
The Need for Predictable Garbage Collection

Alastair Reid, John McCorquodale, Jason Baker,
Wilson Hsieh, Joseph Zachary

Department of Computer Science
University of Utah

Abstract
Modern programming languages such as Java are increas-
ingly being used to write systems programs. By “systems
programs,” we mean programs that provide critical ser-
vices (compilers), are long-running (Web servers), or have
time-critical aspects (databases or query engines). One of
the requirements of such programs is predictable behav-
ior. Unfortunately, predictability is often compromised by
the presence of garbage collection. Various researchers
have examined the feasibility of replacing garbage col-
lection with forms of stack allocation that are more pre-
dictable than GC, but the applicability of such research
to systems programs has not been studied or measured.
A particularly promising approach allocates objects in thenth stack frame (instead of just the topmost frame): we
call thisdeep stack allocation. We present dynamic pro-
filing results for several Java programs to show that deep
stack allocation should benefit systems programs, and we
describe the approach that we are developing to perform
deep stack allocation in Java.

1 Introduction
Predictable behavior is an essential property for sys-

tems programs. By systems program, we mean a wide va-
riety of “real” programs that people use or depend on: pro-
grams that run for long periods of time (Web servers), pro-
grams that provide important services (compilers), or pro-
grams that represent commercial workloads (expert sys-
tems and databases). Systems programmers like to be
able to predict, for example, how much memory a pro-
gram will consume or how long it will take to complete.
For conventional C programs, this goal is viable (if some-
times difficult): the C runtime system is very lightweight
and has a predictable effect on running time.

Unfortunately, predictability is not a given for pro-
grams written in garbage-collected languages such as Java

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army under
contract number DABT63–94–C–0058, and the Air Force Research Lab-
oratory, Rome Research Site, USAF, under agreement number F30602–
96–2–0269. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copy-
right annotation hereon. The opinions and conclusions contained in this
document are those of the authors and should not be interpreted as rep-
resenting official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

because of several aspects of garbage collectors. First
of all, garbage collection runs asynchronously; one can-
not reason about when it will occur or how long it will
last. Second, garbage collectors are complicated systems
whose behaviors vary greatly. Accordingly, most pro-
grammers treat garbage collection as a black box which
they hope will do the Right Thing since they can’t hope
to reason about how much memory will be recovered by
each collection. Third, it is impossible to predict the order
in which the garbage collector will execute finalizers.

We believe that techniques must be found to mini-
mize the impact of these problems if garbage-collected
languages are to be viable for systems programming. There
are several standard approaches to this:� Critical code can be dealt with by reserving mem-

ory for use in that code and disabling GC inside that
piece of code. This solution is only viable if the
memory requirements can be bounded reasonably
well, which is hard to achieve for large sections of
code.� Real-time garbage collectors [3, 5] interleave garbage
collection with program execution: some garbage
collection occurs every time an object is allocated.
This solution addresses the several problems, but it
has a considerable cost in space and/or time.� Reference counting also performs book-keepingcon-
tinuously during program execution [11]. Unlike
real-time garbage collection, we can predict when
objects are deallocated, which allows us to predict
how much memory is available at any given time.
However, reference counting is costly and cannot
collect cyclic data structures.

To address these problems, we are investigating “deep
stack allocation” of objects; this research combines ideas
from both Ruggieri and Murtagh’s work on lifetime anal-
ysis [15] and Tofte and Talpin’s work on region-based al-
location [17]. Conventional stack allocation uses a static
analysis to infer which objects will not outlive the topmost
stack frame; these objects can be allocated in the topmost
frame. Deep stack allocation uses a more sophisticated
static analysis to infer which objects will not outlive thenth stack frame and allocates those objects there. Sec-
tion 5 describes how we can allocate an object in a buried
stack frame.

1



Given our interest in systems software, it was natu-
ral to investigate deep stack allocation in the context of
Java, since Java is increasingly being used to write sys-
tems software. In particular, colleagues at the University
of Utah have written an OS kernel based on Java [19] and
are continuing to work on Java-based systems.

