
Comparing CubesSte�en van Bakel1� Luigi Liquori2y Simona Ronhi della Roa2Pawe l Urzyzyn3z1 Afdeling Informatia,Universiteit Nijmegen,Toernooiveld 1,6525 ED Nijmegen, Nederland.E-mail: ste�en�s.kun.nl. 2 Dipartimento di Informatia,Universit�a degli Studi di Torino,Corso Svizzera 185,10145 Torino, Italia.E-mail: fliquori, ronhig�di.unito.it. 3 Instytut InformatykiUniwersytetu Warszawskiego,ul. Banaha 2,02-097 Warszawa, Polska.E-mail: urzy�mimuw.edu.pl.AbstratWe study the ube of type assignment systems, as introdued in [10℄. This ube is obtained fromBarendregt's typed �-ube [1℄ via a natural type erasing funtion E, that erases type informationfrom terms. We prove that the systems in the former ube enjoy good omputational properties,like subjet redution and strong normalization. We study the relationship between the two ubes,whih leads to some unexpeted results in the �eld of systems with dependent types.IntrodutionTypes an be used as prediates for terms of �-alulus in two di�erent ways. Terms an bediretly deorated with types, and then every term omes diretly with a unique, intrinsitype. In this fully typed approah, a typed system is a set of rules for proving judgements ofthe shape �t `t Mt : �t, where Mt is a typed term, �t is a type, and �t is a ontext. Themeaning of suh a judgement is: the term Mt has type �t under the ontext �t, that ontainsthe types of the free variables of Mt and �t. Alternatively, in the type assignment approah,types an be assigned to terms of the untyped �-alulus by applying type assignment rules.A type assignment system is a set of rules for proving judgements of the shape � ` M : �,where M is a term of the untyped �-alulus, and � assigns types to the free variables of Mand �. The meaning of suh a judgement is: the term M has type � under the ontext �,ontaining the types of free variable of M and �. In this approah, eah term has in�nitelymany typings.The typed approah, alled �a la Churh by Barendregt, gives rise to di�erent typedlanguages. In these languages terms are deorated with types in di�erent ways. Examples oftyped �-aluli are the simply typed one, the seond order �-alulus of Girard and Reynolds�Supported by the Netherlands Organisation for the Advanement of Pure Researh (N.W.O.).yPartly supported by HCM projet No. ERBCHRXCT920046 \Typed Lambda Calulus"zPartly supported by grants NSF CCR{9113196, KBN 2 1192 91 01 and by a grant from the Commission of TheEuropean Communities ERB{CIPA{CT92{2266(294).

[11, 15℄, and the alulus of onstrutions [5, 6℄. Barendregt [1℄ gave a ompat and appealingpresentation of a lass of typed systems, arranging them in a ube. In this ube, every vertexrepresents a di�erent typed system. One vertex is the origin and represents the simplytyped �-alulus of Churh; the edges represent the introdution of some new rules of typeformation, namely Polymorphism, Higher Order and Dependenies. This three-dimensionalstruture allows for a deep omparative analysis of di�erent typed �-aluli.It is well known (see [10, 12℄) that some of the type assignment systems already knownin the literature an be also de�ned through an erasing funtion that erases type informationfrom terms in a typed system. For those systems, if Dt is a typed derivation of � `t Mt : �,and E is the erasing funtion, then by applying E to every judgement in Dt, a valid typeassignment derivation proving the judgement � ` E (Mt) : � is obtained, where E (Mt) isa term of the untyped �-alulus. Vie versa, every type assignment derivation an beviewed as the result of the appliation of E to a typed one. In partiular, the erasingfuntion E indues an isomorphism between every typed system on the dependeny-free sideof Barendregt's ube and a orresponding type assignment system. For instane, the simplytyped �-alulus is isomorphi to the Curry type assignment system, the seond order lambdaalulus to the polymorphi type assignment system, and the higher order �-alulus to thehigher order type assignment system. These orrespondenes were independently de�ned byCurry [4℄, Leivant [14℄, and Giannini and Ronhi [9℄, but the indued erasing funtion is thesame in all ases. In [10℄ the erasing funtion was extended in a natural way to all typedsystems in Barendregt's ube, inluding the systems with dependent types, as studied in[3, 12℄. The essential di�erene is that the domain of E was extended to inlude types too,sine terms an our in types.This erasing funtion indues a ube of type assignment systems. Namely, for everytyped system St in Barendregt's ube, there is a orresponding type assignment system S,whose rules are obtained from the ones of St via the extended erasing funtion E. Note that,in this setting, if �t `t Mt : �t is a typed judgement, the orresponding type assignmentjudgement is E (�t) `t E (Mt) : E (�t), where now E (�t) an be di�erent from �t (E (�t)from �t), in ase �t is a dependent type (�t ontains dependent types). This ube is aompat presentation of a lass of type assignment systems, whih partially oinide withknown ones (in the side of the ube without dependenies) and partially represents the �rstattempt of de�ning type assignment systems with term-dependenies. It was also observedin [10℄ that, surprisingly, the isomorphism between derivations in the orresponding vertiesof typed and type assignment ubes is no longer true in presene of dependenies. Then thenatural question arises: what is the relation between the two ubes? The authors of [10℄onjetured that the relation is an isomorphism between judgements rather than derivations,that is, a judgement � ` M : � is true in one of the type assignment systems if and only if,in the orresponding typed system, a judgement �t `t Mt : �t an be proved suh that E (�t)= �, E (Mt) � M and E (�t) � �.In this paper we disprove this onjeture, showing that it is true only for the systemswithout polymorphism. We also give a deep analysis of the type assignment ube, showingthat the systems represented in it enjoy all the good properties we expet, like subjetredution and strong normalization of typable terms. Moreover, we de�ne a new erasing

