
Comparing CubesSte�en van Bakel1� Luigi Liquori2y Simona Ron
hi della Ro

a2Pawe l Urzy
zyn3z1 Afdeling Informati
a,Universiteit Nijmegen,Toernooiveld 1,6525 ED Nijmegen, Nederland.E-mail: ste�en�
s.kun.nl. 2 Dipartimento di Informati
a,Universit�a degli Studi di Torino,Corso Svizzera 185,10145 Torino, Italia.E-mail: fliquori, ron
hig�di.unito.it. 3 Instytut InformatykiUniwersytetu Warszawskiego,ul. Bana
ha 2,02-097 Warszawa, Polska.E-mail: urzy�mimuw.edu.pl.Abstra
tWe study the
ube of type assignment systems, as introdu
ed in [10℄. This
ube is obtained fromBarendregt's typed �-
ube [1℄ via a natural type erasing fun
tion E, that erases type informationfrom terms. We prove that the systems in the former
ube enjoy good
omputational properties,like subje
t redu
tion and strong normalization. We study the relationship between the two
ubes,whi
h leads to some unexpe
ted results in the �eld of systems with dependent types.Introdu
tionTypes
an be used as predi
ates for terms of �-
al
ulus in two di�erent ways. Terms
an bedire
tly de
orated with types, and then every term
omes dire
tly with a unique, intrinsi
type. In this fully typed approa
h, a typed system is a set of rules for proving judgements ofthe shape �t `t Mt : �t, where Mt is a typed term, �t is a type, and �t is a
ontext. Themeaning of su
h a judgement is: the term Mt has type �t under the
ontext �t, that
ontainsthe types of the free variables of Mt and �t. Alternatively, in the type assignment approa
h,types
an be assigned to terms of the untyped �-
al
ulus by applying type assignment rules.A type assignment system is a set of rules for proving judgements of the shape � ` M : �,where M is a term of the untyped �-
al
ulus, and � assigns types to the free variables of Mand �. The meaning of su
h a judgement is: the term M has type � under the
ontext �,
ontaining the types of free variable of M and �. In this approa
h, ea
h term has in�nitelymany typings.The typed approa
h,
alled �a la Chur
h by Barendregt, gives rise to di�erent typedlanguages. In these languages terms are de
orated with types in di�erent ways. Examples oftyped �-
al
uli are the simply typed one, the se
ond order �-
al
ulus of Girard and Reynolds�Supported by the Netherlands Organisation for the Advan
ement of Pure Resear
h (N.W.O.).yPartly supported by HCM proje
t No. ERBCHRXCT920046 \Typed Lambda Cal
ulus"zPartly supported by grants NSF CCR{9113196, KBN 2 1192 91 01 and by a grant from the Commission of TheEuropean Communities ERB{CIPA{CT92{2266(294).

[11, 15℄, and the
al
ulus of
onstru
tions [5, 6℄. Barendregt [1℄ gave a
ompa
t and appealingpresentation of a
lass of typed systems, arranging them in a
ube. In this
ube, every vertexrepresents a di�erent typed system. One vertex is the origin and represents the simplytyped �-
al
ulus of Chur
h; the edges represent the introdu
tion of some new rules of typeformation, namely Polymorphism, Higher Order and Dependen
ies. This three-dimensionalstru
ture allows for a deep
omparative analysis of di�erent typed �-
al
uli.It is well known (see [10, 12℄) that some of the type assignment systems already knownin the literature
an be also de�ned through an erasing fun
tion that erases type informationfrom terms in a typed system. For those systems, if Dt is a typed derivation of � `t Mt : �,and E is the erasing fun
tion, then by applying E to every judgement in Dt, a valid typeassignment derivation proving the judgement � ` E (Mt) : � is obtained, where E (Mt) isa term of the untyped �-
al
ulus. Vi
e versa, every type assignment derivation
an beviewed as the result of the appli
ation of E to a typed one. In parti
ular, the erasingfun
tion E indu
es an isomorphism between every typed system on the dependen
y-free sideof Barendregt's
ube and a
orresponding type assignment system. For instan
e, the simplytyped �-
al
ulus is isomorphi
 to the Curry type assignment system, the se
ond order lambda
al
ulus to the polymorphi
 type assignment system, and the higher order �-
al
ulus to thehigher order type assignment system. These
orresponden
es were independently de�ned byCurry [4℄, Leivant [14℄, and Giannini and Ron
hi [9℄, but the indu
ed erasing fun
tion is thesame in all
ases. In [10℄ the erasing fun
tion was extended in a natural way to all typedsystems in Barendregt's
ube, in
luding the systems with dependent types, as studied in[3, 12℄. The essential di�eren
e is that the domain of E was extended to in
lude types too,sin
e terms
an o

