
Exploring Browser Design Trade-offs Using a Dynamical
Model of Optimal Information Foraging

Peter Pirolli
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

pirolli@parc.xerox.com

ABSTRACT
Designers and researchers of human-computer interaction
need tools that permit the rapid exploration and
management of hypotheses about complex interactions of
designs, task conditions, and user strategies. Dynamic
programming is introduced as a such a tool for the analysis
of information foraging technologies.  The technique is
illustrated in the context of the Scatter/Gather text
clustering browser.  Hypothetical improvements in browser
speed and text clustering are examined in the context of
variations in task deadlines and the quality of the
document repository.  A complex and non-intuitive set of
tradeoffs emerge from even this simple space of factors,
illustrating the general utility of the approach.

Keywords
Dynamic programming, information foraging,
Scatter/Gather, user models.

INTRODUCTION
Surveys of users of the World Wide Web (WWW) find that
the two most frequently reported problems are poor speed
of access and failure to find information that is known to
be available (e.g., Pitkow & Kehoe, 1996).  Designers of
browsers for such large and rapidly-growing hypermedia
repositories will naturally be concerned with alleviating
those problems.  Like all complex design problems,
however, there will be many interacting constraints and
trade-offs in the space of potential designs. These design
trade-offs may also vary according to the space of
conditions that will be faced by potential users.
Furthermore, one may want to predict some of the effects
of these designs on user strategies.

For designers of user interfaces, such as browsers, it might
be helpful to have techniques that allow one to explore
various complex “what-if” design scenarios.  For instance,
what if system algorithms are made faster as opposed to
more accurate?  What if presentations are made more
informative but slower to read?  What if the user has

unlimited time as opposed to a hard deadline?  What if the
user is faced with a repository rich with relevant
information vs a poor one?  This paper presents a modeling
technique for exploring a space of human-computer
interaction designs.  It is a dynamical modeling technique
that was initially suggested in the context of Information
Foraging Theory (Pirolli & Card, 1995).  Here I present a
more elaborate description of the technique and its
application to exploring the design space for a browser for
very large text repositories. It seems likely that these
techniques could be extended to other browsers, such as
those for the World Wide Web.

Basically, the approach requires that the analyst find an
abstract representation of the different states of interaction,
such as the state of a browser display, and the different
changes that can be made from state to state, such as the
changes that result from user actions.  This defines an
abstract state space representing the possible paths that
human-computer interaction may take.  One also must
have some method for assigning costs and values to
different states and moves.  In the example I describe
below, the values are the expected number of relevant
documents that will be encountered while browsing, and
the costs are just the amounts of user time involved.
Different state spaces, with different costs and values, are
used to represent alternative interfaces.  I then use a
technique called dynamic programming (Bertsekas, 1995)
to perform an evaluation of the different interfaces.
Conceptually, it does this by searching through the
different possible paths of human-computer interaction,
evaluating the costs and values of different paths, and
finding the best paths.  In this manner, one can find the
best-case performance of a user interface.  This is the
fitness of the interface.

One goal of this paper is to provide a more thorough
introduction to the dynamic programming analysis of
information foraging by application to a concrete example.
For the engineer/designer this technique is proposed as a
sorely needed tool for the rapid exploration of “what-if”
variations in complex designs.  For the researcher, it is a
technique for exploring and generating hypothesis about
the interaction of design trade-offs, task conditions, and
user strategies.   It should be viewed as a technique for



making well-informed  hypothesis about complex design
trade-offs. The validity of the technique will depend on
many factors that the designer may wish to check
empirically.

A dynamic programming analysis of information foraging
is presented for a browser that clusters large-scale text
collections, called Scatter/Gather (Cutting, Karger, &
Pedersen, 1993; Cutting, Karger, Pedersen, & Tukey,
1992; Pirolli, Schank, Hearst, & Diehl, 1996)  The
interaction space of the baseline model is based on
empirical data (Pirolli & Card, 1995; Pirolli et al., 1996).
Variations on this model consider the simulated effects of,
and interactions among, (a) different deadlines, (b)
different amounts of available relevant information, (c)
possible improvements in interaction time costs, and (d)
possible improvements clustering of relevant information.

