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tWe present a pres
riptive type system with parametri
 polymorphism and subtyping for
onstraint logi
 programs. The aim of this type system is to dete
t programming errorsstati
ally. It introdu
es a type dis
ipline for 
onstraint logi
 programs and modules, whilemaintaining the 
apabilities of performing the usual 
oer
ions between 
onstraint domains,and of typing meta-programming predi
ates, thanks to the 
exibility of subtyping. Theproperty of subje
t redu
tion expresses the 
onsisten
y of a pres
riptive type system w.r.t.the exe
ution model: if a program is \well-typed", then all derivations starting from a\well-typed" goal are again \well-typed". That property is proved w.r.t. the abstra
texe
ution model of 
onstraint programming whi
h pro
eeds by a

umulation of 
onstraintsonly, and w.r.t. an enri
hed exe
ution model with type 
onstraints for substitutions. Wedes
ribe our implementation of the system for type 
he
king and type inferen
e. We reportour experimental results on type 
he
king ISO-Prolog, the (
onstraint) libraries of Si
stusProlog and other Prolog programs.Keywords: Type systems, Prolog, Constraint logi
 programming, Subtyping, Metapro-gramming.
1 Introdu
tionThe 
lass CLP(X ) of Constraint Logi
 Programming languages was introdu
edby Ja�ar and Lassez (Ja�ar & Lassez, 1987) as a generalization of the innovativefeatures introdu
ed by Colmerauer in Prolog II (Colmerauer, 1984; Colmerauer,1985): namely 
omputing in Prolog with other stru
tures than the Herbrand terms,with inequality 
onstraints and with 
o-routining.Inherited from the Prolog tradition, CLP(X ) programs are untyped. Usually thestru
ture of interest X is however a quite 
omplex 
ombination of basi
 stru
-tures that may in
lude integer arithmeti
, real arithmeti
, booleans, lists, Her-brand terms, in�nite terms, et
. with impli
it 
oer
ions between 
onstraint domainslike in Prolog IV (Colmerauer, 1996). Even the early CLP(R) system of (Ja�ar &Lassez, 1987) already 
ombines Herbrand terms with arithmeti
 expressions in anon-symmetri
al way: any arithmeti
 expression may appear under a Herbrandfun
tion symbol, e.g. in a list, but not the other way around. The framework ofmany sorted logi
 in (Ja�ar & Lassez, 1987) is not adequate for representing thetype system underlying su
h a 
ombination, as it for
es Herbrand fun
tion symbols
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ois Fages and Emmanuel Coqueryto have a unique type (e.g. over reals or Herbrand terms), whereas Herbrand fun
-tions 
an be used polymorphi
ally, e.g. in f(1) and f(f(1)), or the list 
onstru
torin a list of list of numbers [[3℄℄.The type system of My
roft-O'Keefe (My
roft & O'Keefe, 1984; Lakshman &Reddy, 1991; Hill & Topor, 1992) is an adaptation to logi
 programming of the�rst type system with parametri
 polymorphism, that was introdu
ed by Damas-Milner for the fun
tional programming language ML. In this system, types are �rst-order terms, type variables inside types, like � in list(�), express type parameters.Programs de�ned over a data stru
ture of type list(�) 
an be used polymorphi
allyover any homogeneous list of elements of some type �. Su
h a type system for Prologis implemented in the systems G�odel (Hill & Lloyd, 1994) and Mer
ury (Somogyiet al., 1996) for example. The 
exibility of parametri
 polymorphism is however byfar insuÆ
ient to handle properly 
oer
ions between 
onstraint domains, su
h ase.g. booleans as natural numbers, or lists as Herbrand terms, and does not supportthe meta-programming fa
ilities of logi
 programming, with meta-predi
ates su
has fun
tor(X,F,N), 
all(G) or setof(X,G,L).Semanti
ally, a ground type represents a set of expressions. Subtyping makestype systems more expressive and 
exible in that it allows to express in
lusionsamong these sets. In this paper we investigate the use of subtyping for expressing
oer
ions between 
onstraint domains, and for typing meta-programming predi-
ates. The idea is that by allowing subtype relations like list(�) � term, an atomlike fun
tor([X jL℄; F;N) is well-typed with type de
laration fun
tor : term �atom � int ! pred , although its �rst argument is a list. Similarly, we 
an type
all : pred ! pred , freeze : term� pred ! pred , setof : �� pred � list(�)! pred .The absen
e of subtype relation list(�) 6� pred , has for e�e
t to raise a type errorif the 
all predi
ate is applied to a list. On the other hand, the subtype relationpred � term makes 
oer
ions possible from goals to terms.Most type systems with subtyping for logi
 programming languages that havebeen proposed are des
riptive type systems, i.e. their purpose is to des
ribe thesu

ess set of the program, they require that a type for a predi
ate upper approx-imates its denotation. On the other hand, in pres
riptive type systems, types aresynta
ti
 obje
ts de�ned by the user to express the intended use of fun
tion andpredi
ate symbols in programs. Note that the distin
tion between des
riptive andpres
riptive type systems is orthogonal to the distin
tion between type 
he
kingand type inferen
e whi
h are possible in both approa
hes.There are only few works 
onsidering pres
riptive type systems for logi
 programswith subtyping (Beierle, 1995; Dietri
h & Hagl, 1988; Hanus, 1992; Hill & Topor,1992; Yardeni et al., 1992; Smolka, 1988). In these systems however, subtype rela-tions between parametri
 type 
onstru
tors of di�erent arities, like list(�) � term,are not allowed, thus they 
annot be used to type metaprogramming predi
atesand have not been designed for that purpose. The system Typi
al (Meyer, 1996)possesses an ad ho
 me
hanism for typing metapredi
ates whi
h makes it quitediÆ
ult to use. Our obje
tive is to propose a simple type system that allows for auniform treatment of pres
riptive typing issues in 
onstraint logi
 programs.In a pres
riptive type system, the property of subje
t redu
tion expresses the
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onsisten
y of the type system w.r.t. the exe
ution model: if a program is \well-typed", then all derivations starting in a \well-typed" goal are again \well-typed".This is a well-known result of the polymorphi
 type system without subtyping(My
roft & O'Keefe, 1984; Lakshman & Reddy, 1991; Hill & Topor, 1992) but whensubtypes are added to the pi
ture, the absen
e of a �xed data 
ow in logi
 programsmakes the obtention of a similar result problemati
al. Beierle (Beierle, 1995) showsthe existen
e of prin
ipal typings with subtype relations between basi
 types, andprovides type inferen
e algorithms, however Beierle and also Hanus (Hanus, 1992)do not 
laim subje
t redu
tion for the systems they propose. In general types arekept at run-time (Hanus, 1992; Yardeni et al., 1992) or modes are introdu
ed torestri
t the data 
ow (Dietri
h & Hagl, 1988; Smaus et al., 2000; Somogyi et al.,1996).In this paper, by abstra
ting from parti
ular stru
tures as required in the CLPs
heme, we study a pres
riptive type system for CLP programs, that is independentfrom any spe
i�
 
onstraint domain X . Se
tion 2 presents the type system thatin
ludes parametri
 polymorphism and subtype relations between type 
onstru
torsof di�erent arities, in a quite general type stru
ture of poset with suprema. We showtwo subje
t redu
tions results. One is relative to the abstra
t exe
ution modelof 
onstraint programming, whi
h pro
eeds only by a

umulation of 
onstraints.The proof of subje
t redu
tion holds independently of the 
omputation domain,under the assumption that the type of predi
ates satis�es the de�nitional generi
ityprin
iple (Lakshman & Reddy, 1991). The se
ond subje
t redu
tion result is relativeto the more 
on
rete exe
ution model of CLP with substitution steps. We show thatfor this se
ond form it is ne
essary to keep at run-time the typing 
onstraints onvariables inside well-typed programs and queries.Se
tion 3 des
ribes the type 
he
king algorithm and shows that the system ofsubtype inequalities generated by the type 
he
ker are left-linear and a
y
li
. Se
-tion 4 presents a linear time algorithm for solving left-linear and a
y
li
 systemsof subtype inequalities, and des
ribes the 
ubi
 time algorithm of Pottier (Pottier,2000a) for solving general systems of inequalities, under the additional assump-tion that the types form a latti
e. Se
tion 5 presents type inferen
e algorithms forinferring the types of variables and predi
ates in program 
lauses.Se
tion 6 des
ribes our implementation whi
h is available from (Coquery, 2000).The solving of subtype inequalities is done by an interfa
e to the Walla
e 
onstraint-handling library (Pottier, 2000b). In se
tion 7 we report our experimental resultson the use of this implementation to type 
he
k ISO-Prolog, the libraries of Si
stusProlog, in
luding 
onstraint programming libraries, and other Prolog programs.
2 Typed Constraint Logi
 ProgramsIn this se
tion we des
ribe our type system as a logi
 for deriving type judgmentsabout CLP programs.



