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Abstract

The functional programming community is paying increasing attention to
static structure-based transformations. For example, generic control opera-
tors, such as fold, have been introduced in functional programming to increase
the power and applicability of a particular kind of static transformation, called
deforestation, which prevents the construction of useless intermediate data
structures in function composition. This is achieved by making the structure
of the data more explicit in program specifications.

We argue that one of the original concepts of Attribute Grammars is pre-
cisely to make data structures explicit in program specifications. Furthermore,
there exists a powerful static deforestation-like transformation in their con-
text. In this paper, we present similarities between deforestation methods, on
the one hand with the functional approach, and on the other hand with the
Attribute Grammars approach.

In order to gain a grasp of these similarities, we first make a simple com-
parison: purely-synthesized Attribute Grammars and first order folds. In
this context, deforestation transformations are equivalent. This allows us to
highlight the limitations of the fold formalism and to present how the hy-
lomorphism approach generalizes it; hylomorphisms and attribute grammars
are surprisingly alike. Finally, we show how the inherited attribute notion
in Attribute Grammars solves some transformation problems in higher order
functional programs.

Keywords: Attribute grammars, functional programming, deforestation,
structure-directed programming, static analysis, partial evaluation.



1 Introduction

The functional programming community is paying increasing attention to structure-
based transformations. To make these transformations simpler, data structures in
programs should be explicit. We argue that one of the original concepts of Attribute
Grammars (AGs) is precisely to make data structures explicit in program specifi-
cations. Here, we point out the similarities and relations between AGs and func-
tional programming paradigms, especially in the context of a data structure-based
transformation, called deforestation, which prevents the construction of useless in-
termediate data structures in function composition.

An AG is a declarative specification of computations over structures [Knu68,
AMO91, Paa95]. Commonly these structures are concrete, but Dynamic AGs [PDRJ95,
PRJD96] work equally well with abstract structures, like a computation recur-
sion scheme. We could then consider an AG as a function with an argument
driving the calculus, possibly with other arguments as inherited attributes (com-
puted top-down), and which returns its result as a synthesized attribute (computed
bottom-up). This AGs functional view has been already studied, for example in
[GG84, Joh87, PDRJ96].

Nevertheless, AGs specifications have some important characteristics which al-
low them to be clear, concise and easily maintained [JPJT90, JP92, Paa95]. First
they are declarative, i.e., program specification is completely independent of any
evaluation order [Eng84]. Secondly they allow a complex computation to be decom-
posed into small easily understandable local parts (on each constructor), which are
joined together by the generator evaluator. Finally they make the structure (con-
structors) explicit in the specification, facilitating structure-based transformations
(like deforestation) or structure-directed genericity [DPRJ97] (i.e., instantiation of
an algorithm for a new structure, giving a relation between old and new structures).

From a given structure T}, the successive application of two AGs f : T} — Ty
and g : Ty, — T3 yields a structure of type T53. In such a case, the intermediate
structure of type T is useless, and the aim of the Descriptional Composition (DC)
[GG84, GGV86, Gie88, FMY92, Rou94] is to statically transform the f and g com-
position into a new AG specification which no longer uses Ty-constructors. The
basic idea for the DC is to recognize in f the use of a constructor ¢ and plunge
(integrate) the computation associated with ¢ in ¢ into this “use” (semantic rule
projection).

This intermediate data structure elimination is also the goal of functional de-
forestation. Most deforestation techniques try to exploit a kind of generic control
operator to capture both the pattern of recursion of a function and the pattern of
recursion of the type definition. The shortcut deforestation of Gill, Launchbury and
Peyton Jones [GLJ93] makes it possible for lists, using a foldr/build elimination
rule. To take every type into account, Sheard and Fegaras [SF93, FSZ94, LS95] con-
sider in their Normalization Algorithm (NA) the fold operator (a catamorphism)
related to a functor automatically generated from algebraic type definition. Thanks
to Takkano and Meijer’s studies [TM95, MFP91], Hu, Iwasaki, Takeishi and Onoue
[HIT96, OHIT97] have recently generalized these ideas and homogenized these no-
tions with hylomorphisms. This has lead to the automatic exploitation of construc-
tive deforestation theorems like Acid Rain [TM95] in the HYLO system [OHIT97],
which uses a static transformation from functional programs into hylomorphisms.

