
From Region Inference to von Neumann Machines via Region RepresentationInferenceLars Birkedal, Carnegie Mellon University� Mads Tofte, University of CopenhagenyMagnus Vejlstrup, NKT ElektronikzAbstractRegion Inference is a technique for implementing program-ming languages that are based on typed call-by-value lambdacalculus, such as Standard ML. The mathematical runtimemodel of region inference uses a stack of regions, each ofwhich can contain an unbounded number of values. Thispaper is concerned with mapping the mathematical modelonto real machines. This is done by composing region infer-ence with Region Representation Inference, which graduallyre�nes region information till it is directly implementable onconventional von Neumann machines. The performance ofa new region-based ML compiler is compared to the perfor-mance of Standard ML of New Jersey, a state-of-the-art MLcompiler.1 IntroductionIt has been suggested that programming languages whichare based on typed call-by-value lambda calculus can be im-plemented using regions for memory management[17]. Atruntime, the store consists of a stack of regions. All values,including function closures, are put into regions. Regioninference, a re�nement of Milner's polymorphic type disci-pline, is used for inferring where regions can be allocatedand where they can be deallocated. For each expressionwhich directly produces a value (such as a constant, a tupleexpression or a lambda abstraction), region inference alsoinfers a region in which the value should be put. Experi-ments with a proto-type implementation of region inferenceand an instrumented interpreter have suggested that oftenit is possible to achieve very economical use of memory re-sources, even without garbage collection[17].The potential bene�ts of region inference are:�Work done while at University of Copenhagen. Current address:School of Computer Science, Carnegie Mellon University, 5000 ForbesAvenue, Pittsburgh, PA 15213, USA; email: birkedal@cs.cmu.edu.yAddress: Department of Computer Science (DIKU), Universityof Copenhagen, Universitetsparken 1, DK-2100 Copenhagen �, Den-mark; email: tofte@diku.dk.zWork done while at University of Copenhagen. email:MGV at NKT ELEKTRONIK@dscc.dk.

1. Region inference reclaims memory very eagerly andcould hence lead to a (much desired) reduction in spacerequirements;2. The region information inferred by the region infer-ence algorithm might be useful to programmers whoare interested in obtaining guarantees about maximalstorage use and maximal lifetimes of data, as is thecase with embedded systems;3. If region inference is used without garbage collection(as we have done so far) it eliminates hidden time costs:all memory management operations are inserted by thecompiler and are constant-time operations. This couldbe important for real-time programming.The purpose of this paper is to report the results of ongoinge�orts to study whether and how this potential can be re-alised. Based on experience with developing a new StandardML compiler which uses regions for memory management,we propose a way to map the conceptual regions of region in-ference onto real machines. With the techniques we presentbelow, we have found that1. Region inference can result in signi�cant space savingson non-trivial programs, in comparison with a state-of-the-art system which uses garbage collection;2. Region-based evaluation of ML programs can competeon speed with the garbage-collection-based executionof a state-of-the-art ML system;3. In practice, a high percentage of all memory alloca-tions can take place on a traditional runtime stackOn the downside, it has to be said that region inferenceoccasionally does not predict lifetimes with su�cient accu-racy and that tail recursive calls tend to require special pro-grammer attention. Thus we had to make minor changes toprograms to make them run well with regions.We are currently building an ML compiler to exploreregion inference; it is called the ML Kit with Regions, sinceit is built on top of Version 1 of the ML Kit[4].1 The purposeof this paper is not to describe the Kit, but to describesolutions to key problems which presented themselves, whenwe tried to compile with regions. These solutions are inthe form of additional type-based analyses which re�ne theinformation gained with region inference in ways which are1For brevity, we shall refer to it as simply \the Kit", from now on.

essential when the target machine has a conventional linearaddress space of �xed size words and a number of registers.The operational region-based semantics presented in [17]treats all values and regions uniformly: all values are putinto regions and all regions have a potentially unboundedsize. However, we have found that a key factor in achievinggood results with region inference is making more carefuldistinctions between di�erent kinds of regions according tohow they should be represented and accessed. The followingthree kinds of regions �t naturally with common machinearchitectures:1. Regions that are used for holding values of a typewhich �ts naturally in a register or a machine word;such regions are not needed at runtime and can hencebe eliminated. This situation arises for regions thathold integers and booleans, for example.2. Regions for which one can infer a �nite maximum sizeat compile time; such regions are conveniently placedon the runtime stack. This situation often applies toregions that hold a tuple or a closure.3. Regions for which it is not possible to infer a size stati-cally. Such a region can be represented by a linked listof �xed size pages. This situation typically arises whena region contains a list, a tree or some other value ofa recursive datatype.The �rst analysis we propose is multiplicity inference, whichinfers for each region an upper bound on how many times avalue is put into that region. A boxing analysis then elimi-nates regions as described above. Next, storage mode analy-sis infers for each value allocation whether the value shouldbe put at the top of the region (the normal case) or whetherit is possible to store the value at the bottom, thereby over-writing any value which the region may already contain.The storage mode analysis involves a region aliasing analy-sis. The storage mode analysis is essential for handling tailrecursion.Multiplicity information and representation informationcan then be used in physical size inference which calculatesan upper bound on the physical size of every region.A key di�erence between di�erent kinds of regions (be-sides their sizes) is the way in which they are allocated andaccessed. This plays a central rôle in all the analyses. We usethe term Region Representation Inference for the analysesstarting with multiplicity inference and ending with physi-cal size inference.The Kit has an Abstract Machine (called the KAM)which models a RISC architecture except that it has in-�nitely many registers. After Region Representation Infer-ence, compilation into the KAM is straightforward. Els-man and Hallenberg[6] have recently completed a backendfrom KAM to HP PA-RISC assembly language using proventechniques such as intraprocedural register allocation basedon graph colouring. A backend generating ANSI C is alsoavailable. The ML Kit currently compiles all of Core ML(including recursive datatypes, references, exceptions andhigher-order functions); an implementation of Modules isunder consideration.In the rest of the paper we describe the new region-speci�c program analyses, from multiplicity inference to KAMcode generation. Sections 2 and 3 consist mainly of a reviewof previous work. We start out by presenting the languageof region-annotated terms.