4 Fran�
ois Fages and Emmanuel Coquery2.1 TypesThe type system we 
onsider is based on a stru
ture of partially ordered terms,
alled poterms, that we use for representing types with both parametri
 polymor-phism and subtype polymorphism. Poterms generalize �rst-order terms by the de�-nition of a subsumption order based on fun
tion symbols, that 
omes in addition tothe instantiation preorder based on variables. Poterms are similar to order-sortedfeature terms or  -terms (Ait-Ka
i & Nasr, 1986; Smolka, 1988; Ait-Ka
i et al.,1997) but we �nd it more 
onvenient here to adopt a term syntax (with mat
hingby position) instead of a re
ord syntax (with mat
hing by name) for denoting stati
types.The set of types T is the set of terms formed over a denumerable set U oftype variables (also 
alled parameters), denoted by �; �; :::, and a �nite set of
onstru
tors K, where with ea
h symbol K 2 K an arity m � 0 is asso
iated (bywriting K=m). Basi
 types are type 
onstru
tors of arity 0. We assume that K
ontains a basi
 type pred . A 
at type is a type of the form K(�1; : : : ; �m), whereK 2 K and the �i are distin
t parameters.The set of type variables in a type � is denoted by V (�). The set of ground typesG is the set of types 
ontaining no variable. We write � [�=�℄ to denote the typeobtained by repla
ing all the o

urren
es of � by � in � . We write � [�℄ to denotethat the type � stri
tly 
ontains the type � as a subexpression. The size of a type� , de�ned as the number of o

urren
es of 
onstru
tors and parameters in � , isdenoted by size(�).We now qualify what kind of subtyping we allow. Intuitively, when a type � isa subtype of a type � , this means that ea
h term in � is also a term in � . Thesubtyping relation � is designed to have 
ertain ni
e algebrai
 properties, stated inpropositions below. We assume an order � on type 
onstru
tors su
h that: K=m �K 0=m0 impliesm � m0, and for ea
hK 2 K the set fK 0 j K � K 0g has a maximum.Moreover, we assume that with ea
h pair K=m � K 0=m0, an inje
tive mapping�K;K0 : f1; : : : ;m0g ! f1; : : : ;mg is asso
iated su
h that �K;K00 = �K;K0 Æ �K0;K00whenever K � K 0 � K 00.These assumptions mean that as we move up in the hierar
hy of type 
onstru
tors,their arity de
reases, and the hierar
hy needs not be a latti
e but a poset withsuprema.The order on type 
onstru
tors is extended to a 
ovariant subtyping order ontypes, denoted also by �, de�ned as the least relation satisfying the following rules:(Par) � � � � is a parameter(Constr) ��(1)�� 01 ::: ��(m0)�� 0m0K(�1;:::;�m)�K 0(� 01;:::;� 0m0) K � K 0, � = �K;K0 .Contravariant type 
onstru
tors 
ould be de�ned with a subtyping rule similarto rule Constr but with the ordering relation reversed for some arguments, likee.g. ��(i) � � 0i in the premise of the rule for some argument � 0i . Su
h 
ontravarianttype 
onstru
tors are not 
onsidered in this paper.Therefore, if int � float then we have list(int) � list(float), list(float) 6�
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Fig. 1. Part of the type stru
ture for ISO-Prolog.list(int), and also list(float) 6� list(�) as the subtyping order does not in
lude theinstantiation pre-order. Intuitively, a ground type represents a set of expressions,and the subtyping order between ground types 
orresponds to set in
lusion. Para-metri
 types do not dire
tly support this interpretation, their parameters denoteunkown types.The type stru
ture given in �gure 2.1 represents a part of the types used for type
he
king ISO-Prolog. The omitted types are the subtypes of atom asso
iated to alltypes, and other types for spe
ial values or options. The type list(�) is the onlyparametri
 type used for ISO-Prolog. Other parametri
 types are used for typingProlog libraries su
h as arrays(�), asso
(�; �), heaps(�; �), ordsets(�), queues(�),et
.A type substitution � is an idempotent mapping from parameters to types thatis the identity almost everywhere. Appli
ations of type substitutions are de�ned inthe obvious way.Proposition 2.1If � � � then �� � �� for any type substitution �.ProofBy stru
tural indu
tion on � .Proposition 2.2If � � � then size(�) � size(�) .Proof
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tural indu
tion on � .Our assumption that for ea
h K 2 K, the set fK 0 j K � K 0g has a maximum,together with the arity de
reasing assumption, entail the existen
e of a maximumsupertype for any type:Proposition 2.3For ea
h type � , the set f� j � � �g has a maximum, whi
h is denoted by Max(�).ProofBy stru
tural indu
tion on � .This means that every �-
onne
ted 
omponent of types has a root. For example,a stru
ture like a � b; 
 � b; 
 � d violates the hypothesis if b and d have no
ommon supertype serving as a root for the 
onne
ted 
omponent. On the otherhand that assumption does not assume, nor it is implied by, the existen
e of aleast upper bound to types having a upper bound (sup-quasi-latti
e hypothesis in(Smolka, 1989)).Proposition 2.4For all types � and �, Max(� [�=�℄) = Max(�)[Max(�)=�℄.ProofBy stru
tural indu
tion on � .Note that the possibility of \forgetting" type parameters in subtype relations, asin list(�) � term, may provide solutions to inequalities of the form list(�) � �,e.g. � = term. However, we have:Proposition 2.5An inequality of the form � � � [�℄ has no solution. An inequality of the form� [�℄ � � has no solution if � 2 V (Max(�)).ProofFor any type �, we have size(�) < size(� [�℄), hen
e by Prop 2.2, � 6� � [�℄, that is� � � [�℄ has no solution.For the se
ond proposition, we prove its 
ontrapositive. Suppose � [�℄ � � hasa solution, say � [�=�℄ � �. By de�nition of a maximum and Prop. 2.3, we haveMax(�) = Max(� [�=�℄). Hen
e by Prop. 2.4, Max(�) = Max(�)[Max(�)=�℄. By therules of subtyping we have � 6= Max(�). Therefore � 62 V (Max(�)), sin
e other-wise Max(�) = Max(�)[Max(�)=�℄ would 
ontain Max(�) as a stri
t subexpressionwhi
h is impossible. 2.2 Well-typed programsCLP programs are built over a denumerable set V of variables, a �nite set F offun
tion symbols, given with their arity (
onstants are fun
tions of arity 0), anda �nite set P of program predi
ate and 
onstraint predi
ate symbols given withtheir arity, 
ontaining the equality 
onstraint =. A query Q is a �nite sequen
e of
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onstraints and atoms. A program 
lause is an expression noted A  Q where Ais an atom formed with a program predi
ate and Q a query.A type s
heme is an expression of the form 8��1; : : : ; �n!� , where � is the set ofparameters in types �1; :::; �n; � . We assume that ea
h fun
tion symbol f 2 F , hasa de
lared type s
heme of the form 8��1; : : : ; �n!� , where n is the arity of f , and �is a 
at type. Similarly, we assume that ea
h predi
ate symbol p 2 P has a de
laredtype s
heme of the form 8��1; : : : ; �n!pred where n is the arity of p. The de
laredtype of the equality 
onstraint symbol is 8u u; u!pred . For notational 
onvenien
e,the quanti�ers in type s
hemes and the resulting type pred of predi
ates will beomitted in type de
larations, the de
lared type s
hemes will be indi
ated by writingf�1:::�n!� and p�1:::�n , assuming a fresh renaming of the parameters in �1; : : : ; �n; �for ea
h o

