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tWe study the 
ube of type assignment systems, as introdu
ed in [10℄. This 
ube is obtained fromBarendregt's typed �-
ube [1℄ via a natural type erasing fun
tion E, that erases type informationfrom terms. We prove that the systems in the former 
ube enjoy good 
omputational properties,like subje
t redu
tion and strong normalization. We study the relationship between the two 
ubes,whi
h leads to some unexpe
ted results in the �eld of systems with dependent types.Introdu
tionTypes 
an be used as predi
ates for terms of �-
al
ulus in two di�erent ways. Terms 
an bedire
tly de
orated with types, and then every term 
omes dire
tly with a unique, intrinsi
type. In this fully typed approa
h, a typed system is a set of rules for proving judgements ofthe shape �t `t Mt : �t, where Mt is a typed term, �t is a type, and �t is a 
ontext. Themeaning of su
h a judgement is: the term Mt has type �t under the 
ontext �t, that 
ontainsthe types of the free variables of Mt and �t. Alternatively, in the type assignment approa
h,types 
an be assigned to terms of the untyped �-
al
ulus by applying type assignment rules.A type assignment system is a set of rules for proving judgements of the shape � ` M : �,where M is a term of the untyped �-
al
ulus, and � assigns types to the free variables of Mand �. The meaning of su
h a judgement is: the term M has type � under the 
ontext �,
ontaining the types of free variable of M and �. In this approa
h, ea
h term has in�nitelymany typings.The typed approa
h, 
alled �a la Chur
h by Barendregt, gives rise to di�erent typedlanguages. In these languages terms are de
orated with types in di�erent ways. Examples oftyped �-
al
uli are the simply typed one, the se
ond order �-
al
ulus of Girard and Reynolds�Supported by the Netherlands Organisation for the Advan
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[11, 15℄, and the 
al
ulus of 
onstru
tions [5, 6℄. Barendregt [1℄ gave a 
ompa
t and appealingpresentation of a 
lass of typed systems, arranging them in a 
ube. In this 
ube, every vertexrepresents a di�erent typed system. One vertex is the origin and represents the simplytyped �-
al
ulus of Chur
h; the edges represent the introdu
tion of some new rules of typeformation, namely Polymorphism, Higher Order and Dependen
ies. This three-dimensionalstru
ture allows for a deep 
omparative analysis of di�erent typed �-
al
uli.It is well known (see [10, 12℄) that some of the type assignment systems already knownin the literature 
an be also de�ned through an erasing fun
tion that erases type informationfrom terms in a typed system. For those systems, if Dt is a typed derivation of � `t Mt : �,and E is the erasing fun
tion, then by applying E to every judgement in Dt, a valid typeassignment derivation proving the judgement � ` E (Mt) : � is obtained, where E (Mt) isa term of the untyped �-
al
ulus. Vi
e versa, every type assignment derivation 
an beviewed as the result of the appli
ation of E to a typed one. In parti
ular, the erasingfun
tion E indu
es an isomorphism between every typed system on the dependen
y-free sideof Barendregt's 
ube and a 
orresponding type assignment system. For instan
e, the simplytyped �-
al
ulus is isomorphi
 to the Curry type assignment system, the se
ond order lambda
al
ulus to the polymorphi
 type assignment system, and the higher order �-
al
ulus to thehigher order type assignment system. These 
orresponden
es were independently de�ned byCurry [4℄, Leivant [14℄, and Giannini and Ron
hi [9℄, but the indu
ed erasing fun
tion is thesame in all 
ases. In [10℄ the erasing fun
tion was extended in a natural way to all typedsystems in Barendregt's 
ube, in
luding the systems with dependent types, as studied in[3, 12℄. The essential di�eren
e is that the domain of E was extended to in
lude types too,sin
e terms 
an o

