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TWISTED WHITTAKER MODEL AND FACTORIZABLE SHEAVES

D. GAITSGORY

Introduction

0.1. Quantum Langlands duality? The idea behind the paper is the quest for Langlands
duality for quantum groups. Let us explain what we mean by this.

Let G be a simple algebraic group over C. Recall that the geometric Satake equivalence
realizes the Langlands dual group Ǧ, or rather the category of its representations, explicitly
in terms of G as follows. We consider the affine Grassmannian GrG = G((t))/G[[t]] as an ind-
scheme acted on (from the left) by G[[t]] and let D-mod(GrG)G[[t]] denote the corresponding
category of D-modules.

One endows D-mod(GrG)G[[t]] with a monoidal structure, and one shows that it has a natural
commutativity constraint. It is a basic fact, conjectured by Drinfeld based on an earlier work
of Lusztig, and proved in [Gi] and [MV], that that the resulting tensor category is equivalent
to Rep(Ǧ)–the category of representations of Ǧ as an algebraic group.

Now, Rep(Ǧ), considered as a braided monoidal category, admits a one-parameter family
of deformations to the category Rep(Uq(Ǧ)), where by Uq(Ǧ) we denote the quantum group
attached to G (when q is a root of unity, we take Lusztig’s quantum group with q-divided
powers). It has always been very tempting to try to realize Rep(Uq(Ǧ)) also via GrG, or
some closely related geometric object, as a category of D-modules or perverse sheaves with a
particular equivariance property.

One has a natural candidate of how to involve the parameter q. Namely, let G̃rG be the

canonical line bundle over G, i.e., G̃rG := Ĝ/G[[t]], where Ĝ is the Kac-Moody extension of
the loop group G((t)). The passage from Ǧ to its quantum deformation should correspond
to replacing D-modules (or perverse sheaves) on GrG by D-modules (or perverse sheaves) on

G̃rG, which are monodromic along the fiber with monodromy q2, i.e., we will consider the

corresponding category of twisted D-modules on GrG which we will denote by D-modc(G̃rG)
with q = exp(πic).

However, the first naive attempt, i.e., to consider the category D-modc(G̃rG)G[[t]] leads to a
wrong answer. E.g., when c is irrational (i.e.,, when q is not a root of unity) the latter category
will have only one irreducible object, i.e., it cannot be a deformation of Rep(Ǧ).

0.2. Whittaker category. A viable candidate for an appropriate category of twisted D-
modules on GrG was suggested by Jacob Lurie in October 2006. To explain his idea, we
will first replace the category D-mod(GrG)G[[t]] by a different, but still equivalent, category,
which, however, admits a natural quantum deformation.

Namely, let N be a maximal unipotent subgroup of G, and consider the corresponding loop
group N((t)). Let χ : N((t))→ Ga be a non-degenerate character, normalized to have conductor
0. Let us consider the category of D-modules on GrG, equivariant with respect to N((t)) against
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2 D. GAITSGORY

the character χ. We shall refer to this category as that of Whittaker D-modules on GrG, and
denote it Whit(GrG), or simply Whit.

The trouble is, however, that the orbits of the group N((t)) on GrG are infinite-dimensional,
and if one understands the N((t))-equivariance condition naively, the category Whit(GrG) will
be empty. There are two ways to overcome this difficulty:

One way is to try to define Whit(GrG) as a triangulated category, and then extract a t-
structure. This approach has not been worked out yet, but J. Lurie and the author hope that
this is feasible, and leads to a manageable theory.

Another approach, which we opt for in the present paper, was developed in [FGV] and [Ga],
where one replaces GrG with the group N((t)) acting on it, by a different geometric object,
which is supposed to mimic its properties. This other object is the Drinfeld compactification,
denoted in this paper by W, and it involves a choice of a projective curve X . In addition to
being less natural, the category Whit(GrG), defined in this way, has the main disadvantage
that its local nature (we think of the ring C[[t]] and the field C((t)) as associated to a formal
disc of a point x on a not necessarily complete curve X) is not obvious.

We will explain the definition of Whit(GrG) via W in Sect. 1.2 and Sect. 2.5. For the purposes
of the introduction we will pretend that the first approach mentioned above works, i.e., that
we have a direct local definition of Whit(GrG) := D-mod(GrG)N((t)),χ.

Having ”defined” Whit(GrG), the main theorem of the paper [FGV] can be rephrased as
follows: there exists an equivalence of abelian categories D-mod(GrG)G[[t]] ≃Whit(GrG). More-
over, a naturally defined triangulated category, whose core is Whit(GrG), is semi-simple, i.e.,
we have an equivalence of abelian categories

(0.1) Whit(GrG) ≃ Rep(Ǧ),

which extends to an equivalence of the corresponding triangulated categories.
We emphasize that the latter statement regarding the original equivalence

(0.2) D-mod(GrG)G[[t]] ≃ Rep(Ǧ)

would be false: the G[[t]]-equivariant derived category of D-modules on GrG is not at all semi-
simple. This can be viewed as another reason why (0.2) does not have a quantum deformation.

0.3. Lurie’s category. Now we can explain Jacob Lurie’s idea. By the same token as we
”define” Whit(GrG), we can define its twisted version

Whitc(GrG) := D-modc(GrG)N((t)),χ.

This makes sense since the Kac-Moody extension Ĝ canonically splits over N((t)). His conjecture
can be stated as

Conjecture 0.4. There exists an equivalence

Whitc(GrG) ≃ Rep(Uq(Ǧ)), q = exp(πic).

In this paper we will essentially prove this conjecture for q being not a root of unity.

Let us note that the assertion of the above conjecture is inherently transcendental, due to
the appearance of the exponential function relating the parameters on both sides. We will cure
this as follows:

When q is not a root of unity, i.e., when c is irrational, we will eventually replace the RHS,
i.e., Rep(Uq(Ǧ)), by another category, namely that of factorizable sheaves, denoted FSc(Ǧ),
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which will also be equivalent to Rep(Uq(Ǧ)) by a transcendental procedure. In the present
paper we will establish an equivalence

(0.3) Whitc(GrG) ≃ FSc(Ǧ),

which is algebraic; in particular, both sides and the equivalence between them are defined over
an arbitrary ground field of characteristic 0.

At present we do not know how to modify the definition of FSc(Ǧ) to obtain a category,
equivalent to Rep(Uq(Ǧ)) for all q. 1 There is, however, another category with this property,
see Sect. 0.7.

0.5. Chiral categories. Returning to the statement of Conjecture 0.4, we should explain
what are the additional structures on both sides, which are supposed to be respected by the
conjectural equivalence. (If for generic q we just kept the abelian category structure on both
sides, the statement of the conjecture would not be very interesting, as both LHS and RHS are
semi-simple categories with naturally identified sets of irreducible objects.)

The RHS of the equivalence, i.e., Rep(Uq(Ǧ)), is a braided monoidal category. The LHS is
supposed to have another kind of structure, that we shall call ”fusion” or ”chiral” category.
The notion of chiral category is a subject of another work in progress of Jacob Lurie and the
author.

Unfortunately, in the present global definition of Whitc(GrG), the chiral category structure
on it is not evident; therefore we do not give a formal definition in the main body of the paper.
Let us, nonetheless, indicate it here.

Let X be a smooth curve (not necessarily complete). First, let us recall that a chiral algebra
over X (see [CHA], Sect. 3.4 for the detailed definition) is a rule that assigns to a natural
number n a quasi-coherent sheaf An over Xn, with a certain factorization data. E.g., for n = 2,
we must be given an isomorphism between A2|X×X−∆(X) and A1 ⊠ A1|X×X−∆(X), and an
isomorphism A2|∆(X) ≃ A1. We must be given a compatible family of such isomorphisms for
any partition n = n1 + ... + nk. Each An must be endowed with an equivariant structure
with respect to the symmetric group Σn, and the factorization isomorphisms must respect this
structure. Finally, the collection An must be endowed with a unit, which is a map from the

collection given by A
(n)
unit := OXn to An.

The definition of a chiral category is similar. A chiral category consists of a data of categories
Cn over 2 Xn defined for each n, endowed with a compatible family of equivalences such as

C2|X×X−∆(X) ≃ C1 ⊠ C1|X×X−∆(X) and C2|∆(X) ≃ C1,

etc, and a family of unit objects 1n ∈ Cn.
For a given chiral category and a point x ∈ X we shall denote by Cx the fiber of C1 at x. In

most cases of interest, Cx will depend on the formal disc around x in X in a functorial way. So,
one can view the notion of chiral category as that of a category C (thought of as Cx) endowed
with an additional structure.

Once the local definition of Whitc(GrG) becomes available, the factorization structure of the
affine Grassmannian (see [MV], Sect. 5) would imply that Whitc(GrG) is a chiral category. With

1A candidate for a such a modification of FSc(Ǧ) has been found when this paper was under revision in
December 2007.

2The notion of abelian category over a scheme or stack can be found in [Ga1]. However, for a reasonable
definition of chiral categories, one needs to work at the triangulated level. We refer the reader to [Lu] or [FG],
where the corresponding notions have been developed.
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the current non-local definition, we will consider the corresponding categories Whitc(GrG)n

separately, without discussing their factorization properties.

Assume for a moment that our ground field is C, the curve X is A1, and C is a braided
monoidal category. In this case one expects to have a transcendental procedure that endows C

with a structure of chiral category.

Thus, the equivalence of Conjecture 0.4 should be understood as an equivalence of chiral
categories, where the chiral structure on the RHS is transcendental and comes from the braided
monoidal structure.

0.6. Factorizable sheaves. Let us return to the category FSc(Ǧ), mentioned before. 3 This
category was introduced in a series of works of M. Finkelberg and V. Schechtman in order
to upgrade to the level of an equivalence of categories earlier constructions of various objects
related to Uq(Ǧ) as cohomology of certain sheaves on configuration spaces.

By its very construction, FSc(Ǧ) is a chiral category. In the present paper we introduce the
corresponding categories FSc(Ǧ)n explicitly, but we do not discuss their factorization properties,
although the latter are, in a certain sense, evident.

The main result of [BFS] can be interpreted as follows: we have an equivalence of chiral
categories

(0.4) FSc(Ǧ) ≃ Rep(uq(Ǧ)), q = exp(πic).

Here uq(Ǧ) is the small quantum group, corresponding to Ǧ, which coincides with the big

quantum group Uq(Ǧ), when q is not a root of unity, but is substantially different when it
is. (The latter fact is responsible for our inability to pass from the category Whitc(GrG) to
Rep(Uq(Ǧ)) for all q.)

In (0.4) the RHS acquires a chiral category structure from the monoidal category structure
via the procedure mentioned in Sect. 0.5.

The main result of the present paper, Theorem 3.11, is that we have an equivalence for c /∈ Q:

Whitc(GrG)n ≃ FSc(Ǧ)n

for every n. This should be interpreted as an equivalence of chiral categories

(0.5) Whitc(GrG) ≃ FSc(Ǧ),

thereby proving Conjecture 0.4 for irrational c.

0.7. Kazhdan-Lusztig equivalence. Let us now mention another equivalence of categories,
namely that of [KL]. For a simple group G1 and an invariant form κ1 : g1 ⊗ g1 → C consider
the category of representations of the corresponding affine Kac-Moody algebra ĝ1, denoted
ĝ1-modκ1

. Let us denote by KLκ1(G1) the subcategory of ĝ1-modκ1
, consisting of representa-

tions, on which the action of the Lie subalgebra g1[[t]] ⊂ ĝ1 integrates to an action of the group
G1[[t]].

Let us write κ1 = c1−ȟ1

2ȟ1
· κKil(g1), where ȟ1 is the dual Coxeter number of g1 and Kil(g1) is

the Killing form. Let as assume that c1 /∈ Q≥0.
In [KL] it was shown that KLκ1(G1) can be endowed with a structure of braided monoidal

category, and us such it is equivalent to the category Rep(Uq(G1)), where q and κ1 are related

3We should note that our definition of the category FSc(Ǧ) differs from the original one in [BFS] in that
we work with twisted D-modules on configuration spaces rather than with ordinary D-modules. This allows to
introduce this category over an arbitrary curve, whereas in [BFS] one was restricted to genus 0.
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by the following formula q = exp( πi
c1d1

) for c1 as above, and where d1 is the ratio of the squares
of lengths of the shortest and longest roots in g1.

This result is also natural to view in the language of chiral categories. Namely, both ĝ1-modκ1

and KLκ1(G1) are naturally chiral categories. We expect that the monoidal structure on
KLκ1(g1), defined in [KL], comes from a chiral category structure by the procedure mentioned
in Sect. 0.5. Thus, the equivalence of [KL]

(0.6) KLκ1(G1) ≃ Rep(Uq(G1))

should be understood in the same framework as (0.4) and Conjecture 0.4: it is an equivalence
of chiral categories, where the corresponding structure on the RHS comes from the braided
monoidal structure.

Note that we can combine (0.4) and (0.6), bypassing the quantum group altogether. We
propose:

Conjecture 0.8. For c1 /∈ Q we have an equivalence of chiral categories

KLκ1(G1) ≃ FS
1

c1d1 (G1).

This equivalence is algebraic, i.e., exists over an arbitrary ground field of characteristic 0.

Let us note that neither of (0.4), (0.6) or Conjecture 0.8 involves Langlands duality. In fact,
it appears that Conjecture 0.8 is not so far-fetched, and is currently the subject of a work in
progress.

0.9. Combining the equivalences. Let us now combine the discussion in Sect. 0.7 with
Conjecture 0.4. As will be explained in Sect. 2.11, it is more natural to replace the parameter c in

the definition of Whitc(GrG) by an invariant form κ : g⊗g→ C, related to c by κ = c−ȟ

2ȟ
·κKil(g).

Let κ and κ̌ be invariant forms on g and ǧ, respectively, related as follows: the forms
Bh := κ + 1

2 · κKil(g)|h and Bȟ := κ̌ + 1
2 · κ̌Kil(ǧ)|ȟ are non-degenerate and satisfy

Bȟ = B−1
h .

This makes sense, since the Cartan subalgebras h ⊂ g and ȟ ⊂ ǧ are mutually dual vector
spaces. Assume, in addition, that the corresponding scalar č is not in Q≥0. (Note that the
scalars c and č are related by č = 1

cd
.)

Combining Conjecture 0.8 and (0.5) we propose:

Conjecture 0.10. There exists an equivalence of chiral categories

Whitc(GrG) ≃ KLκ̌(Ǧ).

Note that unlike (0.5) and Conjecture 0.8, the above Conjecture 0.5 is supposed to hold even
for rational (but non-negative) values of c.

0.11. Relation to quantum geometric Langlands correspondence. We are now going
to put the assertion of Conjecture 0.10 into the framework of quantum geometric Langlands
correspondence, as was proposed by B. Feigin, E. Frenkel and A. Stoyanovsky (see [Sto]),
motivated by an earlier work of Feigin and Frenkel on the duality of W-algebras.

