
Parallel and serial hypercoherencesThomas EhrhardInstitut de Math�ematiques de LuminyC.N.R.S. U.P.R. 9016ehrhard@iml.univ-mrs.frAbstractIt is known that the strongly stable functions which arise in the semantics of PCF canbe realized by sequential algorithms, which can be considered as deterministic strategies ingames associated to PCF types. Studying the connection between strongly stable functions andsequential algorithms, two dual classes of hypercoherences naturally arise: the parallel and serialhypercoherences. The objects belonging to the intersection of these two classes are in bijectivecorrespondence with the so-called \serial-parallel" graphs, that can essentially be considered asgames.We show how to associate to any hypercoherence a parallel hypercoherence together witha projection onto the given hypercoherence and present some properties of this construction.Intuitively, it makes explicit the computational time of a hypercoherence.Notice: This is a preliminary version of the paper [Ehr00] entitled \Parallel and serial hyperco-herences", published in Theoretical Computer Science, North Holland, volume 247, pages 39-81,2000.IntroductionIn [Ehr99], we proved that the hypercoherence model of PCF is the extensional collapse of thesequential algorithm model. J. van Oosten and J.R. Longley proved recently similar results [vO97,Lon98] in a realizability setting where realizers are deterministic strategies encoded as partialfunctions from the set of natural numbers to itself.In all these works, a relation is established between a world of deterministic intensional realizers(sequential algorithms, or strategies encoded as partial functions on natural numbers) and strong-ly stable functions on hypercoherences: a realizer is related to a function if they \compute thesame thing" (this is expressed as a logical relation, or as a realizability predicate, the latter beingroughly speaking an untyped version of the former). It is shown that strongly stable functions ad-mit an intensional realizer, which clearly means that all strongly stable functions are sequentiallycomputable, if \sequentially" means \deterministically": for instance, all �nite sequential algo-rithms are de�nable in a language which is an extension of PCF by a \catch and throw" operator(see [CCF94]), a perfectly deterministic primitive (in sharp contrast with the \parallel or" functionfor instance).A hypercoherence X is just a set jX j equipped with a set �(X) of �nite and non-empty subsetsof jX j containing all singletons (it is a \re
exive" and \symmetric" unlabeled hypergraph, just likecoherence spaces are re
exive and symmetric unlabeled graphs). The elements of �(X) are called\coherent", and they can have a complicated structure: coherent sets can contain incoherent sets,which themselves can contain coherent sets. . . , and moreover, these sets overlap. We would like1



a1 a4a3a2 Figure 1: a P4to understand better the computational meaning of this structure. Our intuition is that there is acorrespondence between the coherent sets of a hypercoherence and Player's positions (that is, thepositions where the last move has been played by Player) of the corresponding game, and betweenthe incoherent sets and Opponent's positions. From this viewpoint, the inclusion relation shouldbe considered as a kind of game-theoretic accessibility relation, a position u being accessible fromv if u � v. However, hypercoherences are not games, as in the strongly stable semantics, oneidenti�es strategies that perform the same elementary operations, but in a di�erent order. It is amuch more \implicit" semantics than game semantics: the extensional collapse result mentionedabove means that any strongly stable function (in the PCF types hierarchy) can be scheduled intosome deterministic strategy, but the strongly stable function itself does not contain any explicitdescription of such a strategy. In some sense, both game semantics and strongly stable semanticsdeal with a fundamental notion of \computational time", the former in an explicit way and thelatter in an implicit way. The extensional collapse result means precisely that, for a given PCFtype, all informations required for describing the possible temporal computational behaviors atthat type are present in the hypercoherence interpretation of that type. We would like to developa purely graphical (that is, in some sense, geometrical) theory of the process of making explicitthe temporal informations contained in the hypergraphical structure of a hypercoherence. Such atheory, we hope, might shed some new light on the notion of computational time.We consider that the results reported in the present paper indicate that such a theory mightbe based on the notions of parallel and serial hypercoherences, and on a general way of convertinga hypercoherence into a parallel one, the rigid parallel unfolding.Our main methodological a priori concerning games is to consider them as coherence spaces ofa very simple kind, corresponding to the standard notion of \serial-parallel graph1". A �nite graphis serial-parallel if it contains2 no \P4". A P4 is a graph which has four pairwise distinct verticesa1; a2; a3; a4 with an edge between ai and aj i� j = i+ 1 or i = j or i = j + 1. This con�gurationis pictured in �gure 1 (in our graphical pictures, two points are related by a continuous line if theyare related in the graph, that is, if they are \coherent" in the coherence space terminology, and bya dashed line if they are not related in the graph, that is, if they are \incoherent").The serial-parallel �nite coherence spaces are the elements of the smallest class of coherencespaces containing the one-vertex graphs and closed under the \&" and the \�" operations on coher-ence spaces (which correspond respectively to serial and parallel composition of graphs). Moreover,the decomposition of a serial-parallel graph in terms of these two operations (up to associativityand commutativity of & and of �) is unique.In the in�nite case, things are more complicated, and a coherence space can perfectly well notcontain P4 without being in a non-trivial way of the shape E&F or E � F . For instance, the1By \graph", we always mean re
exive and symmetric unlabeled graph, that is, coherence space.2In that context, by \contain", we always mean \contain as an induced subgraph".2
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Figure 2: a serial-parallel graph and the corresponding treegraph which has the natural numbers as vertices and where i is related to j (for i < j) i� i is even,contains no P4, but cannot be decomposed.Nevertheless, \serial-parallel" will basically mean for us \containing no P4".A (�nite) serial-parallel coherence space can essentially be seen as a tree, vertices of the co-herence space corresponding to leaves of the tree, and two vertices being related by an edge if thelongest common pre�x of the two corresponding paths (starting at the root) in the tree is of evenlength (this of course is conventional: observe that the complementary graph of a serial-parallelgraph is also serial-parallel). This tree describes the unique decomposition of the coherence spacein terms of the (multi-ary) & and � operations (see �gure 2). The notion of serial-parallel graphis standard in graph theory (see for instance [BBS99]).In this paradigm, we can see a serial-parallel coherence space as a game (see [Cur94] for agame-theoretic account of sequential algorithms), \Player's positions" corresponding to &-nodesand \Opponent's positions" to �-nodes. Observe then that taking the orthogonal of the coherencespace corresponds exactly to exchanging Opponent and Player in the corresponding game, which isthe standard notion of duality in game models. The points of the coherence space are \extremal"positions in the game, that is positions closing the game. Observe that they do not belong toPlayer (&) or to Opponent (�), they are in some sense neutral (this corresponds to the fact thatin coherence spaces or hypercoherences, a singleton is both coherent and incoherent). This isof course very di�erent from the standard game-theoretic situation. A similar notion of neutralextremal position appears in [Joy95].Then a clique in the corresponding coherence space essentially corresponds to a deterministicpartial strategy for Player. Whence the idea of studying the connection between hypercoherencesand serial parallel graphs.With this respect, a fundamental property of hypercoherences is that they allow to split thenotion of \serial-parallel graph" in two dual notions: \serial hypercoherences" and \parallel hy-percoherences". We shall say that a hypercoherence X = (jX j;�(X)) is parallel if, whenever twoelements of �(X) have a non-empty intersection, their union belongs to �(X), and that X is serialif X? is parallel.There is a bijective correspondence between serial-parallel coherence spaces and hypercoherenceswhich are both parallel and serial.These notions are presented in section 4, and in section 5, we make precise the connectionbetween serial-parallel coherence spaces and games, in the �nite case.The present paper describes a general \parallel unfolding" construction that associates to anyhypercoherence X a parallel hypercoherence bX together with a linear map pX : bX ! X (of3



a special kind: its trace is a function). As far as we know, this pair ( bX; pX) has no universalproperty with respect to X . It has however a categorical \rigidity" property, presented in section 3,that guarantees its uniqueness up to unique isomorphism. Our intuition here is that the implicitcharacter of time informations in hypercoherences leads to situations where a point of the web of ahypercoherence is contained in coherent sets which are \incompatible" in the sense that their unionis not coherent (at such a point, the hypercoherence is not parallel). This intuition is developed ona simple example in section 2. The parallel unfolding of X has thus to be understood as a processof making computational time explicit. It basically consists in splitting each point where X is notparallel in as many points as there are maximal sets of coherent subsets of jX j which contain thegiven point and are closed under union. So it looks like an \ultra�lter" construction, and the mappX : bX ! X is the operation which forgets this splitting of the elements of the web. This unfoldingis presented in section 6. We also describe it in a more intuitive way in the particular case of�nite and serial hypercoherences in section 7. We present some basic properties of this unfoldingconstruction:� In section 8, we show that it does not cause an explosion of the cardinality of the webs ofhypercoherences, as soon as one deals with hypercoherences satisfying a \local �niteness" con-dition which is preserved by all connectives of linear logic, and by the rigid parallel unfoldingitself.� In section 9, we show that the rigid parallel unfolding satis�es many commutation propertieswith respect to the connectives of linear logic: it has a good \logical social life".Last, in section 10, we show how the rigid parallel unfolding can be used for associating to anyformula of propositional linear logic a serial-parallel coherence space which is likely to be related tothe game-theoretic interpretation of the formula. We prove that the main isomorphisms of linearlogic are satis�ed by this interpretation of formulae.1 PreliminariesIf A is a set, we denote by #A its cardinality.We �rst recall some basic de�nitions on coherence spaces and hypercoherences. For moreinformations on these topics, we refer to [Gir95, Ehr93].De�nition 1 A coherence space is a symmetric and re
exive graph. More precisely, it is a pairE = (jEj; _̂E ) where jEj is a set (the web of E, its elements are called atoms or vertices) and_̂E is a symmetric and re
exive binary relation on jEj. Two elements of jEj which are relatedby this relation are said to be coherent.A clique of E is a subset x of jEj such that for all a; a0 2 x, a _̂E a0.We denote by _E and call strict coherence relation of E the relation obtained from _̂Eby removing the diagonal. Of course, a coherence space E can as well be de�ned by giving theanti-re
exive relation _E .If E is a coherence space, a subspace of E is a coherence space F such that jF j � jEj, and, forall a; b 2 jF j, a _̂F b i� a _̂E b.We recall how linear negation and the additive connectives & and � (which are De Morgandual of each other) are de�ned. Let E, E1 and E2 be coherence spaces.� Linear negation. E? is de�ned by jE?j = jEj and a _̂E? a0 i� it does not hold that a _E a0.4



� With. E1&E2 is de�ned by jE1&E2j = (f1g� jE1j)[ (f2g� jE2j), and (i; a) _̂E1&E2 (j; b)if i = j ) a _̂Ei b.� Plus. E1 � E2 is de�ned by jE1 � E2j = (f1g � jE1j) [ (f2g � jE2j), and (i; a) _̂E1�E2 (j; b)if i = j and a _̂Ei b.De�nition 2 A hypercoherence is a symmetric and re
exive hypergraph. More precisely, it is apair X = (jX j;�(X)) where jX j is a set (the web of X , its elements are called atoms or vertices)and �(X) is a set of �nite and non-empty subsets of jX j which contains all singletons (the coherenceof X , its elements are called coherent sets or hyperedges).A clique of X is a subset x of jX j such that all �nite and non-empty subsets of x lie in �(X).We denote by qD(X) the poset whose elements are the cliques of X ordered under inclusion3 .We denote by ��(X) the set of all non-singleton elements of �(X). A hypercoherence X can aswell be de�ned by giving its strict coherence ��(X).If X is a hypercoherence, a subspace of X is a hypercoherence Y such that jY j is subset of jX j,and �(Y ) = �(X)\ P(jY j).One says that X is �nite if the set jX j is �nite.If u and U are two sets, we say that u is a section of U and write u� U if8a 2 u 9x 2 U a 2 x and 8x 2 U 9a 2 u a 2 x :Let us recall the interpretation of the connectives of linear logic in hypercoherences. Let X , X1and X2 be hypercoherences.� Linear negation. X? is de�ned by jX?j = jX j and u 2 �(X?) if u =2 ��(X).� With. X1&X2 is de�ned by jX1&X2j = (f1g�jX1j)[(f2g�jX2j), and (f1g�u1)[(f2g�u2) 2�(X1&X2) if u2 = ; ) u1 2 �(X1) and u1 = ; ) u2 2 �(X2) :Let us also spell out the n-ary version of this construction, as it plays a central role in thepaper. Let X1,. . . ,Xn be hypercoherences. The hypercoherence X1& � � �&Xn has (f1g �jX1j)[ � � � [ (fng � jXnj) as web, and a subset u = (f1g � u1) [ � � � [ (fng � un) of this webbelongs to �(X1& � � �&Xn) i� u is �nite and non-empty and, if u is contained in a uniquecomponent of the disjoint sum of the jXij's, that is, if there exists i 2 f1; : : : ; ng such thatuj = ; for all j 6= i, then u is coherent in that component, that is, ui 2 �(Xi). In particular,if ui and uj are non-empty for two distinct indexes i and j, then u is always coherent. Last,let us quote that, when x 2 qD(X1& � � �&Xn) (so that x = (f1g�x1)[ � � �[ (fng�xn) withxi � jXij), one has xi 2 qD(Xi), and the map x 7! (x1; : : : ; xn) establishes a bijective order-preserving correspondence between qD(X1& � � �&Xn) and qD(X1)� � � �� qD(Xn), endowedwith the product order.� Plus. X1�X2 is de�ned by jX1 �X2j = (f1g�jX1j)[(f2g�jX2j), and (f1g�u1)[(f2g�u2) 2�(X1 �X2) if u2 = ; and u1 2 �(X1) ;or u1 = ; and u2 2 �(X2) :3The poset so de�ned belongs to the class of qualitative domains introduced by Girard in [Gir86]. Qualitativedomains can equivalently be considered as dI-domains where all prime elements are atomic.5