urren
e of f or p.Throughout this paper, we assume that K, F , and P are �xed by means ofde
larations in a typed program, where the synta
ti
al details are insigni�
ant forour results.A variable typing is a mapping from a �nite subset of V to T , written as fx1 :�1; : : : ; xn : �ng. The type system de�nes well-typed terms, atoms and 
lauses rel-atively to a variable typing U . The typing rules are given in Table 1. The rulesbasi
ally 
onsist of the rules of My
roft and O'Keefe plus the subsumption rule.Note that for the sake of simpli
ity 
onstraints are not distinguished from otheratoms in this system.(Sub) U`t:� ��� 0U`t:� 0(Var) fx : �; : : :g ` x : �(Fun
) U`t1:�1� ::: U`tn:�n�U`f�1:::�n!� (t1;:::;tn):�� � is a type substitution(Atom) U`t1:�1� ::: U`tn:�n�U`p�1:::�n(t1;:::;tn)Atom � is a type substitution(Head) U`t1:�1� ::: U`tn:�n�U`p�1:::�n(t1;:::;tn)Head � is a renaming substitution(Query) U`A1 Atom ::: U`An AtomU`A1;:::;An Query(Clause) U`Q Query U`A HeadU`A Q ClauseTable 1. The type system.An obje
t, say a term t, is well-typed if there exist some variable typing U and
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h that U ` t : � . Otherwise the term is ill-typed (and likewise foratoms, et
.). A program is well-typed if all its 
lauses are well-typed.The distin
tion between rules Head and Atom expresses the usual de�nitionalgeneri
ity prin
iple (Lakshman & Reddy, 1991) whi
h states that the type of ade�ning o

urren
e of a predi
ate (i.e. at the left of \ " in a 
lause) must beequivalent up-to renaming to the assigned type of the predi
ate. The rule Head usedfor deriving the type of the head of the 
lause is thus not allowed to use substitutionsother than variable renamings in the de
lared type of the predi
ate. For example, thepredi
atemember 
an be typed polymorphi
ally, i.e. member : �� list(�)!pred , ifits de�nition does not 
ontain spe
ial fa
ts like member(1; [1℄), that would for
e itstype to be member : int� list(int)!pred , for satisfying the de�nitional-generi
ity
ondition.The following proposition shows that if an expression other than a 
lause or ahead is well-typed in a variable typing U , it remains well-typed in any instan
e U�.Proposition 2.6For any variable typing U , any type judgement R other than a Head or a Clause,and any type subtitution �, if U ` R then U� ` R�.ProofBy indu
tion on the height of the derivation tree for U ` R.2.3 Subje
t redu
tion w.r.t. CSLD resolutionSubje
t redu
tion is the property that evaluation rules transform a well-typed ex-pression into another well-typed expression. The evaluation rule for 
onstraint logi
programming is CSLD-resolution. To re
all this evaluation rule, it is 
onvenient todistinguish in a query Q, the 
onstraint part 
 (where the sequen
e denotes the
onjun
tion) from the other sequen
e of atoms A. We use the notation Q = 
jA tomake this distin
tion. Given a 
onstraint domain X whi
h �xes the interpretationof 
onstraints, a query 
0jB is a CSLD-resolvent of a query 
jA and a (renamedapart) program 
lause p(t1; :::; tn) djA, ifA = A1; : : : ; Ak�1; p(t01; : : : ; t0n); Ak+1; : : : ; Am,B = A1; : : : ; Ak�1; A;Ak+1; : : : ; Am,and the 
onstraint 
0 = (
 ^ d ^ t1 = t01 ^ : : : ^ tn = t0n) is X -satis�able.Theorem 2.1 (Subje
t Redu
tion for CSLD resolution)Let P be a well-typed CLP(X ) program, and Q be a well-typed query, i.e. U `Q Query for some variable typing U . If Q0 is a CSLD-resolvent of Q, then thereexists a variable typing U 0 su
h that U 0 ` Q0 Query.ProofLet us assume without loss of generality that Q = 
jp(s); A, and that Q0 is aCSLD-resolvent of Q with the program 
lause p(t) djB.Thus Q0 = 
; d; s = tjA;B.As Q is well-typed, we have U ` 
jp(s); A Query . And as the program is well
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h that U 00 `p(t) djB Clause .Let p : �!pred be the type de
laration of predi
ate p. Sin
e U ` p(s) Atom, wehave U ` s : �� for some substitution �.Now let U 0 = U [ U 00�. By proposition 2.6, we have U 00� ` djB; Query , thusU 0 ` 
; djA;B; Query , What remains to be shown is U 0 ` s = t Atom.Sin
e U 00 ` p(t) Head , we have U 00 ` t : � . Hen
e by proposition 2.6, U 00� ` t :��. Therefore we have U ` s : �� and U 00� ` t : ��, from whi
h we 
on
ludeU 0 ` s = t Atom.It is worth noting that the previous result would not hold without the de�nitionalgeneri
ity 
ondition (expressed in rule Head). For example with two 
onstants a : �aand b : �b, and one predi
ate p : �!pred de�ned by the non de�nitional generi

lause p(a), we have that the query p(b) is well typed, but b = a is a resolvent thatis ill-typed if �a and �b have no upper bound.2.4 Subje
t redu
tion w.r.t. substitutionsThe CSLD redu
tions, noted �!CSLD, are in fa
t an abstra
tion of the operationalredu
tions that may perform also substitution steps, noted �!� , instead of keepingequality 
onstraints. As in the CLP s
heme 
onstraints are handled modulo logi
alequivalen
e (Ja�ar & Lassez, 1987), it is 
lear that the diagram of both redu
tions
ommutes : Q1 #�#� �!CSLD�!CSLD Qn#�Q2#� #�...#�Q
�!CSLD
�!CSLD

...�!CSLD......However the previous subje
t redu
tion result expresses the 
onsisten
y of typesw.r.t. horizontal redu
tion steps only, that is w.r.t. the abstra
t exe
ution modelwhi
h a

umulates 
onstraints, but may not hold for more 
on
rete operationsof 
onstraint solving and substitutions. For example, with the subtype relationsint � term, pred � term, the type de
larations =: �� �!pred , p : int!pred , andthe program p(X), the query Y = true; p(Y ) is well typed with Y : int, and su