Let κ and κ̌ be as above. For a global curve X , consider the stacks BunG and BunǦ of

principal bundles on X with respect to G and Ǧ, respectively, along with the corresponding
derived categories of twisted D-modules: D(D-modc(BunG)) and D(D-modč(BunG)). In loc.
cit. the following equivalence was proposed:
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Conjecture 0.12.
D(D-mod−c(BunG)) ≃ D(D-modč(BunǦ))

.

It is supposed to degenerate to the ”usual” geometric Langlands equivalence

D(D-mod(BunG)) ≃ D(QCoh(LocSysǦ))

as c→ 0 and therefore č→∞.

We would like to propose yet one more conjecture expressing the compatibility between
Conjecture 0.10 and Conjecture 0.12. Let us fix points x1, ..., xn on the curve. We have the
categories Whitc(G)xi

and KLκ̌(Ǧ)xi
attached to each of these points.

We claim that there exists a natural functor

Poinc : Whitc(G)x1
× ...×Whitc(G)xn

→ D(D-mod−c(BunG)).

This is a geometric analog of the Poincaré series operator in the theory of automorphic functions;
4 i.e., the adjoint operator to that associating to an automorphic function its Whittaker model.
When we interpret the categories Whitc(G)xi

by the second method adopted in this paper (see
Sect. 0.2), the functor Poinc corresponds to the direct image by means of the morphism of
stacks W→ BunG.

In addition, there exists a naturally defined functor

Loc : KLκ̌(Ǧ)x1
× ...×KLκ̌(Ǧ)xn

→ D(D-modč(BunǦ)).

Namely, given objects Vi ∈ KLκ̌(Ǧ)xi
, the fiber of Loc(V1, ..., Vn) at a Ǧ-bundle FǦ is given by

H•(ǧ
FǦ

out, V1 ⊗ ...⊗ Vn),

where ǧ
FǦ

out is the Lie algebra of sections of the associated bundle with the adjoint representation
over the punctured curve X − {x1, ..., xn}.

We propose:

Conjecture 0.13. The diagram of functors

Whitc(G)x1
× ...×Whitc(G)xn

Conjecture 0.10
−−−−−−−−−−→ KLκ̌(Ǧ)x1

× ...×KLκ̌(Ǧ)xn

Poinc

y Loc

y

D(D-mod−c(BunG))
Conjecture 0.12
−−−−−−−−−−→ D(D-modč(BunǦ))

commutes.

0.14. Acknowledgments. Jacob Lurie, whom the main idea of the present paper belongs to,
decided not to sign it in the capacity of author. I would like to express my gratitude to him
for numerous discussions directly and indirectly related to the contents of the present paper, as
well as a lot of other work in progress.

I would also like to express my gratitude to M. Finkelberg for patient and generous expla-
nations of the contents of [BFS], which this paper is based on.

The ideas related to quantum geometric Langlands correspondence, that center around Con-
jecture 0.13, have received a crucial impetus from communications with A. Stoyanovsky and
from discussions with A. Braverman and E. Witten.

4The fact that the functor Poinc flips the sign of c is related to a certain choice we make when we define the
category Whitc(G), see Sect. 2.2.
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I would also like to thank A. Beilinson, R. Bezrukavnikov, E. Frenkel and D. Kazhdan for
useful and inspiring discussions.

1. Overview

In this section we shall explain the technical contents of this paper, section by section.

1.1. Conventions. Throughout the paper we work over an arbitrary algebraically closed
ground field of characteristic zero; X will be a smooth projective curve. We denote by ω the
canonical line bundle on X .

In the main body of the paper G will be a reductive group with [G, G] simply connected.
We choose a Borel subgroup B ⊂ G, its opposite B− ⊂ G and identify the Cartan quotient
T := B/N with B ∩B−.

By Λ̌ we will denote the coweight lattice, and by Λ its dual–the weight lattice; by 〈, 〉 we will
denote the canonical pairing between the two. By Λ̌+ (resp., Λ+) we will denote the semi-group
of dominant coweights (resp., weights). By ∆ (resp., ∆+) we shall denote the set if roots (resp.,
positive roots); by I we shall denote the set of vertices of the Dynkin diagram; for ı ∈ I we let
αı (resp., α̌ı) denote the corresponding simple root (resp., coroot). By Λ̌pos (resp., Λpos) we
shall denote the positive span of simple co-roots (resp., roots). For λ̌1, λ̌2 ∈ Λ̌ we shall say that
λ̌1 ≥ λ̌2 if λ̌1 − λ̌2 ∈ Λ̌pos.

We choose once and for all a square root ω
1
2 of the canonical bundle ω. For a half-integer i,

by ωi we will mean (ω
1
2 )⊗2i. We let ωρ̌ denote the T -bundle induced by means of 2ρ̌ : Gm → T

from ω
1
2 .

For an ind-scheme (or strict ind-stack) by a D-module on it we shall mean a D-module
supported on some closed subscheme (or substack).

1.2. Sect. 2. This section is devoted to the surrogate definition of the Whittaker category
Whitc using a complete curve X . The idea is the following.

Let us think of the field C((t)) (resp., the ring C[[t]] ) as the local field (ring) of a point x ∈ X .
Let Nout be the group-subscheme of N((t)) consisting of maps (X−x)→ N . By construction, the
character χ : N((t))→ Ga is trivial when restricted to Nout, so whatever (N((t)), χ)-equivariant
D-modules are, they should give rise to D-modules on the quotient Nout\GrG.

Although Nout\GrG makes sense as a functor on the category of schemes, it is not a kind of
algebraic stack, on which one can define D-modules directly. However, one can cure this pretty
easily, by embedding it into another object, denoted in this paper by Wx, the latter being a
strict ind-stack and D-modules on it make sense.

Explicitly, Nout\GrG classifies the data of a principal G-bundle FG over X , endowed with
a reduction to N over X − x. The stack Wx replaces the word ”reduction” by ”generalized
reduction” or ”Drinfeld structure”. The stacks classifying these generalized reductions are
known as Drinfeld’s compactifications; they are studied in detail, e.g., in [FFKM] or [BG].

Our surrogate Whittaker category Whitx is introduced as a category of D-modules on Wx

that satisfy a certain equivariance condition, which is supposed to restore the (N((t)), χ)-
equivariance on Nout\GrG. Moreover, this equivariance condition forces objects of Whitx to
have zero stalks and co-stalks away from Nout\GrG. So, our Whitx is the ”right” replacement
for D-mod(GrG)N((t)),χ, the only disadvantage being that the geometric object, on which it is
realized, i.e., Nout\GrG, depends on the choice of the global curve X .

The above definition generalizes in a straightforward way to the case when instead of one
point x we have an n-tuple x of points x1, ..., xn. We obtain a category Whitx. One can prove,
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but in a somewhat ad hoc way, that the category Whitx is equivalent to the tensor product
Whitx1

⊗... ⊗ Whitxn
. The non-triviality of the latter comparison is the expression of the

non-locality of our definition of Whitx.
In the main body of the paper we allow the n-tuple x vary along Xn; and we will consider

the appropriate category of D-modules, denoted Whitn. 5

The twisted version Whitc
x (resp., Whitc

x, Whitc
n) is defined as follows. By construction, the

stack Wx (resp., Wx, Wn) is endowed with a forgetful map to the moduli stack of principal G-
bundles over X , denoted BunG. Instead of ordinary D-modules over Wx we consider D-modules,
twisted by means of the −c-th power of the pull-back of the determinant line bundle over BunG.
(In the main body of the paper our conventions differ from those in the introduction, in that
for G simple the twisting parameter c is scaled by 2ȟ, i.e., we use as a basic pairing g⊗ g→ C

the Killing form vs. the minimal integral form.)
The equivariance condition that singles the Whittaker category among all twisted D-modules

on Wx makes sense, just as it did in the untwisted case.

1.3. Sect. 3. In this section we review the category of factorizable sheaves, introduced in [BFS].

Let us fix an n-tuple of points x on our curve X . For a coweight µ̌, let X µ̌
x denote the space

of Λ̌-valued divisors on X of total degree µ̌, which are required to be anti-effective away from
supp(x). I.e., a point of X µ̌

x is an expression Σ
k

µ̌k · yk, where yk ∈ X are pairwise distinct and

Σ µ̌k = µ̌, and such that for yk 6= xi, the corresponding coweight µ̌k belongs to −Λ̌pos, i.e., is
in the span of simple coroots with coefficients in Z≤0.

One introduces a line bundle PX
µ̌

x
over X µ̌

x , which has a local nature, i.e., the fiber of PX
µ̌

x

at a point Σ
k

µ̌k · yk as above is the tensor product of lines (ω
1
2
yk)⊗N(µ̌k), where ω

1
2
yk denotes the

fiber of ω
1
2 at yk, and N(µ̌k) = (µ̌k, µ̌k + 2ρ̌)Kil.

By definition, a factorizable sheaf consists of a data of a twisted D-module Lµ̌, defined for
each µ̌, where the twisting is by the c-th power of PX

µ̌
x
. The twisted D-modules Lµ̌ for different

µ̌ are related by factorization isomorphisms. To explain what these are it would be easier to
pass to the analytic topology. Thus, let 1U and 2U be two non-intersecting open subsets of X ,
such that x ⊂ 1U; let µ̌ = µ̌1 + µ̌2.

We can consider the open subset

1Uµ̌1

x ×
2Uµ̌2

∅ ⊂ X µ̌1

x ×X µ̌2

∅ .

It admits a natural étale map to X µ̌
x . We require that the pull-back of Lµ̌ by means of this

map decomposes as a product of Lµ̌1 along the first factor, times a standard twisted D-module,
denoted L

µ̌1

∅ , along the first factor.

Thus, the ”behavior” of each Lµ̌ near a point Σ
k

µ̌k · yk is the tensor product over µ̌k of the

”behaviors” of Lµ̌k near µ̌k · yk ∈ X µ̌k

x , and the latter is pre-determined, unless yk coincides
with one of the xi’s.

In this way one obtains a category that we denote by F̃Sc
x. One singles out the desired

subcategory FSc
x ⊂ F̃Sc

x by imposing a condition on the singular support.

5Deviating slightly from the notation pertaining of chiral categories introduced in Sect. 0.5, our Whitn will
not be a category over Xn, but rather the category consisting of objects in the corresponding chiral category,
endowed with a connection along Xn.
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In [BFS] it is shown that the category FSc
x of factorizable sheaves (when x = {x}) is equivalent

to that of representations of the small quantum group uq(Ǧ), where the lattice Λ̌, being the set

of coweights of G, plays the role of the weight lattice for Ǧ.

1.4. Sect. 4. In this section we show how to construct a functor from Whitc
x to FSc

x, i.e., how
to pass from twisted D-modules on stacks Wx to twisted D-modules on configurations spaces
X µ̌

x , µ̌ ∈ Λ̌.
The idea goes back to the construction of the Satake homomorphism from the spherical

Hecke algebra to the algebra of functions on the Cartan subgroup of Ǧ, and whose geometric
analog was used in [MV] to construct the fiber functor in the usual case of D-mod(GrG)G[[t]].
Namely, the λ̌-weight space is recovered as cohomology of the orbit of the group N((t)) (or

N−((t)), as the two are G[[t]]-conjugate) passing through the point tλ̌ ∈ GrG.
We would like to do the same for Whitc = D-modc(GrG)N((t)),χ, namely take cohomology

along the orbits of N−((t)). The latter makes sense (at least non-canonically), as the line bundle
PGrG

trivializes over N−((t))-orbits.

However, in our context, for each λ̌ we want to obtain not just one vector space, but a twisted

D-module over X λ̌
x , with the factorization property. The idea is to repeat the above procedure

of taking cohomology along N−((t))-orbits in the family parameterized by X λ̌
x . Such families

for all λ̌ are provided by Zastava spaces, and they are well-adapted for our definition of Whitc.

Zastava spaces were introduced in [FFKM]. By definition, a point of the Zastava space Z
µ̌
x is

a point of Wx, i.e., a G-bundle, endowed with a generalized reduction to N away from supp(x),
and additionally, with a reduction to B− of degree µ̌ (up to a shift by (2g − 2) · ρ̌), defined
everywhere, which at the generic point of X is transversal to the given reduction to N . The
measure of global non-transversality of the two reductions is given by a point of X µ̌

x , i.e., we

have a map π : Z
µ̌
x → X µ̌

x .

It is a basic observation of [FFKM] (see also [BFGM]) that the space Z
µ̌
x factorizes over X µ̌

x .

Namely, for a point µ̌k ·yk ∈ X µ̌k

x , the fiber of π over it is a product Π
k

Z
µ̌k

loc,yk
, where each Z

µ̌k

loc,yk

is a subscheme of the affine Grassmannian GrG = G((t))/G[[t]] (here t is a local parameter at
yk) that depends only on µ̌k.

Another crucial observation is that the line bundle on Z
µ̌
x, equal to the pull-back (from Wx of

the pull back) of the determinant line bundle on BunG, is canonically the same as the pull-back

by means of π of the line bundle PX
µ̌
x

over X µ̌
x . Therefore, we have a direct image functor

between the corresponding categories of twisted D-modules.
This allows us to construct the desired functor G : Whitc

x → FSc
x. Namely, starting from

F ∈ Whitc
x, we let the µ̌-component Lµ̌ of G(F) to be the direct image under π of the pull-

back of F from Wx to Z
µ̌
x. In order to show that F 7→ {Lµ̌} defined in this way is indeed a

(reasonable) functor Whitc
x → FSc

x we need to check several things.

First, in Proposition 4.13, we establish a factorization property of twisted D-modules on Z
µ̌
x

obtained by pull-back from twisted D-modules on Wx that belong to Whitc
x. For an object

F ∈ Whitc
x, its restriction to the fiber of π over a point of X µ̌

x , identified by the above with a

product Π
k

Z
µ̌k

loc,yk
, decomposes as an external product ⊠

k
F

µ̌k

loc,yk
.

This insures, among the rest, that although the forgetful map Z
µ̌
x → Wx is not in general

smooth, the pull-back functor applied to twisted D-modules that belong to Whitc does not
produce higher or lower cohomologies.
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The next step consists of analyzing the direct image with respect to the morphism π : Z
µ̌
x →

X µ̌
x . Proposition 4.10 insures that this operation does not produce higher or lower cohomology

either. Moreover, Theorem 4.11 states that when c /∈ Q, the direct image coincides with the
direct image with compact supports.

Finally, we need to establish that the system {Lµ̌} satisfies the required factorization prop-
erty. The fact that it satisfies some factorization property (i.e., one, where the standard twisted

D-module L
µ̌

∅ is replaced by a certain ′L
µ̌

∅ ) is an immediate corollary of Proposition 4.13, men-

tioned above. The fact that ′L
µ̌

∅ ≃ L
µ̌

∅ is one of the main technical points of the present paper
and is the content of Theorem 4.16.

