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.nzAbstra
tThis is a review of those aspe
ts of the theory of varieties of Boolean algebras with operators (BAO's)that emphasise 
onne
tions with modal logi
 and stru
tural properties that are related to naturalproperties of logi
al systems.It begins with a survey of the duality that exists between BAO's and relational stru
tures, fo
us-ing on the notions of bounded morphisms, inner substru
tures, disjoint and bounded unions, and
anoni
al extensions of stru
tures that originate in the study of validity-preserving operations onKripke frames. This duality is then applied to polymodal propositional logi
s having �nitary inten-sional 
onne
tives that generalise the Box and Diamond 
onne
tives of unary modal logi
. Issuesdis
ussed in
lude validity in 
anoni
al stru
tures, 
ompleteness and in
ompleteness under the re-lational semanti
s, and 
hara
terisations of logi
s by elementary 
lasses of stru
tures and by �nitestru
tures.It turns out that a logi
 is strongly 
omplete for the relational semanti
s i� the variety of algebrasit de�nes is 
omplex , whi
h means that every algebra in the variety is embeddable into a full powersetalgebra that is also in the variety. A hitherto unpublished formulation and proof of this is given(Theorem 5.6.1) that applies to quasi-varieties. This is followed by an algebrai
 demonstrationthat the temporal logi
 of Dedekind 
omplete linear orderings de�nes a 
omplex variety, adaptingGabbay's model-theoreti
 proof that this logi
 is strongly 
omplete.1 Introdu
tionThis arti
le provides an introdu
tion to the study of varieties of Boolean algebras withoperators, emphasising their 
onne
tions with modal logi
, and fo
using on stru
turalproperties (
anoni
ity, 
ompleteness, 
omplexity, elementary generation) that are re-lated to natural properties of logi
al systems.Now an operator on a Boolean algebra B is a �nitary fun
tion Bn ! B that is joinpreserving in ea
h of its arguments. Fun
tions of this type that are unary (n = 1) pro-vide natural interpretations of modal 
onne
tives, and there is an intimate relationshipbetween their algebrai
 theory and the Kripke semanti
s for modal logi
s. Standardalgebrai
 
onstru
tions (subalgebras, homomorphisms, dire
t produ
ts) 
orrespond to
ertain truth-preserving 
onstru
tions on Kripke models (bounded morphisms, innersubmodels, disjoint unions). This 
orresponden
e is a duality in 
ategory-theoreti
terms, and 
an be developed for arbitrary operators. Thus we may refer to the sit-uation of n = 1 as being the modal 
ase of a general theory of �nitary operators onBoolean algebras, and when n > 1 su
h operators may be 
alled polymodal.There appear to be two traditions of algebrai
 logi
 in this area. The algebrai
tradition, founded on the seminal work of J�onsson and Tarski [32, 33℄, has fo
used onthe study of relation algebras [23, 36, 30℄ and 
ylindri
 algebras and their relativised393L. J. of the IGPL, Vol. 8 No. 4, pp. 393{450 2000 
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: A Surveyversions [26, 28, 27, 45, 46℄ and their 
onne
tions with �rst-order logi
 and set theory.The logi
al tradition has emphasised the use of unary operators in the study of modaland temporal logi
s, with highlights in
luding the early work of M
Kinsey and Tarski[40, 44℄ on Lewis modal systems and intuitionisti
 logi
; the pioneering use of algebraby Bull [8℄ in proving that all normal extensions of the modal logi
 S4.3 have the�nite model property and in obtaining the �rst axiomatisations of the temporal logi
sof dis
rete and 
ontinuous time [9℄; Thomason's in
omplete temporal logi
 [55℄; andBlok's demonstration [5℄ of the pervasiveness of the in
ompleteness phenomenon.More re
ently there have been appli
ations fo
using on the 
onne
tions between weakversions of �rst-order quanti�
ational logi
 and modal logi
s [47, 3, 4℄.Algebrai
 methods 
an be e�e
tively employed to obtain model-theoreti
 results.An example is the appli
ation of duality in [22℄ to 
hara
terise those 
lasses of Kripkeframes that are de�ned by a set of modal formulae (Theorem 5.9 below). On the otherhand, the vigorous development of model-theoreti
 studies of modal logi
s under theKripke semanti
s has produ
ed notions and results that translate into signi�
antobservations about varieties of Boolean algebras with operators (BAO's). Here manyexamples 
ome to mind:� The study of model-theoreti
 
onditions under whi
h a modal formula is valid(Corresponden
e Theory) 
an be viewed as the analysis of those 
onditions ona relational stru
ture whi
h ensure that its algebra of subsets (
omplex algebra)satis�es 
ertain equations. It is also 
on
erned whi
h the 
onne
tion between prop-erties of a BAO A and those of its 
anoni
al stru
ture C stA, whi
h is a relationalstru
ture de�ned on the Stone-type representation of A. The powerset algebra ofC stA is the 
anoni
al extension of A, and 
ontains a subalgebra isomorphi
 to A.� The work of Sahlqvist [49℄ giving a general 
ompleteness theorem for a largesynta
ti
ally de�ned 
lass of modal axioms extends the 
lass of properties knownto be preserved by 
anoni
al extensions of BAO's, and 
an be given an elegantalgebrai
 treatment [31℄.� The 
anoni
al frames widely used to prove 
ompleteness theorems for modal logi
sare essentially the same thing as the 
anoni
al stru
tures of the Lindenbaum-Tarskialgebras of these logi
s, whi
h are themselves the free algebras in the varieties thatthe logi
s de�ne.� The dis
overy of Fine [12℄ that an elementary 
lass of Kripke frames determinesa logi
 validated by its 
anoni
al frames generalises to the result [14, 15℄ that thepowerset algebras of an ultraprodu
t-
losed 
lass of stru
tures generate a varietyof BAO's 
losed under 
anoni
al extensions.� The question of whether a logi
 is 
omplete with respe
t to some 
lass of Kripkeframes 
orresponds to the question of whether a variety of algebras is generatedby its powerset algebras.� The property of a logi
 being strongly 
omplete with respe
t to a 
lass of Kripkeframes (i.e. every 
onsistent set of formulae is satis�able in a model on a frame inthe 
lass) proves to be equivalent to that of a variety V of BAO's being 
omplex,meaning that ea
h member of V 
an be embedded into a powerset algebra thatbelongs to V (see Theorem 5.14 below for a hitherto unpublished formulation ofthis relationship that applies to quasi-varieties).



