
Mon. Not. R. Astron. Soc. 000, 1{8 (1998) Printed 24 November 1998 (MN LATEX style �le v1.4)A Hybrid Symplectic Integrator that Permits CloseEncounters between Massive BodiesJ. E. ChambersArmagh Observatory, Armagh, Northern Ireland, BT61 9DGAccepted . Received ; in original formABSTRACTMixed-variable symplectic integrators exhibit no long-term accumulation of energy er-ror, beyond that due to roundo�, and they are substantially faster than conventionalN-body algorithms. This makes them the integrator of choice for many problems inSolar-System astronomy. However, in their original formulation, they become inac-curate whenever two bodies approach one another closely. This occurs because thepotential energy term for the pair undergoing the encounter becomes comparable tothe terms representing the unperturbed motion in the Hamiltonian. The problem canbe overcome using a hybrid method, in which the close encounter term is integratedusing a conventional integrator, whilst the remaining terms are solved symplectically.In addition, using a simple separable potential technique, the hybrid scheme can bemade symplectic even though it incorporates a non-symplectic component.Key words: methods: numerical { celestial mechanics, stellar dynamics { accretion,accretion discs.1 INTRODUCTIONSymplectic integrators have two key advantages over otherN-body integrators: they exhibit no long-term build up ofenergy error, and they are substantially faster for problemsin which most of the mass is contained in a single body.This makes them well suited to studying a wide variety ofproblems in dynamical astronomy, especially those involvingplanetary or satellite systems.The desirable energy-conservation property arises be-cause a symplectic integrator exactly solves the equationsof motion for a problem very similar to the one in ques-tion. The high e�ciency comes from the fact that the domi-nant force on each object can be \built in", leaving only thesmaller perturbations to constrain the size of the timestep.This means that a symplectic integrator needs to evaluatethe forces acting on a body less often than conventional al-gorithms for the same level of accuracy.In a seminal paper, Wisdom and Holman (1991) de-scribe a simple second-order symplectic integrator, subse-quently popularised by Levison and Duncan in their Swiftintegration package (Levison & Duncan 1994). This isroughly an order of magnitude faster than conventional in-tegrators when applied to problems such as the long-termevolution of the planets. Higher-order symplectic integratorsalso exist (Yoshida 1990), although these are usually no moree�cient than the second-order method, since the increase inaccuracy is o�set by the extra computation required at eachstep.

Since then, a number of improvements have been made.The basic algorithm requires a �xed stepsize, but it is possi-ble to give each body in the integration a di�erent �xed step-size (Saha & Tremaine 1994). This yields an extra gain ine�ciency when the bodies have a wide range of orbital peri-ods. Weak dissipative forces can also be included (Malhotra1994; Cordeiro et al. 1997; Mikkola 1998), although strictlyspeaking this violates the symplectic properties of the inte-grator. In addition, at least two ways have been found toimprove the accuracy of long-term integrations by makingsmall changes to the variables prior to the start of the calcu-lation (Saha & Tremaine 1992; Wisdom et al. 1996). Mikkola(1997) describes a time transformation that overcomes theproblem of using a �xed timestep to integrate orbits withhigh eccentricities.The theory of symplectic integrators is described in ashort review by Yoshida (1993), and in more detail by Sanz-Serna (1991).The �xed timestep inherent in symplectic algorithmsmakes dealing with close encounters particularly di�cult.Ideally one would like the stepsize to decrease during anencounter in order to preserve the accuracy of the overallintegration. However, changing the stepsize of a symplecticintegrator introduces an error with each change. If close en-counters don't occur too often, this technique can still beused when the results of the integration are interpreted ina statistical sense (Levison & Duncan 1994). However, suchan integrator cannot be relied upon to reproduce the truec 1998 RAS



