
Under onsideration for publiation in Theory and Pratie of Logi Programming 1Typing Constraint Logi ProgramsFran�ois Fages and Emmanuel CoqueryProjet Contraintes, INRIA-Roquenourt,BP105, 78153 Le Chesnay Cedex, Frane,(e-mail: ffranois.fages,emmanuel.oqueryg�inria.fr)AbstratWe present a presriptive type system with parametri polymorphism and subtyping foronstraint logi programs. The aim of this type system is to detet programming errorsstatially. It introdues a type disipline for onstraint logi programs and modules, whilemaintaining the apabilities of performing the usual oerions between onstraint domains,and of typing meta-programming prediates, thanks to the exibility of subtyping. Theproperty of subjet redution expresses the onsisteny of a presriptive type system w.r.t.the exeution model: if a program is \well-typed", then all derivations starting from a\well-typed" goal are again \well-typed". That property is proved w.r.t. the abstratexeution model of onstraint programming whih proeeds by aumulation of onstraintsonly, and w.r.t. an enrihed exeution model with type onstraints for substitutions. Wedesribe our implementation of the system for type heking and type inferene. We reportour experimental results on type heking ISO-Prolog, the (onstraint) libraries of SistusProlog and other Prolog programs.Keywords: Type systems, Prolog, Constraint logi programming, Subtyping, Metapro-gramming.
1 IntrodutionThe lass CLP(X) of Constraint Logi Programming languages was introduedby Ja�ar and Lassez (Ja�ar & Lassez, 1987) as a generalization of the innovativefeatures introdued by Colmerauer in Prolog II (Colmerauer, 1984; Colmerauer,1985): namely omputing in Prolog with other strutures than the Herbrand terms,with inequality onstraints and with o-routining.Inherited from the Prolog tradition, CLP(X) programs are untyped. Usually thestruture of interest X is however a quite omplex ombination of basi stru-tures that may inlude integer arithmeti, real arithmeti, booleans, lists, Her-brand terms, in�nite terms, et. with impliit oerions between onstraint domainslike in Prolog IV (Colmerauer, 1996). Even the early CLP(R) system of (Ja�ar &Lassez, 1987) already ombines Herbrand terms with arithmeti expressions in anon-symmetrial way: any arithmeti expression may appear under a Herbrandfuntion symbol, e.g. in a list, but not the other way around. The framework ofmany sorted logi in (Ja�ar & Lassez, 1987) is not adequate for representing thetype system underlying suh a ombination, as it fores Herbrand funtion symbols

2 Fran�ois Fages and Emmanuel Coqueryto have a unique type (e.g. over reals or Herbrand terms), whereas Herbrand fun-tions an be used polymorphially, e.g. in f(1) and f(f(1)), or the list onstrutorin a list of list of numbers [[3℄℄.The type system of Myroft-O'Keefe (Myroft & O'Keefe, 1984; Lakshman &Reddy, 1991; Hill & Topor, 1992) is an adaptation to logi programming of the�rst type system with parametri polymorphism, that was introdued by Damas-Milner for the funtional programming language ML. In this system, types are �rst-order terms, type variables inside types, like � in list(�), express type parameters.Programs de�ned over a data struture of type list(�) an be used polymorphiallyover any homogeneous list of elements of some type �. Suh a type system for Prologis implemented in the systems G�odel (Hill & Lloyd, 1994) and Merury (Somogyiet al., 1996) for example. The exibility of parametri polymorphism is however byfar insuÆient to handle properly oerions between onstraint domains, suh ase.g. booleans as natural numbers, or lists as Herbrand terms, and does not supportthe meta-programming failities of logi programming, with meta-prediates suhas funtor(X,F,N), all(G) or setof(X,G,L).Semantially, a ground type represents a set of expressions. Subtyping makestype systems more expressive and exible in that it allows to express inlusionsamong these sets. In this paper we investigate the use of subtyping for expressingoerions between onstraint domains, and for typing meta-programming predi-ates. The idea is that by allowing subtype relations like list(�) � term, an atomlike funtor([X jL℄; F;N) is well-typed with type delaration funtor : term �atom � int ! pred , although its �rst argument is a list. Similarly, we an typeall : pred ! pred , freeze : term� pred ! pred , setof : �� pred � list(�)! pred .The absene of subtype relation list(�) 6� pred , has for e�et to raise a type errorif the all prediate is applied to a list. On the other hand, the subtype relationpred � term makes oerions possible from goals to terms.Most type systems with subtyping for logi programming languages that havebeen proposed are desriptive type systems, i.e. their purpose is to desribe thesuess set of the program, they require that a type for a prediate upper approx-imates its denotation. On the other hand, in presriptive type systems, types aresyntati objets de�ned by the user to express the intended use of funtion andprediate symbols in programs. Note that the distintion between desriptive andpresriptive type systems is orthogonal to the distintion between type hekingand type inferene whih are possible in both approahes.There are only few works onsidering presriptive type systems for logi programswith subtyping (Beierle, 1995; Dietrih & Hagl, 1988; Hanus, 1992; Hill & Topor,1992; Yardeni et al., 1992; Smolka, 1988). In these systems however, subtype rela-tions between parametri type onstrutors of di�erent arities, like list(�) � term,are not allowed, thus they annot be used to type metaprogramming prediatesand have not been designed for that purpose. The system Typial (Meyer, 1996)possesses an ad ho mehanism for typing metaprediates whih makes it quitediÆult to use. Our objetive is to propose a simple type system that allows for auniform treatment of presriptive typing issues in onstraint logi programs.In a presriptive type system, the property of subjet redution expresses the

Typing Constraint Logi Programs 3onsisteny of the type system w.r.t. the exeution model: if a program is \well-typed", then all derivations starting in a \well-typed" goal are again \well-typed".This is a well-known result of the polymorphi type system without subtyping(Myroft & O'Keefe, 1984; Lakshman & Reddy, 1991; Hill & Topor, 1992) but whensubtypes are added to the piture, the absene of a �xed data ow in logi programsmakes the obtention of a similar result problematial. Beierle (Beierle, 1995) showsthe existene of prinipal typings with subtype relations between basi types, andprovides type inferene algorithms, however Beierle and also Hanus (Hanus, 1992)do not laim subjet redution for the systems they propose. In general types arekept at run-time (Hanus, 1992; Yardeni et al., 1992) or modes are introdued torestrit the data ow (Dietrih & Hagl, 1988; Smaus et al., 2000; Somogyi et al.,1996).In this paper, by abstrating from partiular strutures as required in the CLPsheme, we study a presriptive type system for CLP programs, that is independentfrom any spei� onstraint domain X . Setion 2 presents the type system thatinludes parametri polymorphism and subtype relations between type onstrutorsof di�erent arities, in a quite general type struture of poset with suprema. We showtwo subjet redutions results. One is relative to the abstrat exeution modelof onstraint programming, whih proeeds only by aumulation of onstraints.The proof of subjet redution holds independently of the omputation domain,under the assumption that the type of prediates satis�es the de�nitional generiitypriniple (Lakshman & Reddy, 1991). The seond subjet redution result is relativeto the more onrete exeution model of CLP with substitution steps. We show thatfor this seond form it is neessary to keep at run-time the typing onstraints onvariables inside well-typed programs and queries.Setion 3 desribes the type heking algorithm and shows that the system ofsubtype inequalities generated by the type heker are left-linear and ayli. Se-tion 4 presents a linear time algorithm for solving left-linear and ayli systemsof subtype inequalities, and desribes the ubi time algorithm of Pottier (Pottier,2000a) for solving general systems of inequalities, under the additional assump-tion that the types form a lattie. Setion 5 presents type inferene algorithms forinferring the types of variables and prediates in program lauses.Setion 6 desribes our implementation whih is available from (Coquery, 2000).The solving of subtype inequalities is done by an interfae to the Wallae onstraint-handling library (Pottier, 2000b). In setion 7 we report our experimental resultson the use of this implementation to type hek ISO-Prolog, the libraries of SistusProlog, inluding onstraint programming libraries, and other Prolog programs.
2 Typed Constraint Logi ProgramsIn this setion we desribe our type system as a logi for deriving type judgmentsabout CLP programs.