All these deforestation in calculational form methods, sometimes also called
fusion methods are based on functors, catamorphisms, hylomorphisms and more
generally on Constructive Algorithmics [MFP91]. They are similar to the AGs
DC in that they are based on local transformations (at constructor level). In our
previous work [Dur94] comparing Wadler’s first deforestation technique [Wad88]
and the DC, we realized that Wadler’s algorithm is a more global transformation



than the DC (i.e. it considers the whole program at once). In contrast to this
method, we will show that the DC has the same local-transformation property as
the Fold Promotion Theorem, which is the basis of the NA [SF93]. Furthermore, the
NA and the DC provide the same results for first order functions. In spite of these
similarities, a particularity of DC is that it is a source to source transformation,
completely independent of any evaluation order, whereas in fusion methods, the
functor (type) gives the function evaluation scheme: fusion could be viewed as a
generalized partial evaluation.

Moreover, for more complex programs, AGs naturally use inherited attributes
rather than higher order functions. From the beginning of AGs, inherited attributes
have been common objects among other attributes (unlike higher order functions
among first order ones in functional programming). Thus, for some complex speci-
fications, fusion transformation needs special treatments due to higher order func-
tions where the DC only has to deal with inherited attributes. For example, the
well-known reverse function (for lists) composed twice leads to a simple “copy” AG
by the DC, whereas this is not necessarily so with fusion methods.

The remainder of this article is divided into two sections. The first one presents
and compares fold formalism and its NA with AGs and its DC in the simple context
of first-order functions. The second section highlights the difficulties of less sim-
ple cases; it presents existing solutions and extends the comparisons to the HYLO
formalism.

2 Folds and AGs in Easy Cases

In this section, we present a comparison between AG and a particular functional
programming style, the fold formalism, especially introduced for deforestation algo-
rithms. Firstly, we intentionally choose to deal only with this fold notation in order
to gain a grasp of similarities, and to avoid the complexity inherent in multiplicity
of different formalisms, notations, and vocabulary. The advantage is to allow the
reader to compare underlying ideas and methods rather than formalisms and tech-
niques, which can be seen as particular. We will see in the next section that this
choice is not all that restrictive. So, by “simple cases”, we mean classical first-order
functional programs, which correspond to purely-synthesized AGs.

2.1 Notations

In [SF93], fold generic control operators are defined over mutually recursive sum-
of-product types (algebraic type definitions), which show explicitly the type con-
structors. Historically, AGs are based on the Context-Free Grammar notion, but
can also be defined on such algebraic type definitions [CM79, GG84] in which the
type constructors play the role of productions.

Over the simple recursive type list, the classical function length can be defined
using the generic control operator fold for this type (Figure 1). The two lambda-
expressions in this definition are called accumulating functions and represent the
computations to be performed over each constructor of the type list: one for the
Nil constructor, with no parameter, and the other for the Cons constructor, with
two parameters. These parameters are provided by the generic definition of fold"**,
which will be presented in Def. 2.1.

An AG specification, over an algebraic type and a given set of attributes, is a
set of equations over attribute occurrences for each type constructor (production).
There are two kinds of attributes: synthesized (noted with ;) and inherited (noted
with |). For instance, function length can be defined by the AG specification in
Figure 2, where the single attribute s; is synthesized. The functions fNiLSTN“



length (x) = fold"** (X().Zero,
Ma,7).Suce(r) ) x

Figure 1: Definition of length with fold'’s*

length (root : list) — sy : list
Nil ->
Iitangy  $twa = (M- Zero)()
Cons -> a list
fCons,sTCo"S L STcons — ()\((L,T).S?I,CC(T) ) ({I,,ST““)

Figure 2: Definition of length with an AG

and fCO”S’STcMs are the semantic rules for the Nil and Cons constructors. They
correspond exactly to the accumulative functions in the fold formalism and, as
shown in Figure 2, they can be easily expressed with (the same) lambda-expressions.
Then the AG for length could be viewed as a function, whose signature is the profile
of the AG [Gie88], i.e., length(root : list) — sy : list. This means that the input
parameter, called root, is of type list, as is the result, which is computed in the
synthesized attribute s.