2 J. E. Chambersorbital evolution of a particular body (Michel and Valsecchi1997).One solution to this problem is to split up the pertur-bation terms, and give each part a separate (�xed) stepsize,in such a way that stronger perturbations have smaller step-sizes (Duncan et al. 1998). The resulting integrator, SyMBA,is truly symplectic, although it is rather cumbersome to im-plement in practice, and it may not retain the great speedadvantage of the basic symplectic method.In this paper, I describe an alternative solution|a hy-brid integrator that melds symplectic and non-symplecticcomponents in such a way that the combined algorithm re-tains the desirable properties of both. The integrator wasoriginally designed to study planetary accretion problems,which are characterised by repeated close encounters be-tween large numbers of massive bodies. However the princi-ples involved are general, and the technique should be ap-plicable to other problems.In the next section I outline the theory behind sym-plectic integrators from a Lie series viewpoint. Symplecticintegrators can also be understood in terms of the averagingprinciple, described in Wisdom & Holman (1991). Section 3shows how the standard algorithm can be extended to in-clude the e�ects of close encounters, using a hybrid integra-tor. Section 4 addresses the practical details of how to makesuch a scheme work. In section 5, I put the hybrid integratorthrough its paces in a set of test problems. Finally, section 6explains how to obtain a copy of Mercury, a publicly avail-able software package that includes a working version of theintegrator described here.2 THE THEORY OF SYMPLECTICINTEGRATORSThe basic theory of symplectic integrators can be under-stood by starting with Hamilton's equations of motion.These give the rate of change of the position, x, and mo-mentum, p, for each object in an N-body systemdxidt = @H@pidpidt = �@H@xi (1)The Hamiltonian, H, is the sum of the kinetic and potentialenergy terms for all the bodiesH = NXi=1 p2i2mi �G NXi=1 mi NXj=i+1 mjrijwhere mi is the mass of body i, and rij is the separationbetween bodies i and j. Using equations (1), the rate ofchange of any quantity, q, can be expressed asdqdt = nXi=1 � @q@xi dxidt + @q@pi dpidt �= nXi=1 � @q@xi @H@pi � @q@pi @H@xi�= Fq (2)where F is an \operator". The variable q can represent theposition or momentum of a body, or any combination of x

and p for all the bodies. The general solution of equation (2)at time, t, isq(t) = e�F q(t� �)= �1 + �F + �2F 22 + : : :� q(t� �)where q(t� �) is the value of q at an earlier epoch.So far, all we have done is rewrite the equations of mo-tion, and these remain insoluble analytically, except in spe-cial cases. The trick of symplectic integrators is to split Hinto pieces, each of which can be solved on its own, and thenapply the solutions one at a time in such a way that theyapproximate the solution of the problem as a whole.For example, let H = HA +HB. The time evolution ofq is now given byq(t) = e�(A+B)q(t� �) (3)where A and B are new operators, such thatA = nXi=1 � @@xi @HA@pi � @@pi @HA@xi �with an analogous expression for B. These operators obeymany of the usual rules of algebra, with an important excep-tion: we cannot assume that they commute. In other wordsAB 6= BA, in general. Bearing this in mind, the exponentialin equation (3) can be expanded to givee�(A+B) = 1 + �(A+B) + �2(A+B)22 + : : := 1 + �(A+B) + �2(A2 +AB +BA+ B2)2 + : : :(4)Now consider the result of applying the exponential op-erators one after the othere�Ae�B = �1 + �A+ �2A22 + : : :��1 + �B + �2B22 + : : :�= 1 + �(A+B) + �2(A2 + 2AB +B2)2 + : : : (5)Note that the righthand sides of equations (4) and (5) arethe same to O(�).Applying one of the exponential operators on its ownis equivalent to solving the equations of motion with onlythe corresponding part of the Hamiltonian present. Thereare several ways of splitting H into two parts, each of whichcan be integrated e�ciently. Often, the best approach is tochoose two parts that are each soluble analytically. However,this is not necessary if there is an e�cient way to integrateHA and HB numerically.Whichever way we choose to split the Hamiltonian, a�rst-order integrator is given byq(t) = e�Ae�Bq(t� �)where � is the stepsize. Each step of the integrator consistsof two substeps(i) Advance the system subject to the forces associatedwith HB for one timestep (ignoring the e�ect of HA).(ii) Advance the resulting system subject to the forcesassociated with HA for one timestep.c 1998 RAS, MNRAS 000, 1{8