eedswith Y = true, although the query obtained by substitution, p(true), is ill-typed.In order to establish subje
t redu
tion for substitution steps, and be 
onsistent withthe semanti
al equivalen
e of programs, one needs to 
onsider a typed exe
utionmodel with type 
onstraints on variables 
he
ked at runtime. In the example, thetype 
onstraint Y : int with the 
onstraint Y = true is unsatis�able, the query
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ois Fages and Emmanuel Coquerywill be thus reje
ted at 
ompile-time by 
he
king the satis�ability of its typed
onstraints.De�nition 2.1Given a 
onstraint system over some domain X , a typed 
onstraint system overX [2X is de�ned by adding type 
onstraints, i.e. expressions of the form t : � wheret is a term and � a type. Basi
 types are interpreted by distinguished subsets of Xand type 
onstru
tors by mappings between subsets of X satisfying the subtypingrelation � and the type de
larations for fun
tion and predi
ate symbols. A type
onstraint t : � is satis�able if there exists a valuation � of the variables in t andthe free parameters in � su
h that t� 2 ��. A typed 
onstraint system 
omposedof type 
onstraints and 
onstraints over X is satis�able if there exists a valuationwhi
h satis�es all 
onstraints of the system.Lemma 2.1In a typed 
onstraint system, X : � ^X = t entails t : � .ProofFor any valuation �, if X� 2 �� and X� = t� then t� 2 ��.De�nition 2.2The TCLP 
lause (resp. query) asso
iated to a well-typed program (resp. query)in a typed environment U is the 
lause (resp. query) augmented with the type
onstraints in U .Theorem 2.2 (Subje
t Redu
tion for substitutions)Let P be a TCLP program asso
iated to well-typed CLP(X ) program, and Q be aTCLP query, we have U ` Q Query for some variable typing U . If Q0 is a CSLD-resolvent of Q, then the variable typing U 0 asso
iated to the type 
onstraints in Q0gives U 0 ` Q0 Query. Furthermore if Q0 
ontains an equality 
onstraint X = t thenU 0 ` Q0[t=X ℄ Query.ProofSubje
t redu
tion for CSLD resolution follows from theorem 2.1 as TCLP programsare just a spe
ial 
ase of well-typed CLP programs. Furthermore one easily 
he
ksthat the type 
onstraints in Q0, that 
ome from the type 
onstraints in Q and fromthe resolving TCLP 
lause, give exa
tly the type environment U 0 
onstru
ted inthe proof of the previous theorem, thus U 0 ` Q0Query.Now let X = t be a 
onstraint in a resolvent Q0. Let X : � 2 U 0. We have X : �in the 
onstraint part of Q0 whi
h together with X = t entails t : � by lemma 2.1.Therefore it is immediate from the typing rules that by repla
ing X by t in thederivation of U 0 ` Q0 Query, and by 
ompleting the derivation with the derivationof t : � instead of X : � , we get a derivation of U 0 ` Q0[t=X ℄ Query.The e�e
t of type 
onstraints in TCLP programs is to prevent the derivation ofill-typed queries by substitution steps. In addition, queries su
h as X : int;X =true; p(X) 
an be reje
ted at 
ompile-time be
ause of the unsatis�ability of their
onstraints. Similarly TCLP program 
lauses having unsatis�able typed 
onstraints
an be reje
ted at 
ompile-time.
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t redu
tion for substi-tutions is shown without the addition of type 
onstraints but in a very restri
ted
ontext of moded logi
 programs.3 Type 
he
kingThe system des
ribed by the rules of Table 1 is non-deterministi
, sin
e the rule(Sub) 
an be used anywhere in a typing derivation. One 
an obtain a deterministi
type 
he
ker, dire
ted by the syntax of the typed program, simply by repla
ing therule (Sub) by variants of the rules (Fun
), (Atom) and (Head) with the subtyperelation in their premises. This leads to the following type system in table 2.(Var) fx : �; : : :g ` x : �(Fun
') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`f�1:::�n!� (t1;:::;tn):�� � is a type substitution(Atom') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`p�1:::�n(t1;:::;tn)Atom � is a type substitution(Head') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`p�1:::�n(t1;:::;tn)Head � is a renaming substitution(Query) U`A1 Atom ::: U`An AtomU`A1;:::;An Query(Clause) U`Q Query U`A HeadU`A Q ClauseTable 2. The type system in se
ond form.
Proposition 3.1A program is well typed in the original system if and only if it is well typed in thenew one.ProofClearly, if a program is typable in the new system, it is typable in the originalone: one has just to repla
e every o

urren
e of the (Fun
') and (Atom') rulesrespe
tively with the following derivations:
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) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` f� 01���� 0n!� 0(t1; � � �; tn) : � 0�(Atom) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` p� 01����� 0n(t1; � � �; tn) Atom(Head) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` p� 01����� 0n(t1; � � �; tn) AtomConversely, if a program is typable in the original system, it is typable in these
ond one, noted here `2. The proof is by indu
tion on the typing derivation inthe original system. The rules (Var), (Query) and (Clause) remain the same. Therule (Atom) and (Head) are similar to rule (Fun
). We thus show the property forany term t : if U ` t : � in the �rst system, then U `2 t : � 0 in the se
ond systemwith � 0 � � .Let us 
onsider the three possible 
ases, either the proof terminates by the ap-pli
ation of the (Var) rule, by the appli
ation of the (Fun
) rule or by appli
ationof the (Sub) rule.The �rst 
ase is trivial as the rule (Var) is the same in both systems.In the se
ond 
ase, a

ording to the (Fun
) rule, U ` t1 : �1� � � � U ` tn : �n�.Then, by the indu
tion hypothesis, the terms t1 � � � tn are also type 
he
ked toU `2 t1 : � 01 � � � U `2 tn : � 0n by the se
ond system, with � 0i � �i�; i = 1::n. Byapplying the (Fun
') rule with � 0i = �i; i = 1::n, we get U `2 f(t1; � � �; tn) : ��.In the third 
ase, a

ording to the (Sub) rule, U ` t : � and � � � 0 allows us todedu
e U ` t : � 0. By indu
tion hypothesis, t is type 
he
ked to U `2 t : � in these
ond system, where � � � . Sin
e � � � 0, we have � � � 0. So t is type 
he
ked toU `2 t : �, where � � � 0.The 
onstru
tion of the substitution � needed in rules (Fun
'), (Atom') and(Head') for type 
he
king, 
an be done by solving the system of subtype inequali-ties 
olle
ted along the derivation of a type judgement. The parameters in the typeenvironment (i.e. the parameters in the types of variables) are however not underthe s
ope of these substitutions, as they a
t only on the parameters of the (renamedapart) type de
larations for fun
tion and predi
ate symbols. We are thus lookingfor type substitutions with a restri
ted domain. For the sake of simpli
ity how-ever, instead of dealing formally with the domain of type substitutions, we shallsimply assume that the parameters in the type of variables are repla
ed by new
onstants for 
he
king the satis�ability of subtype inequalities, and avoid unsoundinstantiations.Now let � be the 
olle
tion of subtype inequalities � imposed on types by rules(Fun
') (Atom') and (Head') in a derivation. Let us de�ne the size of a systemof inequalities as the number of symbols. The size of the system � of inequalitiesasso
iated to a typed program is O(nvd) where v is the size of the type de
larations
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 Programs 13for variables in the program, n is the size of the program, and d is the size of thetype de
larations for fun
tion and predi
ate symbols.As the type system is deterministi
 we have:Proposition 3.2A well-formed program is typable if and only the system of inequalities 
olle
tedalong its derivation is satis�able.It is worth noting that the system of inequalities � 
olle
ted in this way for type
he
king have in fa
t a very parti
ular form.De�nition 3.1A system � of inequalities is left-linear if any type variable has at most one o

ur-ren
e at the left of � in the system. � is a
y
li
 if there exists a ranking fun
tionon type variables r : U ! N su
h that if � � � 2 �, � 2 V (�) and � 2 V (�) thenr(�) < r(�).Proposition 3.3The system of inequalities generated by the type 
he
king algorithm is a
y
li
 andleft-linear.ProofAs the type variables in the types of CLP variables have been renamed into 
on-stants, the only type variables o

urring in � are introdu
ed by rules (Fun
')(Atom') and (Head'), and 
ome from (renamed apart) type de
larations of fun
tionand predi
ate symbols. We 
an thus asso
iate to ea
h type variable � a rank h(�)de�ned as the height of its introdu
tion node in the derivation tree (i.e. the maxi-mal distan
e from the node to its leaves). Now a rule (Fun
'), (Atom') or (Head')at height h posts inequalities of the form � � � , where the rank of the variables in� is h, and the rank of the variables in � is h� 1. The system is thus a
y
li
.The type variables at the left of � are those parameters that 
ome from theresult type of a fun
tion de
laration, e.g. � in nil : list(�). As the result type isa 
at type, the variables in a result type are distin
t and renamed apart, hen
ethe variables o

