zn extent;8>>>><>>>>: BuildTerm d(z1; . . . ; zn) result y if d is a constructorAssign y, d(z1; . . . ; zn) if d is a prede�ned functionFunctionEval d(z1; . . . ; zn) if d is a user-de�ned functionto best(extent; context)at Remote result yP [[c(x1; . . . ; xn)! e]] x y extent = case c : GetChild 1 of x result x1;...GetChild n of x result xn;E [[e]] y extentA [[e]] i d y extent = 8>>>><>>>>: E [[e]] y NF if ith arg. of d is ee-strict and extent = NFIf context= NF if ith arg. of d is ee-strict and extent 6= NFthen E [[e]] y NFelse B [[e]] yB [[e]] y otherwiseB [[x]] y = Assign y; xB [[d(e1; . . . ; en)]] y = z1 GetFreshVariable()...zn GetFreshVariable()B [[e1]] z1;...B [[en]] zn;BuildTerm d(z1; . . . ; zn) result y;Figure 4: Compilation Schemephases. The optimizations are a collection of known techniques that have been combined toachieve good e�ciency. 10

3.2 Optimizations1. Unboxing: Any boxing operation on a value followed by an unboxing operation isremoved, eliminating all unnecessary boxing operations. When a function needs aparameter in a fully evaluated state (which is determined from strictness), it is passedas an unboxed value. Also, functions return unboxed values whenever possible. In theimplementation of equals, we found that such inter-procedural unboxing improvesspeed by more than a factor of 2.2. Lifetime Analysis: A variable is determined to be evaluated to di�erent extents,unevaluated, or in an unknown state at each point in the code, by a lifetime analysiswhich is performed across basic blocks. Using this analysis, the following optimizationsare performed:� Placement of Synchronization Barriers just before the point where the value isneeded.� Remote vs. Local evaluation: If no signi�cant work is done between a remoteevaluation and its corresponding WaitFor (e.g., only straight-line code), it ischanged to a local evaluation.� Common Subexpression Sharing is done to share expressions with di�erent evalu-ation extents and across basic blocks.� Immediate Reclamation of Free Space: The term pointed to by a variable is deref-erenced immediately at the end of that variable's lifetime. Our experience showsthat this signi�cantly reduces heap space, e.g. heap-space requirement is broughtdown by a factor of 4 in QuickSort.� Reducing the Number of Temporary Variables using a graph-coloring heuristic.3. Tail Recursion Elimination: Direct tail recursion and certain linear recursions (withassociative functions as outermost symbols) are converted into loops.4. Generating two versions: Finally, we can eliminate the context parameter (togetherwith all the tests on its value) by generating two versions of the code for each function.The two versions are invoked when the result is required in NF and HNF respectively.An example equals program (n�b) and its optimized, NF demand version of the interme-diate code are given in �gure 5. The unoptimized code for n�b is given in the appendix, toindicate the e�ect of the optimizations.4 Memory ManagementMemory is divided into two sections, namely, heap space and stack space. We separate thestacks from the heap, since stacks show greater locality and are simpler to manage. In thefollowing we �rst describe the implementation of the heap, including node design, allocationpolicy, and deallocation via reference counting, followed by a description of stack-spacemanagement. 11

nfib(n) = if (n < 2) then 1else nfib(n-1) + nfib(n-2) + 1Function n�b NF(x1)If x1 < 2 thenAssign y1; 1elseAssign y1; (x1� 1)FunctionEval n�b NF(y1) at Remote result y2Assign y1; (x1� 2)FunctionEval n�b NF(y1) at Local result y3WaitFor NF of y2Assign y1; (y2 + y3 + 1)Return y1Figure 5: An example equals program (top) and its intermediate code (bottom)Status Ref. countValueWaitQ Ptr Ptr to Child 1Ptr to Child 2 Ptr to Child 3+Status �elds include:NF: Indicates whether the term rooted at this node is in normal form.InProcess: Set if the term rooted at this node is in the process of being (head) normalized.Lock: Used to serialize accesses to the node.Overow: Set if the current node has more than three children.Type: Indicates whether the value of the node is a functor, constructor, integer, oat, etc.Figure 6: Structure of Heap Nodes4.1 Node Design and LockingWhen a term is normalized, it is overwritten with its normal form. If all graph nodesare of equal size, this is easily achieved by overwriting the term's root node. Under thisscheme, nodes of arbitrary arity are accommodated using a chain of overow pointers toreference additional children. Some systems, such as the h�;Gi-machine, use variable-sizenodes; properly overwriting a smaller node with a larger node then requires overwriting withan indirection node that points to the larger node. Thus, at runtime, certain node accesses12