THE SCATTER/GATHER BROWSER
The Scatter/Gather browser  (Cutting et al., 1993; Cutting
et al., 1992; Pirolli et al., 1996)  uses the clustering of
documents as the basis of a browser suitable for large
numbers of documents (Figure 1). Each of the ten
subwindows in Figure 1 represents a cluster of documents.
Each subwindow presents a cluster digest, which contains
topical words and the titles of the most typical documents
in that cluster. The clustering and cluster digests are
computed by automatic means based on the texts

themselves.  The user may gather clusters of interest by
pointing and selecting buttons above each cluster.  On
command, the system will pool together the documents in
those clusters, then automatically scatter that subcollection
into another set of clusters.  The user may repeatedly
scatter then gather clusters, moving from very large cluster
collections to very small cluster collections. Eventually the
user may display all the titles of  documents in one or more
clusters, then select individual documents to read.

In studies (Pirolli & Card, 1995; Pirolli et al., 1996)
Scatter/Gather was applied to the Tipster collection of
about 750,000 documents created for the TREC text
retrieval conference (Harman, 1993). Standard information
retrieval tasks (queries) have been defined on it together
with lists of known relevant and non-relevant Tipster
documents, as judged by experts.  We studied this version
of Scatter/Gather under experimental conditions (Pirolli &
Card, 1995; Pirolli et al., 1996) in which the general
objective for users was to find as many bibliographic
references as possible relevant to a set of the TREC
queries.  This forms the basic starting point for our
dynamic programming model.

Figure 1.  The Scatter/Gather cluster display window.



Scatter/Gather
Window

Display Titles
Window

T: 0
N: 742,833
R: 303
G: 50

2 D

T: 52
N: 148,567
R: 218
G: 50

T: 720
N: 14,857
R: 102
G: 4

Figure 2. A schematic of a simple path of
Scatter/Gather interaction.

DYNAMIC INFORMATION FORAGING MODELS
The dynamic modeling approach to information foraging
taken here was inspired by similar approaches in the study
of the ecology of animal behavior (Mangel & Clark, 1988).
A more technical and mathematical treatment of the
current model is provided in Pirolli and Card (1997).  The
dynamic optimization techniques used here are just a small
example of an extensive set of such models (Bertsekas,
1995).

State Space of Interaction
Figure 2 gives a schematic overview of a path of human-
computer interaction using the Scatter/Gather browser.
Each icon in Figure 2 represents an interaction state
involving one of the two main kinds of display windows.
The Scatter/Gather display window presents clusters that
the user may gather.  Eventually, a Display Titles window
is used to display the titles of documents in clusters chosen
by the user, and the user scans these seeking relevant ones.
The boxes beneath the icons schematically represent
information about the interaction states.  The sharp-
cornered boxes represent Scatter/Gather states and the
round-edged boxes represent Display Titles states.  The

boxes in Figure 2 contain a the following subset of state
information used in the models:

• Time (T) in seconds from the start of the simulated
foraging task.  For the Scatter/Gather states, these times
record the point at which the window is displayed and
the next user action begins.  For the Display Titles states
these times record the point at which the window has
been displayed and the user has completed scanning and
selecting titles.  If this display scanning would go beyond
the task deadline (720 seconds in the Figure 2 example),
then the state’s time is set to the deadline.

• Total number of documents (N) in the part of the
collection displayed in the current window.

• The estimated number of relevant documents (R) in the
collection displayed in the current window

• The best-case (optimal) number of relevant documents
(G) that can be gained from the current state.

The number label on the arrow between the icons in Figure
2 indicates the number of clusters gathered at a state along
the path (the model assumes that the best clusters are
chosen), or a “D” label indicates that the chosen clusters
were displayed in a Display Titles window.