4 Fran�ois Fages and Emmanuel Coquery2.1 TypesThe type system we onsider is based on a struture of partially ordered terms,alled poterms, that we use for representing types with both parametri polymor-phism and subtype polymorphism. Poterms generalize �rst-order terms by the de�-nition of a subsumption order based on funtion symbols, that omes in addition tothe instantiation preorder based on variables. Poterms are similar to order-sortedfeature terms or -terms (Ait-Kai & Nasr, 1986; Smolka, 1988; Ait-Kai et al.,1997) but we �nd it more onvenient here to adopt a term syntax (with mathingby position) instead of a reord syntax (with mathing by name) for denoting statitypes.The set of types T is the set of terms formed over a denumerable set U oftype variables (also alled parameters), denoted by �; �; :::, and a �nite set ofonstrutors K, where with eah symbol K 2 K an arity m � 0 is assoiated (bywriting K=m). Basi types are type onstrutors of arity 0. We assume that Kontains a basi type pred . A at type is a type of the form K(�1; : : : ; �m), whereK 2 K and the �i are distint parameters.The set of type variables in a type � is denoted by V (�). The set of ground typesG is the set of types ontaining no variable. We write � [�=�℄ to denote the typeobtained by replaing all the ourrenes of � by � in � . We write � [�℄ to denotethat the type � stritly ontains the type � as a subexpression. The size of a type� , de�ned as the number of ourrenes of onstrutors and parameters in � , isdenoted by size(�).We now qualify what kind of subtyping we allow. Intuitively, when a type � isa subtype of a type � , this means that eah term in � is also a term in � . Thesubtyping relation � is designed to have ertain nie algebrai properties, stated inpropositions below. We assume an order � on type onstrutors suh that: K=m �K 0=m0 impliesm � m0, and for eahK 2 K the set fK 0 j K � K 0g has a maximum.Moreover, we assume that with eah pair K=m � K 0=m0, an injetive mapping�K;K0 : f1; : : : ;m0g ! f1; : : : ;mg is assoiated suh that �K;K00 = �K;K0 Æ �K0;K00whenever K � K 0 � K 00.These assumptions mean that as we move up in the hierarhy of type onstrutors,their arity dereases, and the hierarhy needs not be a lattie but a poset withsuprema.The order on type onstrutors is extended to a ovariant subtyping order ontypes, denoted also by �, de�ned as the least relation satisfying the following rules:(Par) � � � � is a parameter(Constr) ��(1)�� 01 ::: ��(m0)�� 0m0K(�1;:::;�m)�K 0(� 01;:::;� 0m0) K � K 0, � = �K;K0 .Contravariant type onstrutors ould be de�ned with a subtyping rule similarto rule Constr but with the ordering relation reversed for some arguments, likee.g. ��(i) � � 0i in the premise of the rule for some argument � 0i . Suh ontravarianttype onstrutors are not onsidered in this paper.Therefore, if int � float then we have list(int) � list(float), list(float) 6�

Typing Constraint Logi Programs 5
stream_or_alias atom_or_list

stream atom list(A)

character

clause

term

byte

int

float t_flag

stream_creation_optionstream_property

t_eof_action_or_type

t_eof_action t_type

pred

Fig. 1. Part of the type struture for ISO-Prolog.list(int), and also list(float) 6� list(�) as the subtyping order does not inlude theinstantiation pre-order. Intuitively, a ground type represents a set of expressions,and the subtyping order between ground types orresponds to set inlusion. Para-metri types do not diretly support this interpretation, their parameters denoteunkown types.The type struture given in �gure 2.1 represents a part of the types used for typeheking ISO-Prolog. The omitted types are the subtypes of atom assoiated to alltypes, and other types for speial values or options. The type list(�) is the onlyparametri type used for ISO-Prolog. Other parametri types are used for typingProlog libraries suh as arrays(�), asso(�; �), heaps(�; �), ordsets(�), queues(�),et.A type substitution � is an idempotent mapping from parameters to types thatis the identity almost everywhere. Appliations of type substitutions are de�ned inthe obvious way.Proposition 2.1If � � � then �� � �� for any type substitution �.ProofBy strutural indution on � .Proposition 2.2If � � � then size(�) � size(�) .Proof

6 Fran�ois Fages and Emmanuel CoqueryBy strutural indution on � .Our assumption that for eah K 2 K, the set fK 0 j K � K 0g has a maximum,together with the arity dereasing assumption, entail the existene of a maximumsupertype for any type:Proposition 2.3For eah type � , the set f� j � � �g has a maximum, whih is denoted by Max(�).ProofBy strutural indution on � .This means that every �-onneted omponent of types has a root. For example,a struture like a � b; � b; � d violates the hypothesis if b and d have noommon supertype serving as a root for the onneted omponent. On the otherhand that assumption does not assume, nor it is implied by, the existene of aleast upper bound to types having a upper bound (sup-quasi-lattie hypothesis in(Smolka, 1989)).Proposition 2.4For all types � and �, Max(� [�=�℄) = Max(�)[Max(�)=�℄.ProofBy strutural indution on � .Note that the possibility of \forgetting" type parameters in subtype relations, asin list(�) � term, may provide solutions to inequalities of the form list(�) � �,e.g. � = term. However, we have:Proposition 2.5An inequality of the form � � � [�℄ has no solution. An inequality of the form� [�℄ � � has no solution if � 2 V (Max(�)).ProofFor any type �, we have size(�) < size(� [�℄), hene by Prop 2.2, � 6� � [�℄, that is� � � [�℄ has no solution.For the seond proposition, we prove its ontrapositive. Suppose � [�℄ � � hasa solution, say � [�=�℄ � �. By de�nition of a maximum and Prop. 2.3, we haveMax(�) = Max(� [�=�℄). Hene by Prop. 2.4, Max(�) = Max(�)[Max(�)=�℄. By therules of subtyping we have � 6= Max(�). Therefore � 62 V (Max(�)), sine other-wise Max(�) = Max(�)[Max(�)=�℄ would ontain Max(�) as a strit subexpressionwhih is impossible. 2.2 Well-typed programsCLP programs are built over a denumerable set V of variables, a �nite set F offuntion symbols, given with their arity (onstants are funtions of arity 0), anda �nite set P of program prediate and onstraint prediate symbols given withtheir arity, ontaining the equality onstraint =. A query Q is a �nite sequene of

Typing Constraint Logi Programs 7onstraints and atoms. A program lause is an expression noted A Q where Ais an atom formed with a program prediate and Q a query.A type sheme is an expression of the form 8��1; : : : ; �n!� , where � is the set ofparameters in types �1; :::; �n; � . We assume that eah funtion symbol f 2 F , hasa delared type sheme of the form 8��1; : : : ; �n!� , where n is the arity of f , and �is a at type. Similarly, we assume that eah prediate symbol p 2 P has a delaredtype sheme of the form 8��1; : : : ; �n!pred where n is the arity of p. The delaredtype of the equality onstraint symbol is 8u u; u!pred . For notational onveniene,the quanti�ers in type shemes and the resulting type pred of prediates will beomitted in type delarations, the delared type shemes will be indiated by writingf�1:::�n!� and p�1:::�n , assuming a fresh renaming of the parameters in �1; : : : ; �n; �for eah ourrene of f or p.Throughout this paper, we assume that K, F , and P are �xed by means ofdelarations in a typed program, where the syntatial details are insigni�ant forour results.A variable typing is a mapping from a �nite subset of V to T , written as fx1 :�1; : : : ; xn : �ng. The type system de�nes well-typed terms, atoms and lauses rel-atively to a variable typing U . The typing rules are given in Table 1. The rulesbasially onsist of the rules of Myroft and O'Keefe plus the subsumption rule.Note that for the sake of simpliity onstraints are not distinguished from otheratoms in this system.(Sub) U`t:� ��� 0U`t:� 0(Var) fx : �; : : :g ` x : �(Fun) U`t1:�1� ::: U`tn:�n�U`f�1:::�n!� (t1;:::;tn):�� � is a type substitution(Atom) U`t1:�1� ::: U`tn:�n�U`p�1:::�n(t1;:::;tn)Atom � is a type substitution(Head) U`t1:�1� ::: U`tn:�n�U`p�1:::�n(t1;:::;tn)Head � is a renaming substitution(Query) U`A1 Atom ::: U`An AtomU`A1;:::;An Query(Clause) U`Q Query U`A HeadU`A Q ClauseTable 1. The type system.An objet, say a term t, is well-typed if there exist some variable typing U and

