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1 IntroductionThe functional programming community is paying increasing attention to structure-based transformations. To make these transformations simpler, data structures inprograms should be explicit. We argue that one of the original concepts of AttributeGrammars (AGs) is precisely to make data structures explicit in program speci�-cations. Here, we point out the similarities and relations between AGs and func-tional programming paradigms, especially in the context of a data structure-basedtransformation, called deforestation, which prevents the construction of useless in-termediate data structures in function composition.An AG is a declarative speci�cation of computations over structures [Knu68,AM91, Paa95]. Commonly these structures are concrete, but Dynamic AGs [PDRJ95,PRJD96] work equally well with abstract structures, like a computation recur-sion scheme. We could then consider an AG as a function with an argumentdriving the calculus, possibly with other arguments as inherited attributes (com-puted top-down), and which returns its result as a synthesized attribute (computedbottom-up). This AGs functional view has been already studied, for example in[GG84, Joh87, PDRJ96].Nevertheless, AGs speci�cations have some important characteristics which al-low them to be clear, concise and easily maintained [JPJ+90, JP92, Paa95]. Firstthey are declarative, i.e., program speci�cation is completely independent of anyevaluation order [Eng84]. Secondly they allow a complex computation to be decom-posed into small easily understandable local parts (on each constructor), which arejoined together by the generator evaluator. Finally they make the structure (con-structors) explicit in the speci�cation, facilitating structure-based transformations(like deforestation) or structure-directed genericity [DPRJ97] (i.e., instantiation ofan algorithm for a new structure, giving a relation between old and new structures).From a given structure T1, the successive application of two AGs f : T1 ! T2and g : T2 ! T3 yields a structure of type T3. In such a case, the intermediatestructure of type T2 is useless, and the aim of the Descriptional Composition (DC)[GG84, GGV86, Gie88, FMY92, Rou94] is to statically transform the f and g com-position into a new AG speci�cation which no longer uses T2-constructors. Thebasic idea for the DC is to recognize in f the use of a constructor c and plunge(integrate) the computation associated with c in g into this \use" (semantic ruleprojection).This intermediate data structure elimination is also the goal of functional de-forestation. Most deforestation techniques try to exploit a kind of generic controloperator to capture both the pattern of recursion of a function and the pattern ofrecursion of the type de�nition. The shortcut deforestation of Gill, Launchbury andPeyton Jones [GLJ93] makes it possible for lists, using a foldr/build eliminationrule. To take every type into account, Sheard and Fegaras [SF93, FSZ94, LS95] con-sider in their Normalization Algorithm (NA) the fold operator (a catamorphism)related to a functor automatically generated from algebraic type de�nition. Thanksto Takkano and Meijer's studies [TM95, MFP91], Hu, Iwasaki, Takeishi and Onoue[HIT96, OHIT97] have recently generalized these ideas and homogenized these no-tions with hylomorphisms. This has lead to the automatic exploitation of construc-tive deforestation theorems like Acid Rain [TM95] in the hylo system [OHIT97],which uses a static transformation from functional programs into hylomorphisms.All these deforestation in calculational form methods, sometimes also calledfusion methods are based on functors, catamorphisms, hylomorphisms and moregenerally on Constructive Algorithmics [MFP91]. They are similar to the AGsDC in that they are based on local transformations (at constructor level). In ourprevious work [Dur94] comparing Wadler's �rst deforestation technique [Wad88]and the DC, we realized that Wadler's algorithm is a more global transformation2



