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Free Products of Higher Operad Algebras

Mark Weber

Abstract. One of the open problems in higher category theory is the sys-
tematic construction of the higher dimensional analogues of the Gray tensor
product of 2-categories. In this paper we continue the developments of [3]
and [2] by understanding the natural generalisations of Gray’s little brother,
the funny tensor product of categories. In fact we exhibit for any higher cat-
egorical structure definable by an n-operad in the sense of Batanin [1], an
analogous tensor product which forms a symmetric monoidal closed structure
on the category of algebras of the operad.
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1. Introduction

Strict n-categories have an easy inductive definition, with a strict (n+1)-category
being a category enriched in the category of strict n-categories via its cartesian
product, but unfortunately these structures are too strict for intended applications
in homotopy theory and geometry. In dimension 2 as is well-known, there is no
real problem because any bicategory is biequivalent to a strict 2-category. However
in dimension 3 the strictest structure one can replace an arbitrary weak 3-category
with – and not lose vital information – is a Gray category, which is a category en-
riched in 2-Cat using the Gray tensor product of 2-categories instead of its cartesian
product [6]. This leads naturally to the idea of trying to define what the higher
dimensional analogues of the Gray tensor product are, in order to set up a similar
inductive definition as for strict n-categories, but to capture the strictest structure
one can replace an arbitrary weak n-category with and not lose vital information.
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2 MARK WEBER

Ignoring the 2-cells in the definition of the Gray tensor product one has a
canonical tensor product of categories, which has been called the funny tensor
product. It is different from the cartesian product of categories. In this article we
explain that for any higher categorical structure definable by an n-operad A in the
sense of [1], one has an analogous tensor product giving the category of A-algebras
a symmetric monoidal closed structure. We call these generalisations of the funny
tensor product “free products” for reasons that will become clear.

In [2] the foundations of higher category theory in the globular style were given
a major overhaul. The resulting theory is expressed as the interplay between lax
monoidal structures on a category V and monads on the category GV of graphs
enriched in V . This perspective enables one to understand many issues in higher
category theory without looking at the combinatorics that might, at first glance,
appear to make things difficult. Our description and analysis of the generalisations
of the funny tensor product is an illustration of this. Thus the present paper
is written within the framework of established by [2], and so we shall use the
terminology and notations of that paper here without further comment.

We recall the funny tensor product of categories in section(2), focussing in
particular on those aspects which we have been able to generalise to all higher
categorical structures in place of Cat. Then in section(3) we review the theory of
symmetric monoidal monads from the point of view of multicategories. None of
this section is new. The theory of symmetric monoidal monads is originally due to
Anders Kock [10] [12] [11], and in the setting of Lawvere theories to Fred Linton
[14]. However, our use of multicategorical notions, especially representablility in
the sense of Hermida [7] and closedness in the sense of Manzyuk [16], to help
understand monoidal monads does appear to be original. It is this synthesis of the
theories of symmetric monoidal monads and of multicategories that provides the
most convenient framework within which to construct tensor products from monads
and operads.

A notion of multimap of enriched graph is provided by a general construction
in section(4.2) which applies to any category equipped with a functor into Set. The
2-functoriality of this construction described in section(4.3) and its compatibility
with monad theory described in section(4.4), enables one to give any monad defined
on GV over Set a canonical symmetric monoidal structure. Applying then our
formulation of the theory of symmetric monoidal monads, we are able to exhibit
our higher dimensional analogues of the funny tensor product in section(5.3). Some
of the formal properties that they enjoy are exhibited in sections(5.4) and (5.5).

In particular in section(5.4) we isolate a condition on a monad so that one
obtains a canonical identity on objects comparison between the free product of T -
algebras and its cartesian product. This important because, as explained to the
author by John Bourke, the Gray tensor product for 2-categories may be obtained
by factorising this map, in the case where T is the monad on G2Set for 2-categories,
using the bijective on objects fully faithful factorisation for Cat on the homs. In
this way the coherence data for the Gray tensor product is determined by what we
know more generally from our theoretical framework and the magic of orthogonal
factorisation systems. For this reason it seems that a complete understanding of
the higher dimensional analogues of the Gray tensor product is within reach.

Given an n-operad A one may consider categories enriched in the algebras of
A for the free product. We call such structures sesqui-A-algebras. In section(7.2)
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we give an explicit description of the monad whose algebras are sesqui-A-algebras.
This depends on a general result, called the “multitensor dropping theorem”, given
in section(6.4). Then in section(7.3) we explain why this monad is part of an
(n+1)-operad. These results will form part of the inductive machine for semi-strict
n-categories that we hope to uncover in future work.

2. The funny tensor product of categories

The category Cat is a cartesian closed category. By

Theorem 2.1. Foltz, Kelly and Lair[5] Up to isomorphism there are exactly
two biclosed monoidal structures on Cat, and both are symmetric.

Cat has another symmetric monoidal closed structure. The corresponding tensor
product has been called the funny tensor product. It is related to the cartesian
product by identity-on-objects functors

κA,B : A⊗B → A×B

which are natural in A and B. Thus the objects of A⊗B are pairs (a, b) with a ∈ A
and b ∈ B. A generators and relations description of the morphisms of A⊗B is as
follows. They are generated by

(a, β) : (a, b1) → (a, b2) (α, b) : (a1, b) → (a2, b)

where a and α : a1→a2 are in A, and b and β : b1→b2 are in B. The relations are
obtained by remembering composition in A and B, that is

(α1α2, b) = (α1, b)(α2, b) (1a, b) = 1(a,b) = (a, 1b) (a, β1β2) = (a, β1)(a, β2).

So given maps α and β one has the square

(a1, b1) (a1, b2)

(a2, b2)(a2, b1)

(a1,β) //

(α,b2)
��

(α,b1)
��

(a2,β)
//

which by contrast with the cartesian product does not commute in general. In
other words this square in A ⊗ B has not one but two diagonals, the composites
(a2, β)(α, b1) and (α, b2)(a1, β) which are identified by the functor κA,B. An explicit
description of the Gray tensor product of 2-categories proceeds in the same way
as for ⊗ on objects and arrows, with the key feature in dimension 2 being an
isomorphism between these two diagonals.

While ⊗ acts on objects like cartesian product, on morphisms it behaves more
like a coproduct. In particular taking A and B to be monoids, that is to say one
object categories, then A⊗B is of course also a monoid, and is in fact the coproduct,
in the category of monoids, of A and B. It is standard terminology from algebra to
refer to the coproduct in the category of monoids as the free product of monoids,
and so after this section we shall adopt this terminology, referring to ⊗ and its
generalisations as “free products”.
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For general categories this coproduct-like behaviour for the arrows of A⊗B is
expressed by the pushout

A0×B0 A0×B

A⊗BA×B0

id×iB //

��
iA×id

��
//

in Cat in which A0 (resp. B0) denote the underlying discrete category of A (resp.
B), and iA (resp. iB) are the inclusions. We shall call this the pushout formula for
the funny tensor product A⊗B.

The internal hom [A,B] of A and B corresponding to the funny tensor product,
has functors A → B as objects just as in the cartesian case, but mere transforma-
tions as morphisms. A transformation φ : f → g between functors A→ B consists
of a morphism φa : fa→ ga for each a ∈ A. These components φa are not required
to satisfy the usual naturality condition as in the cartesian case.

3. The theory of monoidal monads and multicategories

3.1. Motivation. In this section we will describe what for us is the “ab-
stract categorical theory of tensor products which arise from universal properties”.
Throughout this section the reader is invited to keep in mind the basic guiding
example of the symmetric monoidal closed structure on the category R-Mod of
modules over a commutative ring R.

It was Claudio Hermida who expressed in [7] how one may regard this monoidal
structure as arising from the multicategory of R-modules and R-multilinear maps
between them. So for Hermida this multicategory is the more fundamental object,
with the monoidal structure on R-Mod just an expression of its representability
in his sense. This notion captures abstractly the idea that the tensor product of
R-modules, by definition, classifies R-multilinearity.

A different perspective comes from the theory of symmetric monoidal monads1

of Anders Kock [10] [12] [11]. By definition a symmetric monoidal monad is a
monad in the 2-category SMONCAT of symmetric monoidal categories, lax sym-
metric monoidal functors and monoidal natural transformations. Thus the data of
a symmetric monoidal monad is

(V,⊗, T, φ, η, µ)

where (V,⊗) is a symmetric monoidal category, (T, φ) is a lax symmetric monoidal
functor, the components of φ look like

φXi
:
⊗

i

TXi → T
⊗

i

Xi,

and η and µ are the unit and multiplication of the monad and are monoidal trans-
formations. The precise example which relates to the present discussion is

Example 3.1. Regard a commutative ring R as a monad on Set, where for
X ∈ Set, R(X) is the set of formal R-linear combinations of elements of X . The
unit is given by x 7→ 1·x, and the multiplication of the monad is given by the evident
substitution of formal linear combinations. An algebra of R is simply an R-module.

1Actually Kock orginally called them commutative monads.
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Given a finite sequence of sets X1, ..., Xn one has a function
∏

i

RXi → R
∏

i

Xi

defined by

(
mi
∑

ji=1

λijixiji : 1≤i≤n) 7→
∑

j1,...,jn

(
∏

i

λiji )(x1j1 , ..., xnjn)

which provides the monoidal functor coherences.

For Kock the above monad R is the fundamental combinatorial object from which
the symmetric monoidal closed structure of R-Mod may be obtained.

In this section we review the theory of symmetric monoidal monads from the
point of view of multicategories. Given a symmetric monoidal monad (V,⊗, T, φ, η, µ),
we will first see that V T underlies a symmetric multicategory. Then under some hy-
potheses this multicategory will be seen to be closed in the sense of [16]. Closed mul-
ticategories are more easily exhibited as representable, as observed in section(3.3),
and we use this to recover the tensor product on V T by exhibiting the corresponding
multicategory of algebras as representable.

So for us the main results of symmetric monoidal monad theory are expressed
as the closedness and representablilty of the symmetric multicategory of algebras
of the original symmetric monoidal monad. Thus in our treatment, both Kock’s
and Hermida’s perspectives on “how the symmetric monoidal closed structure of
R-Mod arises” are placed on an equal footing.

3.2. Notation and terminology. Depending on what is most convenient in
a given situation

(Xi)1≤i≤n (Xi)i X

are different notations we shall use for the same thing, namely a sequence of sets
(X1, ..., Xn). Similarly a typical element (x1, ..., xn) of the cartesian product of
these sets has the alternative notations

(xi)1≤i≤n (xi)i x.