ur in types.This erasing fun
tion indu
es a 
ube of type assignment systems. Namely, for everytyped system St in Barendregt's 
ube, there is a 
orresponding type assignment system S,whose rules are obtained from the ones of St via the extended erasing fun
tion E. Note that,in this setting, if �t `t Mt : �t is a typed judgement, the 
orresponding type assignmentjudgement is E (�t) `t E (Mt) : E (�t), where now E (�t) 
an be di�erent from �t (E (�t)from �t), in 
ase �t is a dependent type (�t 
ontains dependent types). This 
ube is a
ompa
t presentation of a 
lass of type assignment systems, whi
h partially 
oin
ide withknown ones (in the side of the 
ube without dependen
ies) and partially represents the �rstattempt of de�ning type assignment systems with term-dependen
ies. It was also observedin [10℄ that, surprisingly, the isomorphism between derivations in the 
orresponding verti
esof typed and type assignment 
ubes is no longer true in presen
e of dependen
ies. Then thenatural question arises: what is the relation between the two 
ubes? The authors of [10℄
onje
tured that the relation is an isomorphism between judgements rather than derivations,that is, a judgement � ` M : � is true in one of the type assignment systems if and only if,in the 
orresponding typed system, a judgement �t `t Mt : �t 
an be proved su
h that E (�t)= �, E (Mt) � M and E (�t) � �.In this paper we disprove this 
onje
ture, showing that it is true only for the systemswithout polymorphism. We also give a deep analysis of the type assignment 
ube, showingthat the systems represented in it enjoy all the good properties we expe
t, like subje
tredu
tion and strong normalization of typable terms. Moreover, we de�ne a new erasing



fun
tion E 0, that 
oin
ides with E when dependen
ies are not present. The main di�eren
ebetween E and E 0 is that, while E always erases type information in terms, E 0 is 
ontextdependent and erases type information from a term only if that term does not o

ur in atype; otherwise it leaves the term un
hanged. Clearly a new type assignment 
ube 
an bede�ned starting from E 0. This 
ube is isomorphi
 to the typed one, in the sense that everytype assignment system de�ned in it is isomorphi
 to the typed system in the 
orrespondingvertex of Barendregt's 
ube.1 Two CubesWe will present a strati�ed version of the systems in Barendregt's 
ube, already presentedin [1℄, whi
h will allow both the de�nition of the erasing fun
tion E and of the related 
ubeof type assignment systems.1.1 The Cube of Typed SystemsDe�nition 1.1.1 The sets of typed �-terms (�t), typed 
onstru
tors (Const) and typed kinds(Kindt) are mutually de�ned by the following grammar, where M;� and K are metavariablesfor terms, 
onstru
tors and kinds respe
tively:M ::= x j �x:�:M j MM j ��:K:M j M�� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tt of typed terms is the union of the sets �t, Const and Kindt.Notational 
onventions: In this paper, a term will be an (un)typed �-term, a 
onstru
tor,a kind, or a sort. The symbols M , N , P , Q, : : : range over (un)typed �-terms; �,  , �, �,� , : : : range over 
onstru
tors; K ranges over kinds; s ranges over the set of sorts, that isf�;2g; A, B, C, D, : : : range over arbitrary terms; x, y, z, : : : range over �-term-variables;�, �, 
, : : : range over 
onstru
tor-variables; a, b, 
; : : : range over �-term-variables and
onstru
tor-variables; and � ranges over 
ontexts. All symbols 
an appear indexed. Thesymbol � denotes the synta
ti
 identity of terms.The notions of free and bound variables and of a subterm of a term are de�ned as usual,i.e. in �a:A:B and �a:A:B the variable a is 
onsidered bound, and the s
ope of the binding isB. Free variables of A remain free in �a:A:B and �a:A:B, and the subterms of these termsin
lude all subterms of A and B. The set of subterms of A is denoted by ST(A), and the setof free variables of A is denoted by FV(A). We will 
onsider terms modulo �-
onversion, i.e.we identify terms that di�er only in the names of bound variables. Let D[A1=a1; : : : ; An=an℄denote the result of simultaneously substituting Ai to ai in D (1 � i � n). We normallyassume that no variable bound in D is free in any of the Ai's, and that the set fa1; : : : ; angis disjoint from the set of bound variables of D.



De�nition 1.1.2 Beta-redu
tion (denoted as !!�) is de�ned as usual, i.e. as the 
ontextualre
exive and transitive 
losure of the redu
tion rule (�a:A:B)C !� B[C=a℄. The symbol =�denotes beta-
onversion, i.e. the least equivalen
e relation generated by !!�.De�nition 1.1.3 i) A statement is an expression of the form: M : �, � : K, or K : 2, whereM is a typed �-term, � is a 
onstru
tor, and K is a kind. The left part of the statement is
alled the subje
t, while the right part is 
alled the predi
ate. A de
laration is a statementwhose subje
t is a variable.ii) A 
ontext is a sequen
e of de
larations, whose subje
ts are distin
t. The empty 
on-text is denoted by <>. We write a:A 2 �, if a:A o