The main difference between these two notations (fold and AG) is that every
attribute occurrence in an AG is explicitly mentioned with a specific name. For
example, in the Cons-construction of Figure 2, the expected result over list is
clearly named sp,,,, whereas, in the fold form, this result is implicitly represented by
r (called the accumulative result variable). The AG form always specifies the name
of a variable (attribute occurrence), annotated by the non-terminal it is attached
to. This allows functions to be expressed with more than one result (more than one
synthesized attribute) and using more parameters (inherited attributes).

2.2 Functors and Attribute Evaluators

After establishing the similarity of notations and expressiveness of fold functions
and AGs, we now deal with their semantics and evaluation.

The semantics of a function expressed with fold is given by the fold operator
definition, which uses the notion of functor [SF93]. The following equations define
the fold operator for the simple type list.

Definition 2.1 (Fold operator for type list [SF93]) The fold"** operator is de-
fined for each comstructor of type list by:

fOZdliSt(fn:fc) Nil = fn()
fold***(fn, fe) (Cons(a,l)) = fe(a,fold™(fn, fe)l)

With this definition, the length function in Figure 1 can be evaluated (com-
puted), since the parameters of f. (i.e., a and r) are identified. As can be seen
in Def. 2.1, for the Cons(a,l) constructor, the accumulative result variable r is re-
cursively defined over I. This fold"** operator is defined with functors which are
statically and automatically defined over the list type constructors. These functors
show how to compute accumulating functions over the structure. They thus give a
meaning to the evaluation of functions expressed with fold. Note that the recursion
scheme of the computation is strictly identical to that of the type definition: this is
the essence of structure-directed programming.



append (z,y) = fold"" (fn, f.)
where fn=X0-y
fe = Ma,r).Cons(a,r)

Figure 3: Definition of append(z,y) with fold''s*

append (root : list,y : list) — vy : list
Nil ->
fN“:UTN“ CUna T (A0-9) O
Cons -> a list
foo”"””Tc,,,,,s C Veoons = ()‘({L:T)'CO”S(G‘:T)) ((L:Y)Tum)

Figure 4: Definition of append(z,y) with an AG

The semantics of an AG is the solution of the system of equations associated
with the set of semantic rules, with attribute occurrences over a particular input
structure (a tree in the CFG sense), whichever method is used to solve this system of
equations. In other words, from a given specification (AG), different techniques can
be used to generate an attribute evaluator, leading possibly to different evaluation
methods but always to the same semantics.

When an AG represents a fold function, the evaluator specified by the functors
is a correct but particular attribute evaluator. Indeed, functor definitions depend
only on the given type(s). They are statically derived from the constructors of this
type and are valid for all accumulating functions of all fold programs defined on this
type. Furthermore, the class of AGs which corresponds to functions expressed with
folds is a well-known (actually, the simplest) class of AGs, called purely-synthesized
[Eng84], and noted S* the “1” refers to the fact that each non-terminal carries a
single attribute (see also a translation from AGs to catamorphisms in [FJMM91]).

2.3 Deforestation

Since the folds and purely-synthesized AGs expressiveness and evaluation methods
are very similar, the aim of this section is to compare the static deforestation meth-
ods associated with both formalisms: the Normalization Algorithm for first-order
folds and the Descriptional Composition for S' AGs. In the following, we briefly
describe each method, not to give a formal treatment of them, but in order to show
that the DC is based on a similar but more symbolic Promotion Theorem, in the
sense that it is independent of the evaluation method (functor definition). We will
illustrate their effects on the simple example of length(append) [SF93]. Figure 3
shows the fold function for append, and Figure 4 shows the corresponding AG.

Normalization Algorithm

For a given function in its fold definition, the NA allows the composition of another
function g with this fold to be deforested, integrating g in the the fold accumulating
functions, and avoiding intermediate structure constructions.

The NA comprises three parts [SF93]:

e Generalization consists in associating some terms with variables, and in re-
placing such a term by its associated variable each time it is encountered
during derivations in the NA.