than the DC (i.e. it considers the whole program at once). In contrast to thismethod, we will show that the DC has the same local-transformation property asthe Fold Promotion Theorem, which is the basis of the NA [SF93]. Furthermore, theNA and the DC provide the same results for �rst order functions. In spite of thesesimilarities, a particularity of DC is that it is a source to source transformation,completely independent of any evaluation order, whereas in fusion methods, thefunctor (type) gives the function evaluation scheme: fusion could be viewed as ageneralized partial evaluation.Moreover, for more complex programs, AGs naturally use inherited attributesrather than higher order functions. From the beginning of AGs, inherited attributeshave been common objects among other attributes (unlike higher order functionsamong �rst order ones in functional programming). Thus, for some complex speci-�cations, fusion transformation needs special treatments due to higher order func-tions where the DC only has to deal with inherited attributes. For example, thewell-known reverse function (for lists) composed twice leads to a simple \copy" AGby the DC, whereas this is not necessarily so with fusion methods.The remainder of this article is divided into two sections. The �rst one presentsand compares fold formalism and its NA with AGs and its DC in the simple contextof �rst-order functions. The second section highlights the di�culties of less sim-ple cases; it presents existing solutions and extends the comparisons to the hyloformalism.2 Folds and AGs in Easy CasesIn this section, we present a comparison between AG and a particular functionalprogramming style, the fold formalism, especially introduced for deforestation algo-rithms. Firstly, we intentionally choose to deal only with this fold notation in orderto gain a grasp of similarities, and to avoid the complexity inherent in multiplicityof di�erent formalisms, notations, and vocabulary. The advantage is to allow thereader to compare underlying ideas and methods rather than formalisms and tech-niques, which can be seen as particular. We will see in the next section that thischoice is not all that restrictive. So, by \simple cases", we mean classical �rst-orderfunctional programs, which correspond to purely-synthesized AGs.2.1 NotationsIn [SF93], fold generic control operators are de�ned over mutually recursive sum-of-product types (algebraic type de�nitions), which show explicitly the type con-structors. Historically, AGs are based on the Context-Free Grammar notion, butcan also be de�ned on such algebraic type de�nitions [CM79, GG84] in which thetype constructors play the role of productions.Over the simple recursive type list, the classical function length can be de�nedusing the generic control operator fold for this type (Figure 1). The two lambda-expressions in this de�nition are called accumulating functions and represent thecomputations to be performed over each constructor of the type list : one for theNil constructor, with no parameter, and the other for the Cons constructor, withtwo parameters. These parameters are provided by the generic de�nition of foldlist,which will be presented in Def. 2.1.An AG speci�cation, over an algebraic type and a given set of attributes, is aset of equations over attribute occurrences for each type constructor (production).There are two kinds of attributes: synthesized (noted with ") and inherited (notedwith #). For instance, function length can be de�ned by the AG speci�cation inFigure 2, where the single attribute s" is synthesized. The functions fNil;s"Nil3



length (x) = foldlist (�():Zero;�(a; r):Succ(r) ) xFigure 1: De�nition of length with fold listlength (root : list)! s" : listNil ->fNil;s"Nil : s"Nil = (�():Zero)()Cons -> a listfCons;s"Cons : s"Cons = (�(a; r):Succ(r) ) (a; s"list)Figure 2: De�nition of length with an AGand fCons;s"Cons are the semantic rules for the Nil and Cons constructors. Theycorrespond exactly to the accumulative functions in the fold formalism and, asshown in Figure 2, they can be easily expressed with (the same) lambda-expressions.Then the AG for length could be viewed as a function, whose signature is the pro�leof the AG [Gie88], i.e., length(root : list) ! s" : list. This means that the inputparameter, called root, is of type list, as is the result, which is computed in thesynthesized attribute s".The main di�erence between these two notations (fold and AG) is that everyattribute occurrence in an AG is explicitly mentioned with a speci�c name. Forexample, in the Cons-construction of Figure 2, the expected result over list isclearly named s"list whereas, in the fold form, this result is implicitly represented