urs in �. The domain of �,denoted by Dom (�), is the set fa j 9A [a:A 2 �℄g. If �1 and �2 are 
ontexts su
h thatDom (�1)\Dom (�2) = ;, then �1, �2 is a 
ontext obtained by 
on
atenating �1 to �2.The set of free variables in a 
ontext is de�ned by: FV(�) = Sa:A2� FV(A).De�nition 1.1.4 Barendregt's general typed system. The following rules are used to derivejudgements of the form � `t A : B, where � is a 
ontext and A : B is a statement. The typeassignment rules 
an be divided in four groups, depending of the subje
ts of the statements:i) Common rules(Proj) � `t A : s a 62 Dom (�)�; a:A `t a : A (Weak) � `t A : B � `t C : s 
 62 Dom (�)�; 
:C `t A : B(Conv) � `t A : B � `t C : s B =� C� `t A : Cii) Typed term rules(I) �; x:� `t M :  � `t �x:�:M : �x:�: (E) � `t M : �x:�: � `t N : �� `t MN :  [N=x℄(IK) �; �:K `t M : �� `t ��:K:M : ��:K:� (EK) � `t M : ��:K:� � `t  : K� `t M : �[ =�℄iii) Constru
tor rules(C{IC) �; x:� `t  : K� `t �x:�: : �x:�:K (C{EC) � `t  : �x:�:K � `t M : �� `t  M : K[M=x℄(C{IK) �; �:K1 `t  : K2� `t ��:K1: : ��:K1:K2 (C{EK) � `t � : ��:K1:K2 � `t  : K1� `t � : K2[ =�℄(C{FC) �; x:� `t  : �� `t �x:�: : � (C{FK) �; �:K `t � : �� `t ��:K:� : �



iv) Kind rules(Axiom) <> `t � : 2 (K{FC) �; x:� `t K : 2� `t �x:�:K : 2(K{FK) �; �:K1 `t K2 : 2� `t ��:K1:K2 : 2Lemma 1.1.5 Barendregt's general typed system derives judgements of the followingshapes: � `t M : �, � `t � : K, or � `t K : 2.If � `t M : � for a typed �-term M , then � `t � : � (see [1℄), and � is 
alled a type, orto be more pre
ise: a type with respe
t to the 
ontext �. We write D: � `t A : B when Dis a derivation for the judgement � `t A : B, and D0 � D means that D0 is a subderivationof D.De�nition 1.1.6 i) Let the following sets of rules be de�ned by:Base Rules = f(Axiom), (Proj), (Weak), (I), (E), (C{FC)g,Polymorphism = f(IK), (EK), (C{FK)g,Dependen
ies = f(C{IC), (C{EC), (K{FC), (Conv)g,Higher Order = f(C{IK), (C{EK), (K{FK), (Conv)g.ii) The eight typed systems in the Barendregt's 
ube 
an be represented by the set ofderivation rules used in ea
h system; they 
an be represented as verti
es of the following
ube: �! = BaseRules�! = �![HigherOrder�2 = �![Polymorphism�! = �2 [HigherOrder�P = �![Dependen
ies�P! = �! [Dependen
ies�P2 = �2 [Dependen
ies�P! = �! [Dependen
ies �!
6

-����> �!
6

-
�2 -����> �! -

�P����>
6 �P!

6�P2����>�P!

Let S be one of these eight systems. We write � `S A : B to indi
ate that � `t A : B
an be derived using only the rules for S.The properties of this 
ube are studied in [1, 8℄.



1.2 The Cube of Type Assignment SystemsIn this subse
tion we will present the 
ube of type assignment systems as was �rst presentedin [10℄. The de�nition of the type assignment 
ube is based on the de�nition of an erasingfun
tion E that erases all type information from the typed terms. In fa
t, both the syntaxof terms, and the rules of our type assignment systems are obtained dire
tly from the 
orre-sponding syntax and rules of the typed systems, by applying a type erasure operation E, tobe de�ned below. Note that, sin
e terms 
an o

ur in both 
onstru
tors and kinds, E 
anmodify all typed obje
ts. From now on, we will reserve the name typed systems (TS) for thesystems of Barendregt's 
ube and we reserve the expression type assignment systems (TAS)for the systems to be de�ned below.De�nition 1.2.1 The sets of untyped �-terms (�), 
onstru
tors (Cons) and kinds (Kind)are mutually de�ned by the following grammar, where M;�, and K are metavariables forterms, 
onstru
tors and kinds respe
tively.M ::= x j �x:M j MM� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tu of untyped terms is the union of the sets �, Cons and Kind.Given the syntax of untyped terms, the following de�nition of E is natural: it erases alltype information from typed �-terms, also when they o