8 Fran�ois Fages and Emmanuel Coquerysome type � suh that U ` t : � . Otherwise the term is ill-typed (and likewise foratoms, et.). A program is well-typed if all its lauses are well-typed.The distintion between rules Head and Atom expresses the usual de�nitionalgeneriity priniple (Lakshman & Reddy, 1991) whih states that the type of ade�ning ourrene of a prediate (i.e. at the left of \ " in a lause) must beequivalent up-to renaming to the assigned type of the prediate. The rule Head usedfor deriving the type of the head of the lause is thus not allowed to use substitutionsother than variable renamings in the delared type of the prediate. For example, theprediatemember an be typed polymorphially, i.e. member : �� list(�)!pred , ifits de�nition does not ontain speial fats like member(1; [1℄), that would fore itstype to be member : int� list(int)!pred , for satisfying the de�nitional-generiityondition.The following proposition shows that if an expression other than a lause or ahead is well-typed in a variable typing U , it remains well-typed in any instane U�.Proposition 2.6For any variable typing U , any type judgement R other than a Head or a Clause,and any type subtitution �, if U ` R then U� ` R�.ProofBy indution on the height of the derivation tree for U ` R.2.3 Subjet redution w.r.t. CSLD resolutionSubjet redution is the property that evaluation rules transform a well-typed ex-pression into another well-typed expression. The evaluation rule for onstraint logiprogramming is CSLD-resolution. To reall this evaluation rule, it is onvenient todistinguish in a query Q, the onstraint part (where the sequene denotes theonjuntion) from the other sequene of atoms A. We use the notation Q = jA tomake this distintion. Given a onstraint domain X whih �xes the interpretationof onstraints, a query 0jB is a CSLD-resolvent of a query jA and a (renamedapart) program lause p(t1; :::; tn) djA, ifA = A1; : : : ; Ak�1; p(t01; : : : ; t0n); Ak+1; : : : ; Am,B = A1; : : : ; Ak�1; A;Ak+1; : : : ; Am,and the onstraint 0 = (^ d ^ t1 = t01 ^ : : : ^ tn = t0n) is X -satis�able.Theorem 2.1 (Subjet Redution for CSLD resolution)Let P be a well-typed CLP(X) program, and Q be a well-typed query, i.e. U `Q Query for some variable typing U . If Q0 is a CSLD-resolvent of Q, then thereexists a variable typing U 0 suh that U 0 ` Q0 Query.ProofLet us assume without loss of generality that Q = jp(s); A, and that Q0 is aCSLD-resolvent of Q with the program lause p(t) djB.Thus Q0 = ; d; s = tjA;B.As Q is well-typed, we have U ` jp(s); A Query . And as the program is well

Typing Constraint Logi Programs 9typed, there exists a variable typing U 00, renamed apart from U , suh that U 00 `p(t) djB Clause .Let p : �!pred be the type delaration of prediate p. Sine U ` p(s) Atom, wehave U ` s : �� for some substitution �.Now let U 0 = U [U 00�. By proposition 2.6, we have U 00� ` djB; Query , thusU 0 ` ; djA;B; Query , What remains to be shown is U 0 ` s = t Atom.Sine U 00 ` p(t) Head , we have U 00 ` t : � . Hene by proposition 2.6, U 00� ` t :��. Therefore we have U ` s : �� and U 00� ` t : ��, from whih we onludeU 0 ` s = t Atom.It is worth noting that the previous result would not hold without the de�nitionalgeneriity ondition (expressed in rule Head). For example with two onstants a : �aand b : �b, and one prediate p : �!pred de�ned by the non de�nitional generilause p(a), we have that the query p(b) is well typed, but b = a is a resolvent thatis ill-typed if �a and �b have no upper bound.2.4 Subjet redution w.r.t. substitutionsThe CSLD redutions, noted �!CSLD, are in fat an abstration of the operationalredutions that may perform also substitution steps, noted �!� , instead of keepingequality onstraints. As in the CLP sheme onstraints are handled modulo logialequivalene (Ja�ar & Lassez, 1987), it is lear that the diagram of both redutionsommutes : Q1 #�#� �!CSLD�!CSLD Qn#�Q2#� #�...#�Q
�!CSLD
�!CSLD

...�!CSLD......However the previous subjet redution result expresses the onsisteny of typesw.r.t. horizontal redution steps only, that is w.r.t. the abstrat exeution modelwhih aumulates onstraints, but may not hold for more onrete operationsof onstraint solving and substitutions. For example, with the subtype relationsint � term, pred � term, the type delarations =: �� �!pred , p : int!pred , andthe program p(X), the query Y = true; p(Y) is well typed with Y : int, and sueedswith Y = true, although the query obtained by substitution, p(true), is ill-typed.In order to establish subjet redution for substitution steps, and be onsistent withthe semantial equivalene of programs, one needs to onsider a typed exeutionmodel with type onstraints on variables heked at runtime. In the example, thetype onstraint Y : int with the onstraint Y = true is unsatis�able, the query

10 Fran�ois Fages and Emmanuel Coquerywill be thus rejeted at ompile-time by heking the satis�ability of its typedonstraints.De�nition 2.1Given a onstraint system over some domain X , a typed onstraint system overX [2X is de�ned by adding type onstraints, i.e. expressions of the form t : � wheret is a term and � a type. Basi types are interpreted by distinguished subsets of Xand type onstrutors by mappings between subsets of X satisfying the subtypingrelation � and the type delarations for funtion and prediate symbols. A typeonstraint t : � is satis�able if there exists a valuation � of the variables in t andthe free parameters in � suh that t� 2 ��. A typed onstraint system omposedof type onstraints and onstraints over X is satis�able if there exists a valuationwhih satis�es all onstraints of the system.Lemma 2.1In a typed onstraint system, X : � ^X = t entails t : � .ProofFor any valuation �, if X� 2 �� and X� = t� then t� 2 ��.De�nition 2.2The TCLP lause (resp. query) assoiated to a well-typed program (resp. query)in a typed environment U is the lause (resp. query) augmented with the typeonstraints in U .Theorem 2.2 (Subjet Redution for substitutions)Let P be a TCLP program assoiated to well-typed CLP(X) program, and Q be aTCLP query, we have U ` Q Query for some variable typing U . If Q0 is a CSLD-resolvent of Q, then the variable typing U 0 assoiated to the type onstraints in Q0gives U 0 ` Q0 Query. Furthermore if Q0 ontains an equality onstraint X = t thenU 0 ` Q0[t=X ℄ Query.ProofSubjet redution for CSLD resolution follows from theorem 2.1 as TCLP programsare just a speial ase of well-typed CLP programs. Furthermore one easily heksthat the type onstraints in Q0, that ome from the type onstraints in Q and fromthe resolving TCLP lause, give exatly the type environment U 0 onstruted inthe proof of the previous theorem, thus U 0 ` Q0Query.Now let X = t be a onstraint in a resolvent Q0. Let X : � 2 U 0. We have X : �in the onstraint part of Q0 whih together with X = t entails t : � by lemma 2.1.Therefore it is immediate from the typing rules that by replaing X by t in thederivation of U 0 ` Q0 Query, and by ompleting the derivation with the derivationof t : � instead of X : � , we get a derivation of U 0 ` Q0[t=X ℄ Query.The e�et of type onstraints in TCLP programs is to prevent the derivation ofill-typed queries by substitution steps. In addition, queries suh as X : int;X =true; p(X) an be rejeted at ompile-time beause of the unsatis�ability of theironstraints. Similarly TCLP program lauses having unsatis�able typed onstraintsan be rejeted at ompile-time.