2 Source LanguageLet Var be a denumerably in�nite set of program variables,ranged over by x and f . The language of source expressions,e, is de�ned by:e ::= true j false j x j �x:e j e1e2j if e then e else ej let x = e in e endj letrec f(x) = e in e endAlthough source expressions appear untyped, region infer-ence is only possible for expressions that are well-typed ac-cording to Milner's type discipline[13,5].We shall use the following program as a running example:letrec f (x) =letrec facacc(p) =let n = fst p in let acc = snd pin if n=0 then pelse facacc(n-1,n*acc)end endin (�y.facacc y, facacc(x+3,1))endin (fst(f 7))(8,1)endHere we have taken the liberty to extend the skeletallanguage with pairs, projections (fst and snd), integer con-stants, and in�x binary operations on integers (+, =, -, *).Also, we use parentheses for grouping. The above expressionevaluates to the pair (0; 8!) = (0; 40320).3 Region-Annotated TermsTofte and Talpin[17] describe a type-based translation fromsource expressions to region-annotated terms (called \targetterms" in [17]). These region-annotated terms contain onlythat type information which is needed for the evaluationof such expressions, namely region annotations. However,in this paper we use the region-annotated expressions assource expressions for further type-based transformations,so it is useful also to have an explicitly typed version ofthe language. We therefore present both, together with anerase function from explicitly typed to untyped expressions.When convenient, we shall present both an untyped and anexplicitly typed version of our intermediate languages; theuntyped version contains only the information which is usedin the dynamic semantics of the language, while the explic-itly typed expression contains information which is used forfurther translation.3.1 Untyped Region-Annotated TermsLet RegVar be a denumerably in�nite set of region variables,ranged over by �. For any syntactic class, c, let ~c denote thesyntactic class de�ned by~c ::= emptyj cj c1,���,cn (n � 2)We now introduce syntactic classes of allocation direc-tives, a, region binders, b, and expressions, e, bya ::= at� b ::= �

e ::= truea j falsea j x j (�x:e)a j e1e2j if e then e else ej let x = e in e endj letregion b in e endj letrec f[~b](x)a = e in e endj f [~a]aThis language of expressions will be used as our untypedlanguage throughout, but we shall gradually re�ne the de�-nitions of allocation directives and region binders to providemore information.Let us brie
y review the evaluation of region-annotatedterms. (Details and an operational semantics are foundin [17].) An expression letregion � in e end is evaluatedthus: �rst a region is allocated and bound to �; then eis evaluated (probably using the region for storing and re-trieving values) and then, when end is reached, the region isdeallocated. An annotation of the form at � indicates thatthe value of the expression preceding the annotation shouldbe put into the region bound to �. Writing a value into aregion adds the value at the one end (referred to as the top)of the region, increasing the number of values held in thatregion by one.A function f bound by letrec is region-polymorphic: ithas a (perhaps empty) list of formal region parameters andmay be applied to di�erent actual regions at di�erent callsites. An expression f [~a]at� creates a function closure inregion �, in which the formals of f have been bound to theactual regions ~a.We write letregion ~� in e end forletregion �1in ��� letregion �k in e end ���endwhen ~� = �1; . . . ; �k. Further, f[�1; . . . ; �k] a abbreviatesf[at�1; . . . ;at�k] a. Expressions of the formletregion � in f[�1; . . . ; �k]at � (e) end(where � =2 f�1; . . . ; �kg and � does not occur free in e) areso common that we abbreviate them to just f[�1; . . . ; �k] e.A region-annotated expression corresponding to the sourceexpression in Section 2 is shown in Figure 1.Aiken, F�ahndrich and Levien[1] have developed an analy-sis which seeks to do the actual region allocation in letregion� in e end as late as possible after the letregionand whichseeks to do the region de-allocation as early as possible be-fore the end. In some cases they achieve asymptotic memorysavings over plain region inference (where allocation is doneat letregion and de-allocation is done at end), and the re-sult can never be worse than without their analysis.3.2 Typed Region-Annotated TermsThe type system presented in this section is essentially theone of [17]. The system has its roots in work on e�ect in-ference [9,11,12,16], which is also used in connection withconcurrency[14].For the region type system, we assume a denumerablyin�nite set TyVar of type variables, ranged over by �, and adenumerably in�nite set E�ectVar of e�ect variables, rangedover by �.An e�ect, ', is a �nite set of atomic e�ects. An atomice�ect, �, is either a token of the form get(�) or put(�), orit is an e�ect variable. Types, � , types and places, �, simple

letregion �6 inletrec f [�0,�7,�8,�9,�10,�11,�12,�13,�14,�15](x) at �6=letrec facacc[�16,�17,�18](p) at �7=let n= fst p in let acc= snd p inletregion �19 inif letregion �21 in(n = 0 at �21) at �19end then pelse facacc[�16,�17,�18](letregion �24 in(n - 1 at �24) at �18end,(n*acc)at �17)at �16end end endin((�y.facacc[�13,�14,�15]y)at �12,facacc[�9,�10,�11](letregion �27 in(x + 3 at �27) at �11end, 1 at �10) at �9) at �8endin letregion �28,�29,�30,�31,�32 in(letregion �33,�34,�35,�36 infst(letregion �37 inf [�37,�31,�33,�34,�35,�36,�32,�28,�29,�30] 7 at �37end)end) (8 at �30, 1 at �29) at �28endendend Figure 1: A Region-annotated Expressiontype schemes, �, and compound type schemes, �, take theform: � ::= bool j � j � �:'���!�� ::= (�; �)� ::= � j 8�:� j 8�:�� ::= � j 8�:� j 8�:� j 8�:�An object of the form �:' (formally a pair (�;')) on afunction arrow � �:'���! �0 is called an arrow e�ect. Here 'is the e�ect of evaluating the body of the function.A �nite map is a map with �nite domain. The domainand range of a �nite map f are denoted Dom(f) and Rng(f),respectively. When f and g are �nite maps, f+g is the �nitemap whose domain is Dom(f)[Dom(g) and whose value isg(x), if x 2 Dom(g), and f(x) otherwise. f # A means therestriction of f to A, and f nn A means f restricted to thecomplement of A.A type environment, TE, is a �nite map from programvariables to pairs of the form (�; �) or (�; �).A substitution S is a triple (Sr ; St; Se), where Sr is a�nite map from region variables to region variables, St is a�nite map from type variables to types and Se is a �nite mapfrom e�ect variables to arrow e�ects. Its e�ect is to carry outthe three substitutions simultaneously on the three kinds ofvariables.For any compound type scheme� = 8�1����k�1����n�1����m:�

and type � 0, we say that � 0 is an instance of � (via S),written � � � 0, if there exists a substitutionS = (f�1 7! �01; . . . ; �k 7! �0kg;f�1 7! �1; . . . ; �n 7! �ng;f�1 7! �01:'1; . . . ; �m 7! �0m:'mg)such that S(�) = � 0. Similarly for simple type schemes. Theinstance list of S, written il(S), is the triple([�01; . . . ; �0k]; [�1; . . . ; �n]; [�01:'1; . . . �0m:'m])More generally, we refer to triples of above form as instancelists and use il to range over them. Instance lists decorateapplied (i.e., non-binding) occurrences of program variables.We now present a type system for explicitly typed region-annotated terms. It allows one to infer sentences of the formTE ` e : �;'. Formally, an explicitly typed region-annotatedterm is a term e, for which there exist � and ' such thatTE ` e : �;'. For given TE and e there is at most one such� and ' (and at most one derivation proving TE ` e : �;').The type system is essentially the same as the one in [17],except that we have dropped the source expressions andadded type, region and e�ect annotations on terms.Region-Annotated Terms TE ` e : �; 'TE ` true at � : (bool; �); fput(�)g (1)TE ` false at � : (bool; �); fput(�)g (2)TE(x) = (�; �) � � � via STE ` xil(S) : (�; �); ; (3)TE + fx 7! �1g ` e : �2; ' ' � '0TE ` (��:'0x : �1:e) at � : (�1 �:'0���! �2; �); fput(�)g (4)TE ` e1 : (�0 �:'0����!�; �);'1TE ` e2 : �0; '2' = '0 ['1 ['2 [f�g [fget(�)gTE ` e1 e2 : �; ' (5)TE ` e1 : (bool; �);'1 TE ` e2 : �;'2 TE ` e3 : �; '3TE ` if e1 then e2 else e3: �; fget(�)g ['1 ['1 ['3 (6)TE ` e1 : (�1; �1); '1�1 = 8~�~� :�1 fv(~�;~�) \ fv(TE;'1) = ;TE + fx 7! (�1; �1)g ` e2 : �; '2TE ` let x : (�1; �1) = e1 in e2 end : �;'1 ['2 (7)� = 8~�~�:� �0 = 8~�:� fv(~�; ~�;~�) \ fv(TE;'1) = ;TE + ff 7! (�; �)g ` (��0:'0 x : �x:e1) at � : (�; �); '1TE + ff 7! (�0; �)g ` e2 : �; '2TE ` letrec f : (�0; �)(x) = e1 in e2 end : �;'1 ['2(8)