funtion E 0, that oinides with E when dependenies are not present. The main di�erenebetween E and E 0 is that, while E always erases type information in terms, E 0 is ontextdependent and erases type information from a term only if that term does not our in atype; otherwise it leaves the term unhanged. Clearly a new type assignment ube an bede�ned starting from E 0. This ube is isomorphi to the typed one, in the sense that everytype assignment system de�ned in it is isomorphi to the typed system in the orrespondingvertex of Barendregt's ube.1 Two CubesWe will present a strati�ed version of the systems in Barendregt's ube, already presentedin [1℄, whih will allow both the de�nition of the erasing funtion E and of the related ubeof type assignment systems.1.1 The Cube of Typed SystemsDe�nition 1.1.1 The sets of typed �-terms (�t), typed onstrutors (Const) and typed kinds(Kindt) are mutually de�ned by the following grammar, where M;� and K are metavariablesfor terms, onstrutors and kinds respetively:M ::= x j �x:�:M j MM j ��:K:M j M�� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tt of typed terms is the union of the sets �t, Const and Kindt.Notational onventions: In this paper, a term will be an (un)typed �-term, a onstrutor,a kind, or a sort. The symbols M , N , P , Q, : : : range over (un)typed �-terms; �, , �, �,� , : : : range over onstrutors; K ranges over kinds; s ranges over the set of sorts, that isf�;2g; A, B, C, D, : : : range over arbitrary terms; x, y, z, : : : range over �-term-variables;�, �, , : : : range over onstrutor-variables; a, b, ; : : : range over �-term-variables andonstrutor-variables; and � ranges over ontexts. All symbols an appear indexed. Thesymbol � denotes the syntati identity of terms.The notions of free and bound variables and of a subterm of a term are de�ned as usual,i.e. in �a:A:B and �a:A:B the variable a is onsidered bound, and the sope of the binding isB. Free variables of A remain free in �a:A:B and �a:A:B, and the subterms of these termsinlude all subterms of A and B. The set of subterms of A is denoted by ST(A), and the setof free variables of A is denoted by FV(A). We will onsider terms modulo �-onversion, i.e.we identify terms that di�er only in the names of bound variables. Let D[A1=a1; : : : ; An=an℄denote the result of simultaneously substituting Ai to ai in D (1 � i � n). We normallyassume that no variable bound in D is free in any of the Ai's, and that the set fa1; : : : ; angis disjoint from the set of bound variables of D.