For example, we may speak of multimaps f : x→y in a given multicategory Z,
where x is a sequence of objects and y is a single object from Z, and the set of such
may be denoted as Z(x, y). When the sequence x has length 1, we say that the
multimap f is linear, and we denote by lin(Z) the category of objects and linear
maps in Z, this being the object part of a 2-functor

lin : SMULTCAT → CAT

out of the 2-category of SMULTCAT of symmetric multicategories. We denote
elements of sequences of sequences of sets in a similar manner consistent with our
tensor product notation. For example given multimaps

fi : (xi1, ..., xin1) → yi g : (y1, ..., yk) → z

in a multicategory, one usually denotes their composite as

g(f1, ..., fk) : (x11, ..., x1n1 , ......, xk1, ..., xknk
) → z

but we shall sometimes use the notation

g(fi)i : (xij)ij → z

for the same thing. By way of illustration let us recall the definition of the objects,
arrows and 2-cells of the 2-category SMULTCAT. A symmetric multicategory X
consists of the following data:
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(1) a set X0 whose elements are called objects.
(2) for each sequence x and element y from X0, a set X(x, y) whose elements

are called multimaps from x to y.
(3) for all f : x→y and σ ∈ Σl(x), a multimap fσ : xσ→y.
(4) for all x in X0, a distinguished multimap 1x : (x)→x called the identity

for x.
(5) given fi : (xij)j→yi and g : (yi)i→z, another multimap g(fi)i : (xij)ij → z

called the composite of g and the fi.

This data must satisfy the following axioms:

(1) unit law of symmetric group actions: for all f : x→y, f1l(x) = f .
(2) associativity of symmetric group actions: for all f : x→y and σ, τ in Σl(x),

(fσ)τ = f(στ).
(3) unit laws of composition: for all f : x→y, 1y(f) = f = f(1xi

)i.
(4) associativity of composition: given

fij : (xijk)k→yij gi : (yij)j→zi h : (zi)i→w

one has (h(gi)i)(fij)ij = h(gi(fij)j)i.
(5) equivariance: given fi : (xij)j→yi and g : (yi)i→z, σ ∈ Σl(yi)i

and τi ∈
Σl(xij)j

, one has (g(fi)i)σ(τi)i = (gσ)(fσi
τσi)i.

In the absence of the symmetric group actions and the equivariance of composition,
one has the definition of a multicategory. Let X and Y be symmetric multicate-
gories. A symmetric multifunctor F : X→Y consists of the following data:

(1) A function F0 : X0→Y0. For a sequence x from X , we abuse notation and
write Fx for the sequence (F0x1, ..., F0xn), and for an object y of X , we
write Fy for the object F0y of Y .

(2) For each sequence x from X and element y ∈ X0, a function

Fx,y : X(x, y)→Y (Fx, Fy).

For a given multimap f : x→y in X , we denote by Ff the multimap
Fx,y(f) in Y .

This data must satisfy the following axioms:

(1) For all f : x→y in X and σ ∈ Σlx, F (fσ) = F (f)σ.
(2) For all x ∈ X0, F (1x) = 1Fx.
(3) For all multimaps fi : (xij)j→yi and g : (yi)i→z in X , F (g(fi)i) =

Fg(Ffi)i.

If X and Y are mere multicategories and the first condition is ignored, then
one has the definition of multifunctor. Let F and G be symmetric multifunc-
tors X→Y . Then a multinatural transformation φ : F→G consists of a multimap
φx : F (x)→Gx for each x ∈ X0. This data is required to satisfy the condition, called
multinaturality, that for all multimaps f : x→y in X , one has Gf(φxi

)i = φy(Ff).
Returning to our general element (xi)i of

∏

i

Xi, if z is an element or sequence

of elements of Xk for some k, then we denote by x|kz the new sequence of elements
obtained by replacing xk with z.

3.3. Closed and representable symmetric multicategories. Let us recall
the forgetful 2-functor

U : SMONCAT → SMULTCAT.
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Given a symmetric monoidal category (V,⊗), the symmetric multicategory UV has
the same objects as V and homs given by

UV (x, y) = V (
⊗

i

xi, y)

and the rest of the structure is given in the obvious way using the symmetric
monoidal category structure. Given a symmetric lax monoidal functor (F, φ) :
V→W , one defines UF to have the same object map as F and hom maps given by

f :
⊗

i

xi→y 7→
⊗

i

Fxi F (
⊗

i

xi) Fy
φxi // Ff // .

Given a monoidal natural transformation ψ : (F, φ)→(G, γ), the induced multinat-
ural transformation Uψ has components which can be identified with those of ψ
once the linear maps of UW are identified with the morphisms of W . The verifica-
tion that these assignments form a 2-functor is routine and left to the reader. For
us the key facts about U are summarised by

Proposition 3.2. Let X be a symmetric multicategory and U the 2-functor
just described.

(1) X ∼= UV for some symmetric monoidal category V iff X is representable
in the sense of Hermida [7].

(2) U is 2-fully-faithful.

This result is a mild reformulation of some aspects of the theory of multicategories
already in the literature, especially in [7]. Let us briefly recall some of this theory,
and in so doing, explain why this result is true.

Let X be a multicategory. A multimap f : x→y in X is universal when for all
z ∈ X the function

(−) ◦ f : X(y, z) → X(x, z)

given by composition with f is a bijection. In other words any multimap out of
x may be identified with a unique linear map out of y. The example to keep in
mind is the multicategory of vector spaces and multilinear maps. In this case the
universality of f expresses that the vector space y is exactly the tensor product of
the xi. Thus one might be tempted to guess that a monoidal category is really just
a multicategory in which every tuple of objects admits such a universal multimap.
While this is a good first guess, it is not quite correct in general, and it was Hermida
who understood in [7] how to express this idea correctly.

Hermida’s key insight is that one must strengthen the notion of universal map.
In order to express this idea it is necessary to recall placed composition in a mul-
ticategory. Given a multimap g : y→z and f : x→yk for some k, one defines their
placed composite g ◦k f : y|kx→ z as the composite

g(1y1 , ..., 1yk−1
, f, 1yk+1

, ..., 1yn
)

in X . Clearly one can recapture general composition from placed composition. A
multimap f : x→y in X is strongly universal when for all sequences y′ and k such
that y′k = y, and objects z of X , the function

(−) ◦k f : X(y′, z) → X(y′|kx, z)

given by placed composition with f is a bijection. The multicategory X is repre-
sentable when for every tuple of objects (xi)i of X , there exists a strongly universal
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multimap out of it. In order to bring out the relation with monoidal categories one
may denote a choice of such a strongly universal multimap as

(xi)i →
⊗

i

xi

to emphasize that from such a choice one obtains a monoidal structure on the
category of objects and linear maps of X , and the non-symmetric analogue of U
sends this monoidal category to X . It is not very hard to adapt these insights
to the symmetric case. A symmetric multicategory is representable when it is
representable as a mere multicategory, and when X is a representable symmetric
multicategory with a given choice of universal maps, the symmetries on X give rise
in the evident way to symmetries for the induced tensor product on the linear part
of X .

As for the 2-fully-faithfulness, Hermida showed that monoidal categories are
the adjoint pseudo-algebras of a lax idempotent 2-monad on the 2-category of mul-
ticategories. This too is easily adapted to the symmetric case, and so one may
regard U as the forgetful 2-functor from the 2-category of adjoint pseudo-algebras,
lax maps and algebra 2-cells, for a lax idempotent 2-monad on SMULTCAT. By
the general theory of such 2-monads, see for instance [8], such forgetful 2-functors
are always 2-fully-faithful.

The distinction between universal and strongly universal multimaps disappears
when one works with closed symmetric multicategories, as we shall see in the next
lemma. Closed multicategories, and their relation to closed categories, were dis-
cussed in [16]. We recall this notion in the symmetric context. Let X be a sym-
metric multicategory. Then X is closed when for all objects x and y in X, there is
an object [x, y] in X together with a “right evaluation” multimap

revx,y : ([x, y], x) → y

such that for all sequences (z1, ..., zn) of objects of X , the function

revx,y(−, 1x) : X((z1, ..., zn), [x, y]) → X((z1, ..., zn, x), y)

is a bijection. This notion is not as one-sided as it may first appear because of the
presence of symmetries in X , enabling one to define “left evaluation” multimaps

levx,y : (x, [x, y]) → y

with the property that for all sequences (z1, ..., zn) of objects of X , the function

levx,y(1x,−) : X((z1, ..., zn), [x, y]) → X((x, z1, ..., zn), y)

is a bijection.

Remark 3.3. By definition a representable symmetric multicategory is closed
iff the corresponding symmetric monoidal category is closed in the usual sense.

Lemma 3.4. Let X be a closed symmetric multicategory and f : (x1, ..., xp)→y
be a multimap therein. If f is universal then f is in fact strongly universal.

Proof. For m,n ∈ N and sequences of objects (z1, ..., zm+n) of X , we must
show that the function

X(z1, ..., zm, y, zm+1, ..., zm+n, w) → X(z1, ..., zm, x1, ..., xp, zm+1, ..., zm+n, w)

which we denote by φm,n,w, given by

φm,n,w(g) = g(1z1, ..., 1zm
, f, 1zm+1 , ..., 1zm+n

)
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is bijective for all objects w of X . Since X is symmetric it suffices to consider the
case n = 0. We proceed by induction on m. The base case m = 0 follows since f
is universal by assumption. For the inductive step one exhibits the following string
of bijections:

(z1, ..., zm+1, y) → w

(z2, ..., zm+1, y) → [z1, w]

(z2, ..., zm+1, x1, ..., xp) → [z1, w]

(z1, ..., zm+1, x1, ..., xp) → w

(closedness)

(φm,0,z1\w)

(closedness)

the composite assignment being that of φm+1,0,w by the multinaturality of compo-
sition in X . �

Thus it is easier to show that a symmetric multicategory is representable when one
knows in advance that the symmetric multicategory in question is closed. For the
non-symmetric version of this result, one must work with the 2-sided analogue of
the notion discussed in [16], that is, what one would call biclosed multicategories.
We shall not pursue this any further here.

In [16] Manzyuk realised that the only obstruction to obtaining a closed cate-
gory from a closed multicategory is the existence of a unit, and so he made

Definition 3.5. [16] A closed symmetric multicategory with unit is a closed
symmetric multicategory X together with a universal multimap u : () → e therein.

in the non-symmetric context. By lemma(3.4) such a map u is strongly universal.
Recall that a closed structure on a category V consists of an object I called

the unit, a functor

[−,−] : V op × V → V

called the hom, and morphisms

iA : A→ [I, A] jA : I → [A,A] LAB,C : [B,C] → [[A,B], [A,C]]

natural in their arguments, such that the iA are isomorphisms and

I [B,B]

[[A,B], [A,B]]

j //

L����
��

��

j ��?
??

??
??

[A,B] [I, [A,B]]

[[A,A], [A,B]]

i //
??

[j,id]��
��

��

L ��?
??