1.5. Sections 5 and 6. These two sections are devoted to the proofs of Proposition 4.10 and
Theorem 4.16.

The proof of Proposition 4.10 has two ingredients. One is the estimate on the dimension of
the fibers of the map π : Z

µ̌
x → X µ̌

x , which amounts to estimating the dimensions of the schemes

Z
µ̌
loc. The second step consists of showing that the lowest degree cohomology in

(1.1) H(Zµ̌
loc,y, (F∅)

µ̌
loc)

vanishes, where F∅ is the ”basic” object of Whit. This amounts to a calculation that follows
from [FGV], Proposition 7.1.7 coupled with [BFGM], Prop. 6.4.

Theorem 4.16 is concerned with the direct image under π of the pull-back of the basic object
F∅ to Z

µ̌

∅ (we denote the resulting twisted D-module on X µ̌

∅ by ′L
µ̌

∅ ). We have to identify it

with the standard twisted D-module L
µ̌

∅ .
Part (1) of the theorem asserts that this identification exists away from the diagonal divisor

on X µ̌

∅ . This amounts to identifying the cohomology H(Gm, χ⊗ Ψ(c)) with C, where χ is the
Artin-Schreier D-module on Ga, and Ψ(c) is the Kummer D-module on Gm, corresponding to
the scalar c.

Part (2) of the theorem asserts that ′L
µ̌

∅ is the Goresky-MacPherson extension of its restric-
tion to the complement of the diagonal divisor. This is true only under the assumption that c
is irrational. The latter amounts to two things: one is the essential self-duality of ′L

µ̌

∅ , which
follows from Theorem 4.11; the other is the assertion that for µ̌, not equal to the negative of one
of the simple co-roots, the cohomology (1.1) vanishes also in the sub-minimal degree, allowed
by dimension considerations. This is done by a direct analysis.

1.6. Sect. 7. In this section we prove Theorem 4.11, which states that the functor G : Whitc
n →

FSc
n essentially commutes with Verdier duality. More precisely, we prove that for a twisted D-

module on Zµ̌
n, obtained as a pull-back of an object F ∈Whitc

n ⊂ D-modc(Wn), its direct image
onto X µ̌

n under π equals the direct image with compact supports.

To prove this fact we introduce a compactification Bun
µ̌

B− of the stack Bunµ̌

B− along the

fibers of the projection Bunµ̌

B− → BunG, by allowing the reduction of a G-bundle to B− to
degenerate to a Drinfeld structure.

Whereas Zµ̌
n was an open sub-stack of the fiber product Wn ×

BunG

Bunµ̌

B− , we define Z
µ̌

n to

be the corresponding open sub-stack of Wn ×
BunG

Bun
µ̌

B− . The map π : Zµ̌
n → X µ̌

n extends to a

map π : Z
µ̌

n → X µ̌
n . The main observation is that the map π is proper.

Let − denote the open embedding Bunµ̌

B− →֒ Bun
µ̌

B− , and denote by ′− the base-changed

map Zµ̌
n →֒ Z

µ̌

n. Theorem 4.11 is an easy corollary of another result, Theorem 7.3, that states
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that for F ∈ Whitc
n, its pull-back to Zµ̌

n is clean with respect to ′−, i.e., the direct image ′−∗
equals ′−! .

We deduce Theorem 7.3 from Theorem 7.6 that states the ”constant” twisted D-module
on Bunµ̌

B− is clean with respect to Bun
µ̌

B− . The latter theorem is proved by a word-for-word

repetition of the calculation of the intersection cohomology sheaf on Bun
µ̌

B− , performed in
[BFGM].

1.7. Sect. 8. In this section we finish the proof of the fact that the functor G : Whitc
n → FSc

n

is an equivalence.
We first show that the functor G induces an equivalence for a fixed set of pole points x =

x1, ..., xn:

(1.2) Whitc
x → FSc

x .

This essentially reduces to the fact that the category Whitc
x is semi-simple for c irrational.

The final step is to show that the equivalences (1.2) glue together as x moves along Xn. The
essential ingredient here is Theorem 4.11 that asserts that the functor G is essentially Verdier
self-dual.

2. The twisted Whittaker category

2.1. For n ∈ Z≥0 we consider the n-th power of X , and the corresponding version of the Drin-
feld compactification, denoted Wn over Xn. By definition, Wn is the ind-stack that classifies
the following data:

• An n-tuple of points x1, ..., xn of X .
• A G-bundle FG on X (For a dominant weight λ we shall denote by Vλ

FG
the vector

bundle associated with the corresponding highest weight representation.)
• For each dominant weight λ a non-zero map

κλ : ω〈λ,ρ̌〉 → Vλ
FG

,

which is allowed to have poles at x1, ..., xn. The maps κλ are required to satisfy the
Plücker relations (see [BG], Sect. 1.2.1).

Let p denote the natural forgetful map Wn → BunG. When n = 0 we shall use the notation
W∅, or sometimes simply W.

2.2. Let PBunG
be the determinant line bundle on BunG. We normalize it so that the fiber

over FG ∈ BunG is

detRΓ(X, gFG
)⊗

(
⊗

α∈∆

detRΓ
(
X, ω〈α,ρ̌〉

))⊗−1⊗(
detRΓ (X, O)

)− dim(t)

,

where t is the Cartan subalgebra of G. (The second and third factors are lines that do not
depend on the point of BunG; the reason for introducing them will become clear later.)

Let PWn
denote the inverse of the pull-back of PBunG

to Wn by means of p. For a scalar
we shall denote by D-modc(Wn) the category of ”(PWn

)⊗c”-twisted D-modules on Wn. When
c = 0 (or, more generally, when c is an integer) this category is canonically equivalent to
D-mod(Wn).



12 D. GAITSGORY

2.3. We are now going to introduce a full subcategory of Dc-mod(Wn), denoted Whitc
n. When

c = 0, this is the Whittaker category of [FGV]; for an arbitrary c the definition is not much
different. As the definition follows closely [FGV], Sect. 6.2 and [Ga], Sect. 4 we shall omit
most of the proofs and the refer the reader to loc. cit..

Fix a point y ∈ X let Breg
y (resp., Bmer

y ) be the group (resp., group ind-scheme) of automor-

phisms of the B-bundle induced by means of T → B from ωρ̌ over the formal disc Dy (resp.,
formal punctured disc D×

y ) around y. This group is non-canonically isomorphic to B(Oy) (resp.,
B(Ky)), where Oy (resp., Ky) is the completed local ring (resp., field) at y.

Let Nreg
y ⊂ Breg

y (resp., Nmer
y ⊂ Bmer

y ) be the kernel of the natural homomorphism Breg
y →

T (Oy) (resp., Bmer
y → T (Ky)). Note that

Nmer
y /[Nmer

y , Nmer
y ] ≃ ω|

D
×
y
× ...× ω|

D
×
y︸ ︷︷ ︸

r times

,

where r is the semi-simple rank of G. Taking the residue along each component we obtain a
canonical homomorphism χy : Nmer

y → Ga.

Fix a non-empty collection of distinct points y := y1, ..., ym, and set N
reg
y (resp., Nmer

y ) to

be the product of the corresponding groups Nreg
yj

(resp., Nmer
yj

). We shall denote by χy the

corresponding homomorphism Nmer
y → Ga.

Consider an open substack (Wn)good at y of Wn corresponding to the condition that the

points x1, ..., xn stay away from y, and the maps κλ are injective on the fibers over yj , j = 1, ..., m
(this is equivalent to asking that κλ be an injective bundle map on a neighborhood of these
points).

Note that a point of this substack defines a B-bundle over each Dyj
, such that the induced

T -bundle is ωρ̌|Dyj
. We define a N

reg
y -torsor over (Wn)good at y that classifies the data as above

plus an additional choice of identification βyj
of this B-bundle with B

T
× ωρ̌|Dyj

, which is

compatible with the existing identification of the corresponding T -bundles.
Let us denote the resulting stack by yWn. The standard re-gluing construction equips yWn

with an action of the group ind-scheme Nmer
y (see [FGV], Sect. 3.2 or [Ga], Sect. 4.3).

Let P
yWn

be the pull-back of the line bundle PWn
to yW̃n.

Lemma 2.4. The action of Nmer
y on yWn naturally lifts to an action on P

yWn
.

Proof. For a point

{(x1, ..., xn), FG, κλ, βj} ∈ yW̃n and {nj ∈ Nmer
yj
},

let {(x1, ..., xn), F′
G, κ′λ, β′

j} be the corresponding new point of yW̃n. We have to show that the
lines

(PBunG
)FG

and (PBunG
)
F′

G

are canonically isomorphic.
However, the ratio of these two lines is canonically isomorphic to the product over j = 1, ..., m

of relative determinants of the G-bundles FG|Dyj
and F′

G|Dyj
, which by definition are identified

over the corresponding punctured discs D×
yj

. Both these bundles are equipped with reductions

to B that coincide over D×
yj

and such that the induced isomorphism of T -bundles is regular
over the non-punctured disc. This establishes the required isomorphism between the lines. �
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2.5. We define (Whitc
n)good at y to be the full subcategory of D-modc

(
(Wn)good at y

)
consist-

ing of D-modules on yW̃n that are (Nmer
y , χy)-equivariant 6 (see [FGV], Sect. 6.2.6 or [Ga],

Sect. 4.7).
Note that the N

reg
y -equivariance condition canonically descends any such D-module from

yW̃n to (Wn)good at y.

Let now y′ and y′′ be two collections of points, and set y = y′ ∪ y′′. Note that

(Wn)good at y′ ∩ (Wn)good at y′′ = (Wn)good at y .

In particular, we can consider the corresponding groups N
reg
y′ , N

reg
y′′ and N

reg
y and torsors with

respect to them over
(
W̃n

)
good at y

. Let us consider the corresponding three subcategories of

D-modc

((
W̃n

)
good at y

)
. As in [Ga], Corollary 4.14 one shows that, as long as y′ and y′′ are

non-empty, the above three subcategories coincide.

This shows that we have a well-defined full-subcategory Whitc
n ⊂ Dc-mod(Wn): an object

F belongs to Whitc
n if for any y as above, its restriction to any

(
W̃n

)
good at y

belongs to

(Whitc
n)good at y.

2.6. Let us fix points x := x1, ., , xn and denote by Wx (resp., W̃x) the fiber over the corre-
sponding point of Xn. With no restriction of generality we can assume that all the points xi

are distinct. Let Whitc
x denote the corresponding category of twisted D-modules on Wx.

The same analysis as in [FGV], Lemma 6.2.4 or [Ga], Prop. 4.14, shows that every object of
Whitc

x is holonomic, and one obtains the following explicit description of the irreducibles (and
some other standard objects) in this category.

Let λ̌ = λ̌1, ..., λ̌n be an n-tuple of dominant coweights of G. Let W
x,λ̌

be a locally closed

substack of Wx consisting of points {FG, κλ}, where each κλ has a pole of order 〈λ, λ̌i〉 at xi

and no zeroes anywhere else. Let 
x,λ̌

denote the corresponding locally closed embedding; by

[FGV], Prop. 3.3.1, this map is affine.

Proceeding as above, for every such λ̌, one can introduce the category Whitc

x,λ̌
. The following

is shown as [FGV], Lemma 6.2.4 or [Ga], Prop. 4.13:

Lemma 2.7. The category Whitc

x,λ̌
is (non-canonically) equivalent to that of vector spaces.

Let F
x,λ̌

denote the unique irreducible object of the above category (it is a priori defined up

to a non-canonical scalar automorphism). Let F
x,λ̌,!

(resp., F
x,λ̌,∗

, F
x,λ̌,!∗

) denote its extension

by means of 
x,λ̌,!

(resp., 
x,λ̌,∗

, 
x,λ̌,!∗

) on the entire Wx. All of the above objects are D-modules

since the map 
x,λ̌

is affine (see [FGV], Prop. 3.3.1 or [BFG], Theorem 11.6 for an alternative

proof). As in [FGV], Prop. 6.2.1 or [Ga], Lemma 4.11, one shows that all three are objects of
Whitc

x.

Lemma 2.8.

(a) Every irreducible in Whitc
x is of the form F

x,λ̌,!∗
for some λ̌.

6The role of the Artin-Schreier sheaf in the world of D-modules in plaid by the exponential D-module exp

on Ga. We recall that the D-module exp on Ga is generated by one section ”ez” that satisfies the relation
∂z · ”ez” = ”ez”, where z is a coordinate on Ga.
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(b) The cones of the canonical maps

(2.1) F
x,λ̌,!
→ F

x,λ̌,!∗
→ F

x,λ̌,∗

are extensions of objects F
x,λ̌′,!∗

for λ̌′ < λ̌.

It is a basic fact (which is the main theorem of [FGV]) that for c = 0 the canonical maps in
(2.1) are isomorphisms. This will no longer be true for an arbitrary c, but as we shall show, it
will still be true for c /∈ Q.

2.9. Let us describe more explicitly the basic object of the category Whitc
∅, which we shall

denote by F∅. Consider the open substack W∅,0 ⊂W∅. From the definition of the line bundle
PBunG

we obtain:

Lemma 2.10. The restriction of PW∅
to W∅,0 admits a canonical trivialization.

Thus, the category Whitc
∅,0 is the same as Whit∅,0.

In addition, the sum of residues gives rise to a map W∅,0 → Ga. We define F∅,0 as the object
of Whitc

∅,0, corresponding to the pull-back of the D-module exp from Ga to W∅,0 under this
morphism.

Since there are no dominant weights ≤ 0, from Lemma 2.8(b) we obtain:

∅,0,!(F∅,0) ≃ ∅,0,!∗(F∅,0) ≃ ∅,0,∗(F∅,0).

We set F∅ to be the above object of Whitc
∅.

2.11. The parameter ”c”. Note that when the adjoint group, corresponding to G, is semi-
simple (and not simple), the line bundle PBunG

is naturally a product of lines bundles corre-
sponding to the simple factors of Gad. Therefore, when defining the categories Whitc

n, instead
of one scalar c one can work with a k-tuple of scalars, where k is the number of simple factors.

More invariantly, from now on we shall understand c as an ad-invariant symmetric bilinear
form gad ⊗ gad → C, or equivalently, a Weyl group invariant symmetric bilinear form (, )c :
Λ̌Gad

⊗ Λ̌Gad
→ C.

We will say that c is ”integral” if the latter form takes integral values. In this case it is

known that ”(PBunG
)⊗c” is defined as a line bundle. Hence, the categories Whitc′

n and Whitc′′

n

with c′′ − c′ integral are equivalent.

We will say that c is non-integral if (α̌ı, α̌ı)c /∈ Z for any ı ∈ I. Note, that unless G is simple,
not ”integral” is not the same as ”non-integral”.

We shall say that c is irrational if the restriction of c to each of the simple factors is an
irrational multiple of the Killing form. Equivalently, this means that (α̌ı, α̌ı)c /∈ Q for any
ı ∈ I.