De�nition 1.1.2 Beta-redution (denoted as !!�) is de�ned as usual, i.e. as the ontextualreexive and transitive losure of the redution rule (�a:A:B)C !� B[C=a℄. The symbol =�denotes beta-onversion, i.e. the least equivalene relation generated by !!�.De�nition 1.1.3 i) A statement is an expression of the form: M : �, � : K, or K : 2, whereM is a typed �-term, � is a onstrutor, and K is a kind. The left part of the statement isalled the subjet, while the right part is alled the prediate. A delaration is a statementwhose subjet is a variable.ii) A ontext is a sequene of delarations, whose subjets are distint. The empty on-text is denoted by <>. We write a:A 2 �, if a:A ours in �. The domain of �,denoted by Dom (�), is the set fa j 9A [a:A 2 �℄g. If �1 and �2 are ontexts suh thatDom (�1)\Dom (�2) = ;, then �1, �2 is a ontext obtained by onatenating �1 to �2.The set of free variables in a ontext is de�ned by: FV(�) = Sa:A2� FV(A).De�nition 1.1.4 Barendregt's general typed system. The following rules are used to derivejudgements of the form � `t A : B, where � is a ontext and A : B is a statement. The typeassignment rules an be divided in four groups, depending of the subjets of the statements:i) Common rules(Proj) � `t A : s a 62 Dom (�)�; a:A `t a : A (Weak) � `t A : B � `t C : s 62 Dom (�)�; :C `t A : B(Conv) � `t A : B � `t C : s B =� C� `t A : Cii) Typed term rules(I) �; x:� `t M : � `t �x:�:M : �x:�: (E) � `t M : �x:�: � `t N : �� `t MN : [N=x℄(IK) �; �:K `t M : �� `t ��:K:M : ��:K:� (EK) � `t M : ��:K:� � `t : K� `t M : �[=�℄iii) Construtor rules(C{IC) �; x:� `t : K� `t �x:�: : �x:�:K (C{EC) � `t : �x:�:K � `t M : �� `t M : K[M=x℄(C{IK) �; �:K1 `t : K2� `t ��:K1: : ��:K1:K2 (C{EK) � `t � : ��:K1:K2 � `t : K1� `t � : K2[=�℄(C{FC) �; x:� `t : �� `t �x:�: : � (C{FK) �; �:K `t � : �� `t ��:K:� : �

iv) Kind rules(Axiom) <> `t � : 2 (K{FC) �; x:� `t K : 2� `t �x:�:K : 2(K{FK) �; �:K1 `t K2 : 2� `t ��:K1:K2 : 2Lemma 1.1.5 Barendregt's general typed system derives judgements of the followingshapes: � `t M : �, � `t � : K, or � `t K : 2.If � `t M : � for a typed �-term M , then � `t � : � (see [1℄), and � is alled a type, orto be more preise: a type with respet to the ontext �. We write D: � `t A : B when Dis a derivation for the judgement � `t A : B, and D0 � D means that D0 is a subderivationof D.De�nition 1.1.6 i) Let the following sets of rules be de�ned by:Base Rules = f(Axiom), (Proj), (Weak), (I), (E), (C{FC)g,Polymorphism = f(IK), (EK), (C{FK)g,Dependenies = f(C{IC), (C{EC), (K{FC), (Conv)g,Higher Order = f(C{IK), (C{EK), (K{FK), (Conv)g.ii) The eight typed systems in the Barendregt's ube an be represented by the set ofderivation rules used in eah system; they an be represented as verties of the followingube: �! = BaseRules�! = �![HigherOrder�2 = �![Polymorphism�! = �2 [HigherOrder�P = �![Dependenies�P! = �! [Dependenies�P2 = �2 [Dependenies�P! = �! [Dependenies �!
6

-����> �!
6

-
�2 -����> �! -

�P����>
6 �P!

6�P2����>�P!

Let S be one of these eight systems. We write � `S A : B to indiate that � `t A : Ban be derived using only the rules for S.The properties of this ube are studied in [1, 8℄.

1.2 The Cube of Type Assignment SystemsIn this subsetion we will present the ube of type assignment systems as was �rst presentedin [10℄. The de�nition of the type assignment ube is based on the de�nition of an erasingfuntion E that erases all type information from the typed terms. In fat, both the syntaxof terms, and the rules of our type assignment systems are obtained diretly from the orre-sponding syntax and rules of the typed systems, by applying a type erasure operation E, tobe de�ned below. Note that, sine terms an our in both onstrutors and kinds, E anmodify all typed objets. From now on, we will reserve the name typed systems (TS) for thesystems of Barendregt's ube and we reserve the expression type assignment systems (TAS)for the systems to be de�ned below.De�nition 1.2.1 The sets of untyped �-terms (�), onstrutors (Cons) and kinds (Kind)are mutually de�ned by the following grammar, where M;�, and K are metavariables forterms, onstrutors and kinds respetively.M ::= x j �x:M j MM� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tu of untyped terms is the union of the sets �, Cons and Kind.Given the syntax of untyped terms, the following de�nition of E is natural: it erases alltype information from typed �-terms, also when they our inside onstrutors or kinds.De�nition 1.2.2 The erasing funtion E : Tt ! Tu is de�ned as follows:E (a) = a.E (AB) = if B 2 Const then E (A) else E (A)E (B).E (�a:A:B) = �a:E (A):E (B).E (�a:A:B) = if B 2 �t then if A 2 Kindt then E (B) else �a:E (B)else �a:E (A):E (B).The erasing funtion is extended to ontexts in the obvious way, and we write E (�). Thenotions of free variable and subterm are similar to their `fully typed' ounterparts.De�nition 1.2.3 Beta redution on untyped terms an no longer be de�ned using a singlegeneri rule as in De�nition 1.1.2. Instead, we have the following three rules:(�x:�:)M !� [M=x℄; (��:K:�) !� �[=�℄; and (�x:M)N !� M [N=x℄:De�nition 1.2.4 General type assignment system (TAS) The rules of the general type as-signment system (TAS) are used to derive judgements of the form � ` A : B, where � is aontext and A : B is a statement, and a statement is de�ned as in the typed ase, using thesyntax for untyped terms. The rules are:

i) The ommon rules, and the onstrutor and kind rules of TS, where `t is replaed by` , taking into aount both the di�erene in syntax, and that the rule (Conv) nowrefers to the untyped redution;ii) The following term rules:(I) �; x:� ` M : � ` �x:M : �x:�: (E) � ` M : �x:�: � ` N : �� ` MN : [N=x℄(IK) �; �:K ` M : �� ` M : ��:K:� (EK) � ` M : ��:K:� � ` : K� ` M : �[=�℄The notion of derivation and subderivation for a judgement are the same as for TS andan analogue of Lemma 1.1.5 also holds. As before, a type is a onstrutor of kind � (andagain this is a ontext-dependent property). A �-term M is typable if there are a ontext �,and a onstrutor � suh that � ` M : �. (We prove in Setion 2 that then � is a type.)As in [10℄, we an distinguish eight di�erent type assignment systems, de�ned using thesame olletion of rules given in De�nition 1.1.6 (i) for the TS ube. These systems an berepresented as verties of the following ube:F1 = BaseRulesF 0 = F1 [HigherOrderF2 = F1 [PolymorphismF! = F2 [HigherOrderDF1 = F1 [DependeniesDF 0 = F 0 [DependeniesDF2 = F2 [DependeniesDF! = F! [Dependenies F1
6

-����> F 0
6

-
F2 -����>F! -

DF1����>
6 DF 0

6DF2����>DF!

Let S denote one of the eight systems in this ube. Like for the TS we will write � `S A : Bto indiate that � ` A : B an be derived using only the rules for S. Notie that in theleft-hand side of the ube, both onstrutors and kinds oinide with the typed one, beausethere they annot depend on terms. This is no longer true in the right-hand side: forexample, we an build onstrutors like (�x:�:)N , where N is an untyped �-term. Thesystem F1 orresponds to the well-known Curry type assignment system, whereas F2 is thetype assignment version of �2, whih is essentially Girard's system F [11℄.2 Basi properties of TASIn this setion, we will prove that all the systems in TAS ube have good omputationalproperties; the subjet redution property, the Churh-Rosser property and strong normal-

ization of typable terms will be shown. To prove these results we need more de�nitions andtehnial lemmas, stating properties of the systems, some of whih are of interest in theirown.The following proposition states that every term, typable by � or 2, an not be typableby both, and guarantees onsisteny of the system.Proposition 2.1 For every ontext � term A, and sorts s1, s2: if � ` A : s1 and � ` A : s2,then s1 � s2.De�nition 2.2 We de�ne the following relations on ontexts:i) � v �0 () � is a pre�x of �0.ii) The relation v� is indutively de�ned as follows:a) <> v� �,b) If � v� �0, then �; a:A v� �0; a:A.) If � v� �0, then � v� �0; a:A.Theorem 2.3 Churh-Rosser. If A !!� A0 and B !!� B0, then there exists C suh thatA0 !!� C and B0 !!� C.Proof: In the terminology of Klop [13℄, our beta redution is a regular ombinatory redu-tion system, and thus the Churh-Rosser property follows from Theorem II.3.11 in [13℄.The following lemmas an be proved by easy indution on the struture of derivations.Lemma 2.4 i) If � v� �0, and � ` A : B, then FV(A) [FV(B) � Dom (�), and �0 ` A : B.ii) Let B 2 ST(A). If D: � ` A : C, then there exist �0, E and D0 � D, suh that D0:�0 ` B : E.iii) If �1; :C, �2 ` A : B, and �1 ` D : C, then �1, �2[D=℄ ` A[D=℄ : B[D=℄.The following lemma formulates a basi property of judgements: all prediates in deriv-able statements are typable.Lemma 2.5 i) If � ` E : F , then F � 2 or � ` F : s.ii) If � ` M : � then � ` � : �, i.e. � is a type with respet to the ontext �.The following lemma is the key lemma for the proof of the subjet redution theorem.It states that ontexts an be onsidered modulo �-onversion of prediates, and that a typefor a term �x:M an always be obtained using a derivation that ends with the rule (I).Lemma 2.6 i) Let �1; a:A;�2 ` B : C. Then �1; a:A0;�2 ` B : C, for all A0 suh that�1 ` A0 : s and A=�A0.ii) If � ` �x:M : �x:�: , then �; x:� ` M : .