urring in a type at the left of � have a unique o

urren
e in thesystem. The system is thus trivially left-linear.Note that if we allowed 
ontravariant type 
onstru
tors, the previous propositionwould not hold.A linear time algorithm for solving a
y
li
 left-linear systems is given in the nextse
tion. 4 Subtype inequalitiesThe satis�ability of subtype inequalities (SSI) problem is the problem of determiningwhether a system of subtype relations1 Vni=1 �i�� 0i over types �1; � 01; :::; �n; � 0n has a1 The SSI problem should not be 
onfused with the semi-uni�
ation problem whi
h is de�ned withthe instantiation pre-ordering, intead of the subtype ordering: 9� Vni=1 9�i �i��i = � 0i�. Theunde
idability of semi-uni�
ation is shown in (Kfoury et al., 1989).
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ois Fages and Emmanuel Coquerysolution, i.e., whether there exists a substitution � su
h that �i��� 0i� holds for all1 � i � n.De�nition 4.1A solution to an inequality ��� 0 is a substitution � su
h that ���� 0�. A maximalsolution is a solution � su
h that for any solution �0 there exists a substitution �su
h that 8� 2 V ��0����.The SSI problem has been deeply studied in the fun
tional programming 
om-munity. Due to the la
k of results for the general 
ase, spe
ial instan
es of the SSIproblem have been identi�ed along several axes:� the form of the types: basi
 types, 
onstru
tor types, 
ovariant (our 
ase inthis paper) or 
ontravariant;� the stru
ture of the types: (disjoint union of) latti
es (Tiuryn, 1992), quasi-latti
es (Smolka, 1989), n-
rown (Tiuryn, 1992), posets with suprema (our
ase), partial orders (Frey, 1997);� the form of the type 
onstraints.In this se
tion we show that the type 
onstraints generated by the type 
he
kingalgorithms 
an be solved in linear time in our quite general stru
ture of types, andthat the type 
onstraints generated by the type inferen
e algorithms 
an be solvedin 
ubi
 time, under the additional assumption that the types form a latti
e.4.1 The a
y
li
 left-linear 
aseWe show that the satis�ability of a
y
li
 left-linear subtype inequalities 
an bede
ided in linear time, and admit maximal solutions in our general type stru
ture(T ;�) of posets with suprema.In this se
tion, we present an algorithm whi
h pro
eeds by simpli�
ation of thesubtype inequalities and introdu
es equations between a parameter and a type. Wesay that a system � is in solved form if it 
ontains only equations of the formf�1 = �1; : : : ; �n = �ngwhere the �i's are all di�erent and have no other o

urren
e in �. The substitution�� = f�1  �1; : : : ; �n  �ng asso
iated to a system in solved form � is trivially amaximal solution. We show that the following simpli�
ation rules 
ompute solvedforms for satis�able a
y
li
 left-linear systems:
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omp) �; K(�1; :::; �m) � K 0(� 01; :::; � 0n); �! �; Vni=1 ��(i) � � 0iif K � K 0 and � = �K;K0 :(Triv) �; � � �; �! �(VarLeft) �; � � �; �! � = �; �[�=�℄if � 6= �, � 62 V (�).(VarRight) �; � � �; �! � = Max(�); �[Max(�)=�℄if � 62 V , � 62 V (l) for any l � r 2 �, and � 62 V (Max(�)).Lemma 4.1The rules terminate in O(n) steps, where n is the sum of the sizes of the terms inthe left-hand side of inequalities.ProofIt suÆ
es to remark that ea
h rule stri
tly de
reases the sum of the size of the termsin the left-hand sides of the inequalities: (Triv) and (VarLeft) by one, (De
omp) byat least one, and (VarRight) by the size of � .One 
an easily 
he
k that ea
h rule preserves the left-linearity as well as thea
y
li
ity of the system, moreover:Lemma 4.2Ea
h rule preserves the satis�ability of the system, as well as its maximal solutionif one exists.ProofRules (De
omp) and (Triv) preserve all solutions, by de�nition of the subtypingorder. Rule (VarLeft) repla
es a parameter � by its upper bound � . As the system isleft-linear this 
omputes the maximal solution for �, and thus preserves the maximalsolution of the system if one exists. Rule (VarRight) repla
es a parameter � havingno o

urren
e in the left-hand side of an inequality, hen
e having no upper bound,by the maximum type of its lower bound � ; this 
omputes the maximal solution for�, and thus preserves also the maximal solution of the system if one exists.Theorem 4.1Let � be an a
y
li
 left-linear system. Let �0 be a normal form of �. Then � issatis�able i� �0 is in solved form, in whi
h 
ase ��0 is a maximal solution of �.ProofConsider a normal form �0 for �. If �0 
ontains a non variable pair � � � 0, as thisinequality is irredu
ible by (De
omp) �0 has no solution, hen
e � is unsatis�ableby lemma 4.2. Similarly �0 has no solution if it 
ontains an inequality � � � with� 2 V (�) and � 6= � (prop. 2.5) or an inequality � � � with � 2 V (Max(�))and � 6= � (Prop. 2.5). In the other 
ases, by irredu
ibility and by a
y
li
ity, �0
ontains no inequality, hen
e �0 
ontains only equalities that are in solved form,and the substitution asso
iated to �0 is a maximal solution for �.
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aseIn absen
e of subtype relations between type 
onstru
tors of di�erent arities, 
he
k-ing the 
onsisten
y of general subtype inequalities in �nite types has been shownby Frey (Frey, 1997) Pspa
e-
omplete in an arbitrary poset, with a generalizationof Fuh & Mishra's algorithm (Fuh & Mishra, 1988).It is an open problem whether the te
hnique used by Frey for proving 
onsisten
yin arbitrary posets 
an be generalized to our 
ase with subtype relations betweentype 
onstru
tors of di�erent arities.If we assume however that the subtyping relation is a latti
e, it has been shown byPottier (Pottier, 2000a) that the satis�ability of subtype inequalities 
an be 
he
kedin 
ubi
 time in the stru
ture of in�nite regular trees, i.e. re
ursive types (Amadio &Cardelli, 1993). Note that re
ursive types admit solutions to equations of the form� = list(�), namely the type list(list(:::)). Below we present Pottier's algorithmby a set of simpli�
ation rules, and show that in a
y
li
 systems the solving of(
ovariant) subtype 
onstraints on in�nite types is equivalent to the solving on�nite types.We assume that the stru
ture of type 
onstru
tors (K;�) is a latti
e with ?and > types. We maintain our previous assumption on de
reasing arities, ex-
ept on ? whi
h is below all (n-ary) type 
onstru
tors. We also assume that ifK 00=n = glb(K;K 0) then range(�K00;K) [ range(�K00;K0) = [1; n℄, that is greatestlower bounds do not introdu
e new parameters. Similarly, if K 00=n = lub(K;K 0)then range(�K;K00 ) [ range(�K0;K00) = [1; n℄, Note that there is no loss of generalitywith this assumption as the latti
e of type 
onstru
tors 
an always be 
ompletedby introdu
ing glb and lub 
onstru
tors with the right number of parameters.We 
onsider systems of subtype inequalities between parameters of 
at types,that is of the form � � �, K(�1; :::�n) � � or � � K(�1; :::�n). Non 
at types
an be represented in this form by introdu
ing new parameters and inequalitiesbetween these parameters and the type they represent.For the sake of presentation, we assume that the initial system to be solved,�0 over variables V0, is �rst 
ompleted by introdu
ing new variables 
S and ÆSfor ea
h non empty subset S of V0, and by adding the inequalities 
S � � and� � ÆS for all variables � 2 S. We also assume that the system is 
ompletedby adding the inequality � � � for ea
h variable �. Given a system � and a setof variables S we de�ne the variable 
(S;�) = 
f�2V0j9�2S ���2�g and similarlyÆ(S;�) = Æf�2V0j9�2S ���2�g. The simpli�
ation rules are the following:
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 Programs 17(Trans) �; � � �; � � 
 �! �; � � �; � � 
; � � 
if � � 
 62 � and � 6= 
.(Clash) �; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n) �! falseif K 6� K 0.(De
) �; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n) �!�; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n); f��(j) � �0jgj2[1;n℄if K � K 0, � = �K;K0 and f��(j) � �0jgj2[1;n℄ 6� � [ f� � �g.(Glb) �; � � K(�1; :::; �m); � � �; � � K 0(�01; :::; �0n) �!�; � � K 00(�001 ; :::; �00l ); � � �; � � K 0(�01; :::; �0n);�0if K 00 6= K or �0 6� � [ f� � �gwhere K 00 = glb(K;K 0), � = �K00;K ; �0 = �K00;K0 ,�00k = 
(f���1(k); �0�0�1(k)g;� [ f� � �g), for all 1 � k � l,�0 = f�00�(i) � �igi2[1;m℄ [ f�00�0(j) � �0jgj2[1;n℄(Lub) �; K(�1; :::; �m) � �; � � �; K 0(�01; :::; �0n) � � �!�; K(�1; :::; �m) � �; � � �; K 00(�001 ; :::; �00l ) � �;�0if K 00 6= K 0 or �0 6� � [ f� � �gwhere K 00 = lub(K;K 0), � = �K;K00 ; �0 = �K0;K00 ,�00k = Æ(f��(k); �0�0(k)g;� [ f� � �g), for all 1 � k � l,�0 = f��(k) � �00k ; �0�0(k) � �00kgk2[1;l℄Rule (Trans) 
omputes the transitive 
losure of inequalities between parametersand is mainly responsible for the 
ubi
 time 
omplexity. Rule (Clash) 
he
ks the
onsisten
y of the lower and upper bounds of parameters. Rule (De
) de
omposes
at types. These three simple rules are in fa
t suÆ
ient for 
he
king the satis�abilityof the system (Pottier, 2000a).Rules (Glb) and (Lub) make expli
it the greatest and the least solution of thesystem by 
omputing the greatest lower bound of upper bounds of parameters andthe least upper bound of their lower bounds. We remark that if the algorithm isapplied to an initial system � 
ontaining a unique inequality of the form � � �and � � � 0 for ea
h parameter �, the algorithm maintains unique upper and lowerbounds for ea
h parameter. We note lb(�) (resp. ub(�)) the lower (resp. upper)bound of � in the system in irredu
ible form.Proposition 4.1The rules terminate.ProofTermination with rule (Clash) is trivial. For the other rules, let us 
onsider, as
omplexity measure of the system, the 
ouple of integers (t; e) ordered by lexi
o-graphi
 ordering, where e, the \entropy" of the system, is the number v2�n, where