must be checked for indirection. The �xed-size scheme avoids this indirection cost and alsoenables simple reference-counting collection without fragmentation.The structure of the graph nodes is given in �gure 4.1. If the node has more than threechildren, the Overow ag is set and the �rst two child pointers point to the �rst twochildren; the third child pointer points to a list of overow nodes, each of which containpointers to the other children. The WaitQ �eld points to the noti�cation list of tasks, to beawakened when the (head) normalization of the node is complete.The locks we have implemented are shadow locks, in which we spin on the copy of thelock bit in cache until it is reset and then try to obtain the lock [Seq87]. These locks usethe atomic test-and-set (btsw) instruction available on the Sequent and generate less bustra�c than naive locks. In general, a node is accessed only after the lock is acquired. Tofurther reduce locking overheads, the design permits accessing a node without locking undercertain (common) conditions. Some of the strategies used to avoid locked access to nodesare described below.If a node has been normalized, the extent of its normalization guarantees that either theentire term (if in NF), or just the root (if in HNF) will not require locking. The implemen-tation ensures that the status ags indicating the extent of normalization can be safely readwithout locking. For instance, consider the ag that indicates whether a term is in NF. Evenwhen the term is in an inconsistent state (i.e., partially overwritten), the implementationguarantees that this ag is not set. Thus, it is safe to examine the ag and if set, all thedata �elds in the node can be safely extracted without locking. Since equals is a lazylanguage, tests for normalization are done often and the above optimization is very impor-tant. Another case when locking is not required arises when a node cannot be referencedby another processor, e.g., when the node has just been allocated. Finally, the referencecount is manipulated exclusively with atomic increment and decrement instructions and thenormal locking convention is not used.Our implementation seeks to keep heap nodes reasonably small (32 bytes). Since mostof the space is occupied by pointers, we used 16-bit pointers to reduce the size. Being aprototype, the limit on the the number of nodes (216) is acceptable. (Even this representsa 2Mb heap, half the physical memory of the machine on which development was begun.)Apart from the ceiling on the memory use and the overhead of shift and add instructionson every access, the other disadvantages of this scheme include the need to pad node sizesto a power of two, enlarged object-code size, and the inability to allocate nodes with knownlifetimes on the stack. In the future implementations, though, we plan to redesign the nodesto accommodate full-length pointers.4.2 Heap AllocationIn order to avoid contention when allocating memory, the heap is managed as a two-levelstructure9. The lower-level structure is a linked list of free nodes, called a block and thehigher-level structure is a locked global pool of blocks.9A two-level allocation strategy, involving garbage collection, was also used in GAML.13

Initially, a block from the global pool is given to each evaluator, which privately allocatesfrom (and deallocates to) its block. Blocks are permitted to grow to a certain maximum size,after which they become full. When this occurs, the evaluator begins a new block. The fullblock may either be returned to the global pool, or the evaluator may keep it for possiblelater use. Blocks may also become empty, if an evaluator allocates more than it deallocates.If the evaluator thus exhausts its current block, it will use a full block that it has kept forsuch possible use; if it has no such block, it will obtain one from the global pool.In the current implementation, an evaluator keeps two full blocks on hand before it beginsreturning them to the global pool. This hysteresis (i.e., empty on zero and full on two) avoidsthrashing on the global pool. For instance, without hysteresis (i.e., full on one), when anevaluator has exactly one full block it would return the block to the global pool. If it mustnext perform a node allocation, immediately it would have to obtain a block from the globalpool; hence, an alternating sequence of allocations and deallocations would lead to thrashingat the global pool.4.3 Reference CountingAs mentioned before, reference counting is used to reclaim free space. Since there is no sep-arate phase in which all processes collect free space, opportunities for contention at memoryreclamation are minimized. Moreover, reference counts permit the following trick to avoidlocking when a node is freed. Observe that a node about to be freed (i.e., a node beingdereferenced with reference count = 1) will be referred to only by the current evaluator.Thus, there is no need to lock it before freeing. Since many dereferences satisfy this condi-tion (e.g., 45% of the dereferences in the Euler example), this trick is important in practice.In contrast, since the reference information is not available for a garbage collector, this trickcannot be used to avoid locking at copying time.Using reference counting we can immediately reclaim freed space. This results in greatlyreducing the heap space usage. Furthermore, by maintaining the free list as a LIFO, weimmediately reuse memory that is freed. Since nodes are created and destroyed very quicklyin typical programs, this strategy greatly increases the chances of using the same set ofmemory locations repeatedly, thus improving locality.4.4 Stack ManagementThe stack space is divided into stacks of several di�erent sizes, and initially each task isallocated a small stack. There can be many suspended tasks at any time, many of themwaiting without having performed much computation. Allocating a small stack initiallyreduces the space wasted by such tasks. Stacks are used in the usual manner during executionof the C code to evaluate a term, and thus an activation record is usually allocated adjacentto its parent in memory, unless overow occurs.There are two possible mechanisms to handle stack overows. In the �rst, when a task'sstack overows, it is extended by linking another stack. Checking for stack overlow is per-formed at every entry to a function. At every exit from a function, the stack has to be14