byr (called the accumulative result variable). The AG form always speci�es the nameof a variable (attribute occurrence), annotated by the non-terminal it is attachedto. This allows functions to be expressed with more than one result (more than onesynthesized attribute) and using more parameters (inherited attributes).2.2 Functors and Attribute EvaluatorsAfter establishing the similarity of notations and expressiveness of fold functionsand AGs, we now deal with their semantics and evaluation.The semantics of a function expressed with fold is given by the fold operatorde�nition, which uses the notion of functor [SF93]. The following equations de�nethe fold operator for the simple type list.De�nition 2.1 (Fold operator for type list [SF93]) The foldlist operator is de-�ned for each constructor of type list by:foldlist(fn; fc) Nil = fn()foldlist(fn; fc) (Cons(a,l)) = fc(a,foldlist(fn; fc)l)With this de�nition, the length function in Figure 1 can be evaluated (com-puted), since the parameters of fc (i.e., a and r) are identi�ed. As can be seenin Def. 2.1, for the Cons(a; l) constructor, the accumulative result variable r is re-cursively de�ned over l. This foldlist operator is de�ned with functors which arestatically and automatically de�ned over the list type constructors. These functorsshow how to compute accumulating functions over the structure. They thus give ameaning to the evaluation of functions expressed with fold. Note that the recursionscheme of the computation is strictly identical to that of the type de�nition: this isthe essence of structure-directed programming.4



append (x; y) = foldlist (fn; fc) xwhere fn = �():yfc = �(a; r):Cons(a; r)Figure 3: De�nition of append(x,y) with fold listappend (root : list; y : list)! v" : listNil ->fNil;v"Nil : v"Nil = (�():y) ()Cons -> a listfCons;v"Cons : v"Cons = (�(a; r):Cons(a; r)) (a; v"list)Figure 4: De�nition of append(x,y) with an AGThe semantics of an AG is the solution of the system of equations associatedwith the set of semantic rules, with attribute occurrences over a particular inputstructure (a tree in the CFG sense), whichever method is used to solve this system ofequations. In other words, from a given speci�cation (AG), di�erent techniques canbe used to generate an attribute evaluator, leading possibly to di�erent evaluationmethods but always to the same semantics.When an AG represents a fold function, the evaluator speci�ed by the functorsis a correct but particular attribute evaluator. Indeed, functor de�nitions dependonly on the given type(s). They are statically derived from the constructors of thistype and are valid for all accumulating functions of all fold programs de�ned on thistype. Furthermore, the class of AGs which corresponds to functions expressed withfolds is a well-known (actually, the simplest) class of AGs, called purely-synthesized[Eng84], and noted S1|the \1" refers to the fact that each non-terminal carries asingle attribute (see also a translation from AGs to catamorphisms in [FJMM91]).2.3 DeforestationSince the folds and purely-synthesized AGs expressiveness and evaluation methodsare very similar, the aim of this section is to compare the static deforestation meth-ods associated with both formalisms: the Normalization Algorithm for �rst-orderfolds and the Descriptional Composition for S1 AGs. In the following, we brie
ydescribe each method, not to give a formal treatment of them, but in order to showthat the DC is based on a similar but more symbolic Promotion Theorem, in thesense that it is independent of the evaluation method (functor de�nition). We willillustrate their e�ects on the simple example of length(append) [SF93]. Figure 3shows the fold function for append, and Figure 4 shows the corresponding AG.Normalization AlgorithmFor a given function in its fold de�nition, the NA allows the composition of anotherfunction g with this fold to be deforested, integrating g in the the fold accumulatingfunctions, and avoiding intermediate structure constructions.The NA comprises three parts [SF93]:� Generalization consists in associating some terms with variables, and in re-placing such a term by its associated variable each time it is encounteredduring derivations in the NA. 5