Proof: i) By indution on the struture of the derivation.ii) A judgement � ` (�x:M) : � an be provable only if � =� Qki=1 �i:Ki:�x:�0: 0, for someK1; : : : ; Kk; �0; 0, suh that �; �1:K1; : : : ; �k:Kk; x:�0 ` M : 0. (This an be proved byindution on derivations, using Lemma 2.4(iii).) Thus, �x:�: =� Qki=1 �i:Ki:�x:�0: 0,and sine these two expressions have a ommon redut, it must be that k = 0 and that� =� �0 and =� 0. So �; x:�0 ` M : 0, and thus �; x:� ` M : follows from part (i)and rule (Conv).Theorem 2.7 Subjet Redution for Terms. If � ` M : and M !� N then � ` N : .Proof: By indution on the de�nition of!�. The main ase isM � (�x:P)Q andN � P [Q=x℄,the others follow by indution. Let D be a derivation for � ` M : . It is not diÆult to seethat D has the following struture: ...�0 ` (�x:P) : �x:�0: 0 ...�0 ` Q : �0D1: (E)�0 ` (�x:P)Q : 0[Q=x℄...D: � ` (�x:P)Q : That is, there is a subderivation D1, ending with an appliation of rule (E), whih is fol-lowed by a (possibly empty) sequene of appliations of the not syntax-direted rules (Proj),(Weak), (Conv), (IK) and (EK). By Lemma 2.6(ii) we obtain: �0; x:�0 ` P : 0. Sine also�0 ` Q : �0, by Lemma 2.4(iii) we obtain �0 ` P [Q=x℄ : 0[Q=x℄. Apply the same rules asused to go from D1 to D to obtain � ` P [Q=x℄ : .An important property of the type assignment systems is strong normalization of typableterms; this is already known to hold for the systems F!, F1, F2, and F 0 (see [10℄). Usingthis result, we will show that it also holds for the other four systems of the ube of typeassignment systems. To ahieve this, we use the funtion ED that `erases dependenies' asde�ned in [10℄. For the behaviour of the funtion ED on beta redexes, there are the followingpossibilities:i) ED ((�x:M)N) = (�x:ED (M))(ED (N))ii) ED (M [N=x℄) = ED (M)[ED (N)=x℄;iii) ED ((��:K:�)) = (��:ED (K):ED (�))(ED ())iv) ED (�[=�℄) = ED (�)[ED ()=�℄;v) ED ((�x:�:)M) = ED ();vi) ED ([M=x℄) = ED ().That is, A !� B implies either ED (A) !� ED (B) or ED (A) � ED (B).

Theorem 2.8 Termination If � ` A : B then A is strongly normalizing.Proof: In [10℄, Theorem 2.2.1 states that if � ` A : B is a derived judgement in DF! (DF1,DF2, DF 0), then ED (�) ` ED (A) : ED (B) is derivable in F! (F1, F2, F 0). Suppose nowthat A � A0 !� A1 !� A2 !� . . . is a sequene of beta redutions. By the propertymentioned above, for every i � 1, either ED (Ai) !� ED (Ai+1), or ED (Ai) � ED (Ai+1).Suppose the sequene A0 !� A1 !� A2 !� . . . is in�nite. Sine beta redution in F!(F1, F2, F 0) is strongly normalizing, there is an n suh that ED (Aj) � ED (Aj+1), forevery j � n. So from step n, every step in the in�nite sequene A0 !� A1 !� A2 !� . . .orresponds to a redution of a `bad' redex of the form (�x:�:)M . However, sine M isan untyped term, suh a redution annot reate new `bad' redexes. Thus the number ofredexes must derease after every step, and our redution an not be in�nite.3 The relation between TS and TASIn this setion we will fous on the relation between Barendregt's ube and the ube oftype assignment systems. First we introdue the notions of onsisteny, similarity, andisomorphism between typed systems and type assignment systems.De�nition 3.1 Let St and Su be systems in orresponding verties of TS and TAS ube.i) St and Su are onsistent if �t `St At : Bt implies E (�t) `Su E (At) : E (Bt).ii) St and Su are similar if they are onsistent and, moreover, � `Su A : B implies thatthere exists �t, At, and Bt satisfying �t `St At : Bt and E (�t) = �, E (At) � A, andE (Bt) � B.iii) Let Der t and Der u be the set of all the derivations in St and Su. St and Su are isomorphiif and only if there are : F : Der t!Der u and G: Der u!Der t suh that:a) If Dt: � `St A : B then F(Dt) : E (�) `Su E (A) : E (B).b) FÆG and GÆF are the identity on Der t and Der u respetively.) Both F and G preserve the struture of the derivations, (i.e. the tree obtained fromthe derivation by erasing all the judgements but not the names of the rules).The de�nition of isomorphism between two systems was already given in [10℄, but in aless general way. Two systems are isomorphi aording to the de�nition in [10℄, if they areisomorphi in the sense of the preeding De�nition, and moreover, the funtion F is suhthat F (Dt) is obtained from Dt by applying the erasing funtion to all terms in Dt; by abuseof notation, we denote F (Dt) by E (Dt). The following Proposition proves that the twonotions of isomorphism oinide, in ase of the TAS ube:Proposition 3.2 Let St and Su be systems in orresponding verties of TS and TAS uberespetively, and suppose they are isomorphi through the funtions F and G. Then forevery typed derivation Dt, F(Dt) = E (Dt).The following results are taken from [10℄:

Theorem 3.3 Let St and Su be systems in orresponding verties of TS and TAS ube.i) St and Su are onsistent.ii) If St and Su do not ontain Dependenies as subset of their sets of rules, then St and Suare isomorphi.iii) If the assumption of (ii) is not satis�ed, then St and Su are not isomorphi.Proof: See [10℄. The proof uses the following properties of the erasing funtion:i) E (A[B=a℄) � E (A)[E (B)=a℄;ii) If A !!� C, then E (A) !!� E (C).After the negative result of Theorem 3.3(iii), it is natural to ask if the orrespondingsystems in the TS and TAS ubes are at least similar. Suh a onjeture was already statedin [10℄. This property holds only for the systems without polymorphism, as will be shownin Theorem 3.7, namely, for DF1 versus �P, and for F 0 versus �!. Adding polymorphismmakes a di�erene: the systems with both polymorphism and dependenies are not similar.Theorem 3.4 Let St be either �P2 or �P!, and let Su be respetively DF2 and DF!.Then St and Su are not similar.Proof: As a ounterexample, we show a derivable judgement of DF2, that annot be ob-tained as an erasure of any derivable judgement in �P!. In this proof, for reasons of read-ability, we will use the notation A!B for �a:A:B, when a does not our in B. Let �0denotes a ontext onsisting of the following delarations:(type variables) �:�; �:�; :�; Æ:�,(onstrutor variable) �:(�!�),(term variables) u:(��:�:((�!�)!�)!�), x:�; y:; z:Æ,and let M;M0;M1 denote respetively the following untyped �-terms:M � u(�f:x); M0 � u(�f:Kx(fy)); and M1 � u(�f:Kx(fz))where the symbol K denotes the term (�xy:x). Clearly, both M0 and M1 beta-redue to M ,and all these terms an orretly be assigned the type � in the ontext �0. Thus, one anderive: �0 ` �M0!� : � and �0 ` �M1 : �and this means that the ontext �= �0; p:�M0!�; q:�M1 is legal. With help of rules (Proj)and (Conv), one an easily derive: � ` pq : �.The above judgement annot be obtained as an erasure of any judgement �0 ` N : � derivablein �P2 or �P!, (i.e. one annot have E (�0) = �, E (N) � pq, and E (�) � �). Assume theopposite. First note that � � �, sine no terms our in �. (The erasing funtion an onlymodify types ontaining ourrenes of terms, in whih ase the results must also ontain