checked for underow. In case of an underow, the current stack is unlinked and the returnvalue passed to the old stack.In the second approach, the stack is expanded on overow; there is no need to checkfor underow. In this approach, overow triggers the allocation of a larger stack, and thecontents of the smaller stack are moved to the new stack, with appropriate adjustments tostored frame pointers. Moving the old stack's contents can be achieved by adjusting thevirtual-to-physical address translation tables. This approach incurs some overhead fromcopying and adjustment, but it has certain advantages relative to linking; for instance, weneed not check for underow. Moreover, it avoids the possibility of repeatedly linking a newstack, using it minimally, underowing and unlinking it, and then immediately overowingthe old stack again.In equals, we used the second approach of expanding stacks, to avoid the overhead ofunderow checks. Unfortunately, on the Sequent Symmetry, the virtual-to-physical addresstranslation tables are inaccessible to nonpriviledged programs, and the operating systeminterface to them imposes unacceptable limitations on the allowable memory layout. Hence,in the equals implementation, we have been forced to copy the contents of the smaller stackonto the larger stack. Initially, tasks are given stacks whose size is 16kb. When overow isimminent (within 1200 bytes of the stack limit10), the stack's contents is copied to a 256kbstack. Later overowing by the task will, each time, double the size of its stack. Althoughthe initial 16kb stacks are pre-allocated, larger stacks are dynamically allocated. Note thatchoosing a geometrically increasing sequence of sizes bounds the worst-case overhead of thecopying technique.A major disadvantage of the copying process is the burst of bus tra�c, including manywrites, that it generates. However, stack overow is rare and does not seem to be a seriousbottleneck11. We are currently investigating linked stacks (the �rst approach), seeking waysto reduce the underow checks and hysterisis e�ects, and studying the relative e�ciency ofthe two approaches.5 Task ManagementThe task management subsystem provides mechanisms for the creation, synchronization,and load-balancing of tasks. Each of these mechanisms is described in detail below.5.1 Task CreationRecall that the purpose of a task is to evaluate a term to either NF or HNF. Task creationconsists of building the term to be evaluated (if it does not already exist) and allocating astack on which to begin its evaluation.10This is enough of a bu�er to permit most runtime support routines from having to check for stack overow.11The sizes chosen for stacks are a factor; in almost all examples discussed later, only the small initial stacks (andnot many of them) overow. Relative to the total accesses made to stack locations, the amount from copying isalmost negligible. 15

In contrast with our scheme for task creation, the h�;Gi-machine intermingles the stackand graph, by allocating stack space in each function-apply node in the graph. Since thestack and heap accesses show di�erent behavior (e.g., stacks accesses show better locality)we chose to keep the stack and heap spaces distinct. Furthermore, creating stack frameson the heap requires variable-size graph nodes, leading to fragmentation and its associatedproblems when reference counting is used.Task Control Blocks: Each task's information is stored in a task control block that in-cludes not only the task's stack, but also other vital information. It records the term underevaluation, the base and limit of the task's stack, and it has a �eld to store the stack pointerwhen the task is suspended. Currently, there is a �xed maximum number, S, of tasks. Thislets us pre-allocate task control blocks in an �xed-length array, and again permits use of ashorter task pointer (an index) than would otherwise be possible. This is useful, since eachgraph node currently requires a �eld indicating the task processing it. The restriction onthe number of tasks could easily be avoided, but we have not observed any insurmountabledi�culties arising from it. Since the number is small, it sometimes provides a throttle onthe creation of tasks, because we avoid task creation unless a small-stack task is available.(At most 20% of the tasks have large stacks.)In an early version of equals, this throttle on task creation led to the following interestingsituation: a program was executed where one task created another, and quickly suspendedawaiting it. Then, the new task behaved similarly. Rapidly, all small tasks were allocated,and so the system switched to a sequential, stack-intensive mode of evaluation. Overowingits stack, a larger stack was given to the task. Then, its original stack was released to thepool of available stacks. Now, unfortunately, the system was briey able to switch out ofsequential mode, create a new task to run on the newly freed stack, and suspend the taskrunning on the large stack. Having no more stacks, evaluation (again on the small stack)returned to sequential mode, and the process repeated until the the maximum number oftasks was exceeded.To overcome this problem, hysteresis is used in the current implementation, which usestwo thresholds Sseq and Spar. These thresholds control whether the runtime system willpermit creation of new, parallel tasks, or whether it will enforce sequential execution. Whenparallel-task creation is allowed, it is permitted until more than Sseq tasks exist, at whichpoint sequential execution is enforced. Sequential execution then remains enforced until thenumber of tasks becomes less than Spar. We have found that good results are obtained bysetting Sseq and Spar to 80% and 50% of the total number of small stacks respectively.5.2 Task SynchronizationWhile evaluating a term t, a task T may �nd that it must evaluate one of its subterms12,say s. Task T may create a new task, say S, for this subterm s, or T may evaluate s byitself. Synchronization is clearly required in the �rst case, since T may have to wait for the12This subterm may not be a part of the original term, but instead be created during its evaluation.16