The path in Figure 1 models a user who starts out by
gathering two clusters at time T = 0 seconds, and scattering
these into a new Scatter/Gather state that appears at time T
= 52 seconds.  One cluster from this state is gathered and
displayed in a Display Title window, and scanned and
selected until the deadline time T = 720 seconds.  One can
note in Figure 2 that the total number of documents as well
as the number of relevant documents are reduced as one
moves from state to state.  However, one can also see that
the proportion of relevant documents R/N is increasing.
The manner in which the expected G is computed is at the

T: 0
N: 742,833
R: 303
G: 50

T: 720
N: 742,833
R: 303
G: 0

T: 47
N: 74,283
R: 142
G: 43

T: 52
N: 148,567
R: 218
G: 50

T: 720
N: 148,567
R: 218
G: 0

T: 99
N: 14,857
R: 102
G: 43

T: 104
N: 29,713
R: 157
G: 50

T: 720
N: 29,713
R: 157
G: 3

T: 151
N: 2971
R: 74
G: 43

T: 156
N: 5953
R: 113
G: 50

T: 720
N: 5943
R: 113
G: 9

T: 203
N: 594
R: 53
G: 43

T: 208
N: 1189
R: 81
G: 50

•••

D

D D D
1

1 1 1

2

2 2 2

Figure 3.  A portion of the Scatter/Gather state space.



core of the dynamic programming algorithm and is
discussed below.

The collection of all the states achievable along all the
paths of interaction from some given start state define a
state space.  Rather than the single path shown in Figure 2,
a subset of the paths are shown in Figure 3 (the icons are
now omitted).  Only a small portion of the full state space
is displayed in Figure 3 for the purposes of illustration.
Only the first few steps in the interaction space are shown,
only alternative moves along the best paths are displayed,
and only three of the alternatives are shown.  The full
space gets explosively large as more alternatives are
added,1 and this is often the main computational drawback
to using dynamic state-space models.

Dynamic Programming Approach
Imagine that one could, however, generate all possible
paths and isolate all the possible interaction states that a
user could get to by the task deadline (this may be an
infinite set of end states).   One could evaluate these states
to determine their value.  This value might be any
resource, but in our example it is the number of relevant
articles that can be collected by the task deadline.  Now
imagine that one could take one step backward from the
end states.   From these penultimate states, the optimum
step would be the one that goes to the highest valued end
state, which is known from the evaluation of end states.
So, the optimum value of the penultimate states can be
calculated by tracing backward from the end states.
Generalizing this process, one may iterate the process
backwards from states to prior states until one gets back to
the starting state.

To summarize, the dynamic programming approach
involves defining a state space and an optimization
criterion.   In the current example, the state space is
defined by the representation of states, a particular starting
state, a set of feasible strategies and actions, and the state
dynamics produced by those state-changing actions.  If the
optimization problem is formulated in an appropriate and
tractable way (Bertsekas, 1995), then dynamic
programming finds the sequence of states and action
choices that optimizes the specified criterion.
Conceptually, the dynamic programming optimization
technique finds the value of end states (at a task deadline)

                                                       
1 From this conception of the search process, the state

space grows exponentially with each additional step of
interaction analyzed.  If one considers all interaction
paths of length L, with b alternative branches from every
state, then there will be Lb states in that state space.   See
Bertsekas (1995) for discussion of how dynamic
programming problems generally grow exponentially
with the number of dimensions used to represent states
(e.g., T, N, and R in this example).

and works backward along the interaction paths to label
states with their optimal gains.  In practice, there are many
ways to implement dynamic programming (Bertsekas,
1995).

Technical Summary of Dynamic Programming2

Let X(t) = x be a state variable representing the state of
interaction at time t.  As described in Pirolli and Card
(1997) we use a multi-dimensional vector to represent the
Scatter/Gather states.  The components of the X(t) vector in
this example would include N, R, T, G, as well as other
state attributes.