In this paper we:� Discuss how we use an instrumented Java virtual
machine to measure, for a range of benchmarks,
how much potential there is for stack allocation.� Describe a straightforward adaptation of Serrano and
Feeley’s algorithm for statically identifying oppor-
tunities for stack allocation in Scheme and ML pro-
grams [16] to produce an analyzer for Java pro-
grams.� Report the (negative) result that this analysis fails to
detect most stack allocatable objects in our bench-
mark programs, and comment on how the analysis
could be sharpened. (Java is much harder to analyze
than Scheme.)� Outline possible implementations of deep stack al-
location.

2 The Potential Gains
To establish whether stack allocation has any poten-

tial at all, we measured object lifetimes in actual program
runs. Dieckmann and Hölzle [9] gathered similar data for
Java programs, but they measured object reachability in
terms of the number of bytes allocated since an object was
created. It is difficult to relate their data to stack allocation
because they do not report how long stack frames live. In
addition, we cannot determine from their data how deep
in the stack objects can be allocated. To measure the po-
tential benefits of deep stack allocation, we measure the
actual liveness of every object in our benchmarks.

2.1 Methodology
We ran our experiments on an instrumented version

of the Kaffe VM [18], a publicly available Java virtual
machine. This version of Kaffe generates dynamic traces
of allocation and use information for every object.

Our profiler collects the following information for ev-
ery object: its allocation site, which thread allocated it,
when it was allocated, when it was last touched, and when
it became unreachable. We approximate the point at which
an object becomes unreachable by determining when it is
garbage collected; we minimize approximation error by

forcing Kaffe to garbage collect very frequently. The pro-
filer also collects the following information about each
stack frame: which thread allocated it, when it was al-
located, and when it was deallocated.

This information was used by a post-mortem analyzer
to calculate the data in this paper. The analyzer deter-
mines the uppermost stack frame in which an object could
have been allocated, as well as when the object would
have died had it been allocated there. Times are measured
in total instructions executed since the start of the run.

Our data are based on profile data rather than on a
static analysis. We must take some care in how we inter-
pret them: they show us the maximum possible gain from
using a particular style of implementation, rather than the
actual gain from an actual implementation. In addition,
object lifetimes may be dependent on input data, and a
static analyzer obviously cannot take advantage of such
knowledge. Finally, Kaffe’s garbage collector is conser-
vative, so the amount of data that it considers reachable is
greater than in systems with precise garbage collection.

2.2 Results
We measure several Java benchmarks that exhibit in-

teresting “systems” behavior: a ray tracer written by a vi-
sualization researcher at the University of Utah; Webster,
a simple Web server; and four of the SPEC JVM98 bench-
marks: jess, an expert system; javac, a Java compiler; db,
a small database; jack, a compiler compiler. We chose
these benchmarks because they have a range of allocation
behaviors, and because they exhibit some of the qualities
that we associate with systems programs.

Table 1 shows the potential reduction in total heap al-
location as the maximum allocation depth is increased.
We observe that allocating objects only in the topmost
frame reduces the total heap allocation by 11.7-38.5%, but
allocating just a little deeper in the stack reduces the to-
tal allocation by more than 80%. This tremendous reduc-
tion in heap allocation suggests that there are enormous
potential gains to be had by using deep stack allocation.
Furthermore, the relatively shallow depths at which sig-
nificant gains are obtained suggests that a static analyzer
has a chance of achieving some of these gains. We con-
sider it unlikely that a static analyzer will detect objects
that can be allocated very deep on the stack.

3 Simple Deep Allocation
We have implemented an analysis technique that is

similar to an algorithm developed by Serrano and Fee-
ley [16]. Their analysis can determine when it is legal to
replace heap allocations with stack allocations in Scheme
and ML. They present an iterative dataflow technique that
spreads a notion of “unstackability” among allocations.
Upon convergence, an allocation which is found to be

2



Benchmark Maximum depth in stack for allocations
heap only 0 1 2 3 5 10

jess 1941487 71.4% 36.9% 25.6% 13.0% 10.6% 2.1%
javac 1256829 72.8% 46.3% 30.0% 12.9% 5.6% 1.0%
rt 1146706 78.3% 6.4% 2.3% 0.2% 0.1% 0%
webster 760339 61.5% 40.1% 6.9% 1.1% 0.4% 0%
jack 18781083 76.3% 23.3% 12.9% 3.3% 2.4% 1.2%
db 484173 70.2% 45.4% 27.3% 18.5% 16.1% 12.7%
range 61.5-78.3% 6.4-46.3% 2.3-30.0% 1.6-19.4% 0.1-16.1% 0-12.7%