3. The FS category

From now on in the paper we will assume that c is non-integral.
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3.1. For n ∈ Z≥0 and µ̌ ∈ Λ̌ we introduce the ind-scheme X µ̌
n , fibered over Xn to classify

pairs {(x1, ..., xn) ∈ Xn, D}, where D is a Λ̌-valued divisor on X of total degree µ̌ with the
condition that for every dominant weight λ, the Z-valued divisor 〈λ, D〉 is anti-effective away
from x1, ..., xn.

When n = 0, we shall use the notation X µ̌

∅ , or sometimes simply X µ̌. For this scheme to be

non-empty we need that µ̌ ∈ −Λ̌pos. If µ̌ = −Σ mı · α̌ı, we have

(3.1) X µ̌

∅ = Π
ı

X(mı).

We can represent X µ̌
n explicitly as a union of schemes as follows. Fix an n-tuple λ̌ = λ̌1, ..., λ̌n

of elements of Λ̌. We define a closed subscheme X µ̌

n,≤λ̌
⊂ X µ̌

n by the condition that the divisor

D′ := D− Σ
i=1,...,n

λ̌i ·xi is such that 〈λ, D′〉 is anti-effective. By adding the divisor Σ
i=1,...,n

λ̌i ·xi,

we identify the scheme X µ̌

n,≤λ̌
with X µ̌−λ̌1−...−λ̌n

∅ .

For another n-tuple λ̌
′
= λ̌′

1, ..., λ̌
′
n with λ̌′

i ≥ λ̌i we have a natural closed embedding X µ̌

n,≤λ̌
→֒

X µ̌

n,≤λ̌
′ . It is clear that

X µ̌
n = lim

−→

λ̌

X µ̌

n,≤λ̌
.

3.2. We are now going to introduce a certain canonical line bundle PX
µ̌
n

over X µ̌
n . Consider

the stack BunT ≃ Pic(X) ⊗
Z

Λ̌. On it we consider the following line bundle FBunT
: its fiber at

PT ∈ BunT is the line
(
⊗

α∈∆

detRΓ (X, α(FT ))

)
⊗

(
⊗

α∈∆

detRΓ
(
X, ω〈α,ρ̌〉

))⊗−1

.

Consider the Abel-Jacobi map

AJ : X µ̌
n → BunT

that sends a point {(x1, ..., xn) ∈ Xn, D} to the T -bundle ωρ̌(−D). We set

PX
µ̌
n

:= AJ∗(P⊗−1
BunT

).

The main property of the line bundle PX
µ̌
n

is that it has a local nature in X :

Lemma 3.3. The fiber of PX
µ̌
n

at point {(x1, ..., xn) ∈ Xn, D} ∈ X µ̌
n with D = Σ µ̌k · yk, is

canonically isomorphic to ⊗

k

(ω
1
2
yk)⊗(µ̌k,µ̌k+2ρ̌)Kil ,

where (·, ·)Kil is the Killing form on Λ̌.

This lemma implies in particular that the line bundle PX
µ̌
n

can be defined over X µ̌
n for a not

necessarily complete curve X . 7

For a partition n = n1 + n2, µ̌ = µ̌1 + µ̌2, consider the natural addition map addµ̌1,µ̌2
:

X µ̌1
n1
×X µ̌1

n2
→ X µ̌

n .

7The construction of the line bundle P
X

µ̌
n

starting from the form (·, ·)Kil is a particular case of a θ-data, see

[CHA], Sect. 3.10.3.
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For an n1-tuple and an n2-tuple of elements of Λ̌, λ̌1 and λ̌2, respectively, let X µ̌1

n1,≤λ̌1

⊂ X µ̌1
n1

and X µ̌2

n2,≤λ̌2

⊂ X µ̌2
n2

be the corresponding closed subschemes. Let

(
X µ̌1

n1,≤λ̌1

×X µ̌1

n2,≤λ̌2

)

disj

be the open part of the product, corresponding to the condition that the supports of the
corresponding divisors are disjoint. Note that the restriction of the map addµ̌1,µ̌2

to this open

subset is an étale map to the subscheme X µ̌

n,≤λ̌1∪λ̌2

.

From Lemma 3.3 we obtain the following factorization property:

(3.2) add∗
µ̌1,µ̌2

(PX
µ̌
n
)|„

X
µ̌1

n1,≤λ̌1

×X
µ̌1

n2,≤λ̌2

«

disj

≃ P
X

µ̌1
n1

⊠ P
X

µ̌2
n2

|„
X

µ̌1

n1,≤λ̌1

×X
µ̌1

n2,≤λ̌2

«

disj

,

compatible with refinements of partitions.

Let us also denote by (X µ̌1

∅ ×X µ̌2
n )disj ind-subscheme of X µ̌1

∅ ×X µ̌2
n consisting of points

{D1 ∈ X µ̌1

∅ , x ∈ Xn, D2 ∈ X µ̌2
n },

such that D1 is disjoint from both x and D2. Let us denote by addµ̌1,µ̌2,disj the restriction of
the map addµ̌1,µ̌2

to this open subset; it is also étale. We have an isomorphism

(3.3) add∗
µ̌1,µ̌2,disj(PX

µ̌
n
) ≃ P

X
µ̌1
∅

⊠ P
X

µ̌2
n

.

3.4. Let D-modc(X µ̌
n ) denote the category of ”P⊗c

X
µ̌
n

”-twisted D-modules on X µ̌
n .

As in Sect. 2.11, if the group Gad is not simple, the line bundle PX
µ̌
n

is naturally a product
of several line bundles, one for each simple factor. Hence, also in the present context we will
interpret c as an invariant symmetric bilinear form Λ̌ ⊗ Λ̌ → C. As in loc. cit., the categories

D-modc′(X µ̌
n ) and D-modc′′(X µ̌

n ) are equivalent if c′′ − c′ is integral.

In order to introduce the category of factorizable sheaves, we will need to define a particular
object of the category D-modc(X µ̌

∅ ), denoted L
µ̌

∅ .

Let
◦
X µ̌

∅ ⊂ X µ̌

∅ be the open subscheme, corresponding to divisors of the form Σ
k

µ̌k · yk with

all yk distinct and each µ̌k being the negative of one of the simple co-roots. Let jDiag denote
the corresponding open embedding.

By Lemma 3.3, the line bundle PX
µ̌

∅
| ◦
X

µ̌

∅

canonically trivializes. Indeed, (λ̌, λ̌ + 2ρ̌)Kil = 0

whenever λ̌ is of the form w(ρ̌)− ρ̌ for some w ∈ W ; in particular for λ̌ being a simple co-root.

Hence, the category D-modc(
◦
X µ̌

∅ ) is canonically the same as D-mod(
◦
X µ̌

∅ ).

We let
◦

L
µ̌

∅ ∈ D-modc(
◦
X µ̌

∅ ) to be the following object. It corresponds via the above equivalence

D-modc(
◦
X µ̌

∅ ) ≃ D-mod(
◦
X µ̌

∅ )

to the sign local system on
◦
X µ̌

∅ . The latter is, by definition, the product of sign local systems

on each
◦
X(mı) when we write X µ̌

∅ as in (3.1).

We define

L
µ̌

∅ := jDiag
!∗ (

◦

L
µ̌

∅ ).
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Note that the Goresky-MacPherson extension is taken in the category D-modc(
◦
X µ̌

∅ ) (and not

in D-mod(
◦
X µ̌

∅ )).

Example. Let G = SL2 and c be irrational. Then the fibers and co-fibers of L
µ̌

∅ on the closed

sub-variety X µ̌

∅ −
◦
X µ̌

∅ are zero.

By construction, the system of objects µ̌ 7→ L
µ̌

∅ has the following factorization property with
respect to (3.3): for µ̌ = µ̌1 + µ̌2,

(3.4) add∗
µ̌1,µ̌2,disj(L

µ̌

∅ ) ≃ L
µ̌1

∅ ⊠ L
µ̌2

∅ .

These isomorphisms are compatible with refinements of partitions.

3.5. We are now ready to introduce the sought-for category of factorizable sheaves. We define

F̃Sc
n to have as objects (twisted) D-modules Lµ̌

n ∈ D-modc(X µ̌
n ), defined for each µ̌ ∈ Λ̌,

equipped with factorization isomorphisms:
For any partition µ̌ = µ̌1 + µ̌2 and the corresponding map

addµ̌1,µ̌2,disj :
(
X µ̌1

∅ ×X µ̌2
n

)
disj
→ X µ̌

n ,

we must be given an isomorphism

(3.5) add∗
µ̌1,µ̌2,disj(L

µ̌
n) ≃ L

µ̌1

∅ ⊠ Lµ̌2
n ,

compatible with refinements of partitions with respect to the isomorphism (3.4).
A morphisms between two factorizable sheaves 1Ln = {1Lµ̌

n} and 2Ln = {2Lµ̌
n} is a collection

of maps 1Lµ̌
n →

2Lµ̌
n, compatible with the isomorphisms (3.5).

Let
◦
Xn

jpoles

→֒ Xn be the complement to the diagonal divisor. By the same token, we define

the category F̃Sc
◦
n
. We have a natural restriction functor (jpoles)∗ : F̃Sc

n → F̃Sc
◦
n

and its right

adjoint

(jpoles)∗ : F̃Sc
◦
n
→ F̃Sc

n.

Let now n be a partition n = n1 + ... + nk, and let Xk ∆n→ Xn and
◦
Xk

◦

∆n→ Xn be the
corresponding subschemes. We have the natural functors

(∆n)∗ : F̃Sc
k → F̃Sc

n and (
◦
∆n)∗ : F̃Sc

◦

k
→ F̃Sc

n.

The right adjoint functors are easily seen to be defined on the level of derived categories (the
latter are understood simply as the derived categories of the corresponding abelian categories)

(∆n)! : D+(F̃Sc
n)→ D+(F̃Sc

k) and (
◦
∆n)! : D+(F̃Sc

n)→ D+(F̃Sc
◦

k
),

and coincide with the same-named functors on the level of underlying twisted D-modules.

3.6. We shall now introduce a (full, abelian) subcategory FSc
n ⊂ F̃Sc

n, which will be our main

object of study. An object Ln ∈ F̃Sc
n belongs to FSc

n if the following two conditions are satisfied:

(i) Finiteness of support: Lµ̌
n is non-zero only for µ̌ belonging to finitely many cosets Λ̌/ Span(∆̌).

For each such coset, there exists ν̌ = ν̌1, ..., ν̌n ∈ Λ̌n, such that for each µ̌ belonging to the above
coset, the support of Lµ̌

n is contained in the subscheme X µ̌

n,≤ν̌
.
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(ii) To state the second condition, we shall first do it ”over”
◦
Xn, i.e., we will single out the

subcategory FSc
◦
n

inside F̃Sc
◦
n
.

Our requirement is that there are only finitely many collections (µ̌1, ..., µ̌n), such that for

µ̌ = Σ
i=1,...,n

µ̌i, the singular support of L
µ̌
◦
n
, viewed as a twisted D-module on

(3.6) X µ̌

n,≤ν̌
×
Xn

◦
Xn

(for some/any choice of ν̌ such that the support condition is satisfied), contains the conormal to

the sub-scheme
◦
Xn, where the latter is embedded into (3.6) by means of (x1, ..., xn) 7→ Σ µ̌i ·xi.

(Note that the above condition is actually a condition on µ̌: when the latter is fixed, there are
only finitely many partitions µ̌ = Σ

i=1,...,n
µ̌i with µ̌i ≤ ν̌i where ν̌ bounds the support of our

sheaf.)

Now, condition (ii) over Xn is that for any partition n = n1+...+nk each of the cohomologies

of (
◦
∆n)!(Ln), which is a priori an object of F̃Sc

◦

k
, belongs in fact to FSc

◦

k
.

3.7. Let us fix the pole points x = (x1, ..., xn) ∈ Xn, and let X µ̌
x denote the fiber of X µ̌

n over

this configuration. Proceeding as above, we can introduce the categories F̃Sc
x and FSc

x. We shall
now describe some special objects in them. With no restriction of generality we can assume
that the xi’s are distinct.

Let λ̌ = λ̌1, ..., λ̌n be an n-tuple of elements of Λ̌. For each µ̌ consider the corresponding
closed subscheme X µ̌

x,≤λ̌
:= X µ̌

x ∩X µ̌

n,≤λ̌
. If µ̌ = Σ

i=1,...,n
λ̌i − Σ

ı∈I
m′

ı · α̌ı, then

(3.7) X µ̌

x,≤λ̌
≃ Π

ı∈I
X(m′

ı).

Let
◦
X µ̌

x,≤λ̌

jDiag,poles

→֒ X µ̌

x,≤λ̌

be the open subscheme corresponding to divisors of the form

Σ µ̌k · yk + Σ
i=1,...,n

λ̌i · xi, with Σ µ̌k + Σ
i=1,...,n

λ̌i = µ̌

where all the yk’s are pairwise distinct and different from the xi’s, and each µ̌k is the negative

of a simple coroot. I.e.,
◦
X µ̌

x,≤λ̌
is the complement of the diagonal divisor in the product (3.7).

Note that the restriction to this subscheme of the line bundle PX
µ̌
n

is constant with fiber

⊗

i=1,...,n

ω
(λ̌i,λ̌i+2ρ̌) Kil

2
xi .

We define a local system on
◦
X µ̌

x,≤λ̌
, denoted

◦

L
µ̌

x,λ̌
, as in the case of

◦

L
µ̌

∅ , using the product of

sign local systems on the factors in (3.7).

Let X µ̌

x,=λ̌
be the open subset of X µ̌

x,≤λ̌
, corresponding to divisors of the form Σ µ̌k · yk +

Σ
i=1,...,n

λ̌i · xi with yk 6= xi. We have the corresponding open embeddings:

◦
X µ̌

x,≤λ̌

′jDiag,poles

→֒ X µ̌

x,=λ̌

′′jDiag,poles

→֒ X µ̌

x,≤λ̌
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with jDiag,poles = ′′jDiag,poles ◦ ′jDiag,poles.

We let

L
µ̌

x,λ̌,!
:= ′′jDiag,poles

! ◦ ′jDiag,poles
!∗ (

◦

L
µ̌

x,λ̌
), L

µ̌

x,λ̌,∗
:= ′′jDiag,poles

∗ ◦ ′jDiag,poles
!∗ (

◦

L
µ̌

x,λ̌
)

and L
µ̌

x,λ̌,!∗
:= ′′jDiag,poles

!∗ ◦ ′jDiag,poles
!∗ (

◦

L
µ̌

x,λ̌
) ≃ jDiag,poles

!∗ (
◦

L
µ̌

x,λ̌
).

The collections L
x,λ̌,!

:= {Lµ̌

x,λ̌,!
}, L

x,λ̌,!∗
:= {Lµ̌

x,λ̌,!∗
}, L

x,λ̌,∗
:= {Lµ̌

x,λ̌,∗
} are naturally

objects of F̃Sc
x.