completion of S. Even in the second case, synchronization may be required: If s is alreadybeing evaluated by another task, T must suspend itself until s is evaluated. In such cases, Texecutes a WaitFor instruction that, in e�ect, enters it into a wait queue for s. (The actualmechanism is discussed later in this section.) Its evaluator then proceeds to execute the nexttask from the global ready queue. Note that there is no need to preempt tasks in equals,since we use a conservative approach that never generates work that is not required.An important point to be noted here is that wait queues are associated with terms,rather than tasks. This is because a task T created to evaluate a term s may also take upmany subterms s1; :::; sk of s for (local) evaluation. Suppose that another task T 0 needs toevaluate s1. In this case, observe that T 0 need wait only until s1 is evaluated. However, Twill complete only after evaluating all of s2; :::; sk; s. Thus, parallelism from simultaneousexecution of T and T 0 is lost if T 0 waits on T instead of s1. Also, note that T selectivelywaits for one or more subterms, and is not restricted to await all subterms that it has createdbefore it can resume from any one of them. (This restriction is imposed in [HS92], where itnecessitates additional measures to avoid deadlock.)Since a term may be evaluated to di�erent extents (HNF or NF) depending on thedemand, evaluation of shared subterms complicates matters. To see this, consider a term tbeing evaluated to extent ext1 by a task T1. Before its evaluation is complete, suppose a taskT2 needs the same term t to be evaluated, this time to extent ext2. The following scenariosarise:� ext1 = ext2: T2 is added to the wait queue for t and is awakened when t's evaluation iscomplete.� ext1 = NF and ext2 = HNF: T2 is added to t's wait queue, awaiting its NF, since thecode executed evaluating t to NF does not produce an intermediate result in HNF.This potentially reduces parallelism, since T2 is blocked longer then strictly necessary.Nevertheless, e�ciency is improved; often, T2 would soon request subterms of t in HNF,duplicating the work already being done to evaluate t to NF.� ext1 = HNF and ext2 = NF: T2 is added to t's wait queue, but will not be releasedwhen t's HNF is computed. We might create a new task to evaluate t to NF, but toprevent T1 from possibly overwriting the NF we would have to kill it, and all tasks ithas spawned. We avoid this di�culty by permitting T1 to complete, at which time t istaken up for normalization. Though we might release terms awaiting t's HNF at thistime, for e�ciency all tasks are made to await t's NF.Finally, we note that equals implements the noti�cation model of task creation, asopposed to the advisory-sparking method used by a number of recent implementations[Aug89, Geo89, Mar91]. In the advisory method, a task is not created until an evalua-tor is free to run it: a pointer to the graph to be evaluated would be put into a spark poolby T , but no guarantees are made that a task will ever be created. Rather than block fora sparked graph for which no task has been created, T would, with this method, evaluatethe graph itself. The main advantage of this technique is that the spark pool need not belocked; however, the ready queue must still be locked.17