Since length (x) = foldlist (�():Zero; �(a; r):Succ(r) ) xand foldlist (fn; fc) (Cons(a; l)) = fc (a; foldlist (fn; fc) l)then length (Cons(a; l)) = Succ(length (l))Figure 5: Application to a Construction on lengthfoldlist (�():length (y);�(r1; r2):Succ(r2) ) xFigure 6: Result of the NA for length(append(x,y))� Application to a Construction is the application of the fold operator de�nitionto a constructor and its parameters. Figure 5 presents an example of this stepon the length function.� Fold Promotion is the fundamental step of the NA. It is based on the FoldPromotion Theorem1 [SF93]. This theorem states that the composition ofa function g with a fold function is a new fold function. For instance, thistheorem gives for type list :�n () = g (fn ())�c (a; g(r)) = g (fc (a; r))g (foldlist (fn; fc) x) = foldlist (�n; �c) x (1)The Fold Promotion Theorem ensures the validity of the resulting fold func-tion de�nition, when the construction of the � functions is performed locally oneach constructor, i.e., each new accumulating function in the result depends onlyon function g and on the accumulating functions of the original fold. The mainrole of the Fold Promotion Theorem is to de�ne the �i accumulating functions ofthe resulting fold, on which the Application to a Construction and Generalizationsteps can be applied. More precisely, function g is moved inside the accumulatingfunctions of the resulting fold and hence is directly applied over the original accu-mulating functions (i.e., their constructors). But the real \deforestation" process(i.e., eliminating structure constructors) is only performed by the Application to aConstruction and Generalization steps in these new �i functions.The result of the NA on length(append), which no longer contains any Consconstructors, is given in Figure 6.Descriptional CompositionThe aim of the DC is to staticaly construct, for a given composition of two attributegrammars 
(T1)! T2 and �(T2)! T3, a new attribute grammar (��
)(T1)! T3which has the same semantics as the successive application of 
 and �. This newAG will not, however, create the structure corresponding to the intermediate resultof type T2.The basic idea is the notion of semantic rule projection. Intuitively, (� � 
) isconstructed from 
 by replacing each semantic rule which computes a term of T2by a projection of the semantic rules in � over this term. More precisely, let fi bea semantic rule for the constructor CT1i in 
, which computes a term t of type CT2j(CT2j is a constructor in �; let g be its associated semantic rules). Then, in (��
),1This theorem is an instance of a famous law in category theory, often called �xed point fu-sion [MFP91]. 6



(length � append) (root : list; y : list)! vs" : listNil ->fNil;vs"Nil : vs"Nil = (�():length (y)) ()Cons -> a listfCons;vs"Cons : vs"Cons = (�(a; r):Succ(r)) (a; vs"list)Figure 7: The DC (length � append)(x,y) of (length(append(x,y)))fi is replaced by the projection of g onto fi. This projection follows the structureof the original \constructor" semantic rule fi. It also creates new attributes : foreach attribute a of X in 
 such that the type of a is a non-terminal Y of �, wedeclare for each attribute b of Y in �, an attribute ab on X in �. The type of anew attribute ab is the type of b.The DC is a purely syntactic transformation. It neither takes into account thesemantics of the projected semantic rules, neither their evaluation order. This pre-sentation of the DC is a little restricted, since it forgets both the distinction betweensemantic and syntactic attributes and the if{then{else semantic rule projection. Fora complete formal de�nition, the reader should refer to [GG84, Rou94].Since the AG de�nitions for length and append appear in Figure 2 and 4, thee�ect of the DC on the composition length(append) is presented in Figure 7. Forinstance, the semantic rule fCons;v"Cons in append creates a Cons. So, the semanticrule fCons;s"Cons of length for the Cons production is projected onto fCons;v"Cons ,and a new attribute vs is created, leading to the semantic rule fCons;vs"Cons in theCons production of (length � append).Comparisons and DiscussionWe have seen in previous sections the di�erence between folds and AGs evaluation:the functor de�nition depends only on the type whereas all attribute evaluationmethods depend on the form of semantic rules. In the same way, the di�erencebetween the NA and the DC depends on the knowledge of the evaluation method.The DC doesn't require this knowledge at all. In fact, the chosen