ur in types.This erasing fun
tion indu
es a
ube of type assignment systems. Namely, for everytyped system St in Barendregt's
ube, there is a
orresponding type assignment system S,whose rules are obtained from the ones of St via the extended erasing fun
tion E. Note that,in this setting, if �t `t Mt : �t is a typed judgement, the
orresponding type assignmentjudgement is E (�t) `t E (Mt) : E (�t), where now E (�t)
an be di�erent from �t (E (�t)from �t), in
ase �t is a dependent type (�t
ontains dependent types). This
ube is a
ompa
t presentation of a
lass of type assignment systems, whi
h partially
oin
ide withknown ones (in the side of the
ube without dependen
ies) and partially represents the �rstattempt of de�ning type assignment systems with term-dependen
ies. It was also observedin [10℄ that, surprisingly, the isomorphism between derivations in the
orresponding verti
esof typed and type assignment
ubes is no longer true in presen
e of dependen
ies. Then thenatural question arises: what is the relation between the two
ubes? The authors of [10℄
onje
tured that the relation is an isomorphism between judgements rather than derivations,that is, a judgement � ` M : � is true in one of the type assignment systems if and only if,in the
orresponding typed system, a judgement �t `t Mt : �t
an be proved su
h that E (�t)= �, E (Mt) � M and E (�t) � �.In this paper we disprove this
onje
ture, showing that it is true only for the systemswithout polymorphism. We also give a deep analysis of the type assignment
ube, showingthat the systems represented in it enjoy all the good properties we expe
t, like subje
tredu
tion and strong normalization of typable terms. Moreover, we de�ne a new erasing

fun
tion E 0, that
oin
ides with E when dependen
ies are not present. The main di�eren
ebetween E and E 0 is that, while E always erases type information in terms, E 0 is
ontextdependent and erases type information from a term only if that term does not o

ur in atype; otherwise it leaves the term un
hanged. Clearly a new type assignment
ube
an bede�ned starting from E 0. This
ube is isomorphi
 to the typed one, in the sense that everytype assignment system de�ned in it is isomorphi
 to the typed system in the
orrespondingvertex of Barendregt's
ube.1 Two CubesWe will present a strati�ed version of the systems in Barendregt's
ube, already presentedin [1℄, whi
h will allow both the de�nition of the erasing fun
tion E and of the related
ubeof type assignment systems.1.1 The Cube of Typed SystemsDe�nition 1.1.1 The sets of typed �-terms (�t), typed
onstru
tors (Const) and typed kinds(Kindt) are mutually de�ned by the following grammar, where M;� and K are metavariablesfor terms,
onstru
tors and kinds respe
tively:M ::= x j �x:�:M j MM j ��:K:M j M�� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tt of typed terms is the union of the sets �t, Const and Kindt.Notational
onventions: In this paper, a term will be an (un)typed �-term, a
onstru
tor,a kind, or a sort. The symbols M , N , P , Q, : : : range over (un)typed �-terms; �, , �, �,� , : : : range over
onstru
tors; K ranges over kinds; s ranges over the set of sorts, that isf�;2g; A, B, C, D, : : : range over arbitrary terms; x, y, z, : : : range over �-term-variables;�, �,
, : : : range over
onstru
tor-variables; a, b,
; : : : range over �-term-variables and
onstru
tor-variables; and � ranges over
ontexts. All symbols
an appear indexed. Thesymbol � denotes the synta
ti
 identity of terms.The notions of free and bound variables and of a subterm of a term are de�ned as usual,i.e. in �a:A:B and �a:A:B the variable a is
onsidered bound, and the s
ope of the binding isB. Free variables of A remain free in �a:A:B and �a:A:B, and the subterms of these termsin
lude all subterms of A and B. The set of subterms of A is denoted by ST(A), and the setof free variables of A is denoted by FV(A). We will
onsider terms modulo �-
onversion, i.e.we identify terms that di�er only in the names of bound variables. Let D[A1=a1; : : : ; An=an℄denote the result of simultaneously substituting Ai to ai in D (1 � i � n). We normallyassume that no variable bound in D is free in any of the Ai's, and that the set fa1; : : : ; angis disjoint from the set of bound variables of D.

De�nition 1.1.2 Beta-redu
tion (denoted as !!�) is de�ned as usual, i.e. as the
ontextualre
exive and transitive
losure of the redu
tion rule (�a:A:B)C !� B[C=a℄. The symbol =�denotes beta-
onversion, i.e. the least equivalen
e relation generated by !!�.De�nition 1.1.3 i) A statement is an expression of the form: M : �, � : K, or K : 2, whereM is a typed �-term, � is a
onstru
tor, and K is a kind. The left part of the statement is
alled the subje
t, while the right part is
alled the predi
ate. A de
laration is a statementwhose subje
t is a variable.ii) A
ontext is a sequen
e of de
larations, whose subje
ts are distin
t. The empty
on-text is denoted by <>. We write a:A 2 �, if a:A o