It is the De Morgan dual of with. Using the same notations as in the description above ofthe n-ary version of the with, u is coherent in X1 � � � � � Xn i� u is contained in a uniquecomponent of the disjoint sum of the jXij's, and coherent in that component. That is: thereexists i 2 f1; : : : ; ng such that uj = ; for all j 6= i, and ui 2 �(Xi).� Tensor. X1 
X2 is de�ned by jX1 
X2j = jX1j � jX2j and w 2 �(X1 
X2) if�i(w) 2 �(Xi) for i = 1; 2 :� Par. It is the De Morgan dual of tensor. More explicitly, jX1 P X2j = jX1j � jX2j andw 2 ��(X1 P X2) i� w is a �nite and non-empty subset of jX1 P X2j satisfying�i(w) 2 ��(Xi) for i = 1 or i = 2 :� Linear implication. X1( X2 is de�ned byX1( X2 = X1? P X2 :In other words, a subset w of jX1( X2j belongs to �(X1( X2) i� w is �nite, non-empty,and satis�es�1(w) 2 �(X1)) (�2(w) 2 �(X2) and (#�2(w) = 1) #�1(w) = 1)) :A linear strongly stable morphism (or simply linear morphism) from X1 to X2 is a clique ofX1 ( X2 (and so is a relation on jX1j � jX2j), and composition of morphisms is de�ned asthe composition of the corresponding relations. The identity morphism from X1 to X1 is thediagonal subset of jX1j�jX1j. A linear morphism fromX1 toX2 can also be seen as a functionfrom qD(X1) to qD(X2) which commutes to the unions of arbitrary bounded families, mapscoherent families of cliques4 to coherent families, and commutes to the intersections of thesefamilies.� Exclamation mark. We consider here the set version. There is also a multiset version. Theweb of !X is the set of all �nite cliques of X . A family U of �nite cliques of X is in �(!X) ifit is �nite and non-empty, and if 8u� U u 2 �(X) :� Question mark. It is the dual of exclamation mark. The web of ?X is the set of all �nitecliques of X?. A family U of �nite cliques of X? is in ��(?X) if it is �nite and non-empty,and if 9u� U u 2 ��(X) :This entails that U is not a singleton, otherwise, U = fyg where y 2 qD(X?), and then all�nite sections of U belong to �(X?), as in that case all sections of U are subsets of y.For more details on hypercoherences and the hypercoherent semantics of linear logic, we referto [Ehr93].4A family of cliques of a hypercoherence X is said to be coherent if it is �nite and non-empty, and if all its �niteand non-empty sections belong to �(X). 6



2 A motivating exampleThe goal of this section is to motivate the forthcoming de�nitions and constructions by a detailedanalysis of the graphical structure of the hypercoherence of sequential functions from Booln toBool, showing in particular that the corresponding game can be retrieved from this graphicalstructure. It is also intended to be an illustration of the previous general de�nitions on hyperco-herences.Let n 2 N be di�erent from 0. Let Bool be the hypercoherence of booleans, de�ned byjBoolj = ft; fg and ��(Bool) = ;. LetX = (!Booln)? P Bool be the hypercoherence of sequentialfunctions from Booln = n�z }| {Bool&Bool& : : :&Bool (the n-ary cartesian product of Bool) to Bool.An element of jX j is a pair (x; b) where b 2 jBoolj and x is a (possibly empty) subset of f1; : : : ; ng�jBoolj satisfying (i; a1); (i; a2) 2 x) a1 = a2. We denote by xi or �i(x) the set of all a such that(i; a) 2 x, this set is either empty or is a singleton; it is the i-th projection of x.A subset u of jX j belongs to ��(X) i� �2(u) 2 ��(Bool) or �1(u) =2 �(!Booln). But ��(Bool) =;, so u 2 ��(X) i� �1(u) =2 �(!Booln). This last condition in turn is equivalent to requiring thatthere exists v � �1(u) such that v =2 �(Booln). But this holds i� there exists i 2 f1; : : : ; ng suchthat �i(�1(u)) is equal to fftg; ffgg.Let (x; b) 2 jX j. There is a bijective correspondence between the �-maximal elements of ��(X)which contain (x; b) and the indexes i such that xi 6= ;. Indeed, let i 2 f1; : : : ; ng be such thatxi 6= ;. Then the set uhii = f(y; c) 2 jX j j yi 6= ;g belongs to ��(X) and contains (x; b). Moreover,this set contains some element (z; d) 2 jX j where z is such that zj = ; for all j 6= i. From this, itresults that uhii is maximal among the elements of �(X). Observe also that for the same reason,the only element j 2 f1; : : : ; ng such that yj 6= ; for all (y; c) 2 uhii is i. Conversely, if u is anelement of ��(X) such that (x; b) 2 u, we have seen that there must exist some i 2 f1; : : : ; ng suchthat yi 6= ; for all (y; c) 2 u. In particular, xi 6= ;. For such an index i, we clearly have u � uhii.So if u is maximal in �(X), there exists a unique i 2 f1; : : : ; ng such that u = uhii.Let i1 2 f1; : : : ; ng be such that xi1 6= ;. The set uhi1i is the disjoint union of two non-emptysubsets, namelyuhi1ti = f(y; c) 2 uhi1i j yi1 = ftgg and uhi1f i = f(y; c) 2 uhi1i j yi1 = ffgg ;and neither of these two sets belongs to �(X), by the above characterization of ��(X). Observealso that uhi1ti and uhi1fi are the two maximal subsets of uhi1i which do not belong to �(X). Indeed,let u � uhi1i be such that u 6� uhi1ti and u 6� uhi1f i. Then, since u � uhi1i, one has yi1 6= ; for all(y; c) 2 u. And since u 6� uhi1ti, one has yi1 = ffg for some (y; c) 2 u. Similarly, y0i1 = ftg for some(y0; c0) 2 u. From this, it results that �i1(�1(u)) = fftg; ffgg, and hence u 2 ��(X).Of course, (x; b) belongs to exactly one of these two subsets of uhi1i. Let us say for instancethat (x; b) 2 uhi1fi (that is, xi1 = ffg).Again, there is a bijective correspondence between the maximal subsets of uhi1fi which contain(x; b) and belong to �(X) and the indexes i 2 f1; : : : ; ng n fi1g such that xi 6= ;. Let i2 be such anindex. The corresponding subset of uhi1fi isuhi1f i2i = f(y; c) 2 uhi1fi j yi2 6= ;g :This set again is the disjoint union of two non-empty subsets, namelyuhi1f i2ti = f(y; c) 2 uhi1f i2i j yi2 = ftgg7



and uhi1f i2f i = f(y; c) 2 uhi1f i2i j yi2 = ffgg :Neither of these sets belong to �(X), and (x; b) belongs to exactly one of them.This process can be iterated until the enumeration i1; i2; : : : ; ik we are choosing exhausts theset of all indexes i such that xi 6= ;, in other terms, until k = #x. For each such enumeration,denoting by aj the unique boolean such that xij = fajg, we de�ne a decreasing sequence of subsetsof jX j, which alternatively belong to ��(X) and ��(X?), namely uhi1i � uhi1a1i � uhi1a1i2i � � � � �uhi1a1:::ikaki. The maximal subset of uhi1a1:::ikaki which belongs to �(X) and contains (x; b) is thesingleton f(x; b)g.So we have a bijective correspondence between the sequences � = hi1; : : : ; iki which are enu-merations without repetitions of the indexes i such that xi 6= ; and the sequences jX j = v0 � v1 �v2 � � � � � v2k satisfying:� For all i 2 f0; : : : ; k� 1g, v2i+1 is a maximal subset of v2i that belongs to ��(X) and contains(x; b).� For all i 2 f0; : : : ; k � 1g, v2i+2 is a maximal subset of v2i+1 that belongs to ��(X?) andcontains (x; b). Observe also that v0 = jX j 2 ��(X?) and that v2k = f(x; t); (x; f)g.With the notations above, we have v1 = uhi1i, v2 = uhi1;a1i, and so on.Let us call such a sequence (vj)j=0;:::;2k a tower at (x; b). (We may have k = 0, it correspondsto the case where x = ;.)Choosing a sequence � of indexes which is an enumeration of the indexes i such that xi 6= ; isjust associating to (x; b) an evaluation order, that is, in terms of game theory, a play. We shall saythat (x; b; �) is a play at (x; b).Indeed, in the theory of sequential algorithms as it is developed in [Cur94], the game corre-sponding to the type Booln ! Bool can be presented as follows5.� A move by Player is either (r; b) where b is a boolean, and r means that this move is played inthe right component of the ! type constructor, or is (l; i) where i 2 f1; : : : ; ng, and l meansthat this move is played in the left component of the ! type constructor.� A move by Opponent is either (r; �) where � is the only initial move of the game Bool, or(l; a) where a is a boolean.� A play is a sequence of moves s = hm1; : : : ; mki where m1 = (r; �) and such that, for allq = 1; : : : ; k � 1, the moves mq and mq+1 are not both played by Player or both played byOpponent. Moreover, the following conditions must be satis�ed by s:{ For q = 2; : : : ; k, if mq = (r; �), then necessarily � is a boolean, q = k, and for allr = 2; : : : ; k � 1, the move mr must be played in the left component of the ! typeconstructor.{ For q; r two distinct elements of f2; : : : ; kg, if mq = (l; i) and mr = (l; j) for somei; j 2 f1; : : : ; ng, then i 6= j6.5This presentation is obtained by simply spelling out the general de�nitions of the interpretation of the ( and! connective in [Cur94]. The particular shape of the type under consideration leads to simpli�cations, especiallyconcerning the moves in the left component of the ! type constructor.6This \no repetition" principle is characteristic of the interpretation of the ! connective in sequential algorithms.From the strongly stable viewpoint, it corresponds to the fact that, in the semantics we consider here, the web of8



If we say that a play s is complete if its last move is of the shape (r; b), where b is a boolean,then it appears clearly that there is a bijective correspondence between the complete plays in thegame associated to the type Booln ! Bool in the theory of sequential algorithms, and the plays(x; b; �) de�ned above.When are two di�erent plays (x; b; �) and (y; c; �) compatible, in the sense that they can bothappear in a deterministic strategy, or sequential algorithm? Exactly when the longest commonpre�x hi1; : : : ; iqi of � and � is non-empty, and satis�es xij = yij for all j < q, and xiq 6= yiq . Anda sequential algorithm (or strategy) is essentially a set of plays which are pairwise compatible inthis sense.If (vi) and (wj) are the towers associated to (x; b; �) and (y; c; �), this compatibility conditiontranslates to: there exists i such that vi 6= wi, and the least such i is even. (1)So there is a way of retrieving from the hypercoherence X the structure of the coherence spaceE of sequential algorithms7 from Booln to Bool: the web of this space consists of the set ofall possible (x; b; (vi)) where (x; b) 2 jX j and (vi) is a tower at (x; b) and its coherence relationis given by (1). Furthermore, there is an obvious forgetful map � from jEj to jX j de�ned by�(x; b; (vi)) = (x; b). One can check that this map is strongly stable (in the sense that its graphis a clique of E ( X), when E is considered as a hypercoherence as follows: U 2 ��(E) if thereexists i which is less than the length of all the towers of U and such that the vi's are not all equal(for (x; b; (vj)) 2 U), and the least such i is even. This can be simply rephrased as follows: U isconnected in E (considered as a graph).Of course, the notion of tower is not very easy to handle, and it turns out fortunately that Ecan be de�ned in another, much more general way from X . Observe �rst that in a tower (vi) at(x; b) the vi's of even rank (those which belong to ��(X?)) are completely determined by (x; b) andby the previous vi's of odd rank. The presence in general of several towers for a given (x; b) 2 jX jis essentially due to the fact that the union of two coherent subsets of jX j which contain (x; b)is not necessarily coherent, and indeed, one can check that the towers at (x; b) are in bijectivecorrespondence with the maximal subsets of �(X) which are closed under �nite unions and ofwhich all elements contain (x; b).This latter observation will serve as a de�nition when we build the rigid parallel unfolding of ahypercoherence.3 Rigid objectsBefore giving our general de�nitions and unfolding constructions on hypercoherences, we introducea general categorical concept of rigidity, which is strictly weaker than the usual categorical notionof universality. The unfolding of hypercoherences will be characterized in terms of rigidity, and notin terms of universality.De�nition 3 Let A be an object of a category C.!X is the set of all �nite cliques (sets of points of the web of X) of X, and not of all �nite multi-cliques (multisetsof points of the web of X). In the games considered e.g. in the papers [AJM94, HO94, Nic94], repeated moves areallowed in the interpretation of !.7These sequential algorithms are not really standard: they are sequential algorithms on sequential data structures(see [Cur94]) equipped with a notion of complete plays. This notion can be de�ned inductively on the constructionof spaces, and the sequential algorithms we consider are strategies consisting only of complete plays.9