There will also be a set of state-change operators δi(X(t)),
that produce some new state, X(t + C) = δi(X(t)).  For
instance, the user actions of gathering and scattering
clusters in Scatter/Gather are examples of such state-
change operators.  The time cost of the operator will be C,
and its value may be state-dependent.   For instance, the
time cost of displaying titles in Scatter/Gather depends on
the total documents, N, and relevant documents, R.

For our current definition, let time t be indexed in seconds
remaining to deadline.  For a task with a deadline of 720
seconds: at the beginning of the task, t = 720 and at
deadline t = 0 seconds. Using the foraging terminology of
Mangel and Clark (1988), we construct a fitness evaluation
function φ(X(t)) for the final end states.  For the current
Scatter/Gather example, final fitness values can be defined
recursively as,

F(x, t)

=
φ(x), if t =  0

max
i

[F(δi(x), t − Ci(x))], if  t > 0,
 
 
 (1)

where Ci(x) is a cost evaluation function of operator δi

applied to state x.  This is the kind of dynamic
programming specification used in the Scatter/Gather
example, and applicable to a broad class of information
foraging problems.

ALTERNATIVE INTERACTION SPACES
The dynamical models of the alternative interface designs
were defined on the basis of data collected in two studies of
Scatter/Gather (Pirolli & Card, 1995; Pirolli et al., 1996),
by variations in task conditions, and by “what-if”
specifications of system improvements.

Task Conditions
The “what-if” simulations here explored two factors
affecting task conditions: (1) deadlines and (2) quality of
the repository relative to given queries; that is the number
of items in the repository relevant to a given query.  The
deadline conditions were:
                                                       
2 This section may be skipped.  It is provided for the

mathematically inclined reader.



• Soft deadline of 720 seconds, which is the mean time
taken by Scatter/Gather users studied in Pirolli and Card
(1995) who had no time pressure in their task
specifications.

• Hard deadline of 360 seconds.

The repository quality conditions were:

• Sparse repository in which there were R = 303 relevant
documents among the N = 742,833 total documents for a
given query.  This corresponds the TREC queries in the
medium range of difficulty (Pirolli et al., 1996).

• Rich repository in which there were R =  865 relevant
documents among the N = 742,833 total documents. This
corresponds the TREC queries in the easy range of
difficulty(Pirolli et al., 1996).

Table 1.  Empirical cost estimates from Pirolli and
Card (1995)

Scanning a cluster and judging relevance tsc = 3 s

Adding a cluster to gather list tgc = 5 s

Scanning a document title and judging
relevance

ts  = 1 s

Selecting, cutting, and pasting title to
record window

th = 5 s

System time to scatter new clusters tcl = 23 s

System time to display titles in a cluster td = 20 s

Baseline System Specifications
Table 1 contains time cost estimates for various events
involving the baseline Scatter/Gather system (Pirolli &
Card, 1995).   Using these estimates, Table 2 presents
relevant state changes and costs incurred by various user
actions.

To model the effects of gathering clusters and scattering
them in Table 2 we use a function D(k).  It models the
proportion of relevant documents contained in the best k
clusters presented in the Scatter/Gather state. That is if, R
is the total number of relevant documents in all the clusters
on a Scatter/Gather display, then D(k) is the proportion of
R that is in the k best clusters. This function is based on the
analyses of Pirolli and Card (Pirolli & Card, 1997), is
described in the Appendix, and plotted in Figure 4.

Table 2. Effects and time costs of state-change
operators.  N is the total documents and R the number
of relevant documents in the current state.  Time costs
are described in Table 1 and D(k) in the Appendix.

Operator New state Time Cost  (sec)

Scan Display
Titles window
until end of
display

Collected
relevant titles= R

N ts + R th

Scan Display
Titles window
until deadline hit
after t sec

Collected
relevant titles =

(R t)/(N ts + R th)

t

Gather k clusters
and scatter

New N = N k/10

New R = D(k) R

10 tsc + k tgc + tcl

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Number (k) of topmost clusters 
gathered

D(k)

Improved
clustering

Figure 4. Proportion of relevant documents collected by
gathering the k best clusters.