Since  length (x) = fold"** (X\().Zero, Ma,r).Suce(r) ) =
!

and fold"™ (fn, fe) (Cons(a,l)) = fe (a, fold"™" (fu, fo) 1)
then length (Cons(a,l)) = Succ(length (1))

Figure 5: Application to a Construction on length

fold'™" (X().length (y),
A(r1,792).Suce(re) ) x

Figure 6: Result of the NA for length(append(z,y))

e Application to a Construction is the application of the fold operator definition
to a constructor and its parameters. Figure 5 presents an example of this step
on the length function.

e Fold Promotion is the fundamental step of the NA. It is based on the Fold
Promotion Theorem' [SF93]. This theorem states that the composition of
a function g with a fold function is a new fold function. For instance, this
theorem gives for type list:

én () = g (fn0)
¢c (a,9(r)) = g (fe (a,7))
g (fOldliSt (fnfc) :E) = fOIdliSt (¢n7¢c) 4

(1)

The Fold Promotion Theorem ensures the validity of the resulting fold func-
tion definition, when the construction of the ¢ functions is performed locally on
each constructor, i.e., each new accumulating function in the result depends only
on function g and on the accumulating functions of the original fold. The main
role of the Fold Promotion Theorem is to define the ¢; accumulating functions of
the resulting fold, on which the Application to a Construction and Generalization
steps can be applied. More precisely, function g is moved inside the accumulating
functions of the resulting fold and hence is directly applied over the original accu-
mulating functions (i.e., their constructors). But the real “deforestation” process
(i.e., eliminating structure constructors) is only performed by the Application to a
Construction and Generalization steps in these new ¢; functions.

The result of the NA on length(append), which no longer contains any Cons
constructors, is given in Figure 6.

Descriptional Composition

The aim of the DC is to staticaly construct, for a given composition of two attribute
grammars Q(T}) — T and A(Ty) — T3, a new attribute grammar (AoQ)(T7) — T3
which has the same semantics as the successive application of 2 and A. This new
AG will not, however, create the structure corresponding to the intermediate result
of type Ts.

The basic idea is the notion of semantic rule projection. Intuitively, (A o Q) is
constructed from Q by replacing each semantic rule which computes a term of T5
by a projection of the semantic rules in A over this term. More precisely, let f; be
a semantic rule for the constructor C’,-,T1 in 0, which computes a term t of type C’jT2

(C’;TF2 is a constructor in A; let g be its associated semantic rules). Then, in (Ao (),

IThis theorem is an instance of a famous law in category theory, often called fized point fu-
sion [MFP91].



(length o append) (root : list,y : list) — vsy : list
Nil ->
Pnitossy, ¢ USten = A0 dength (1) ()
Cons -> a list
fCons,vsTCa"s P USTcons — (/\(a,r).Succ(r)) (aleTlist)

Figure 7: The DC (length o append)(x,y) of (length(append(z,y)))

fi is replaced by the projection of g onto f;. This projection follows the structure
of the original “constructor” semantic rule f;. It also creates new attributes: for
each attribute a of X in Q such that the type of a is a non-terminal Y of A, we
declare for each attribute b of Y in A, an attribute ab on X in ©. The type of a
new attribute ab is the type of b.

The DC is a purely syntactic transformation. It neither takes into account the
semantics of the projected semantic rules, neither their evaluation order. This pre-
sentation of the DC is a little restricted, since it forgets both the distinction between
semantic and syntactic attributes and the if-then—else semantic rule projection. For
a complete formal definition, the reader should refer to [GG84, Rou94].

Since the AG definitions for length and append appear in Figure 2 and 4, the
effect of the DC on the composition length(append) is presented in Figure 7. For
instance, the semantic rule fcfm&vmc” in append creates a Cons. So, the semantic
rule fCO”S’STcMs of length for the Cons production is projected onto fCO"S7UchM7
and a new attribute vs is created, leading to the semantic rule fconSMTCMS in the
Cons production of (length o append).

Comparisons and Discussion

We have seen in previous sections the difference between folds and AGs evaluation:
the functor definition depends only on the type whereas all attribute evaluation
methods depend on the form of semantic rules. In the same way, the difference
between the NA and the DC depends on the knowledge of the evaluation method.
The DC doesn’t require this knowledge at all. In fact, the chosen evaluation method
for the DC result may differ from the evaluation methods of the input AGs.

To interpret the DC method in terms of the NA notions, the projection of the
semantic rules of the DC directly yields the deforested version of the ¢;’s, whereas
in the NA, ¢;’s given by the Fold Promotion Theorem must be further deforested
by the Application to a Construction and Generalization steps. Thus, it is possible
to consider the DC correctness theorem [GG84] as a more symbolic Fold Promotion
Theorem. By this, we mean that the correctness proof for the DC is independent
of the attribute evaluation method, unlike the Fold Promotion Theorem which is
strongly based on the functor definitions.