� A is rigid8 if HomC(A;A) = fIdAg.� A is weakly terminal if HomC(B;A) 6= ; for all objects B of C.Lemma 4 Let A and A0 be isomorphic objects in a category C. If A is rigid, then A0 is rigid too.The proof is straightforward.A terminal object is of course rigid. But a rigid weakly terminal object is not necessarilyterminal, as we shall see. Being a rigid weakly terminal object is apparently not a universalproperty. However,Proposition 5 Let I and I 0 be two rigid weakly terminal objects in a category C. Then HomC(I; I 0)has exactly one element, and this unique morphism from I to I 0 is an isomorphism.The proof is straightforward.We are interested in a particular situation. Let C be a category and let P be a class of objectsof C, which is closed under isomorphisms.De�nition 6 Let A be an object of C. A P-unfolding of A is a weakly terminal object of P=A. AP-unfolding of A is rigid if it is rigid as an object of P=A.So, a P-unfolding of A is an object P of P together with a morphism p : P ! A such thatfor any Q 2 P and any morphism f : Q ! A, there exists a (not necessarily unique) morphismf 0 : Q! P such that p � f 0 = f . We shall say that f 0 is a lifting of f along p. A very similar liftingcondition played an essential role in [Ehr96].Saying that (P; p) is a rigid P-unfolding of A means furthermore that IdP is the only morphismg : P ! P such that p �g = p. By proposition 5, if (P 0; p0) is another rigid P-unfolding of A,there is exactly one morphism f : P ! P 0 such that p0 � f = p, and f is an isomorphism. And ifP 0 2 C and f : P 0 ! P is an isomorphism (so that actually P 0 2 P), then (P 0; p �f) is also a rigidP-unfolding of A, by lemma 4.Lemma 7 Let A and A0 be objects of C, and let ' : A! A0 be an isomorphism. If (P; p) is a rigidP-unfolding of A, then (P; ' �p) is a rigid P-unfolding of A0.This is trivial.When it exists, we denote by ( bA; pA) the rigid P-unfolding of A. Observe that the operationA 7! bA has no reason to be functorial (by lack of universality).We develop now a simple example of the abstract situation previously described. The interest ofthis example is that it is similar to the construction we shall introduce in section 6 for hypergraphs.Let Poset be the category of locally �nite posets (partially ordered sets where each elementhas a �nite number of lower bounds) with a least element, and monotone functions.Let Tree be the class of trees. A tree is a poset T having a least element and where, for allt 2 T , the set # t = fs 2 T j s � tgis �nite and totally ordered by the order of T .Let V be any object of Poset. We de�ne a new poset T (V ) as follows:8Actually, one should rather use a term like \strongly rigid" as the word \rigid" is classically used for objectswhich have the identity as unique automorphism (and not endomorphism).10



� An element of T (V ) is a pair (v; I) where v 2 V and I is maximal among the subsets of # vwhich are totally ordered (so v 2 I).� We endow T (V ) with the following order: (v; I)� (w; J) i� I � J (which implies v � w).As V is locally �nite, for all (v; I) 2 T (V ), I is �nite, and so T (V ) 2 Tree.The map �V : T (V )! V which maps (v; I) to v is monotone.Moreover, let T 2 Tree and let f : T ! V be a monotone map. Let (ti)i2A be an enumerationwithout repetitions of T (assuming T to be denumerable for simplicity; A is either N, the set ofnatural numbers, or an initial segment of it).Assume furthermore this enumeration to be such thatti < tj ) i < j :Such an enumeration exists by local �niteness of T as a poset.We de�ne a function g : T ! T (V ) inductively: by induction on n, we de�ne g on the setft1; : : : ; tng. So let n 2 N and assume, as an inductive hypothesis, that, for each i � n we havebeen able to de�ne Ii, a maximal totally ordered subset of # f(ti) such that f(# ti), which is totallyordered, is a subset of Ii (the function g on ft1; : : : ; tng is given by g(ti) = (f(ti); Ii)). Our inductivehypothesis stipulates also that8i; j 2 N i; j � n and ti � tj ) Ii � Ij : (2)Our goal is to extend g to ft1; : : : ; tn; tn+1g, that is, to de�ne In+1, a maximal totally orderedsubset of # f(tn+1), in such a way that condition (2) still holds for n+ 1.Let t be the unique element of T which is maximal such that t < tn+1 (the predecessor of tn+1).By our assumption on the enumeration (ti), we know that t = tm for some m 2 N such thatm � n. Observe that Im[f(# tn+1) = Im[ff(tn+1)g is totally ordered. So de�ne In+1 as one of thetotally ordered maximal subset of # f(tn+1) containing Im[ff(tn+1)g. It is clear that condition (2)still holds for n + 1.The map g : T ! T (V ) which to t 2 T associates (f(t); In) (where n is the unique index suchthat tn = t) is monotone. And so (T (V ); �V ) is a Tree-unfolding of V .Let us check that it is a rigid unfolding.Let f : T (V )! T (V ) be such that �V � f = �V : (3)Let (v; I) 2 T (V ). By (3), one has f(v; I) = (v; I 0) where I 0 is a maximal totally ordered subsetof # v. Let w 2 I , and let J = I \ #w. One has (w; J) 2 T (V ) and (w; J) � (v; I) in T (V ). Sof(w; J) � (v; I 0), and hence w 2 I 0 since, by (3) again, f(w; J) is equal to (w; J 0) for some J 0 � #w.Thus I � I 0, and since I is a maximal totally ordered subset of # v, one actually has I = I 0. Sof is the identity function.Towards an application of this construction, observe that the category Poset is cartesian, thecartesian product of two posets being endowed with the product order. If T and T 0 are trees,T (T � T 0) is a tree which is easily seen to be the \shu�e product" of the trees T and T 0. Usingthe rigidity of this operation, one shows easily that it is associative. However, it is not a functorialoperation.We shall de�ne a similar unfolding for hypercoherences.11



4 Parallel and serial hypercoherencesWe �rst introduce the class of parallel hypercoherences, and its dual class, the serial hypercoher-ences. The hypercoherence (!Booln)? P Bool considered in section 2 is a typical example of serialhypercoherence.De�nition 8 A hypercoherence X is parallel if for all u; u0 2 �(X), if u\u0 6= ;, then u[u0 2 �(X).A hypercoherence X is serial if its orthogonal X? is parallel.Observe that any subspace of a parallel (resp. serial) hypercoherence is parallel (resp. serial).Let X be a parallel hypercoherence, and let A be a non-empty subset of jX j. Then the binaryrelation �A de�ned on A bya �A a0 i� there exists u 2 �(X) such that a; a0 2 u � Ais an equivalence relation. Furthermore, if A is �nite then the two following properties are equiva-lent:� �A has only one equivalence class� A 2 �(X).If A is a set, we denote by P��n(A) the set of all its �nite and non-empty subsets.Proposition 9 Let X be a hypercoherence. The two following conditions are equivalent.i) X is serial.ii) For all u 2 ��(X), there exist u1; u2 2 P��n(jX j) such that u1 \ u2 = ;, u1 [ u2 = u and,for all v � u, if v intersects both u1 and u2, then v 2 �(X). We abbreviate this situation bywriting simply u = u1&u2.Proof: We �rst prove that (i) implies (ii). Let u 2 ��(X). Then the relation �u (in X?, whichis parallel) is an equivalence relation which has more than one class. Let u1 be one of these classes,and let u2 = u n u1. Then u2 6= ;. Let v � u be such that ui \ v 6= ; for i = 1; 2. Let ai 2 ui \ v,for i = 1; 2. As a1 6�ua2 and as a1; a2 2 v � u, one has v =2 �(X?), that is v 2 ��(X).Conversely, assume that (ii) holds. We must prove that X? is parallel. Let u; u0 2 �(X?) besuch that u \ u0 6= ;. Assume that u [ u0 =2 �(X?), that is u [ u0 2 ��(X). Then we can �ndu1; u2 � u [ u0, both non-empty, and such thatu [ u0 = u1& u2 :Then u cannot intersect both u1 and u2, and similarly for u0. Without loss of generality, assumethat u � u1. As u0 intersects u and hence intersects u1, we must have u0 � u1. Hence u [ u0 � u1,which is impossible since u2 is not empty, and u [ u0 is the disjoint union of u1 and u2.Let us be more precise about this decomposition of the coherent subsets of the web of a serialhypercoherence.Proposition 10 Let X be a serial hypercoherence. Let u 2 �(X). Up to reindexing, there existsa unique family u1; : : : ; un of pairwise disjoint elements of �(X?) such that u = u1 [ � � � [ un,and such that, for all v � u, if v \ ui 6= ; for at least two distinct values of i 2 f1; : : : ; ng, thenv 2 �(X). 12



If one considers u, u1,. . . ,un as subspaces of X, then the bijection from u to (f1g � u1) [� � � [ (fng � un) which maps a 2 u to (i; a), where i is the unique index such that a 2 ui, is anisomorphisms between u and u1& � � �& un.Proof: The existence of this decomposition has essentially been established in the proof ofproposition 9: for (ui)i=1;:::;n we take an enumeration of the classes of the equivalence relation �u(in the parallel hypercoherence X?). We just check that ui 2 �(X?). Since the elements of ui arepairwise �u-equivalent, there exists a subset v of u such that ui � v 2 �(X?). Now if v 6= ui, thenv meets uj for some j 6= i, and hence v 2 ��(X), contradiction. So ui = v 2 �(X?) as announced.Now, we check uniqueness. Let (vj)j=1;:::;k be another decomposition of u satisfying the sameproperties as (ui)i=1;:::;n. Without loss of generality, assume that v1 6= ui for each i 2 f1; : : : ; ng.As v1 2 �(X?), v1 meets at most one of the ui's, and since v1 is not empty and is included inu1[� � �[un, v1 must meet one of the ui's. Let i be the unique index such that v1 meets ui. We musthave v1 � ui, and this inclusion is strict by our hypothesis on v1. Since ui � v1[ � � �[ vk , the set uimust meet some set vj with j 6= 1, and we have a contradiction with the fact that ui 2 �(X?).Next, we study the intersection of these two classes of hypercoherences.De�nition 11 Let E be a coherence space. One de�nes a hypercoherence Ec by setting jEcj = jEj,and by taking for �(Ec) the set of all �nite and non-empty connected subsets of jEj (considering Eas a graph). It is obvious that Ec is a parallel hypercoherence. If u � jEj and if a 2 u, we denoteby (a)u the connected component of a in u (i.e. the set of all elements of u related to a by a pathcontained in u).If X is a hypercoherence, one de�nes a coherence space Xcoh by jXcohj = jX j and a _̂Xcoh b i�fa; bg 2 �(X).De�nition 12 A coherence space E is serial-parallel if its web contains no tuple of four pairwisedistinct elements (a1; a2; a3; a4) such that, for all i; j 2 f1; 2; 3; 4g such that i < j, ai _̂E aj holdsi� j = i+ 1. (Such a tuple is called a \P4" in graph theory, see �gure 1.)In a serial-parallel coherence space, connected sets have a very simple structure.Lemma 13 Let E be a serial-parallel coherence space. A subset u of jEj is connected i� for alla; b 2 u, there exists c 2 u such that a _̂E c and c _̂E b.Proof: Consider a path between a and b in u, and if the length (number of edges) of this path isstrictly greater than 2, apply iteratively the hypothesis that the graph E contains no P4.The terminology previously introduced for hypercoherences is justi�ed by the following result.Theorem 14 Let E be a serial-parallel coherence space. The hypercoherence Ec is both serial andparallel, and E = Eccoh.Conversely, let X be a hypercoherence which is both serial and parallel. Then Xcoh is a serial-parallel coherence space, and X = Xcohc.So that we can identify the notions of serial-parallel coherence space with the notion of serial andparallel hypercoherence.Proof: Let us prove the �rst statement. We already know that Ec is parallel. We prove that thishypercoherence is serial (see �gure 3). Let u; v 2 �(Ec?) be such that u \ v 6= ;. We show thatu[ v 2 �(Ec?). If one of the two sets u and v is a singleton, then we conclude immediately. So weassume that u; v 2 ��(Ec?), that is, we assume that u and v are not connected. Assume moreover13