urs in �. The domain of �,denoted by Dom (�), is the set fa j 9A [a:A 2 �℄g. If �1 and �2 are
ontexts su
h thatDom (�1)\Dom (�2) = ;, then �1, �2 is a
ontext obtained by
on
atenating �1 to �2.The set of free variables in a
ontext is de�ned by: FV(�) = Sa:A2� FV(A).De�nition 1.1.4 Barendregt's general typed system. The following rules are used to derivejudgements of the form � `t A : B, where � is a
ontext and A : B is a statement. The typeassignment rules
an be divided in four groups, depending of the subje
ts of the statements:i) Common rules(Proj) � `t A : s a 62 Dom (�)�; a:A `t a : A (Weak) � `t A : B � `t C : s
 62 Dom (�)�;
:C `t A : B(Conv) � `t A : B � `t C : s B =� C� `t A : Cii) Typed term rules(I) �; x:� `t M : � `t �x:�:M : �x:�: (E) � `t M : �x:�: � `t N : �� `t MN : [N=x℄(IK) �; �:K `t M : �� `t ��:K:M : ��:K:� (EK) � `t M : ��:K:� � `t : K� `t M : �[=�℄iii) Constru
tor rules(C{IC) �; x:� `t : K� `t �x:�: : �x:�:K (C{EC) � `t : �x:�:K � `t M : �� `t M : K[M=x℄(C{IK) �; �:K1 `t : K2� `t ��:K1: : ��:K1:K2 (C{EK) � `t � : ��:K1:K2 � `t : K1� `t � : K2[=�℄(C{FC) �; x:� `t : �� `t �x:�: : � (C{FK) �; �:K `t � : �� `t ��:K:� : �

iv) Kind rules(Axiom) <> `t � : 2 (K{FC) �; x:� `t K : 2� `t �x:�:K : 2(K{FK) �; �:K1 `t K2 : 2� `t ��:K1:K2 : 2Lemma 1.1.5 Barendregt's general typed system derives judgements of the followingshapes: � `t M : �, � `t � : K, or � `t K : 2.If � `t M : � for a typed �-term M , then � `t � : � (see [1℄), and � is
alled a type, orto be more pre
ise: a type with respe
t to the
ontext �. We write D: � `t A : B when Dis a derivation for the judgement � `t A : B, and D0 � D means that D0 is a subderivationof D.De�nition 1.1.6 i) Let the following sets of rules be de�ned by:Base Rules = f(Axiom), (Proj), (Weak), (I), (E), (C{FC)g,Polymorphism = f(IK), (EK), (C{FK)g,Dependen
ies = f(C{IC), (C{EC), (K{FC), (Conv)g,Higher Order = f(C{IK), (C{EK), (K{FK), (Conv)g.ii) The eight typed systems in the Barendregt's
ube
an be represented by the set ofderivation rules used in ea
h system; they
an be represented as verti
es of the following
ube: �! = BaseRules�! = �![HigherOrder�2 = �![Polymorphism�! = �2 [HigherOrder�P = �![Dependen
ies�P! = �! [Dependen
ies�P2 = �2 [Dependen
ies�P! = �! [Dependen
ies �!
6

-����> �!
6

-
�2 -����> �! -

�P����>
6 �P!

6�P2����>�P!

Let S be one of these eight systems. We write � `S A : B to indi
ate that � `t A : B
an be derived using only the rules for S.The properties of this
ube are studied in [1, 8℄.

1.2 The Cube of Type Assignment SystemsIn this subse
tion we will present the
ube of type assignment systems as was �rst presentedin [10℄. The de�nition of the type assignment
ube is based on the de�nition of an erasingfun
tion E that erases all type information from the typed terms. In fa
t, both the syntaxof terms, and the rules of our type assignment systems are obtained dire
tly from the
orre-sponding syntax and rules of the typed systems, by applying a type erasure operation E, tobe de�ned below. Note that, sin
e terms
an o

ur in both
onstru
tors and kinds, E
anmodify all typed obje
ts. From now on, we will reserve the name typed systems (TS) for thesystems of Barendregt's
ube and we reserve the expression type assignment systems (TAS)for the systems to be de�ned below.De�nition 1.2.1 The sets of untyped �-terms (�),
onstru
tors (Cons) and kinds (Kind)are mutually de�ned by the following grammar, where M;�, and K are metavariables forterms,
onstru
tors and kinds respe
tively.M ::= x j �x:M j MM� ::= � j �x:�:� j ��:K:� j �x:�:� j ��:K:� j �� j �MK ::= � j �x:�:K j ��:K:KThe set Tu of untyped terms is the union of the sets �, Cons and Kind.Given the syntax of untyped terms, the following de�nition of E is natural: it erases alltype information from typed �-terms, also when they o