Points (a) and (c) of the following lemma essentially results from the definitions, whereas
point (b) follows from [BFS] (see Sect. 3.13 below).

Lemma 3.8.

(a) The objects L
x,λ̌,!∗

are the irreducibles of F̃Sc
x.

(b) The objects L
x,λ̌,!

and L
x,λ̌,∗

are of finite length.

(c) The cones of the natural maps

L
x,λ̌,!
→ L

x,λ̌,∗!
→ L

x,λ̌,∗

are extensions of objects of the form L
x,λ̌′,!∗

for λ̌
′
≤ λ̌.

Finally, we will use the following result, which also follows from [BFS] (see Sect. 3.13 below):

Theorem 3.9.

(a) Assume that c is rational. Then all the objects L
x,λ̌,!

, L
x,λ̌,∗!

and L
x,λ̌,∗

belong to FSc
x.

(b) Assume that c is irrational. Then

• (i) The objects L
x,λ̌,!

and L
x,λ̌,∗

never belong to FSc
x.

• (ii) An object L
x,λ̌,!∗

belongs to FSc
x if and only if all λ̌i are dominant.

• (iii) The category FSc
x is semi-simple.

3.10. We can now formulate our main theorem:

Theorem 3.11. Let c be irrational. Then there exists an equivalence of abelian categories

Whitc
n → FSc

n .

3.12. Let us now explain the relation between our set-up and that of [BFS]. The difference

is that in loc. cit. the authors work with D-modules on the spaces X µ̌

n,≤ν̌
, rather than with

twisted D-modules.
Let us again fix an n-tuple of distinct points x1, ..., xn and identify the line bundle PX

µ̌
n
|Xµ̌

x,≤ν̌

explicitly. Let
µ̌− Σ

i=1,...,n
ν̌i = −Σ

ı
mı · α̌ı

The scheme X µ̌

x,≤ν̌
can be identified with the corresponding product of symmetric powers,

Π
ı

X(mı).

The line bundle PXµ̌ |Xµ̌

x,≤ν̌

is then

OX
µ̌

x,≤ν̌

(
−Σ

ı
dı ·∆ı − Σ

ı1 6=ı2
dı1,ı2 ·∆ı1,ı2 − Σ

ı,j=1,...,n
dı,j ·∆ı,j

)
,
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where ∆ı is the diagonal divisor on X(mı), ∆ı1,ı2 is the incidence divisor of X(mı1
) ×X(mı2

),

∆ı,j the incidence divisor on X(mı) × xj , and

dı = (α̌ı, α̌ı)Kil
2

, dı1,ı2 = (αı1 , αı2)Kil, dı,j = (αı, ν̌j)Kil.

Let us assume now that our curve X is A1 (as in [BFS]), with coordinate t. We will denote
by tı1, ..., t

ı
mı

the corresponding functions on Xmı. The function

f
µ̌

ν̌
:= Π

ı

(
Π

1≤k1,k2≤mı

(tık1
− tık2

)

)2dı

· Π
ı1 6=ı2

(
Π

1≤k1≤mı1
,1≤k2≤mı2

(tı1k1
− tı2k2

)

)dı1,ı2

·

· Π
ı,j=1,...,n

(
Π

1≤k≤mı

(tkı − xj)

)dı,j

on X µ̌

x,≤ν̌
trivializes the line bundle in question. This allows to view the twisted D-modules L

µ̌
x

comprising an object Lx ∈ F̃Sc as plain D-modules.

However, the definition of the standard object, such as
◦

L
µ̌

x,λ̌
is more complicated. The latter

equals the product of the sign local system and the pull-back by means of the map

◦
X µ̌

x,≤ν̌

f
µ̌

ν̌→ Gm

of the D-module Ψ(c) on Gm. Here Ψ(c) is the Kummer D-module, generated by one section
”zc” and satisfying the relation

(3.8) z∂z · ”zc” = c · ”zc”,

where z is a coordinate on Gm.

3.13. This subsection is included in order to navigate the reader in the structure of the proofs
of results from [BFS] that are used in this paper.

To simplify the notation, let as assume that n = 1, i.e., x = {x}. The main hard result that
we use is that the the objects Lx,λ̌,!∗ for λ̌ ∈ Λ̌+ belong to FSc

x, i.e., they satisfy the singular
support condition. This is established in Theorem II.8.18 of loc. cit. This theorem amounts to
an explicit calculation of vanishing cycles.

In fact, that theorem says that for any λ̌ ∈ Λ̌ and c, the cotangent space to the point
µ̌ · x ∈ X µ̌

x belongs to the singular support of L
µ̌

x,λ̌,!∗
(resp., L

µ̌

x,λ̌,!
, L

µ̌

x,λ̌,∗
) if and only if µ̌

appears as a weight of the irreducible module (resp., Verma module, dual Verma module) of
highest weight λ̌ over the corresponding quantum group.

This implies point (b) of Lemma 3.8, as well as points (a), (b,i), (b,ii) of Theorem 3.9.

Let us now comment on how to deduce that FSc
x is semi-simple for c irrational (we will just

copy the argument from loc. cit. Sect. III.18). The proof relies on the following (Lemma III.5.3
of loc. cit.):

Lemma 3.14. Assume that both L1, L2,∈ FSc
x are supported on X µ̌

x for µ̌ belonging to a single
coset in Λ̌/ Span(∆̌). Then there exists µ̌0 such that for all µ̌ ≥ µ̌0 the map

HomFSc
x
(L1, L2)→ HomD-modc(Xµ̌

x )(L
µ̌
1 , Lµ̌

2 )

is an isomorphism.
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The proof of this lemma is not difficult, but we emphasize that it uses condition (ii) that

singles out FSc
x inside F̃Sc

x in an essential way.

To prove the semi-simplicity of FSc
x we have to show that for any λ̌1, λ̌2 ∈ Λ̌+,

Ext1FSc
x
(Lx,λ̌1,!∗, Lx,λ̌2,!∗) = 0.

We distinguish two cases.

Case 1: λ̌1 = λ̌2 =: λ̌. An extension class gives rise to an extension of twisted D-modules over
X µ̌

x≤λ̌
.

0→ L
µ̌

x,λ̌,!∗
→Mµ̌ → L

µ̌

x,λ̌,!∗
→ 0.

Applying Lemma 3.14, we obtain that for all µ̌ that are sufficiently large, this extension is non-

split. Restricting this extension to the open subscheme
◦
X µ̌

x,≤λ̌
, we obtain a non-trivial extension

of the corresponding local systems. This, however, contradicts the factorization property.

Case 2: λ̌1 6= λ̌2. We will show that

Ext1
D-modc(Xµ̌

x )
(Lµ̌

x,λ̌1,!∗
, Lµ̌

x,λ̌2,!∗
) = 0,

which would imply our assertion in view of Lemma 3.14.
Since the situation is essentially Verdier self-dual, we can assume that µ̌2 ≥ µ̌1. The object

L
µ̌

x,λ̌1,!∗
is supported on the closed sub-scheme X µ̌

x,≤λ̌1
. We claim that both !- and ∗- restrictions

of L
µ̌

x,λ̌2,!∗
to this subscheme are zero.

By factorization, it is enough to prove the latter assertion for µ̌ = λ̌1, in which case X µ̌

x,≤λ̌1
=

pt. The assertion is local, so we can assume that (x ∈ X) ≃ (0 ∈ A1), and pass from twisted
D-modules to usual D-modules, as in Sect. 3.12. Consider the action of Gm on A1, and hence
on (A1)

µ̌1

0,≤λ̌2
We obtain that L

µ̌

x,λ̌2,!∗
is monodromic against the character sheaf Ψ(c′), where

c′ = c ·
(
(λ̌2, λ̌2 + 2ρ̌)Kil

2
− (λ̌1, λ̌1 + 2ρ̌)Kil

2

)
.

However, the integer (λ̌2, λ̌2 + 2ρ̌)Kil
2
− (λ̌1, λ̌1 + 2ρ̌)Kil

2
is non-zero, and since c /∈ Q, we obtain

that c′ /∈ Z. Hence, the stalk and co-stalk of this D-module at 0 is zero.

4. Zastava spaces

4.1. In order to prove Theorem 3.11 we have to be able to pass from (twisted) D-modules on
Wn to (twisted) D-modules on X µ̌

n . This will be done using ind-schemes Zµ̌
n (defined for each

µ̌ ∈ Λ̌), that map to both Wn and X µ̌
n , and that are called ”Zastava spaces”.

For a coweight µ̌ let Bunµ̌

B− denote the stack of B−-bundles of degree (2g− 2)ρ̌− µ̌. We will

think of a point of Bunµ̌

B− as a triple:

• A G-bundle FG.
• A T -bundle FT such that for any λ ∈ Λ the degree of the corresponding line bundle

λ(FT ) is 〈λ, (2g − 2)ρ̌− µ̌〉.
• A collection of surjective bundle maps

κλ,− : Vλ
FG
→ λ(FT ),

which satisfy the Plücker equations.



22 D. GAITSGORY

Let p− and q− denote the natural maps

BunG ← Bunµ̌

B− → BunT ,

respectively. Let PBunµ̌

B−
denote the line bundle p−∗(PBunG

). Almost by definition we have:

Lemma 4.2. The line bundle PBunµ̌

B−
is isomorphic to the pull-back under q− of the line bundle

PBunT
over BunT (see Sect. 3.2).

4.3. We let Zµ̌
n denote the open sub-stack in the product Wn ×

BunG

Bunµ̌

B− that corresponds to

the condition that the composed (meromorphic) maps

(4.1) ω〈λ,ρ̌〉 κλ

→ Vλ
FG

κλ,−

→ λ(FT )

are non-zero. Let ′p−, ′p denote the projections Zµ̌
n →Wn and Zµ̌

n → Bunµ̌

B− , respectively.

Taking the zeroes/poles of the maps (4.1), we obtain a natural map

πµ̌ : Zµ̌
n → X µ̌

n .

4.4. The next three assertions repeat [BFG], Sect. 2.16 (see also [BFGM], Sect. 2 for a less
abstract treatment):

Proposition 4.5. Let {x, FG, FT , (κλ), (κλ,−)} be a point of Zµ̌
n, and let D ∈ X µ̌

n be its image
under πµ̌. Then the restriction of FG to the open curve X− supp(D) is canonically isomorphic

to FG = ωρ̌
T
×G, with the tautological maps κλ, κλ,−.

Proof. This is just the fact that the stack N\
◦
G/B− is isomorphic to pt, where

◦
G denotes the

open Bruhat cell in G. �

Corollary 4.6. The (ind)-stack Z µ̌
n is in fact an (ind)-scheme.

Proposition 4.7. For µ̌ = µ̌′ + µ̌′′ there exists a canonical isomorphism of stacks

(4.2)
(
X µ̌′

∅ ×X µ̌′′

n

)
disj
×
X

µ̌
n

Zµ̌
n ≃

(
X µ̌′

∅ ×X µ̌′′

n

)
disj

×
(Xµ̌′

∅
×X

µ̌′′
n )

(
Z

µ̌′

∅ × Zµ̌′′

n

)
.

Proof. Let D′ and D′′ be points of X µ̌′

∅ and X µ̌′′

n , respectively, with disjoint supports.
Objects classified by both the LHS and the RHS in (4.2) are local in X . Thus, we can think

of the LHS as defining a certain data on X − supp(D′) and X − supp(D′′) separately, with
a gluing datum over X − (supp(D′) ∪ supp(D′′)). We have to show that the gluing datum in
question is in fact superfluous, but this follows immediately from Proposition 4.5.

�

4.8. Let us make the following observation:

Lemma 4.9. The line bundle ′p−∗(PWn
) ≃ ′p∗(P⊗−1

Bunµ̌

B−

) identifies canonically with πµ̌∗(PX
µ̌
n
).

Proof. This follows from the fact that the diagram

Zµ̌
n

′p
−−−−→ Bunµ̌

B−

πµ̌

y q−

y

X µ̌
n

AJ
−−−−→ BunT

commutes, where the lower horizontal arrow is the Abel-Jacobi map of Sect. 3.2, i.e, it sends a
divisor D to the T -bundle ωρ̌(−D). �
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This allows us to define the functors

D(Dc-mod(Wn))→ D(D-modc(X µ̌
n )).

Let us denote by ′p−,µ̌,· the functor D(D-modc(Wn))→ D(D-modc(Zµ̌
n)) given by

F 7→ (′p−)!(F)[− dim. rel.(Bunµ̌

B− , BunG)].

(We note that this functor essentially commutes with Verdier duality, since the morphism

p− : Bunµ̌

B− → BunG is smooth for µ̌ such 〈α, µ̌〉 < −(2g− 2), which is what we will be able to
assume in practice.)

Thus, we can consider the functor

πµ̌
∗ ◦

′p−,µ̌,· : D(D-modc(Wn))→ D(D-modc(X µ̌
n )).

We will prove:

Proposition 4.10. For all c and F ∈ Whitc
n the object πµ̌

∗ (′p−,µ̌,·)(F)) is concentrated in the
cohomological degree 0.

In addition, we will prove the following assertion:

Theorem 4.11. For c irrational and any F ∈Whitc
n, the object

πµ̌
! (′p−,µ̌,·)(F)) ∈ D(D-modc(X µ̌

n ))

is well-defined, 8 and the natural morphism

πµ̌
! (′p−,µ̌,·)(F))→ πµ̌

∗ (′p−,µ̌,·(F))

is an isomorphism.

We emphasize that assertion of Theorem 4.11 is false without the assumption that c be
irrational.

Remark. The morphism πµ̌ is affine, so for a (twisted) D-module F′ on Zµ̌
n, the object of the

derived category given by πµ̌
∗ (F′) lives in non-positive cohomological degrees, and the object

πµ̌
! (F′) lives in non-negative cohomological degrees. Hence, Theorem 4.11 formally implies

Proposition 4.10. Nonetheless, we will give an independent proof of this proposition, because
it holds without the assumption that c be irrational.

4.12. Our present goal is to establish a key factorization property of the D-modules on Zµ̌
n

that are obtained from objects of Whitc
n by means of ′p−,µ̌,·:

Proposition 4.13. For F ∈ Whitc
n and µ̌ = µ̌1 + µ̌2, under the isomorphism of (4.2), the

D-module

add∗
µ̌1,µ̌2,disj

(
′p−,µ̌,·(F)

)
∈ D-modc

((
X µ̌1

∅ ×X µ̌2
n

)
disj
×
X

µ̌
n

Zµ̌
n

)

goes over to

′p−,µ̌1,·(F∅) ⊠
′p−,µ̌2,·(F) ∈ D-modc

((
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
Z

µ̌1

∅ × Zµ̌2
n

))
.

These isomorphisms are compatible with refinements of factorizations.

8The issue here is that the direct image with compact supports in not a priori defined on non-holonomic
D-modules.
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Proof. Let us consider the following relative version of the stack (Wn)good at y, introduced in

Sect. 2.3. Namely, let (Wn)good at µ̌1
be the open substack of X µ̌1

∅ × Wn, where a divisor

D ∈ X µ̌1

∅ is forbidden to hit the pole points (x1, ..., xn) ∈ Xn, and the κλ’s are bundle maps on
a neighbourhood of supp(D).