??
?

and

[C,D] [[B,C], [B,D]]

[[B,C], [[A,B], [A,D]]]

[[[A,B], [A,C]], [[A,B], [A,D]]]

[[A,C], [A,D]]

L //

[id,L]��

::
[L,id]tt

tt
tt

L ��

L $$JJ
JJ

JJ

[A,B] [A, [I, B]]

[[I, A], [I, B]]

[id,i] //

L
��9

99
99

9

[i,id]

BB������

are commutative.
Given a closed symmetric multicategory X with unit u : ()→e one exhibits a

closed structure on lin(X) as follows. The unit is e and the hom is just the hom
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of X . For a ∈ X the linear morphisms ia and ja are defined uniquely by the
requirement that

a (a, e)

([e, a], e)a

id

��

(id,u) //

(ia,id)
��

rev
oo

a (e, a)

([a, a], a)a

id

��

(u,id) //

(ja,id)
��

rev
oo

be commutative, using the universal property of rev and the strong universality of
u. For a, b, c ∈ C the linear morphism Lab,c is defined uniquely by the requirement
that

([b, c], [a, b], a) ([b, c], b) c

([a, c], a)([[a, b], [a, c]], [a, b], a)

(rev,id) // rev //

(La
b,c,id,id)

$$JJ
JJ

JJ
JJ

(rev,id)
//

rev

::ttttttttt

is commutative, using the universal property of rev (twice). The result

Proposition 3.6. [16] Let X be a closed symmetric multicategory with unit
u : ()→e. Then the data

(e, [−,−], i, j, L)

defines a closed category structure on lin(V ).

is a special case of [16] proposition(4.3).

3.4. Symmetric monoidal monads. As mentioned in section(3.1) the data
of a symmetric monoidal monad is

(V,⊗, T, φ, η, µ)

where (V,⊗) is a symmetric monoidal category, (T, φ) is a lax symmetric monoidal
functor, and η and µ are the unit and multiplication of the monad and are monoidal
natural transformations. By proposition(3.2), applying U gives a bijection between
symmetric monoidal monads on (V,⊗) and monads in SMULTCAT on UV .

As a 2-category SMULTCAT has all limits and colimits [18] and thus in partic-
ular it has Eilenberg-Moore objects. However one may readily exhibit these directly.
Let (X,T, η, µ) be a monad in SMULTCAT: X is the symmetric multicategory on
which it acts, T is the underlying multiendofunctor, and η and µ are the unit and
multiplication multinatural transformations. An algebra of T is defined to be an
algebra of the monad lin(T ): that is a pair (x, a) where x is the underlying object
in X and a : Tx→x the action satisfying the usual axioms. Let

(x1, a1), ..., (xn, an), (y, b)

be T -algebras and f : (xi)i→y be in X . Then f is a multi-T -algebra morphism
when it satisfies the equation bT (f) = f(ai)i. Equivalently one can express this
last condition on f one variable at a time. That is given 1 ≤ j ≤ n, f is said to be
a T -algebra morphism in the j-th variable when it satisfies

f(1xi
|jaj)i = bT (f)(ηxi

|j1Txj
)i,

the domain of this composite multimap being the sequence (xi|jTxj)i. By sub-
stituting (ηxi

|j1Txj
)i into bT (f) = f(ai)i, one sees that f is a multi-T -algebra

morphism implies that it is a T -algebra morphism in the j-th variable. Conversely,
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if f is a T -algebra morphism in each variable, then a straight forward inductive
argument may be given to show that f is in fact a multi-T -algebra morphism2.

One defines the multicategory XT of algebras of T with T -algebras as objects
and multi-T -algebra morphisms as multimaps. With the evident composition and
symmetric group actions inherited from X , one may easily verify that XT is indeed
a symmetric multicategory and that one has a forgetful symmetric multifunctor

UT : XT → X (x, a) 7→ x

with object map as indicated in the previous display. Moreover one has a multi-
natural transformation

XT

X

X

UT
44iiiiiiiiiiii
T

��
UT

UUUUUU

**UUUUUU
τy� ||||

whose component at (x, a) is just a. The verification of the following result is a
mild variation of the analogous easy result for monads in CAT, and is left to the
reader.

Proposition 3.7. Let (X,T, η, µ) be a monad in the 2-category SMULTCAT.
Then its Eilenberg-Moore object in SMULTCAT is given by (UT , τ).

Thus by applying U to a symmetric monoidal monad (V,⊗, T, φ, η, µ) and taking
Eilenberg-Moore objects in SMULTCAT, one finds that the category of algebras
V T is in fact the category of linear maps of a symmetric multicategory. In fact

V T = lin((UV )(UT )).

Unpacking the notion of multimap of T -algebras so obtained, one finds that a T -
algebra multimap (Xi, xi)i → (Y, y) consists of a morphism

f :
⊗

i

Xi → Y

in V such that
⊗

i

TXi T
⊗

i

Xi TY

Y
⊗

i

Xi

φ // Tf //

y
����

��
��

�

N

i

xi
��?

??
?

f
//

commutes.
Now we suppose (V,⊗, T, φ, η, µ) is a symmetric monoidal monad and that V

is symmetric monoidal closed. Then given X ∈ V and (Y, y) ∈ V T , [X,Y ] obtains
the structure of T -algebra, with the action corresponding under adjunction to the
composite

T [X,Y ]⊗X T [X,Y ]⊗TX T ([X,Y ]⊗X) TY Y
id⊗η // φ // T rev // y //

2We emphasize that the base case for the induction is n = 0. That is the statement: f is
a T -algebra morphism in each variable iff it is a multi-T -algebra morphism, is true when n = 0.

This makes it a vacuous condition in this case which may seem strange. The reason for this is that
the multi-naturality condition of η, in fact of any multinatural transformation, is in particular
valid with respect to nullary multimaps, and so the multi-T -algebra morphism condition in this
case amounts to the unit law for (y, b).
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and we call this the pointwise T -algebra structure on [X,Y ]. The algebra axioms
are easily verified. Moreover this assignment is functorial, that is to say, it is the
object map of a functor

[−,−] : V op × V T → V T

which is compatible in the obvious way with the forgetful UT : V T→V and the
original hom down in V . For all objects X,Y ∈ V one may also define

TX,Y : [X,Y ] → [TX, TY ]

corresponding under adjunction to the composite

[X,Y ]⊗TX T [X,Y ]⊗TX T ([X,Y ]⊗X) TY,
η⊗id // φ // T rev //

and these maps give T the structure of a V -functor. Moreover given (X,x) and
(Y, y) in V T , the composite

[X,Y ] [TX, TY ] [TX, Y ]
TX,Y // [id,y] //

may be verified as the underlying map in V of a T -algebra morphism, where [X,Y ]
and [TX, Y ] are regarded as T -algebras via their pointwise structures.

Now let us suppose in addition that V has equalisers. Then given (X,x) and
(Y, y) in V T , one can take the following equaliser

(1) [(X,x), (Y, y)] [X,Y ] [TX, Y ]

[TX, TY ]

ex,y // [x,id] //

TX,Y ��?
??

??
?

[id,y]

??������

in V . By the recollections of the previous paragraph, this equaliser may also be
regarded as living in V T , and so the object [(X,x), (Y, y)] as defined in equation(1)
has a canonical T -algebra structure. The following result appears as theorem(2.2)
of [11]. We give a proof of it to illustrate the use of multicategories in the theory.

Theorem 3.8. [11] Let (V,⊗, T, φ, η, µ) be a symmetric monoidal monad, (V,⊗)
be symmetric monoidal closed with unit denoted as I, and let V have equalisers.
Then equation(1) defines the internal hom and (TI, µI) the unit of a closed struc-
ture on V T .

Proof. In this proof we shall regard V simultaneously as a representable mul-
ticategory and as a monoidal category without further comment. We shall denote
by V T the symmetric multicategory of T -algebras. By proposition(3.6) it suffices
to exhibit V T as a closed multicategory with hom as given in equation(1), and
to exhibit a universal T -algebra multimap ()→(TI, µI). But recall that for any
T -algebra (X,x), any multimap ()→X down in V satisfies the condition of a mul-
timap of T -algebras. Moreover one has a universal multimap u : ()→I down in V .
From these observations together with the universal property of (TI, µI) as the free
T -algebra on I, it follows easily that Tu : ()→TI is universal in V T .

Let (Z, z) be in V T . For any map f : Z→[X,Y ] in V let us write f̃ : (Z,X)→Y
for the multimap in V which corresponds to f by closedness. It is easy to verify
that f is a T -algebra map, where the T -algebra structure on [X,Y ] is the pointwise

one, iff f̃ is a T -algebra map in the first variable. It is also easy to verify that
[x, id]f = [id, y]TX,Y f iff f̃ is a T -algebra morphism in the second variable. Thus
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by the universal property of the equaliser it follows that ẽx,y satisfies the universal
property required of a right evaluation map in V T . �

We impose one final additional assumption to obtain the induced tensor prod-
uct of T -algebras. So we assume (V,⊗, T, φ, η, µ) satisfies the hypotheses of the-
orem(3.8), and in addition that V T has coequalisers. Then given a sequence
((Xi, xi))i of T -algebras, we may take the coequaliser

(2) T
⊗

i

TXi

T 2
⊗

i

Xi

T
⊗

i

Xi

⊗

i

(Xi, xi)

T
N

i

xi

//

Tφ ��?
??

?

µ

??����

qxi //

in V T , because the solid arrows here are clearly T -algebra morphisms between free
T -algebras. The map T

⊗

i

ηXi
exhibits (2) as a reflexive coequaliser. Note that

while equation(1) may be regarded as living in both V and V T since UT creates
limits, equation(2) is a coequaliser only in V T : there is no reason in general for
this coequaliser to be preserved by UT . However in the motivating examples of this
theory which involved finitary monads on Set, this happened to be true because all
finitary endofunctors of Set happen to preserve reflexive coequalisers, and thus the
UT did create reflexive coequalisers in these cases.

Theorem 3.9. Let (V,⊗, T, φ, η, µ) be a symmetric monoidal monad, (V,⊗) be
symmetric monoidal closed with unit denoted as I, let V have equalisers and V T

have coequalisers. Then equation(2) defines the tensor product and (TI, µI) the
unit of a symmetric monoidal closed structure on V T .

Proof. We continue to regard V simultaneously as a representable multi-
category and as a monoidal category. By theorem(3.8), lemma(3.4) and proposi-
tion(3.2), it suffices to exhibit universal multimaps

((Xi, xi))i →
⊗

i

(Xi, xi).

Let (Z, z) be a T -algebra. For any T -algebra map

f : (T
⊗

i

Xi, µ)→(Z, z),

denote by f̃ : (Xi)i→Z the multimap down in V which corresponds to f . Then one
may easily verify that

fT (
⊗

i

xi) = fµTφ

iff f̃ satisfies the conditions of a multi-T -algebra morphism. Thus q̃xi
is a universal

multimap as required. �

Remark 3.10. In the particular case where the ((Xi, xi))i are free, say (Xi, xi) =
(TZi, µZi

), then one may take qxi
in (2) to be given by the composite

T
⊗

i

TZi T 2
⊗

i

Zi T
⊗

i

Zi
Tφ // µ //
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because then the maps

T
⊗

i

T 2Zi T
⊗

i

TZi T
⊗

i

Zi

T
N

i

ηZi

oo
T

N

i

TηZi

oo

provide a splitting exhibiting our suggested qxi
as a split coequaliser. Thus one

may regard FT as a strict monoidal functor. In the approach to monoidal monad
theory of Brian Day, this is the starting point – one defines the tensor product
of free algebras in this way, and then extends the definition of the induced tensor
product to all of V T using convolution and the density of VT within V T . See [4]
for more details.