TE(f) = (�; �0)� � � via S ' = fget(�0);put(�)gTE ` fil(S) at � : (�; �); ' (9)TE ` e : �;' fv('0) \ fv(TE;�) = ;TE ` letregion '0 in e0 end : �;' n '0 (10)For any semantic object A, frv(A) denotes the set ofregion variables that occur free in A, ftv(A) denotes the setof type variables that occur free in A, fev(A) denotes theset of e�ect variables that occur free in A and fv(A) denotesthe union of all of the above.The erasure of an explicitly typed region-annotated ex-pression e, written er(e), is an untyped, region-annotatedexpression obtained by erasing type and e�ect information.We show a couple of the de�ning equations:er(letregion ' in e end) =letregion frv' in er(e) ender(letrec f : (8~�~�~�:�;�) (x) =e1in e2 end) =letrec f[~�]at�=er(e1) in er(e2) ender(f(;[�1 ;...;�k];)at �) = f[�1,. . .,�k] at �4 Multiplicity InferenceMultiplicity Inference is concerned with inferring for eachregion, how many times a value is put into that region. Weintroduce a syntactic class of multiplicities, ranged over bym: m ::= 0 j 1 j 1Addition of multiplicities is de�ned by:m1 �m2 = � 0 if m1 =m2 = 0;1 if m1 = 0 ^m2 = 1 or vice versa1 otherwiseThe maximum of m1 and m2, written max (m1;m2), andthe product of m1 and m2, written m1
 m2, are de�nedsimilarly.4.1 UntypedMultiplicity-Annotated TermsWe modify the class of region binders to become:b ::= � :mLet us assume that every region variable � is only boundonce in any given expression. We then de�ne the multiplicityof �, written mul(�), to be the multiplicity which occurs inthe binder which binds �, and 1 otherwise (i.e., if � is free).Evaluation of multiplicity-annotated expressions can bede�ned using an operational semantics which has two regionstacks, namely a stack of regions each of which can accept atmost one write and a stack of regions each of which can ac-cept an unbounded number of writes. (The dynamic seman-tics for region annotated terms in [17] has only the secondkind of region stack.)In an expression of the formletregion � :m in e endthe multiplicity m is an upper bound on the number of timesa value is put into the region which will be bound to � at

runtime. Thus, ifm =1 we allocate a region on the stack ofunbounded regions and otherwise on the stack of write-onceregions.In an expressionletrec f[. . .,�:m,. . .](x) a = e1 in e2the multiplicity m is an upper bound on how many timesthe evaluation of the body of f (i.e., e1) puts a value into �| including calls that f may make to other functions or toitself. Consider a reference to f (in e1 or in e2)��� f[. . .,�0,. . .] ���It is possible to have mul(�) < 1 and mul(�0) = 1, signi-fying that f contributes a �nite number of allocations to anunbounded region. Also, f is polymorphic in multiplicities,in the sense that if we have some other call of f :��� f[. . .,�00,. . .] ���we need not have mul(�00) = mul(�0). This
exibility wasfound to be important in practice | without it, too many re-gions were ascribed multiplicity 1. However, it means thatthe dynamic region environment has to map region variablesto pairs of the form (r;m), where r is a region name (iden-tifying the region) and m is the multiplicity of the region.At runtime, the multiplicity of a region is determined bythe letregion expression which generates it and it neverchanges, so (r;m) can be regarded as a region name r witha multiplicity attribute m.When storing a value into a letrec-bound � it is now nec-essary to test at runtime to see what kind of store operationshould be performed. Allocation in the two kinds of regionsis done di�erently; for unbounded regions we �rst have toallocate new space within the region, but for write-once re-gions, we can write directly knowing that there will be spacefor one write.4.2 Typed Multiplicity-Annotated TermsA multiplicity e�ect is a �nite map from atomic e�ects tomultiplicities; we use to range over multiplicity e�ects.The extension of to a total map which is 0 outside thedomain of is denoted +. Let 1 and 2 be multiplicitye�ects. The sum of 1 and 2, written 1 � 2, is themultiplicity e�ect which has domain Dom(1) [Dom(2)and values (1 � 2)(�) = +1 (�)� +2 (�)Similarly, the maximum of 1 and 2, written max(1; 2),is de�ned by(max(1; 2))(�) = max(+1 (�); +2 (�))Finally, when is a multiplicity e�ect and m is a multiplic-ity, the scalar product,m
 , is the multiplicity e�ect withthe same domain as and values (m
)(�) =m
 ((�)).The semantic objects of typed multiplicity-annotated termsare as those for typed region-annotated terms, except thate�ects are replaced by multiplicity e�ects everywhere. Weshall also use � , S etc. to range over semantic objects withmultiplicities, and then use vertical bars (j� j; jSj; . . .) to referto the semantic objects obtained by replacing every multi-plicity e�ect with its domain, which is an e�ect. We write 0 � to mean j 0j = j j and 0(�) � (�), for all� 2 Dom().The typing rules for multiplicity-annotated terms are:

Multiplicity-Annotated Terms TE ` e : �; TE ` true at � : (bool; �); fput(�) 7! 1g (11)TE ` falseat � : (bool; �); fput(�) 7! 1g (12)TE(x) = (�; �) � � � via STE ` xil(S) : (�; �); fg (13)TE + fx 7! �1g ` e : �2; � 00 = 0TE ` (��: 0x : �1:e) at � : (�1 �: 0���! �2; �); fput(�) 7! 1g(14)TE ` e1 : (�0 �: 0����! �; �); 1TE ` e2 : �0; 2 = 0 � 1 � 2 � f� 7! 1g � fget(�) 7! 1gTE ` e1 e2 : �; (15)TE ` e1 : (bool; �); 1 TE ` e2 : �; 2 TE ` e3 : �; 3TE ` if e1 then e2 else e3: �; fget(�) 7! 1g � 1 �max(2; 3) (16)TE ` e1 : (�1; �1); 1�1 = 8~�~� :�1 fv(~�;~�) \ fv(TE; 1) = ;TE + fx 7! (�1; �1)g ` e2 : �; 2TE ` let x : (�1; �1) = e1 in e2 end : �; 1 � 2 (17)� = 8~�~�:� �0 = 8~�:� fv(~�; ~�;~�) \ fv(TE; 1) = ;TE + ff 7! (�; �)g ` (��0 : 0 x : �x:e1) at � : (�; �); 1TE + ff 7! (�0; �)g ` e2 : �; 2TE ` letrec f : (�0; �)(x) = e1 in e2 end : �; 1 � 2(18)TE(f) = (�; �0)� � � via S = fget(�0) 7! 1;put(�) 7! 1gTE ` fil(S) at � : (�; �); (19)TE ` e : �; fv(0) \ fv(TE;�) = ;TE ` letregion 0 in e0 end : �; nn j 0j (20)TE ` e : �; 0 � TE ` e : �; 0 (21)Note that union of e�ects has turned into sum of mul-tiplicity e�ects, except at the conditional, where maximumis used. A more substantial change is in the de�nition ofwhat it means to apply substitutions (rules 13 and 19 relyon this)A (multiplicity) substitution is a triple S = (Sr ; St; Se),where St is a map from type variables to types, Sr is amap from region variables to region variables and Se is amap from e�ect variables to multiplicity arrow e�ects (�:).Each of these �nite maps extend to total maps | in the caseof Se by mapping each e�ect variable � outside the domainof Se to the multiplicity arrow e�ect �:fg.