terms.) Similarly, �0 may di�er from � only in the delarations of p and q, whih must be ofthe form: p:�M 00!� and q:�M 01where E (M 00) � M0 and E (M 01) � M1. Without loss of generality (see Theorem 2.8), wean assume that M 00 and M 01 are normal forms. We an also assume that N is of theform PQ, where E (P) � p and E (Q) � q (otherwise we onsider an appropriate subtermof N instead). Sine P is applied to Q, and the type of PQ is �, P must have a typeof the form �M 000 ! �, where E (M 000) � M0, and Q must have a type of the form �M 001 ,where E (M 001) � M1. In order to make the appliation well-typed (after a possible series ofappliations of rule (Conv)), it must be the ase that M 000 =� M 001 .It follows that we have beta-onvertible terms M 000 , M 001 , whih erase to M0 and M1, respe-tively, and both are of type �. Without loss of generality, we an assume that these termshave no beta-redexes involving polymorphi abstration/appliation, and thus we may write:M 000 � u(�f :!:K0x(fy)) M 001 � uÆ(�f :Æ!Æ:K1x(fz))where K0 and K1 are suh that E (K0) � K and E (K1) � K. The types of f used in theabove are fored by the appliations fy and fz. Note that the type of f may not be externallyquanti�ed, beause of the type of the polymorphi variable u. The normal forms of theseterms are as follows: M 000 redues to u(�f :!:x), while M 001 redues to uÆ(�f :Æ!Æ:x). Butthese normal forms are di�erent, and this ontradits the previous laim that M 000 =� M 001 .The ause of the phenomenon demonstrated in the last proof, is the polymorphi variable.If polymorphism is not permitted, we an prove that the orresponding TS and TAS aresimilar. This requires a sequene of lemmas. In what follows, the symbol ` denotes `S ,for S 2 fF1, F 0, DF1, DF 0g, while `t refers to the orresponding TS systems, i.e. weonsider only systems without polymorphism.Lemma 3.5 i) Suppose � `t B1 : A and � `t B2 : A, and let both B1 and B2 be normalforms. If E (B1) � E (B2) then B1 � B2.ii) Let � `t B1 : A and � `t B2 : A. If E (B1) =� E (B2), then B1 =� B2.Proof: i) By indution on the struture of B1.ii) Easy, using part (i).Lemma 3.6 Suppose that � ` A : B. Then the following onditions hold:i) There exists a typed ontext �t, and typed terms At, Bt satisfyingE (�t) = �, E (At) � Aand E (Bt) � B, and suh that �t `t At : Bt.ii) For every typed ontext �t, and every typed term Bt satisfying E (�t) = �, E (Bt) � Band �t `t Bt : s, there exists a typed term At, suh that �t `t At : Bt, and E (At) � A.Proof: Parts (i) and (ii) an be proven by mutual indution on the struture of derivations.

Theorem 3.7 Let St be a TS system whose set of rules does not ontain Polymorphism assubset, and let Su be the orresponding TAS system. Then St and Su are similar.Proof: By Lemma 3.6.4 How to obtain an isomorphismIn this setion we show that it is possible to de�ne another erasing funtion (whih looks lessnatural), named E 0, that gives rise to a seond type assignment ube TAS0 whih is isomor-phi to the TS ube. The main di�erene between E and E 0 is that, while E always erasestype information in terms, E 0 is ontext dependent and erases type information from a termonly if that term does not our in a type; otherwise it leaves the term unhanged. So the dif-ferene between TAS0 and TAS is that dependent types of TAS0 ontain ourrenes of typed�-terms rather than untyped �-terms. The systems without Dependenies oinide exatlywith the orresponding systems in the TAS ube. Also, either with Dependenies or without,the provable judgements are the same as long as their subjets are either onstrutors orkinds.De�nition 4.1 The TAS 0 Cube. i) The untyped and typed terms, typed onstrutors andtyped kinds are de�ned as before (De�nitions 1.1.1 and 1.2.1). Let T 0u be the union ofthe sets �; Const and Kindt.ii) The new erasing funtion E 0: Tt!T 0u is de�ned as follows:a) E 0(M) = E (M).b) E 0(�) = �.) E 0(K) = K.iii) Let M range over �, and A;B, and � range over Tt. The general type assignment systemindued by E 0 (TAS0) proves judgements of the following form:� `0 M : � and � `t A : B, where A 62 �t.iv) The type assignment rules are:a) All the rules used for TS.b) The rules (I), (IK), and (EK) of TAS (where ` should be replaed by `0).) The rules:(Proj0) � `t � : � x 62 Dom (�)�; x:� `0 x : � (Weak0) � `0 M : � � `t A : s a 62 Dom (�)�; a:A `0 M : �(Conv0) � `0 M : � � `t : � � =� � `0 M : (E0) � `0 M : �x:�: � `t N : �� `0 M(E 0(N)) : [N=x℄v) As in De�nition 1.1.6(i), the rules an be grouped in sets. All the olletions are asbefore, with the exeption of (with abuse of notation): Base Rules = f(Axiom), (Proj),(Weak), (I), (E), (C{FC), (Proj0), (Weak0), (E 0)g, Again eight type assignment systems