Over X µ̌1

∅ we have a group-scheme, denoted N
reg
µ̌1

, and a group ind-scheme Nmer
µ̌1

; the latter is

endowed with a character χµ̌1
: Nmer

µ̌1
→ Ga. Over (Wn)good at µ̌1

there is a N
reg
µ̌1

-torsor, denoted

µ̌1
Wn. The total space of this torsor is acted on by Nmer

µ̌1
.

Consider the action map

actµ̌1
: Nmer

µ̌1

N
reg
µ̌1

× µ̌1
Wn → (Wn)good at µ̌1

.

From the definition of the Whittaker category it follows that for any F ∈Whitn, we have:

act∗µ̌1
(F) ≃ χ∗

µ̌1
(exp) ⊠ F.

The pre-image of (Wn)good at µ̌1
under the map

(
X µ̌1

∅ ×X µ̌2
n

)
disj
×
X

µ̌
n

Zµ̌
n

′p−

→ X µ̌1

∅ ×Wn

goes over under the isomorphism (4.2) to the substack

(4.3)
(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
◦

Z
µ̌1

∅ × Zµ̌1
n

)
,

where
◦

Z
µ̌1

∅ = Z
µ̌1

∅ ×
W∅

W∅,0.

Note that by construction, we have a locally closed embedding of schemes over X µ̌1

∅

◦

Z
µ̌1

∅ → Nmer
µ̌1

/N
reg
µ̌1

,

such that the pull-back of χ∗
µ̌1

(exp) identifies with the restriction of ′p−,µ̌1,·(F∅) to this sub-
scheme.

For F ∈Whitc
n, its pull-back onto the product

(X µ̌1

∅ ×Wn) ×
X

µ̌1
∅

×Xn

(X µ̌1

∅ ×Xn)disj

is the extension by * (and also by !) from (Wn)good at µ̌1
. Hence, it it sufficient to establish an

isomorphism of twisted D-modules over the open sub-stack appearing in (4.3).
The assertion of the proposition follows now from the fact that the composition

(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
◦
Z

µ̌1

∅ × Zµ̌2
n

)
→
(
X µ̌1

∅ ×X µ̌2
n

)
disj
×
X

µ̌
n

Zµ̌
n → X µ̌1

∅ ×Wn
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factors as

(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
◦

Z
µ̌1

∅ × Zµ̌2
n

)
→

→
(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
Nmer

µ̌1
/N

reg
µ̌1
× Zµ̌2

n

)
≃

≃
(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
Nmer

µ̌1

N
reg
µ̌1

×

(
µ̌1

Wn ×
Wn

Zµ̌2
n )

))
→

→ Nmer
µ̌1

N
reg
µ̌1

× µ̌1
Wn

actµ̌1→ µ̌1
Wn → (Wn)good at µ̌1

→֒ X µ̌1

∅ ×Wn,

where the second arrow is the isomorphism, following from the trivialization of the N
reg
µ̌1

-torsor

(µ̌1
Wn ×

Wn

Zµ̌2
n ) ×

X
µ̌1
∅

×X
µ̌2
n

(
X µ̌1

∅ ×X µ̌2
n

)
disj

,

see Proposition 4.5.
�

4.14. As a corollary of the above proposition, we obtain:

Corollary 4.15. For F ∈Whitc
n and µ̌ = µ̌1 + µ̌2, we obtain:

add∗
µ̌1,µ̌2,disj

(
πµ̌
∗ (′p−,µ̌,·(F))

)
≃ πµ̌1

∗ (′p−,µ̌1,·(F∅)) ⊠ πµ̌2
∗ (′p−,µ̌2,·(F))

as objects of D-modc
(
X µ̌1

∅ ×X µ̌2
n

)
disj

. These isomorphisms are compatible with refinements

of partitions.

The next step is to analyze the object

(4.4) ′L
µ̌

∅ := πµ̌
∗ (′p−,µ̌,·(F∅)) ∈ D-modc(X µ̌

∅ ).

We shall prove:

Theorem 4.16.

(1) If (α̌ı, α̌ı)c /∈ Z for any ı ∈ I, then we a canonical isomorphism ′L
µ̌

∅ ≃ L
µ̌

∅ over
◦
X µ̌

∅ .

(2) If c is irrational, the above isomorphism holds over X µ̌

∅ .

Both isomorphisms are compatible with the factorization isomorphisms.

5. Proofs–A

5.1. Proof of Theorem 4.16(1). Let us first assume that µ̌ equals the negative of a simple

co-root α̌ı. The scheme Z
α̌ı

∅ identifies canonically with X ×Ga, and
◦

Z
α̌ı

∅ is the complement to
the zero section, corresponding to 0 ∈ Ga.

Recall that the line bundle PX
α̌ı
∅

is canonically trivial. However, over
◦

Z
α̌ı

∅ we have two

trivializations of the the corresponding line bundle: one inherited from that on X α̌ı

∅ , and the
other from that on W∅,0. The discrepancy is given by the map

◦

Z
α̌ı

∅ ≃ X ×Gm ։ Gm
x 7→x2·dı

−→ Gm,

where dı is as in Sect. 3.12.
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Thus, πµ̌
∗ (′p−,µ̌,·(F∅)) is equal to the constant D-module on X times the vector space

H (Gm, Ψ(2 · dı · c)⊗ exp) ,

where Ψ(·) is the Kummer D-module as in (3.8).

Now, the ”Gauss sum” formula, i.e., the canonical isomorphism

H(Gm, Ψ(2 · dı · c)⊗ exp) ≃ C

is well-known from the theory of Fourier-Deligne transform.

Let us now assume that µ̌ is arbitrary. Corollary 4.15 together with the above computation,

imply that the required isomorphism holds after the pull-back to
(
Π
ı

Xmı

)
, away from the

diagonal divisor, where µ̌ = −Σ
ı
mı · αı.

We only have to show that the action of the symmetric group Π
ı

Σmı
on the above constant

sheaf is given by sign character. But this follows from the Künneth formula, as the cohomology
H(Gm, Ψ(2 · dı · c)⊗ exp) is concentrated in degree 0 and dim(Gm) = 1.

�

5.2. Proof of Proposition 4.10. Let us first show that for F ∈Whitn, the object

πµ̌
∗ ◦

′p−,µ̌,·(F)

is concentrated in non-positive degrees.
For that we can assume that µ̌ satisfies 〈α, µ̌〉 < −(2g−2). Indeed, if not, we can replace µ̌ by

µ̌1 = µ̌−k·ρ̌ with k large enough, and then apply Corollary 4.15 combined with Theorem 4.16(1)
to factor the extra points away.

For µ̌ as above the map p− : Bunµ̌

B− → BunG is smooth, and hence, so is the map ′p− :

Zµ̌
n →Wn. Hence, ′p−,µ̌,·(F) lives in cohomological degree 0. Hence, our assertion follows from

the fact that the morphism πµ̌ is affine (see [BFGM], Sect. 5.1 for the proof of the latter fact).

To prove that πµ̌
∗ ◦ ′p−,µ̌,·(F) is concentrated in non-negative degrees we need to analyze the

fibers of the map πµ̌.

5.3. Analysis of the fibers. Let us denote by Z
µ̌
loc,x the fiber of Z

µ̌
1 over the point µ̌ ·x ∈ X µ̌

1 .

For λ̌ ∈ Λ̌, let us denote by Z
λ̌,µ̌
loc,x the pre-image in Z

µ̌
loc,x of the sub-stack Wx,λ̌. Let P

Z
µ̌

loc,x

and P
Z

λ̌,µ̌

loc,x

denote the corresponding line bundles, obtained by restriction from P
Z

µ̌
1
.

As is shown in [BFGM], Sect. 2.6, Z
µ̌
loc,x identifies with a closed sub-indscheme of the affine

Grassmannian GrG,x = G(Kx)/G(Ox).

Let Sλ̌ denote the N(Kx)-orbit of the point tλ̌, 9 and let S−,µ̌ denote the N−(Kx)-orbit of
the point tµ̌. Then

Z
µ̌
loc,x ≃ S−,µ̌

T (Ox)
× ωρ̌|Dx

and Z
λ̌,µ̌
loc,x ≃

(
Sλ̌ ∩ S−,µ̌

) T (Ox)
× ωρ̌|Dx

,

where by a slight abuse of notation we denote by ωρ̌|Dx
the corresponding T (Ox)-torsor.

The line bundles P
Z

µ̌

loc,x
and P

Z
λ̌,µ̌

loc,x

are induced from the canonical line bundle on GrG,x via

the above embeddings.

9We denote by t a local parameter on the formal disc Dx around x; tλ̌ ∈ GrG is the projection of the point

in G(Kx) corresponding to the map D
×

x

t
→ Gm(Kx)

λ̌
→ T (Kx) →֒ G(Kx).
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By Proposition 4.7, for a point D ∈ X µ̌
n given by Σ µ̌′

k · yk + Σ µ̌′′
j · xj with all the yk’s and

xj ’s pairwise distinct, its preimage in Zµ̌
n is isomorphic to the product

Π
k

Z
µ̌′

k

loc,yk
×Π

j
Z

µ̌′′
j

loc,xj
.

By Proposition 4.13, an object F ∈ Whitc
n defines a (complex of) twisted D-modules F

µ̌
loc,x

for every µ̌ and x ∈ X , so that the !-restriction of ′p−,µ̌,·(F) to the fiber over the point D ∈ X µ̌
n

is isomorphic to the product
(

⊠
k

(F∅)
µ̌′

k

loc,yk

)
⊠

(
⊠
j

F
µ̌′′

j

loc,xj

)
.

5.4. Analysis of the line bundle. By Lemma 4.9, the line bundle P
Z

µ̌

loc,x
over Z

µ̌
loc,x is

canonically constant with fiber

(5.1) ω
−(µ̌,µ̌+2ρ̌) Kil

2
x .

Note that the line bundle PWx,λ̌
over Wx,λ̌ is also constant with fiber

(5.2) ω
−(λ̌,λ̌+2ρ̌) Kil

2
x .

Hence, the line bundle P
Z

λ̌,µ̌

loc,x

is also isomorphic to the constant line bundle with the above

fiber.

We obtain that P
Z

λ̌,µ̌

loc,x

admits two trivializations, defined up to a scalar. The discrepancy

between them is a function Z
λ̌,µ̌
loc,x → Gm, defined up to a multiplication by a scalar, that we

shall denote by γλ̌,µ̌. The following assertion will be used in the sequel:

Lemma 5.5. The function γλ̌,µ̌ intertwines the natural T (Ox) action on Sλ̌ ∩ S−,µ̌ ⊂ GrG,x

and the action on Gm given by the character

T (Ox)→ T
(λ̌−µ̌,·)Kil
−→ Gm.

5.6. Let us now return to the proof of Proposition 4.10. Consider the stratification of X µ̌
n by

means of the strata formed by divisors Σ µ̌′
k · yk + Σ µ̌′′

j · xj with all the yk’s and xj ’s pairwise
distinct.

By Sect. 5.3, to prove the desired cohomological estimate, we have to show that for F ∈Whitc
x

the following holds:

(5.3)





Hi
(
Z

µ̌
loc,x, Fµ̌

loc,x

)
= 0 for i < 0 and any F

Hi
(
Z

µ̌
loc,x, (F∅)

µ̌
loc,x

)
= 0 for i ≤ 0 and F = F∅

where by a slight abuse of notation, we view F
µ̌
loc,x and (F∅)

µ̌
loc,x as non-twisted D-modules

using any trivialization of the line (5.1).

To prove the first assertion in (5.3), we can assume that F is of the form Fx,λ̌,∗ for some

λ̌ ∈ Λ̌+. In this case, the F
µ̌
loc,x ∈ D(D-modc(Zµ̌

loc,x)) is the *-extension of a complex of twisted

D-modules on Z
λ̌,µ̌
loc,x.
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Let
◦

Z
µ̌

x,λ̌
denote the the pre-image of the locally closed substack Wx,λ̌ ⊂ Wx. This is a

smooth scheme, and the map

πµ̌ :
◦

Z
µ̌

x,λ̌
→ X µ̌

x,≤λ̌

is flat. The complex F
µ̌
loc,x is obtained from a lisse twisted D-module on

◦

Z
µ̌

x,λ̌
by !-restriction to

the fiber over the point λ̌ · x ∈ X µ̌

x,≤λ̌
. Hence, it is concentrated in the cohomological degrees

≥ dim(X µ̌

x,≤λ̌
) = 〈ρ, λ̌ − µ̌〉. However, since dim(Zλ̌,µ̌

loc,x) = dim(Sλ̌ ∩ S−,µ̌) = 〈ρ, λ̌ − µ̌〉, our

assertion follows.

To prove the assertion concerning F∅, we have to show, that the restriction of (F∅)
µ̌
loc,x to the

smooth part of Z
0,µ̌
loc,x, which is a lisse D-module placed in the cohomological degree 〈ρ,−µ̌〉, is

non-constant on each connected component, where we are using the trivialization of the twisting
obtained from trivializing the line (5.1).

Let us describe this lisse D-module explicitly. It is the tensor product of (γ0,µ̌)∗(Ψ(c)) and
χ0

x
∗(exp), where χ0

x is the map

Z
0,µ̌
loc,x ≃ S0 ∩ S−,µ̌ → N(Kx)/N(Ox)

χx
→ Ga.

However, by [FGV], Prop. 7.1.7, coupled with [BFGM], Prop. 6.4, it is known that the
map χ0

x is non-constant on every irreducible component of S0 ∩ S−,µ̌. This implies that the
above tensor product is non-constant on every component, since the first factor is tame, and
the second is not.

6. Proofs–B

6.1. From now till the end of the paper we will assume that c is irrational. The goal of this
section is to prove Theorem 4.16(2), as well as the following statement:

Theorem 6.2. For c irrational there exists an isomorphism

πµ̌
∗ ◦

′p−,µ̌,·(F
x,λ̌,!∗

) ≃ L
µ̌

x,λ̌,!∗
.

The proofs of the two theorems are largely parallel. We begin with the former.

6.3. By Proposition 4.10, the LHS (i.e., ′L
µ̌

∅ := πµ̌
∗ ◦

′p−,µ̌,·(F∅)) is a D-module, which coincides

with the RHS (i.e., L
µ̌

∅ ) over the open sub-scheme
◦
X µ̌

∅ .
As a first step, we are going to show that the !-restriction of the LHS to any stratum in

X µ̌

∅ −
◦
X µ̌

∅ is concentrated in cohomological degrees≥ 1. Applying factorization, this is equivalent
to the fact that

(6.1) Hi
(
(S0 ∩ S−,µ̌), γ0,µ̌∗(Ψ(c))⊗ χ0

x
∗(exp)

)
,

vanishes for i = −|µ̌|+ 1, whenever |µ̌| > 1, where |µ̌| denotes the length of µ̌, i.e., |〈ρ, µ̌〉|.