We de�neSr() = Mfput(Sr(�)) 7! (put(�)) j put(�) 2 j jg� Mfget(Sr(�)) 7! (get(�)) j get(�) 2 j jg� # E�ectVarSe() = nn E�ectVar�Mf (�)
 (f�0 7! 1g � 0) j� 2 Dom() ^ �0: 0 = Se(�)gMoreover, de�ne Se(�:) = �0:(0 � Se())where �0: 0 = Se(�). Finally, we de�ne(Sr ; St; Se)(A) = St(Se(Sr(A)))where A can be an arrow e�ect, a type or a type and place.Substitutions can also be applied to type schemes, after re-naming of bound variables to avoid capture, when necessary.Finally, a substitution can be applied to a type environmentTE by applying it to every pair (�; �) or (�; �) in the rangeof TE.We say that a multiplicity-annotated expression e is well-annotated in TE if there exists a � and a such that TE `e : �; . For given TE and e, there exists at most one such� and .Multiplicity Inference is the following problem: givenTE, e, � and ' with TE ` e : � : ' according to rules(1){(10) and given a multiplicity type environment TE 0 withjTE 0j = TE, �nd a multiplicity-annotated term e0 which iswell-annotated in TE 0 and satis�es je0j = e.When e is closed, there is a trivial solution to the Multi-plicity Inference Problem: choose all multiplicities to be 1.The object is of course to choose multiplicities as small aspossible.Vejlstrup's M.Sc. thesis[18] contains a multiplicity infer-ence algorithm and a proof that it is correct and always ter-minates. The algorithm does not always �nd minimal mul-tiplicities. One problem is that substitution and maximumdo not commute; in general one only has Se(max(1; 2)) �max(Se(1); Se(2)). In particular, if a lambda-bound vari-able, f , occurs in two di�erent conditionals, uni�cation onthe type of of f during the multiplicity inference of the sec-ond conditional can increase the e�ect of the �rst condi-tional:� f : ((int; �1) �1:fput(�2)g����������!(int; �2); �3).let x = if true then 1 at �2 else f(1 at �1)in if true then (�y:1 at �2) at �3 else fHere the e�ect of evaluating x will end up having two pute�ects on �2, although one would be sound.Judging from experience, however, the algorithm is usu-ally good at detecting �nite regions (see Section 9).Erasure of a typed multiplicity-annotated term gives anuntyped multiplicity-annotated term. We show some of thede�ning equations:er(letregion in e end) =letregion b1���bk in er(e) end

where f�1; . . . ; �kg = frv() andbi = �i : +(put(�i))for i = 1 . . .k.er(letrec f : (�0; �)(x) = e1 in e2 end) =letrec f[b1,. . .,bk]at�=er(e1) in er(e2) endwhere �0 = 8�1; . . . ; �k~�~�:(�1 �: ���! �2) andbi = �i : +(put(�i)), i = 1 . . .k.4.3 Removal of get-regionsConsider a declaration of the formletrec f[~b](x) a = e in e endWrite ~b in the form �1 :m1; . . . ; �k : mk. If � 2 f�1; . . . ; �kgis such that there is no put(�) anywhere in the type of f ,then f does not really need �: putting a value into a regionrequires region information, but reading a value does not.Such region variables are called get-regions (of f). Theycan be eliminated from the list of region formals, providedthe corresponding actual arguments in calls of f are removedtoo.letregion �6:1 inletrec f [�7:1,�8:1,�9:1, �10:1,�11:1,�12:1,�13:0,�14:0,�15:0](x) at �6 =letrec facacc[�16:1,�17:1,�18:1](p) at �7=let n = fst p in let acc = snd p inletregion �19:1 inif letregion �21:1 in(n = 0 at �21) at �19end then pelse facacc[�16,�17,�18](letregion �24:1 in(n - 1 at �24) at �18end, (n * acc) at �17) at �16end end endin((� y.facacc[�13,�14,�15]y) at �12,(*1*)facacc[�9,�10,�11](letregion �27:1(x + 3 at �27) at �11end, 1 at �10) at �9) at �8endin letregion �28:1,�29:1,�30:1,�31:1,�32:1in (letregion �33:1,�34:1,�35:1,�36:1in fst (letregion �37:1 inf [�31,�33,�34,�35,�36,�32,�28,�29,�30] 7 at �37end)end) (8 at �30, 1 at �29) at �28endendendFigure 2: After Multiplicity Inference and elimination ofget-regionsIn what follows, we always use the more aggressive eraseoperations which removes both type information and get-regions. The erasure of a typed multiplicity-annotated ex-

pression which corresponds to the region annotated exam-ple in Figure 1 is shown in Figure 2. Notice that most re-gion binders have been given �nite multiplicity and that fhas had the get-region �0 removed. The �y:facacc y in line(*1*) is put into a write-once region (�32), which eventuallyis stack-allocated, even though the closure \escapes".5 Unboxed ValuesIn the plain region inference scheme[17], every value is repre-sented \boxed", i.e., by a pointer to the actual value, whichresides in a region. However, it is not necessary to box val-ues whose natural size is not bigger than what a registercan hold. Let us refer to such values as word-sized. In theML Kit, the word-sized values are conservatively de�ned tobe precisely the integers and the booleans. Storing a word-sized value allocates no space in memory; it just stores thevalue in a register.Let r be a region at runtime. If all put operations on rare putting word-sized values, then no values at all are putinto r, and r could be eliminated altogether. This holds,even if there are multiple put operations to the region. Forevery storage operation vat� in the program, enough of thetype of v is known statically to decide the appropriate repre-sentation (boxed/unboxed). This relies on the fact that v isa syntactic value. Detecting whether all storage operationsto � store word-sized values requires a simple region
owanalysis, which we describe in this section. If � is a formalparameter of some letrec-bound function, f , and all storesto � are stores of word-sized values, then � is removed fromthe list of formal parameters of f , and all the correspondingactuals in applications of f are removed too. This is trueeven if the multiplicity in the binder of � is not �nite. Thisremoves many region parameters in practice.In ML, all functions take one argument; \multiple" ar-guments are represented by a tuple which in the Kit alwaysis a boxed tuple. This is simple but ine�cient. No doubt,careful data representation analysis[10,15,8] would be veryuseful with regions. This has not yet been explored, how-ever.5.1 Modi�ed SyntaxWe extend allocation directives to becomea ::= at � j ignoreIn examples, we abbreviate v ignore to v.In the dynamic semantics, evaluating v ignore just re-sults in v without performing any allocation in any region.5.2 Boxity ConstraintsLet RegionTyVar be a denumerably in�nite set of regiontype variables, ranged over by r. We introduce region typesrt: rt ::=?j word j > j rGround region types are ordered by ?v word v >. In-tuitively, a region can be given type word if all the valuesstored in it are word-sized. (The region need not have �nitemultiplicity.) Top (>) stands for all types that are not ofword size, e.g., record types and function types. Bottom (?)is the type of region variables � for which no at� occurs in