Table 1: Number of heap-allocated bytes under different stack allocation possibilities. The column headings represent
the maximum depth in the stack at which objects could be allocated.

reachable from a global or is returned from the function
that allocates it is marked “unstackable.” Any allocation
not so marked is known to not outlive its function’s activa-
tion and can therefore be allocated on the activation stack.
Our algorithm has modifications appropriate to Java con-
trol flow and naming:� Polymorphic call-site binding is handled by conser-

vatively binding all potential implementations.� Unstackability by return from a function is extended
to include exceptional function return: objects reach-
able from thrown exceptions are unstackable.� Unstackability by global reachability is reinterpreted
to include reachability from static variables or from
any object allocated on the heap.

In addition, we have extended the Serrano and Feeley
algorithm to determine when an object does not outlive
the activation frame of some function on the call chain at
the time of allocation. Our algorithm is given in Appendix
A.

Figure 1 shows the projected reduction in heap allo-
cation rate for the six programs if the results of our static
analysis were used to allocate objects in the top 20 activa-
tion records on the stack. Allocation decisions are made
at analysis time for each allocation site in the program.

Our simple analysis performs comparatively well on
the ray tracer benchmark. The analysis is able to deter-
mine that many objects allocated in the tracer’s inner loop
can be allocated in the activation frame of the method con-
taining the loop. Doing so can reduce the rate of heap
allocation by more than a factor of two.

Our analysis performs poorly on the rest of our bench-
marks: it usually achieves a 0 to 10 percent reduction in
the heap allocation rate. Two of the programs saw no ap-
preciable decrease in heap allocation rate. As a result,
more complex analyses will be necessary to achieve re-
sults closer to those indicated by the measurements in Sec-
tion 2.

20%

40%

60%

80%

100%

Beginning End

R
el

at
iv

e 
H

ea
p 

A
llo

ca
tio

n 
R

at
e

Time

SPECjvm98 db
SPECjvm98 jack

SPECjvm98 javac
Spec jvm98 jess

Simple Ray Tracer
Webster WWW Server

Figure 1: Reduction in heap allocation rate (bytes/time)
achieved using static analysis for a maximum allocation

depth of 20. The bottom curve is the ray tracer.

The lesson from implementing this analyzer is that
Java requires a more sophisticated analysis than Scheme
or ML. We believe that the analyzer is failing for three
reasons:

1. The analyzer does not propagate type information.
This forces the analyzer to be very pessimistic about
method dispatch, since it is usually not possible to
determine which method is called without knowing
the type of the object.

2. Objects become unstackable if they are referenced
by other objects. This is unfortunate since it penal-
izes the common object-oriented paradigm of con-
structing objects by aggregation. Analyses such as
those used to inline objects [10] could help.

3. Java programs contain many more assignments than
is typical in Scheme and ML programs. As usual,
assignment complicates analysis because all objects

3



assigned to the same variable are assigned the same
lifetime.

4 How We Can Do Better
We are working on an improved analyzer and bet-

ter support for stack allocation at runtime; in this section
we discuss some of the issues that we are dealing with.
Chase [7] warns of a potential problem with stack allo-
cation: allocating an object on the stack can change its
lifetime. If an object is allocated near the top of the stack,
then the object will probably be deallocated not too long
after its real lifetime ends. If an object is allocated deep
on the stack, however, the object may easily be retained in
the stack long after it is dead. As a result, stack allocation
could create space leaks.

4.1 Improving Precision
One potential source of space leaks is placing an ob-

ject deeper in the stack than is required. Our profiling
data may seem to preclude this possibility, but recall that
allocation depths are decided on a per-site basis: objects
are allocated at the maximum depth required by any ob-
ject allocated at the same allocation site. It is easy to find
examples where this is overly pessimistic. For example,
a program might use the String.concat function in many
places. In some places, the result might be discarded al-
most immediately (e.g., it might be printed on the screen);
in others, the string might be propagated a long way up the
call stack. This problem can be avoided in several ways:� When a method is called, the caller could pass an

additional parameter indicating how deep to allo-
cate the result in the stack. Tofte and Talpin’s ML
compiler implicitly passes regions to functions [17]
and Gay and Aiken’s region-based C compiler [12]
allows programmers to explicitly pass regions to
functions.� Instead of passing an extra parameter, create spe-
cialized versions of methods for specific stack depths.
Obviously this approach must be used sparingly to
avoid code-size-explosion.