ur inside
onstru
tors or kinds.De�nition 1.2.2 The erasing fun
tion E : Tt ! Tu is de�ned as follows:E (a) = a.E (AB) = if B 2 Const then E (A) else E (A)E (B).E (�a:A:B) = �a:E (A):E (B).E (�a:A:B) = if B 2 �t then if A 2 Kindt then E (B) else �a:E (B)else �a:E (A):E (B).The erasing fun
tion is extended to
ontexts in the obvious way, and we write E (�). Thenotions of free variable and subterm are similar to their `fully typed'
ounterparts.De�nition 1.2.3 Beta redu
tion on untyped terms
an no longer be de�ned using a singlegeneri
 rule as in De�nition 1.1.2. Instead, we have the following three rules:(�x:�:)M !� [M=x℄; (��:K:�) !� �[=�℄; and (�x:M)N !� M [N=x℄:De�nition 1.2.4 General type assignment system (TAS) The rules of the general type as-signment system (TAS) are used to derive judgements of the form � ` A : B, where � is a
ontext and A : B is a statement, and a statement is de�ned as in the typed
ase, using thesyntax for untyped terms. The rules are:

i) The
ommon rules, and the
onstru
tor and kind rules of TS, where `t is repla
ed by` , taking into a

ount both the di�eren
e in syntax, and that the rule (Conv) nowrefers to the untyped redu
tion;ii) The following term rules:(I) �; x:� ` M : � ` �x:M : �x:�: (E) � ` M : �x:�: � ` N : �� ` MN : [N=x℄(IK) �; �:K ` M : �� ` M : ��:K:� (EK) � ` M : ��:K:� � ` : K� ` M : �[=�℄The notion of derivation and subderivation for a judgement are the same as for TS andan analogue of Lemma 1.1.5 also holds. As before, a type is a
onstru
tor of kind � (andagain this is a
ontext-dependent property). A �-term M is typable if there are a
ontext �,and a
onstru
tor � su
h that � ` M : �. (We prove in Se
tion 2 that then � is a type.)As in [10℄, we
an distinguish eight di�erent type assignment systems, de�ned using thesame
olle
tion of rules given in De�nition 1.1.6 (i) for the TS
ube. These systems
an berepresented as verti
es of the following
ube:F1 = BaseRulesF 0 = F1 [HigherOrderF2 = F1 [PolymorphismF! = F2 [HigherOrderDF1 = F1 [Dependen
iesDF 0 = F 0 [Dependen
iesDF2 = F2 [Dependen
iesDF! = F! [Dependen
ies F1
6

-����> F 0
6

-
F2 -����>F! -

DF1����>
6 DF 0

6DF2����>DF!

Let S denote one of the eight systems in this
ube. Like for the TS we will write � `S A : Bto indi
ate that � ` A : B
an be derived using only the rules for S. Noti
e that in theleft-hand side of the
ube, both
onstru
tors and kinds
oin
ide with the typed one, be
ausethere they
annot depend on terms. This is no longer true in the right-hand side: forexample, we
an build
onstru
tors like (�x:�:)N , where N is an untyped �-term. Thesystem F1
orresponds to the well-known Curry type assignment system, whereas F2 is thetype assignment version of �2, whi
h is essentially Girard's system F [11℄.2 Basi
 properties of TASIn this se
tion, we will prove that all the systems in TAS
ube have good
omputationalproperties; the subje
t redu
tion property, the Chur
h-Rosser property and strong normal-

ization of typable terms will be shown. To prove these results we need more de�nitions andte
hni
al lemmas, stating properties of the systems, some of whi
h are of interest in theirown.The following proposition states that every term, typable by � or 2,
an not be typableby both, and guarantees
onsisten
y of the system.Proposition 2.1 For every
ontext � term A, and sorts s1, s2: if � ` A : s1 and � ` A : s2,then s1 � s2.De�nition 2.2 We de�ne the following relations on
ontexts:i) � v �0 () � is a pre�x of �0.ii) The relation v� is indu
tively de�ned as follows:a) <> v� �,b) If � v� �0, then �; a:A v� �0; a:A.
) If � v� �0, then � v� �0; a:A.Theorem 2.3 Chur
h-Rosser. If A !!� A0 and B !!� B0, then there exists C su
h thatA0 !!� C and B0 !!� C.Proof: In the terminology of Klop [13℄, our beta redu
tion is a regular
ombinatory redu
-tion system, and thus the Chur
h-Rosser property follows from Theorem II.3.11 in [13℄.The following lemmas
an be proved by easy indu
tion on the stru
ture of derivations.Lemma 2.4 i) If � v� �0, and � ` A : B, then FV(A) [FV(B) � Dom (�), and �0 ` A : B.ii) Let B 2 ST(A). If D: � ` A : C, then there exist �0, E and D0 � D, su
h that D0:�0 ` B : E.iii) If �1;
:C, �2 ` A : B, and �1 ` D : C, then �1, �2[D=
℄ ` A[D=
℄ : B[D=
℄.The following lemma formulates a basi
 property of judgements: all predi
ates in deriv-able statements are typable.Lemma 2.5 i) If � ` E : F , then F � 2 or � ` F : s.ii) If � ` M : � then � ` � : �, i.e. � is a type with respe
t to the
ontext �.The following lemma is the key lemma for the proof of the subje
t redu
tion theorem.It states that
ontexts
an be
onsidered modulo �-
onversion of predi
ates, and that a typefor a term �x:M
an always be obtained using a derivation that ends with the rule (I).Lemma 2.6 i) Let �1; a:A;�2 ` B : C. Then �1; a:A0;�2 ` B : C, for all A0 su
h that�1 ` A0 : s and A=�A0.ii) If � ` �x:M : �x:�: , then �; x:� ` M : .