Various research studies on AGs have exhibited several attribute evaluation tech-
niques applicable to (and actually defining) various subclasses of AGs [Eng84]. The
largest one is that of non-circular AGs. In [Gie88], the problem of the stability (clo-
sure) of an AG class under the DC is studied, and it is proved that the non-circular
class is stable, i.e., the DC result on two non-circular AGs is always a non-circular
AG. Thus, the DC is a true source-to-source transformation, independent of any
evaluation method: it is a symbolic composition without any Application to a Con-
struction step.

The Application to a Construction step in the NA is strongly tied to the evalu-
ation method, i.e., the functor. We view this step as a kind of partial evaluation,
which is generalized by the Generalization step. Thus, in spite of equivalent result



of first-order fold normalization and the DC of the corresponding S' AG, their basic
principle are slightly different. In the same way that the DC is a kind of symbolic
composition, the NA can thus be viewed as a kind of generalized partial evaluation.

3 More General Cases

The fold formalism is based on the idea of representing in a uniform way both the
pattern of recursion of a function and the pattern of recursion of the underlying type
definition. This idea is supported by the more general concept of catamorphism.
For a given algebraic type definition, a functor can be determined [SF93], which
represents its recursion scheme. Then, a function expressed relating to this functor
could be easily applied over a structure of the given type, replacing each constructor
by the corresponding part of the function definition. Many studies concerning
deforestation have chosen this way to make explicit type constructors, facilitating
their detection and, when possible, their elimination in function composition.

In this section, we highlight some remaining problems in fold formalism discussed
in the “simple cases” of the previous section. For each of these, we present related
solutions provided by fold itself, but also by other calculational approaches. To
avoid introducing multiple formalisms in addition to fold, we will only deal with
the HYLO approach [TM95, HIT96, OHIT97], but the reader may find more details
in [MFP91, Fok95, TM95, HIT96]. However, this formalism seems to be sufficiently
general and homogeneous for the necessity of our discourse. We also present the AGs
approaches related to these points, and finally, we present higher order functional
programming versus inherited attributes of AGs in the deforestation problem.

First, we enumerate three important remarks about the original fold formalism:

1. Using fold [FSZ94], it is possible to express many complex types or calculation
schemes. However, each new concept extending the fold expressive power
induced complex modifications of the transformation algorithms: thus, this
fusion is not easily “maintainable”.

2. The NA is a complex rewriting system which is not easy to automate, and
which does not necessarily lead to a deforested form (see exceptions in [FSZ94]).

3. To be deforested, a program must be expressed using the specific fold formal-
ism: this seems to be exacting in practical functional programming.

3.1 Hylomorphisms

To improve formalisms and transformations relating to these three points, defor-
estation in calculation form methods use categorical notions. We will just give here
a short recall of basic notions and present it with the simple type list with elements
of type A. The underlying idea is the following: a data type is a collection of op-
erations (constructors) denoting how to construct each element of this type. These
operations allow functions to be defined on this type. So a data type is a particular
F-algebra, where F' is a functor from a category C to C. When F'is polynomial, i.e.,
built up by the four basic functors Identity (/d), Constant (!A), Product (x) and
Separated Sum (+), the category of F-algebras has an initial algebra, noted uF,
which is defined according to the type and its constructors [MFP91, TM95, HIT96].
For example, the type ListA

ListA = Nil | Cons(A, ListA)
is categorically defined by the initial object
uL = (ListA,iny)



where L is the functor
L='1+4+!4 x Id

and ing is the data constructor
Nilv Cons

where v is the operation related to the separated sum: (fvg)(l,z) = fz and

(fv9)(2,9) = gy.
The data destructor outy, is the inverse operation to ing :

outr, = A\xs. case zs of
Nil — (1,())
Cons(a,as) — (2, (a,as))

In the same way, the natural integer type Nat is defined by uN = (Nat,iny) where
N =1+ 1Id and iny = Zerov Succ.