Table 2 examines the potential benefits of more ac-
curate lifetime prediction using greater contextual infor-
mation. The table illustrates heap occupancy as a time-
space product using no context and using the list of return
addresses on the stack to provide additional context. In
all cases, adding additional context information dramat-
ically reduces heap occupancy. Interestingly, the figures
for the jess benchmark initially drops but then rise again
as allocation depth increases. This is caused by allocating
objects with medium lifetimes in stack frames with long
lifetimes and is addressed in the next section.

4.2 Better Liveness Knowledge
Another source of space leaks is that objects are only

deallocated at the end of a method call, and so may be
retained long after their last use. This problem is partic-
ularly severe in methods that contain loops: objects al-
located on the first iteration might be dead, but cannot
be deallocated until the method completes. This problem
can be seen very clearly in the ray tracer benchmark. A
ray tracer has a relatively simple structure: for each pixel
in the output image, it generates a ray from the “camera
lens” through the “film”; computes the color of the ray;
and stores the color in the output image.

void traceRays() {
for(int y=0; y<image.yres(); y++) {
for(int x=0; x<image.xres(); x++) {
Ray ray=camera.makeRay(x,y,image);
Color c=scene.traceRay(ray, 0);
image.set(x, y, c);

}
}

}

These nested loops are the source of a space leak: the
Ray and Color objects obviously have to be allocated in
the traceRays stack frame; most of the raytracer’s execu-
tion time is spent in a single call to traceRays; so the Ray
and Color objects will last for most of the raytracer’s exe-
cution time.

To demonstrate that this is the source of a space leak,
we modified traceRays by moving the inner loop into its
own method allowing the short-lived Ray and Color ob-
jects to be deallocated after each iteration of the outer
loop. This change eliminated a space leak which made
the raytracer require space proportional to the number of
pixels being traced.

void traceX(int y) {
for(int x=0; x<image.xres(); x++) {
Ray ray=camera.makeRay(x, y, image);
Color c=scene.traceRay(ray, 0);
image.set(x, y, c);

}
}

void traceRays() {
for(int y=0; y<image.yres(); y++) {
this.traceX(y);

}
}

We conclude that inserting extra deallocation points
based on scope information could prove useful. Alterna-
tively, for the specific problem of the ray tracer, a precise
liveness analysis could detect that all of the Ray and Color
objects that are allocated in the loop can reuse the same
space.

4



Benchmark Maximum depth in stack for allocations
0 1 2 3 5 10

jess 98%,60% 98%,46% 98%,40% 98%,50% 98%,50% 98%,62%
javac 99%,57% 99%,48% 99%,42% 99%,35% 99%,19% 99%,18%
rt 88%,74% 73%,36% 73%,48% 73%,47% 73%,46% 73%,45%
webster 100%,65% 100%,48% 100%,24% 100%,20% 100%,20% 100%,19%
jack 99%,62% 96%,45% 96%,46% 96%,41% 96%,41% 96%,41%
db 100%,57% 99%,46% 99%,38% 99%,35% 99%,34% 99%,32%

Table 2: Space-time product (bytes�instructions, or heap occupancy) for varying maximum allocation depth onthe
stack, relative to not using stack allocation. The first value assumes that every allocation at a given allocation site
must be at the same stack depth; the second value assumes that objects allocated atthe same allocation site could be
allocated at different stack depths (which would reflect the availabilty of a maximal amount of calling context at each
allocation site).

4.3 Further Extensions
Although both of the above solutions can significantly

reduce space leaks caused by extending object lifetimes,
it is unlikely that they will eliminate all space leaks. One
way around this incompleteness is to use a hybrid scheme:
rely on stack deallocation, but revert to garbage collection
within stack frames when memory is running low, as pro-
posed by Ruggieri and Murtagh [15].