ur inside 
onstru
tors or kinds.De�nition 1.2.2 The erasing fun
tion E : Tt ! Tu is de�ned as follows:E (a) = a.E (AB) = if B 2 Const then E (A) else E (A)E (B).E (�a:A:B) = �a:E (A):E (B).E (�a:A:B) = if B 2 �t then if A 2 Kindt then E (B) else �a:E (B)else �a:E (A):E (B).The erasing fun
tion is extended to 
ontexts in the obvious way, and we write E (�). Thenotions of free variable and subterm are similar to their `fully typed' 
ounterparts.De�nition 1.2.3 Beta redu
tion on untyped terms 
an no longer be de�ned using a singlegeneri
 rule as in De�nition 1.1.2. Instead, we have the following three rules:(�x:�: )M !�  [M=x℄; (��:K:�) !� �[ =�℄; and (�x:M)N !� M [N=x℄:De�nition 1.2.4 General type assignment system (TAS) The rules of the general type as-signment system (TAS) are used to derive judgements of the form � ` A : B, where � is a
ontext and A : B is a statement, and a statement is de�ned as in the typed 
ase, using thesyntax for untyped terms. The rules are:



i) The 
ommon rules, and the 
onstru
tor and kind rules of TS, where `t is repla
ed by` , taking into a

ount both the di�eren
e in syntax, and that the rule (Conv) nowrefers to the untyped redu
tion;ii) The following term rules:(I) �; x:� ` M :  � ` �x:M : �x:�: (E) � ` M : �x:�: � ` N : �� ` MN :  [N=x℄(IK) �; �:K ` M : �� ` M : ��:K:� (EK) � ` M : ��:K:� � `  : K� ` M : �[ =�℄The notion of derivation and subderivation for a judgement are the same as for TS andan analogue of Lemma 1.1.5 also holds. As before, a type is a 
onstru
tor of kind � (andagain this is a 
ontext-dependent property). A �-term M is typable if there are a 
ontext �,and a 
onstru
tor � su
h that � ` M : �. (We prove in Se
tion 2 that then � is a type.)As in [10℄, we 
an distinguish eight di�erent type assignment systems, de�ned using thesame 
olle
tion of rules given in De�nition 1.1.6 (i) for the TS 
ube. These systems 
an berepresented as verti
es of the following 
ube:F1 = BaseRulesF 0 = F1 [HigherOrderF2 = F1 [PolymorphismF! = F2 [HigherOrderDF1 = F1 [Dependen
iesDF 0 = F 0 [Dependen
iesDF2 = F2 [Dependen
iesDF! = F! [Dependen
ies F1
6

-����> F 0
6

-
F2 -����>F! -

DF1����>
6 DF 0

6DF2����>DF!

Let S denote one of the eight systems in this 
ube. Like for the TS we will write � `S A : Bto indi
ate that � ` A : B 
an be derived using only the rules for S. Noti
e that in theleft-hand side of the 
ube, both 
onstru
tors and kinds 
oin
ide with the typed one, be
ausethere they 
annot depend on terms. This is no longer true in the right-hand side: forexample, we 
an build 
onstru
tors like (�x:�: )N , where N is an untyped �-term. Thesystem F1 
orresponds to the well-known Curry type assignment system, whereas F2 is thetype assignment version of �2, whi
h is essentially Girard's system F [11℄.2 Basi
 properties of TASIn this se
tion, we will prove that all the systems in TAS 
ube have good 
omputationalproperties; the subje
t redu
tion property, the Chur
h-Rosser property and strong normal-



ization of typable terms will be shown. To prove these results we need more de�nitions andte
hni
al lemmas, stating properties of the systems, some of whi
h are of interest in theirown.The following proposition states that every term, typable by � or 2, 
an not be typableby both, and guarantees 
onsisten
y of the system.Proposition 2.1 For every 
ontext � term A, and sorts s1, s2: if � ` A : s1 and � ` A : s2,then s1 � s2.De�nition 2.2 We de�ne the following relations on 
ontexts:i) � v �0 () � is a pre�x of �0.ii) The relation v� is indu
tively de�ned as follows:a) <> v� �,b) If � v� �0, then �; a:A v� �0; a:A.
) If � v� �0, then � v� �0; a:A.Theorem 2.3 Chur
h-Rosser. If A !!� A0 and B !!� B0, then there exists C su
h thatA0 !!� C and B0 !!� C.Proof: In the terminology of Klop [13℄, our beta redu
tion is a regular 
ombinatory redu
-tion system, and thus the Chur
h-Rosser property follows from Theorem II.3.11 in [13℄.The following lemmas 
an be proved by easy indu
tion on the stru
ture of derivations.Lemma 2.4 i) If � v� �0, and � ` A : B, then FV(A) [ FV(B) � Dom (�), and �0 ` A : B.ii) Let B 2 ST(A). If D: � ` A : C, then there exist �0, E and D0 � D, su
h that D0:�0 ` B : E.iii) If �1; 
:C, �2 ` A : B, and �1 ` D : C, then �1, �2[D=
℄ ` A[D=
℄ : B[D=
℄.The following lemma formulates a basi
 property of judgements: all predi
ates in deriv-able statements are typable.Lemma 2.5 i) If � ` E : F , then F � 2 or � ` F : s.ii) If � ` M : � then � ` � : �, i.e. � is a type with respe
t to the 
ontext �.The following lemma is the key lemma for the proof of the subje
t redu
tion theorem.It states that 
ontexts 
an be 
onsidered modulo �-
onversion of predi
ates, and that a typefor a term �x:M 
an always be obtained using a derivation that ends with the rule (I).Lemma 2.6 i) Let �1; a:A;�2 ` B : C. Then �1; a:A0;�2 ` B : C, for all A0 su
h that�1 ` A0 : s and A=�A0.ii) If � ` �x:M : �x:�: , then �; x:� ` M :  .