Proof: i) By indu
tion on the stru
ture of the derivation.ii) A judgement � ` (�x:M) : �
an be provable only if � =� Qki=1 �i:Ki:�x:�0: 0, for someK1; : : : ; Kk; �0; 0, su
h that �; �1:K1; : : : ; �k:Kk; x:�0 ` M : 0. (This
an be proved byindu
tion on derivations, using Lemma 2.4(iii).) Thus, �x:�: =� Qki=1 �i:Ki:�x:�0: 0,and sin
e these two expressions have a
ommon redu
t, it must be that k = 0 and that� =� �0 and =� 0. So �; x:�0 ` M : 0, and thus �; x:� ` M : follows from part (i)and rule (Conv).Theorem 2.7 Subje
t Redu
tion for Terms. If � ` M : and M !� N then � ` N : .Proof: By indu
tion on the de�nition of!�. The main
ase isM � (�x:P)Q andN � P [Q=x℄,the others follow by indu
tion. Let D be a derivation for � ` M : . It is not diÆ
ult to seethat D has the following stru
ture: ...�0 ` (�x:P) : �x:�0: 0 ...�0 ` Q : �0D1: (E)�0 ` (�x:P)Q : 0[Q=x℄...D: � ` (�x:P)Q : That is, there is a subderivation D1, ending with an appli
ation of rule (E), whi
h is fol-lowed by a (possibly empty) sequen
e of appli
ations of the not syntax-dire
ted rules (Proj),(Weak), (Conv), (IK) and (EK). By Lemma 2.6(ii) we obtain: �0; x:�0 ` P : 0. Sin
e also�0 ` Q : �0, by Lemma 2.4(iii) we obtain �0 ` P [Q=x℄ : 0[Q=x℄. Apply the same rules asused to go from D1 to D to obtain � ` P [Q=x℄ : .An important property of the type assignment systems is strong normalization of typableterms; this is already known to hold for the systems F!, F1, F2, and F 0 (see [10℄). Usingthis result, we will show that it also holds for the other four systems of the
ube of typeassignment systems. To a
hieve this, we use the fun
tion ED that `erases dependen
ies' asde�ned in [10℄. For the behaviour of the fun
tion ED on beta redexes, there are the followingpossibilities:i) ED ((�x:M)N) = (�x:ED (M))(ED (N))ii) ED (M [N=x℄) = ED (M)[ED (N)=x℄;iii) ED ((��:K:�)) = (��:ED (K):ED (�))(ED ())iv) ED (�[=�℄) = ED (�)[ED ()=�℄;v) ED ((�x:�:)M) = ED ();vi) ED ([M=x℄) = ED ().That is, A !� B implies either ED (A) !� ED (B) or ED (A) � ED (B).

Theorem 2.8 Termination If � ` A : B then A is strongly normalizing.Proof: In [10℄, Theorem 2.2.1 states that if � ` A : B is a derived judgement in DF! (DF1,DF2, DF 0), then ED (�) ` ED (A) : ED (B) is derivable in F! (F1, F2, F 0). Suppose nowthat A � A0 !� A1 !� A2 !� . . . is a sequen
e of beta redu
tions. By the propertymentioned above, for every i � 1, either ED (Ai) !� ED (Ai+1), or ED (Ai) � ED (Ai+1).Suppose the sequen
e A0 !� A1 !� A2 !� . . . is in�nite. Sin
e beta redu
tion in F!(F1, F2, F 0) is strongly normalizing, there is an n su
h that ED (Aj) � ED (Aj+1), forevery j � n. So from step n, every step in the in�nite sequen
e A0 !� A1 !� A2 !� . . .
orresponds to a redu
tion of a `bad' redex of the form (�x:�:)M . However, sin
e M isan untyped term, su
h a redu
tion
annot
reate new `bad' redexes. Thus the number ofredexes must de
rease after every step, and our redu
tion
an not be in�nite.3 The relation between TS and TASIn this se
tion we will fo
us on the relation between Barendregt's
ube and the
ube oftype assignment systems. First we introdu
e the notions of
onsisten
y, similarity, andisomorphism between typed systems and type assignment systems.De�nition 3.1 Let St and Su be systems in
orresponding verti
es of TS and TAS
ube.i) St and Su are
onsistent if �t `St At : Bt implies E (�t) `Su E (At) : E (Bt).ii) St and Su are similar if they are
onsistent and, moreover, � `Su A : B implies thatthere exists �t, At, and Bt satisfying �t `St At : Bt and E (�t) = �, E (At) � A, andE (Bt) � B.iii) Let Der t and Der u be the set of all the derivations in St and Su. St and Su are isomorphi
if and only if there are : F : Der t!Der u and G: Der u!Der t su
h that:a) If Dt: � `St A : B then F(Dt) : E (�) `Su E (A) : E (B).b) FÆG and GÆF are the identity on Der t and Der u respe
tively.
) Both F and G preserve the stru
ture of the derivations, (i.e. the tree obtained fromthe derivation by erasing all the judgements but not the names of the rules).The de�nition of isomorphism between two systems was already given in [10℄, but in aless general way. Two systems are isomorphi
 a