Implementation of Synchronization Mechanism: The existing implementation does notuse an explicit wait queue to provide synchronization. Initially, we were concerned that thefollowing situation might impair performance too much. In this situation, two tasks havebeen created, and both must be awaited. Using wait queues, two WaitFor instructionswould be required in series, possibly leading to unnecessary synchronization, where a task isawakened only to re-suspend immediately. Instead, a more exible scheme was implementedfor the runtime system. Our experience shows, though, that this scheme is usually notrequired, and examination of the code generated reveals that the full power of the schemeis rarely useful. Thus, future implementations of equals will use the simpler explicit waitqueue. However, for completeness we next explain the actual mechanism used.Consider a task T which requires evaluation of subterm s, and creates a task to do this.Then, T will be placed in a noti�cation list for s, along with a pointer to a memory locationin T 's stack. Such a memory location is called a wait counter, and it is decremented whenthe task for s completes. Though the wait-counter mechanism supported by the runtimesystem allows a more general scheme, the compiled code currently uses binary values forwait counters: zero indicates s has completed, and one indicates that it has not. Largervalues are possible, indicating more tasks are pending, and all of these tasks must completebefore wakeup can occur. Unlike the scheme described by [Geo89], T can have several waitcounters: a single wait counter would imply that T must await all tasks it has spawned thusfar, even those not strictly required until later. In our scheme, whenever synchronizationbetween T and s is required, T executes a WaitFor instruction, which examines the statusof s. If s has not yet completed, WaitFor marks t as inactive. After s is evaluated, itstask will decrement the wait counters in its noti�cation list. If a task's counter becomes zeroand it was blocked awaiting this particular counter, the task is then moved to the globalready queue. Note that this does not necessarily happen to all tasks whose wait countershave become zero. Such tasks may be awaiting some other subterm, or may still be activelyrunning. Conceptually, such tasks are not in the wait queue for s, although they do needto be noti�ed of s's evaluation. The major disadvantage of our current synchronizationtechnique is that it complicates the copying approach to stack overow, and requires onetask to modify the contents of another task's stack, thus necessitating additional locking.5.3 Load BalancingIn equals, new or resumed tasks are placed in the global ready queue from which freeevaluators take up tasks13. Thus, the global ready queue is the mechanism for load balancing.To reduce contention at the global queue, we create tasks only when the system is lightlyloaded. When the number of tasks in the ready queue exceeds some threshold, the evaluatorsavoid creating tasks and instead perform the intended computation locally. This techniquehas been used previously [Mar91, Geo89], and details on the selected thresholds are givenlater.13A task may be taken up by di�erent evaluators during its lifetime. Thus, all memory accessed by a task, includingits stack, must be kept in shared memory. 18

Note that the above technique reduces task creation, and consequently decreases paralleloverheads. However, it has been observed in [MKH90] that this may result in too few tasksbeing created. Evaluators may become idle when parallel tasks could have been executed.However, this has not been a signi�cant problem in our experience. Our experiments indicatethat the evaluators are idle for less than 10% of the time. Even this may be due to thepresence of inherently sequential components in the computation.Ready Queue: The global ready queue has been designed so that serialized access does notcreate a bottleneck. Consider a simple ready queue that is a linked list of tasks. In order toadd or remove entries from the queue, the queue needs to be locked. Hence, the lock for theready queue can become a system bottleneck: Too much bus tra�c is generated when allidle evaluators race one another to retrieve a newly enqueued item. To avoid this di�culty,the current version implements the queue in a novel way, which in spirit resembles the dualqueue used by [Geo89].The queue is viewed as a series of slots, and each idle evaluator that arrives at the queueis assigned a unique slot (e.g., next `free' slot). If that slot holds a task, the evaluator runsthis task; note that once a slot is assigned, no locking is needed for dequeueing. If the slotis empty, the evaluator busy waits on this slot until it is �lled. Note that �lling other slotsdoes not a�ect this evaluator's behavior; hence, evaluators do not race one another. Whena task is placed in the queue, it is placed in the next empty slot. Note that such a queuecan be easily implemented as a circular array of task pointers, and note also that the locksneeded to enqueue and to dequeue are independent. Furthermore, the head (next free slot)and tail (next empty slot) can be advanced with atomic locked-increment instructions. Thespeedup curves shown in section 6 show that this implementation of the ready queue is not asystem bottleneck. (An initial implementation of equals used a simple linked list of tasks,which proved to be a bottleneck and lead to the abovementioned improvement.)Queue Thresholds: As mentioned earlier, new tasks are generated only when the systemload is low, as indicated by a global ag. This ag indicates whether the system is in parallel(low load) or sequential (high load) mode. The system switches between the two modesby comparing the size of the ready queue, N , against two thresholds Nseq and Npar, asfollows: When the system is in parallel mode and N becomes larger than Nseq, the systementers sequential mode; in sequential mode, when N falls below Npar, the system switches toparallel mode. In parallel mode, the runtime system may be requested to create new tasks.It may refuse, as described earlier, if there already are too many tasks. The values of thetwo thresholds Npar and Nseq have been determined through experiments, and though thereis no ideal setting for all programs, Npar = 1 and Nseq = 20 yields good overall results. Notethat the ag indicating the system's mode need be changed only when a task is enqueuedor dequeued. Furthermore, since this ag is advisory, it can be read or written without anylocking. Observe that most accesses are to read this ag and are satis�ed by the local cache;thus, this ag is not a system bottleneck. 19