evaluation methodfor the DC result may di�er from the evaluation methods of the input AGs.To interpret the DC method in terms of the NA notions, the projection of thesemantic rules of the DC directly yields the deforested version of the �i's, whereasin the NA, �i's given by the Fold Promotion Theorem must be further deforestedby the Application to a Construction and Generalization steps. Thus, it is possibleto consider the DC correctness theorem [GG84] as a more symbolic Fold PromotionTheorem. By this, we mean that the correctness proof for the DC is independentof the attribute evaluation method, unlike the Fold Promotion Theorem which isstrongly based on the functor de�nitions.Various research studies on AGs have exhibited several attribute evaluation tech-niques applicable to (and actually de�ning) various subclasses of AGs [Eng84]. Thelargest one is that of non-circular AGs. In [Gie88], the problem of the stability (clo-sure) of an AG class under the DC is studied, and it is proved that the non-circularclass is stable, i.e., the DC result on two non-circular AGs is always a non-circularAG. Thus, the DC is a true source-to-source transformation, independent of anyevaluation method: it is a symbolic composition without any Application to a Con-struction step.The Application to a Construction step in the NA is strongly tied to the evalu-ation method, i.e., the functor. We view this step as a kind of partial evaluation,which is generalized by the Generalization step. Thus, in spite of equivalent result7



of �rst-order fold normalization and the DC of the corresponding S1 AG, their basicprinciple are slightly di�erent. In the same way that the DC is a kind of symboliccomposition, the NA can thus be viewed as a kind of generalized partial evaluation.3 More General CasesThe fold formalism is based on the idea of representing in a uniform way both thepattern of recursion of a function and the pattern of recursion of the underlying typede�nition. This idea is supported by the more general concept of catamorphism.For a given algebraic type de�nition, a functor can be determined [SF93], whichrepresents its recursion scheme. Then, a function expressed relating to this functorcould be easily applied over a structure of the given type, replacing each constructorby the corresponding part of the function de�nition. Many studies concerningdeforestation have chosen this way to make explicit type constructors, facilitatingtheir detection and, when possible, their elimination in function composition.In this section, we highlight some remaining problems in fold formalism discussedin the \simple cases" of the previous section. For each of these, we present relatedsolutions provided by fold itself, but also by other calculational approaches. Toavoid introducing multiple formalisms in addition to fold, we will only deal withthe hylo approach [TM95, HIT96, OHIT97], but the reader may �nd more detailsin [MFP91, Fok95, TM95, HIT96]. However, this formalism seems to be su�cientlygeneral and homogeneous for the necessity of our discourse. We also present the AGsapproaches related to these points, and �nally, we present higher order functionalprogramming versus inherited attributes of AGs in the deforestation problem.First, we enumerate three important remarks about the original fold formalism:1. Using fold [FSZ94], it is possible to express many complex types or calculationschemes. However, each new concept extending the fold expressive powerinduced complex modi�cations of the transformation algorithms : thus, thisfusion is not easily \maintainable".2. The NA is a complex rewriting system which is not easy to automate, andwhich does not necessarily lead to a deforested form (see exceptions in [FSZ94]).3. To be deforested, a program must be expressed using the speci�c fold formal-ism : this seems to be exacting in practical functional programming.3.1 HylomorphismsTo improve formalisms and transformations relating to these three points, defor-estation in calculation form methods use categorical notions. We will just give herea short recall of basic notions and present it with the simple type list with elementsof type A. The underlying idea is the following : a data type is a collection of op-erations (constructors) denoting how to construct each element of this type. Theseoperations allow functions to be de�ned on this type. So a data type is a particularF -algebra, where F is a functor from a category C to C. When F is polynomial, i.e.,built up by the four basic functors Identity (Id), Constant (!A), Product (�) andSeparated Sum (+), the category of F -algebras has an initial algebra, noted �F ,which is de�ned according to the type and its constructors [MFP91, TM95, HIT96].For example, the type ListAListA = Nil j Cons(A;ListA)is categorically de�ned by the initial object�L = (ListA; inL)8