Typing Constraint Logi Programs 11Note that in (Smaus et al., 2000) another result of subjet redution for substi-tutions is shown without the addition of type onstraints but in a very restritedontext of moded logi programs.3 Type hekingThe system desribed by the rules of Table 1 is non-deterministi, sine the rule(Sub) an be used anywhere in a typing derivation. One an obtain a deterministitype heker, direted by the syntax of the typed program, simply by replaing therule (Sub) by variants of the rules (Fun), (Atom) and (Head) with the subtyperelation in their premises. This leads to the following type system in table 2.(Var) fx : �; : : :g ` x : �(Fun') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`f�1:::�n!� (t1;:::;tn):�� � is a type substitution(Atom') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`p�1:::�n(t1;:::;tn)Atom � is a type substitution(Head') U`t1:�1 �1��1� ::: U`tn:�n �n��n�U`p�1:::�n(t1;:::;tn)Head � is a renaming substitution(Query) U`A1 Atom ::: U`An AtomU`A1;:::;An Query(Clause) U`Q Query U`A HeadU`A Q ClauseTable 2. The type system in seond form.
Proposition 3.1A program is well typed in the original system if and only if it is well typed in thenew one.ProofClearly, if a program is typable in the new system, it is typable in the originalone: one has just to replae every ourrene of the (Fun') and (Atom') rulesrespetively with the following derivations:

12 Fran�ois Fages and Emmanuel Coquery(Fun) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` f� 01���� 0n!� 0(t1; � � �; tn) : � 0�(Atom) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` p� 01����� 0n(t1; � � �; tn) Atom(Head) (Sub) U ` t1 : �1 �1 � � 01�U ` t1 : � 01� � � � (Sub) U ` tn : �n �n � � 0n�U ` tn : � 0n�U ` p� 01����� 0n(t1; � � �; tn) AtomConversely, if a program is typable in the original system, it is typable in theseond one, noted here `2. The proof is by indution on the typing derivation inthe original system. The rules (Var), (Query) and (Clause) remain the same. Therule (Atom) and (Head) are similar to rule (Fun). We thus show the property forany term t : if U ` t : � in the �rst system, then U `2 t : � 0 in the seond systemwith � 0 � � .Let us onsider the three possible ases, either the proof terminates by the ap-pliation of the (Var) rule, by the appliation of the (Fun) rule or by appliationof the (Sub) rule.The �rst ase is trivial as the rule (Var) is the same in both systems.In the seond ase, aording to the (Fun) rule, U ` t1 : �1� � � � U ` tn : �n�.Then, by the indution hypothesis, the terms t1 � � � tn are also type heked toU `2 t1 : � 01 � � � U `2 tn : � 0n by the seond system, with � 0i � �i�; i = 1::n. Byapplying the (Fun') rule with � 0i = �i; i = 1::n, we get U `2 f(t1; � � �; tn) : ��.In the third ase, aording to the (Sub) rule, U ` t : � and � � � 0 allows us todedue U ` t : � 0. By indution hypothesis, t is type heked to U `2 t : � in theseond system, where � � � . Sine � � � 0, we have � � � 0. So t is type heked toU `2 t : �, where � � � 0.The onstrution of the substitution � needed in rules (Fun'), (Atom') and(Head') for type heking, an be done by solving the system of subtype inequali-ties olleted along the derivation of a type judgement. The parameters in the typeenvironment (i.e. the parameters in the types of variables) are however not underthe sope of these substitutions, as they at only on the parameters of the (renamedapart) type delarations for funtion and prediate symbols. We are thus lookingfor type substitutions with a restrited domain. For the sake of simpliity how-ever, instead of dealing formally with the domain of type substitutions, we shallsimply assume that the parameters in the type of variables are replaed by newonstants for heking the satis�ability of subtype inequalities, and avoid unsoundinstantiations.Now let � be the olletion of subtype inequalities � imposed on types by rules(Fun') (Atom') and (Head') in a derivation. Let us de�ne the size of a systemof inequalities as the number of symbols. The size of the system � of inequalitiesassoiated to a typed program is O(nvd) where v is the size of the type delarations

Typing Constraint Logi Programs 13for variables in the program, n is the size of the program, and d is the size of thetype delarations for funtion and prediate symbols.As the type system is deterministi we have:Proposition 3.2A well-formed program is typable if and only the system of inequalities olletedalong its derivation is satis�able.It is worth noting that the system of inequalities � olleted in this way for typeheking have in fat a very partiular form.De�nition 3.1A system � of inequalities is left-linear if any type variable has at most one our-rene at the left of � in the system. � is ayli if there exists a ranking funtionon type variables r : U ! N suh that if � � � 2 �, � 2 V (�) and � 2 V (�) thenr(�) < r(�).Proposition 3.3The system of inequalities generated by the type heking algorithm is ayli andleft-linear.ProofAs the type variables in the types of CLP variables have been renamed into on-stants, the only type variables ourring in � are introdued by rules (Fun')(Atom') and (Head'), and ome from (renamed apart) type delarations of funtionand prediate symbols. We an thus assoiate to eah type variable � a rank h(�)de�ned as the height of its introdution node in the derivation tree (i.e. the maxi-mal distane from the node to its leaves). Now a rule (Fun'), (Atom') or (Head')at height h posts inequalities of the form � � � , where the rank of the variables in� is h, and the rank of the variables in � is h� 1. The system is thus ayli.The type variables at the left of � are those parameters that ome from theresult type of a funtion delaration, e.g. � in nil : list(�). As the result type isa at type, the variables in a result type are distint and renamed apart, henethe variables ourring in a type at the left of � have a unique ourrene in thesystem. The system is thus trivially left-linear.Note that if we allowed ontravariant type onstrutors, the previous propositionwould not hold.A linear time algorithm for solving ayli left-linear systems is given in the nextsetion. 4 Subtype inequalitiesThe satis�ability of subtype inequalities (SSI) problem is the problem of determiningwhether a system of subtype relations1 Vni=1 �i�� 0i over types �1; � 01; :::; �n; � 0n has a1 The SSI problem should not be onfused with the semi-uni�ation problem whih is de�ned withthe instantiation pre-ordering, intead of the subtype ordering: 9� Vni=1 9�i �i��i = � 0i�. Theundeidability of semi-uni�ation is shown in (Kfoury et al., 1989).

14 Fran�ois Fages and Emmanuel Coquerysolution, i.e., whether there exists a substitution � suh that �i��� 0i� holds for all1 � i � n.De�nition 4.1A solution to an inequality ��� 0 is a substitution � suh that ���� 0�. A maximalsolution is a solution � suh that for any solution �0 there exists a substitution �suh that 8� 2 V ��0����.The SSI problem has been deeply studied in the funtional programming om-munity. Due to the lak of results for the general ase, speial instanes of the SSIproblem have been identi�ed along several axes:� the form of the types: basi types, onstrutor types, ovariant (our ase inthis paper) or ontravariant;� the struture of the types: (disjoint union of) latties (Tiuryn, 1992), quasi-latties (Smolka, 1989), n-rown (Tiuryn, 1992), posets with suprema (ourase), partial orders (Frey, 1997);� the form of the type onstraints.In this setion we show that the type onstraints generated by the type hekingalgorithms an be solved in linear time in our quite general struture of types, andthat the type onstraints generated by the type inferene algorithms an be solvedin ubi time, under the additional assumption that the types form a lattie.4.1 The ayli left-linear aseWe show that the satis�ability of ayli left-linear subtype inequalities an bedeided in linear time, and admit maximal solutions in our general type struture(T ;�) of posets with suprema.In this setion, we present an algorithm whih proeeds by simpli�ation of thesubtype inequalities and introdues equations between a parameter and a type. Wesay that a system � is in solved form if it ontains only equations of the formf�1 = �1; : : : ; �n = �ngwhere the �i's are all di�erent and have no other ourrene in �. The substitution�� = f�1 �1; : : : ; �n �ng assoiated to a system in solved form � is trivially amaximal solution. We show that the following simpli�ation rules ompute solvedforms for satis�able ayli left-linear systems:

Typing Constraint Logi Programs 15(Deomp) �; K(�1; :::; �m) � K 0(� 01; :::; � 0n); �! �; Vni=1 ��(i) � � 0iif K � K 0 and � = �K;K0 :(Triv) �; � � �; �! �(VarLeft) �; � � �; �! � = �; �[�=�℄if � 6= �, � 62 V (�).(VarRight) �; � � �; �! � = Max(�); �[Max(�)=�℄if � 62 V , � 62 V (l) for any l � r 2 �, and � 62 V (Max(�)).Lemma 4.1The rules terminate in O(n) steps, where n is the sum of the sizes of the terms inthe left-hand side of inequalities.ProofIt suÆes to remark that eah rule stritly dereases the sum of the size of the termsin the left-hand sides of the inequalities: (Triv) and (VarLeft) by one, (Deomp) byat least one, and (VarRight) by the size of � .One an easily hek that eah rule preserves the left-linearity as well as theayliity of the system, moreover:Lemma 4.2Eah rule preserves the satis�ability of the system, as well as its maximal solutionif one exists.ProofRules (Deomp) and (Triv) preserve all solutions, by de�nition of the subtypingorder. Rule (VarLeft) replaes a parameter � by its upper bound � . As the system isleft-linear this omputes the maximal solution for �, and thus preserves the maximalsolution of the system if one exists. Rule (VarRight) replaes a parameter � havingno ourrene in the left-hand side of an inequality, hene having no upper bound,by the maximum type of its lower bound � ; this omputes the maximal solution for�, and thus preserves also the maximal solution of the system if one exists.Theorem 4.1Let � be an ayli left-linear system. Let �0 be a normal form of �. Then � issatis�able i� �0 is in solved form, in whih ase ��0 is a maximal solution of �.ProofConsider a normal form �0 for �. If �0 ontains a non variable pair � � � 0, as thisinequality is irreduible by (Deomp) �0 has no solution, hene � is unsatis�ableby lemma 4.2. Similarly �0 has no solution if it ontains an inequality � � � with� 2 V (�) and � 6= � (prop. 2.5) or an inequality � � � with � 2 V (Max(�))and � 6= � (Prop. 2.5). In the other ases, by irreduibility and by ayliity, �0ontains no inequality, hene �0 ontains only equalities that are in solved form,and the substitution assoiated to �0 is a maximal solution for �.

16 Fran�ois Fages and Emmanuel Coquery4.2 The general aseIn absene of subtype relations between type onstrutors of di�erent arities, hek-ing the onsisteny of general subtype inequalities in �nite types has been shownby Frey (Frey, 1997) Pspae-omplete in an arbitrary poset, with a generalizationof Fuh & Mishra's algorithm (Fuh & Mishra, 1988).It is an open problem whether the tehnique used by Frey for proving onsistenyin arbitrary posets an be generalized to our ase with subtype relations betweentype onstrutors of di�erent arities.If we assume however that the subtyping relation is a lattie, it has been shown byPottier (Pottier, 2000a) that the satis�ability of subtype inequalities an be hekedin ubi time in the struture of in�nite regular trees, i.e. reursive types (Amadio &Cardelli, 1993). Note that reursive types admit solutions to equations of the form� = list(�), namely the type list(list(:::)). Below we present Pottier's algorithmby a set of simpli�ation rules, and show that in ayli systems the solving of(ovariant) subtype onstraints on in�nite types is equivalent to the solving on�nite types.We assume that the struture of type onstrutors (K;�) is a lattie with ?and > types. We maintain our previous assumption on dereasing arities, ex-ept on ? whih is below all (n-ary) type onstrutors. We also assume that ifK 00=n = glb(K;K 0) then range(�K00;K) [range(�K00;K0) = [1; n℄, that is greatestlower bounds do not introdue new parameters. Similarly, if K 00=n = lub(K;K 0)then range(�K;K00) [range(�K0;K00) = [1; n℄, Note that there is no loss of generalitywith this assumption as the lattie of type onstrutors an always be ompletedby introduing glb and lub onstrutors with the right number of parameters.We onsider systems of subtype inequalities between parameters of at types,that is of the form � � �, K(�1; :::�n) � � or � � K(�1; :::�n). Non at typesan be represented in this form by introduing new parameters and inequalitiesbetween these parameters and the type they represent.For the sake of presentation, we assume that the initial system to be solved,�0 over variables V0, is �rst ompleted by introduing new variables S and ÆSfor eah non empty subset S of V0, and by adding the inequalities S � � and� � ÆS for all variables � 2 S. We also assume that the system is ompletedby adding the inequality � � � for eah variable �. Given a system � and a setof variables S we de�ne the variable (S;�) = f�2V0j9�2S ���2�g and similarlyÆ(S;�) = Æf�2V0j9�2S ���2�g. The simpli�ation rules are the following:

Typing Constraint Logi Programs 17(Trans) �; � � �; � � �! �; � � �; � � ; � � if � � 62 � and � 6= .(Clash) �; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n) �! falseif K 6� K 0.(De) �; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n) �!�; K(�1; :::; �m) � �; � � �; � � K 0(�01; :::; �0n); f��(j) � �0jgj2[1;n℄if K � K 0, � = �K;K0 and f��(j) � �0jgj2[1;n℄ 6� � [f� � �g.(Glb) �; � � K(�1; :::; �m); � � �; � � K 0(�01; :::; �0n) �!�; � � K 00(�001 ; :::; �00l); � � �; � � K 0(�01; :::; �0n);�0if K 00 6= K or �0 6� � [f� � �gwhere K 00 = glb(K;K 0), � = �K00;K ; �0 = �K00;K0 ,�00k = (f���1(k); �0�0�1(k)g;� [f� � �g), for all 1 � k � l,�0 = f�00�(i) � �igi2[1;m℄ [f�00�0(j) � �0jgj2[1;n℄(Lub) �; K(�1; :::; �m) � �; � � �; K 0(�01; :::; �0n) � � �!�; K(�1; :::; �m) � �; � � �; K 00(�001 ; :::; �00l) � �;�0if K 00 6= K 0 or �0 6� � [f� � �gwhere K 00 = lub(K;K 0), � = �K;K00 ; �0 = �K0;K00 ,�00k = Æ(f��(k); �0�0(k)g;� [f� � �g), for all 1 � k � l,�0 = f��(k) � �00k ; �0�0(k) � �00kgk2[1;l℄Rule (Trans) omputes the transitive losure of inequalities between parametersand is mainly responsible for the ubi time omplexity. Rule (Clash) heks theonsisteny of the lower and upper bounds of parameters. Rule (De) deomposesat types. These three simple rules are in fat suÆient for heking the satis�abilityof the system (Pottier, 2000a).Rules (Glb) and (Lub) make expliit the greatest and the least solution of thesystem by omputing the greatest lower bound of upper bounds of parameters andthe least upper bound of their lower bounds. We remark that if the algorithm isapplied to an initial system � ontaining a unique inequality of the form � � �and � � � 0 for eah parameter �, the algorithm maintains unique upper and lowerbounds for eah parameter. We note lb(�) (resp. ub(�)) the lower (resp. upper)bound of � in the system in irreduible form.Proposition 4.1The rules terminate.ProofTermination with rule (Clash) is trivial. For the other rules, let us onsider, asomplexity measure of the system, the ouple of integers (t; e) ordered by lexio-graphi ordering, where e, the \entropy" of the system, is the number v2�n, where