4. Symmetric multicategories of enriched graphs

4.1. Overview. In this section we exhibit GV as category of linear maps
underlying a symmetric multicategory, by applying a 2-functor

F : CAT/Set → SMULTCAT

to GV , regarded as over Set in the usual way by the functor which sends an enriched
graph to its set of objects. While an object of CAT/Set is really a functor A→ Set,
we shall throughout this section suppress mention of the functor, denote by a0 the
underlying set of a ∈ A, and refer to an element x of a0 as an element or object of
a, sometimes writing x ∈ a to denote this.

4.2. The object map of F . IfX is a symmetric multicategory and (x1, ..., xn)
a sequence of objects of X , then taking homs produces a functor

X((xi)i,−) : lin(X) → Set.

The cartesian monoidal structure of Set enables us to view it as a symmetric mul-
ticategory by applying U , and we denote this symmetric multicategory by Set.
Obviously lin(Set) = Set. Thus it makes sense to ask whether the above hom func-
tor for X may be viewed as a symmetric multifunctor into Set. In order to do so,
for each f : (a1, ..., am)→b in X , it is necessary to define a function

X((xi)i, a1) × ...×X((xi)i, am) → X((xi)i, b)

using composition in X . So one is tempted to guess that this function is defined by

(g1, ...., gm) 7→ f(g1, ..., gm).

While f(gi)i is a well-defined multimap, it doesn’t live in the correct hom-set, but
instead is of the form

(x1, ..., xn, ......, x1, ..., xn) → b

where the domain sequence is the concatenation of m-copies of (x1, .., xn). There
are various ways one can imagine to get around this “problem”. However there
is one case where there is no problem, that is when (x1, ..., xn) happens to be the
empty sequence (). Thus homming out of the empty sequence produces both a
functor and a symmetric multifunctor

X((),−) : lin(X) → Set X((),−) : X → Set,

and one obtains the former from the latter by applying the 2-functor lin.
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In this way given a symmetric multicategory X and an object x therein, an
element z of x is a multimap z : ()→x in X . Given any multimap

f : (a1, ..., an)→b

in X , the assignment

z ∈ (ai,0)i 7→ f(z1, ..., zn).

describes the multimap X((), f) of Set. Given a choice 1≤i∗≤n of input variable,
and a choice z ∈ (ai,0)i6=i∗ of element for all but the i∗-th variable, one can define
a linear map

fz : ai∗ → b

as the composite
f(z1, ..., zi∗−1, 1ai∗

, zi∗+1, ..., zn)

that is, as the result of fixing all but the i∗-th variable at the values z and applying
f .

Definition 4.1. Let f : (a1, ..., an)→b be a multimap in a symmetric multi-
category X . The linear maps fz obtained from f in the manner just described are
called the linear parts of f . The multimap X((), f) of Set is called the underlying
multifunction of f and is denoted as f0.

Note in particular that if f is itself linear (ie when n = 1), then i∗ can only be 1
and so z can only be the empty sequence () and so the only linear part of f is f
itself, that is, f = f(). The way in which the linear parts of multimaps in X get
along with the composition and symmetric group actions of X is expressed by the
following lemma, whose proof is a simple exercise in the definitions just given.

Lemma 4.2. Given multimaps

f : (a1, ..., an)→b g : (ci1, ..., cimi
)→ai

in a symmetric multicategory X, choices 1≤i∗≤n and 1≤j∗≤mi∗ of input variables,
and sequences of elements

z ∈ (ai,0)i6=i∗ w ∈ (cij,0)(i,j) 6=(i∗,j∗)

and a permutation σ ∈ Σn. Then the formulae

(fσ)z = fzσ−1 (f(gi)i)w = fg(wij)i6=i∗
g(w(i∗j))j 6=j∗

.

are valid.

To summarise, for any multicategory X and any multimap f therein, one has an
underlying multimap f0 in Set and linear parts the fz just defined, and one can
be quite precise about how the algebra of X is reflected in this data: f 7→ f0
is the multimap assignment of a symmetric multifunctor, namely X((),−), and
lemma(4.2) describes what happens at the level of the linear parts.

In the case X = Set, f and f0 are the same, and moreover when n 6=0 the
linear parts of f also determine f uniquely. When n = 0 there are no linear parts
but such an f is an element of b. By contrast it can happen that the underlying
multifunction and linear parts together tell us very little about a given multimap
in a given multicategory. Consider for instance the case where X is the symmetric
multicategory whose object set is

{0, ..., n+1}
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where n > 0, and the hom X((0, ..., n), n+1) is some arbitrary set Z. Suppose
that X is freely generated as a symmetric multicategory with this data. One way
to describe the resulting X , by the yoneda lemma, is that a morphism X→Y in
SMULTCAT amounts to a choice

a0, ..., an, b

of objects of Y together with a function Z→Y ((ai)i, b). Note that in X there are
no multimaps out of the empty sequence, thus the set of elements of any x ∈ X is
empty. Thus the underlying multifunction of any f ∈ Z is the empty one and f
has no linear parts.

Given a categoryA over Set, the symmetric multicategory FA is defined so that
one recovers the original A→Set as the Set-valued hom functor FA((),−), and the
multimaps of FA are determined uniquely by their underlying multifunctions and
linear parts. The explicit definition is

Definition 4.3. An object of FA is an object of A. A multimap

f : (a1, ..., an) → b

in FA is given by the data

f0 : (a1,0, ..., an,0) → b0 fz : ai∗ → b

where for z ∈ (ai,0)i6=i∗ , fz is a morphism of A. This data must satisfy (fz)0 = (f0)z
for all z.

Note that when n = 0 such a multimap is just an object of b, and when n = 1, f
may be identified with the morphism f() of A. With this understood, we define the
identities of FA to be those of A.

Let f : (a1, ..., an) → b be a morphism of FA and σ ∈ Σn. Then we define

fσ : (aσi)i → b

by

(fσ)0 = f0σ (fσ)z = fzσ−1

for all 1≤i∗≤n and z ∈ (aσi,0)i6=i∗ . By definition and lemma(4.2) we have the
calculation

((fσ)z)0 = (fzσ−1)0 = (f0)zσ−1 = (f0σ)z = ((fσ)0)z

exhibiting the well-definedness of fσ.
Let f be as above and gi : (ci1, ..., cimi

)→ai be morphisms of FA for 1≤i≤n.
Then we define the composite

f(gi)i : (cij)ij → b

in FA by

(f(gi)i)0 = f0(gi,0)i (f(gi)i)w = fg(wij)i6=i∗
g(w(i∗j))j 6=j∗

for all choices 1≤i∗≤n and 1≤j∗≤mi∗ of input variables and sequences of elements
w ∈ (cij,0)(i,j) 6=(i∗,j∗). By a similar calculation as with fσ using the definitions and
lemma(4.2), one may verify that

((f(gi)i)w)0 = ((f(gi)i)0)w

and so exhibit f(gi)i as well-defined.
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Proposition 4.4. Let A be a category over Set. With the data, symmetric
group actions and compositions just defined, FA forms a symmetric multicategory.
The Set-valued hom FA((),−) is the original A→Set.

Proof. The symmetric group actions FA are functorial because they are so
at the level of the underlying multifunctions. The unit and associative laws of
composition follow from those of Set and A, and lemma(4.2). Equivariance of
composition in FA follows from that of Set. As explained already, one identifies
any linear map f in FA with the morphism f() of A, and under this identification
composition of linear maps in FA corresponds to composition in A. Moreover under
this identification of linear maps, for any multimap f in FA, one may identify the
fz’s of its definition as the corresponding linear parts of f . This last is just the
identification of the Set-valued hom FA((),−) with the original A→Set. �

Example 4.5. Let V be a category and regard the category GV as over Set in
the usual way. For a multimap in F(GV )

f : (A1, ..., An) → B

of V -graphs, the underlying multifunction f0 determines the object maps of the
linear parts fz where z ∈ (Ai)i6=i∗ . Thus in addition to f0, the data for f involves
hom maps

fz,a,b : Ai∗(a, b) → B(f(z|i∗a), f(z|i∗b))

in V for all 1≤i∗≤n, z ∈ (Ai)i6=i∗ and a, b ∈ Ai∗ , and this data satisfies no further
conditions. The case V = Set and n = 2 is instructive, for then the hom maps
involve assignments of the form

(a1, α2 : a2→a′2) 7→ f(a1, α2) : f(a1, a2)→f(a1, a
′
2)

(α1 : a1→a′1, a2) 7→ f(α1, a2) : f(a1, a2)→f(a′1, a2)

where a1, a
′
1, α1 are vertices and edges from A1, and a2, a

′
2, α2 are vertices and edges

from A2. Thus from the edges α1 and α2, one obtains the following square

f(a1, a2) f(a′1, a2)

f(a′1, a
′
2)f(a1, a

′
2)

f(α1,a2)//

f(a′1,α2)
��

f(a1,α2)
��

f(α1,a
′
2)

//

in the graph B. In a similar way for general n, f produces an n-dimensional
hypercube in the graph B from a given n-tuple of edges (αi)i from the Ai.

Example 4.6. Regard Cat as over Set via the functor which sends a category
to its set of objects. Then a multimap of categories

f : (A1, ..., An) → B

in F(Cat) amounts to a multimap in F(GSet) as in example(4.5), together with
the requirement that the hom functions be functorial in each variable separately.
Note that the hypercubes in the category B described in example(4.5) will not
necessarily commute in general.

Example 4.7. Let X be a set and M the monoid of endofunctions of X . The
monoid M acts on X by evaluation, and regarding M as a one object category
this action may be expressed as a functor M→Set in which the unique object of
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M is sent to the set X . The symmetric multicategory FM has one object, thus
it is just an operad of sets. One may easily verify directly that FM is in fact the
endomorphism operad of X .

Example 4.8. For R a commutative ring and regard R-Mod as over Set via the
forgetful functor. Then F(R-Mod) is the symmetric multicategory of R-modules
and R-multilinear maps.

4.3. 2-functoriality of F . We shall define F as the composite 2-functor

CAT/Set SMULTCAT/Set SMULTCAT
F1 // dom //

where dom is obtained by talking the domain of a map into Set, and the 2-functor
F1 is provided by

Lemma 4.9. The assignment

A→Set 7→ FA((),−) : FA→Set

describes the object map of a 2-functor which we denote as F1.

Proof. Let F : A→B be a functor over Set. We define F1(F ) as follows. Its
object map is that of F . Given f : (a1, ..., an)→b in FA, we define

F1(F )(f)0 = f0 F1(F )(f)z = F (fz)

Let φ : F→G be a natural transformation over Set, then in view of the identification
of the linear maps of FB with the morphisms of B, we may define the components
of F1(φ) to be those of φ. It is trivial to verify that this one and 2-cell map for F1

is well-defined and 2-functorial. �

4.4. Symmetric monoidal monads from monads over Set. Under appro-
priate conditions, a monad over Set has a canonical symmetric monoidal structure
because the 2-functor F gets along well with monad theory. Before explaining this
we must first clarify what Eilenberg-Moore objects are in the slices of a 2-category.