A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies 3Splitting the exp(�B) term in half gives a second orderintegrator:q(t) = e�B=2e�Ae�B=2q(t� �) (6)which is equivalent to equation (3) to O(�2). Higher-orderintegrators can be devised by splitting each of the exponen-tial terms still further (Yoshida 1990).Using any of these integrators is equivalent to exactlysolving the equations of motion for a system whose Hamil-tonian, Hinteg, is close to that of the real problem. For ex-ample, for the �rst order integratorHinteg = H + �2 nXi=1 �@HB@xi @HA@pi � @HB@pi @HA@xi �+O(�2)(7)(Saha & Tremaine 1992). Hinteg is conserved exactly, towithin computer roundo� error. So, if � is small, H willdi�er from Hinteg by only a small amount, and there will beno long-term build up in the energy error.The error incurred at each step of an integrator can beexpressed in terms of A and B. For the �rst-order integratore�Ae�B = e�(A+B) + �22 (AB �BA) + � � �If we continued to work out the higher-order terms in thisexpression, we would �nd that all of them depend on bothA and B. This means that if B � �A, where � is a smallquantity, the error per step will also be proportional to �. Forthis reason it pays to split the Hamiltonian into a dominantpart plus a small perturbation if possible. In the case of theSolar System, the dominant force is usually due to the Sun'sgravity, so we can assign HA and HB as followsHA: Each body moves on an unperturbed Keplerian orbitabout the Sun.HB: Each body remains �xed, and receives an accelera-tion due to perturbations from the other bodies.The precise details of how this is done depend on thevariables chosen. Using barycentric coordinates, HA � HBfor all the bodies orbiting the Sun, but not for the Sunitself, so the error per step no longer bene�ts from the �factor. Wisdom and Holman (1991) advocate using Jacobivariables, and this works satisfactorily. However, for reasonsthat will become apparent later, it is better to use mixed-centre variables (called \democratic heliocentric" variablesby Duncan et al. 1998). These consist of heliocentric coor-dinates and barycentric velocities, which also satisfy Hamil-ton's equations.Using mixed-centre coordinates, the Hamiltonian canbe split as followsHA = NXi=1 � p2i2mi � Gm�miri� �HB = �G NXi=1 NXj=i+1 mimjrijHC = 12m�  NXi=1 pi!2 (8)where N now refers to the number of objects not includingthe Sun, and quantities with the index � refer to the Sun.

Note that each of these partial Hamiltonians can be solvedanalytically in the absence of the others.One minor drawback with using mixed-centre coordi-nates is that, in addition to HA and HB, the terms arisingfrom the kinetic energy of the Sun have to be placed in athird part of the Hamiltonian, HC . However, the ideas out-lined above can be easily extended to handle this situation.For example, the second-order integrator in equation (6) nowbecomesq(t) = e�B=2e�C=2e�Ae�C=2e�B=2q(t� �)where the operator C arises from the Hamiltonian HC .Provided that all the bodies remain far apart from oneanother, HA � HB, and HA � HC. This means thateach step of the integrator has an error of O(��3), where� =Pmi=m�. However, if two bodies undergo a close ap-proach (that is, rij becomes small), the corresponding termin HB becomes large, and the error per step increases sub-stantially. This is the reason why, until recently, symplecticintegrators have been unable to address a large class of prob-lems in solar-system science|those involving small bodieson planet-crossing orbits, and accretion disks.3 CLOSE ENCOUNTERSConventional integrators often reduce the size of thetimestep during a close encounter, in order to maintain thesame level of accuracy. However, each time the stepsize, � ,of a symplectic integrator is changed, the integration Hamil-tonian also changes (see equation 7). This produces a shiftin the energy of the real system. If many close encountersoccur, this energy error builds up, and eventually destroysthe symplectic property of the integrator.During an encounter between bodies � and �, their sep-aration r�� becomes small. This makes one of the terms inHB comparable in size to HA (see equations 8), and the er-ror per step increases from O(��3) to O(�3). This problemcan be remedied if HB can somehow be made small againcompared to HA. One way to do this is simply to transferthe term involving r�� from HB to HA for the duration ofthe close encounterHA = NXi=1 � p2i2mi � Gm�miri� �� Gm�m�r��HB = �GXi6=�Xj>i mimjrij �G j 6=�Xj>� m�mjr�jHA is no longer integrable analytically, since it containsthe three-body problem of the Sun plus objects � and �.However, this is not really a problem in practice, as theseterms can be integrated numerically, at close to machineprecision, using a conventional N-body integrator.At this point, the advantage of using mixed-centre co-ordinates rather than Jacobi coordinates becomes apparent.Using mixed-centre coordinates, all of the Kepler terms inHA can still be advanced analytically, except for objects �and �. Using Jacobi coordinates, HA becomesHA = NXi=1 � ~p2i2mi � Gm�mi~ri �� Gm�m�r��c 1998 RAS, MNRAS 000, 1{8