Alternative System Specifications
Two system improvements were explored:

• Faster interaction, in which the time cost of computing a
new Scatter/Gather cluster display was cut by 1/2.

• Improved clustering, in which the clustering algorithm
was improved so that it placed 25% more relevant
documents in the best cluster (see Figure 4 and
Appendix).

RESULTS
The dynamic programming results show that substantial
and non-intuitive trade-offs emerge regarding the
performance of system improvements across task
conditions. The simulated best-case gains of relevant
documents for the baseline Scatter/Gather system are



presented in Table 3.  Against these baseline data we can
examine the effects of system improvements.  Overall, the
best-case gains for improved clustering simulations were,
on average 23% better than the baseline system, whereas
the faster interaction simulations were, on average, 18%
better than baseline.  However, improved clustering was
not always predicted to be better than faster interaction;
there were, in fact, many subtle System × Task
interactions, as I show next.

Table 3. Simulated optimal number of relevant
documents gained in the baseline Scatter/Gather system
(numbers rounded to integers).

Deadline Mean

Repository Hard Soft

Sparse 11 49 30

Rich 16 65 40

Mean 13 57

System × Repository Effects
Figure 5 shows the improvements predicted for a faster
interaction system and a system with improved clustering,
under different repository conditions.  With a repository
rich with relevant information, the simulations suggest
there will be no major difference between two particular
improvements that were examined.    However, when the
repository is relatively sparse with relevant information,
the simulations predict that a system with improved
clustering will be superior.

0

5

10

15

20

25

30

35

40

45

50

Sparse Rich

Repository Condition

Improved
Clustering

Faster
Interaction

Figure 5. Simulated improvements in expected number
of relevant documents collected by task deadline as a
function of repository condition.

System × Deadline Effects
Figure 6 shows simulated improvements under different
deadline conditions.  The simulations suggest that
improved clustering will be superior when the deadlines
are soft.  On the other hand, when there is a hard deadline,
with less time available, a system with faster interaction
time will have better pay-offs.

0

5

10

15

20

25

30

35

40

45

50

Soft Hard

Deadline Condition

Improved
Clustering

Faster
Interaction



Figure 6. Simulated improvements in expected number
of relevant documents collected by task deadline as a
function of deadline condition.

Effects on Strategy
The dynamic programming simulations can also afford
some exploration of the optimal user strategies for the
different Scatter/Gather system configurations.  The
optimal strategies are the action choices made along the
optimal interaction path, as determined by dynamic
programming.    For instance, in the simple state space of
Figure 3, the optimal path can be traced by following the
bottommost arrows from state to state.  That path is
optimal because each move goes to the highest gain (G)
next state.  The action choice along the portion of the
optimal path depicted in Figure 3 is to choose two clusters
at each stage.

The optimal user strategies may vary across the different
system improvements and task conditions.  Here I examine
the average number of clusters the ideal user would have to
chose on each Scatter/Gather display, and the amount of
time the ideal user would spend scanning titles for relevant
results.  It turns out that the dynamic programming
analyses shows strategy shifts that are consistent with
models developed in Information Foraging Theory (Pirolli
& Card, 1997).

Table 4 shows the average number of clusters chosen from
Scatter/Gather displays in the simulation of an optimal
user on the baseline system. The simulations for the  faster
interaction system and the improved clustering system only
showed differences from Table 4 in the soft deadline
conditions.  Under soft deadlines, the faster interaction
simulations showed the same or more clusters being chosen
than baseline, whereas the improved clustering simulations
showed less clusters being chosen.

These results are consistent with Information Foraging
Theory.  The Information Diet Model (Pirolli & Card,
1997) predicts that fewer clusters should be chosen with
increases in profitability of clusters (the ratio of expected
relevant documents to expected processing time).  This
would predict the above findings of fewer clusters chosen
in Rich Repository conditions and fewer clusters with
improved clustering. Other predictions made by the
Information Diet Model have been corroborated by
empirical analyses of Scatter/Gather (Pirolli & Card,
1997), so our confidence in the dynamic programming
analysis is somewhat bolstered by its agreement with these
other theoretical and empirical results.