equals SML/NJEuler 88.0 104Nqueens 54.8 42.2MatMult 19.7 14Sieve 59.0 33QuickSort 8.6 4Table 1: Comparison of equals and SML/NJ. (All timings in secs. on a Sun 3/260)equals h�;Gi GAMLMatMult 22.6 NA NAQuickSort 9.5 NA NAEuler 116.9 128.4 430Nqueens 64.0 73.9 467N�b 32.1 62.1 213Table 2: Comparison of equals with h�;Gi-machine and GAML. (NA: Not Available)6 Implementation Results and DiscussionIn this section we present the results of our implementation based on example programsadapted from [Geo89, Gol88a, Aug89, SPR90]. First we study the sequential performance ofequals and show that it is comparable to that of Standard ML of New Jersey (SML/NJ).Following this we compare our speeds and scalability with that of h�;Gi-machine and GAML.We then discuss the impact of reference counting on scalability and performance. In partic-ular, we provide experimental evidence to show that memory requirements are signi�cantlyless and that locality is improved.6.1 Sequential Performance of EqualsTable 1 compares the performance of equals to SML/NJ (release 0.75)14. SML/NJ isa sequential implementation of SML, a strict language, and is among the fastest functionallanguage implementations. In the table, Euler computes the Euler totient function from 1through 1000. In addition to performing substantial amounts of computation, this programalso spends a lot of time creating and destroying lists. MatMult computes the product of two100 � 100 matrices. Sieve computes list of primes between 2 and 10; 000. QuickSort sorts alist of 5000 integers, and Nqueens �nds all solutions to the n-queens problem on a 10 � 10board.Observe that speeds of SML/NJ and equals are comparable in Euler, MatMult andNqueens. By propagating exhaustive demand and generating two versions, our code is similar14These �gures were �rst reported in [KPR+92]. 20

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
S

pe
ed

up

Processors

Ideal
Nfib

Euler
MatMult
Queens

Figure 7: Speedup curves for equals.to that generated for a strict language, and hence the speeds are comparable. In QuickSortand Sieve, where there are very few computation steps and most of the time is spent increating and destroying list structures, SML/NJ is signi�cantly faster because it uses unboxedlists, whereas equals uses boxed lists15. This is not a problem in the �rst three examples,since the number of steps that access lists or perform any other computations are muchlarger than those that create or destroy lists. (e.g., in MatMult there are 106 operations ofthe �rst kind versus 104 list creation/deletion steps.). Boxing can increase the work involvedin copying by as much as 100%. Moreover, the performance of equals can be substantiallyimproved by generating assembly code, as is done in SML/NJ. We are quite encouraged toget performance comparable to SML/NJ in spite of these factors.6.2 Parallel PerformanceTable 2 shows wall-clock times for equals, the h�;Gi-machine and GAML on a singleprocessor. Timings for both equals and the h�;Gi-machine were obtained on SequentSymmetry with a 16 MHz clock. However, the h�;Gi-machine timings do not include garbagecollection time, which can account for up to 30% of the total (sequential) time. GAMLtimings were obtained on a Sequent Balance, which is considerably slower. This impedesa reasonable comparison between our times and those of GAML. However, it is mentionedin [Mar91] that the sequential execution times for GAML are roughly of the same order asthose of the h�;Gi-machine.Figure 7 shows speedup curves on all of the examples run using equals. MatMult andEuler create large grain tasks and hence speedup is almost linear. Although task granularityis very small in N�b, we still scale well, showing that we have managed to keep down taskoverheads and contention at the global queue. In Nqueens, however, we show saturationwhen number of processors reaches 10, since, in that example, there is a lot of vertical15Currently EQUALS unboxes only primitive data types.21

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
S

pe
ed

up

Processors

Ideal
<v, G>

EQUALS
GAML

Figure 8: Speedups on Euler.
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Ideal
EQUALS

<v, G>
GAML

Figure 9: Speedups for N�b.parallelism which we do not currently exploit.Figures 8, 9 and 10 compare the scalability of equals with that of the h�;Gi-machineand GAML on Euler, N�b and Nqueens respectively. Observe that equals scales as well asthe h�;Gi-machine and GAML on N�b. On Euler, it scales as well as the h�;Gi-machine andbetter than GAML. Nevertheless, both h�;Gi-machine and GAML scale better in Nqueenssince they exploit vertical parallelism (unlike equals) with the aid of the advisory-sparkingmethod. Furthermore, the h�;Gi-machine timings do not include garbage collection times.As can be seen from the results in GAML, garbage collection times scale poorly, e.g., inEuler, the garbage collection time decreases by only a factor of 2 when number of processorsincreases to 8. 22