a cc0 b0u v
(a)u (a)vb Figure 3: main step of the proof of theorem 14that u [ v is connected, aiming at a contradiction. Let a 2 u \ v. Let b 2 u n (a)u. By lemma 13,there exists c 2 u [ v such that a _E c and b _E c. Since b =2 (a)u, we necessarily have thatc 2 (a)v n u. Similarly, let b0 2 v n (a)v. We can �nd c0 2 (a)u n v such that a _E c0 and a _E b0.Since E is serial-parallel, (c0; a; c; b) cannot be a P4, and hence c _E c0. Now, (b; c; c0; b0) cannot bea P4, and hence b _E b0. But now (a; c; b; b0) is a P4 in E, whence the contradiction.The equation E = Eccoh is obvious. We prove now the second statement, showing �rst thatX = Xcohc. The webs are clearly the same. Let u 2 �(Xcohc). Since u is connected, one can �ndan enumeration a1; : : : ; an of u such that ai _̂Xcoh ai+1 for all i = 1; : : : ; n � 1 (of course, withpossibly some repetitions), that is fai; ai+1g 2 �(X). Using iteratively the fact that X is parallel,one concludes immediately that u 2 �(X). Conversely, let u 2 ��(X) (if u is a singleton, there isnothing to prove). By proposition 9, we can �nd u1; u2 � u, both non-empty, such that u = u1& u2.Then for all a1 2 u1 and a2 2 u2 one has a1 _Xcoh a2, hence u is connected inXcoh. Assume we havea P4 (a; b; c; d) in Xcoh. Then u = fa; b; c; dg belongs to �(Xcohc) = �(X), but u = fa; b; dg[fa; c; dgand fa; b; dg; fa; c; dg 2 �(X?) (both sets are non-connected), and fa; b; dg\ fa; c; dg 6= ;. This iscontradictory because X? is parallel, and hence Xcoh is serial-parallel.We conclude this section by stating a few preservation properties of logical connectives withrespect to parallel and serial hypercoherences.Proposition 15 Let X and Y be hypercoherences. If X and Y are parallel, then so are X & Y ,X�Y , X
Y and !X, and X? is serial. If X and Y are serial, then so are X & Y , X�Y , X P Yand ?X, and X? is parallel.Proof: We just check the exponential case. Let U; V 2 �(!X) be such that U \ V 6= ;. Letw � U [ V . Let u = w \ SU and v = w \ SV . Then u � U and v � V , so u; v 2 �(X). Letx 2 U \V and let a 2 x be such that a 2 w. Then a 2 u\ v, hence u[ v 2 �(X) since X is paralleland we conclude since u [ v = w.5 Finite serial-parallel coherence spaces and gamesThere are various equivalent ways of presenting games. The most usual one consists in de�ning agame as a set of Opponent/Player-polarized moves, together with a pre�x-closed set of plays, which14



are Opponent/Player-alternating sequences of moves. This set of plays constitutes a tree for theusual pre�x ordering of sequences. We used this presentation in our informal discussion in section 2.But a game can also be presented directly as a tree of Opponent/Player-polarized positions, thischoice has been done for example by Lamarche in [Lam92], and we prefer this presentation here.In this approach, a move is a transition from a position (starting position) to one of its immediatesuccessors in the tree. A move is played by Player if the polarity of the starting position is Opponent,and by Opponent if the polarity of the starting position is Player.We can apply proposition 10 and theorem 14 for establishing the connection we mentioned in theintroduction between �nite serial-parallel coherence spaces and �nite games. In the non �nite case,things are slightly more complicated, but, for instance, the notion of local �niteness introduced insection 8 can be used for extending this connection.We start by an obvious observation on serial-parallel coherence spaces.Lemma 16 Let E and F be serial-parallel coherence spaces. Then E&F and E � F are serial-parallel, and one has (E&F )c = Ec&F c and (E � F )c = Ec � F c.To any �nite serial-parallel coherence space E, we want to associate an ordered set of positionsPE , which is a �nite tree (see the de�nition of a tree in section 3), together with a labeling function�E : PE ! fO;P;Ng which is alternating in the sense that, if s; t 2 PE and s is the predecessor oft, then �E(s) 6= �E(t), and such that, moreover, �E(s) = N i� s is a maximal element of PE (�nalpositions are neutral). The elements of the poset PE will be subsets of jEj, and the order relationof PE will be the reversed inclusion on these subsets. We de�ne now (PE; �E) by induction on#jEj.For this purpose, we prefer to consider E as a serial and parallel hypercoherence (we identify Ewith Ec). Indeed, we know that the serial-parallel coherence spaces are in bijective correspondencewith the serial and parallel hypercoherences by theorem 14, and, by lemma 16, that the additiveconnectives commute to this correspondence.� If jEj = ;, then PE = ; and there is nothing more to say.� If jEj is a singleton fag, then PE = ffagg, and �E(fag) = N.� If jEj 2 ��(E), then we know by proposition 10 that there exists a unique family of pairwisedisjoint subspaces E1,. . . ,En (with n � 2 and #jEij � 1 for i = 1; : : : ; n) of E such thatjEj = Sni=1 jEij, jEij 2 �(Ei?) and such that, up to the canonical bijection between jEj andjE1& � � �&Enj, one has E = E1& � � �&En. We set PE = fjEjg[Sni=1PEi . Observe that thisunion is disjoint, as{ if s 2 PEi , then s is a non-empty subset of jEij, and the sets jEij are pairwise disjoint,{ and as the inclusion jEij � jEj is strict for each i.Last, we de�ne �E by �E(s) = �Ei(s) if s 2 PEi and �E(jEj) = P.� Symmetrically, if jEj 2 ��(E?), we �nd a unique family E1,. . . ,En (with n � 2) of pairwisedisjoint non-empty subspaces of E such that jEj = Sni=1 jEij, jEij 2 �(Eic) and E = E1 �� � � � En (up to the canonical bijections between the web of these two spaces). Then we setas before PE = fjEjg [Sni=1 PEi and we observe that this union is disjoint. Last, we de�ne�E by �E(s) = �Ei(s) if s 2 PEi and �E(jEj) = O.15



Observe that, for s 2 PE , �E(s) = N i� #s = 1, �E(s) = P i� s 2 ��(E), that is, i� #s � 2and s is connected in E (if one considers again E as a serial-parallel coherence space). And observethat �E(s) = O i� s 2 ��(E?), that is, i� #s � 2 and s is connected in E? (again, consideredas a serial-parallel coherence space), that is, i� s is not connected9 in E. Observe also that, dueto the uniqueness property stated by proposition 10, the game (PE; �E) is uniquely determined bythe serial-parallel space E.Conversely, given a game (P; �) where P is a �nite tree and � : P ! fO;P;Ng is a function,we can de�ne a hypercoherence SP(P;�) by jSP(P;�)j = fs 2 P j �(s) = Ng and, for S � jSP(P;�)j,S 2 ��(SP(P;�)) i� #S � 2 and the glb of S in P (which exists, as P is a tree) is mapped to P by�. Then it is easily checked that the hypercoherence SP(P;�) is always serial and parallel, and that,if the game (P; �) we start from is given by P = PE and � = �E for some �nite serial and parallelhypercoherence E, then SP(P;�) is canonically isomorphic to E. It is in that sense that �nite serialand parallel hypercoherences can be considered as games10.6 Parallel unfolding of a hypercoherenceWe show in this section that any hypercoherence admits a rigid unfolding (in the sense of de�ni-tion 6) with respect to the class of parallel hypercoherences, in the category of hypercoherencesand strongly stable linear maps. This construction generalizes what has been done in a concretecase in section 2.So for any hypercoherence X , we shall show that there exists a parallel hypercoherence Y ,together with a linear strongly stable morphism p : Y ( X satisfying the conditions prescribed insection 3. But it turns out that p will belong to a very particular class of morphisms, it will be a\web morphism".De�nition 17 Let X and Y be hypercoherences. A web morphism from X to Y is a morphismf : X ( Y which is a function from jX j to jY j. (Remember that f , by de�nition of a morphism, isa subset of jX j� jY j; we just require this subset to be functional, in the usual set-theoretic sense.)Equivalently, a web morphism from X to Y is a function f : jX j ! jY j satisfying8u 2 ��(X) f(u) 2 ��(Y ) :When f : X( Y is a web morphism, we write f : X ! Y .Let X and Y be hypercoherences, and let p : Y ! X be a web morphism. Assume that Y isparallel, and that (Y; p) is a rigid unfolding of X with respect to parallel hypercoherences, in thecategory of hypercoherences and web morphisms. We show that (Y; p) is also a rigid unfolding ofX with respect to parallel hypercoherences, in the category of hypercoherences and arbitrary linearmorphisms.Indeed, let Z be a parallel hypercoherence and let f : Z ( X be a linear morphism. Let usde�ne a hypercoherence T as follows: jT j � jZj � jX j is the trace of f and a subset w of jT j is in�(T ) i� it is �nite, non-empty and satis�es �1(w) 2 �(Z). Then it is clear that T is parallel and that9This is another characterization of serial-parallel coherence spaces which derives from theorem 14: a coherencespace E is serial-parallel i� for each �nite subset u of the web of E such that #u � 2, if u is connected in E, thenu is not connected in E?. The converse implication always holds, as easily checked (observe that u has at least twoconnected components in E?.). Observe by the way that the P4 is the smallest coherence space E which is connectedboth in E and in E?.10Observe however that if we start from a game (P;�) and de�ne E = SP(P;�), and then P 0 = PE and �0 = �E , wearrive to a game (P 0; �0) which in general is not isomorphic to (P;�).16



�2 is a web morphism T ! X , and so there exists a web morphism g : T ! Y such that p � g = �2.Observe then that there is a linear map f 0 : Z ( T , whose trace is f(c; (c; a)) j (c; a) 2 tr(f)g suchthat �2 � f 0 = f , so that g0 = g � f 0 is a linear map Z( Y such that p � g0 = f . So arbitrary linearmaps from a parallel hypercoherence to X can be lifted along p.Last we show that any linear map h : Y ( Y satisfying p �h = p is actually a web morphism,and hence must be the identity morphism from Y to Y . Indeed, one has p �h = f(b; p(b0)) j (b; b0) 2hg and so since p �h = p and p is a web morphism, for all b 2 jY j, there exists b0 2 jY j suchthat (b; b0) 2 h. Next, let b; b01; b02 2 jY j be such that (b; b01); (b; b02) 2 h. Since h 2 qD(Y ( Y ),we must have fb01; b02g 2 �(Y ). But as p �h = p, we have p(b01) = p(b02) = p(b), and hence by thecharacterization above of web morphisms, fb01; b02g =2 ��(Y ), so b01 = b02 and h is a web morphism.Consequently, and without loss of generality, instead of constructing rigid parallel unfoldings inthe category of hypercoherences and linear morphisms, we restrict our attention to the subcategoryof hypercoherences and web morphisms.Before proving that all hypercoherences admit a rigid parallel unfolding, let us introduce afew useful notations. Let X be a hypercoherence. If u 2 �(X), let us denote by �u(X) the setfv 2 �(X) j u � vg and by Fu(X) the set of all maximal subsets of �u(X) which are closed under�nite unions.Lemma 18 Let � be a subset of �u(X). One has � 2 Fu(X) i� the two following conditions aresatis�ed:i) 8v; v0 2 � v [ v0 2 �ii) For all v 2 �u(X), if v [ v0 2 �(X) for all v0 2 �, then v 2 �.Proof: Assume �rst that � 2 Fu(X) and let us prove property (ii). So let v 2 �u(X) be suchthat 8v0 2 � v [ v0 2 �(X) :Let �0 = fv [ v0 j v0 2 �g and � = � [ �0. We have � � � � �u(X). To conclude, it su�ces toprove that � is closed under binary unions. So let w;w0 2 �. Assume for instance that w;w0 2 �0,the other cases being simpler. Then w = v[v0 and w0 = v[v00 for some v0; v00 2 �. But v0[v00 2 �,and hence w [ w0 = v [ (v0 [ v00) 2 �0.The converse implication is straightforward.For a 2 jX j, we abbreviate �fag(X) by �a(X) and Ffag(X) by Fa(X). Observe that, if � 2Fu(X), then u 2 � by maximality. For � 2 Fa(X), the only singleton belonging to � is fag.Observe that the three following conditions are equivalent:� X is parallel.� For all a 2 jX j, the set Fa(X) is reduced to f�a(X)g.� For all u 2 �(X), the set Fu(X) is reduced to f�u(X)g.The cardinality of Fa(X) measures in some sense the lack of parallelism of X at a.De�nition 19 We de�ne now a hypercoherence bX which is intended to be the rigid parallel un-folding of X .Its web is given by j bXj = [a2jXjFa(X) :17