Lemma 4.10. Let K be a 2-category, X ∈ K and

dom : K/X → K

be the 2-functor which on objects takes the domain of a morphism into X. Then
dom creates any Eilenberg-Moore objects that exist in K.

Proof. Let f : A→X and (T, η, µ) be a monad on f in K/X , or in other words
a monad on A in K which satisfies fT = f and fη = idf = fµ. Then any algebra
of T in K, that is to say z : Z→A and α : Tz→z satisfying the usual axioms,
automatically lives in K/X : the underlying object is fz and fα = id by the unit
law of (z, α) since fη = id. Thus the Eilenberg-Moore object (UT , τ) of T in K,
when it exists, may be regarded as living in K/X with underlying object fUT . By
the one-dimensional part of the universal property of (UT , τ) in K, for each (z, α)
one has a unique z′ : Z→AT such that UT z′ = z, but then post-composing this
with f shows that z′ also lives over X , and so (fUT , τ) enjoys the one-dimensional
part of the universal property of an Eilenberg-Moore object for T in K/X . Given
a morphism φ : (z, α) → (z′, α′) of T -algebras in K/X , the two-dimensional part
of the universal property of (UT , τ) in K gives us a unique φ′ : z→z′ such that
UTφ′ = φ, so fUTφ′ = fφ = id since φ lived over X in the first place, and so
(fUT , τ) enjoys the one-dimensional part of the required universal property. �
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So there is in particular no real distinction between Eilenberg-Moore objects in
CAT/Set and those in CAT. The sense in which F gets along well with monad
theory is described by

Lemma 4.11. F preserves Eilenberg-Moore objects.

Proof. Let X be a category over Set and T a monad on A over Set. We
must compare the symmetric multicategories F(XT ) and F(X)F(T ), this latter
being formed by applying F to the monad and taking Eilenberg-Moore objects in
SMULTCAT, which we know how to do by proposition(3.7). By definition each of
these multicategories has the same objects, namely algebras of the monad T . A
multimap

((x1, a1), ..., (xn, an)) → (y, b)

of F(AT ) consists of a multimap f : (xi,0)i → y0 in Set, together with fz : xi∗ → y
in XT for all 1≤i∗≤n and z ∈ (xi,0)i6=i∗ . This is clearly the same as a multimap
f ′ : (xi)i → y in F(X) whose linear parts are T -algebra morphisms. On the other
hand a multimap ((xi, ai))i → (y, b) in F(X)F(T ) is by definition a multimap f ′

such that
f ′(idxi

|i∗ai∗)i = bT (f ′)(ηxi
|i∗ idTxi∗

)i

as multimaps of F(X). But two multimaps in F(X) are equal iff they have the same
underlying multifunction and the same linear parts. The underlying multifunctions
of the multimaps on both sides of the previous equation is just the identity since
T is a monad over Set and so the underlying function of a given T -action must be
the identity by the unit law. The equality of linear parts expressed by the equation
says exactly that these linear parts are T -algebra maps. The identifications of
objects and multimaps between F(XT ) and F(X)F(T ) that we have just made
clearly commute in the obvious way with the forgetful UT : XT→X , that is to say,
we have shown that the obstruction map F(XT ) → F(X)F(T ) is an isomorphism
as required. �

With these details in hand we come to the main result of this section, which
explains how monads over Set naturally give rise to symmetric monoidal monads,
and when this happens, the two obvious ways of regarding the algebras as multi-
categories coincide.

Theorem 4.12. Let A be a category over Set and T a monad on A over Set.
Suppose that FA is a representable multicategory.

(1) T is canonically a symmetric monoidal monad relative to the induced sym-
metric monoidal structure on A.

(2) One has an isomorphism F(AT ) ∼= UAUT of symmetric multicategories.

Proof. Since U is 2-fully-faithful by proposition(3.2) and T is just FT re-
stricted to the linear maps in FA, one may regard T in a unique way as a symmetric
monoidal monad such that UT = FT . The second part follows since F preserves
Eilenberg-Moore objects by lemma(4.11). �

As we shall see in the next section, it is easy to isolate conditions on V so that
the symmetric multicategory F(GV ) is closed and representable. For such V and
given a monad T on GV over Set, theorem(4.12) tells us that the multicategory
F(G(V )T ) arises from a symmetric monoidal structure on the monad T . Thus one
may use theorem(3.9) to study the representability of F(G(V )T ), and so ultimately
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produce a canonical symmetric monoidal closed structure on G(V )T in a very gen-
eral way. Such technique will apply in particular to categories of algebras of higher
operads.

5. The free tensor products

5.1. Overview. Having assembled together the necessary technology in sec-
tions(3) and (4) we are now in a position to describe our generalisations of the
free product of categories recalled in section(2), and exhibit some of their basic
properties.

5.2. Free products of enriched graphs. We begin by considering the mul-
ticategory F(GV ) for some fixed category V , and we shall use the notation intro-
duced in example(4.5) when specifying multimaps therein. Supposing first that V
has small products, one can for each pair A, B of V -enriched graphs define [A,B]
in GV to have as objects, morphisms f : A→B of enriched graphs, and homs given
by

(3) [A,B](f, g) =
∏

a∈A

B(fa, ga).

The right evaluation revA,B : ([A,B], A)→B is specified as follows

rev0(f, a) = fa revf,a1,a2 = fa1,a2 reva,f,g = pa

where f, g are V -graph morphisms A→B, a, a1, a2 ∈ A and pa is the a-th projection
of the product from (3). Recall that fa1,a2 is our notation for the corresponding
hom map of the V -graph morphism f .

Proposition 5.1. Let V be a category with small products. With the hom and
right evaluation multimaps just given, F(GV ) is a closed multicategory.

Proof. Given F in F(GV ) as in

F : (C1, ..., Cn, A) → B G : (C1, ..., Cn) → [A,B]

we must exhibit a unique G as above so that F = rev(G, 1A). Let us describe the
object map of G. Given x ∈ (Ci)i one must define a morphism

G(xi)i : A→ B

of V -graphs, and the object and hom maps are defined by

G(xi)i(a) = F (x|n+1a) (G(xi)i)a1,a2 = Fx,a1,a2 .

As for the hom maps of G for x ∈ (Ci)i6=i∗ and y, z ∈ Ci∗ , we define Gx,y,z as the
unique map in V satisfying

paGx,y,z = Fx|n+1a,y,z

for all a ∈ A where pa is the projection from the product (3). It is immediate
from the definitions just given that F = rev(G, 1). Conversely, the closedness
of Set and the definition of the object map of rev ensures that F = rev(G, 1)
determines the object maps of the G(xi)i. For x ∈ (Ci)i and a1, a2 ∈ A, observing
the corresponding homs on both sides of F = rev(G, 1) one sees that the hom
maps of the G(xi)i are also determined uniquely by that formula. Finally given
x ∈ (Ci)i6=i∗ , a ∈ A, and y, z ∈ Ci∗ , observing the corresponding homs on both
sides of F = rev(G, 1) one sees that the morphisms paGx,y,z are also determined
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by F = rev(G, 1), and so we have indeed exhibited G as the unique solution of
F = rev(G, 1) as required. �

Suppose now that in addition to having small products, that V also has finite
coproducts. Then given V -graphs (A1, ..., An) one can define a V -graph

∏(fr)

i

Ai

with object set the cartesian product of the Ai,0, and homs given by

(4)

(

∏(fr)

i

Ai

)

(a, b) =







∐

iAi(ai, bi) if ai=bi for all i.
Aj(aj , bj) if ai=bi for all i except i=j.
∅ otherwise.

and we define a multimap

αAi
: (Ai)i →

∏(fr)

i

Ai

whose object map is the identity, and whose hom map

Ai∗(y, z) → (
∏(fr)

i

Ai)(x|i∗y, x|i∗z)

corresponding to x ∈ (Ai)i6=i∗ , y, z ∈ Ai∗ is the identity if y 6= z, and the i∗-th
coproduct inclusion otherwise.

Proposition 5.2. Let V be a category with small products and finite coprod-
ucts. Then F(GV ) is representable and the multimaps αAi

just defined are univer-
sal.

Proof. By lemma(3.4) and proposition(5.1) it suffices to show that the αAi

are universal. Given F in F(GV ) as in

F : (Ai)i → B G :
∏(fr)

i

Ai → B

we must exhibit G as above unique so that Gα = F . Clearly this equation forces
the object map of G to be that of F , and the hom map Ga,b to be: (1) the unique
map such that Ga,bci = Fa¬i,ai,bi

when a=b where a¬i is the sequence a with i-th
coordinate removed, (2) Fa¬j,aj ,bj

when ai=bi for all i except i=j, and (3) the
unique map out of ∅ otherwise. �

Corollary 5.3. If V is a category with small products and finite coproducts,

then
∏(fr)

and the hom described in equation(3) give GV a symmetric monoidal
closed structure, and for this structure UGV = F(GV ).

Definition 5.4. If V is a category with small products and finite coproducts,

then the tensor product
∏(fr)

is called the free product of enriched graphs.

Note that the unit for the free product, that is to say the nullary case, is just the
V -graph 0 which represents the forgetful GV→Set: it has one object and its unique
hom is ∅.

Example 5.5. Unpacking the binary free product in the case V = Set gives
the simpler graph-theoretic analogue of the funny tensor product of categories. As
with categories, A×(fr)B and the cartesian product A×B have the same objects,
but their edges are different. There are two types of edges of A×(fr)B:

(a, β) : (a, b1) → (a, b2) (α, b) : (a1, b) → (a2, b)
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where a and α : a1→a2 are in A, and b and β : b1→b2 are in B. In particular given
such an α and β, the dotted arrows in

(a1, b1) (a1, b2)

(a2, b2)(a2, b1)

(a1,β) //

(α,b2)
��

(α,b1)
��

(a2,β)
//

(α,β)
TTTTTT

**TTTTTT

indicate some edges which one can build from them in A×(fr)B, whereas the solid
diagonal edge is what one has in A×B.

There is an importance difference between the free product of graphs and that
of categories. That is for graphs there is no sensible comparison map

A×(fr)B → A×B

as in the Cat case.

5.3. Free products of monad algebras. Assembling together the free prod-
uct of enriched graphs just exhibited, monoidal monad theory and theorem(4.12),
we can now exhibit analogous tensor products of algebras of monads on GV over
Set.

Theorem 5.6. If T is an accessible monad on GV over Set and V be locally
presentable, then F(G(V )T ) is closed and representable.

Proof. GV is locally presentable by corollary(5.12) of [2] or by [9], and since
T is accessible G(V )T is locally presentable also and so T satisfies the hypotheses
of theorems(3.8) and (3.9) from which the result follows. �

Definition 5.7. The induced tensor product on G(V )T by theorem(5.6) is

called the free product on G(V )T and is also denoted as
∏(fr).