Finally, in order to increase predictability for program-
mers, a static analyzer needs to be able to give feedback to
the programmer concerning which objects can be stack-
allocated. Otherwise, if a compiler uses a fragile algo-
rithm for determining stack allocations, the programmer
will not be able to predict program behavior at all.

5 Implementing The Stack
Until now, we have ignored two big problems in ex-

ploiting correlations between object and activation life-
times:� How do we allocate objects in thenth stack frame?� How do we garbage collect stack frames?

5.1 Implementing Deep Allocation
It is easy to allocate objects in the topmost stack frame

by incrementing the stack pointer, but it is hard to allocate
objects deeper down the stack. The obvious way around
this problem is for the caller to allocate space in its stack
frame before calling methods that need to allocate objects
in the caller’s stack frame. Such a solution is restricted
to cases where we can statically determine the maximum
space required by the callee.

In cases where we cannot statically bound the space
required by the callee, we need an overflow mechanism
with which to “stack allocate” objects. One approach is to
allocate objects in the heap and maintain a linked list of

the objects “allocated” in each stack frame. This approach
is simple to implement, but it increases the size of objects
and the overhead of allocating and deallocating objects:
popping a stack frame is no longer a constant time opera-
tion.

A more efficient (but more complex) approach is to
allocate objects from buffers of contiguous storage. If ob-
jects with the same lifetime are allocated in a list of large
contiguous blocks, we can deallocate many objects in a
single operation: popping a stack frame is a near constant-
time operation.

Reserving a large block of contiguous storage for ev-
ery stack frame is expensive: we expect that some stack
frames will have very few objects allocated in them. One
way to avoid this problem is to recognize that we only
need to be able to allocate into the topm stack frames
if the maximum allocation depth ism. This observation
makes it possible to maintain a ring of buffers such that
objects for thenth stack frame are stored in the same
buffer as then+mth stack frame.

5.2 Garbage collecting stack frames
It might seem that objects stored in “stack frames” us-

ing this scheme could be garbage collected as easily as ob-
jects in the heap. After all, the buffers consist of contigu-
ous blocks of memory and can be resized at will. There
are two complications [15]:

1. Our motivation for allocating stack objects in con-
tiguous blocks of memory is to allow near constant-
time deallocation. Therefore, the garbage collector
must compact objects in the stack frames and must
preserve the relative order of the stack frames.

2. Our criteria for deciding how deep to allocate an
object isliveness: when is an object lastused? Be-
cause the compiler would allocate an object in a
stack frame based on liveness, but the garbage col-
lector would trace objects based on reachability, it

5



is possible to have a situation where a live object
contains a pointer to a dead object. For example,
a long-lived object (which is allocated deep in the
stack) could contain a pointer to a short-lived object
(which is allocated near the top of the stack). This
scenario would cause a problem for the garbage col-
lector, since it would dereference a dangling pointer.
We are considering two possible solutions: we could
use reachability to decide where to allocate objects;
or we could generate code to null out dangling point-
ers.

6 Conclusions
Many researchers [2, 14] have argued about the per-

formance tradeoffs between using the heap and using the
stack. Jones and Muchnick [13] were among the first
authors to examine the language and performance impli-
cations of stack vs. heap allocation. Other authors have
shown how hybrid heap-stack strategies for allocating both
continuations [8] and data structures [4] can improve per-
formance. Our work is most closely related to Aiken et
al.’s work [1] which describes an ML compiler with im-
plicit region operations and to Gay and Aiken’s work [12]
which describes a compiler for a C-like language with ex-
plicit region operations. Our work differs in that we try
to provide implicit region allocation in an object-oriented
imperative language.

We are investigating deep stack allocation algorithms
in Java in order to make it feasible to achieve more pre-
dictable memory behavior for systems programming. We
view the combination of performance and predictability as
the primary reasons for exploring this optimization. Pre-
vious research has explored different aspects of more pre-
dictable garbage collection, but none have looked at real
systems programs in a language as widespread as Java.
As our data shows, deep stack allocation is a promising
means to reducing heap allocation. We have implemented
a fast and simple analysis that detects feasible stack allo-
cation sites. This algorithm performs acceptably on one
of our benchmarks (a ray tracer), but not very well on the
other benchmarks. Our ongoing work is to extend our al-
gorithm to handle the other benchmarks.