18 Fran�ois Fages and Emmanuel Coqueryv is the number of parameters in the system, n is the number of inequalities be-tween parameters, and where t, the \temperature" of the system, is the sum of theheight of onstrutors at the right of �, and of the depth of onstrutors at the leftof �. The height (resp. depth) of a onstrutor is the length of the longest pathof the onstrutor to ? (resp. >) in (K;�). We show that no rule inreases thetemperature of the system, and eah rule either dereases t or e.Rule (Trans) does not hange t and dereases e by 1, Rule (De) does not hange tand dereases e by at least 1, Rules (Glb) either dereases t if K 00 6= K 0 or dereasese otherwise, and similarly for rule (Lub). Hene the algorithm terminates.Theorem 4.2(Pottier, 2000a) A system of inequalities is satis�able over in�nite regular trees ifand only if the simpli�ation rules do not generate false, in whih ase the identi�-ation of all parameters to their upper bound ub(�) (resp. their lower bound lb(�))provides a maximum (resp. minimum) solution.Furthermore, one an show that in our setting of ayli systems and ovariantonstrutor types, the solving of subtype onstraints on in�nite types is equivalentto the solving on �nite types.Theorem 4.3An ayli system of inequalities is satis�able over �nite types if and only if thesimpli�ation rules do not generate false, in whih ase the identi�ation of allparameters to their upper bound (resp. lower bound) provides a maximum (resp.minimum) �nite solution.ProofIt is suÆient to remark that the simpli�ation rules preserve the ayliity of thesystem, and that in an ayli system, the identi�ation of the parameters to theirbounds reates �nite solutions.Corollary 4.1In a lattie struture without ?, an ayli system of inequalities is satis�ableover �nite types if and only if the simpli�ation rules do not generate false andub(�) 6= ? for all parameters �.5 Type infereneAs usual with a presriptive type system, type reonstrution algorithms an beused to omit type delarations in programs, and still hek the typability of the pro-gram by the possibility or not to infer the omitted types (Lakshman & Reddy, 1991). Below we desribe algorithms for inferring the type of variables and prediates,assuming type delarations for funtion symbols.5.1 Type inferene for variablesTypes for variables in CLP lauses and queries an be inferred by introduingunknowns for their type in the variable typing, and by olleting the subtype in-

Typing Constraint Logi Programs 19equalities along the derivation of the type judgement just like in the type hekingalgorithm.It is easy to hek that the system of subtype inequalities thus olleted is stillayli, as the unknown types for CLP variables appear only in left positions. Thesystem is however not left-linear if a CLP variable has more than one ourrenein a lause or a query.The seond algorithm of the previous setion an thus be used to infer the typeof variables in CLP lauses and queries.5.2 Type inferene for prediatesTypes for prediates an be inferred as well under the assumption that prediatesare used monomorphially inside their (mutually reursive) de�nition (Lakshman& Reddy, 1991). This means that inside a group of mutually reursive lauses, eahourrene (even in the body of a lause) of a prediate de�ned in these lausesmust be typed with rule Head instead of rule Atom. The reason for this restrition,similar to the one done for inferring the type of mutually reursive funtions inML, is to avoid having to solve a semi-uni�ation problem: i.e. given a system oftypes �i; � 0i for i; 1 � i � n, �nding a substitution � suh that for all i there existsa substitution �i s.t. �i��i = � 0i�, that is proved undeidable in (Kfoury et al.,1989).Note that the SSI obtained by olleting the subtype inequalities in the derivationof typing judgements is still ayli, as the unknown types for prediates appearonly in the right-hand sides of the inequalities. The seond algorithm of the previoussetion an thus be used also to infer the type of prediates in CLP programs underthe assumption that the struture of types is a lattie without ?.One onsequene of the ayliity of the system however, is that the maximumtype of a prediate is always >. Indeed in our type system a prediate an alwaysbe typed as maximally permissive. In the more general struture of posets withsuprema, unless the unknown types for prediates are ompared with types be-longing to di�erent �-onneted omponents (in whih ase the prediate is nottypable), the substitution of an unknown type by the root of its �-onneted om-ponent is always a solution. But in all ases, this is obviously not a very informativetype to infer.Our strategy is to infer two types for prediates: the minimum type of the pred-iate and a heuristi type. The type inferene algorithm proeeds as follows:� Firstly, the minimum type of the prediate is obtained by omputing the min-imum solution of the SSI assoiated to the typing of the omplete de�nitionof the prediate. The minimum type of the ith argument of the prediateis the type � i = lb(�i) where �i is the unknown type assoiated to the ithargument of the prediate in the SSI. This minimum type is a lower bound ofall possible typings of the prediate.� Seondly, the heuristi type is omputed. This type an be parametri. It isomputed in two steps:

20 Fran�ois Fages and Emmanuel Coquery| First a heuristi upper type is omputed for the prediate. The heuristiupper type � i of the ith argument of the prediate is obtained by olletingthe upper types fub(�X1); :::; ub(�Xn)g of all the variables fX1; :::; Xngwhih our in the ith position of the prediate in its de�nining lauses.Let � = glbfub(�X1); :::; ub(�Xn) be the greatest lower bound of the typesof the variable arguments. We set� i = > if � = > and � i = ?,= � i if � = > and � i 6= ?,= > if � i 6� � ,= > if the identi�ation �i = � reates a yle,= � otherwise.| Then the heuristi type is omputed by inferring a possibly parametritype from the SSI assoiated to the heuristi upper type. The andidatesfor parametri types are the parameters bounded by ? and > in the SSIassoiated to the heuristi upper type. Eah andidate is heked itera-tively by replaing it with a new onstant and by identifying all parameterswhih have the new onstant in one of their bounds.Although tedious, one an easily hek that the onditions imposed in the de�-nition of the heuristi type reate sound typings. The heuristi types thus provideorret type delarations for type heking the program.6 Implementation of the type system6.1 The Wallae library for solving subtype inequalitiesOur urrent implementation uses the Wallae library by F.Pottier (Pottier, 2000b)for solving the subtype inequalities for type inferene and type heking. In bothases, the set of type onstrutors (K;�) has thus to be a lattie as desribed insetion 4. Note that the type system did not require that ondition: � ould be anyarity dereasing order relation on K.As required in the type inferene algorithm, the > element is distinguished fromthe type term whih stands for all Prolog terms. The type ? is not onsidered as avalid typing as it is an empty type.Note that the Wallae library authorizes onstrained type shemes, like for exam-ple + : 8� � oat ���!�, whih expresses the resulting type of + as a funtion ofthe type of its arguments. For the sake of simpliity, we do not onsider onstrainedtype shemes in this paper. 6.2 The type hekerThe type heker �rst reads the Prolog �les and dedues the �les ontaining typeinformation to load. There is one �le for eah Prolog �le soure plus one �le foreah module used (as :- use_module(somemodule) in Sistus Prolog). The systemthen loads the type �les and builds the struture of type onstrutors.The type heker does not impose to give the type of CLP variables in lauses

Typing Constraint Logi Programs 21and queries. Instead the type of variables is inferred as desribed in setion 5. Theenvironment U is built with type unknowns for variables. The subtype inequalitysystem is olleted by applying the rules of the type system and at eah step,Wallae is used to solve the type onstraints.One diÆulty appears for heking the de�nitional generiity ondition. A typeerror must be raised when the de�nition of a prediate uses, as argument of thehead of the lause, a term whose type � is a subtype of an instane of the delaredtype � 0 for this argument, and not just of a renaming. But Wallae is not able tomake the di�erene between being a subtype of an instane or of a renaming of atype � 0. The following onsideration allows us to work around this diÆulty. If �is a subtype of a renaming of � 0, for all instanes � 0�0 of � 0 there must exist aninstane �� of � suh that �� � � 0�0. For heking de�nitional generiity, we thusreplae eah parameter � appearing in the delared type of the head prediate bya onstrutor ��, that does not appear in the program, and suh that :� �� � term, and �� 6� � for all onstrutor �, � 6= ��, � 6= term� � 6� �� for all � 6= ��.If the rule (Atom) an be applied, using the transformed type, then the rule(Head) an be applied as well with the original type.6.3 Type inferene for prediatesAs desribed in setion 5, two types are infered for prediates: a minimum typewhih is a lower bound of all possible typings of the prediate, and a heuristi typewhih may be parametri.If type inferene is just displayed for user information, we print both types. If itis used for typing automatially the program in a non-interative manner, then wehoose the heuristi bound, sine it is the most permissive type.7 Experimental results7.1 Detetion of programming errorsHere we show a small atalog of the kind of programming errors deteted by thetype heker.7.1.1 Inversion of arguments in a prediate or a funtionThis error an be deteted when, for example, a variable ours in two positionsthat have inompatible types.Example 7.1Consider the following lause where the arguments of the length prediate havebeen reversed. p(L1,L2,N) :- append(L1,L2,L3),length(N,L3).