Table 4. Average number of clusters selected by an
optimal user of the baseline system.

Deadline Mean

Repository Hard Soft

Sparse 1.00 2.17 1.59

Rich 1.00 1.80 1.40

Mean 1.00 1.99

Table 5 shows the time spent scanning the Display Titles
window by an ideal user on the baseline system.  Figures 7
and 8 and  show the reduction in these scanning times
expected for the two system improvements across the task
conditions.    Under optimal use, a faster interaction system
would require the least scanning time in sparse repositories
or hard deadline conditions, whereas an improved
clustering systems would require least scanning time in
rich repositories or under soft deadline conditions.

Table 5. Time spent scanning the Display Titles window
by an optimal user in the baseline condition (sec).

Deadline Mean

Repository Hard Soft

Sparse 232.0 383.0 307.5

Rich 232.0 310.0 271.0

Mean 232.0 346.5

Again, these results are consistent with the predictions of
Information Foraging Theory (Pirolli & Card, 1997).  The
Information Patch Model would treat the Display Titles
window as an information patch.  That model predicts that
the time spent in information patches should (a) decrease
as one goes from Sparse to Rich Repository conditions, (b)
decrease from baseline to improved clustering systems, and
(c) decrease from baseline to faster interaction systems.
Again, other predictions of the Information Patch Model
are corroborated by empirical analyses (Pirolli & Card,
1997), and this provides another set of consistency checks
on the dynamic programming model.



0

5

10

15

20

25

30

35

40

45

Sparse Rich

Repository Condition

Improved Clustering

Faster Interaction

Figure 7. Simulated reductions in Display Titles
scanning times as a function of repository conditions.

0

5

10

15

20

25

30

35

40

45

Soft Hard

Deadline Condition

Improved Clustering

Faster Interaction

Figure 8. Simulated reductions in Display Titles
scanning times as a function of deadline conditions.

GENERAL DISCUSSION
Dynamic programming was used to explore some trade-
offs in a browser design.  Specifically, the analysis
explored making the browser system faster (faster

interaction) and making the relevant information easier to
find (improved clustering).  These improvements directly
address the two most common problems reported by WWW
users (Pitkow & Kehoe, 1996).  Dynamic programming
analysis permitted the exploration of “what-if” scenarios
testing these hypothetical design improvements against
variations in task conditions involving repository quality
and deadline conditions.  Finally, the dynamic
programming analysis permitted the exploration of
changes in ideal user strategies across system and task
conditions.

The main aim of this paper was to describe and illustrate
the dynamic programming technique applied to an
information foraging technology.  The illustration showed
how—even for this relatively simple space of designs and
usage conditions—that complex and non-intuitive trade-
offs emerge from the analysis.  This sort of complexity
faces virtually every interface designer.  Tools such
dynamic programming are needed to explore and manage
such design complexity.

Without doubt, the extension of this analysis to other
browsers—for the World Wide Web, for instance—will not
be simple.  The aim here was to illustrate the technique
using a tractable example, as a beachhead for more
complex analyses.  The analysis here assumed a very
simple assessment of value:  the number of relevant
documents found while searching.  As discussed elsewhere
(Pirolli & Card, 1997; Pirolli & Card, 1995),
characterizing the value of information is usually more
complex, since it typically varies (at least) with tasks,
individual needs, and time.  In addition, the
unidimensional value assessment here is overly simplistic
because real-world tasks often require the assessment of
information along many dimensions.  Similarly, costs often
involve more than just time (e.g., money) .  The analysis
here also assumed a very simple range of user strategies
and actions.  This reflects the Scatter/Gather browser as
used in our experimental tasks, but other tasks and
browsers will undoubtedly have richer interaction spaces.
None of these extensions are problematic in principle,
although they may require effort to achieve in practice.