More generally, we would like to extend our work into
operating systems, which have even more stringent re-
quirements on predictability. For example, device drivers
run very close to the hardware: they must often run with
guarantees about when GC will not run. Having predictable
memory behavior is an absolute necessity for writing low-
level systems code in high-level languages.

Acknowledgements
We would like to thank Godmar Back for initiating this project,

Jay Lepreau for supporting this project, Sean McDirmid for sug-

gestions and advice and the anonymous reviewers for valuable
comments on this paper.

References
[1] A. Aiken, M. Fähndrich, and R. Levien. Better static

memory management: Improving region-based analysis of
higher-order languages. InProc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation,
1995.

[2] A. W. Appel. Garbage collection can be faster than stack
allocation. Information Processing Letters, 25(4):275–
279, 1987.

[3] H. G. Baker. List processing in real time on a serial com-
puter. Communications of the ACM, 21(4):280–294, Apr.
1978.

[4] H. G. Baker. CONS should not CONS its arguments, or, a
lazy alloc is a smart alloc.ACM Sigplan Notices, 27(3):24–
34, Mar. 1992.

[5] H. G. Baker. The treadmill: Real-time garbage collection
without motion sickness.ACM Sigplan Notices, 27(3):66–
70, March 1992.

[6] C. Chambers and D. Ungar. “Customization: Optimiz-
ing Compiler Technology for SELF, A Dynamically-Typed
Object-Oriented Programming Language”. InProceedings
of the SIGPLAN ’89 Conference on Programming Lan-
guage Design and Implementation, pages 146–160, Port-
land, OR, June 1989.

[7] D. R. Chase. Safety considerations for storage allocation
optimizations. InProceedings of the SIGPLAN ’88 Con-
ference on Programming Language Design and Implemen-
tation, pages 1–10, Atlanta, GA, June 1988.

[8] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Imple-
mentation strategies for continuations. InProceedings of
the 1988 ACM Conference on LISP and Functional Pro-
gramming, pages 124–131, Snowbird, UT, July 1988.

[9] S. Dieckmann and U. Hölzle. A study of the allocation
behavior of the SPECjvm98 java benchmarks. Technical
Report TRCS-98-33, University of California at Santa Bar-
bara, December 1998.

[10] J. Dolby. Automatic inline allocation of objects. InPro-
ceedings of the SIGPLAN ’97 Conference on Programming
Language Design and Implementation, pages 7–17, Las
Vegas, NV, June 1997.

[11] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickey,
and P. Winterbottom. The Inferno operating system.Bell
Labs Technical Journal, 2(1):5–18, Winter 1997.

[12] D. Gay and A. Aiken. Memory management with explicit
regions. InProceedings of the SIGPLAN ’98 Conference
on Programming Language Design and Implementation,
pages 313–323, Montreal, Canada, June 1998.

[13] N. D. Jones and S. S. Muchnick. Binding time optimiza-
tion in programming languges: Some thoughts toward the
design of an ideal language. InProceedings of the 3rd Sym-
posium on Principles of Programming Languages, pages
77–94, Atlanta, GA, Jan. 1976.

6



[14] J. S. Miller and G. J. Rozas. Garbage collection is fast,but
a stack is faster. A.I. Memo 1462, MIT Artificial Intelli-
gence Laboratory, Cambridge, MA, Mar. 1994.

[15] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dy-
namically allocated objects. InConference Record of the
Fifteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 285–293, San Diego, Cali-
fornia, January 1988.

[16] M. Serrano and M. Feeley. Storage use analysis and its ap-
plications. InProceedings of the 1996 International Con-
ference on Functional Programming, pages 50–61, 1996.

[17] M. Tofte and J.-P. Talpin. Implementation of the typed
call-by-value lambda-calculus using a stack of regions.
In Proceedings from the 21st annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 1994.

[18] Transvirtual Technologies Inc.
http://www.transvirtual.com/.

[19] P. Tullmann and J. Lepreau. Nested Java processes: OS
structure for mobile code. InProc. of the Eighth ACM
SIGOPS European Workshop, pages 111–117, Sintra, Por-
tugal, Sept. 1998.