Proof: i) By indu
tion on the stru
ture of the derivation.ii) A judgement � ` (�x:M) : � 
an be provable only if � =� Qki=1 �i:Ki:�x:�0: 0, for someK1; : : : ; Kk; �0;  0, su
h that �; �1:K1; : : : ; �k:Kk; x:�0 ` M :  0. (This 
an be proved byindu
tion on derivations, using Lemma 2.4(iii).) Thus, �x:�: =� Qki=1 �i:Ki:�x:�0: 0,and sin
e these two expressions have a 
ommon redu
t, it must be that k = 0 and that� =� �0 and  =�  0. So �; x:�0 ` M :  0, and thus �; x:� ` M :  follows from part (i)and rule (Conv).Theorem 2.7 Subje
t Redu
tion for Terms. If � ` M :  and M !� N then � ` N :  .Proof: By indu
tion on the de�nition of!�. The main 
ase isM � (�x:P )Q andN � P [Q=x℄,the others follow by indu
tion. Let D be a derivation for � ` M :  . It is not diÆ
ult to seethat D has the following stru
ture: ...�0 ` (�x:P ) : �x:�0: 0 ...�0 ` Q : �0D1: (E)�0 ` (�x:P )Q :  0[Q=x℄...D: � ` (�x:P )Q :  That is, there is a subderivation D1, ending with an appli
ation of rule (E), whi
h is fol-lowed by a (possibly empty) sequen
e of appli
ations of the not syntax-dire
ted rules (Proj),(Weak), (Conv), (IK) and (EK). By Lemma 2.6(ii) we obtain: �0; x:�0 ` P :  0. Sin
e also�0 ` Q : �0, by Lemma 2.4(iii) we obtain �0 ` P [Q=x℄ :  0[Q=x℄. Apply the same rules asused to go from D1 to D to obtain � ` P [Q=x℄ :  .An important property of the type assignment systems is strong normalization of typableterms; this is already known to hold for the systems F!, F1, F2, and F 0 (see [10℄). Usingthis result, we will show that it also holds for the other four systems of the 
ube of typeassignment systems. To a
hieve this, we use the fun
tion ED that `erases dependen
ies' asde�ned in [10℄. For the behaviour of the fun
tion ED on beta redexes, there are the followingpossibilities:i) ED ((�x:M)N) = (�x:ED (M))(ED (N))ii) ED (M [N=x℄) = ED (M)[ED (N)=x℄;iii) ED ((��:K:�) ) = (��:ED (K):ED (�))(ED ( ))iv) ED (�[ =�℄) = ED (�)[ED ( )=�℄;v) ED ((�x:�: )M) = ED ( );vi) ED ( [M=x℄) = ED ( ).That is, A !� B implies either ED (A) !� ED (B) or ED (A) � ED (B).