Equations(1) and (2) of section(3.4), together with the explicit description of free
products and the associated internal hom for GV , gives one explicit formulas for
the tensors and homs provided by theorem(5.6). In particular one has the following
simple observation.

Remark 5.8. For T as in theorem(5.6) the unit of the induced monoidal struc-
ture is (T 0, µ0), that is to say, the free T -algebra on the graph 0 with one object
and initial hom.

Moreover unpacking the equations (1) and (2) in the case where V = Set and T
is the category monad T≤1, one recovers the tensor and hom of the funny tensor
product of categories. Theorem(5.6) applies to any higher operad, and so any
category of algebras of a higher operad has such a symmetric monoidal closed
structure.

5.4. Comparing the free and cartesian products. From the above dis-
cussion at the end of section(5.2) we see that the category monad T = T≤1 on

GSet is “better” than the identity monad on GSet, because in GSetT = Cat one
has natural identity on objects comparison maps mediating between the free and
cartesian product. We shall now isolate which formal property of T gives rise to
these comparison maps in general.
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Suppose that T is a monad over Set on GV with this situation satisfying the
conditions of theorem(5.6) so that one has free and cartesian products in G(V )T .
Suppose in addition that one has for all A and B in G(V )T some map

κA,B : A×(fr)B → A×B.

We don’t assume anything about the naturality of the κA,B or even that they are
identities on objects. Then in particular putting A = 1 and B = (T 0, µ0), in
view of remark(5.8) one obtains by composition with the appropriate coherence
isomorphisms, a T -algebra map

e : 1 → (T 0, µ0).

Of course as a map out of a terminal object e is a split monomorphism. In fact in
this case it must be an isomorphism. To see that the composite

T 0 1 T 0// e //

is the identity, by the universal property of T 0 as the free T -algebra on 0, it suffices
to show that the composite morphism

0 T 0 1 T 0
η0 // // e //

in GV is η0, and this follows since 0 is the initial V -graph with one object. Thus
we have shown

Lemma 5.9. Let T be an accessible monad on GV over Set and V be locally
presentable. Suppose that for all A and B in G(V )T one has comparisons

κA,B : A×(fr)B → A×B

in G(V )T . Then the unit (T 0, µ0) of the free product on G(V )T is terminal.

and so we make

Definition 5.10. A monad T on GV over Set is well-pointed when T 0 = 1.

Examples 5.11. Let E be a distributive multitensor on V a category with
coproducts and a terminal object. To say that the monad ΓE is well-pointed is
to say that the object E0 of V is terminal, by the explicit description of ΓE.
Thus in particular if T is a coproduct preserving monad on V , the multitensor T×

satisfies this property, and so ΓT× is well-pointed. Thus the monads T≤n for strict
n-categories for all 0≤n≤∞ are well-pointed.

Whenever the unit of a symmetric monoidal category (W ,⊗) with finite prod-
ucts is terminal, one has natural comparisons

κ(Ai)i
:
⊗

i

Ai →
∏

i

Ai

defined by the condition that the composites pjκ(Ai)i
are equal to the composites

⊗

i

Ai
⊗

i

1|jAj Aj

N

i

tAi
|jid

// //

for all 1≤j≤n, where pj is the j-th product projection, the tAi
denote the unique

maps into 1 and dotted maps are the unit coherence isomorphisms in view of the
fact that the unit of W is terminal. The compatibility between κ and the monoidal
structures on W involved is expressed by the following result, whose proof is a
simple exercises in the definitions.
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Proposition 5.12. Let (W ,⊗) be a symmetric monoidal category with finite
products whose unit is terminal. Then the components κ(Ai)i

form the coherences
(1W , κ) : (W ,

∏

) → (W ,⊗) of a symmetric lax monoidal functor.

In particular proposition(5.12) implies that the κ(Ai)i
are the components of a

morphism of multitensors
⊗

→
∏

, in fact this last statement is the analogue of
proposition(5.12) in which the symmetries are disregarded. Instantiating to the
case where ⊗ is the free product on G(V )T for T a good enough monad, one has in
addition that the components κ(Xi)i

are identities on objects.

Proposition 5.13. If T is an accessible well-pointed monad on GV over Set
and V is locally presentable, then given T -algebras ((Xi, xi))i, one may construct
the comparison maps

κ(Xi)i
:
∏(fr)

i

Xi →
∏

i

Xi

of proposition(5.12) in G(V )T so that they are identities on objects.

Proof. Refer to the proof of theorem(3.9). Note first that by the explicit
construction of the free product on GV , the n-ary tensor product preserves identity
on objects maps. Thus in the coequaliser (2) the morphism

⊗

i

xi is the identity

on objects. Since the coherences exhibiting T as a symmetric monoidal monad live
over Set, the map µT (φ) in the coequaliser (2) is also the identity on objects. Now
from the transfinite construction of coequalisers in G(V )T in terms of colimits in
GV discussed in section(7) of [2], the underlying map in GV of the coequaliser qxi

is
built by first taking a coequaliser down in GV , then a series of successive pushouts
and colimits of chains to construct a transfinite sequence down in GV , and one
proceeds until the length of the chain reaches the rank of T . But each stage of this
process involves taking colimits of connected diagrams in GV involving only maps
that are identities on objects, so at each stage one may take the colimit in GV to
be the identity on objects. Thus in this way by a transfinite induction argument,
one can indeed construct the coequaliser qxi

as being an identity on objects map.
Thus the universal multimaps q̃xi

constructed in the proof of theorem(3.9) are also
identities on objects. For each 1≤j≤n the multimap corresponding to pjκ(Xi)i

,
where pj is projection onto the j-th factor, has object map given by projection
onto the j-th factor by the explicit description of κ. Since the explicitly constructed
universal multimaps for F(G(V )T ) have identity objects maps, it follows that the
maps pjκ(Xi)i

themselves have object maps given as projection onto the j-th factor,
and so the result follows. �

5.5. The pushout formula. In this section we generalise the pushout for-
mula for the funny tensor product, recalled in section(2), to our setting. In the
Cat-case all the functors involved in the pushout formula are identities on objects,
and so another place where one can locate this pushout is in a fibre of Cat→Set.
This point of view is the key for how to describe the general situation.

Suppose that A is a distributive category. Suppose furthermore that 1 ∈ A is
connected and regard A has being over Set via the representable A(1,−), which we
recall has a left adjoint (−)·1 given by taking copowers with 1. The connectedness of
1 says exactly that A(1,−) is coproduct preserving. In the discussion of section(4)
we denoted by a0 the set A(1, a), but we shall not do this here, preferring instead to
use the notation a0 for the object A(1, a) · 1 of A. So for each element x : 1→a one
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has a coproduct inclusion cx : 1→a0, and the component ιa : a0→a of the counit of
(−)·1 ⊣ A(1,−) is defined uniquely by ιacx = x for all x ∈ a. The connectedness of
1 ensures that ιa is inverted by A(1,−).

Given any sequence (a1, ..., an) of objects of A and 1≤j≤n, one has by the
distributivity of A a canonical isomorphism

(5)
∏

i

ai,0|jaj ∼=

(

∏

i6=j

ai,0

)

· aj

which by definition provides us with the following reformulation of the multimaps
of F(A).

Lemma 5.14. Suppose that A is a distributive category in which the terminal
object 1 is connected, and regard A as over Set using the representable A(1,−).
Then to give a multimap

f : (a1, ..., an) → b

in F(A) is to give maps fj :
∏

i

ai,0|jaj→b for all 1≤j≤n such that

fj

(

∏

i

id|jιaj

)

= fk

(

∏

i

id|kιak

)

for all 1≤j, k≤n.

Proof. The object map of f may be identified with the common composite

map fj

(

∏

i

id|jιaj

)

using the fact that A(1,−) preserves coproducts, and using (5)

the linear parts of f may be identified with the fj. Under these correspondences,
the equation the fj must satisfy in the statement of this result amounts to the com-
patiblility between the underlying multifunction and the linear parts of f required
by the definition of F(A). �

Obtaining the pushout formula for the free product is simply a matter of applying
this result to the case of A = G(V )T for appropriate T , and using the fact that the
free product of T -algebras is what classifies multimaps in F(G(V )T ) by definition.

Proposition 5.15. Let T be a coproduct preserving, accessible and well-pointed
monad on GV over Set, and suppose that V is locally presentable. Then for T -
algebras (X1, ..., Xn) their free product is the width-n pushout of the diagram in
G(V )T whose maps are

∏

i

id|jiXj
:
∏

i

Xi,0 →
∏

i

Xi,0|jXj

for 1≤j≤n

Proof. Since T is coproduct preserving and accessible, and GV is locally
c-presentable by corollary(5.12) of [2], G(V )T is locally c-presentable by theo-
rem(5.6) of [2]. Thus G(V )T satsifies the hypotheses demanded of the category A in
lemma(5.14) enabling us to reformulate multimaps in F(G(V )T ) as the appropriate
cocones. But by theorem(5.6), F(G(V )T ) is representable and the induced ten-
sor product on G(V )T is by definition the free product. The universal multimaps
which define the free product of T -algebras correspond, via the reformulation of
lemma(5.14), to the required width-n pushout diagram. �
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Remark 5.16. Using an argument similar to that given in proposition(5.13)
one can establish that the width-n pushout diagram of proposition(5.15) may be
assumed to consist soley of identity on objects maps, and then one may recover
proposition(5.13) as a consequence of proposition(5.15), though with the added
hypotheses used by that proposition, by inducing the canonical comparison maps
from the pushout in the obvious way.

6. Dropping multitensors

6.1. Overview. Any multitensor E on the category of algebras V T of some
monad (V, T ) which is “closed” in the sense to be defined below, has been lifted,
in the sense of [2] section(7), from a multitensor down in V . This “dropped”
multitensor E is easy to describe in terms of the data given at the beginning. As a
basic example one can start with the Gray tensor product of 2-categories, and then
recapture the corresponding multitensor on G2Set, and thus the monad on G3Set for
Gray categories. The main result of this section, the multitensor dropping theorem,
is proved by a similar argument to that used by Steve Lack in the proof of theorem
2 of [13]. It will then be used in section(7) to explicitly describe the monads and
operads whose algebras are categories enriched in the free products constructed in
section(5).

6.2. Closed multitensors. The multitensor dropping theorem applies to closed
multitensors. We now discuss this notion.

Definition 6.1. Let V be a locally presentable category. A multitensor (E, ι, σ)
is closed when E preserves colimits in each variable.

Example 6.2. If E is a genuine tensor product, then closedness in the sense
of definition(6.1) corresponds to closedness in the usual sense because for a locally
presentable category V , an endofunctor V→V is cocontinuous iff it has a right
adjoint.

Lemma 6.3. Let φ : S→T be a cartesian transformation between lra endo-
functors on V a locally cartesian closed category. If T is cocontinuous then so is
S.

Proof. Because of the cartesianness of φ, S is isomorphic to the composite

V V/T 1 V/S1 V
T1 // φ∗

1 // dom// .