A Analysis
Our analysis first determines a conservative approximation

to the set of all methods that can possibly be called assumingthat
a program begins execution at a specific main method. It then
statically analyzes and annotates each of the methods. These an-
notations can be used to make decisions at runtime as to whether
objects can be allocated on the stack.

Each method is annotated with four lists of byte code ad-
dresses: invocations of NEW that are stack-allocatable, invoca-
tions of NEW that are partially stack-allocatable, call-sites that
are stack-friendly, and call-sites that are partially stack-friendly:� An object isstack-allocatable if the method that creates

it does not store it in a static variable, store it in another
object, throw it, return it, or pass it to another method that
causes one of the above to happen.� An object ispartially stack-allocatable if it would be stack-
allocatable but for the fact that the creating method re-
turns the object as a result.� A call-site is stack-friendly if the value returned by the
called method is not stored in a static variable, stored
in another object, thrown, returned, or passed to another
method that causes one of these things to happen.� A call-site ispartially stack-friendly if it would be stack-
friendly but for the fact that the value returned by the
called method is itself returned by the current method.

At any time in the execution of a program, there will ben activation records corresponding to methodsM1 (at the base
of the stack) throughMn (at the top of the stack), whereMi
invokedMi+1 at call-siteCi, for i = 1 : : : n� 1. Then:� An object created inMn can be allocated in the activation

record ofMn if that object is stack-allocatable.

� An object created inMn can be allocated in the activation
record ofMj if the object is partially stack-allocatable,
the call-sitesCj+1 : : : Cn�1 are partially stack-friendly,
and the call-siteCj is stack-friendly.

There are three logical phases to the algorithm: call graph
determination, an intraprocedural flow analysis, and an interpro-
cedural analysis.

A.1 Call Graph Determination
In its first phase, the algorithm finds the smallest setM of

methods andC of classes such that� main 2M� If m 2M andm creates a newc, thenc 2 C.� If m1 2 M andm1 calls a static or special methodm2,
thenm2 2M .� If m1 2 M , c1 2 C, m1 invokes a virtualc2:m2, andc1 is a subclass ofc2, andc1:m2 would be dynamically
bound tom3, thenm3 2M .� If m1 2 M , c1 2 C, m1 invokes an interface methodc2:m2, c1 implements the interfacec2, andc1:m would
be dynamically bound tom3, thenm3 2M.� If c 2 C andc:finalize would be dynamically bound tom, thenm 2M .� If m 2M andm references a classc, thenc.<clinit>2M .

A.2 Intraprocedural Analysis
In its second phase, the algorithm does intra-procedural flow

analysis on all methods in the setM . It determines the dis-
position of three kinds of objects: objects that are passed into
the method as parameters, objects that are returned back to the
method as results, and objects that are created locally.

For each such object in a method, the flow analysis:� Determines whether the object can be stored in a static
variable, stored in another object, or thrown as an excep-
tion.� Determines whether the object can be returned as a result.� Determines whether the object can be passed as a param-
eter. For each call-site at which the object can be passed,
the flow analysis also determines which formal parame-
ter(s) the object can be bound to.

A.3 Interprocedural Analysis
In its third phase, the algorithm associates two boolean val-

ues, partial and full, with each object from the second phase.
Initially, for each object o in every methodm,� o.partial is true if the object is not stored in a static vari-

able, stored in another object, passed as a parameter, or
thrown withinm.� o.full is true if o.partial is true and the object is not re-
turned fromm.

The analyzer iterates over all methods until fixpoint is reached.
Specifically,

7



� o.partial = o.partial AND for every place p that o can be
passed, (p.full is true OR p.partial is true and x.partial is
true).� o.full = o.full AND for every place p that o can be passed,
(p.full is true OR p.partial is true and x.full is true).

where x is the object that corresponds to the return value of p’s
method.

The output of the analyzer is as follows: a NEW object o
is stack-allocatable if o.full is true; a NEW object o is partially
stack-allocatable if o.partial is true; a call-site with return object
o is stack-friendly if o.full is true; and a call-site with return
object o is partially stack-friendly if o.partial is true.

8