18 Fran�
ois Fages and Emmanuel Coqueryv is the number of parameters in the system, n is the number of inequalities be-tween parameters, and where t, the \temperature" of the system, is the sum of theheight of 
onstru
tors at the right of �, and of the depth of 
onstru
tors at the leftof �. The height (resp. depth) of a 
onstru
tor is the length of the longest pathof the 
onstru
tor to ? (resp. >) in (K;�). We show that no rule in
reases thetemperature of the system, and ea
h rule either de
reases t or e.Rule (Trans) does not 
hange t and de
reases e by 1, Rule (De
) does not 
hange tand de
reases e by at least 1, Rules (Glb) either de
reases t if K 00 6= K 0 or de
reasese otherwise, and similarly for rule (Lub). Hen
e the algorithm terminates.Theorem 4.2(Pottier, 2000a) A system of inequalities is satis�able over in�nite regular trees ifand only if the simpli�
ation rules do not generate false, in whi
h 
ase the identi�-
ation of all parameters to their upper bound ub(�) (resp. their lower bound lb(�))provides a maximum (resp. minimum) solution.Furthermore, one 
an show that in our setting of a
y
li
 systems and 
ovariant
onstru
tor types, the solving of subtype 
onstraints on in�nite types is equivalentto the solving on �nite types.Theorem 4.3An a
y
li
 system of inequalities is satis�able over �nite types if and only if thesimpli�
ation rules do not generate false, in whi
h 
ase the identi�
ation of allparameters to their upper bound (resp. lower bound) provides a maximum (resp.minimum) �nite solution.ProofIt is suÆ
ient to remark that the simpli�
ation rules preserve the a
y
li
ity of thesystem, and that in an a
y
li
 system, the identi�
ation of the parameters to theirbounds 
reates �nite solutions.Corollary 4.1In a latti
e stru
ture without ?, an a
y
li
 system of inequalities is satis�ableover �nite types if and only if the simpli�
ation rules do not generate false andub(�) 6= ? for all parameters �.5 Type inferen
eAs usual with a pres
riptive type system, type re
onstru
tion algorithms 
an beused to omit type de
larations in programs, and still 
he
k the typability of the pro-gram by the possibility or not to infer the omitted types (Lakshman & Reddy, 1991). Below we des
ribe algorithms for inferring the type of variables and predi
ates,assuming type de
larations for fun
tion symbols.5.1 Type inferen
e for variablesTypes for variables in CLP 
lauses and queries 
an be inferred by introdu
ingunknowns for their type in the variable typing, and by 
olle
ting the subtype in-
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he
kingalgorithm.It is easy to 
he
k that the system of subtype inequalities thus 
olle
ted is stilla
y
li
, as the unknown types for CLP variables appear only in left positions. Thesystem is however not left-linear if a CLP variable has more than one o

urren
ein a 
lause or a query.The se
ond algorithm of the previous se
tion 
an thus be used to infer the typeof variables in CLP 
lauses and queries.5.2 Type inferen
e for predi
atesTypes for predi
ates 
an be inferred as well under the assumption that predi
atesare used monomorphi
ally inside their (mutually re
ursive) de�nition (Lakshman& Reddy, 1991). This means that inside a group of mutually re
ursive 
lauses, ea
ho

urren
e (even in the body of a 
lause) of a predi
ate de�ned in these 
lausesmust be typed with rule Head instead of rule Atom. The reason for this restri
tion,similar to the one done for inferring the type of mutually re
ursive fun
tions inML, is to avoid having to solve a semi-uni�
ation problem: i.e. given a system oftypes �i; � 0i for i; 1 � i � n, �nding a substitution � su
h that for all i there existsa substitution �i s.t. �i��i = � 0i�, that is proved unde
idable in (Kfoury et al.,1989).Note that the SSI obtained by 
olle
ting the subtype inequalities in the derivationof typing judgements is still a
y
li
, as the unknown types for predi
ates appearonly in the right-hand sides of the inequalities. The se
ond algorithm of the previousse
tion 
an thus be used also to infer the type of predi
ates in CLP programs underthe assumption that the stru
ture of types is a latti
e without ?.One 
onsequen
e of the a
y
li
ity of the system however, is that the maximumtype of a predi
ate is always >. Indeed in our type system a predi
ate 
an alwaysbe typed as maximally permissive. In the more general stru
ture of posets withsuprema, unless the unknown types for predi
ates are 
ompared with types be-longing to di�erent �-
onne
ted 
omponents (in whi
h 
ase the predi
ate is nottypable), the substitution of an unknown type by the root of its �-
onne
ted 
om-ponent is always a solution. But in all 
ases, this is obviously not a very informativetype to infer.Our strategy is to infer two types for predi
ates: the minimum type of the pred-i
ate and a heuristi
 type. The type inferen
e algorithm pro
eeds as follows:� Firstly, the minimum type of the predi
ate is obtained by 
omputing the min-imum solution of the SSI asso
iated to the typing of the 
omplete de�nitionof the predi
ate. The minimum type of the ith argument of the predi
ateis the type � i = lb(�i) where �i is the unknown type asso
iated to the ithargument of the predi
ate in the SSI. This minimum type is a lower bound ofall possible typings of the predi
ate.� Se
ondly, the heuristi
 type is 
omputed. This type 
an be parametri
. It is
omputed in two steps:
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 upper type is 
omputed for the predi
ate. The heuristi
upper type � i of the ith argument of the predi
ate is obtained by 
olle
tingthe upper types fub(�X1); :::; ub(�Xn)g of all the variables fX1; :::; Xngwhi
h o