letregion �6:1 inletrec f [�7:1,�8:1,�9:1,�12:1,�13:0](x) at �6 =letrec facacc[�16:1](p) at �7 =let n= fst p in let acc= snd p inif n = 0 then pelse facacc[�16]((n-1,n*acc)at �16)end endin((�y.facacc[�13]y) at �12,facacc[�9]((x + 3, 1)at �9))at �8endin letregion �28:1,�31:1,�32:1 in(letregion �33:1,�34:1 infst(f[�31,�33,�34,�32,�28] 7)end)((8,1)at �28)endendend Figure 3: After elimination of word-typed regionsthe program. (Get-regions of region-polymorphic functionshave region type ?, if they are not removed.)The type system of region types is monomorphic in thatevery region variable is assigned a ground region type.The analysis which assigns region types to region bindersis a simple constraint-based analysis. A constraint takes oneof the two forms r �wrt or r �wr0. A �nite set of constraintshas a minimal solution (with respect to v). It can be shownthat this solution can be found in time which is linear in thenumber of constraints in the set.Constraints are generated as follows: every binder � :mis associated with a fresh region type variable, written r(�).For every subexpression true at � or false at � of e, wegenerate a constraint r(�) �wword. For all other at � in e wegenerate a r(�) �w> constraint. Furthermore, if f is declaredbyletrec f[�01 :m1; . . . ; �0k : mk] (x) at � = e1 in e2then for every reference to f :f[�1; . . . ; �k] at �we generate the k constraints r(�i) �wr(�0i), 1 � i � k.Once the minimal solution has been found, every regionbinder � : m which has been assigned region type word orless is removed from the program, thus reducing the num-ber of letregions and the number of parameters to region-polymorphic functions. Furthermore, all allocation direc-tives at � (for the � in question) are changed into ignore.When a formal region parameter is removed, all correspond-ing actuals must of course be removed too.The result of removing word regions from Figure 2 isshown in Figure 3. Notice that by now, all letregion-boundregion variables with in�nite multiplicity, except �28 and�34, have been eliminated. At runtime, there will be justtwo in�nite regions.6 Storage Mode AnalysisThe purpose of storage mode analysis was explained in theIntroduction. It operates with the following allocation di-

rectives and bindersa ::= at� j attop� j atbot� j sat�b ::= � : mIn the input expression, all allocation directives take theform at�; in the output, every at has been turned intoattop, atbot or sat. The idea is that one can transformat� into atbot � at some program point p, if and only if,whenever p is reached during evaluation, the rest of the eval-uation does not use a value which has already been storedinto the region to which � is bound. Storage mode attopshould be used when it is certain that the region will containlive values; sat (\somewhere at") should be used when thedecision about storage mode should be delayed till runtime(typically when � is letrec-bound).Storage Mode Analysis is based on statically inferredliveness properties. Liveness analysis has to take tempo-rary values into account. Inspired by the A-Normal Formof Flanagan et al [7], we shall therefore assume that the in-put expression to the storage mode analysis conforms to thefollowing grammar of region annotated K-Normal Form ex-pressions:e ::= xil j v a j xil xil j fil[~a] a0 xilj if xil then e else ej let x : (�; �) = e in ej letrec f : (�; �0)[~b] (x) a0 = ein e endj letregion b in e endv ::= true j false j �x : �:eThe key idea is that every intermediate result of the com-putation is bound to a variable. The type information (�,�and �) in K-Normal Forms is provided by region inference.Transformation into K-Normal Form can be done in lineartime and does not a�ect the runtime behaviour of the ex-pression. (Unlike Flanagan et al we do not linearise letbindings, as this would a�ect region inference in a negativeway.)To enable region polymorphic functions to be applied incontexts that allow di�erent degrees of region overwriting,we pass the storage mode itself along with the region atruntime. Thus we have not only multiplicity polymorphism(Section 4) but also storage mode polymorphism (since wefound that not having it made too many regions too big).At runtime, a region may be accessible via more thanone region variable, if it is passed as actual argument to aregion polymorphic function. This is called region aliasing.Storage Mode Analysis must take region aliasing into ac-count. We propose the following global, higher-order region
ow analysis. A directed graph G is built. There is onenode in G for every region variable and every e�ect variablewhich occurs in the (K-normalised) program. (Thus, we canidentify variables with nodes.) Whenever the program hasa letrec-bound program variable f with type scheme� = 8����i���; ~�; ����j���:�and whenever there is an applied occurrence of f :f([����0i���];[~�];[����0j :'0j ���])

there is an edge from �i to �0i and from �j to �0j. Similarlyfor let-bound variables. Finally, for every e�ect �:' occur-ring anywhere in the program, there is an edge from � toevery region and e�ect variable which occurs free in '. Inthe graph that arises thus, letregion bound variables arealways leaf nodes and region variables only lead to regionvariables. For every node n in G, let hni denote the set ofvariables that are reachable in G starting from n, includingn itself.Let � be a region variable and let e be a region annotatedexpression which �rst binds � and then refers to �. The stor-age mode analysis depends on a distinction between whetherthere is a � between the binder of � and the use of �, or not.To be able to make this distinction precise, we introducethree kinds of contexts. Two of these are local, meaningthat they do not allow going under lambda (or letrec). Alocal expression context, L, takes the formL ::= []j if xil then L else e3j if xil then e2 else Lj let x : (�; �) = L in e2j let x : (�; �) = e1 in Lj letrec f : (�; �0)[~b] (x) a0 = e1in L endj letregion b in L endNext, local allocation contexts, R, are given byR ::= L[v []]j L[fil[a1; . . . ; ai�1; []; ai+1; . . . ; ak] a0 xil]j L[fil[~a] [] xil]j L[letrec f : (�; �0)[~b] (x) [] = e1in e2 end]The last of the three kinds of context is a (global) expressioncontext, which allows one to single out an arbitrary subex-pression:E ::= Lj L[let x : (�; �) = (�x : �:E) a in e end]j L[letrec f : (�; �)[~b] (x) a0 = E in e2 end]Given a local context L we say that a program variablex is live at the hole of the context if it is a member of theset LV(L), de�ned by:LV([]) = ;LV(if xil then L else e3) = LV(L)LV(if xil then e2 else L) = LV(L)LV(let x : (�; �) = L in e2 end)=LV(L) [(FV(e2) n fxg)LV(let x : (�; �) = e1 in L end) = LV(L)LV(letrec f : (�; �0)[~b] (x) a0 = e1in L end) = LV(L)LV(letregion b in L end) = LV(L)Here FV(e) means the set of program variables that occurfree in e.