Since the dimension of every irreducible component of S0 ∩ S−,µ̌ is |µ̌|, it is enough to show
that for every such component (or its dense open subset) Y ,

(6.2) Hi
(
Y, γ0,µ̌∗(Ψ(c))⊗ χ0

x
∗(exp)

)

vanishes for i = −|µ̌|+ 1. We shall now rewrite the expression for the above cohomology.
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6.4. Consider the vector space n/[n, n] ≃ Ar, and let χx,univ be the canonical map N(Kx)→
Ar, where r is the semi-simple rank of G. Our character χx can be taken to be the composition
of χx,univ and any functional ℓ : Ar → A, which is non-zero on all simple roots.

By the projection formula,

Hi
(
Y, γ0,µ̌∗(Ψ(c))⊗ χ0

x
∗(exp)

)
≃ Hi

(
Ar, (χ0

x,univ|Y )!
(
γ0,µ̌∗(Ψ(c))

)
⊗ ℓ∗(exp)

)
.

The scheme S0∩S−,µ̌, and hence Y , is acted on by T (Ox), and the map χ0
x,univ is equivariant,

where T (Ox) acts on Ar via the projection T (Ox)→ T and the natural action of the latter on
n/[n, n].

By Lemma 5.5, the map γ0,µ̌ : S0 ∩ S−,µ̌ → Gm is T (Ox)-equivariant against the character
µ := (µ̌, ?)Kil. Hence, the complex

(6.3) M
Y := (χ0

x,univ|Y )!
(
γ0,µ̌∗(Ψ(c))

)

on Ar is T -equivariant against the character sheaf Ψ(c · µ). 10 In particular, MY is lisse away
from the diagonal hyperplanes.

Thus, the cohomology (6.2), shifted by [r], is the fiber at ℓ ∈ (Ar)∗ of the Fourier-Deligne
transform Four(MY ). By the above equivariance property of MY , the complex Four(MY ) is
also twisted T -equivariant, and hence is lisse away from the coordinate hyperplanes, and in
particular on a neighbourhood of ℓ.

6.5. We are ready now to return to the proof that the cohomology (6.2) vanishes in degree
1− |µ̌|.

Let I′ ⊂ I be the minimal Dynkin sub-diagram, such that µ̌ ∈ Span(α̌ı′ , ı′ ∈ I′), and let r′

be its rank. We will distinguish two cases: (1) r′ = 1 and (2) r′ ≥ 1.

In case (1) µ̌ = (−m) · α̌ı, where αı is the corresponding simple root. We can describe the
intersection S0 ∩S−,µ̌ explicitly. It is irreducible and isomorphic to Am−1×Gm, with the map
χ0

x,univ being

Am−1 ×Gm ։ Am−1 → A1 αı

→֒ Ar.

(Recall that by assumption |µ̌| ≥ 2, hence, m ≥ 2). Since there are no non-constant maps
Am−1 → Gm, the map γ0,µ̌ factors through the Gm-factor. This implies that the cohomology
(6.1) vanishes in all degrees.

Let us now consider case (2). By Sect. 6.4, it is enough to show that MY itself lives in
perverse cohomological degrees ≥ −〈ρ, µ̌〉+ 2.

The equivariance property of MY against the character sheaf Ψ(c · µ) on T , and since c is
irrational, implies that the complex MY is the extension by zero from the complement to the
union of coordinate hyperplanes in Ar′

. However, over this open subset, the fibers of the map
χ0

x,univ : Y → Ar′

have dimension ≤ 〈ρ, µ̌〉 − r′, and we are done since r′ ≥ 2.

6.6. Let us proceed with the proof of Theorem 4.16(2). We obtain, that the map

πµ̌
! ◦

′p−,µ̌,·(F∅)→ jDiag
∗ (

◦

L
µ̌

∅ ),

resulting from the isomorphism of Theorem 4.16(1), is injective.

10The latter is the pull-back of Ψ(c) by means of the map µ : T → Gm.
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Since we are dealing with holonomic D-modules, the direct images with compact supports
are well-defined, and by Verdier duality, we obtain that the map

jDiag
! (

◦

L
µ̌

∅ )→ πµ̌
! ◦

′p−,µ̌,·(F∅)

is surjective.

Consider the composition

jDiag
! (

◦

L
µ̌

∅ ) ։ πµ̌
! ◦

′p−,µ̌,·(F∅)→ πµ̌
∗ ◦

′p−,µ̌,·(F∅) →֒ jDiag
∗ (

◦

L
µ̌

∅ ),

where the middle arrow is the canonical map as in Theorem 4.11. This map restricts to the

tautological isomorphism over
◦
X µ̌

∅ ; hence, it is the canonical map over the entire X µ̌

∅ .

Applying Theorem 4.11 (which will be proven in the next section), we deduce that

πµ̌
! ◦

′p−,µ̌,·(F∅) ≃ jDiag
!∗ (

◦

L
µ̌

∅ ) ≃ πµ̌
∗ ◦

′p−,µ̌,·(F∅),

as required.

6.7. Proof of Theorem 6.2. To simplify the notation, we will assume that n = 1, i.e., x

consists of one point x (and λ̌ is just one co-weight λ̌). The proof in the general case is the
same.

Both D-modules:

πµ̌
∗ ◦

′p−,µ̌,·(Fx,λ̌,!∗) and L
µ̌

x,λ̌,!∗

are supported on the sub-scheme X µ̌

x,≤λ̌
⊂ X µ̌

x . By Proposition 4.13, the desired isomorphism

holds over the open sub-scheme
◦
X µ̌

x,≤λ̌
.

Moreover, by Theorem 4.16, the isomorphism in question holds over a larger open sub-
scheme: one consisting of divisors D = Σ

k
µ̌k · yk + λ̌ · x with yk 6= x. Thus, we have to show

that the isomorphisms holds also over this divisor.
We will argue by induction on λ̌ − µ̌. The case λ̌ = µ̌ is evident. We assume that the

assertion is true for all µ̌′ with |λ̌ − µ̌′| < |λ̌ − µ̌|. Then, by factorization, the two D-modules

appearing in the theorem are isomorphic away from the point µ̌ · x
iµ̌
x
→֒ X µ̌

x,≤λ̌
. Let us denote

the corresponding open embedding X µ̌

x,≤λ̌
− {µ̌ · x} →֒ X µ̌

x,≤λ̌
by jpole.

6.8. First, we claim that the !-fiber of πµ̌
∗ ◦

′p−,µ̌,·(F
x,λ̌,!∗

) at the above point is concentrated

in cohomological degrees ≥ 1.
Indeed, the above fiber is given (up to a cohomological shift by |λ̌− µ̌|) by

(6.4) H•
(
Z

µ̌
loc,x, (Fx,λ̌,!∗)

µ̌
loc,x

)
.

We need to show that the above cohomology vanishes in degree −|λ̌− µ̌|. This is equivalent

to the fact that the D-module (Fx,λ̌,!∗)
µ̌
loc,x is non-constant on an open part of each irreducible

component of Z
µ̌
loc,x.

Replacing Z
µ̌
loc,x by a dense open subset in the support of the D-modules in question, we are

reduced to the study of Sλ̌∩S−,µ̌, and the D-module (γλ̌,µ̌)∗(Ψ(c))⊗χλ̌
x
∗(exp) on it, where γλ̌,µ̌

is as in Sect. 5.4, and χλ̌
x is the function Sλ̌ → Ga, induced by the character χx : N(Kx)→ Ga,

which is defined up to a shift.
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Let us distinguish two cases: If the the function χλ̌
x is non-constant on the given irreducible

component, the assertion follows as in the proof of Proposition 4.10 (see the end of Sect. 5.6).

If χλ̌
x is constant, the sheaf in question is (γλ̌,µ̌)∗(Ψ(c)), and it is non-constant, since c is

irrational, and hence c · (λ̌− µ̌, ·)Kil is not an integral character of T .

6.9. The rest of the proof is similar to that of Theorem 4.16(2). Indeed, we obtain that the
map

πµ̌
∗ ◦

′p−,µ̌,·(Fx,λ̌,!∗)→ jpole
∗

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)

is injective. Dually, we obtain a surjective map

jpole
!

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)
→ πµ̌

! ◦
′p−,µ̌,·(Fx,λ̌,!∗).

The composition

jpole
!

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)
→ πµ̌

! ◦
′p−,µ̌,·(Fx,λ̌,!)→ πµ̌

∗ ◦
′p−,µ̌,·(Fx,λ̌,!)→ jpole

∗

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)

is the canonical map

jpole
!

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)
→ jpole

∗

(
jpole∗(Lµ̌

x,λ̌,!∗
)
)

,

because this is so over X µ̌

x,≤λ̌
− {µ̌ · x}.

Now, Theorem 4.11 implies the desired isomorphism

πµ̌
! ◦

′p−,µ̌,·(Fx,λ̌,!∗) ≃ L
µ̌

x,λ̌,!∗
≃ πµ̌

∗ ◦
′p−,µ̌,·(Fx,λ̌,!∗).

7. Cleanness

In this section we will prove Theorem 4.11.

7.1. We introduce the stack Bun
µ̌

B− (see [BG], Sect. 1.2), whose definition is the same as that
of W∅ (with B replaced by B− and κλ replaced by κλ,−) and the difference being that we allow
an arbitrary T -bundle of degree (2g − 2)ρ̌− µ̌.

We have a tautological open embedding − : Bunµ̌

B− →֒ Bun
µ̌

B− , and the maps

Bunµ̌
T

q−

←− Bun
µ̌

B−

p−

−→ BunG,

that extend the corresponding maps for Bunµ̌

B− .
Recall the line bundle PBunT

over BunT and the line bundle PBunG
over BunG. We let

PT

Bun
µ̌

B−

and PG

Bun
µ̌

B−

, respectively, denote their pull-backs to Bun
µ̌

B− . The two are canonically

isomorphic over the open sub-stack Bunµ̌

B− .

7.2. We introduce the compactified Zastava space Z
µ̌

n as the open sub-stack of Wn ×
BunG

Bun
µ̌

B−

corresponding to the condition that all the compositions

ω〈λ,ρ̌〉 κλ

→ Vλ
FG

κ−,λ

→ λ(FT )

are non-zero. We let ′p
− : Z

µ̌

n → Wn and ′p : Z
µ̌

n → Bun
µ̌

B− denote the corresponding base-
changed maps.

As in the case of the usual Zastava spaces, we have a natural map

πµ̌ : Z
µ̌

n → X µ̌
n ,
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and an analog of Proposition 4.7 holds (with the same proof):

(7.1)
(
X µ̌1

∅ ×X µ̌2
n

)
disj
×
X

µ̌
n

Z
µ̌

n ≃
(
X µ̌1

∅ ×X µ̌2
n

)
disj

×
(X

µ̌1
∅

×X
µ̌2
n )

(
Z

µ̌1

∅ × Z
µ̌2

n

)
.

There is a tautological isomorphism of line bundles:

′p∗(PT

Bun
µ̌

B−

)⊗−1 ≃ (πµ̌)∗(PX
µ̌
n
).

We shall denote by D-modc(Z
µ̌

n) the corresponding category of twisted D-modules.

Let us denote by ′− the open embedding Zµ̌
n →֒ Z

µ̌

n. For F ∈ Whitc
n we can consider

′p−,µ̌,·(F) as an object of D-modc(Zµ̌
n); this is due to the identification of the line bundles

PT

Bun
µ̌

B−

and PG

Bun
µ̌

B−

over Bunµ̌

B− . We will deduce Theorem 4.11 from the next assertion:

Theorem 7.3. Assume that c is irrational. Then for F ∈Whitc
n, the object ′p−,µ̌,·(F) is clean

with respect to ′−, i.e., the map

′−! (′p−,µ̌,·(F))→ ′−∗ (′p−,µ̌,·(F))

is an isomorphism in D-modc(Z
µ̌

n) (in particular, the LHS is well-defined).

7.4. Proof of Theorem 4.11. The basic observation is that the map πµ̌ is proper. Indeed,

Z
µ̌

n is a closed sub-scheme of the corresponding relative (i.e., Beilinson-Drinfeld) version of the
affine Grassmannian over X µ̌

n .
Hence, it remains to notice that

πµ̌
! (′p−,µ̌,·(F)) ≃ πµ̌

!

(
′−! (′p−,µ̌,·(F))

)
and πµ̌

∗ (′p−,µ̌,·(F)) ≃ πµ̌
∗

(
′−∗ (′p−,µ̌,·(F))

)
.

�

7.5. The rest of this section is devoted to the proof of Theorem 7.3. First, we will establish a

cleanness-type result purely on Bun
µ̌

B− .

Let Pratio

Bun
µ̌

B−

denote the ratio of the two line bundles Bun
µ̌

B−

Pratio

Bun
µ̌

B−

:= GP
Bun

µ̌

B−
⊗
(

T P
Bun

µ̌

B−

)⊗−1

.

We note that the restriction of this line bundle to the open part Bunµ̌

B− is canonically

trivial. (In fact, in [BFG], Theorem 11.6 it was shown that, after passing from Bun
µ̌

B− to its
normalization, the inverse of the corresponding section of Pratio

Bun
µ̌

B−

is regular and its locus of

zeroes is Bun
µ̌

B− − Bunµ̌

B− .)

We introduce D-modratio,c(Bun
µ̌

B−) as the corresponding category of twisted D-modules on

Bun
µ̌

B− .

For a given c let Const
c
Bunµ̌

B−
denote canonical ”constant” object of the category

D-modratio,c(Bunµ̌

B−) ≃ D-mod(Bunµ̌

B−).

Our main technical tool is the following:
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Theorem 7.6. For c irrational, the object Const
c
Bunµ̌

B−
∈ D-modratio,c(Bunµ̌

B−) is clean with

respect to −, i.e., the maps

−! (Const
c

Bunµ̌

B−
)→ −!∗(Const

c

Bunµ̌

B−
)→ −∗ (Const

c

Bunµ̌

B−
)

are isomorphisms in D-modratio,c(Bun
µ̌

B−).

7.7. Proof of Theorem 7.6. We will only sketch the proof, as it follows very closely the IC
sheaf computation in [FFKM] or [BFGM], Sect. 5.

We will work with all connected components Bun
µ̌

B− , so µ̌ will be dropped from the notation.
We represent BunB− as a union of open sub-stacks ≤ν̌BunB− , where the latter classifies the data
{FG, FT , (κ−,λ)}, where the length of the quotient λ(FT )/ Im(κ−,λ) is ≤ 〈λ, ν̌〉. Let =ν̌BunB−

be the closed sub-stack of ≤ν̌BunB− , when the length of the above quotient is exactly 〈λ, ν̌〉.
We have

BunB− − BunB− =
⋃

ν̌∈Λ̌pos−0

=ν̌BunB− .