Observe that this union is disjoint. Before giving �( bX), we de�ne a function pX : j bXj ! jX j by:pX(�) is the only a 2 jX j such that fag 2 �. In other words, pX is characterized by� 2 FpX(�)(X) :Let U � j bXj and let u = pX(U). We say that U 2 �( bX) i� U is �nite and non-empty and satis�esu 2 �(X) and \U 2 Fu(X) :This condition can be rephrased as follows. First, let v 2 �(X), let � 2 Fv(X) and let w 2 �.We denote by �w the set � \ "w = fv0 2 � j w � v0g. Observe that �w 2 Fw(X).Lemma 20 A subset U of j bXj belongs to �( bX) i� U is �nite and non-empty, and satis�es thefollowing two conditions:i) For all � 2 U , the set u = pX(U) belongs to �.ii) For all �; �0 2 U , �u = �0u.And if U 2 �( bX), one has �u = TU for each � 2 U (where u = pX(U)).Proof: First, assume that U 2 �( bX). We prove (i). We have TU 2 Fu(X), so u 2 TU . ButTU � � and hence u 2 � for all � 2 U . Next, let � 2 U . We have TU � �u. But �u 2 Fu(X),and our hypothesis says that TU 2 Fu(X), so TU = �u and this proves (ii).Conversely, let U be a �nite and non-empty subset of j bXj satisfying (i) and (ii), and let u =pX(U). Since U is non-empty, u 2 �(X) by condition (i). The set TU is closed under �nite unionsas an intersection of sets having that property. Let v 2 TU . For all � 2 U one has v 2 �, andhence pX(�) 2 v. Hence u � v. Last, TU belongs to Fu(X) since condition (ii) implies that�u � TU and since �u 2 Fu(X) (for each � 2 U).Theorem 21 Let X be a hypercoherence.i) ( bX; pX) is a rigid parallel unfolding of X.ii) Furthermore, let Y be a parallel hypercoherence, let f : jY j ! jX j be a web morphism, letb 2 jY j and let � 2 Ff(b)(x) be such that f(�b(Y )) � �. Then there exists a lifting g of falong pX such that g(b) = �.iii) Speci�cally, for all � 2 j bXj, for all u 2 �, there exists U 2 ��( bX) such that pX(U) = u.Proof: Let us �rst check that bX is parallel. Let U; V 2 �( bX) be such that U \ V 6= ;, and let� be an element of this intersection. Let u = pX(U), v = pX(V ). Since U 2 �( bX) we have u 2 �.Similarly v 2 �. But � is closed under unions so u [ v 2 �. Now let �; 
 2 U [ V and let w � jX jbe �nite and such that u [ v � w. If w 2 �, since �; � 2 U or �; � 2 V , and since U; V 2 �( bX),we have w 2 �. Then since 
; � 2 U or 
; � 2 V , we have w 2 
. By lemma 20, we conclude thatU [ V 2 �( bX).Let U 2 �( bX). By de�nition, pX(U) 2 �(X). If this set is a singleton fag, then each elementof U is in Fa(X) and for two such � and �0 we must have �fag = �0fag, that is � = �0. So pX is aweb morphism.Let Y be a parallel hypercoherence, and let f : jY j ! jX j be a web morphism. We want tobuild a web morphism g : jY j ! j bXj such that pX � g = f .Let B � jY j. Assume that, for each b 2 B, we have found g(b) 2 Ff(b)(X) in such a way thatthe two following conditions are satis�ed. 18



(a) 8b 2 B f(�b(Y )) � g(b).(b) 8v 2 �(Y ) 8b; b0 2 B \ v g(b)f(v) = g(b0)f(v).These conditions are very natural. Indeed, let v 2 �b(Y ). First, g(b) 2 g(v), so pX(g(v)) 2 g(b) (bylemma 20, (i)). Since we want to have pX � g = f , this implies that f(v) 2 g(b) so condition (a)must hold. Condition (b) comes from the fact that g(v) 2 �( bX), and from lemma 20, (ii).Let c 2 jY j. We prove that we can extend g to B [ fcg in such a way that these two propertiesstill hold for this extension. For v 2 �c(Y ) such that v \ B 6= ;, let us denote by Fv the commonvalue of all the g(b)f(v)'s for b 2 B \ v. LetF =[fFv j v 2 �c(Y ) and v \B 6= ;g :We �rst prove that F is closed under unions. For i = 1; 2, let ui 2 F . Let vi 2 �c(Y ) be such thatvi\B 6= ; and ui 2 Fvi . Let b 2 v1\B. We have u1 2 g(b). Since Y is parallel and since c 2 v1\v2,we have v1 [ v2 2 �(Y ), and so v1 [ v2 2 �b(Y ) since b 2 v1. Hence u1 [ f(v1 [ v2) 2 g(b) as g(b) isclosed under unions and contains f(�b(Y )) as a subset. Henceu1 [ f(v1 [ v2) 2 g(b)f(v1[v2) = Fv1[v2 :Symmetrically one proves that u2 [ f(v1 [ v2) 2 Fv1[v2 and hence u1 [ u2 [ f(v1 [ v2) 2 Fv1[v2 ,that is u1 [ u2 2 Fv1[v2since f(vi) � ui.Next, we prove that F [ f(�c(Y )) is closed under unions. Since this property holds for F andfor f(�c(Y )), we have just one case to check. Let u 2 F and let v0 2 �c(Y ). Let v 2 �c(Y ) be suchthat v \ B 6= ; and u 2 Fv . Again we choose b 2 v \B. We haveu 2 g(b) and f(v [ v0) 2 g(b) ;hence u [ f(v [ v0) 2 g(b)f(v[v0) = Fv[v0and we conclude since u [ f(v [ v0) = u [ f(v0).Let us choose for g(c) any element of Ff(c)(X) such that F [ f(�c(Y )) � g(c). Indeed, we mayapply Zorn's lemma, since, denoting by C the set of all subsets of �f(c)(X) which are closed under�nite unions, each totally ordered subset T of C is upper-bounded by ST which belongs to C, andwe have proved that F [ f(�c(Y )) 2 C. Property (a) obviously holds for this extension of g; let uscheck property (b). The only non-trivial case is when b 2 v \B and b0 = c (and hence v 2 �c(Y )).But we have g(b)f(v) = Fv by de�nition of Fv , and by de�nition of g(c), we have thatFv � g(c)f(v) :This inclusion is actually an equality by maximality of Fv and because g(c)f(v) is closed underunions.To build the required function g on jY j, one chooses an ordinal enumeration of jY j and one usesthe property above in a trivial trans�nite induction. As a result, we get a function g : jY j ! j bXjsatisfying (a) and (b) for B = jY j. These two properties, together with lemma 20, imply thatg(v) 2 �( bX) for all v 2 �(Y ). It is also clear that, by construction of g, for all b 2 jY j, one haspX(g(b)) = f(b). For showing that g is a web morphism from Y to bX, it remains to check that if19



v 2 ��(Y ), one has #g(v) � 2. As f is a web morphism, one has #f(v) � 2, that is #pX(g(v))� 2and hence g(v) cannot be a singleton.Item (ii) of the theorem is an obvious consequence of this construction as we can choose theenumeration of jY j in such a way that b1 = b, and for g(b1), we can choose g(b1) freely amongall the � 2 Ff(b1)(X) such that f(�b1(Y )) � �. Item (iii) is a special case of (ii). Indeed, letY be the parallel hypercoherence de�ned by jY j = u and ��(Y ) = fug (if u is not a singleton;otherwise, there is nothing to prove). Take for f the inclusion of jY j into jX j which is obviously aweb morphism. Let g be a lifting of f along pX , and set U = g(u).To conclude, let h : bX ! bX be a web morphism such that pX �h = pX , and assume thath 6= Id. Let � 2 j bXj be such that � = h(�) 6= �. Let a = pX(�) = pX(�). Then by maximalityof � and �, there exist u 2 � and v 2 � such that u [ v =2 �(X). By (iii), we can �nd U 2 ��( bX)and V 2 ��( bX) such that pX(U) = u and pX(V ) = v. Since h is a web morphism, we must haveh(U) 2 ��( bX), and since bX is parallel, we have h(U) [ V 2 ��( bX), hence pX(h(U) [ V ) 2 �a(X)since pX is a web morphism. But pX(h(U)[ V ) = u [ v, and we have a contradiction.Remark: Another important consequence of the lifting property is that, whenever x is a cliqueof X , there exists a clique A of bX such that pX(A) = x. Indeed, x may be considered as a(trivially) parallel subspace of X . Usually, there are many cliques A in bX such that pX(A) = x.But if x is su�ciently \large", the clique A is unique. It can be checked for instance that if Z is ahypercoherence, if X = Z? P Z and if x is the identity clique of X (that is, x = f(c; c) j c 2 jZjg),then there is exactly one clique A of bX such that pX(A) = x: there is only one way of unfoldingthe identity. This possibility of lifting all cliques along pX presents some similarity with part (iii)of theorem 21 above. It is in some sense much stronger in that it deals with non necessarily �nitesubsets of the web of X , and moreover, when x is �nite, it says not only that x can be lifted in acoherent subset of j bXj, but moreover that all non-empty subsets of x can be simultaneously liftedas coherent subsets of j bXj.Remark: As observed by one of the referees of this paper, there is another (and simpler) way ofassociating to a hypercoherence X a parallel hypercoherence Y : for jY j, take the same de�nitionas for j bXj, but remove the maximality requirement (that is, an element of jY j is a pair (a; A) wherea 2 jX j and A � �a(X) is closed under �nite unions, but not necessarily maximal such), andfor �(Y ), take lemma 20 as a de�nition. Then one can also de�ne a projection web morphismp : Y ! X by p(a; A) = a, and it is straightforward that each web morphism from some parallelhypercoherence to X can be lifted along p. Moreover, this construction can be characterized by auniversal property of initiality, and is clearly functorial. However, this very natural constructionis too \generous" in the sense that when X is already parallel, the hypercoherence associated toX is not isomorphic to X itself. Moreover, this construction does not satisfy theorem 23 thatwe consider as essential. A similar construction is also possible in the poset example of section 3(replace \maximal totally ordered subsets" by \totally ordered subsets").The next proposition provides a characterization of coherence and incoherence in bX which isvery simple and will be useful in the proof of the next theorem.Proposition 22 Let U be a non-empty and �nite subset of j bXj.i) U belongs to �( bX) i�, for all (u�)�2U such that u� 2 � for each � 2 U , one has S�2U u� 2�(X).ii) U belongs to �( bX?) i� there exists (u�)�2U such that u� 2 � for each � 2 U , and S�2U u� 2�(X?). 20



Proof: We prove (i). Let U 2 �( bX), and let (u�)�2U be such that u� 2 � for each � 2 U . Letu = pX(U). We know that for each � 2 U , u 2 �, so that u[ u� 2 � and hence u [ u� 2 �u. Nowsince U 2 �( bX), one has �u = TU by lemma 20, and hence u [ u� 2 \U . As this holds for each� 2 U , one has in particular S�2U(u [ u�) 2 �(X) but this last set is equal to S�2U u� as, foreach � 2 U , pX(�) 2 u�.Conversely, assume that S�2U u� 2 �(X) whenever u� 2 � for each � 2 U . Let u = pX(U). Asu = S�2U u� where u� = fpX(�)g 2 � for each � 2 U , we have u 2 �(X). Now let � 2 U and letus prove that u 2 �. If this were not the case, there would exist some v 2 � such that u[v =2 �(X).Now set u� = fpX(�)g if � 6= � and u� = v. We have S�2U u� = u [ v =2 �(X), and this is acontradiction. Last, let �; � 2 U , and let v 2 � be such that u � v, and assume that v =2 �. Then,there exists w 2 � such that v [ w =2 �(X). As previously, one derives a contradiction, de�ning afamily (u
)
2U as follows: u
 = 8<: v if 
 = �w if 
 = �fpX(
)g otherwise.The union of that family is v [ w, as u � v.Now we prove (ii). Assume �rst that U 2 �( bX?). If U is a singleton f�g, we can takeu� = fpX(�)g 2 �(X?). Otherwise, U =2 �( bX) and we apply (i). Conversely, let (u�)�2U be suchthat u� 2 � for each � 2 U , and v = S�2U u� 2 �(X?). If v is not a singleton, we concludedirectly, applying (i). Otherwise, v = fag with pX(�) = fag for each � 2 U . Then U 2 �( bX?)because pX is a web morphism.Theorem 23 Let X be a serial hypercoherence. Then bX is serial too (and hence is serial andparallel).Proof: Let U; V 2 �( bX?) having a non-empty intersection, and let � 2 U \V . By proposition 22we can �nd a family (v�)�2U such that v� 2 � for each � 2 U and a family (w
)
2V such thatw
 2 
 for each 
 2 V , such that moreoverv = [�2U v� 2 �(X?) and w = [
2V w
 2 �(X?) :We de�ne a family (u�)�2U[V as follows:u� = 8<: v� if � 2 U n Vw� if � 2 V nUv� [ w� if � 2 U \ V ;then u� 2 � for each � 2 U [ V . Since X is serial, and since clearly pX(�) 2 v \ w, we havev [ w 2 �(X?). But [�2U[V u� = v [ wand we conclude, by proposition 22.7 Unfolding a �nite serial hypercoherenceWe present now another, and maybe more intuitive, way of constructing bX in the special casewhere X is a �nite and serial hypercoherence. For all such X , let us de�ne a hypercoherence eXtogether with a web morphism qX : eX ! X by induction on #jX j as follows:21