22 Fran�ois Fages and Emmanuel Coquerywith the usual delarations :append : list(�)� list(�)� list(�)! predlength : list(�)� int! predBy the rule (Atom'), the variable L3 must be of both types list(�) and int. Inthe type hierarhy we use, there is no type smaller than list and int. The subtypeinequalities in the premise of rule (Atom') are thus unsatis�able and a type erroris raised.Note that this example motivates the disard of type ? : otherwise, no errorwould be deteted on variables, sine the empty type ? ould always be inferredfor the type of any variable.7.1.2 Misuse of a prediate or a funtionThis error is deteted when a term of a type � appears as an argument of a prediate,or of a funtor that expets an argument of type � 0, but � 6� � 0� for any substitution�.Example 7.2Consider the following lause :p(X,Y) :- Y is (3.5 // X).With type delarations:'//' : int� int! int for integer division,is : float� float! pred .We try to use a oat (3.5) where an int is expeted. The rule (Atom') does notapply.This kind of error an be deteted also inside all to foreign prediates, throughthe Prolog interfae with the C programming language for example.Example 7.3Consider the delaration of a prediate p de�ned in C using the Sistus - C interfae :foreign(p, p(+integer)).Suh a delaration is interpreted as a type delaration for p :p : int! predThen a all in a program suh as ::- p(3.14).raises a type error sine the argument is a float and the prediate expets an int.

Typing Constraint Logi Programs 237.1.3 Wrong prediate de�nition w.r.t. the delared typeThis error is deteted by two ways, orresponding to the two preeding kinds oferrors. In the two following examples, the prediate p has been delared with typeint! pred .Example 7.4Let p be de�ned by p([℄).Here the term [℄ is used as an argument of p, whih requires that p aepts ar-guments of type atomi list. But atomi list 6� int and the rule (Atom') does notapply.Example 7.5Let p be de�ned by :p(X) :- length(X,2).with length : list(�)� int! predIn this ase, we will infer a type for X that must be smaller than list(�) (usingrule (Atom'), beause X is used by length) and smaller than int (using the rule(Head')). As before, these types have no ommon subtypes, and an error is raised.7.1.4 Violation of the de�nitional generiity onditionExample 7.6Let : p([1℄).with p : list(�)! predAlthough the argument of p is a list, but its type is list(int), an instane and nota renaming of list(�) (beause int 6� ��).This error an also be deteted when a variable is in the head of the lause :Example 7.7Let : p([X℄) :- X < 1.with :p : list(�)! pred< : float� float! floatThe variable X must be of type float and ��. The only ommon subtype is ? andan error is raised.

24 Fran�ois Fages and Emmanuel Coquery7.2 Type heked programsTo test our system, we �rst tried it on 20 libraries of Sistus Prolog, that is around600 prediates. Then we type heked an implementation of CLP(FD) written om-pletely in Prolog, using a lot of meta-prediates, that ontains around 170 predi-ates. These tests where done using type delarations for around 100 built-in ISOProlog prediates and for some more built-in Sistus prediates.Some type errors obtained in the libraries ame from the overloading of somefuntion symbols. For example, the funtion '-'/2 is used for oding pairs as well asfor oding the arithmeti operation over numbers. Another example of overloadingomes from options : it happens that some terms are ommon to two sets of options,of types �1, �2. In this ase, it is enough to reate a subtype � of both �1 and �2,and tell that the ommon terms are of type � .We also skip the type heking of some partiular delarations, suh as modedelarations (whih are not used by our type system) :Example 7.8:- mode p(+,-,+) , q(-,?).These delarations an be typed in another type struture for mode delarations,but not in the same type struture as the one for prediates, sine the prediatesymbols p, q, +, - are learly overloaded in suh delarations.7.3 Type inferene for prediatesAs said in setion (6.3), we infer an interval of types for prediates. Both boundsof the interval may o�er interesting information.Example 7.9append([Head| Tail℄, List, [Head| Rest℄) :-append(Tail, List, Rest).append([℄, List, List).Minimum type: list(bottom), list(bottom), list(bottom) -> predHeuristi infered type: list(A), list(A), list(A) -> predExample 7.10sum_list([℄, Sum, Sum).sum_list([Head| Tail℄, Sum0, Sum) :-Sum1 is Head+Sum0, sum_list(Tail, Sum1, Sum).Minimum type: list(bottom), bottom, bottom -> predHeuristi infered type: list(float), float, float -> predSometimes, the heuristi infers a too permissive type. This is in partiular thease with overloaded arithmeti prediates expressions, that are always typed asfloat, not int.

Typing Constraint Logi Programs 25Example 7.11length([℄,0).length([_|Tail℄,R) :- length(Tail, L), R is L+1.Minimum type: list(bottom), int -> predHeuristi infered type: list(A), float -> predThe heuristi may also infer a type whih is too restritive.Example 7.12is_list(X) :- var(X), !, fail.is_list([℄).is_list([_|Tail℄) :- is_list(Tail).Minimum type: list(bottom) -> predHeuristi infered type: list(A) -> predThis is a typial example where the maximum type, hereis_list: term -> predis in fat the intended type.These examples should learly justify the heuristi approah to type inferene forprediates in a presriptive type system.Finally, the interesting flatten prediate illustrates the remarkable exibility ofthe type system.Example 7.13flatten([℄,[℄) :- !.flatten([X|L℄,R) :- !, flatten(X,FX), flatten(L,FL), append(FX,FL,R).flatten(X,R) :- R=[X℄.Minimum type : list(bottom), list(bottom) -> predHeuristi infered type : term, list(term) -> pred7.4 BenhmarksThe following table sums up our evaluation results. The �rst olumn indiatesthe type heked Prolog program �les. The seond olumn indiates the numberof prediates de�ned in eah �le �rst, and then the maximum number of atomsby lause and by omplete onneted omponent. The third olumn indiates theCPU time in seonds for type heking the program with the type delarations forfuntion and prediate symbols. The fourth olumn indiates the CPU for inferringthe types of prediates with the type delarations for funtion symbols only. Thelast olumn indiates the perentage of prediates for whih the infered type isexatly the intended type.The last test �le is another implementation of CLP(FD) on top of prolog whihuses a lot of metaprogramming prediates.

26 Fran�ois Fages and Emmanuel CoqueryFile # prediates Type Cheking Type Inferene % exat typesmax # atomsarrays.pl 13 9/16 2.18 s 11.91 s 23 %asso.pl 31 11/24 5.29 s 40.13 s 68 %atts.pl 14 20/119 7.43 s 77.47 s 64 %bdb.pl 101 27/27 23.56 s 41.10 s 64 %harsio.pl 15 7/7 1.27 s 2.21 s 33 %lpb.pl 59 20/77 24.35 s 1827.32 s n/alpq 396 39/160 355.12 s 4034.37 s n/alpr 439 39/160 304.45 s 3958.41 s n/afastrw.pl 4 5/7 0.44 s 0.76 s 100 %heaps.pl 21 8/18 3.49 s 43.33 s 71 %jasper.pl 32 11/11 7.43 s 11.97 s 84 %lists.pl 39 6/9 2.23 s 16.17 s 97 %ordsets.pl 35 7/18 7.43 s 199.38 s 97 %queues.pl 12 11/18 1.37 s 4.12 s 75 %random.pl 11 18/18 2.43 s 4.12 s 55 %sokets.pl 24 15/27 6.79 s 15.43 s 68 %terms.pl 13 18/27 6.96 s 308.69 s 77 %trees.pl 13 6/15 3.07 s 12.64 s 31 %ugraphs.pl 87 12/24 48.21 s 274.22 s 67 %lp-fd.pl 163 20/71 24.35 s 59.65 s n/aTable 3. Benhmarks.The same algorithm is used for solving the systems of subtype inequalities fortype heking and type inferene. The di�erene between omputation times omesfrom the handling of omplete onneted omponents of de�nitions for type infer-ene, whereas for type heking, lauses are type heked one by one. In partiularCLP(R) and CLP(Q) have very large mutually reursive lauses.In the library for arrays, the low perentage of exat mathes between the inferedtype and the intended type is simply due to the typing of indies by oat insteadof int. The errors in the other libraries are also due to the typing of arithmetiexpressions by oat , and sometimes to the use of the equality prediate =�;� whihreates a typing by term for some arguments instead of a more restritive typing.In the library CLP(FD), �nite domain variables are typed with type int. Sim-ilarly in the library CLP(R), variables over the reals are typed with type oat .One onsequene is that the type heker then allows oerions from �nite domainvariables to real onstraint variables. To make these oerions work in pratie onemodi�ation in the CLP(R) library was neessary.8 ConlusionTyping onstraint logi programs for heking programming errors statially whileretaining the exibility required for preserving all the metaprogramming failities