where L is the functor L = !1+ !A � Idand inL is the data constructor Nilr Conswhere r is the operation related to the separated sum: (frg)(1; x) = fx and(frg)(2; y) = gy.The data destructor outL is the inverse operation to inF :outL = �xs: case xs ofNil! (1; ())Cons(a; as)! (2; (a; as))In the same way, the natural integer type Nat is de�ned by �N = (Nat; inN) whereN = !1 + Id and inN = Zeror Succ.Hylomorphisms [MFP91] represent both catamorphisms (data structure con-sumers like fold) and anamorphisms (data structure producers like the dual of fold).Represented in a homogeneous way, hylomorphisms in triplet form [TM95] allowOnoue, Hu, Iwasaki and Takeichi's hylo system [HIT96, OHIT97] to improve thedeforestation method with respect to the three remarks given above :1. Hylomorphisms in triplet form cover all those in [SF93, FSZ94, TM95]. Theidea is to distinguish three steps in such a hylomorphism: a step to \abstract"the input type in an algebra, another step to construct the output type froman abstracted form and, between them, the real transformation which is per-formed on the type abstractions. For example, the hylomorphism in tripletform representing the function length is de�ned as follows:length : ListA! Nat= [[�; �;  ]]N;L = [[inN ; Id + �2; outL]]N;LIn this de�nition,  = outL abstracts the input list in a L-algebra; � = Id+ �2transforms this L-algebra abstraction in a N -algebra abstraction, ignoringby �2 (the second projection on a pair) the information related to list ele-ments, which is useless in the length computation; �nally, � = inN constructs,from the N -algebra abstraction, the output concrete natural. This decom-posed abstract speci�cation on polynomial functors allows the deforestationalgorithm to be more homogeneous, more general and easier to maintain.Notice that both catamorphism ([�])F = [[�; id; outF ]]F;F and anamorphism[( )]F = [[inF ; id;  ]]F;F are particular cases of hylomorphisms.2. The Fold Promotion Theorem has its equivalent fusion law in this formal-ism [HIT96]:Theorem 3.1 (Hylo Fusion) The Left Fusion law of a function with anhylomorphism (there is also the symmetrical Right Fusion law) is:f � � = �0 �Gff � [[�; �;  ]]G;F = [[�0; �;  ]]G;FA nice property veri�ed by hylomorphisms in triplet form is:Theorem 3.2 (Hylo Shift)[[�; �;  ]]G;F = [[� � �; id;  ]]F;F = [[�; id; � �  ]]G;G9



This allows the fusion laws to be specialized in the Acid Rain Theorem [TM95],which is easier to apply in a constructive algorithm.Theorem 3.3 (Acid Rain) The Cata-Hylo fusion law (there is also the sym-metrical Hylo-Ana law) is:� : 8A:(FA! A)! F 0A! A[[�; �1; outF ]]G;F � [[�inF ; �2;  ]]F 0;L = [[�(� � �1); �2;  ]]F 0;LThe \fusion step", which consists in deducing both �i from g and � in FoldPromotion, and �0 from f and � in Hylo-Fusion, is di�cult to automate: in theAcid Rain case, this problem is moved into the \hylomorphism restructuringphase" of the hylo system (we give some explanations in the next section,second point).3. There exists an automatic transformation [HIT96, OHIT97] from classicalfunctional programs into their hylo forms. This transformation saves theprogrammer from using a non trivial formalism (hylomorphisms) in a programspeci�cation.3.2 Attribute GrammarsIn this section, we explain, for each enumerated remark, why the AGs approachgives, from our point of view, a worthwhile solution.1. Like in calculational formalisms such as hylo, there exists in the AGs theoryan abstracted notion for types, provided by the context-free grammar notation(BNF). In fact, all basic AGs transformation algorithms use this abstraction.Moreover, the DC is a purely syntactic transformation, independent of anyfunctor expressed on this abstract type. The DC algorithm is fully generic,i.e., independent of any type representation (algebra) and any evaluation order(functor).2. Since the DC algorithm is only based on the semantic rule projection step,which is purely syntactic, it can be applied without any modi�cation for morecomplex types. Moreover, the DC works only at the speci�cation level, whichcorresponds to the � part in the triplet form, when � and  \just" containthe data constructor and destructor. This is not always the case with thehylo method. In fact, to make Hylo-Fusion more e�cient, the � (resp.  )part of the hylomorphism in triplet form should contain as much computationas possible. For the Acid Rain Theorem, the � and  parts must be simple,not so much for deforestation power, but rather to ease the recognition of inF(resp. outF ) in � (resp.  ). So, it seems that the constructive feature of theAcid Rain Theorem is not so adequate for the large expressive power of tripletform notation. On the other hand, AG form �ts perfectly with the DC. Thus,in section 3.3, we will show that for some complex deforestation, for instanceof the reverse list function composed twice, the DC directly eliminates alluseless constructions, whereas this is not necessarily so with fusion methods.3. Like for hylomorphisms, it is possible to de�ne a transformation from a func-tional program into an equivalent AG. Formalizing this transformation, wehave noticed strong similarities with the transformation deriving hylomor-phisms from functional programs. Our algorithm transforms higher order�-terms into recursive schemes using �-conversion. Then, we recognize recur-sive calls on abstract types and translate them into AG speci�cations. Thisis a very similar algorithm to that used in hylo transformation, �nding the10



reverse (x) = foldlist (�():Nil;�(a; r):append (r; Cons(a;Nil)) ) xFigure 8: The reverse fold functionreverse (root : list)! s" : listNil ->fNil;s"Nil : s"Nil = (�():Nil) ()Cons -> a listfCons;s"Cons : s"Cons = (�(a; r):append (r; Cons(a;Nil))) (a; s"list)Figure 9: The AG corresponding to the reverse fold functionreverse (x) = foldlist (�():�(w):w;�(a; r):�(w):r(Cons(a; w)) ) x NilFigure 10: Second order reverse fold functionreverse (root : list; h# : list)! s" : listNil ->fNil;s"Nil : s"Nil = Id (h#Nil)Cons -> a listfCons;s"Cons : s"Cons = Id (s"list)fCons;h#list : h#list = (�(a; h):Cons(a; h)) (a; h#Cons)Figure 11: The natural AG for reverseunderlying functor of recursive schemes. In the general case of functional pro-grams, this transformation uses the notion of Dynamic AGs [PRJD96], as inthe transformation from denotational semantics into AGs [Gan80, Lei96]3.3 Higher Order Functions and Inherited AttributesIn this section, we deal with functional programs which require some additionaltransformations in order to be deforested in the fold formalism. Our running exam-ple will be the reverse list function. We will present the fold and AG approaches,and show how hylomorphisms treat these programs.The reverse fold (Figure 8) is not potentially normalizable [SF93], because theappend function (Figure 3) works on the accumulative result variable r which isunder construction in the outer fold. For a similar reason, the DC cannot be appliedover the corresponding AG (Figure 9).To solve this problem, Sheard and Fegaras [SF93, LS95] transform this fold into asecond order2 one and introduce the Second Order Fold Promotion Theorem [SF93].This transformation requires particular conditions concerning the underlying type3,but leads to a second order fold (Figure 10) which is amenable to normalization.Furthermore, with the properties due to these type restrictions, the deforestationof reverse � reverse leads to a copy function: an ideal deforestation in this case.2In a second order fold, accumulative result variables can be functions.3Notions of zero-constructors and zero-replacement functions: the reader will �nd detailsin [SF93] and a discussion of these restrictions in [DPRJ96]11