4 J. E. Chamberswhere Jacobi coordinates are indicated by tildes, andr�� = r� � r� = ~r� �~r� + ��1Xj=� mj~rjm� +Pjk=1mkNow, in addition to integrating terms involving � and �numerically, all terms involving bodies with indices � < j <� have to be integrated numerically as well. Clearly, Jacobicoordinates are not the ones to use when close encounterscan occur, and we will stick with mixed-centre coordinates.The scheme described above is easy to implement andworks fairly well. However, moving terms between HA andHB at each close encounter still involves changing Hinteg, al-beit not by as much as changing the stepsize. To keep Hintegconstant, and make the hybrid integrator truly symplectic,we need to ensure that terms never have to be transferredbetween di�erent parts of the Hamiltonian. We can do thisby splitting each of the interaction terms between HA andHB in such a way that the part in HB always remains small,while the part in HA is only evaluated during a close en-counterHA = NXi=1 � p2i2mi � Gm�miri� �� G NXi=1 NXj=i+1 mimjrij [1�K(rij)]HB = �G NXi=1 NXj=i+1 mimjrij K(rij) (9)Figure 1 shows a suitable form for K. When rij is large Kshould tend to one, while tending to zero when rij is small.This ensures that HB � HA, even during a close encounter.In the absence of an encounter, the terms in HA can beadvanced analytically as before. This solution was inspiredby the separable-potential method of Duncan et al. (1998),but here the potential terms need only be split into twopieces rather than many.As with the standard symplectic integrator, there is noguarantee that the terms in equation (7) will converge forthe hybrid integrator. There may be cases where the seriesdiverges, producing errors that are larger than suggestedby the leading term (which is O(��3) for the second-orderintegrator). I plan to investigate this possibility further in alater paper.The integration scheme for the second-order hybrid in-tegrator is(i) The coordinates remain �xed. Each body receives anacceleration due to the other bodies (but not the Sun),weighted by a factor K(rij), lasting for �=2.(ii) The momenta remain �xed, and each body shifts po-sition by an amount �Pi pi=2m�.(iii) Bodies not in an encounter move on a Keplerian orbitabout the Sun for � . For bodies in an encounter, the Keplerterms, and the close encounter terms weighted by (1�K),are integrated numerically for � .(iv) As step (ii)(v) As step (i).

Figure 1. A suitable form for the changeover function K, as afunction of the separation, rij , between two bodies.4 PRACTICAL DETAILS4.1 The Changeover FunctionThe integration scheme outlined above is all very well intheory, but several details need to be addressed before itwill work in practice. The �rst of these is the form of thechangeover function, K, used to switch between the stan-dard symplectic scheme and the close-encounter regime.This function has to meet several criteria(i) K ! 1 when rij is large, and K ! 0 when rij is small.(ii) K is smooth enough that the numerical algorithm canfollow it without di�culty.(iii) K can be evaluated quickly.After some trial and error, I have found that the followingexpression works wellK = ( 0 for y < 0y2=(2y2 � 2y + 1) for 0 < y < 11 for y > 1 (10)wherey = �rij � 0:1 rcrit0:9 rcrit �and rcrit is a free parameter.One might object that the derivatives of equation (10)have discontinuities at y = 0 and y = 1, and that these couldcause problems. However, the non-symplectic integrator willonly sample the function at a �nite (often small) numberof points, so it is merely necessary to fool the integratorinto thinking the function is smooth. Equation (10) seemsto avoid di�culties unless the numerical algorithm is usedwith a very strict tolerance, combined with a small stepsizefor the symplectic integrator.4.2 The Changeover DistanceThe value of the critical distance, rcrit, at which the nu-merical algorithm starts to integrate a close encounter issomething of a compromise. If rcrit is too small, the en-counter will not be calculated properly. If rcrit is too large,c 1998 RAS, MNRAS 000, 1{8