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
S

pe
ed

up

Processors

Ideal
<v, G>
GAML

EQUALS

Figure 10: Speedups for Nqueens.equalsSML/NJ heap stackEuler 2.2 0.10 0.07Nqueens 0.8 0.34 0.09MatMult 0.8 0.64 0.01Sieve 2.2 0.32 0.32QuickSort 1.4 0.16 0.20Table 3: Memory usage of equals and SML/NJ (in MB's).6.3 Impact of Equals Memory ManagementWe had mentioned in the introduction that memory management was a crucial componentand that by using reference counting we can achieve very good scalability, low memoryrequirement and improved locality. In this section we give empirical evidence for theseclaims. equals SML/NJEuler 1.66 2.16Nqueens 2.16 3.12MatMult 1.77 2.14Sieve 1.76 2.42QuickSort 1.97 4.75Table 4: Ratio of Diskless Sun timings over Server timings.23

The Euler program spends over 40% of the total time in memory allocation and deallo-cation, creating and destroying as many as 3 million nodes. The nearly ideal speedup of thisprogram demonstrates the scalability of our memory manager. In contrast, the speedup ofGAML appears to saturate even for 5 processors, largely due to poor scaling of the memorymanagement techniques used. Table 3 shows the memory utilization of some programs inequals and SML/NJ. The table shows that equals typically uses substantially less mem-ory than SML/NJ. For equals, we show stack and heap use separately. (Stack usage is lesscritical, since it is easier to manage and its locality leads to less paging than comparable heapuse.) Table 4 shows the relative speeds of SML/NJ and equals programs on a Sun 3/260 (aserver), in comparison to a diskless Sun 3/75. The slowdown of equals is near 1.75, whichis the factor of di�erence in raw cpu power between the two machines used. In contrast, theperformance of SML/NJ degrades considerably more, due to excessive paging activity. Thisdemonstrates that memory utilization and locality of reference are much better in equalsthan in SML/NJ. The di�erence in degradation is large enough to make equals performbetter than SML/NJ on most of these examples on a Sun 3/75.7 Experience with EqualsThe equals implementation results show it is possible to automatically detect and e�ectivelyexploit parallelism in functional programs by propagating exhaustive demand; there is noneed to make assumptions such as cons and append being strict in all contexts. Furthermore,it establishes reference counting as a valid mechanism for memory management. Besidesusing much less memory and possessing improved locality, reference counting scales well andtherefore appears appropriate for parallel implementation.The implementation experience has also shown us the importance of minimizing taskcreation and management overheads. We assumed that we can minimize the impact ofthese overheads by minimizing task creation. We did succeed in reducing task creation: thenumber of tasks created in equals is less than 10% of the total number that would becreated without a throttle on task creation. Still, there is observable parallel overhead, andthe task creation time needs to be further reduced.Moreover, simple and e�cient techniques typically perform better than more general andelaborate schemes. For instance, wait counter based synchronization (a generalization ofthe scheme in [Geo89], where a task waits for multiple subtasks at a single barrier) wasinitially implemented. Experience showed that most of the waits were performed on a singletask and use of the wait counter (with associated overheads of initialization, increment anddecrement) was wasteful.The load balancing scheme used in equals is quite simple, but may not always succeedon more complex programs. We are currently exploring static analysis of programs forsophisticated load balancing. The normal-form demand propagation leads to the problemof e�cient exploitation of vertical parallelism, and is a topic of current research. There areseveral other sources of improvement in equals such as direct generation of assembly codeinstead of C-code. This will enable us to use registers e�ectively and reduce the overhead24