Hylomorphisms [MFP91] represent both catamorphisms (data structure con-
sumers like fold) and anamorphisms (data structure producers like the dual of fold).
Represented in a homogeneous way, hylomorphisms in triplet form [TM95] allow
Onoue, Hu, Iwasaki and Takeichi’s HyLO system [HIT96, OHIT97] to improve the
deforestation method with respect to the three remarks given above:

1. Hylomorphisms in triplet form cover all those in [SF93, FSZ94, TM95]. The
idea is to distinguish three steps in such a hylomorphism: a step to “abstract”
the input type in an algebra, another step to construct the output type from
an abstracted form and, between them, the real transformation which is per-
formed on the type abstractions. For example, the hylomorphism in triplet
form representing the function length is defined as follows:

length : ListA — Nat
= [[Qs,’ﬂﬂ/J]]N’L = [[inNJd + WQ,OutL]]N7L

In this definition, ) = outy abstracts the input list in a L-algebra; n = Id + m
transforms this L-algebra abstraction in a N-algebra abstraction, ignoring
by my (the second projection on a pair) the information related to list ele-
ments, which is useless in the length computation; finally, ¢ = inx constructs,
from the N-algebra abstraction, the output concrete natural. This decom-
posed abstract specification on polynomial functors allows the deforestation
algorithm to be more homogeneous, more general and easier to maintain.
Notice that both catamorphism (@))r = [¢,id, outr]r,r and anamorphism
(¥)F = [ing,id, ] pr are particular cases of hylomorphisms.

2. The Fold Promotion Theorem has its equivalent fusion law in this formal-

ism [HIT96]:

Theorem 3.1 (Hylo Fusion) The Left Fusion law of a function with an
hylomorphism (there is also the symmetrical Right Fusion law) is:

fop=0¢ oGf
folo.n¥lar =10 nvY]ar

A nice property verified by hylomorphisms in triplet form is:

Theorem 3.2 (Hylo Shift)

[[¢=777¢]]G,F = [[¢5°777id=1/)]]F7F = [[¢7id=77°¢]]G,G



This allows the fusion laws to be specialized in the Acid Rain Theorem [TM95],
which is easier to apply in a constructive algorithm.

Theorem 3.3 (Acid Rain) The Cata-Hylo fusion law (there is also the sym-
metrical Hylo-Ana law) is:

T:VA(FA—> A) - F'A— A
[é,m,0utr]a.F o [Ting, e, Y] F 1 = [T(dom),m2,Y]r L

The “fusion step”, which consists in deducing both ¢; from g and ¢ in Fold
Promotion, and ¢' from f and ¢ in Hylo-Fusion, is difficult to automate: in the
Acid Rain case, this problem is moved into the “hylomorphism restructuring
phase” of the HYLO system (we give some explanations in the next section,
second point).

3. There exists an automatic transformation [HIT96, OHIT97] from classical
functional programs into their HYLO forms. This transformation saves the
programmer from using a non trivial formalism (hylomorphisms) in a program
specification.

3.2 Attribute Grammars

In this section, we explain, for each enumerated remark, why the AGs approach
gives, from our point of view, a worthwhile solution.

1. Like in calculational formalisms such as HYLO, there exists in the AGs theory
an abstracted notion for types, provided by the context-free grammar notation
(BNF). In fact, all basic AGs transformation algorithms use this abstraction.
Moreover, the DC is a purely syntactic transformation, independent of any
functor expressed on this abstract type. The DC algorithm is fully generic,
i.e., independent of any type representation (algebra) and any evaluation order
(functor).

2. Since the DC algorithm is only based on the semantic rule projection step,
which is purely syntactic, it can be applied without any modification for more
complex types. Moreover, the DC works only at the specification level, which
corresponds to the 5 part in the triplet form, when ¢ and ¥ “just” contain
the data constructor and destructor. This is not always the case with the
HYLO method. In fact, to make Hylo-Fusion more efficient, the ¢ (resp. )
part of the hylomorphism in triplet form should contain as much computation
as possible. For the Acid Rain Theorem, the ¢ and ¥ parts must be simple,
not so much for deforestation power, but rather to ease the recognition of inp
(resp. outp) in ¢ (resp. ). So, it seems that the constructive feature of the
Acid Rain Theorem is not so adequate for the large expressive power of triplet
form notation. On the other hand, AG form fits perfectly with the DC. Thus,
in section 3.3, we will show that for some complex deforestation, for instance
of the reverse list function composed twice, the DC directly eliminates all
useless constructions, whereas this is not necessarily so with fusion methods.