A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies 5then the computer time needed to follow the encounter willbe more than can be justi�ed by the overall accuracy of theintegration.Levison & Duncan (1994) take special steps to deal withclose encounters when rij < 3RH , where RH is the Hill ra-dius. Duncan et al. (1998) recommend a value of 3 mutualHill radii for encounters involving two massive bodies. Thesevalues seem to work well when one or both the objects arelarge (comparable in mass to the giant planets). However,when the masses are smaller, the key factor is not the num-ber of Hill radii, but rather the number of timesteps used tosample the changeover function K. A pair of objects withlunar mass can easily travel 3 mutual Hill radii in a sin-gle timestep. In this case the switch from the symplecticregime to the hybrid regime would be instantaneous, lead-ing to large errors during the close encounter.For this reason I advocate a two-fold strategy. For eachobject, rcrit should be the larger of n1RH and n2�vmax,where n1 and n2 are parameters, and vmax is the maximumvelocity expected during the integration (say, the initial or-bital velocity of the innermost body). During a particularencounter, rcrit should be the larger of the values for thetwo bodies involved. The precise values of n1 and n2 usedwill depend on the nature of the problem being studied, butvalues in the range n1 = 3{10, and n2 = 0:3{2.0 seem tocover most likely cases.4.3 Which Numerical Integrator?The N-body algorithm used to integrate the close encountersnumerically is a matter of personal preference. The Bulirsch-Stoer method (Stoer & Bulirsch 1980) is often used to checkthe results of other integration algorithms since it is gener-ally robust for N-body problems. For this reason I advocateusing it here. The standard version assumes that the forceon each object can be a function of both the coordinatesand momenta. Press et al. (1992) give a version designedfor conservative systems (where the force is a function of xonly), based on Stoermer's rule, and this is about twice asfast as the standard algorithm. Everhart's RADAU routine(Everhart 1985) is faster still, but it occasionally runs intodi�culty when objects undergo very close encounters, so itis probably safer to use Bulirsch-Stoer.4.4 Predicting EncountersPrior to calculating each step, the hybrid integrator needs toknow which bodies will be involved in a close encounter atsome point during the step. It is not su�cient to check theseparation of each pair of objects at the start and end of thestep, since this may miss a separation minimum occurring inbetween. For this reason I recommend including some sortof predictor step in the integrator. This needn't be particu-larly accurate, as long as it errs on the side of caution. Forexample, if the predictor indicates an encounter that neveractually takes place, the worst that will happen is that theKeplerian motion of these objects will be calculated usingthe numerical routine instead of analytically.One way to do the prediction is to advance each object(as crudely as one dares) forward for one timestep along aKeplerian orbit about the Sun. Only objects far from an