The de�nition is extended to local allocation contexts,R, as follows: LV(L[v []]) = FV(v) [LV(L) (22)LV(L[fil[a1; . . . ; ai�1; []; ai+1; . . . ; ak] a0 xil]) = LV(L)(23)LV(L[fil[~a] [] xil]) = ff; xg [LV(L) (24)LV(L[letrec f : (�; �0)[~b](x) []=e1in e2 end]) =(FV(e1) n ff; xg) [(FV(e2) n ffg) [LV(L)Intuitively, a variable is live at a hole in a local context, ifthe variable is in scope at the hole and is used by the compu-tation up to end of the context. In (22), v can be a lambdaabstraction; the free variables of v are considered live at theallocation point, since they must be put into the closure forv after memory for the closure has been allocated. In (23),the set of live variables is just LV(L), since the storage modewhich is passed to f indicates whether the region containsvalues that are used after f returns. In (24), however, fis considered live at the allocation point: at runtime, �rstspace for the closure is allocated and then the closure is cre-ated by appling f to the actual regions.) Similarly, in thecase for letrec, f is not considered live at the hole, sincethe space for the region closure representing f is allocatedbefore the closure is created.Let e be an expression in K-normal form. For simplic-ity, we assume that e has no free program variables, thatall bound program variables are distinct and that everyregion-polymorphic function has at precisely one region pa-rameter. (The generalisation to many region parameters isstraightforward.) Let x be a program variable which oc-curs in e. Let (T; �) be the type annotation of the bindingoccurrence of x, where T takes one of the forms � , � or �, de-pending on how x is bound (see the de�nition of K-normalforms). We de�ne the live region variables of x, writtenlrv(x), to be the set fh�i j � 2 frv(T; �)g [fh�i \ RegVar j� 2 fev(T)g. Next, when X is a set of variables occur-ring in e we de�ne lrv(X) = Sflrv(x) j x 2 Xg. Let Cbe an allocation context of the form E[R]. We say thata region variable � is bound non-locally in C, if C cannotbe written in the form E0[letregion � : m in R0end] orE0[letrec f : (�; �0)[� :m](x)a=R0 in e2 end] for any E0and R0. (In other words, � is bound non-locally in C, if thereis an incomplete � or letrec between the binder of � andthe hole of the context.) The following rules make it possi-ble to change every at� occurring in e into attop�, atbot�or sat�. � 62 lrv(LV(R))E[letregion � : m in R[at �] end])E[letregion � :m in R[atbot �] end] (25)� 2 lrv(LV(R))E[letregion � : m in R[at �] end])E[letregion � :m in R[attop �] end] (26)lrv(LV(R)) \ h�i = ;E[letrec f[� : m](x)a=R[at �] in e2 end])E[letrec f[� :m](x)a=R[sat �] in e2 end] (27)lrv(LV(R)) \ h�i 6= ;E[letrec f[� : m](x)a=R[at �] in e2 end])E[letrec f[� : m](x)a=R[attop �] in e2 end] (28)

letregion �6:1 inletrec f [�7:1,�8:1,�9:1,�12:1,�13:0](x) atbot �6 =letrec facacc[�16:1](p) sat �7 =let n= fst p in let acc= snd p inif n = 0 then pelse facacc[sat �16]((n-1,n*acc) sat �16)end endin(*1*) ((�y.facacc[attop �13]y)sat �12,(*2*) facacc[sat �9]((x + 3, 1)sat �9)) at �8endin letregion �28:1,�31:1,�32:1 in(letregion �33:1,�34:1 infst (f [atbot �31,atbot �33,(*3*) atbot �34,atbot �32,atbot �28] 7)(*4*) end)((8,1) attop �28)endendend Figure 4: After storage mode analysis� bound non-locally in E[R]E[R[at�]]) E[R[attop�]] (29)For brevity, we have shortened f : (�; �0) to f in (27) and(28). In (25), atbot is justi�ed by the fact that no valuewhich is used up to the point where the region is de-allocatedresides in �. (Here it is essential that R is a local context.)In (27), sat is justi�ed by the fact that neither � nor anyregion with which it may be aliased contains a value whichis needed by the rest of the body of f . Finally, in (29), weconservatively use attop, if � is bound outside the closestsurrounding function.Rules 25{29 have been implemented and tested in theKit, but not proved correct.Figure 4 shows the result of applying storage mode anal-ysis to the expression in Figure 3. At line (*1*) noticethat we get attop �13, by (29). Thus pairs will pile up in�28 during the evaluation of the application in line (*4*).By contrast, we get sat �9 in line (*2*), by (27). In line(*3*), �34 is passed as region actual corresponding to �9.This happens with mode atbot, using (25), so that this \in-�nite" region �34 will only ever hold one pair.7 Physical Size InferenceAt every value allocation v@� (where @ 2 fattop;atbot;satg),the size of the value can be computed statically. (Everyfunction is represented by a \
at" closure which containsthe values of the free variables of the function.) Also, themultiplicity of the region is known. In case the multiplicityis �nite, the physical size of the region is to be the maxi-mum size of values that may be stored at � or at any regionvariable with which � can be aliased. This maximum can befound using the graph G computed in Section 6.

8 The Kit Abstract MachineThe KAM has a runtime stack, an in�nite number of reg-isters and a region heap. The operations of the KAM aresimilar to those of Appel[2], extended with operations forallocating and deallocating regions and for allocating mem-ory in regions. Region names (Section 4.1) are representedas 32 bit words, with the two low order bits being used forstoring the region size (�nite/in�nite) and the storage mode(attop/atbot). The KAM has operations for setting andtesting these bits. The region operations are implementedby a runtime system written in C.A region of unbounded size is represented by a linkedlist of �xed-size blocks of contiguous memory in the regionheap. Regions with �nite size are implemented on the run-time stack. That is, upon evaluating letregion � : k in eend, where k is a �nite physical size, the variable � is boundto the current stack pointer which is then increased with kwords. Then e is evaluated and the stack pointer decreasedby k words.9 Experimental ResultsThe purposes of the experiments were (a) to assess the feasi-bility of region-based execution by comparing the time andspace requirements of object programs produced by the Kitto time and space requirements of object programs producedby a �rst-rate ML compiler, namely Standard ML of NewJersey, and (b) to assess the importance of multiplicity in-ference and storage mode analysis.The benchmarks fall into two categories: (1) small pro-grams designed to exhibit extreme behaviour (fib, reynolds2,reynolds3, dangle and tailloop); and (2) non-trivial pro-grams based on the Standard ML of New Jersey distributionbenchmarks (life, mandelbrot, knuth-bendix and simple);the largest benchmark is simple (approx. 1150 lines ofSML). The smallest benchmarks are shown in Section 9.3.In tables, we separate small benchmarks from other bench-marks by a horisontal line.All benchmarks were executed as stand-alone programsunder the ML Kit (using the PA-RISC code generator) andStandard ML of New Jersey[3], version 93 on an HP PA-RISC 9000s700 computer. All running times are in seconds(user time, measured by the UNIX time program). Spaceis maximum resident memory in kilobytes (measured by theUNIX top program).9.1 Comparison with Standard ML of NewJerseyThe numbers presented here must be read with caution,since the two compilers are very di�erent. However, thenumbers do give a rough indication of the feasibility of region-based execution.Figure 5 shows a comparison of space usage. There canbe dramatic di�erences between using region inference andusing a (reference tracing) garbage collector. These di�er-ences will be explained in Section 9.3.Figure 6 shows running times in seconds, still on the HPPA-RISC 9000s700. The numbers are Unix \user time".The relatively poor performance of the Kit on simple isprobably due to the fact that this benchmark makes inten-