i) If #jX j = 1, then eX = X and qX = Id.ii) If jX j 2 ��(X), then by proposition 10, as X is serial, it can be written in a unique way(up to permutations of indexes) as X = X1& � � �&Xn where the Xi's are pairwise disjointnon-empty subspaces of X verifying jXij 2 �(X?). So the sets jXij are the maximal subsetsof X which belong to �(X?). Then we seteX = fX1& � � �& fXn and qX = qX1 & � � �& qXn :iii) If jX j =2 �(X), then let X1,. . . , Xn be the maximal subspaces of X whose web belongs to�(X). Observe that these subspaces are not necessarily disjoint (because X may not beparallel). Then we set eX = fX1 � � � � � fXn :We de�ne qX as qX = q �(qX1 � � � � � qXn) ;where q : n[i=1(fig � jXij) ! jX j(i; a) 7! aIndeed, q is a web morphism from X1 � � � � �Xn ! X as easily checked.The hypothesis that X is serial is heavily used for proving that qX is a web morphism. Indeed, oth-erwise, in the case where jX j 2 ��(X), the Xi's (maximal subspaces of X such that jXij =2 ��(X))would not de�ne a partition ofX and then, setting eX = fX1& � � �& fXn and qX = r �(qX1 & � � �& qXn)(where r : jX1& � � �&Xnj ! jX j is de�ned as the function q above) would not give rise to a webmorphism in general. It turns out that when X is serial, r is an isomorphism, and this makes thisconstruction possible.The following property immediately results from this construction.Lemma 24 Let Z be a �nite serial hypercoherence. If jZj 2 �(Z), then j eZj 2 �( eZ).We shall use the following general lemma.Lemma 25 Let (S;�) be a poset, let A � S be directed and B � S be �nite. Then(8s 2 A 9t 2 B s � t) ) (9t 2 B 8s 2 A s � t)Proposition 26 Let X be �nite and serial. Then ( eX; qX) is a rigid parallel unfolding of X.Consequently, there is a unique morphism ' : eX ! bX such that pX �' = qX , and ' is anisomorphism.Proof: We prove the result by induction on #jX j. Let Y be a parallel hypercoherence and letf : Y ! X be a web morphism.� For #jX j � 1, the result is obvious. 22



� Assume that jX j 2 ��(X). Let X = X1& � � �&Xn be the decomposition of X in maximalsubspaces Xi such that jXij 2 �(X?) given by proposition 10. For i = 1; : : : ; n, let Yibe the subspace of Y whose web is f�1(jXij), and let fi be the restriction of f to thissubspace. By inductive hypothesis, we can �nd gi : Yi ! fXi such that qXi � gi = fi. We setg = (g1& � � �& gn) � j where j : jY j ! jY1& � � �& Ynj maps each b 2 jY j to (i; b) where i is theunique index such that b 2 jYij. As j is clearly a web morphism from Y to Y1& � � �& Yn, thefunction g is a web morphism from Y to eX, and we have qX � g = f . Now, let h : eX ! eXbe such that qX � h = qX , and let hi be its restriction to fXi. It is easily checked that hi is aweb morphism fXi ! fXi such that qXi �hi = qXi and hence by inductive hypothesis, hi = Id,so that h = Id.� Assume last that jX j =2 �(X), and let X1; : : : ; Xn be its maximal subspaces such that jXij 2�(X). Since Y is parallel, it can be written as Y =Lj2J Yj where the family (jYj j)j2J is anenumeration (without repetitions) of jY j=�jY j, the equivalence relation �jY j on jY j havingbeen de�ned at the beginning of section 4 11. For each j 2 J , �(Yj) is a directed set. Indeed,as jYj j is an equivalence class of the relation �jY j, each �nite subset of jYj j is upper boundedby an element v of �(Y ), and v is necessarily a subset of jYj j, as two elements of v arealways �jY j-equivalent. Hence by lemma 25 (with A = f(�(Yj)), B = fjX1j; : : : ; jXnjg, theorder being of course the inclusion) there exists a function l : J ! f1; : : : ; ng such that therestriction fj of f to jYj j is a web morphism fj : Yj ! Xl(j). By inductive hypothesis, we canlift fj along qXl(j) by a web morphism gj : Yj !]Xl(j). Using the fact that Y =Lj2J Yj , weobtain in that way a web morphism g : Y !Lni=1fXi = eX which satis�es qX � g = f . Nowlet h : eX ! eX be a web morphism such that qX � h = qX . Let i 2 f1; : : : ; ng. By lemma 24,there exists j 2 f1; : : : ; ng such that h(jfXij) � jfXj j. By applying qX to both members of thisinclusion, we get jXij � jXj j so that i = j by maximality of the Xk's, and we conclude byinductive hypothesis.Let us give yet another way of presenting this construction, establishing a direct link withsection 2.De�nition 27 Let X be a �nite hypercoherence. A tower of X is a sequence s = hu0; : : : ; uni ofsubsets of jX j such that� u0 = jX j,� #un = 1,� if 0 � i < n, then ui is not a singleton, and if ui 2 ��(X), then ui+1 is a maximal subset ofui which belongs to �(X?), and if ui 2 ��(X?), then ui+1 is a maximal subset of ui whichbelongs to �(X).If a is the element of jX j such that un = fag, one says that s is a tower at a. One writes a = qTX(s)as a is uniquely determined by s.11The proof that Y is the sum of its subspaces Yj proceeds like the proof of proposition 9; by the way, one mightderive this decomposition of Y from proposition 10 applied to Y ? if jY j were assumed to be �nite.23



Observe that if two towers of X are comparable for the pre�x ordering of sequences, they mustbe equal. Observe also that the �rst element of any tower of X must be jX j, so that two towershave always a non-empty common pre�x.The set jT(X)j of all towers of X can naturally be considered as the web of a coherence space:say that s; s0 2 jT(X)j are strictly coherent if they are di�erent and the last element u of theirlongest common pre�x belongs to ��(X) (observe that as s 6= s0, the set u cannot be a singleton).We denote by T(X) this coherence space, which is serial-parallel.Proposition 28 If X is a serial and �nite hypercoherence, then there is a bijection ' : jT(X)j !j eXj which is an isomorphism of hypercoherences from T(X)c to eX and which moreover satis�esqX �' = qTX .Hence qTX is a web morphism from T(X)c to X and (T(X)c; qTX) is a rigid parallel unfolding of X ,by proposition 26.Proof: Straightforward induction based on the observation that in the de�nition of eX, thejXij's are the maximal subsets of jX j such that jXij 2 �(X?) when jX j 2 ��(X) (case (ii) of theconstruction), and the maximal subsets of jX j such that jXij 2 �(X) when jX j 2 ��(X?) (case (iii)of the construction).If X is a serial and �nite hypercoherence, we have established an isomorphism between T(X)cand bX, in a rather indirect way. This correspondence can be made more explicit as follows.Given a 2 jX j and s = hu0; : : : ; uni 2 jT(X)j a tower at a, consider the set S = fui j i 2f0; : : : ; ng and ui 2 �(X)g. This is a subset of �a(X) which is obviously closed under unions(indeed, it is totally ordered by the inclusion relation). It can be proved that there is exactly oneelement �(s) of Fa(X) such that S � �(s), and that the map associating to s this unique element�(s) of j bXj is an isomorphism from T(X)c to bX .The serial-parallel coherence space associated to the serial and �nite hypercoherence X =(!Booln)? P Bool in section 2 was T(X). So the coherence space of all complete plays of thegame associated to the type Booln ! Bool in the theory of sequential algorithms is canonical-ly isomorphic to the rigid parallel unfolding of the hypercoherence interpreting this type in thehypercoherent semantics.8 A cardinality issueThe web of the rigid parallel unfolding of a hypercoherence X has a cardinality which generally isstrictly greater than the cardinality of jX j. Consider for instance the hypercoherence X whose webis the set of integers, and where the only elements of ��(X) are the sets of the shapef�n; : : : ; n; n+ 1g and f�n � 1;�n; : : : ; ngfor all n 2 N. It is easily checked that there is a bijective correspondence between F0(X) and theset of all subsets of N, so that #j bXj = 2#jXj.But in denotational semantics, one tends to consider that the spaces used for interpretingformulae or types should have a denumerable number of generators: this corresponds to the standardrequirement of !-algebraicity in Scott semantics for instance. When one deals with coherencespaces, qualitative domains or hypercoherences, the corresponding condition is the countability ofthe webs. 24



We present a condition on hypercoherences that allows to control the cardinality of webs throughthe general parallel unfolding construction of section 6, and which is preserved by all the standardconstructions of linear logic.For a hypercoherence X satisfying this condition, we shall have, for all a 2 jX j,#p�1X (a) <1 :The degree of a 2 jX j is classically the number of hyperedges of X which contain a (thatis, #�a(X)). Requiring the degree of a to be �nite guarantees of course that #p�1X (a) < 1.Unfortunately, this condition is not preserved under the constructions of linear logic. For instance,if ��(X) = ;, the degree of a in X is 1, whereas its degree in X? is #jX j (when this cardinal isin�nite). So we shall de�ne a notion of reduced degree which will be better behaved.If A is a set and a 2 A, we denote by Pa�n(A) the set of all �nite subsets of A which contain a.Let X be a hypercoherence and let a 2 jX j. We de�ne on Pa�n(jX j) an equivalence relation asfollows: u �X u0 i� 8v 2 Pa�n(jX j) u [ v 2 �(X), u0 [ v 2 �(X) :Actually, this equivalence relation can be more globally de�ned on P��n(jX j), but we consider hereonly the local version.De�nition 29 Let X be a hypercoherence and let a 2 jX j. The reduced degree of a in X isdX(a) = #Pa�n(jX j)=�X :One says that X is locally �nite if all the elements of jX j are of �nite reduced degree.Before studying these notions, we state a few trivial lemmas on equivalence relations.Lemma 30 Let E and F be sets and let R and S be two equivalence relations on E and F respec-tively. Let R� S be the product of these two relations (so that (a; b) R� S (a0; b0) i� a R a0 andb S b0), which is an equivalence relation. Then#(E � F )=(R� S) = (#E=R)(#F=S) :This is obvious.Lemma 31 Let E and F be two sets. Let R and S be two equivalence relations on E and Frespectively. If there is a function f : E ! F such thatf(a) S f(a0)) a R a0 ;then #E=R � #F=S :This is obvious.Lemma 32 Let E be a set and R be an equivalence relation on E. Let R� be the equivalencerelation on P(E) de�ned as follows: x R� y i�8a 2 x 9b 2 y a R b and 8b 2 y 9a 2 x a R b :Then #P(E)=R� = 2#E=R :25



Proof: Observe that any element of P(E)=R� is the class of a subset x of E satisfying:8a; a0 2 x a R a0 ) a = a0and that two such sets x and x0 are equivalent (for R�) i� there is a bijection ' : x! x0 such thata R '(a) for all a 2 x, so that there is a bijective correspondence between P(E)=R� and P(E=R).Lemma 33 Let X be a hypercoherence and a 2 jX j. If a is of �nite reduced degree in X, it is alsoof �nite reduced degree in X? and more preciselyjdX?(a)� dX(a)j � 1Proof: Let P be the set of elements of Pa�n(jX j) which are not singletons. It is clear thatP=�X = P=�X? , but dX(a) 2 f#P=�X ;#P=�X + 1g, whence the result.Lemma 34 Let X and Y be hypercoherences and let a 2 jX j be of �nite reduced degree in X. Then(1; a) is of �nite reduced degree in X & Y , and more preciselydX &Y (1; a) 2 fdX(a); dX(a) + 1g :The proof is straightforward.Lemma 35 Let X and Y be two hypercoherences. Let a 2 jX j and b 2 jY j be of �nite reduceddegrees in X and Y respectively. Then (a; b) is of �nite reduced degree in X
Y , and more preciselydX
Y (a; b) � dX(a) dY (b) :Proof: Consider the map� : P(a;b)�n (jX 
 Y j) ! Pa�n(jX j)�Pb�n(jY j)w 7! (�1(w); �2(w))If �(w) is equivalent to �(w0) for the product of the equivalence relations �X and �Y , then w �X
Yw0. Applying lemmas 30 and 31, we get the required inequation.Lemma 36 Let X be a hypercoherence and let x 2 j!Xj be such that all the elements of x have�nite reduced degree in X. Then x has �nite reduced degree in !X, and more preciselyd!X(x) � 1 +Ya2x 2dX(a) :Proof: Let S(X) be the subspace of !X de�ned byjS(X)j = j!Xj n f;g :We prove that dS(X)(x) �Ya2x 2dX(a)26