an be de�ned, whose relationships an be represented as before by drawing a ube. Asystem in this ube and one in the TS-ube are orresponding if the names for the set ofrules allowed for these systems are exatly the same.The main result on the relationship between the TS ube and the TAS0 ube is:Theorem 4.2 Let St be any typed system in the TS ube, and let Su be the orrespondingsystem in the TAS0 ube. Then St and Su are isomorphi.Proof: The funtion F : Der t!Der u an be de�ned by indution on the struture ofD 2 Der t in the following way:i) If Dt: � `t A : B and A 62 �t, then F(Dt) = Dt.ii) If the last rule of Dt is (E), i.e.:Dt: D1 : � `t M : �x:�: � `t N : �� `t MN : [N=x℄ (E)then F(D1): E 0(�) `0 E 0(M) : E 0(�x:�:). Sine E 0(�) = � and E 0(�x:�:) � �x:�: ,we an de�ne: F(D): � `0 E 0(M) : �x:�: � `t N : �� `0 E 0(M)E 0(N) : [N=x℄ (E 0)iii) if the last rule is one of the other not mentioned, the de�nition of F is given by straight-forward indution.The de�nition of G is left to the reader. It is easy to verify that these two funtions realizean isomorphism between the orresponding systems in the two ubes.While the de�nition of the erasing funtion E 0 is (relatively) easy, the de�nition of therelated ube is very involved. This is a onsequene of the fat that, for systems withdependenies, the derivations are not ompositional. Namely if Dt is a derivation and D0t isa subderivation of Dt that ends with a judgement of the form � `t M : �, for M 2 �t, thenD0t need not be a valid derivation; this is beause E 0 has a ontext dependent behaviour.This is the prie we paid for reahing the isomorphism with the typed systems.5 ConlusionsThis paper, together with [10℄, an be seen as the �rst attempt to study type assignmentsystems with dependent types. In fat all the systems in the dependenies free part ofthe ubes TAS and TAS0 have been extensively studied in the literature. The only typeassignment system with dependent types already de�ned in the literature is the system ��of Dowek [7℄. Stritly speaking, this is not a type assignment system in the usual sense.There are no derived judgements, instead, a valid judgement of �� is de�ned as one of

the form E 0(�) `0 E 0(A) : E 0(B), where � `t A : B is a valid judgement of �P. So Dowek'ssystem is equivalent to the system orresponding to �P in the TAS0 ube. For this system,the type heking problem was shown to be undeidable in [7℄. The method of proof of theundeidability is however appliable for all our systems with dependenies. We showed thatall the systems with dependenies we de�ned enjoy good omputational properties, and wefoused our attention in partiular on the relationship between typed and type assignmentsystems. A further step an be made by looking for a type assignment ounterpart to theGeneralised Type Systems, as de�ned in [1, 2, 3℄.Referenes[1℄ Barendregt, H.P., Lambda Caluli with Types, Handbook of Logi in Computer Siene, Abramsky,Gabbai, Maibaum eds., Oxford University Press, 1991.[2℄ Barendregt, H.P., Introdution to Generalised Type Systems, Journal of Funtional Programming, vol-ume 1(2), 125{154, 1991.[3℄ Berardi, S., Towards a Mathematial Analysis of Type Dependene in Coquand{Huet Calulus of Con-strutions and the Other Systems in Barendregt's Cube, Department of Computer Siene, CMU, andDipartimento di Matematia, Torino, 1988.[4℄ Curry, H.B., Modi�ed Basi Funtionality in Combinatory Logi, Dialetia, 1969.[5℄ Coquand, T., Metamathematial Investigations of a Calulus of Construtions, Logi and ComputerSiene, Odifreddi ed., Aademi Press, 91{122, 1990.[6℄ Coquand, T. and Huet, G., The Calulus of Construtions, Information and Computation, 76(2,3),95{120, 1988.[7℄ Dowek, G., The Undeidability of Typability in the Lambda-Pi-Calulus, Pro. Typed Lambda Caluliand Appliations, LNCS 664, 139{145, 1993.[8℄ Geuvers, H. and Nederhof, M., Modular Proof of Strong Normalization for the Calulus of Construtions,Journal of Funtional Programming, 1(2), 155{189, 1991.[9℄ Giannini, P. and Ronhi Della Roa, S., Charaterization of Typings in Polymorphi Type Disipline,Pro. Logi in Computer Siene, IEEE, 61{70, 1988.[10℄ Giannini, P., Honsell, F. and Ronhi Della Roa, S., Type Inferene: Some Results, Some Problems,Fundamenta Informatiae, 19(1,2), pp.87{126, 1993.[11℄ Girard, J.Y., The System F of Variable Types, Fifteen Years Later, Theoretial Computer Siene, 45,159{192, 1987.[12℄ Harper, B., Honsell, F. and Plotkin, G., A Framework for De�ning Logis, Journal of the ACM, 40,1993.[13℄ Klop, J. W., Combinatory Redution Systems, PhD-thesis, Rijksuniversiteit Utreht, 1980.[14℄ Leivant, D., Polymorphi Type Inferene, In Symposium on Priniples of Programming Languages,ACM, 88{98, 1983.[15℄ Reynolds, J.C., Towards a Theory of Type Strutures,Pro. Paris Colloquium on Programming, SpringerVerlag, 408{425, 1974.