ording to the de�nition in [10℄, if they areisomorphi
 in the sense of the pre
eding De�nition, and moreover, the fun
tion F is su
hthat F (Dt) is obtained from Dt by applying the erasing fun
tion to all terms in Dt; by abuseof notation, we denote F (Dt) by E (Dt). The following Proposition proves that the twonotions of isomorphism
oin
ide, in
ase of the TAS
ube:Proposition 3.2 Let St and Su be systems in
orresponding verti
es of TS and TAS
uberespe
tively, and suppose they are isomorphi
 through the fun
tions F and G. Then forevery typed derivation Dt, F(Dt) = E (Dt).The following results are taken from [10℄:

Theorem 3.3 Let St and Su be systems in
orresponding verti
es of TS and TAS
ube.i) St and Su are
onsistent.ii) If St and Su do not
ontain Dependen
ies as subset of their sets of rules, then St and Suare isomorphi
.iii) If the assumption of (ii) is not satis�ed, then St and Su are not isomorphi
.Proof: See [10℄. The proof uses the following properties of the erasing fun
tion:i) E (A[B=a℄) � E (A)[E (B)=a℄;ii) If A !!� C, then E (A) !!� E (C).After the negative result of Theorem 3.3(iii), it is natural to ask if the
orrespondingsystems in the TS and TAS
ubes are at least similar. Su
h a
onje
ture was already statedin [10℄. This property holds only for the systems without polymorphism, as will be shownin Theorem 3.7, namely, for DF1 versus �P, and for F 0 versus �!. Adding polymorphismmakes a di�eren
e: the systems with both polymorphism and dependen
ies are not similar.Theorem 3.4 Let St be either �P2 or �P!, and let Su be respe
tively DF2 and DF!.Then St and Su are not similar.Proof: As a
ounterexample, we show a derivable judgement of DF2, that
annot be ob-tained as an erasure of any derivable judgement in �P!. In this proof, for reasons of read-ability, we will use the notation A!B for �a:A:B, when a does not o

ur in B. Let �0denotes a
ontext
onsisting of the following de
larations:(type variables) �:�; �:�;
:�; Æ:�,(
onstru
tor variable) �:(�!�),(term variables) u:(��:�:((�!�)!�)!�), x:�; y:
; z:Æ,and let M;M0;M1 denote respe
tively the following untyped �-terms:M � u(�f:x); M0 � u(�f:Kx(fy)); and M1 � u(�f:Kx(fz))where the symbol K denotes the term (�xy:x). Clearly, both M0 and M1 beta-redu
e to M ,and all these terms
an
orre
tly be assigned the type � in the
ontext �0. Thus, one
anderive: �0 ` �M0!� : � and �0 ` �M1 : �and this means that the
ontext �= �0; p:�M0!�; q:�M1 is legal. With help of rules (Proj)and (Conv), one
an easily derive: � ` pq : �.The above judgement
annot be obtained as an erasure of any judgement �0 ` N : � derivablein �P2 or �P!, (i.e. one
annot have E (�0) = �, E (N) � pq, and E (�) � �). Assume theopposite. First note that � � �, sin
e no terms o