and the result will follow from lemma 34, as clearly !X ' 1&S(X), where 1 stands here for thehypercoherence whose web is a singleton.So let x 2 jS(X)j. For each a 2 x, let us de�ne a function as followsSeca : Px�n(jS(X)j) ! P(Pa�n(jX j))U 7! fu 2 Pa�n(jX j) j u � Ugand let Ra be the equivalence relation de�ned on P(Pa�n(jX j)) byU Ra U 0 i� � 8u 2 U 9u0 2 U 0 u �X u08u0 2 U 0 9u 2 U u �X u0 :Let U; U 0 2 Px�n(jS(X)j). Assume that Seca(U) Ra Seca (U 0) for all a 2 x. We claim thatU �S(X) U 0.Indeed, let V 2 Px�n(jS(X)j) and assume that U[V 2 �x(S(X)). Let w�U 0[V , let u0 = w\SU 0and v = w \ SV . As x 6= ;, we have w \ x 6= ;, so let a 2 w \ x. We have a 2 u0 \ v, u0 � U 0and v � V . Since Seca(U) Ra Seca (U 0), there exists u such that a 2 u, u � U and u �X u0. Butu[ v� U [ V and U [ V 2 �x(S(X)) by assumption, so u [ v 2 �a(X), and hence u0 [ v 2 �a(X).Since clearly w = u0 [ v, we have proven that U 0 [ V 2 �x(S(X)) as required.To conclude, consider the mapPx�n(jS(X)j) ! Ya2xP(Pa�n(jX j))U 7! (Seca(U))a2xand apply lemmas 30, 31 and 32.Theorem 37 If X and Y are locally �nite hypercoherences, then so are X?, X& Y , X�Y , X
Y ,X P Y , !X and ?X.It is an immediate consequence of the previous lemmas.Theorem 38 Let X be a hypercoherence and let a 2 jX j be of �nite reduced degree. Then p�1X (a)is a �nite set. More precisely, #p�1X (a) � 2dX(a) :So if X is locally �nite and if the cardinality of jX j is in�nite, then#j bXj = #jX j :Proof: Observe that the elements � of p�1X (a) are closed under the equivalence relation �X . Bythis, we mean that they satisfy8u; u0 2 Pa�n(jX j) (u 2 � and u �X u0)) u0 2 � :The next technical lemma will be useful in the proof of the last theorem of this section.Lemma 39 Let X be a hypercoherence, and let W � j bXj be �nite and non-empty. Let w = pX(W ).i) For all u 2 TW , one has w � u. 27



ii) Let u 2 TW and let u0 be a �nite subset of jX j such that w � u0. If u0 �X u, then u0 2 TW .The proof is straightforward.Theorem 40 Let X be a hypercoherence and let � 2 j bXj. If a = pX(�) is of �nite reduced degreein X, then � is of �nite reduced degree in bX. More precisely,d bX(�) � dX(a)2dX(a) :So, if X is locally �nite, bX is locally �nite.Proof: We denote by ��X the equivalence relation de�ned on P(Pa�n(jX j)) by U ��X V i�8u 2 U 9v 2 V u �X v and 8v 2 V 9u 2 U u �X v :By lemma 32, this equivalence relation has 2dX(a) classes. Let U; U 0 2 P��n(j bXj), and set u = pX(U),u0 = pX(U 0). Assume that u �X u0 and \U ��X \U 0 :We claim that U � bX U 0, and the theorem will follow, by lemmas 30 and 31.We prove now this claim. Let V 2 P��n(j bXj) and let v = pX(V ). Assume that U [ V 2 �( bX).This means that u [ v 2 �(X) and that TU \TV 2 Fu[v(X). As u [ v 2 �(X) and as u �X u0,we have u0 [ v 2 �(X). It remains to prove that TU 0 \TV 2 Fu0[v(X).So let w0 be a �nite subset of jX j such that u0 [ v � w0, and assume that8t0 2\U 0 \\V w0 [ t0 2 �(X) : (4)We have to prove that w0 2 TU 0\TV (the set TU 0 \TV is obviously closed under �nite unions,as an intersection of sets having that property).As u �X u0, one has u [ w0 �X u0 [ w0 (indeed, �X is a congruence with respect to [). Thatis w0 �X w0 [ u. Let t 2 TU \TV . As t 2 TU and as TU ��X TU 0, there exists t0 2 TU 0 suchthat t0 �X t. We have then t[ v �X t0 [ v, that is (since t 2 TV and hence v � t by lemma 39 (i))t �X t0 [ v. But we have t 2 TV , and so, by lemma 39 (ii), we have t0 [ v 2 TV and also, sincet0 [ v �X t �X t0 2 TU 0, by lemma 39 (ii) again, we have t0 [ v 2 TU 0 and so t0 [ v 2 TU 0 \TV .But w0 satis�es the property (4) above, hence we have w0[ t0[v 2 �(X), that is w0[ t0 2 �(X). Butt �X t0, hence w0[ t 2 �(X), that is (w0[u)[ t 2 �(X) (as u � t). This holds for all t 2 TU \TV ,and we have u [ v � w0 [ u, hence w0 [ u 2\U \\Vsince TU \TV 2 Fu[v(X). Remember now that w0[u �X w0. So, since v � w0 we have w0 2 TVby lemma 39 (ii).On the other hand, since TU ��X TU 0, and since we have proved above that w0 [ u 2 TU ,there exists s0 2 TU 0 such that w0[u �X s0. Then we have u0 � w0 and w0 �X w0[u �X s0 2 TU 0,and hence, by lemma 39 (ii) again, we get w0 2 TU 0, that is w0 2 TU 0 \TV and this concludesthe proof of the claim, and of the theorem. 28



9 Some remarkable isomorphismsThis section presents some isomorphisms satis�ed by the rigid parallel unfolding of hypercoherences.As this operation gives rise to parallel hypercoherences and as the operations \&", \�", \
" and\!" preserve parallelism of hypercoherences, it is not very surprising that the rigid parallel unfoldingcommutes with these operations. This is the object of the four next statements.Proposition 41 Let X and Y be two hypercoherences. Then ( bX & bY ; pX & pY ) is a rigid parallelunfolding of X & Y .Proof: Let Z be a parallel hypercoherence and let f : Z ! X& Y be a web morphism. Considerthe subspaces ZX and ZY of Z de�ned byjZX j = f�1(jX j) and jZY j = f�1(jY j) :Then jZj is the disjoint union of jZX j and jZY j. Let fX and fY be the restrictions of f to jZX jand jZY j. We can lift fX and fY along pX and pY respectively, getting gX : ZX ! bX andgY : ZY ! bY . On the other hand, the canonical bijection jZj ! jZX &ZY j is obviously a webmorphism j : Z ! ZX &ZY . Now (gX & gY ) � j is a lifting of f along pX & pY .We conclude by the observation that any web morphism h : bX& bY ! bX & bY such that(pX & pY ) �h = pX & pY is of the shape h = hX & hY where hX : bX ! bX satis�es pX �hX = pX ,and similarly for hY .We can easily describe this isomorphism explicitly. The map j bX& bY j ! j\X &Y j associates to (1; �)(where � 2 Fa(X)) the elementff1g � u j u 2 �g [ fw 2 P��n(jX& Y j) j (1; a) 2 w and w \ (f2g � jY j) 6= ;gof F(1;a)(X & Y ). Its inverse associates to 
 2 F(1;a)(X& Y ) the element(1; f�2(w) j w 2 
 and �1(w) = f1gg) :Proposition 42 Let X and Y be two hypercoherences. Then ( bX � bY ; pX � pY ) is a rigid parallelunfolding of X � Y .The proof is straightforward.Proposition 43 Let X and Y be two hypercoherences. Then ( bX 
 bY ; pX 
 pY ) is a rigid parallelunfolding of X 
 Y .In other words, there is a unique isomorphism ' :\X 
 Y ! bX 
 bY such that(pX 
 pY ) �' = pX
Y :Proof: We construct directly the map ', by setting'(
) = (�1
; �2
) = (f�1(w) j w 2 
g; f�2(w) j w 2 
g)for all 
 2 j\X 
 Y j.Let (a; b) = pX
Y (
). It is clear that �1
 � �a(X) and that �1
 is closed under binary unions,and similarly for �2
. 29



Let us check that �1
 is maximal. So let u 2 �a(X) be such that u [ �1(w) 2 �(X) for allw 2 
. We have (u � fbg) [ w 2 �(X 
 Y ) for all w 2 
, and hence, by maximality of 
, we haveu�fbg 2 
, hence u 2 �1
. And similarly for �2
, hence ' is a well de�ned function from j\X 
 Y jto j bX 
 bY j.We check now that ' is a web morphism. Let W 2 ��(\X 
 Y ) and let w = pX
Y (W ), whichbelongs to ��(X 
 Y ). As w is not a singleton, '(W ) cannot be a singleton, so we just have tocheck that '(W ) 2 �( bX 
 bY ). Let us check that �1('(W )) 2 �( bX). Let 
; 
 0 2 W and let u 2 �1
be such that �1(w) � u. We must show that u 2 �1
 0. Let w0 2 
 be such that �1(w0) = u. AsW 2 �(\X 
 Y ), we have w 2 
 and so, as 
 is closed under binary unions, we have w0[w 2 
. But�1(w0[w) = u, so we can assume that w � w0 (otherwise use w[w0 instead of w0). Consequently,w0 2 
 0 and hence u 2 �1
 0 as required, so ' is a web morphism, and we have(pX 
 pY ) �' = pX
Yby de�nition of '. Consequently, for any parallel hypercoherence Z and any web morphism f :Z ! X 
 Y , there exists a web morphism f 0 : Z ! bX 
 bY such that (pX 
 pY ) � f 0 = f : take amorphism g : Z !\X 
 Y such that pX
Y � g = f and set f 0 = ' � g.As to rigidity, consider a web morphism h : bX 
 bY ! bX 
 bY such thatpX 
 pY = (pX 
 pY ) �h ;and let us show that h = Id. Assume it is not the case, and let (�; �) 2 j bX 
 bY j be such that(�0; �0) = h(�; �) 6= (�; �). Without loss of generality, assume that �0 6= �. So let u 2 � and u0 2 �0be such that u [ u0 =2 �(X). Let a = pX(�) = pX(�0). By theorem 21 (iii), there exists U 2 ��( bX)such that pX(U) = u. We have U � f�g 2 �(�;�)( bX 
 bY ) and so h(U � f�g) 2 �(�0;�0)( bX 
 bY ).Similarly, there exists U 0 2 ��0( bX) such that pX(U 0) = u0. We have U 0 � f�0g 2 �(�0;�0)( bX 
 bY ),and so h(U � f�g)[ (U 0 � f�0g) 2 �(�0;�0)( bX 
 bY )as bX 
 bY is a parallel hypercoherence. But then we must have(pX 
 pY )(h(U � f�g)[ (U 0 � f�0g)) 2 �(X 
 Y ) ;that is (u� fbg)[ (u0 � fbg) 2 �(X 
 Y ), which is not the case since u [ u0 =2 �(X).Proposition 44 Let X be a hypercoherence. (! bX; !pX) is a rigid parallel unfolding of !X.In other words, there is a unique isomorphism ' : c!X ! ! bX such that !pX �' = p!X .Proof: Let x 2 j!Xj and let � 2 Fx(!X). For all a 2 x, we de�ne'a(�) = fu 2 P��n(jX j) j a 2 u and 9U 2 � u� Ug :Let us prove that � = 'a(�) belongs to Fa(X).First, � is closed under binary unions. Indeed, if u; u0 2 �, let U; U 0 2 � be such that u � Uand u0 � U 0. As clearly u [ u0 � U [ U 0 and as U [ U 0 2 �, we have u [ u0 2 �.As to the maximality of �, let v 2 �a(X) be such that v [ u 2 �(X) for all u 2 �. LetV = fxg [ ffcg j c 2 vg :30



Let U 2 �. We want to prove that U [ V 2 �(!X). So let w � U [ V . Let u = w \SU . We haveu � U and a 2 u (since fag 2 V � U [ V and hence a 2 w, and a 2 x 2 U , so a 2 SU), henceu 2 �. Furthermore, w = u [ v. Indeed, if b 2 v, we have fbg 2 U [ V , so b 2 w, hence v � w,which implies u[ v � w. Conversely, let b 2 w. If b 2 SU , then b 2 u and we are done. Otherwise,let y 2 U [ V be such that b 2 y, we know that y =2 U , so y 2 V and y 6= x, so y = fcg for somec 2 v and we are done. So w 2 �(X) and hence U [ V 2 �(!X).As this holds for all U 2 � we must have V 2 �, but v � V and a 2 v, hence v 2 �. Hence'a(�) 2 Fa(X) :Set '(�) = f'a(�) j a 2 xg :Let u � x be non empty. We prove that U = f'a(�) j a 2 ug belongs to �( bX). First we havepX(U) = u 2 �(X) as x 2 qD(X). Next, let a; a0 2 u and let v 2 'a(�) be such that u � v. Wehave a0 2 v, hence also v 2 'a0(�). So '(�) 2 qD( bX) :Hence ' is a well de�ned map from jc!Xj to j! bX j and it is clear that!pX �' = p!X :We check now that ' is a web morphism. Let U 2 ��(c!X). We just have to prove that'(U) 2 �(! bX). So let C � '(U) and let u = pX(C).Let us �rst check that u � p!X(U) which belongs to �(!X), as p!X is a web morphism. Fromthis, we shall deduce that u 2 �(X). So let a 2 u. Let � 2 C be such that a = pX(�). Let � 2 Ube such that � 2 '(�), that is � = 'b(�) for some b 2 p!X(�). We haveb = pX('b(�)) = pX(�) = a ;hence a 2 p!X(�). Conversely, let � 2 U and let x = p!X(�). Let � 2 C be such that � 2 '(�),that is � = 'a(�) for some a 2 x. So we havea = pX(�) 2 pX(C) = u :We want now to prove that C 2 �( bX). We already know that u = pX(C) 2 �(X). So let�; �0 2 C and let v 2 � be such that u � v. We have to prove that v 2 �0. As C � '(U), thereexist �;�0 2 U such that � 2 '(�) and �0 2 '(�0), that is � = 'a(�) and �0 = 'a0(�0) wherea = pX(�) and a0 = pX(�0) (and hence a; a0 2 u). Since v 2 � = 'a(�), there exists V 2 � suchthat v � V (see the de�nition of 'a(�) at the beginning of the proof). As u � v and u � p!X(U),we also have v � V [ p!X(U) :As U 2 �(c!X) and V [ p!X(U) 2 �, we have alsoV [ p!X(U) 2 �0 ;and since a0 2 u � v, we conclude that v 2 �0 and we are done.So ' is a web morphism. From this, it results that !pX has the lifting property.We want now to prove rigidity. 31