ur in the ith position of the predi
ate in its de�nining 
lauses.Let � = glbfub(�X1 ); :::; ub(�Xn) be the greatest lower bound of the typesof the variable arguments. We set� i = > if � = > and � i = ?,= � i if � = > and � i 6= ?,= > if � i 6� � ,= > if the identi�
ation �i = � 
reates a 
y
le,= � otherwise.| Then the heuristi
 type is 
omputed by inferring a possibly parametri
type from the SSI asso
iated to the heuristi
 upper type. The 
andidatesfor parametri
 types are the parameters bounded by ? and > in the SSIasso
iated to the heuristi
 upper type. Ea
h 
andidate is 
he
ked itera-tively by repla
ing it with a new 
onstant and by identifying all parameterswhi
h have the new 
onstant in one of their bounds.Although tedious, one 
an easily 
he
k that the 
onditions imposed in the de�-nition of the heuristi
 type 
reate sound typings. The heuristi
 types thus provide
orre
t type de
larations for type 
he
king the program.6 Implementation of the type system6.1 The Walla
e library for solving subtype inequalitiesOur 
urrent implementation uses the Walla
e library by F.Pottier (Pottier, 2000b)for solving the subtype inequalities for type inferen
e and type 
he
king. In both
ases, the set of type 
onstru
tors (K;�) has thus to be a latti
e as des
ribed inse
tion 4. Note that the type system did not require that 
ondition: � 
ould be anyarity de
reasing order relation on K.As required in the type inferen
e algorithm, the > element is distinguished fromthe type term whi
h stands for all Prolog terms. The type ? is not 
onsidered as avalid typing as it is an empty type.Note that the Walla
e library authorizes 
onstrained type s
hemes, like for exam-ple + : 8� � 
oat ���!�, whi
h expresses the resulting type of + as a fun
tion ofthe type of its arguments. For the sake of simpli
ity, we do not 
onsider 
onstrainedtype s
hemes in this paper. 6.2 The type 
he
kerThe type 
he
ker �rst reads the Prolog �les and dedu
es the �les 
ontaining typeinformation to load. There is one �le for ea
h Prolog �le sour
e plus one �le forea
h module used (as :- use_module(somemodule) in Si
stus Prolog). The systemthen loads the type �les and builds the stru
ture of type 
onstru
tors.The type 
he
ker does not impose to give the type of CLP variables in 
lauses
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ribed in se
tion 5. Theenvironment U is built with type unknowns for variables. The subtype inequalitysystem is 
olle
ted by applying the rules of the type system and at ea
h step,Walla
e is used to solve the type 
onstraints.One diÆ
ulty appears for 
he
king the de�nitional generi
ity 
ondition. A typeerror must be raised when the de�nition of a predi
ate uses, as argument of thehead of the 
lause, a term whose type � is a subtype of an instan
e of the de
laredtype � 0 for this argument, and not just of a renaming. But Walla
e is not able tomake the di�eren
e between being a subtype of an instan
e or of a renaming of atype � 0. The following 
onsideration allows us to work around this diÆ
ulty. If �is a subtype of a renaming of � 0, for all instan
es � 0�0 of � 0 there must exist aninstan
e �� of � su
h that �� � � 0�0. For 
he
king de�nitional generi
ity, we thusrepla
e ea
h parameter � appearing in the de
lared type of the head predi
ate bya 
onstru
tor ��, that does not appear in the program, and su
h that :� �� � term, and �� 6� � for all 
onstru
tor �, � 6= ��, � 6= term� � 6� �� for all � 6= ��.If the rule (Atom) 
an be applied, using the transformed type, then the rule(Head) 
an be applied as well with the original type.6.3 Type inferen
e for predi
atesAs des
ribed in se
tion 5, two types are infered for predi
ates: a minimum typewhi
h is a lower bound of all possible typings of the predi
ate, and a heuristi
 typewhi
h may be parametri
.If type inferen
e is just displayed for user information, we print both types. If itis used for typing automati
ally the program in a non-intera
tive manner, then we
hoose the heuristi
 bound, sin
e it is the most permissive type.7 Experimental results7.1 Dete
tion of programming errorsHere we show a small 
atalog of the kind of programming errors dete
ted by thetype 
he
ker.7.1.1 Inversion of arguments in a predi
ate or a fun
tionThis error 
an be dete
ted when, for example, a variable o

urs in two positionsthat have in
ompatible types.Example 7.1Consider the following 
lause where the arguments of the length predi
ate havebeen reversed. p(L1,L2,N) :- append(L1,L2,L3),length(N,L3).
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larations :append : list(�)� list(�)� list(�)! predlength : list(�)� int! predBy the rule (Atom'), the variable L3 must be of both types list(�) and int. Inthe type hierar
hy we use, there is no type smaller than list and int. The subtypeinequalities in the premise of rule (Atom') are thus unsatis�able and a type erroris raised.Note that this example motivates the dis
ard of type ? : otherwise, no errorwould be dete
ted on variables, sin
e the empty type ? 
ould always be inferredfor the type of any variable.7.1.2 Misuse of a predi
ate or a fun
tionThis error is dete
ted when a term of a type � appears as an argument of a predi
ate,or of a fun
tor that expe
ts an argument of type � 0, but � 6� � 0� for any substitution�.Example 7.2Consider the following 
lause :p(X,Y) :- Y is (3.5 // X).With type de
larations:'//' : int� int! int for integer division,is : float� float! pred .We try to use a 
oat (3.5) where an int is expe
ted. The rule (Atom') does notapply.This kind of error 
an be dete
ted also inside 
all to foreign predi
ates, throughthe Prolog interfa
e with the C programming language for example.Example 7.3Consider the de
laration of a predi
ate p de�ned in C using the Si
stus - C interfa
e :foreign(p, p(+integer)).Su
h a de
laration is interpreted as a type de
laration for p :p : int! predThen a 
all in a program su
h as ::- p(3.14).raises a type error sin
e the argument is a float and the predi
ate expe
ts an int.
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ate de�nition w.r.t. the de
lared typeThis error is dete
ted by two ways, 
orresponding to the two pre
eding kinds oferrors. In the two following examples, the predi
ate p has been de
lared with typeint! pred .Example 7.4Let p be de�ned by p([℄).Here the term [℄ is used as an argument of p, whi
h requires that p a