T1 is cocontinuous because T is, φ∗1 is cocontinuous because V is locally cartesian
closed and dom is left adjoint to pulling back along the unique map S1→1. �

Example 6.4. A closed multitensor E on Set is the same thing as a non-
symmetric operad. For given such an E and denoting by En the set E

1≤i≤n
1,

closedness gives
E
i
Xi

∼= E
i

∐

x∈Xi

1 ∼= En ×
∏

i

Xi.

Similarly the unit and substitution for E determine the unit and substitution maps
making the sequence (En : n ∈ N) of sets into an operad. Conversely given an
operad (En : n ∈ N) of sets, the multitensor with object map

(Xi)i 7→ En ×
∏

i

Xi
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of example(2.6) of [3] is clearly closed.

6.3. Fibrewise Beck. We now present the key lemma that enables us to
adapt Lack’s proof [13] to our situation. Let

(6) V W
U

//
Foo
⊥

be an adjunction, denote by T the induced monad on W and by K : V→WT

the functor induced by the universal property of UT : WT→W . One form of the
Beck theorem says: U creates any reflexive coequalisers that it sends to absolute
coequalisers iff K is an isomorphism, and in this paper we call such right adjoints U
monadic. Note however that elsewhere in the literature monadicity is often taken
to mean that K is an just equivalence of categories rather than an isomorphism.

Let us recall the relevant aspects of the proof of the Beck theorem (see [15] or
any other textbook on category theory for a complete proof). First one analyses
UT directly to see that it creates the appropriate coequalisers, and then conclude
that when K is an isomorphism U obtains the desired creation property. For the
converse, for a given X ∈ V one notes that U sends the diagram

(7) FUFUX FUX X

FUεX

//
FηUX

oo
εF UX //

εX //

to a split coequaliser, hence an absolute one, and then the creation property of
U can be used to deduce that K is an isomorphism. If in a given situation the
coequalisers of (7) satisfy some other useful and easily identifiable condition, then
one immediately obtains a refinement of the Beck theorem in which one restricts
attention to just those coequalisers.

The situation of interest to us is when the adjunction (6) lives in CAT/E for
some fixed category E , rather than just in CAT. In this case for each X ∈ E , the
adjunction F ⊣ U restricts to an adjunction

VX WX
UX

//
FXoo
⊥

where VX (resp, WX) is the subcategory of V (resp. W ) consisting of the objects
and arrows sent by the functor into E to X and 1X . The induced monad TX on WX

may be obtained by restricting T in the same way. Note that any of the coequalisers
(7) live in some VX , because the components of η all live in some WX . Let us call
any coequaliser in V living in some VX a fibrewise coequaliser. So any coequaliser
of the form (7) is fibrewise. Thus one may restrict attention to such coequalisers
in the proof of the Beck theorem, and so obtain the following fibrewise version of
the Beck theorem.

Lemma 6.5. (Fibrewise Beck Theorem). Let E be a category. For a given
adjunction F ⊣ U in CAT/E TFSAE:

(1) The functor U is monadic in the usual sense.
(2) For all X ∈ E, UX is monadic.
(3) U creates any fibrewise reflexive coequaliser which it sends to an absolute

coequaliser.
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6.4. The multitensor dropping theorem. Recall that any multitensor E
on a category V contains in particular a unary tensor product E1. Rather than
being trivial (and thus not mentioned) as in the case where E is a genuine tensor
product, E1 is in general a monad on V . The central result of [2], theorem(7.3),
explains how to “lift” a multitensor E on a category V , to a multitensor E′ on the
category V E1 whose unary part is trivial (though E′ could still be lax in general).
Now we consider the reverse process – given a monad playing the role of E1, and a
multitensor E′ on the category of algebras of E1, we shall see how to recover E.

Suppose that U : V→W is monadic, accessible and coproduct preserving, with
left adjoint denoted as F , W is locally presentable, and (E, u, σ) is a closed normal
multitensor on V . Recall that by [2] section(3.4) one has a multitensor UEF on W
with object part U E

i
FXi, and since U preserves coproducts, UEF is distributive.

With V the category of algebras of an accessible monad, it is locally presentable, and
so by [2] theorem(7.3) one obtains a multitensor (UEF )′ on V ∼= W (UEF )1 . Given
that E is normal it makes sense to ask whether (UEF )′ ∼= E. By the uniqueness
part of [2] theorem(7.3) this is the same as asking whether the composite functor

E-Cat GV GW
UE

// GU //

is monadic. We now establish that this is indeed the case.

Theorem 6.6. Let U : V→W be monadic, accessible and coproduct preserving
with left adjoint denoted as F , W be locally presentable, and (E, u, σ) be a closed
normal multitensor on V . Then

(UEF )′ ∼= E

as multitensors.

Proof. As argued above we must show that the composite G(U)UE is monadic.
Note that via the forgetful functors from GV and GW into Set, all the monads and
adjunctions involved in the present situation live in CAT/Set. Thus by lemma(6.5)
it suffices to show that G(U)UE creates any fibrewise reflexive coequalisers that it
sends to absolute coequalisers. So we fix a set X let

A B

f //
ioo
g

//

be a diagram of E-categories and E-functors in which the object maps of all the
E-functors involved are 1X , and let

G(U)UEA G(U)UEB C

G(U)UEf //

G(U)UEg

//
h //

be an absolute coequaliser of W -graphs. Since the object maps of f , i and g are
identities, one may compute C and h as follows: take the object set of C to be X
and the object map of h to be the identity, and for all a, b ∈ X take a coequaliser

UA(a, b) UB(a, b) C(a, b)
Ufa,b //

Uga,b

//
ha,b //
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in W to compute the hom C(a, b) and the hom map ha,b. We must exhibit a unique
h′ : B→C′ such that G(U)UEh′=h and

A B C′

f //

g
//

h′
//

is a coequaliser of E-categories. The equation G(U)UEh′=h forces the object set
of C′ to be X and the object map of h′ to be the identity. By the monadicity of
U , one induces h′a,b : B(a, b)→C′(a, b) as the unique map in V coequalising fa,b
and ga,b. So far we have constructed the underlying V -graph of C′, which we shall
also denote as C′, and the underlying V -graph morphism of h′ which we shall also
denote by h′. In fact by the uniqueness part of the monadicity of U , the V -graph
morphism h′ is forced to be as we have just constructed it. Thus to finish the proof
it suffices to do two things: (1) show that there is a unique E-category structure on
C′ making h′ an E-functor, and (2) show that h′ is indeed the coequaliser f and g
in E-Cat.

Let us now witness the unique E-category structure. Let n ∈ N and x0, ..., xn
be elements of X . Then one induces the corresponding composition map for C′

from those of A and B as shown

(8)

E
i
A(xi−1, xi) E

i
B(xi−1, xi) E

i
C′(xi−1, xi)

C′(x0, xn)B(x0, xn)A(x0, xn)

E
i
fxi−1,xi

//

E
i
gxi−1,xi

//
E
i
h′

xi−1,xi //

fx0,xn //

gx0,xn

//
h′

x0,xn //
�� �� ��

because the top row is a coequaliser by the closedness of E and the 3×3-lemma (see
corollary(7.11) of [2]). Note that the putative E-category structure is by definition
uniquely determined by the condition that h′ becomes an E-functor. That is given
sequences (xij : 1≤j≤ni) for each 1≤i≤n such that xi0 = xi−1 and xini

= xi from
X , we must verify the commutativity of the corresponding

(9)

E
i
E
j
C′(x(ij)−1, xij) E

ij
C′(x(ij)−1, xij)

C′(x0, xn)E
i
C′(xi−1, xi)

σ //

����
//

Here is a thumbnail sketch of the diagram which enables one to witness this:

•

•

• •

•

•

•

•

•

•

•

•

''OOOOOOOO

''OOOOOOOO

e

''OOOOOOOO wwoooooooo
wwoooooooo

wwoooooooo

77oooooooo
77oooooooo

77oooooooo
ggOOOOOOOO

ggOOOOOOOO

ggOOOOOOOO

//

���� //

//

����
//

//

����
//
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In this diagram the inner rectangle is (9). The outer and middle rectangles are the
corresponding axioms for A and B respectively and so commute by definition. The
diagonal parts of the diagram are coequalisers by the closedness of E and the 3×3-
lemma. The bottom left and bottom right coequalisers in this diagram coincide
with the top and bottom row of (8) respectively. The vertical and horizontal maps
provide natural transformations of coequaliser diagrams by definition, modulo the
commutativity of the inner rectangle to be established. But by the commutativities
just witnessed, this rectangle does commute after precomposition with e, but as
a coequalising map e is an epimorphism, and so it does indeed commute. This
concludes the verification of (1).

As for (2) suppose that one has an E-functor k : B→D such that kf = kg.
We must exhibit a unique E-functor k′ : C′→D such that k′h′ = k. The under-
lying V -graph map is determined uniquely with this condition because UEh′ is
the coequaliser of UEf and UEg by construction, so to finish the proof it suffices
to verify that this V -graph map k′ is compatible with the E-category structures.
But for a given (x0, ...xn) as above, by definition the corresponding E-functoriality
rectangle does commute after precomposition with the map E

i
h′xi−1,xi

, and so the

result follows since this map is an epimorphism. �

7. Monads and operads for sesqui-algebras

7.1. Sesqui-algebras. Given a monad T on GV over Set satisfying the hy-
potheses of theorem(5.6), as we have seen one may speak about the free product
of T -algebras. One may then consider categories enriched in G(V )T via the free
product. We shall call such structures, that is categories enriched in G(V )T for the
free product, sesqui-T -algebras. When T is the category monad on GSet, sesqui-T -
algebras are just sesqui-categories in the usual sense.

7.2. Monads for sesqui-algebras. Since T is a monoidal monad with re-
spect to the free product on GV one has a multitensor on GV with object maps

(Xi)i 7→ T
∏(fr)

i

Xi

as discussed in [2] section(6.6). However by remark(3.10) FT is strict monoidal
with respect to the free products on GV and G(V )T and so one has an equality

T
∏(fr) = UT

∏(fr) FT

of multitensors. From the right hand side of this last equation we see that we are
in the situation of the multitensor dropping theorem of section(6.4) if our monad
T is good enough.

Theorem 7.1. Suppose that T is an accessible and coproduct preserving monad
on GV over Set and let V be locally presentable.

(1) The free product of T -algebras may be recovered as the lifted multitensor

(T
∏(fr)

)′.
(2) The monad on G2V whose algebras are sesqui-T -algebras is given explicitly

as Γ(T
∏(fr)

).

Proof. (1) is immediate from theorem(5.6) and theorem(6.6), and so (2) fol-
lows by [2] corollary(4.9). �
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So we have obtained in (2) an explicit combinatorial description of the monad on
G2V whose algebras are sesqui-T -algebras.

7.3. Operads for sesqui-algebras. Applying theorem(7.1) to the monad
T = T≤1 for categories, one obtains an explicit description of the monad on 2-
globular sets whose algebras are sesqui-categories. In this case we know a bit more,
namely that this monad is part of a 2-operad, in fact it is one of the basic examples
of such – see [1].