ur in �. (The erasing fun
tion
an onlymodify types
ontaining o

urren
es of terms, in whi
h
ase the results must also
ontain

terms.) Similarly, �0 may di�er from � only in the de
larations of p and q, whi
h must be ofthe form: p:�M 00!� and q:�M 01where E (M 00) � M0 and E (M 01) � M1. Without loss of generality (see Theorem 2.8), we
an assume that M 00 and M 01 are normal forms. We
an also assume that N is of theform PQ, where E (P) � p and E (Q) � q (otherwise we
onsider an appropriate subtermof N instead). Sin
e P is applied to Q, and the type of PQ is �, P must have a typeof the form �M 000 ! �, where E (M 000) � M0, and Q must have a type of the form �M 001 ,where E (M 001) � M1. In order to make the appli
ation well-typed (after a possible series ofappli
ations of rule (Conv)), it must be the
ase that M 000 =� M 001 .It follows that we have beta-
onvertible terms M 000 , M 001 , whi
h erase to M0 and M1, respe
-tively, and both are of type �. Without loss of generality, we
an assume that these termshave no beta-redexes involving polymorphi
 abstra
tion/appli
ation, and thus we may write:M 000 � u
(�f :
!
:K0x(fy)) M 001 � uÆ(�f :Æ!Æ:K1x(fz))where K0 and K1 are su
h that E (K0) � K and E (K1) � K. The types of f used in theabove are for
ed by the appli
ations fy and fz. Note that the type of f may not be externallyquanti�ed, be
ause of the type of the polymorphi
 variable u. The normal forms of theseterms are as follows: M 000 redu
es to u
(�f :
!
:x), while M 001 redu
es to uÆ(�f :Æ!Æ:x). Butthese normal forms are di�erent, and this
ontradi
ts the previous
laim that M 000 =� M 001 .The
ause of the phenomenon demonstrated in the last proof, is the polymorphi
 variable.If polymorphism is not permitted, we
an prove that the
orresponding TS and TAS aresimilar. This requires a sequen
e of lemmas. In what follows, the symbol ` denotes `S ,for S 2 fF1, F 0, DF1, DF 0g, while `t refers to the
orresponding TS systems, i.e. we
onsider only systems without polymorphism.Lemma 3.5 i) Suppose � `t B1 : A and � `t B2 : A, and let both B1 and B2 be normalforms. If E (B1) � E (B2) then B1 � B2.ii) Let � `t B1 : A and � `t B2 : A. If E (B1) =� E (B2), then B1 =� B2.Proof: i) By indu
tion on the stru
ture of B1.ii) Easy, using part (i).Lemma 3.6 Suppose that � ` A : B. Then the following
onditions hold:i) There exists a typed
ontext �t, and typed terms At, Bt satisfyingE (�t) = �, E (At) � Aand E (Bt) � B, and su
h that �t `t At : Bt.ii) For every typed
ontext �t, and every typed term Bt satisfying E (�t) = �, E (Bt) � Band �t `t Bt : s, there exists a typed term At, su
h that �t `t At : Bt, and E (At) � A.Proof: Parts (i) and (ii)
an be proven by mutual indu
tion on the stru
ture of derivations.

Theorem 3.7 Let St be a TS system whose set of rules does not
ontain Polymorphism assubset, and let Su be the
orresponding TAS system. Then St and Su are similar.Proof: By Lemma 3.6.4 How to obtain an isomorphismIn this se
tion we show that it is possible to de�ne another erasing fun
tion (whi
h looks lessnatural), named E 0, that gives rise to a se
ond type assignment
ube TAS0 whi
h is isomor-phi
 to the TS
ube. The main di�eren
e between E and E 0 is that, while E always erasestype information in terms, E 0 is
ontext dependent and erases type information from a termonly if that term does not o

ur in a type; otherwise it leaves the term un
hanged. So the dif-feren
e between TAS0 and TAS is that dependent types of TAS0
ontain o

urren
es of typed�-terms rather than untyped �-terms. The systems without Dependen
ies
oin
ide exa
tlywith the
orresponding systems in the TAS
ube. Also, either with Dependen
ies or without,the provable judgements are the same as long as their subje
ts are either
onstru
tors orkinds.De�nition 4.1 The TAS 0 Cube. i) The untyped and typed terms, typed
onstru
tors andtyped kinds are de�ned as before (De�nitions 1.1.1 and 1.2.1). Let T 0u be the union ofthe sets �; Const and Kindt.ii) The new erasing fun
tion E 0: Tt!T 0u is de�ned as follows:a) E 0(M) = E (M).b) E 0(�) = �.
) E 0(K) = K.iii) Let M range over �, and A;B, and � range over Tt. The general type assignment systemindu
ed by E 0 (TAS0) proves judgements of the following form:� `0 M : � and � `t A : B, where A 62 �t.iv) The type assignment rules are:a) All the rules used for TS.b) The rules (I), (IK), and (EK) of TAS (where ` should be repla
ed by `0).
) The rules:(Proj0) � `t � : � x 62 Dom (�)�; x:� `0 x : � (Weak0) � `0 M : � � `t A : s a 62 Dom (�)�; a:A `0 M : �(Conv0) � `0 M : � � `t : � � =� � `0 M : (E0) � `0 M : �x:�: � `t N : �� `0 M(E 0(N)) : [N=x℄v) As in De�nition 1.1.6(i), the rules
an be grouped in sets. All the
olle
tions are asbefore, with the ex
eption of (with abuse of notation): Base Rules = f(Axiom), (Proj),(Weak), (I), (E), (C{FC), (Proj0), (Weak0), (E 0)g, Again eight type assignment systems