Observe �rst that, for all A 2 j! bXj and a 2 !pX(A), there is exactly one � 2 A such thatpX(�) = a, since pX is a web morphism.Let h : ! bX ! ! bX be a web morphism such that!pX � h = !pX :We must prove that h = Id. Assume it is not the case, so let A 2 j! bXj be such that h(A) 6= A andset x = !pX(A). As !pX(A) = !pX(h(A)), we can �nd � 2 A and � 2 h(A) such that pX(�) = pX(�)but � 6= �. Let u 2 � and v 2 � be such that u [ v =2 �(X). By theorem 21 (iii), there existsC 2 �( bX) such that � 2 C and pX(C) = u. LetA = fAg [ ff
g j 
 2 Cg :Each section D of A satis�es D = C [ (D\A), but � 2 C \ (D\A) (since � 2 C � D and � 2 A)and C;D \A 2 �( bX), so D 2 �( bX) since bX is a parallel hypercoherence. SoA 2 �(! bX) ;and we have !pX(A) = fxg [ ffcg j c 2 ug :In a similar way, we can �nd B 2 �(! bX) such that h(A) 2 B and !pX(B) = fxg [ ffcg j c 2 vg.As ! bX is a parallel hypercoherence and as h is a web morphism, we have h(A) [ B 2 �(! bX) (sinceh(A) 2 h(A) \ B), and hence !pX(h(A) [ B) 2 �(!X). But!pX(h(A) [ B) = fxg [ ffcg j c 2 u [ vg ;hence u [ v � !pX(h(A) [ B)whence a contradiction, since u [ v =2 �(X).The \P" connective transforms parallel hypercoherences in non parallel ones, so we cannot hopethat the rigid parallel unfolding commute with it. We can however prove a result which states that,when unfolding X P Y , one can indi�erently unfold X and Y before. In our proof, we need theassumption that both X and Y are serial. We do not know if the result can be extended to moregeneral situations.Theorem 45 Let X and Y be serial hypercoherences. Then there is exactly one morphism ' :\X P Y !\bX P bY such that (pX P pY ) � p bXPbY �' = pXPY ;and ' is an isomorphism.Proof: It is su�cient to prove that (\bX P bY ; (pX P pY ) �p bXPbY ) is a rigid parallel unfolding ofX P Y .Let us �rst prove the lifting property. So let Z be a parallel hypercoherence and let f : Z !X P Y be a web morphism. Let fX : jZj ! jX j and fY : jZj ! jY j be obtained by composing fwith the two projections (these functions have no reason to be web morphisms).We de�ne a hypercoherence Z 0 by setting jZ 0j = jZj and�(Z 0) = fw 2 �(Z) j fY (w) 2 �(Y ?)g :32



This hypercoherence is parallel because Z and Y ? are. Furthermore, fX is a web morphism fromZ0 to X . So let gX : Z 0 ! bX be a lifting of fX along pX . Letf 0 : jZj ! j bXj � jY jbe de�ned by f 0(c) = (gX(c); fY (c)) :Then f 0 is a web morphism from Z to bX P Y such that (pX P Y ) � f 0 = f . As bX is still serial bytheorem 23, we can perform the same operation on the other side, and we get a web morphismf 00 : Z ! bX P bYsuch that (pX P pY ) � f 00 = f ;and we conclude by lifting f 00 along p bXPbY .Now let h :\bX P bY !\bX P bYbe a web morphism such that(pX P pY ) �p bXPbY � h = (pX P pY ) �p bXPbY :Assume that p bXPbY �h 6= p bXPbY , otherwise we immediately conclude that h = Id, since (\bX P bY ; p bXPbY )is rigid.Let 
 2 j\bX P bY j be such that p bXPbY (h(
)) 6= p bXPbY (
) :Set (�0; �0) = p bXPbY (h(
)) and (�; �) = p bXPbY (
) :Let a = pX(�) = pX(�0) and b = pY (�) = pY (�0). Assume for instance that � 6= �0 and � 6= �0(the other cases are similar).Let u 2 �; u0 2 �0 and v 2 �; v0 2 �0 be such that u [ u0 =2 �(X) and v [ v0 =2 �(Y ).By theorem 21 (iii), there exists U 2 ��( bX), U 0 2 ��0( bX), V 2 ��(bY ) and V 0 2 ��0(bY ) suchthat pX(U) = u, pX(U 0) = u0, pY (V ) = v and pY (V 0) = v0.We have U � V 2 
. Indeed, observe �rst that U � V 2 �(�;�)( bX P bY ). Let W be an elementof 
, and let us check that (U � V ) [W 2 �( bX P bY ). We can assume that W is not a singletonand hence �1(W ) 2 ��( bX) or �2(W ) 2 ��(bY ) :If we are in the �rst case, then �1(W [ (U � V )) = �1(W )[U 2 ��( bX), since bX is parallel andwe are done, and similarly in the other case.Since U � V 2 
, there exists U 2 �
(\bX P bY ) such that p bXPbY (U) = U � V by theorem 21.Consequently, W 0 = p bXPbY (h(U)) 2 �(�0;�0)( bX P bY )and, because both U 0 and V 0 are coherent, we getW 0 [ (U 0 � V 0) 2 �( bX P bY ) ;33



hence (pX P pY )(W 0 [ (U 0 � V 0)) 2 �(X P Y ) :Since (pX P pY ) �p bXPbY � h = (pX P pY ) �p bXPbY , we have(pX P pY )(W 0) = (pX P pY )(U � V ) = u� v ;so that we have (u � v) [ (u0 � v0) 2 �(X P Y ) which is impossible, since the �rst projection ofthat set is u [ u0 and the second is v [ v0, both strictly incoherent sets.10 Interpretation of formulaeWe de�ne an interpretation of formulae of propositional linear logic as serial and parallel hyper-coherences (or, equivalently, serial-parallel coherence spaces). For this purpose, we de�ne theconnectives P̂ and ?̂ which, applied to serial and parallel hypercoherences will give rise to serialand parallel hypercoherences. The constants and the additive connectives will be left unchanged,as well as linear negation. The other connectives will be de�ned using the De Morgan laws forlinear logic.A very natural question arises here: since these connectives act on coherence spaces, why thisroundabout through hypercoherences for de�ning them? Of course, a direct de�nition is possible(it is just a matter of translation), but does not enlighten at all the situation. The point is that,even when de�ning for instance the web of EP̂F (for E and F serial-parallel coherence spaces),we are really using the whole structure of the hypercoherence Ec P F c, which seems non-trivial ingeneral; in particular, we do not see any way of extracting the structure of this hypercoherence fromthe mere coherence space E P F (here, the P is performed in the category of coherence spaces,according to the de�nitions given in [Gir95]), for instance. This means that the coherence spacestructure of E and F is not really relevant, although it completely de�nes the objects E and F .We are not giving a denotational semantics of linear logic in serial and parallel hypercoherences,as we are not (yet) able to interpret proofs as cliques of the spaces we de�ne in what follows. Weshall just show, using some of the results proven until now, that these constructions satisfy someof the main isomorphisms of linear logic.De�nition 46 Let E and F be serial and parallel hypercoherences. One sets EP̂F =\E P F and?̂E = c?E.By propositions 15 and by theorem 23, the hypercoherences de�ned in this way are serial andparallel.Let us give some more concrete hints on the structure of EP̂F , just for the purpose of convincingourselves that it has to do with games. Let E and F be two serial and parallel hypercoherences,that we assume to be �nite for simplicity.i) Assume �rst that jEj 2 ��(E?) and that jF j 2 ��(F?) (and then jEP̂F j 2 ��((E P F )?)).Then, according to what has been said in section 5 about the connection between serial-parallel �nite coherent spaces and games, Player plays �rst in the game associated to E andin the game associated to F . We have, up to isomorphism,E = E1 � � � � �En and F = F1 � � � � � Fmwhere jE1j,. . . ,jEnj are the maximal elements of �(E) and jF1j,. . . ,jFmj are the maximalelements of �(F ) (by proposition 10 applied to E?). For the sake of simplicity again, assume34



that all these sets are strictly coherent (that is, are not singletons). These subspaces should beconsidered as representing the various �rst possible moves for Player in the games associatedto E and F respectively (again, see section 5). It is clear that, for i = 1; : : : ; n, jEij � jF j 2��(E P F ) and that, for j = 1; : : : ; m, jEj � jFj j 2 ��(E P F ). Moreover, the sets jEij � jF jand jEj � jFj j are the maximal subsets of jE P F j which belong to �(E P F ), due to themaximality properties of the sets jEij and jFj j. Then the construction presented in section 7shows that, up to a canonical isomorphism,EP̂F = nMi=1 (EiP̂F )� mMj=1(EP̂Fj)which means that, in EP̂F , Player plays �rst, choosing one component of the P and playingin that component according to the corresponding game.ii) The other cases, when one at least of the spaces is strictly coherent as a whole, are simpler. As-sume for instance that jEj 2 ��(E) and that jF j 2 ��(F?) (and then jE P F j 2 ��(E P F )).Then by proposition 10, and up to a canonical isomorphism, E = E1& � � �&En where thespaces Ei are the maximal subspaces of E whose web belongs to �(E?). Then the setsjEij � jF j are the maximal subsets of jE P F j which belong to �((E P F )?) and one has,according to the construction presented in section 7,EP̂F = (E1P̂F ) & � � �&(EnP̂F ) ;up to a canonical isomorphism (we shall see by the way that P̂ is distributive over &, assuggested by this isomorphism). This corresponds to the fact that, in the game-theoretic P,Opponent cannot switch between the two components of the P.� When both spaces are strictly coherent as a whole, Opponent must play simultaneously inboth components.Observations (i) and (ii) above express the well-known switching condition of the P connective inits game-theoretic interpretations.Proposition 47 The operation P̂ is associative. More precisely, there is exactly one isomorphism' making the following diagram commutative:(EP̂F )P̂G ' - EP̂(F P̂G)p(EP̂F )PG ? pEP(F P̂G) ?(EP̂F ) P G E P (F P̂G)pEPF P G? E P pFPG ?(E P F ) P G '0- E P (F P G)where '0 is the usual isomorphism. 35



Proof: By theorem 45 and lemma 7, we know that composing the maps(EP̂F )P̂G p(EP̂F )PG- (EP̂F ) P G pEPF P G- (E P F ) P G '0- E P (F P G)we get a rigid parallel unfolding of E P (F P G) and we conclude by proposition 5. When applyingtheorem 45, one uses the fact that G = bG, up to a canonical isomorphism, since G is parallel.Proposition 48 Let E, F and G be serial and parallel hypercoherences. There is a unique iso-morphism ' making the following diagram commutative.EP̂(F &G) ' - (EP̂F ) &(EP̂G)pEP(F &G) ? pEPF & pEPG ?E P (F &G) '0- (E P F ) &(E P G)where '0 is the usual isomorphism.It is a consequence of proposition 41, proposition 5 and lemma 7.Proposition 49 Let E and F be serial and parallel hypercoherences. There is a unique isomor-phism ' making the following diagram commutative.?̂(E � F ) ' - (?̂E)P̂(?̂F )p(?̂E)P(?̂F ) ?p?(E�F ) ? (?̂E) P (?̂F )p?E P p?F ??(E � F ) '0- (?E) P (?F )where '0 is the usual isomorphism.Proof: By theorem 45, composing the maps(?̂E)P̂(?̂F ) p(?̂E)P(?̂F )- (?̂E) P (?̂F ) p?E P p?F- (?E) P (?F )we get a rigid parallel unfolding of (?E) P (?F ), and we conclude by proposition 5 and lemma 7.AcknowledgmentI would like to thank Laurent Regnier, with whom I had many exciting discussion on these topics,as well as the referees and the editor of this paper, who made many valuable and constructivecomments.Commutative diagrams in this article have been typeset using Paul Taylor's commutative dia-grams package. 36
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