Kit, s NJ93, s93 s�100%s93life 376 1,952 24%mandelbrot 352 852 41%knuth-bendix 4,000 2,300 174%simple 2,100 2,200 95%fib 92 1,000 9%reynolds2 96 1,212 8%reynolds3 40,000 1,204 3322%dangle 224 45,000 0.5%tailloop 96 880 11 %Figure 5: Comparison of space between the ML Kit andSML/NJ version 93. All numbers are in kilobytes and indi-cate maximum resident memory used.Kit, t NJ93, t93 t�100%t93life 14.2 12.3 115.4 %mandelbrot 43.4 24.9 174.3 %knuth-bendix 32.4 27.8 116.5 %simple 62.2 17.4 357.5 %fib 10.8 27.9 38.7 %reynolds2 16.7 29.2 57.2%reynolds3 23.8 27.7 85.9%dangle 1.56 14.4 10.8%tailloop 4.79 1.96 244 %Figure 6: Comparison of running times (in seconds)sive use of
oating point numbers, which are implementedvery ine�ciently in the Kit.Considering that the Kit compiles programs very na��vely,apart from everything that has to do with regions, it ap-pears that neither the extra cost associated with allocatinginto multiple regions nor the overhead of runtime region pa-rameters are prohibitive in practice.9.2 Region Representation InferenceFigure 7 summarises the static results of region representa-tion inference. In all the benchmarks, except tailloop, atleast three out of four region variables were found not tobelong on the region heap.letregions word stack heaplife 469 23% 56 % 20%mandelbrot 112 27% 58 % 14%knuth bendix 1014 17% 66 % 16%simple 2648 21% 66 % 11%fib 14 72% 28% 0%reynolds2 85 21% 58 % 20%reynolds3 85 20% 57 % 22%dangle 13 38% 46 % 15%tailloop 9 0% 66% 33%Figure 7: For each program, the table shows how many le-tregion binders the region-annotated program contains, andthe partitioning of these according to how they will be allo-cated at runtime.Figure 8 shows the distribution of allocations amongststack and heap at runtime. In all cases, except dangle, atleast 85% of allocations were stack allocations. Remarkably,the largest of the programs, simple, had more than 99% of

all allocations happen on the stack. The di�erence betweenthe number of heap allocations forreynolds2 and reynolds3 shows that the static frequency ofin�nite letregions is not necessarily a good indication of dy-namic behaviour (compare Figure 7). Notice that althoughreynolds3 \space leaks" in the Kit, the space leak is on theheap and the vast majority of allocations are still stack al-locations and cause no space problems. This �ts with ourgeneral experience that space leaks with region inferencetend to stem from few isolated spots in the program. (Thisexperience is based on the fact that we have built a regionpro�ler which can trace region sizes.)To assess the importance of multiplicity inference, thebenchmarks were also compiled and run on a version of theKit in which all multiplicities were set to in�nity (while allother analyses were left enabled), see Figure 9. For all thebenchmarks, multiplicity inference gives speedups of morethan 200%: allocation into a region of �nite multiplicity ischeaper than allocation into a region of unbounded multi-plicity. Multiplicty inference does not always yield big spacesavings; it depends on whether many regions exist at thesame time.To assess the importance of storage mode analysis, thebenchmarks were then compiled and run on a version of theKit in which all storage modes were selected to attop (whileall other analyses were left enabled), see Figure 10. Withstorage mode analysis enabled, tailloop runs in constantspace, but without storage mode analysis, a memory over-
ow occurs. For life, the storage mode analysis ensuresthat at most two generations of the game are alive at thesame time. (Without storage mode analysis, all generationspile up in the same regions.) That there are many caseswhere storage mode analysis does not bring down the max-imal space usage is not surprising: maximal space usage isnot necessarily reached by the kind of iterative computationsfor which storage mode analysis is intended.Multiplicity inference appears to give signi�cant timesavings, across all benchmarks. Storage mode analysis ismore erratic: it serves an important purpose for some \iter-ative" computations, but these do not necessarily dominateoverall space usage.Judging from the very high proportion of allocations thathappen on the stack in the Kit, optimisations that movestackable regions into registers could be very important. Thestack al-loca-tions, S heap al-loca-tions, H S�100%H+Slife 28,269,922 2,184,329 93%mandelbrot 158,376,021 340 > 99:9%knuth bendix 51,962,334 8,684,852 86%simple 96,903,575 728,713 99.2%fib 1 0 100%reynolds2 25,165,846 91 > 99:9%reynolds3 42,991,640 4,194,393 91%dangle 2,002,002 4,007,008 33%tailloop 4,004,004 4,004,006 50%Figure 8: For each program, the table shows how manyallocations of objects were done in total at runtime (notincluding objects of runtime type word) and the partitioningof these according to whether they were done on the stackor the heap.

Space,s1 s1�100%s Time,t1 t1�100%tlife 548 138% 50.4 355%mandelbrot 9,988 2,837% 223 514%knuth-bendix 6,612 165% 77.9 240%simple 3,860 184% 296 476%fib 116 129% 32.4 300%reynolds2 120 125% 50.4 301%reynolds3 40,000 100% 86.8 365%dangle 1,732 687% 4.83 310%tailloop 96 100% 10.2 208%Figure 9: Space and time used in the Kit when all multi-plicities are set to 1. The numbers are compared with theresults from Figures 5 and 6.Space,s> s>�100%s Time,t> t>�100%tlife 768 204% 14.8 104%mandelbrot 352 100% 45.9 106%knuth-bendix 4,620 116% 38.3 118%simple 2,112 101% 76.2 123%fib 92 100% 11.4 105%reynolds2 96 100% 18.5 111%reynolds3 40,000 100% 25.2 106%dangle 240 107% 1.70 109%tailloop - - - -Figure 10: Space and time used in the Kit when all storagemodes are set to attop. The numbers are compared withthe results from Figures 5 and 6. tailloop crashes withmemory over
ow.most obvious candidate is to allow more than one functionargument register and more than one function result reg-ister. Also, the Kit (quite unnecessarily) represents everyfunction by a closure, even when all the call sites are known.Finally, improved in-lining might help. The Kit evaluates acomparison like i=0 by building a tagged tuple, passing it tothe equality function of the prelude, which takes apart thetuple, calls the polymorphic equality function in the runtimesystem, which eventually returns an integer, which is thencompared against an integer, resulting in a branch and storein a register. We believe that this could be improved.9.3 Discussion of extreme behaviourIn this section we analyse some of the small benchmarks,which were designed to exhibit extreme behaviour. Here isreynolds2:datatype 'a tree =Lf| Br of 'a * 'a tree * 'a treefun mk_tree 0 = Lf| mk_tree n = let val t = mk_tree(n-1)in Br(n,t,t)endfun search p Lf = false| search p (Br(x,t1,t2)) =if p x then trueelse search (fn y => y=x orelse p y) t1