Figure 2. Relative energy error during an integration of the fourgiant planets, with masses enhanced by a factor of 50, using thehybrid integrator.encounter need be checked this way, so the Keplerian ap-proximation is a reasonable one. Armed with the initial and�nal coordinates and momenta of each body, we can inter-polate to get an expression for the separation, � = rij , ofany pair accurate to O(�3)� = (1� t)2(1 + 2t)�0 + t2(3� 2t)�1+ t(1� t)2� _�0 � t2(1� t)� _�1 (11)where �0, �1 are the separations at the start and end ofthe prediction step, respectively, and _�0, _�1 are the timederivatives of the separation (which can also be found fromx and p). Also, t is normalized time, such that t = 0 at thestart of the step, and t = 1 at the end of the step.Setting the derivative of equation (11) equal to zero, weget an expression for t when the separation is a minimumat2 + bt+ c = 0wherea = 6(�0 ��1) + 3�( _�0 + _�1)b = 6(�1 ��0)� 2�(2 _�0 + _�1)c = � _�0Equation (11) then gives the minimum separation of the pairof objects.This procedure, combined with a \pre-checker" thateliminates pairs of objects that cannot possibly undergo anencounter during the next step, takes only a few percentof the total computer time for an integration. Higher-orderinterpolation schemes can be derived by calculating the ac-celerations (due to the Sun) at the start and end of theprediction step. However these have an unfortunate habit ofgiving spurious additional minima, so the cubic interpola-tion given above is probably best. Finally, I note that thesame interpolation scheme can applied after the real inte-gration step, to estimate the minimum separation of objectsundergoing a close encounter.c 1998 RAS, MNRAS 000, 1{8



6 J. E. Chambers

Figure 3. Relative energy error versus time for an integration of 30 planetary embryos, using the hybrid integrator and the Bulirsch-Stoer(BS) integrator. Also shown are the cumulative number of close encounters, N , as a function of distance of closest approach, for eachintegration.5 TEST INTEGRATIONS5.1 Scaled Outer Solar SystemDuncan et al. (1998) tested their SyMBA symplectic algo-rithm by integrating the orbits of the four giant planets,with masses enhanced by a factor of 50. This con�gurationis unstable, and the planets quickly began to have close en-counters with one another. Shortly afterwards, two of theplanets were ejected from the system.Here, I repeat their calculation using the hybrid algo-rithm. The integration uses � = 11:05 days and rcrit = 3RH ,similar to the values used by Duncan et al. Figure 2 showsthe evolution of the relative energy error �E = (E�E0)=E0,where E and E0 are the energy at time t and the initial en-ergy respectively. The energy error is similar to that usingthe SyMBA integrator, even allowing for the jump at t � 250years, caused by an exceptionally close encounter betweenJupiter and Saturn to within 0:007 au.The time evolution of the planets' orbits is highlychaotic, so the evolution di�ers from the integration of Dun-can et al. In fact, even small changes in the stepsize producea di�erent outcome. The value of � used here was chosen tomaximize the time of �rst ejection, which occurs at about
1000 years, when Neptune is removed. Shortly afterwardsboth Uranus and Saturn are ejected, leaving only Jupiter ona bound orbit.5.2 The Restricted 3-Body ProblemThe restricted three body problem consists of two massivebodies moving on circular orbits, and a third massless par-ticle. This has an integral of motion|the Jacobi constant,C. To test how well the integrator conserves C, I integrated36 test particles initially on a ring outside the orbit of aplanet with a mass and orbit similar to Neptune. The parti-cles had semi-major axes a = 36 au, eccentricities e = 0:18,and mean anomalies, M , evenly spaced along their orbit.The corresponding elements for Neptune were a = 30 au,e = 0, and M = 0. All objects moved in the same orbitalplane. The objects were integrated for one million years,with � = 5 years, a Bulirsch-Stoer tolerance of 10�10 andrcrit = 10 Hill radii � 7:7 au.During the integration, the maximum relative error onC was about 3 � 10�6, a �gure that was similar for allthe objects. A Bulirsch-Stoer integration (using Stoermer'sc 1998 RAS, MNRAS 000, 1{8