We will argue by induction and assume that the assertion of the theorem is valid over Bun
≤ν̌′

B−

for all ν̌′ with |ν̌′| < |ν̌|.

Let Z−,ν̌ be the corresponding Zastava space, i.e., an open subset of BunN ×
BunG

Bun
ν̌

B− . Let

Pratio
Z−,ν̌ be the pull-back of Pratio

Bun
ν̌

B−
under the natural projection. We let D-modratio,c(Z−,ν̌)

denote the corresponding category of twisted D-modules.

Let
◦

Z−,ν̌
′−

→֒ Z−,ν̌ be the open sub-scheme equal to the pre-image of BunB−

−

→֒ BunB− .
One shows as in [BFGM], Sect. 3, that the problem of extension of the twisted D-module
Const

c
Bun

B−
from BunB− to ≤ν̌BunB− is equivalent to that of extension of the corresponding

twisted D-module Const
c
◦

Z−,µ̌
from

◦

Z−,ν̌ to Z−,ν̌.

Consider the projection π−,ν̌ : Z−,ν̌ → X ν̌. Since the pull-back of PBunG
to BunN is

canonically trivial, we have an identification of line bundles

Pratio
Z−,ν̌ ≃ (π−,ν̌)∗(PX ν̌ ),

where PX ν̌ is the canonical line bundle over X ν̌ defined as in Sect. 3.2. In particular, we have
a well-defined direct image functors

π−,ν̌
! , π−,ν̌

∗ : D(D-modratio,c(Z−,ν̌))→ D(D-modratio,c(X ν̌)).

As in [BFGM], Sect. 2.2., the map π−,ν̌ admits a canonical section, denoted s−,ν̌ , compatible
with the above identification of line bundles. The image of s−,ν̌ is the locus =ν̌Z−,ν̌ equal to
the pre-image of =ν̌BunB− ⊂ BunB− .

By the induction hypothesis, the cleanness assertion for Const
c
◦

Z−,ν̌
with respect to ′− holds

away from the image of the section s−,ν̌. Hence, to prove the theorem, it suffices to show that

(s−,ν̌)! ◦ (′−)!∗(Const
c
◦

Z−,µ̌
) = 0.

However, since the morphism π−,ν̌ is affine and there exists a Gm-action along its fibers that
contracts Z−,ν̌ onto the image of s−,ν̌, with Const

c
◦

Z−,µ̌
being equivariant, we have:

(s−,ν̌)! ◦ (′−)!∗(Const
c
◦

Z−,ν̌
) ≃ (π−,ν̌

! ) ◦ (′−)!∗(Const
c
◦

Z−,ν̌
) := K

−,ν̌ .
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Again, by the induction hypothesis and factorization, K−,ν̌ vanishes away from the main
diagonal X ⊂ X ν̌ . Moreover, by the defining property of the Goresky-MacPherson extension,
Kν̌ lives in the cohomological degrees > 0.

Hence, it suffices to see that its *-fiber at every point x ∈ X lives in the cohomological
degrees < 0. By base change and the the induction hypothesis, the fiber in question is given by

Hc(S
0 ∩ S−,ν̌ , Const

c
◦

Z
−,ν̌

loc,x

).

As in the proof of Proposition 4.10, the complex of D-modules Const
c
◦

Z
−,ν̌

loc,x

is isomorphic to

the pull-back of Ψ(c) by means of the function γ0,ν̌ , cohomologically shifted by [2|ν̌|].

Since dim(S0 ∩ S−,ν̌) = |ν̌|, non-zero cohomology can only exist in degrees ≤ 0 (and from
the above we already know that it vanishes for degrees strictly less than 0). Hence, it suffices to
show that the above cohomology vanishes in degree 0. The latter happens if and only if the lisse
D-module, obtained by restricting γ0,ν̌∗(Ψ(c))[2|ν̌|] to a smooth open part of every irreducible
component of S0 ∩ S−,ν̌ , is non-constant.

However, from Lemma 5.5, we know that the D-module in question is equivariant with
respect to the T (Ox)-action on the scheme S0∩S−,ν̌ against the character sheaf Ψ(c ·ν), where
ν ∈ Λ is (ν̌, ·)Kil, and c · ν /∈ Z unless ν̌ = 0, since c is irrational.

�

7.8. We shall now show how to deduce Theorem 7.3 from Theorem 7.6. We will use the
following assertion, which can be proved by the same argument as [BG], Sect. 5.3:

Proposition 7.9. For every open sub-stack of finite type U ⊂ BunG and ν̌, µ̌ ∈ Λ̌pos there exists

µ̌′ ∈ Λ̌ with µ̌ ≥ µ̌′, such that the twisted D-module −∗ (Const
c

Bunµ̌′

B−

), restricted to ≤ν̌Bun
µ̌′

B− is

ULA 11 with respect to the map p
− over U .

Given an object F ∈ Whitc
n, let λ̌ = (λ̌1, ..., λ̌n) be the bound on the order of the poles of

the maps κλ contained in the support of F in Wn.

Consider now the support of ′−∗ (′p−,µ̌,·(F)) on Z
µ̌

n; denote it by Y ; this is a stack of finite
type. The image of Y in Wn is contained in an open sub-stack ≤η̌Wn,≤λ̌ of Wn,≤λ̌, where the

total amount of zeroes of the maps κλ does not exceed η̌. The image of ≤η̌Wn,≤λ̌ in BunG

under p is contained in an open sub-stack of finite type that we will denote by U . Similarly,

the image of Y in Bun
µ̌

B− is contained in ≤ν̌Bun
µ̌

B− for some ν̌.

Let us take µ̌′ with µ̌ ≥ µ̌′ given by Proposition 7.9 for the above U and ν̌. Consider the

open sub-scheme UZ
µ̌′

n of Z
µ̌′

n equal to the pre-image of U under the forgetful map Zµ̌′

n → BunG.

We claim that it it sufficient to show that the cleanness statement holds over UZ
µ̌′

n .

Indeed, by factorization (i.e., (7.1)) we can complement any given point of Z
µ̌

n by points in
◦

Z
µ̌k

loc,yk
with µ̌ − µ̌′ = Σ

k
µ̌k, and yk being away from the support of the divisor equal to the

image of our point under πµ̌, to get a point of Z
µ̌′

n . The image of this new point in Wn will still
be contained in ≤η̌Wn,≤λ̌; and hence its image in BunG will be contained in U .

11See [BG], Sect. 5.1, for a review of the ULA property.
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Let us note that the line bundle ′p∗(PT

Bun
µ̌′

B−

)⊗−1 over Z
µ̌′

n is the tensor product

(′p−)∗(PWn
)⊗ ′p∗(Pratio

Bun
µ̌′

B−

).

Hence, for F′ ∈ Dc-mod(Wn) and F′′ ∈ D-mod(Bun
µ̌′

B−)ratio,c it makes sense to consider

F′
⊠

BunG

F′′ ∈ D(D-modc(Z
µ̌′

n )).

Now, the assertion of Theorem 7.3 follows from the following general statement:

7.10. Let Y be a smooth scheme (or stack), f : Y′ → Y a map, and  :
◦

Y′ →֒ Y′ and open

sub-stack. Let F ∈ D(D-mod(
◦

Y′)) be an object which is clean with respect to , i.e., such that

!(F)→ ∗(F)

is an isomorphism.
Let now Z → Y be a map and let L be an object of D(D-mod(Z)). Set

◦
Z ′ := Z ×

Y

◦

Y′ and Z ′ := Z ×
Y

Y′,

and let ′ be the corresponding open embedding
◦
Z ′ →֒ Z ′.

Lemma 7.11. Assume that ∗(F) is ULA with respect to f . Then L ⊠
Y

F ∈ D(D-mod(
◦
Z ′)) is

clean with respect to ′, i.e.,

′!(L ⊠
Y

F)→ ′∗(L ⊠
Y

F)

is an isomorphism.

8. Equivalence

8.1. In this section we shall prove Theorem 3.11. Thus, we have to construct a functor

Gn : Whitc
n → F̃Sc

n;

show that its image belongs to FSc
n, and prove that the above functor is an equivalence.

The first step has been essentially carried out already: for F ∈Whitc
n, we set

Gn(F)µ̌ := πµ̌
∗ (′p−,µ̌,·(F)) ∈ D-modc(X µ̌

n ).

These D-modules satisfy the required factorization property by Corollary 4.15 and Theo-
rem 4.16. The functor G is exact by Proposition 4.10.

8.2. Let us fix (distinct) points x := (x1, ..., xn), and consider the corresponding functor

Gx : Whitc
x → F̃Sc

x.

We will first prove:

Theorem 8.3. The functor Gx has its image in FSc
x and induces an equivalence with the latter

sub-category.
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Proof. By Proposition 2.8 and Theorem 6.2, we obtain that Gx does indeed send Whitc
x to FSc

x,
is faithful, and defines a bijection on the level of irreducible objects.

Thus, applying Theorem 3.9(b), we obtain that the assertion of Theorem 8.3 reduces to the
statement that the category Whitc

x (with c irrational) is semi-simple. By Lemma 2.7, there
are no non-trivial self-extensions of F

x,λ̌,!
. Hence, semi-simplicity of Whitc

x is equivalent to the

next statement:

Proposition 8.4. For c irrational and any λ̌ ∈ Λ̌+, the maps

F
x,λ̌,!
→ F

x,λ̌,!∗
→ F

x,λ̌,∗

are isomorphisms.

�

8.5. Proof of Proposition 8.4. For simplicity we shall assume that n = 1, i.e., x = {x} and

λ̌ = {λ̌}. The proof in the general case is the same.

Let F′ be the kernel of the map Fx,λ̌,! → Fx,λ̌,!∗. It is sufficient to show that Gx(F′) = 0. For

µ̌ ∈ Λ̌, consider the corresponding short exact sequence:

(8.1) 0→ πµ̌
∗ ◦

′p−,µ̌,·(F′)→ πµ̌
∗ ◦

′p−,µ̌,·(Fx,λ̌,!)→ πµ̌
∗ ◦

′p−,µ̌,·(Fx,λ̌,!∗)→ 0.

As in Sect. 6.7, we will argue by induction on |λ̌ − µ̌| that πµ̌
∗ ◦

′p−,µ̌,·(F′) = 0. The base
of the induction µ̌ = λ̌ trivially holds. The induction hypothesis and factorization imply that
πµ̌
∗ ◦

′p−,µ̌,·(F′) is supported at the point µ̌ · x ∈ X µ̌

x,≤λ̌
.

Let iµ̌x denote the embedding of this point into X µ̌

x,≤λ̌
. It is sufficient to show that the 0-th

cohomology of (iµ̌x)!
(
πµ̌
∗ ◦

′p−,µ̌,·(F′)
)

vanishes.

However, by Theorem 3.9(b), the short exact sequence (8.1) is split. So, it is sufficient to

show that the 0-th cohomology of (iµ̌x)!
(
πµ̌
∗ ◦

′p−,µ̌,·(Fx,λ̌,!)
)

vanishes. But the latter calculation

has been performed in Sect. 6.8.
�

8.6. We are now ready to show that the functor Gn maps Whitc
n to FSc

n.

Recall the categories FSc
◦
n
⊂ F̃Sc

◦
n
, (see Sect. 3.5). Let Whitc

◦
n

be the corresponding Whittaker

category over
◦
Xn. We have a functor

G◦
n

: Whitc
◦
n
→ F̃Sc

◦
n

:

The following results from Theorem 3.9(b) and and Theorem 8.3:

Lemma 8.7.

(a) Every object of Whitc
◦
n

is isomorphic to a direct sum ⊕
λ̌

F◦
n,λ̌,!∗

⊗M(λ̌), where F◦
n,λ̌,!∗

is a

relative (over
◦
Xn) version of F

x,λ̌,!∗
, and M(λ̌) is a D-module on

◦
Xn.

(b) Every object of FSc
◦
n

is isomorphic to a direct sum ⊕
λ̌

L◦
n,λ̌,!∗

⊗M(λ̌), where L◦
n,λ̌,!∗

is a

relative (over
◦
Xn) version of L

x,λ̌,!∗
and M(λ̌) is a D-module on

◦
Xn.

(c) The functor G◦
n

induces an equivalence

(8.2) Whitc
◦
n
≃ FSc

◦
n

.
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For any partition n: n = n1 + ... + nk we have the mutually adjoint functors

(∆n)!, (∆n)∗ : D+(Whitc
n) ⇆ D+(Whitc

◦

k
),

which 12 are intertwined by means of G with the corresponding functors

(∆n)!, (∆n)∗ : D+(F̃Sc
n) ⇆ D+(F̃Sc

◦

k
).

The commutative diagrams

Whitc
n

(∆n)!

−−−−→ D+(Whitc
◦

k
)

Gn

y G◦
k

y

F̃Sc
n

(∆n)!

−−−−→ D+(F̃Sc
◦

k
)

and (8.2) imply that Gn indeed sends Whitc
n to FSc

n, as required.

8.8. Finally, let us show that Gn is an equivalence.
Let Whitc

Diag(n) ⊂ Whitc
n and FSc

Diag(n) ⊂ FSc
n be the subcategories of objects, consisting

of twisted D-modules that supported over the diagonal divisor XDiag(n) ⊂ Xn. By induction
on n we can assume that Gn induces an equivalence

(8.3) GDiag(n) : Whitc
Diag(n) ≃ FSc

Diag(n) .

Let iDiag(n) denote the morphism XDiag(n) → Xn. It induces the functors

(iDiag(n))∗ : Whitc
Diag(n) →Whitc

n and FSc
Diag(n) → FSc

n,

which are intertwined by G. The same is true for the functors

(jpoles)∗ : Whitc
◦
n
→Whitc

n and FSc
◦
n
→ FSc

n .

Hence, in order to prove the theorem, it suffices to show the following: for every F ∈Whitc
◦
n

there exists an inverse family of objects Fi ∈ Whitc
◦
n

with (jpoles)∗(Fi) ≃ F, such that for any

F′ ∈Whitc
Diag(n) the direct limits

(8.4) lim
−→

i

ExtkWhitc
n

(
Fi, (iDiag(n))∗(F

′)
)

and lim
−→

i

Extk
FSc

n

(
Gn (Fi) , Gn

(
(iDiag(n))∗(F

′)
))

vanish for k = 0, 1. Note that in both cases, the corresponding Hom and Ext1 can be computed
inside the ambient category of D-modules.

Consider the pro-object in the category of D-modules on Wn, given by (jpoles)!(F). It is
easy to see that it can be represented as the limit of an inverse family of objects from Whitc

◦
n
.

We take Fi to be this family.

With this choice, the vanishing of the first limit in (8.4) is automatic. The vanishing of the

second limit follows from Theorem 4.11 and the (πµ̌
! , πµ̌!) adjunction.

12Here again D(·) is understood as the derived category of the abelian category, but it is easy to see that
the above functors induce the usual functors on the level of underlying twisted D-modules.
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