let (ss; hh) = (reverse � reverse) (x;Nil; hh)in sswhere the pro�le of (reverse � reverse) is:reverse � reverse (root : list; sh# : list; hs# : list)! (ss" : list; hh" : list)with the following semantic rules:Nil ->fNil;hh"Nil : hh"Nil = Id (sh#Nil)fNil;ss"Nil : ss"Nil = Id (hs#Nil)Cons -> a listfCons;sh#list : sh#list = Id (sh#Cons)fCons;hh"Cons : hh"Cons = (�(a; hh):Cons(a; hh)) (a; hh"list)fCons;hs#list : hs#list = Id (hs#Cons)fCons;ss"Cons : ss"Cons = Id (ss"list)Figure 12: The AG resulting from the DC of reverse with itselfSince AGs naturally use inherited attributes, the favorite AG form for reverseis not the AG in Figure 9 but rather, the one presented in Figure 11. Fortunately,the DC can then be directly applied on this natural AG (on its composition withitself). Notice here that our FP-to-AG transformation applied to the second orderfold (Figure 10) leads to this AG. Moreover, as another relation between secondorder (fold) and inherited (AG) approaches, let us just consider Knuth's transfor-mation [CM79], which translates any AG (with possible inherited attributes) into apurely-synthesized one. From the natural reverse AG with inherited attributes, thisyields a purely-synthesized AG with higher order semantic rules, which correspondsto the second order fold program.In Figure 12, we only present the AG resulting from the DC application on theexample reverse(reverse(x)), without details on how it is obtained. Nevertheless,with inherited attributes, the DC basic idea remains the projection of semanticrules. In this example, the pro�le plays an important role. The resulting functiontakes three arguments: the root argument (the list) and two inherited attributes(sh and hs). It returns two results which are the two synthesized attributes ssand hh. The notion of pro�le is not su�cient to completely de�ne the �nal AG. Infact, the call to this AG also de�nes the dependencies between the arguments andthe results. For instance, the hs argument depends on the hh result. Even if thispro�le notion and this call notation are not classical in the AG formalism, and notformally de�ned here, we hope that the reader will understand it without di�culty.The basic DC transformation leaves many copy rules between attributes (Id inFigure 12), which have no other role than transporting values around the inputstructure; however, a simple static global analysis can eliminate them in most cases[Rou94]. The result of this elimination on our example in Figure 12 yields the copyAG, which is equivalent to the result obtained by the NA.In spite of the good result of the NA on this example, the particular treat-ment needed for higher order fold functions has lead deforestation researchers to�nd a more general approach. More particularly, the hylo approach, which ismore general, can deal equally well with �rst or higher order functions. However,encapsulation of computations in higher order functions could hide some possible\deforestable" constructions. Figure 13 presents the hylo de�nition for reversewith append function, corresponding with those presented in the fold formalism12



Considering this de�nition for reverse:reverse : ListA! ListAreverse = [[Nil r �(a; vs):append (vs; Cons(a;Nil)); Id; outL]]L;L= [[�inL; Id; outL]]L;Lwhere � = �N r C :(N r (�(x; r):[[C(x;N) r C; Id; outL]]L;L r))and F = !1 + !A � Ihylo (Acid Rain Theorem) leads to:reverse � reverse = [[�(�inL � Id); Id; outL]]L;LFigure 13: Hylo for reverse with appendConsidering this de�nition for reverse:reverse : ListA! ListAreverse = �xs:rev xs Nilrev : ListA � ListA! ListArev = [[�; �;  ]]F;F = [[Idr Id; Id;  ]]F;Fwhere  = �(xs; ys).case (xs; ys) of(Nil,bs) ! (1; (bs))(Cons(a,as),bs) ! (2; (as; Cons(a; bs)))and F = !ListA + Ihylo (Hylo-Fusion) leads to:reverse � reverse xs = �xs:[[reverse r Id; Id;  ]]F;F xs NilFigure 14: Hylo for reverse with accumulating parameter(Figure 8). Figure 14 presents another de�nition for reverse, with an accumulat-ing parameter, corresponding with the \natural" AG. In both cases, composingreverse twice leads to a hylomorphism which is not a simple copy, unlike the DC ofequivalent AG.4 ConclusionIn the program transformation domain, there has been a recent emergence andgrowing interest in the structure-directed style of functional programming. Sincethe structure-directed paradigm is the fundamental basis of AGs, we comparedfunctional methods and approachs related to this style with those of AGs.We have shown that generic control operators such as fold are equivalent inexpressiveness to a restricted class of attribute grammars (purely-synthesized). TheNA, which performs fusion of functions, has the same e�ect for the �rst order fold,as the DC of the corresponding AG. Actually, these methods are slightly di�erent,because we can view the DC as a more symbolic transformation than the NA, whichis more akin to generalized partial evaluation. But the most important point is that13
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