A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies 7

Figure 4. Trajectory of comet P/Oterma during a close encounter with Jupiter, integrated using the Bulirsch-Stoer (BS) integrator andthe hybrid integrator. The trajectory is shown in a rotating frame, with Jupiter at the origin and the Sun on the negative x axis.method), with tolerance of 10�9 gave similar results, requir-ing about 50% more computer time.5.3 Planetary EmbryosThe hybrid integrator was originally developed for plane-tary accretion problems, so here is a typical test case. 30planetary embryos have initial semi-major axes a = 0:5{1.2au, eccentricities e = 0{0.01 and inclinations i = 0. Theremaining angular elements are randomly distributed. Theembryo masses range from about 0.6 lunar masses to 0.2Earth masses. The bodies are treated as point masses (col-lisions are ignored), with a gravitational smoothing length,s = 3� 10�8 au � 5 km, such that the usual expression forthe force between two bodies is replaced byFij = � Gmimj(r2ij + s2) rijrijThe embryos were integrated for 10000 years using thehybrid integrator, with � = 5 days, a Bulirsch-Stoer toler-
ance of 10�12, and rcrit = 0:5�vmax � 0:06 au. Since theproblem is two-dimensional, a large number of close encoun-ters can be expected during the integration.Figure 3 shows the evolution of the energy error duringthe integration. For comparison, the �gure also shows theenergy error for the same calculation using the Stoermerversion of the Bulirsch-Stoer algorithm, with a tolerance of10�10. The maximum energy error is about the same in eachcase, although the Bulirsch-Stoer integration took 3.5 timeslonger. The energy error shows a linear increase with time inthe Bulirsch-Stoer calculation. Using the hybrid integrator,the energy variations over short periods of time are muchlarger, but no secular trend is apparent.Also shown in Figure 3 is the cumulative number dis-tribution of close encounters in each integration. The distri-butions have approximately the same slope, and the totalnumber of encounters is similar.Incidentally, using the SyMBA algorithm of Duncan etal. (1998), the �nal energy error for the same integrationis about two orders of magnitude larger (Duncan, privatec 1998 RAS, MNRAS 000, 1{8



8 J. E. Chamberscommunication), presumably because this algorithm uses asmaller value of rcrit.5.4 Comet P/OtermaMichel and Valsecchi (1997) have shown that changing thetimestep of a symplectic integrator can lead to spuriousresults. They integrated a close encounter between cometP/Oterma and Jupiter, using the Bulirsch-Stoer method asa reference, and using the RMVS2 algorithm of Levison andDuncan (1994). The latter is based on a second-order sym-plectic integrator. During a close encounter it �rst decreasesthe stepsize, and then changes the centre of motion to theplanet instead of the Sun. This technique failed to reproducethe correct trajectory of the comet during the encounter ifthe timestep was larger than about 20 days.We have to be sure that the hybrid integrator doesn'tsu�er from the same problem, so I have repeated the testhere. The �rst panel of Figure 4 shows the close-encountertrajectory calculated using the Bulirsch-Stoer method, witha tolerance parameter of 10�12. The coordinate origin is atJupiter in a rotating frame, with the Sun on the negativex axis. The initial conditions are those given in Table IVof Michel and Valsecchi (1997). The second panel showsthe trajectory calculated using the hybrid integrator, with astepsize of 25 days, and a changeover distance of 3 Hill radii(the same as used by RMVS2). The diagrams are virtuallyidentical.In fact, the hybrid integrator does quite well for largerstepsizes too. The evolution is qualitatively similar in thethird panel (stepsize 50 days). Even with a stepsize of 100days (fourth panel), the hybrid integrator does better thanRMVS2 with a stepsize four times smaller. Perhaps this isnot too surprising, since the same Bulirsch-Stoer algorithmis doing all the hard work of getting the close encounter rightregardless of the stepsize. For this reason too, the time takento complete the calculation is about the same for the hybridas for Bulirsch-Stoer on its own. In order to see the inherentspeed advantage of the symplectic part of the integrator wewould need to include more planets in the calculation.6 THE MERCURY INTEGRATOR PACKAGEThe hybrid symplectic integrator described in this paper isincluded in a publicly available N-body integrator packagecalled Mercury (Chambers & Migliorini 1997). Copies of thesource code, instructions for how to compile and run theprogrammes, and example integrations can be obtained viaanonymous ftp at Armagh Observatory (star.arm.ac.uk inthe subdirectory pub/jec). In addition to the symplectic in-tegrator, the package includes the Bulirsch-Stoer algorithmsand a version of Everhart's RADAU integrator.ACKNOWLEDGMENTSI am very grateful to David Asher, Mark Bailey, JacquesLaskar, Seppo Mikkola, Alessandro Morbidelli, ScottTremaine and especially Martin Duncan for helpful discus-sions and ideas during the preparation of this work.
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