Typing Constraint Logi Programs 27of logi programming and the usual oerions of onstraint programming, is thehallenge that onduted the design of the type system presented in this paper. Ourexperiments with the libraries of Sistus Prolog have shown that the type systemis simple and exible enough to aept a large variety of onstraint logi programs.The main diÆulties are loated to onits of overloading for some prediates orfuntions. Suh ad ho polymorphism ould be resolved by onsidering disjuntiveformula over types (Demoen et al., 1999). Examples have been given also to showthat the type system is useful enough for deteting programming errors suh as theinversion of arguments in a prediate, or the unintended use of a prediate.The prie to pay for this exibility is that our type system may be regardedas too permissive. Some intuitively ill-typed queries may be not rejeted by thetype system. We have analyzed these defets in terms of the subjet redutionproperties of the type system. In partiular we have shown that the addition of thetyping onstraints on variables to well-typed programs and queries suÆes to statesubjet redution w.r.t. both CSLD resolution and substitution steps, and has fore�et to rejet a larger set of lauses and queries by heking the satis�ability oftheir onstraints with the type onstraints at ompile-time.The lattie assumption for the type struture, due to the implementation in Wal-lae of subtype onstraints, may be regarded also as too demanding in some ases.We have already relaxed that assumption by rejeting the bottom element fromthe struture of types. Nevertheless the deidability of subtype onstraints undermore general assumptions is an interesting open problem. In partiular, whetherthe method of Frey (Frey, 1997) an be extended to over subtype relations be-tween type onstrutors of di�erent arities, as required in our approah, is an openquestion.Finally, it is worth noting that the results presented here are not limited to logiprogramming languages. They should be relevant to various onstraint program-ming languages, where the main diÆulty is to type hek onstraint variables, thatexpress the ommuniation between di�erent onstraint domains.Aknowledgment.We would like to aknowledge fruitful disussions with Fran�oisPottier, Didier R�emy, Jan Smaus and Alexandre Frey on this work. We are alsograteful to the referees for their peer reviews.ReferenesAit-Kai, H., & Nasr, R. (1986). Login: A logial programming language with built-ininheritane. Journal of logi programming, 3, 187{215.Ait-Kai, H., Podelski, A., & S.C. Goldstein, K. (1997). Order-sorted feature theoryuni�ation. Journal of logi programming, 30(2), 100{124.Amadio, R.M., & Cardelli, L. (1993). Subtyping reursive types. Am transations onprogramming languages and systems, 15(4), 575{631.Beierle, C. (1995). Type inferening for polymorphi order-sorted logi programs. Pages765{779 of: 12th international onferene on logi programming ICLP'95. The MITPress.Colmerauer, A. (1984). Equations and inequalitions on �nite and in�nite trees. Pages

28 Fran�ois Fages and Emmanuel Coquery85{99 of: ICOT (ed), Pro. of the international onferene on �fth generation omputersystems FGCS'84.Colmerauer, A. (1985). Prolog in 10 �gures. Communiations of the am, 28(12), 1296{1310.Colmerauer, A. (1996). Spei�ation of Prolog IV. Teh. rept. LIM Tehnial Report.Coquery, E. 2000 (Ot.). Tlp: a generi type heker for onstraint logi programs.http://pauilla.inria.fr/~oquery/tlp/.Demoen, B., de la Banda, M. Garia, & Stukey, P.J. 1999 (january). Type onstraintsolving for parametri and ad-ho polymorphism. Pages 217{228 of: Proeedings of the22nd Australian omputer siene onferene.Dietrih, R., & Hagl, F. (1988). A polymorphi type system with subtypes for Prolog.Pages 79{93 of: Ganzinger, H. (ed), Proeedings of the european symposium on pro-gramming ESOP'88. LNCS. Springer-Verlag.Fages, F., & Paltrinieri, M. 1997 (Deember). A generi type system for CLP(X). Teh.rept. Eole Normale Sup�erieure LIENS 97-16.Frey, A. (1997). Satisfying subtype inequalities in polynomial spae. Proeedings of the1997 international stati analysis symposium SAS'97. LNCS, no. 1302.Fuh, Y.C., & Mishra, P. (1988). Type inferene with subtypes. Pages 94{114 of:Pro. ESOP'88. LNCS, no. 300.Hanus, M. (1992). Logi programming with type spei�ations. MIT Press. In (Pfenning,1992). Chap. 3, pages 91{140.Hill, P., & Lloyd, J. (1994). The G�odel programming language. MIT Press.Hill, P. M., & Topor, R. W. (1992). A semantis for typed logi programs. MIT Press.In (Pfenning, 1992). Chap. 1, pages 1{61.Ja�ar, J., & Lassez, J.L. (1987). Constraint logi programming. Pages 111{119 of: Pro-eedings of the 1987 symposium on priniples of programming languages POPL'87.Kfoury, A.J., Tiruyn, J., & Urzyzyn, P. 1989 (Otober). The undeidability of the semi-uni�ation problem. Teh. rept. BUCS-89-010, Boston Univ.Lakshman, T.K., & Reddy, U.S. (1991). Typed Prolog: A semanti reonstrution ofthe Myroft-O'Keefe type system. Pages 202{217 of: Saraswat, V., & Ueda, K. (eds),Proeedings of the 1991 international symposium on logi programming. MIT Press.Meyer, G. (1996). Type heking and type inferening for logi programs with subtypes andparametri polymorphism. Teh. rept. Informatik Berihte 200, Fern Universitat Hagen.Myroft, A., & O'Keefe, R.A. (1984). A polymorphi type system for prolog. Arti�ialintelligene, 23, 295{307.Pfenning, F. (ed). (1992). Types in logi programming. MIT Press.Pottier, F. (2000a). Simplifying subtyping onstraints: a theory. To appear in informationand omputation.Pottier, F. 2000b (Feb.). Wallae: an eÆient implementation of type inferene withsubtyping. http://pauilla.inria.fr/~fpottier/wallae/.Smaus, J.G., Fages, F., & Deransart, P. (2000). Using modes to ensure subjet redutionfor typed logi programs with subtyping. Pages 214{226 of: Proeedings of foundationsof software tehnology and theoretial omputer siene FSTTCS'2000. LNCS, no. 1974.Springer-Verlag.Smolka, G. (1988). Logi programming with polymorphially order-sorted types. Pages53{70 of: Algebrai and logi programming ALP'88. LNCS, no. 343. J. Grabowski,P. Lesanne, W. Wehler.Smolka, G. (1989). Logi programming over polymorphially order-sorted types. Ph.D.thesis, Universitat Kaiserslautern.

Typing Constraint Logi Programs 29Somogyi, Z., Henderson, F., & Conway, T. (1996). The exeution algorithm of Merury, aneÆient purely delarative logi programming language. Journal of logi programming,29(1{3), 17{64.Tiuryn, J. (1992). Subtype inequalities. Pages 308{315 of: Pro. 7th IEEE symposium onlogi in omputer siene LICS'92.Yardeni, E., Fr�uhwirth, T., & Shapiro, E. (1992). Polymorphially typed logi programs.MIT Press. In (Pfenning, 1992). Chap. 2, pages 63{90.