More generally given an n-operad A→T≤n, it is intuitively obvious that sesqui-
A-categories are describable by an (n+1)-operad, because such a structure on an
(n+1)-globular set amounts to a category structure on the underlying graph and
A-algebra structures on the homs, with no compatibility between them. In other
words the structure of a sesqui-A-algebra may be described by reinterpretting the
compositions and axioms for A-algebras one dimension higher, giving a category
structure in dimensions 0 and 1 and imposing no further axioms, and so the data
and axioms are inherently of the type describable by an (n+1)-operad.

However the explanation just given is not really a rigorous proof that sesqui-
A-algebras are (n+1)-operadic. To give one it is necessary to provide a cartesian
monad morphism as on the left, or equivalently a cartesian multitensor map as on
the right in

Γ(A
∏(fr)

) → T≤n+1 A
∏(fr) → T ×

≤n.

In this section we shall give the general construction, the setting being a good
enough monad T on GV over Set replacing T≤n. As we shall see, one of the funda-
mental properties required of T is that it be well-pointed.

Let V be locally presentable and T be a monad on GV over Set which is
accessible and well-pointed. As justified by remark(3.10) we regard FT as a strict

monoidal functor (GV,
∏(fr)

)→(G(V )T ,
∏(fr)

). So for any sequence of objects (Xi)i
of GV , we have

T
∏(fr)

i

Xi = UT
∏(fr)

i

FTXi

as we saw in section(7.1). From section(5.4) we have the comparison

κ(FTXi)i
:
∏(fr)

i

FTXi →
∏

i

FTXi

in G(V )T . We define κ(Xi)i
= UTκ(FTXi)i

, and since UT preserves products, we
regard it as a map

κ(Xi)i
: T
∏(fr)

i

Xi →
∏

i

TXi

in GV . By definition κ is natural in the Xi. The key lemma of this section is

Lemma 7.2. Let V be locally presentable and extensive, and T be a monad on
GV over Set which is accessible, well-pointed, lra, distributive and path-like. Then
the maps κ(Xi)i

are cartesian natural in the Xi.

and we defer the proof of this result until after we have discussed its consequences.

First note that lemma(7.2) exhibits T
∏(fr) as a T -multitensor by proposition(5.13).

Most importantly from lemma(7.2) the central result of this section follows imme-
diately.
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Theorem 7.3. Let V be locally presentable and extensive, and T be a monad
on GV over Set which is accessible, well-pointed, lra, distributive and path-like.
Suppose that ψ : A→T is a T -operad. Then

A
∏(fr)

i

Xi T
∏(fr)

i

Xi

∏

i

TXi

ψQ(fr)

i
Xi

//
κ(Xi)i //

are the components of a T -multitensor.

Proof. By proposition(5.12) and since ψ is a morphism of monads, the given
composite maps form a morphism of multitensors. Its cartesianness follows since ψ
is cartesian by definition and κ(Xi)i

is cartesian natural in theXi by lemma(7.2). �

Applying this result in the cases T = T≤n we see that for an n-operad A, sesqui-
A-algebras are indeed describable by an (n+1)-operad. The rest of this section is
devoted to proving lemma(7.2).

Let us denote by κ̃(Xi)i
the composite

∏(fr)

i

Xi T
∏(fr)

i

Xi

∏

i

TXi

ηQ(fr)

i
Xi

//
κ(Xi)i //

which by definition is also natural in the Xi. It turns out that for lemma(7.2) it
suffices to consider the cartesian naturality of κ̃.

Lemma 7.4. Let V and T satisfy the hypotheses of lemma(7.2). Then κ is
cartesian-natural in the Xi iff κ̃ is.

Proof. If κ is cartesian natural then so is κ̃ since η is cartesian. For the
converse note that by definition the κ(Xi)i

are T -algebra maps, and thus one may
recover κ(Xi)i

as the composite

T
∏(fr)

i

Xi T
∏

i

TXi

∏

i

T 2Xi

∏

i

TXi
T κ̃ //

kT Xi //

Q

i

µXi

//

where kTXi
is the product obstruction map for T . This is so since the composite

of the last two arrows in this string is the T -algebra structure of
∏

i

TXi. By [17]

lemma(2.15) kTXi
is cartesian natural in the Xi since T is lra. Since µ is cartesian

and a product of pullback squares is a pullback square, each of the maps in the
above composite is cartesian natural in the Xi, and so the result follows. �

The components κ̃(Xi)i
are identities on objects maps, and so it suffices by [2]

lemma(5.17) to show that in any naturality square, all the induced commutative
squares on the homs are pullbacks in V .

Recall that the functor (−)0 : GV→Set which sends a V -graph to its set of
objects has a representing object 0, and so we have an adjunction

GV Set
(−)0

//

(−)·0oo
⊥

and we regard the V -graph Z · 0 as having object set Z and all homs equal to ∅
the initial object of V . For convenience we write the functor (−) · 0 as though it
were an inclusion. The counit of this adjunction has components we will denote
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as iX : X0 → X , and these are the identity on objects, and the hom maps are
determined uniquely. Obviously iX is cartesian natural in X : to see this it suffices
by [2] lemma(5.17) to look at all the induced squares between homs of a given
naturality square since iX is the identity on objects, and these are all of the form

∅ A

B∅
��

//

//

��

which since ∅ is a strict initial object by the extensivity of V , are automatically
pullbacks.

The extensivity of V enables a more efficient description of the free product on

GV . Recall that the general definition of the homs of
∏(fr)

i

Xi required a case split

– see the formula(4) of section(5.2). Let us consider the functor

d : Set → GV

which sends a set Z to the V -graph with object set Z and homs defined by dZ(a, b) =
∅ if a 6= b and dZ(a, b) = 1 if a = b. Clearly dmay be identified with taking copowers
with 1, that is dZ ∼= Z ·1. For convenience we shall also denote by d the endofunctor
d(−)0 of GV , in other words for X ∈ GV we write dX for d(X0). Since the cartesian
product of V is distributive, the formula(4) of section(5.2) may be re-expressed as
in

Lemma 7.5. Let V have products and coproducts, with coproducts distributing
over finite products. Then the homs of the free product on GV may be re-expressed
as

(10)

(

∏(fr)

1≤i≤n

Xi

)

(a, b) =
∐

1≤j≤n

∏

1≤i≤n

dXi(ai, bi)|jXj(aj , bj)

Proof. If a = b then the homs dXi(ai, bi) are all 1 making the right hand side
the coproduct of the Xj(aj , bj). If all but one, say the j-th, coordinates of a and b
coincide, then the only non-∅ summand on the right hand side of (10) is Xj(aj , bj).
Otherwise all summands are ∅. Thus (10) coincides with formula(4) of section(5.2)
under the given hypotheses. �

Assuming that T is well-pointed and preserves coproducts we have

dX ∼= X0 · 1 ∼= X0 · T 0 ∼= T (X0 · 0)

and so dX is in fact a free T -algebra. For convenience we write dX = TX0. Note
that we have maps

T iX : dX → TX

which given the extensivity of V and lra’ness of T , are cartesian-natural in X . Thus
we can define maps

κ(Xi)i
:
∏(fr)

i

Xi →
∏

i

TXi

as follows. They are identities on objects. To define the hom maps it suffices in
view of (10) to define the maps

(

κ(Xi)i

)

a,b
cj :

∏

i

dXi(ai, bi)|jXj(aj , bj) →
∏

i

TXi(ai, bi)
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where cj denotes the j-th coproduct inclusion, and we define
(

κ(Xi)i

)

a,b
cj =

∏

i

(T iX)ai,bi
|j(ηXj

)aj ,bj

and by this definition κ is clearly natural in its arguments. In fact

Lemma 7.6. Let V be complete and extensive, and suppose that the monad T
on GV over Set is well-pointed, cartesian and preserves coproducts. Then κ(Xi)i

is
cartesian natural in the Xi.

Proof. By extensivity it suffices to show that the
(

κ(Xi)i

)

a,b
cj are cartesian

natural, and this follows since iX and ηX are cartesian, and products of pullback
squares are pullbacks. �

To conclude the proof of lemma(7.2) it remains to show that κ = κ̃. The
problem with doing this at the generality of lemma(7.6) is that κ and κ̃ implicitly
involve the two different ways of describing multimaps of V -graphs – the general
one from F(GV ) involving object maps and linear parts, versus the description of
example(4.5) involving object maps and individual hom maps. Without the more
explicit description of T that becomes available since it is distributive and path-like,
it doesn’t seem possible to identify κ and κ̃.

So we now use that T is distributive and path-like so that there exists a dis-
tributive multitensor E on V and ΓE ∼= T by proposition(4.11). This means that
for all X ∈ GV and a, b ∈ X we have maps

c(xi)i
: EX(xi−1, xi) → TX(a, b)

for all sequences (xi)i starting at a and finishing at b, and taken together these
form a coproduct cocone. Thus given a multimap

f : (X1, ..., Xn) → Y

of V -graphs, the multimap Tf : (TXi)i→TY may be described explicitly as having
object map that of f , and hom map corresponding to x ∈ (Xi)i6=i∗ and a, b ∈ Xi∗ ,
defined by the commutativity of

E
j
Xi∗(zj−1, zj)

TXi∗(a, b) TY (f(x|i∗a), f(x|i∗b))

E
j
Y (f(x|i∗zj−1), f(x|i∗zj))

c(zj)j

OO

(Tf)x,a,b //

E
j
fx,zj−1,zj

//

c(f(x|i∗ zj))j

OO

for all sequences (zj)j in Xi∗ from a to b. So using this extra explicit information
we finish the proof of lemma(7.2) in

Lemma 7.7. Let V and T satisfy the hypotheses of lemma(7.2). Then κ̃ = κ.

Proof. Given V -graphs (X1, ..., Xn) and 1≤j≤n we must show pjκ̃(Xi)i
=

pjκ(Xi)i
, where pj is the j-th projection of the product. We will show that the

corresponding multimaps (Xi)i→TXj in F(GV ) are the same. To this end consider

(Xi)i (TXi)i (T 0|jTXj)i

TXjT
∏(fr)

i

Xi

∏(fr)

i

Xi

(ηXi
)i //

(tT Xi
|j id)i //

T (α(0|j Xj)i
)

��

Tα(Xi)i
��

α(Xi)i

��

η
//

pjκ(Xi)i

//



FREE PRODUCTS OF HIGHER OPERAD ALGEBRAS 35

in which the linear maps are the unique maps in view of T 0 ∼= 1 by well-pointedness,
and the α maps are the universal maps described just before proposition(5.2). Note
that the right hand square may be regarded as living in F(G(V )T ) and it commutes
by the definition of κ. The left hand square commutes by the multinaturality of
η. By the explicit description of the hom maps of T (α(0|jXj)i

) in terms of the
corresponding multitensor E (see the discussion just before the statement of this
lemma), the top composite of the diagram

T (α(0|jXj)i
)(tTXi

ηXi
|jηXj

)i

is the multimap corresponding to pjκ(Xi)i
, and so the outside of the diagram wit-

nesses pj κ̃(Xi)i
= pjκ(Xi)i

at the level of multimaps. �
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