3. Like for hylomorphisms, it is possible to define a transformation from a func-
tional program into an equivalent AG. Formalizing this transformation, we
have noticed strong similarities with the transformation deriving hylomor-
phisms from functional programs. Our algorithm transforms higher order
A-terms into recursive schemes using n-conversion. Then, we recognize recur-
sive calls on abstract types and translate them into AG specifications. This
is a very similar algorithm to that used in HYLO transformation, finding the

10



reverse (x) = fold'™ (X\().Nil,
Ma,7).append (r,Cons(a, Nil)) )
Figure 8: The reverse fold function

reverse (root : list) — sy : list
Nil ->
Pitany, ¢ $1en = (AONiL) (
Cons -> a list
.]L‘Co'rm,sTCOM P STCons = (A(a,r).append (r, Cons(a, Nil))) (a7STlist)

Figure 9: The AG corresponding to the reverse fold function

reverse () = fold'"* (A\().A(w).w,
Aa,r). Mw).r(Cons(a,w)) ) z Nil

Figure 10: Second order reverse fold function

reverse (root : list,h| : list) — sy : list

Nil ->

fNil,sTN“ CSTNa T Id (h‘lNu)
Cons -> a list

fCons,sTCOM Y STcons — Id (STusz)

feonsny,, ,  + by, = (Ma,h).Cons(a, h)) (a,hy,,,)

Figure 11: The natural AG for reverse

underlying functor of recursive schemes. In the general case of functional pro-
grams, this transformation uses the notion of Dynamic AGs [PRJD96], as in

3

the transformation from denotational semantics into AGs [Gan80, Lei96]

3.3 Higher Order Functions and Inherited Attributes

In this section, we deal with functional programs which require some additional
transformations in order to be deforested in the fold formalism. Our running exam-
ple will be the reverse list function. We will present the fold and AG approaches,
and show how hylomorphisms treat these programs.

The reverse fold (Figure 8) is not potentially normalizable [SF93], because the
append function (Figure 3) works on the accumulative result variable r which is
under construction in the outer fold. For a similar reason, the DC cannot be applied
over the corresponding AG (Figure 9).

To solve this problem, Sheard and Fegaras [SF93, 1.S95] transform this fold into a
second order? one and introduce the Second Order Fold Promotion Theorem [SF93].
This transformation requires particular conditions concerning the underlying type?,
but leads to a second order fold (Figure 10) which is amenable to normalization.
Furthermore, with the properties due to these type restrictions, the deforestation
of reverse o reverse leads to a copy function: an ideal deforestation in this case.

2In a second order fold, accumulative result variables can be functions.
3Notions of zero-constructors and zero-replacement functions: the reader will find details
in [SF93] and a discussion of these restrictions in [DPRJ96]
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let (ss,hh) = (reverse o reverse) (x, Nil, hh)
in  ss
where the profile of (reverse o reverse) is:

reverse o reverse (root : list,shy : list, hs| : list) — (ssy : list, hhy : list)

with the following semantic rules:

Nil ->
fNil,hhTN“ : h‘h‘TNu =1d (Sh‘lz\m)
fN“:S“"TN” D 8Siny = 1d (hSlNu)

Cons -> a list

fCOnSﬁhlust v shy,,,, =1d (shy.,,.)
fC‘(m.&;,hhTCaM : hhye,,, = (A(a/hh)cong(a/hh)) ((I,,hhq“”)
d

fCons,hsl“S, : hslzist =1 (hslcans)
fC‘onS,SSTCOM © 551c0ns = Id (SSTusz)

Figure 12: The AG resulting from the DC of reverse with itself

Since AGs naturally use inherited attributes, the favorite AG form for reverse
is not the AG in Figure 9 but rather, the one presented in Figure 11. Fortunately,
the DC can then be directly applied on this natural AG (on its composition with
itself). Notice here that our FP-to-AG transformation applied to the second order
fold (Figure 10) leads to this AG. Moreover, as another relation between second
order (fold) and inherited (AG) approaches, let us just consider Knuth’s transfor-
mation [CM79], which translates any AG (with possible inherited attributes) into a
purely-synthesized one. From the natural reverse AG with inherited attributes, this
yields a purely-synthesized AG with higher order semantic rules, which corresponds
to the second order fold program.