orelsesearch (fn y => y=x orelse p y) t2val it = search (fn _ => false) (mk_tree 20)The program reynolds3 is obtained by replacing the searchfunction of reynolds2 by:fun member(x,[]) = false| member(x,x'::rest) =x=x' orelse member(x, rest)fun search p Lf = false| search p (Br(x,t1,t2)) =if member(x,p) then trueelse search (x::p) t1 orelsesearch (x::p) t2Irrespective of whether region inference or garbage collectionis used, the running time is exponential in n, where n isthe argument to mk_tree. (n is 20 in the example.) Inreynolds2, the polymorphic recursion of region inferenceseparates the lifetimes of p and (fn y => y=x orelse p y).In reynolds3, however, p and x::p are put in the sameregion, for region inference does not distinguish between alist and its tail. With region inference, space consumptionis linear in running time with reynolds3 and logarithmic inrunning time with reynolds2. With garbage collection, itis logarithmic in both cases.Here is dangle:fun mklist 0 = []| mklist n = n :: mklist(n-1)fun cycle(p as (m,f)) =if m=0 then pelse cycle(m-1,let val x = [(m, mklist 2000)]in fn () => #1(hd x) + f()end)val r = cycle(1000, fn() => 0);Region inference ensures that the list l produced by mklist2000 is discarded immediately after the closure for fn ()=> #1(hd x) + f() is produced; note that the function willnot access l | in fact the closure will contain a danglingpointer[17]. In garbage collected systems which do not allowdangling pointers, the space usage is O(m�n), wherem andn are the arguments to cycle and mklist, respectively (herem = 1000 and n = 2000). With region inference, the spaceusage is just O(m).Finally, here is tailloop:val x =letval maxint = 2000val zero = (0,0)fun is_zero(0,0) = true| is_zero _ = falsefun sub (m,n) =if n=0 then (m-1, maxint)else (m, n-1)fun loop (x as (m,n)) =if is_zero x then xelse loop(sub x)fun loop' p = (loop p;

"\ndone\n")inoutput(std_out,"\nlooping...\n");output(std_out,loop'(maxint,maxint))end;Integers themselves are unboxed, but without storage modeanalysis, the integer pairs �ll up the memory.10 ConclusionWe have presented a series of region-based analyses for map-ping an abstract stack of regions onto real machines. All ofthese analyses were devised to solve needs which became ev-ident from practical experiments. The combination of anal-yses presented here often works well in practice, but we havealso shown examples which suggest that it might be useful toprovide garbage collection as a supplement to region infer-ence, to handle those cases where the various static analysescannot cope. (Such cases will always exist, for undecidablityreasons.) It is noteworthy, however, that all the benchmarkswe tried from the SML/NJ test suite could be made to runrelatively well, even without garbage collection and withoutmany of the optimisations one expects to �nd in a maturecompiler.AcknowledgementsWe wish to thank Martin Elsman and Niels Hallenberg fortheir work on the Kit, Raph Levien for �nding mistakesin earlier versions of the storage mode analysis and GregMorrisett for good advice on code generation. This workis funded by the Danish National Research Council, in theform of a Ph.D. scolarship for the �rst author and the DARTgrant for the second author.References[1] Alexander Aiken, Manuel F�ahndrich, and Raph Levien.Better static memory management: Improving region-based analysis of higher-order languages. In Proc. ofthe ACM SIGPLAN '95 Conference on ProgrammingLanguages and Implementation (PLDI), pages 174{185,La Jolla, CA, June 1995. ACM Press.[2] Andrew W. Appel. Compiling with Continuations.Cambridge University Press, 1992.[3] Andrew W. Appel and David B. MacQueen. A Stan-dard ML compiler. In Gilles Kahn, editor, FunctionalProgramming Languages and Computer Architecture.ACM, Springer-Verlag, Sept 1987.[4] Lars Birkedal, Nick Rothwell, Mads Tofte, andDavid N. Turner. The ML Kit (Version 1). TechnicalReport DIKU-report 93/14, Department of ComputerScience, University of Copenhagen, Universitetsparken1, DK-2100 Copenhagen, 1993.[5] L. Damas and R. Milner. Principal type schemes forfunctional programs. In Proc. 9th Annual ACM Symp.on Principles of Programming Languages, pages 207{212, Jan. 1982.

[6] Martin Elsman and Niels Hallenberg. An optimizingbackend for the ML Kit using a stack of regions. Stu-dent Project, Department of Computer Science, Uni-versity of Copenhagen (DIKU), July 5 1995.[7] Cormac Flanagan, Amr Sabry, Bruce F. Duba, andMatthias Felleisen. The essence of compiling with con-tinuations. In Proc. of the ACM SIGPLAN '93 Confer-ence on Programming Language Design and Implemen-tation (PLDI), June 1993.[8] Fritz Henglein and Jesper J�rgensen. Formally opti-mal boxing. In Conference Record of POPL'94: 21stACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, pages 213{226. ACM Press,January 1994.[9] P. Jouvelot and D.K. Gi�ord. Algebraic reconstructionof types and e�ects. In Proceedings of the 18th ACMSymposium on Principles of Programming Languages(POPL), 1991.[10] Xavier Leroy. Unboxed objects and polymorphic typ-ing. In Conference Record of the Nineteenth AnnualACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages (POPL), pages 177{188. ACMPress, January 1992.[11] J. M. Lucassen. Types and E�ects, towards the integra-tion of functional and imperative programming. PhDthesis, MIT Laboratory for Computer Science, 1987.MIT/LCS/TR-408.[12] J.M. Lucassen and D.K. Gi�ord. Polymorphic e�ectsystems. In Proceedings of the 1988 ACM Conferenceon Principles of Programming Languages, 1988.[13] R. Milner. A theory of type polymorphism in program-ming. J. Computer and System Sciences, 17:348{375,1978.[14] Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with �nite communicationtopology. In Conference Record of POPL'94: 21st ACMSIGPLAN-SIGACT Symposium on Principles of Pro-gramming Languages, pages 84{97. ACM Press, Jan-uary 1994.[15] Zhong Shao. Compiling Standard ML for E�cient Ex-ecution on Modern Machines. PhD thesis, PrincetonUniversity, 1994. (Also available as Research ReportCS-TR-475-94).[16] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphictype, region and e�ect inference. Journal of FunctionalProgramming, 2(3), 1992.[17] Mads Tofte and Jean-Pierre Talpin. Implementing thecall-by-value lambda-calculus using a stack of regions.In Proceedings of the 21st ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages,pages 188{201. ACM Press, January 1994.[18] Magnus Vejlstrup. Multiplicity inference. Master's the-sis, Dept. of Computer Science, Univ. of Copenhagen,September 1994.