For the researcher aiming at scientific understanding of the
principles underlying human-computer interaction with
information systems, the dynamic programming technique
can be viewed as a method for generating  strong and
complex hypotheses about interactions of designs, task
conditions, and user strategies.  It is unfortunate that the
traditional study of information technology has been
dominated since the Cranfield studies of the 1960’s by the
notion that two, and only two, factors are important to
good design: (1) precision, which is the proportion of
relevant items in a retrieved set of items, and (2)  recall,
which is the proportion of all items in the corpus that are
retrieved (Harter & Cheng, in press; vanRijsbergen, 1979).



The model presented here can be taken as a rational
analysis that illustrates the myopia of such a view with
respect the broader complexity and trade-offs of
information foraging.

ACKNOWLEDGMENT
This research was supported in part by an Office of Naval
Research grant No. N00014-96-C-0097 to Peter Pirolli and
Stuart Card.

REFERENCES
Bertsekas, D. P. (1995). Dynamic programming and
optimal control theory. Belmont, MA: Athena Scientific.

Cutting, D. R., Karger, D. R., & Pedersen, J. O. (1993).
Constant interaction-time Scatter/Gather browsing of very
large document collections.  Proceedings of the SIGIR ’93

Cutting, D. R., Karger, D. R., Pedersen, J. O., & Tukey, J.
W. (1992). Scatter/gather:  A cluster-based approach to
browsing large document collections.  Proceedings of the
SIGIR ’92 (pp. 318-329).

Harman, D. (1993). Overview of the first text retrieval
conference.  Proceedings of the 16th Annuam International
ACM/SIGIR Conference (pp. 36-38), Pittsburgh, PA.

Harter, S. & Cheng, Y. (in press). Evaluation of
information retrieval systems:  A review article. Annual
Review of Information Science and Technology.

Mangel, M. & Clark, C. W. (1988). Dynamic modeling in
behavioral ecology. Princeton, NJ: Princeton University
Press.

Pirolli, P. & Card, S. (1997). The evolutionary ecology of
information foraging (Tech. Rep. UIR-R97-01). Palo Alto,
CA: Xerox PARC.

Pirolli, P. & Card, S. K. (1995). Information foraging in
information access environments.  Proceedings of the CHI
’95, ACM Conference on Human Factors in Software (pp.
51–58), New York.

Pirolli, P., Schank, P., Hearst, M., & Diehl, C. (1996).
Scatter/Gather browsing communicates the topic structure
of a very large text collection.  Proceedings of the
Conference on Human Factors in Computing Systems, CHI
’96 Vancouver, BC.

Pitkow, J. E. & Kehoe, C. M. (1996). GVU's Sxth WWW
User Survey. Online Publication:
http://www.gvu.gatech.edu/user_surveys.

vanRijsbergen, C. J. (1979). Information retrieval(2nd
ed.). Boston, MA: Butterworth & Co.
APPENDIX
If there are R relevant documents in a Scatter/Gather state,
then those documents will be distributed somehow across
the 10 clusters in the state.   Analyses (Pirolli & Card,
1997) show that when clusters are ranked c = 1, 2, ... 10 in
decreasing order by how many relevant documents they
contain, then they are distributed in an exponentially
decreasing fashion according to,

d(c) = .47exp(−.63(c − 1)). (2)

If a user collects the top ranked k clusters, then the
collected proportion of relevant documents is just the sum
of the proportion of relevant documents in those clusters:

D(k) = d (c)
c =1

k

∑ (3)

This is plotted in Figure 4. Pirolli and Card (1997; 1995)
present the analysis that shows that ranking clusters and
considering collections of the k = 1, 2,...K best clusters is
the optimal strategy for identifying the best collection.  All
possible collections do not need to be explored.

For the improved clustering models we used

d(c) = .60exp(−.92(c − 1)) , (4)

which is also presented in Figure 4.  A detailed
computational cognitive model called ACT-IF (Pirolli &
Card, 1997) provides an explanation of the cognitive
machinery underlying these assessments by users
interacting with the Scatter/Gather interface.