In Figure 12, we only present the AG resulting from the DC application on the
example reverse(reverse(x)), without details on how it is obtained. Nevertheless,
with inherited attributes, the DC basic idea remains the projection of semantic
rules. In this example, the profile plays an important role. The resulting function
takes three arguments: the root argument (the list) and two inherited attributes
(sh and hs). It returns two results which are the two synthesized attributes ss
and hh. The notion of profile is not sufficient to completely define the final AG. In
fact, the call to this AG also defines the dependencies between the arguments and
the results. For instance, the hs argument depends on the hh result. Even if this
profile notion and this call notation are not classical in the AG formalism, and not
formally defined here, we hope that the reader will understand it without difficulty.

The basic DC transformation leaves many copy rules between attributes (Id in
Figure 12), which have no other role than transporting values around the input
structure; however, a simple static global analysis can eliminate them in most cases
[Rou94]. The result of this elimination on our example in Figure 12 yields the copy
AG, which is equivalent to the result obtained by the NA.

In spite of the good result of the NA on this example, the particular treat-
ment needed for higher order fold functions has lead deforestation researchers to
find a more general approach. More particularly, the HYLO approach, which is
more general, can deal equally well with first or higher order functions. However,
encapsulation of computations in higher order functions could hide some possible
“deforestable” constructions. Figure 13 presents the HYLO definition for reverse
with append function, corresponding with those presented in the fold formalism

12



Considering this definition for reverse:

reverse : ListA — ListA
reverse = [Nil v Aa,vs).append (vs, Cons(a, Nil)),Id,outr]r L
= [[TZ"I’LL;Id7 Outfl]][l’[/

where

T=AN v C (N v ()\(:U,’I’)[[O(ZIZ7N) v O7Id,0’u,t[l]][l’[1 T))
and F=1+14x1

HYLO (Acid Rain Theorem) leads to:

reverse o reverse = [r(ring o Id),Id,outr]r

Figure 13: Hylo for reverse with append

Considering this definition for reverse:

reverse : ListA — ListA
reverse = Axs.rev xs Nil
rev : ListA x ListA — ListA

rev [[¢7n:1/)]]F7F:[[IdVId7Id:1/)]]F7F

where

= Muxs,ys).case (zs,ys) of
(NiLbs) (1, (55))
(Cons(a,as),bs)  — (2, (as,Cons(a,bs)))
and F = IListA + 1
HYLO (Hylo-Fusion) leads to:

reverse o reverse s = Axs.[reverse v Id,Id, Y] r r xs Nil

Figure 14: Hylo for reverse with accumulating parameter

(Figure 8). Figure 14 presents another definition for reverse, with an accumulat-
ing parameter, corresponding with the “natural” AG. In both cases, composing
reverse twice leads to a hylomorphism which is not a simple copy, unlike the DC of
equivalent AG.

4 Conclusion

In the program transformation domain, there has been a recent emergence and
growing interest in the structure-directed style of functional programming. Since
the structure-directed paradigm is the fundamental basis of AGs, we compared
functional methods and approachs related to this style with those of AGs.

We have shown that generic control operators such as fold are equivalent in
expressiveness to a restricted class of attribute grammars (purely-synthesized). The
NA, which performs fusion of functions, has the same effect for the first order fold,
as the DC of the corresponding AG. Actually, these methods are slightly different,
because we can view the DC as a more symbolic transformation than the NA, which
is more akin to generalized partial evaluation. But the most important point is that
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they have the same local-transformation property (at type constructors level), which
is possible since the type structure is explicit in programs. Moreover, we have found
many similarities between extensions of such a control operator, like hylomorphisms,
and the AG approach.

From the beginning, the DC has been able to handle inherited attributes, which
allow more complicated programs to be expressed without higher order use. On the
other hand, the NA can be applied to the same complex programs, possibly after a
transformation to higher order. Since each of these approaches (higher order folds
and inherited attributes) is specific to its own domain (functional programming
and attribute grammars), their comparison is more difficult. In spite of obvious
similarities and minor differences, this subject requires a more extensive study.

Our main motivation for this work lies in the DC important role for structure-
directed genericity in AGs [DPRJ97]. Indeed, the DC is the basic tool which enables
instantiation of an AG (algorithm) on a new structure (via a specification of the
structure coupling by another AG). The results presented in this paper tend to
prove that such a genericity is directly reusable in functional programming.

This paper reminds us  yet again  that common goal for different communi-
ties, with different approaches, may lead to fruitful cross-fertilization.
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