an be de�ned, whose relationships
an be represented as before by drawing a
ube. Asystem in this
ube and one in the TS-
ube are
orresponding if the names for the set ofrules allowed for these systems are exa
tly the same.The main result on the relationship between the TS
ube and the TAS0
ube is:Theorem 4.2 Let St be any typed system in the TS
ube, and let Su be the
orrespondingsystem in the TAS0
ube. Then St and Su are isomorphi
.Proof: The fun
tion F : Der t!Der u
an be de�ned by indu
tion on the stru
ture ofD 2 Der t in the following way:i) If Dt: � `t A : B and A 62 �t, then F(Dt) = Dt.ii) If the last rule of Dt is (E), i.e.:Dt: D1 : � `t M : �x:�: � `t N : �� `t MN : [N=x℄ (E)then F(D1): E 0(�) `0 E 0(M) : E 0(�x:�:). Sin
e E 0(�) = � and E 0(�x:�:) � �x:�: ,we
an de�ne: F(D): � `0 E 0(M) : �x:�: � `t N : �� `0 E 0(M)E 0(N) : [N=x℄ (E 0)iii) if the last rule is one of the other not mentioned, the de�nition of F is given by straight-forward indu
tion.The de�nition of G is left to the reader. It is easy to verify that these two fun
tions realizean isomorphism between the
orresponding systems in the two
ubes.While the de�nition of the erasing fun
tion E 0 is (relatively) easy, the de�nition of therelated
ube is very involved. This is a
onsequen
e of the fa
t that, for systems withdependen
ies, the derivations are not
ompositional. Namely if Dt is a derivation and D0t isa subderivation of Dt that ends with a judgement of the form � `t M : �, for M 2 �t, thenD0t need not be a valid derivation; this is be
ause E 0 has a
ontext dependent behaviour.This is the pri
e we paid for rea
hing the isomorphism with the typed systems.5 Con
lusionsThis paper, together with [10℄,
an be seen as the �rst attempt to study type assignmentsystems with dependent types. In fa
t all the systems in the dependen
ies free part ofthe
ubes TAS and TAS0 have been extensively studied in the literature. The only typeassignment system with dependent types already de�ned in the literature is the system ��of Dowek [7℄. Stri
tly speaking, this is not a type assignment system in the usual sense.There are no derived judgements, instead, a valid judgement of �� is de�ned as one of

the form E 0(�) `0 E 0(A) : E 0(B), where � `t A : B is a valid judgement of �P. So Dowek'ssystem is equivalent to the system
orresponding to �P in the TAS0
ube. For this system,the type
he
king problem was shown to be unde
idable in [7℄. The method of proof of theunde
idability is however appli
able for all our systems with dependen
ies. We showed thatall the systems with dependen
ies we de�ned enjoy good
omputational properties, and wefo
used our attention in parti
ular on the relationship between typed and type assignmentsystems. A further step
an be made by looking for a type assignment
ounterpart to theGeneralised Type Systems, as de�ned in [1, 2, 3℄.Referen
es[1℄ Barendregt, H.P., Lambda Cal
uli with Types, Handbook of Logi
 in Computer S
ien
e, Abramsky,Gabbai, Maibaum eds., Oxford University Press, 1991.[2℄ Barendregt, H.P., Introdu
tion to Generalised Type Systems, Journal of Fun
tional Programming, vol-ume 1(2), 125{154, 1991.[3℄ Berardi, S., Towards a Mathemati
al Analysis of Type Dependen
e in Coquand{Huet Cal
ulus of Con-stru
tions and the Other Systems in Barendregt's Cube, Department of Computer S
ien
e, CMU, andDipartimento di Matemati
a, Torino, 1988.[4℄ Curry, H.B., Modi�ed Basi
 Fun
tionality in Combinatory Logi
, Diale
ti
a, 1969.[5℄ Coquand, T., Metamathemati
al Investigations of a Cal
ulus of Constru
tions, Logi
 and ComputerS
ien
e, Odifreddi ed., A
ademi
 Press, 91{122, 1990.[6℄ Coquand, T. and Huet, G., The Cal
ulus of Constru
tions, Information and Computation, 76(2,3),95{120, 1988.[7℄ Dowek, G., The Unde
idability of Typability in the Lambda-Pi-Cal
ulus, Pro
. Typed Lambda Cal
uliand Appli
ations, LNCS 664, 139{145, 1993.[8℄ Geuvers, H. and Nederhof, M., Modular Proof of Strong Normalization for the Cal
ulus of Constru
tions,Journal of Fun
tional Programming, 1(2), 155{189, 1991.[9℄ Giannini, P. and Ron
hi Della Ro

a, S., Chara
terization of Typings in Polymorphi
 Type Dis
ipline,Pro
. Logi
 in Computer S
ien
e, IEEE, 61{70, 1988.[10℄ Giannini, P., Honsell, F. and Ron
hi Della Ro

a, S., Type Inferen
e: Some Results, Some Problems,Fundamenta Informati
ae, 19(1,2), pp.87{126, 1993.[11℄ Girard, J.Y., The System F of Variable Types, Fifteen Years Later, Theoreti
al Computer S
ien
e, 45,159{192, 1987.[12℄ Harper, B., Honsell, F. and Plotkin, G., A Framework for De�ning Logi
s, Journal of the ACM, 40,1993.[13℄ Klop, J. W., Combinatory Redu
tion Systems, PhD-thesis, Rijksuniversiteit Utre
ht, 1980.[14℄ Leivant, D., Polymorphi
 Type Inferen
e, In Symposium on Prin
iples of Programming Languages,ACM, 88{98, 1983.[15℄ Reynolds, J.C., Towards a Theory of Type Stru
tures,Pro
. Paris Colloquium on Programming, SpringerVerlag, 408{425, 1974.