epts ar-guments of type atomi
 list. But atomi
 list 6� int and the rule (Atom') does notapply.Example 7.5Let p be de�ned by :p(X) :- length(X,2).with length : list(�)� int! predIn this 
ase, we will infer a type for X that must be smaller than list(�) (usingrule (Atom'), be
ause X is used by length) and smaller than int (using the rule(Head')). As before, these types have no 
ommon subtypes, and an error is raised.7.1.4 Violation of the de�nitional generi
ity 
onditionExample 7.6Let : p([1℄).with p : list(�)! predAlthough the argument of p is a list, but its type is list(int), an instan
e and nota renaming of list(�) (be
ause int 6� ��).This error 
an also be dete
ted when a variable is in the head of the 
lause :Example 7.7Let : p([X℄) :- X < 1.with :p : list(�)! pred< : float� float! floatThe variable X must be of type float and ��. The only 
ommon subtype is ? andan error is raised.
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he
ked programsTo test our system, we �rst tried it on 20 libraries of Si
stus Prolog, that is around600 predi
ates. Then we type 
he
ked an implementation of CLP(FD) written 
om-pletely in Prolog, using a lot of meta-predi
ates, that 
ontains around 170 predi-
ates. These tests where done using type de
larations for around 100 built-in ISOProlog predi
ates and for some more built-in Si
stus predi
ates.Some type errors obtained in the libraries 
ame from the overloading of somefun
tion symbols. For example, the fun
tion '-'/2 is used for 
oding pairs as well asfor 
oding the arithmeti
 operation over numbers. Another example of overloading
omes from options : it happens that some terms are 
ommon to two sets of options,of types �1, �2. In this 
ase, it is enough to 
reate a subtype � of both �1 and �2,and tell that the 
ommon terms are of type � .We also skip the type 
he
king of some parti
ular de
larations, su
h as modede
larations (whi
h are not used by our type system) :Example 7.8:- mode p(+,-,+) , q(-,?).These de
larations 
an be typed in another type stru
ture for mode de
larations,but not in the same type stru
ture as the one for predi
ates, sin
e the predi
atesymbols p, q, +, - are 
learly overloaded in su
h de
larations.7.3 Type inferen
e for predi
atesAs said in se
tion (6.3), we infer an interval of types for predi
ates. Both boundsof the interval may o�er interesting information.Example 7.9append([Head| Tail℄, List, [Head| Rest℄) :-append(Tail, List, Rest).append([℄, List, List).Minimum type: list(bottom), list(bottom), list(bottom) -> predHeuristi
 infered type: list(A), list(A), list(A) -> predExample 7.10sum_list([℄, Sum, Sum).sum_list([Head| Tail℄, Sum0, Sum) :-Sum1 is Head+Sum0, sum_list(Tail, Sum1, Sum).Minimum type: list(bottom), bottom, bottom -> predHeuristi
 infered type: list(float), float, float -> predSometimes, the heuristi
 infers a too permissive type. This is in parti
ular the
ase with overloaded arithmeti
 predi
ates expressions, that are always typed asfloat, not int.
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 Programs 25Example 7.11length([℄,0).length([_|Tail℄,R) :- length(Tail, L), R is L+1.Minimum type: list(bottom), int -> predHeuristi
 infered type: list(A), float -> predThe heuristi
 may also infer a type whi
h is too restri
tive.Example 7.12is_list(X) :- var(X), !, fail.is_list([℄).is_list([_|Tail℄) :- is_list(Tail).Minimum type: list(bottom) -> predHeuristi
 infered type: list(A) -> predThis is a typi
al example where the maximum type, hereis_list: term -> predis in fa
t the intended type.These examples should 
learly justify the heuristi
 approa
h to type inferen
e forpredi
ates in a pres
riptive type system.Finally, the interesting flatten predi
ate illustrates the remarkable 
exibility ofthe type system.Example 7.13flatten([℄,[℄) :- !.flatten([X|L℄,R) :- !, flatten(X,FX), flatten(L,FL), append(FX,FL,R).flatten(X,R) :- R=[X℄.Minimum type : list(bottom), list(bottom) -> predHeuristi
 infered type : term, list(term) -> pred7.4 Ben
hmarksThe following table sums up our evaluation results. The �rst 
olumn indi
atesthe type 
he
ked Prolog program �les. The se
ond 
olumn indi
ates the numberof predi
ates de�ned in ea
h �le �rst, and then the maximum number of atomsby 
lause and by 
omplete 
onne
ted 
omponent. The third 
olumn indi
ates theCPU time in se
onds for type 
he
king the program with the type de
larations forfun
tion and predi
ate symbols. The fourth 
olumn indi
ates the CPU for inferringthe types of predi
ates with the type de
larations for fun
tion symbols only. Thelast 
olumn indi
ates the per
entage of predi
ates for whi
h the infered type isexa
tly the intended type.The last test �le is another implementation of CLP(FD) on top of prolog whi
huses a lot of metaprogramming predi
ates.
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ois Fages and Emmanuel CoqueryFile # predi
ates Type Che
king Type Inferen
e % exa
t typesmax # atomsarrays.pl 13 9/16 2.18 s 11.91 s 23 %asso
.pl 31 11/24 5.29 s 40.13 s 68 %atts.pl 14 20/119 7.43 s 77.47 s 64 %bdb.pl 101 27/27 23.56 s 41.10 s 64 %
harsio.pl 15 7/7 1.27 s 2.21 s 33 %
lpb.pl 59 20/77 24.35 s 1827.32 s n/a
lpq 396 39/160 355.12 s 4034.37 s n/a
lpr 439 39/160 304.45 s 3958.41 s n/afastrw.pl 4 5/7 0.44 s 0.76 s 100 %heaps.pl 21 8/18 3.49 s 43.33 s 71 %jasper.pl 32 11/11 7.43 s 11.97 s 84 %lists.pl 39 6/9 2.23 s 16.17 s 97 %ordsets.pl 35 7/18 7.43 s 199.38 s 97 %queues.pl 12 11/18 1.37 s 4.12 s 75 %random.pl 11 18/18 2.43 s 4.12 s 55 %so
kets.pl 24 15/27 6.79 s 15.43 s 68 %terms.pl 13 18/27 6.96 s 308.69 s 77 %trees.pl 13 6/15 3.07 s 12.64 s 31 %ugraphs.pl 87 12/24 48.21 s 274.22 s 67 %
lp-fd.pl 163 20/71 24.35 s 59.65 s n/aTable 3. Ben
hmarks.The same algorithm is used for solving the systems of subtype inequalities fortype 
he
king and type inferen
e. The di�eren
e between 
omputation times 
omesfrom the handling of 
omplete 
onne
ted 
omponents of de�nitions for type infer-en
e, whereas for type 
he
king, 
lauses are type 
he
ked one by one. In parti
ularCLP(R) and CLP(Q) have very large mutually re
ursive 
lauses.In the library for arrays, the low per
entage of exa
t mat
hes between the inferedtype and the intended type is simply due to the typing of indi
es by 
oat insteadof int. The errors in the other libraries are also due to the typing of arithmeti
expressions by 
oat , and sometimes to the use of the equality predi
ate =�;� whi
h
reates a typing by term for some arguments instead of a more restri
tive typing.In the library CLP(FD), �nite domain variables are typed with type int. Sim-ilarly in the library CLP(R), variables over the reals are typed with type 
oat .One 
onsequen
e is that the type 
he
ker then allows 
oer
ions from �nite domainvariables to real 
onstraint variables. To make these 
oer
ions work in pra
ti
e onemodi�
ation in the CLP(R) library was ne
essary.8 Con
lusionTyping 
onstraint logi
 programs for 
he
king programming errors stati
ally whileretaining the 
exibility required for preserving all the metaprogramming fa
ilities
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 programming and the usual 
oer
ions of 
onstraint programming, is the
hallenge that 
ondu
ted the design of the type system presented in this paper. Ourexperiments with the libraries of Si
stus Prolog have shown that the type systemis simple and 
exible enough to a

ept a large variety of 
onstraint logi
 programs.The main diÆ
ulties are lo
ated to 
on
i
ts of overloading for some predi
ates orfun
tions. Su
h ad ho
 polymorphism 
ould be resolved by 
onsidering disjun
tiveformula over types (Demoen et al., 1999). Examples have been given also to showthat the type system is useful enough for dete
ting programming errors su
h as theinversion of arguments in a predi
ate, or the unintended use of a predi
ate.The pri
e to pay for this 
exibility is that our type system may be regardedas too permissive. Some intuitively ill-typed queries may be not reje
ted by thetype system. We have analyzed these defe
ts in terms of the subje
t redu
tionproperties of the type system. In parti
ular we have shown that the addition of thetyping 
onstraints on variables to well-typed programs and queries suÆ
es to statesubje
t redu
tion w.r.t. both CSLD resolution and substitution steps, and has fore�e
t to reje
t a larger set of 
lauses and queries by 
he
king the satis�ability oftheir 
onstraints with the type 
onstraints at 
ompile-time.The latti
e assumption for the type stru
ture, due to the implementation in Wal-la
e of subtype 
onstraints, may be regarded also as too demanding in some 
ases.We have already relaxed that assumption by reje
ting the bottom element fromthe stru
ture of types. Nevertheless the de
idability of subtype 
onstraints undermore general assumptions is an interesting open problem. In parti
ular, whetherthe method of Frey (Frey, 1997) 
an be extended to 
over subtype relations be-tween type 
onstru
tors of di�erent arities, as required in our approa
h, is an openquestion.Finally, it is worth noting that the results presented here are not limited to logi
programming languages. They should be relevant to various 
onstraint program-ming languages, where the main diÆ
ulty is to type 
he
k 
onstraint variables, thatexpress the 
ommuni
ation between di�erent 
onstraint domains.A
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