of function calls. We believe that the tighter code can result in considerable performanceimprovement.AcnowledgementsThis research has been supported by grants from Grumman Data Systems (8476231) andthe National Science Foundation (CCR-8805734, CCR-9010269 & CCR-9102159). Use ofthe Sequent Symmetry S81 was provided by the Department of Computer Science at RiceUniversity under NSF Grant CDA-8619393.References[AEL88] A. Appel, J. Ellis and K. Li, Real-time concurrent collection on stock multiprocessors, ACM Symp.on Programming Language Design and Implementation, 1988.[Aug84] L. Augustsson, A compiler for lazy ML, Lisp and Functional Programming, 1984.[Aug89] L. Augustsson and T. Johnsson, Parallel graph reduction with the h�;Gi machine, FunctionalProgramming Languages and Computer Architecture, 1989.[BW88] R. Bird and P. Wadler, Introduction to Functional Programming, Prentice Hall, 1988.[Dar81] J. Darlington, Alice: A multi-processor reduction engine for the parallel evaluation of applicativelanguages, Functional Programming Languages and Computer Architecture, 1981.[Geo89] L. George, An abstract machine for parallel graph reduction, Functional Programming Languagesand Computer Architecture, 1989.[Gol88a] B. Goldberg, Buckwheat: Graph reduction on shared-memory multiprocessor, Lisp and FunctionalProgramming, 1988.[Gol88b] B. Goldberg, Multiprocessor execution of functional programs, PhD Thesis, Yale Univ. Dept ofComputer Science, YALEU/DCS/RR-618, 1988.[HL79] G. Huet and J.J. Levy, Computations in nonambiguous linear term rewriting systems, Tech. Rep.No. 359, IRIA, Le Chesney, France, 1979.[HL93] L. Huelsbergen and J. Larus, A concurrent copying garbage collector for languages that distinguishimmutable data, Principles and Practice of Parallel Programming, 1993.[Hug83] R.J.M. Hughes, The design and implementation of programming languages, Dphil Thesis, OxfordUniversity Computing Laboratory, July 1983.[HS92] S. Hwang and D. Rushall, The nu � STG machine: A parallelized Spineless Tagless GraphReduction Machine in a distributed memory architecture, draft version, 4th Workshop on ParallelImplementations of Functional Languages, Aachen, 1992.[Joh84] T. Johnsson, E�cient compilation of lazy evaluation, ACM Symposium on Compiler Construction,1984.[KPR+92] O. Kaser, S. Pawagi, C.R. Ramakrishnan, I.V. Ramakrishnan, R.C. Sekar, Fast Parallel Im-plementation of Lazy Languages { The Equals Experience, Lisp and Functional Programming,1992. 25

[Lav88] A. Laville, Implementation of lazy pattern matching algorithms, European Symposium on Pro-gramming, LNCS 300, 1988.[Mar91] L. Maranget, GAML: A parallel implementation of lazy ML, Functional Programming Languagesand Computer Architecture, 1991.[MKH90] E. Mohr, D. Kranz and R. Halstead, Lazy task creation: A technique for increasing the granularityof parallel programs, IEEE Trans. on Parallel and Distributed Systems, 1991.[PJ87] S. L. Peyton Jones, GRIP: A parallel graph reduction machine, Functional Programming Languagesand Computer Architecture, 1987.[PS90] L. Puel and A. Suarez, Compiling pattern matching by term decomposition, Lisp and FunctionalProgramming, 1990.[SPR90] R.C. Sekar, S. Pawagi, I.V. Ramakrishnan, Small domains spell fast strictness analysis, ACMSymposium on Principles of Programming Languages, 1990.[SRR92] R.C. Sekar, R. Ramesh and I.V. Ramakrishnan, Adaptive pattern matching, Intl. Conf. on Au-tomata, Languages and Programming, 1992.[Seq87] Sequent Computer Systems, Sequent guide to parallel programming, 1987.[WW87] P. Watson and I. Watson, Evaluating functional programs on the FLAGSHIP machine, FunctionalProgramming Languages and Computer Architecture, 1987.[WGH92] J. Wild, H. Glaser, and P. Hartel, Statistics on storage management in a lazy functional languageimplementation, Fourth Workshop on Parallel Implementation of Functional Languages, Aachen,1992.

26

AppendixA Compiled code for n�bThe code generated using the compilation of rules of �gure 4 for the n�b program (�gure 5) isgiven below. Note that all Eval's and FunctionEval's are marked Remote, no WaitFor'shave been generated, and common subexpressions are not eliminated.Function n�b(x1)Eval x1 to NF at RemoteAssign y1, x1BuildTerm 2 result y2If (UnboxInt(y1) < UnboxInt(y2)) thenBuildTerm 1 result y4Assign y3, y4else Eval x1 to NF at RemoteAssign y5, x1BuildTerm 1 result y6Assign y7, BoxInt(UnboxInt(y5) � UnboxInt(y6))FunctionEval n�b NF(y7) at Remote result y8Eval x1 to NF at RemoteAssign y9, x1BuildTerm 2 result y10Assign y11, BoxInt(UnboxInt(y9) � UnboxInt(y10))FunctionEval n�b NF(y11) at Remote result y12Assign y13, BoxInt(UnboxInt(y8) + UnboxInt(y12))BuildTerm 1 result y14Assign y15, BoxInt(UnboxInt(y13) + UnboxInt(y14))Assign y3, y15Assign y16, y3Return y16Optimizing this code results in the following code, which was shown in �gure 5.Function n�b NF(x1)If x1 < 2 thenAssign y1; 1else Assign y1; (x1� 1)FunctionEval n�b NF(y1) at Remote result y2Assign y1; (x1� 2)FunctionEval n�b NF(y1) at Local result y3WaitFor NF of y2Assign y1; (y2 + y3 + 1)Return y1 27