Theorem 2.8 Termination If � ` A : B then A is strongly normalizing.Proof: In [10℄, Theorem 2.2.1 states that if � ` A : B is a derived judgement in DF! (DF1,DF2, DF 0), then ED (�) ` ED (A) : ED (B) is derivable in F! (F1, F2, F 0). Suppose nowthat A � A0 !� A1 !� A2 !� . . . is a sequen
e of beta redu
tions. By the propertymentioned above, for every i � 1, either ED (Ai) !� ED (Ai+1), or ED (Ai) � ED (Ai+1).Suppose the sequen
e A0 !� A1 !� A2 !� . . . is in�nite. Sin
e beta redu
tion in F!(F1, F2, F 0) is strongly normalizing, there is an n su
h that ED (Aj) � ED (Aj+1), forevery j � n. So from step n, every step in the in�nite sequen
e A0 !� A1 !� A2 !� . . .
orresponds to a redu
tion of a `bad' redex of the form (�x:�: )M . However, sin
e M isan untyped term, su
h a redu
tion 
annot 
reate new `bad' redexes. Thus the number ofredexes must de
rease after every step, and our redu
tion 
an not be in�nite.3 The relation between TS and TASIn this se
tion we will fo
us on the relation between Barendregt's 
ube and the 
ube oftype assignment systems. First we introdu
e the notions of 
onsisten
y, similarity, andisomorphism between typed systems and type assignment systems.De�nition 3.1 Let St and Su be systems in 
orresponding verti
es of TS and TAS 
ube.i) St and Su are 
onsistent if �t `St At : Bt implies E (�t) `Su E (At) : E (Bt).ii) St and Su are similar if they are 
onsistent and, moreover, � `Su A : B implies thatthere exists �t, At, and Bt satisfying �t `St At : Bt and E (�t) = �, E (At) � A, andE (Bt) � B.iii) Let Der t and Der u be the set of all the derivations in St and Su. St and Su are isomorphi
if and only if there are : F : Der t!Der u and G: Der u!Der t su
h that:a) If Dt: � `St A : B then F(Dt) : E (�) `Su E (A) : E (B).b) FÆG and GÆF are the identity on Der t and Der u respe
tively.
) Both F and G preserve the stru
ture of the derivations, (i.e. the tree obtained fromthe derivation by erasing all the judgements but not the names of the rules).The de�nition of isomorphism between two systems was already given in [10℄, but in aless general way. Two systems are isomorphi
 a

ording to the de�nition in [10℄, if they areisomorphi
 in the sense of the pre
eding De�nition, and moreover, the fun
tion F is su
hthat F (Dt) is obtained from Dt by applying the erasing fun
tion to all terms in Dt; by abuseof notation, we denote F (Dt) by E (Dt). The following Proposition proves that the twonotions of isomorphism 
oin
ide, in 
ase of the TAS 
ube:Proposition 3.2 Let St and Su be systems in 
orresponding verti
es of TS and TAS 
uberespe
tively, and suppose they are isomorphi
 through the fun
tions F and G. Then forevery typed derivation Dt, F(Dt) = E (Dt).The following results are taken from [10℄:



Theorem 3.3 Let St and Su be systems in 
orresponding verti
es of TS and TAS 
ube.i) St and Su are 
onsistent.ii) If St and Su do not 
ontain Dependen
ies as subset of their sets of rules, then St and Suare isomorphi
.iii) If the assumption of (ii) is not satis�ed, then St and Su are not isomorphi
.Proof: See [10℄. The proof uses the following properties of the erasing fun
tion:i) E (A[B=a℄) � E (A)[E (B)=a℄;ii) If A !!� C, then E (A) !!� E (C).After the negative result of Theorem 3.3(iii), it is natural to ask if the 
orrespondingsystems in the TS and TAS 
ubes are at least similar. Su
h a 
onje
ture was already statedin [10℄. This property holds only for the systems without polymorphism, as will be shownin Theorem 3.7, namely, for DF1 versus �P, and for F 0 versus �!. Adding polymorphismmakes a di�eren
e: the systems with both polymorphism and dependen
ies are not similar.Theorem 3.4 Let St be either �P2 or �P!, and let Su be respe
tively DF2 and DF!.Then St and Su are not similar.Proof: As a 
ounterexample, we show a derivable judgement of DF2, that 
annot be ob-tained as an erasure of any derivable judgement in �P!. In this proof, for reasons of read-ability, we will use the notation A!B for �a:A:B, when a does not o

ur in B. Let �0denotes a 
ontext 
onsisting of the following de
larations:(type variables) �:�; �:�; 
:�; Æ:�,(
onstru
tor variable) �:(�!�),(term variables) u:(��:�:((�!�)!�)!�), x:�; y:
; z:Æ,and let M;M0;M1 denote respe
tively the following untyped �-terms:M � u(�f:x); M0 � u(�f:Kx(fy)); and M1 � u(�f:Kx(fz))where the symbol K denotes the term (�xy:x). Clearly, both M0 and M1 beta-redu
e to M ,and all these terms 
an 
orre
tly be assigned the type � in the 
ontext �0. Thus, one 
anderive: �0 ` �M0!� : � and �0 ` �M1 : �and this means that the 
ontext �= �0; p:�M0!�; q:�M1 is legal. With help of rules (Proj)and (Conv), one 
an easily derive: � ` pq : �.The above judgement 
annot be obtained as an erasure of any judgement �0 ` N : � derivablein �P2 or �P!, (i.e. one 
annot have E (�0) = �, E (N) � pq, and E (�) � �). Assume theopposite. First note that � � �, sin
e no terms o

ur in �. (The erasing fun
tion 
an onlymodify types 
ontaining o

urren
es of terms, in whi
h 
ase the results must also 
ontain



terms.) Similarly, �0 may di�er from � only in the de
larations of p and q, whi
h must be ofthe form: p:�M 00!� and q:�M 01where E (M 00) � M0 and E (M 01) � M1. Without loss of generality (see Theorem 2.8), we
an assume that M 00 and M 01 are normal forms. We 
an also assume that N is of theform PQ, where E (P ) � p and E (Q) � q (otherwise we 
onsider an appropriate subtermof N instead). Sin
e P is applied to Q, and the type of PQ is �, P must have a typeof the form �M 000 ! �, where E (M 000 ) � M0, and Q must have a type of the form �M 001 ,where E (M 001 ) � M1. In order to make the appli
ation well-typed (after a possible series ofappli
ations of rule (Conv)), it must be the 
ase that M 000 =� M 001 .It follows that we have beta-
onvertible terms M 000 , M 001 , whi
h erase to M0 and M1, respe
-tively, and both are of type �. Without loss of generality, we 
an assume that these termshave no beta-redexes involving polymorphi
 abstra
tion/appli
ation, and thus we may write:M 000 � u
(�f :
!
:K0x(fy)) M 001 � uÆ(�f :Æ!Æ:K1x(fz))where K0 and K1 are su
h that E (K0) � K and E (K1) � K. The types of f used in theabove are for
ed by the appli
ations fy and fz. Note that the type of f may not be externallyquanti�ed, be
ause of the type of the polymorphi
 variable u. The normal forms of theseterms are as follows: M 000 redu
es to u
(�f :
!
:x), while M 001 redu
es to uÆ(�f :Æ!Æ:x). Butthese normal forms are di�erent, and this 
ontradi
ts the previous 
laim that M 000 =� M 001 .The 
ause of the phenomenon demonstrated in the last proof, is the polymorphi
 variable.If polymorphism is not permitted, we 
an prove that the 
orresponding TS and TAS aresimilar. This requires a sequen
e of lemmas. In what follows, the symbol ` denotes `S ,for S 2 fF1, F 0, DF1, DF 0g, while `t refers to the 
orresponding TS systems, i.e. we
onsider only systems without polymorphism.Lemma 3.5 i) Suppose � `t B1 : A and � `t B2 : A, and let both B1 and B2 be normalforms. If E (B1) � E (B2) then B1 � B2.ii) Let � `t B1 : A and � `t B2 : A. If E (B1) =� E (B2), then B1 =� B2.Proof: i) By indu
tion on the stru
ture of B1.ii) Easy, using part (i).Lemma 3.6 Suppose that � ` A : B. Then the following 
onditions hold:i) There exists a typed 
ontext �t, and typed terms At, Bt satisfyingE (�t) = �, E (At) � Aand E (Bt) � B, and su
h that �t `t At : Bt.ii) For every typed 
ontext �t, and every typed term Bt satisfying E (�t) = �, E (Bt) � Band �t `t Bt : s, there exists a typed term At, su
h that �t `t At : Bt, and E (At) � A.Proof: Parts (i) and (ii) 
an be proven by mutual indu
tion on the stru
ture of derivations.



Theorem 3.7 Let St be a TS system whose set of rules does not 
ontain Polymorphism assubset, and let Su be the 
orresponding TAS system. Then St and Su are similar.Proof: By Lemma 3.6.4 How to obtain an isomorphismIn this se
tion we show that it is possible to de�ne another erasing fun
tion (whi
h looks lessnatural), named E 0, that gives rise to a se
ond type assignment 
ube TAS0 whi
h is isomor-phi
 to the TS 
ube. The main di�eren
e between E and E 0 is that, while E always erasestype information in terms, E 0 is 
ontext dependent and erases type information from a termonly if that term does not o

ur in a type; otherwise it leaves the term un
hanged. So the dif-feren
e between TAS0 and TAS is that dependent types of TAS0 
ontain o

urren
es of typed�-terms rather than untyped �-terms. The systems without Dependen
ies 
oin
ide exa
tlywith the 
orresponding systems in the TAS 
ube. Also, either with Dependen
ies or without,the provable judgements are the same as long as their subje
ts are either 
onstru
tors orkinds.De�nition 4.1 The TAS 0 Cube. i) The untyped and typed terms, typed 
onstru
tors andtyped kinds are de�ned as before (De�nitions 1.1.1 and 1.2.1). Let T 0u be the union ofthe sets �; Const and Kindt.ii) The new erasing fun
tion E 0: Tt!T 0u is de�ned as follows:a) E 0(M) = E (M).b) E 0(�) = �.
) E 0(K) = K.iii) Let M range over �, and A;B, and � range over Tt. The general type assignment systemindu
ed by E 0 (TAS0) proves judgements of the following form:� `0 M : � and � `t A : B, where A 62 �t.iv) The type assignment rules are:a) All the rules used for TS.b) The rules (I), (IK), and (EK) of TAS (where ` should be repla
ed by `0 ).
) The rules:(Proj0) � `t � : � x 62 Dom (�)�; x:� `0 x : � (Weak0) � `0 M : � � `t A : s a 62 Dom (�)�; a:A `0 M : �(Conv0) � `0 M : � � `t  : � � =�  � `0 M :  (E0) � `0 M : �x:�: � `t N : �� `0 M(E 0(N)) :  [N=x℄v) As in De�nition 1.1.6(i), the rules 
an be grouped in sets. All the 
olle
tions are asbefore, with the ex
eption of (with abuse of notation): Base Rules = f(Axiom), (Proj),(Weak), (I), (E), (C{FC), (Proj0), (Weak0), (E 0)g, Again eight type assignment systems




an be de�ned, whose relationships 
an be represented as before by drawing a 
ube. Asystem in this 
ube and one in the TS-
ube are 
orresponding if the names for the set ofrules allowed for these systems are exa
tly the same.The main result on the relationship between the TS 
ube and the TAS0 
ube is:Theorem 4.2 Let St be any typed system in the TS 
ube, and let Su be the 
orrespondingsystem in the TAS0 
ube. Then St and Su are isomorphi
.Proof: The fun
tion F : Der t!Der u 
an be de�ned by indu
tion on the stru
ture ofD 2 Der t in the following way:i) If Dt: � `t A : B and A 62 �t, then F(Dt) = Dt.ii) If the last rule of Dt is (E), i.e.:Dt: D1 : � `t M : �x:�: � `t N : �� `t MN :  [N=x℄ (E)then F(D1): E 0(�) `0 E 0(M) : E 0(�x:�: ). Sin
e E 0(�) = � and E 0(�x:�: ) � �x:�: ,we 
an de�ne: F(D): � `0 E 0(M) : �x:�: � `t N : �� `0 E 0(M)E 0(N) :  [N=x℄ (E 0)iii) if the last rule is one of the other not mentioned, the de�nition of F is given by straight-forward indu
tion.The de�nition of G is left to the reader. It is easy to verify that these two fun
tions realizean isomorphism between the 
orresponding systems in the two 
ubes.While the de�nition of the erasing fun
tion E 0 is (relatively) easy, the de�nition of therelated 
ube is very involved. This is a 
onsequen
e of the fa
t that, for systems withdependen
ies, the derivations are not 
ompositional. Namely if Dt is a derivation and D0t isa subderivation of Dt that ends with a judgement of the form � `t M : �, for M 2 �t, thenD0t need not be a valid derivation; this is be
ause E 0 has a 
ontext dependent behaviour.This is the pri
e we paid for rea
hing the isomorphism with the typed systems.5 Con
lusionsThis paper, together with [10℄, 
an be seen as the �rst attempt to study type assignmentsystems with dependent types. In fa
t all the systems in the dependen
ies free part ofthe 
ubes TAS and TAS0 have been extensively studied in the literature. The only typeassignment system with dependent types already de�ned in the literature is the system ��of Dowek [7℄. Stri
tly speaking, this is not a type assignment system in the usual sense.There are no derived judgements, instead, a valid judgement of �� is de�ned as one of



the form E 0(�) `0 E 0(A) : E 0(B), where � `t A : B is a valid judgement of �P. So Dowek'ssystem is equivalent to the system 
orresponding to �P in the TAS0 
ube. For this system,the type 
he
king problem was shown to be unde
idable in [7℄. The method of proof of theunde
idability is however appli
able for all our systems with dependen
ies. We showed thatall the systems with dependen
ies we de�ned enjoy good 
omputational properties, and wefo
used our attention in parti
ular on the relationship between typed and type assignmentsystems. A further step 
an be made by looking for a type assignment 
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