2. MODAL ALGEBRAS 395The purpose of this arti
le is to survey these matters, not in an en
y
lopaedi
 fashion,but with a view to explaining the major ideas and their inter
onne
tions, in
ludingindi
ations of proofs for the more substantial results, and providing referen
es tothe literature for details. There are numerous overlapping (and 
on
i
ting) uses ofterminology and notation in this literature, and more may be perpetrated here, butan attempt will be made to o�er some guidan
e as to these various 
onventions.The intention is to exhibit the two fundamental fa
ets of algebrai
 logi
: on the onehand the investigation of mathemati
al stru
tures that arise by abstra
tion from theproperties of logi
al systems, and on the other hand the use of algebra to establishsigni�
ant results about su
h logi
al systems.The reader is assumed to be familiar with the theory of Boolean algebras and theirsubalgebras, homomorphisms, representation by ultra�lters et
., and with the basi
formalisms of universal algebra. In parti
ular, the standard symbols H ; S ;P will beused to denote the operations of 
losure of a 
lass of algebras under (isomorphi

opies of) homomorphi
 images, subalgebras, and dire
t produ
ts, respe
tively. Anequational 
lass or variety is a 
lass V of algebras de�ned by some set of equations.VarW denotes the variety generated by a 
lassW of algebras (i.e. the smallest variety
ontaining W). Repeated use is made of the following fa
ts.� (Birkho�'s Theorem) V is a variety i� it is 
losed under homomorphi
 images,subalgebras, and dire
t produ
ts: HV � V , SV � V , and PV � V .� (Tarski) VarW is equal to HSPW .� VarW is the 
lass of all models of the equational theory in in�nitely many variablesof W , i.e. A 2 VarW if, and only if, A satis�es every equation that holds of allmembers of W .2 Modal AlgebrasWe begin with a dis
ussion of the modal 
ase, as preparation for the general polymodalsituation.A Boolean algebra (BA) will be presented in the form B = hB;+; �;� ; 0; 1i. Forany set S, the asso
iated powerset algebra isSbS = hSbS;[;\;�; ;; Si;where SbS is the 
olle
tion fT : T � Sg of all subsets of S.2.1 OperatorsA fun
tion m : B ! B is 
alled an operator on a Boolean algebra B if it is additive:m(x+ y) = mx+my for all x; y 2 B. m is normal if m0 = 0. Any operator hasm(x1 + � � �+ xn) = mx1 + � � �+mxnfor any n � 2. Sin
e 0 is the join of the empty set, a normal operator 
an alternativelybe spe
i�ed as a fun
tion satsfyingm(PC) =Pm(C)
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: A Surveyfor any �nite C � B, in
luding C = ;. All of the operators we will dis
uss are normal.The dual of an operator m is the fun
tion l : B ! B havinglx = (m(x�))�:l is multipli
ative (l(x � y) = lx � ly), and has l 1 = 1 if m is normal. Thus the dualof a normal operator preserves the latti
e meet of any �nite subset of B. A notationsu
h as md is sometimes used for the dual to indi
ate the dependen
e on m. Our useof the letters m and l derives from the 
ommon use of M and L to denote the modal\possibility" and \ne
essity" 
onne
tives.If � is an ordinal, a normal modal algebra (MA) of type � is an algebraA = hB;m�i�<�with ea
hm� a normal operator on the BAB. Most studied have been type 1 algebrashB;mi and temporal algebras hB;m0;m1i whi
h are type 2 algebras whose pair ofoperators are 
onjugate, meaning that for all x; y 2 B,m0x � y = 0 i� m1y � x = 0:This is equivalent to the equationally expressible 
ondition that for all x 2 B,x � l0m1x � l1m0x:Some important equationally de�ned 
lasses of type 1 algebras are the following.� Closure algebras. These are MA's hB;mi in whi
hx+mmx � mx;and are sometimes known as topologi
al Boolean algebras [42, 43℄. They in
ludethe algebras hSbS;mi with S a topologi
al spa
e and mT the 
losure of the set Tin S. The dual operator lT gives the topologi
al interior of T . In a general 
losurealgebra an element x is thus 
alled 
losed if mx = x, and open if lx = x (i.e. if x�is 
losed). Closure algebras model the modal logi
 S4 (whi
h is de�ned in Se
tion5.2).� Monadi
 algebras. These are the 
losure algebras in whi
h x � lmx, whi
h isequivalent to requiring that elements are 
losed i� they are open, or that the
losure operator m is 
onjugate to itself. Monadi
 algebras 
an also be des
ribedas the one-dimensional 
ylindri
 algebras [26℄ and polyadi
 algebras [24℄. Theymodel the logi
 S5 (again see Se
tion 5.2).� Diagonalisable algebras. These satisfymx � m(x�mx):They model the provability interpretation of modality, in whi
h \ne
essarily A"means \it is provable in Peano arithmeti
 that A" [6, 54℄. The equational 
lass ofdiagonalisable algebras is generated by powerset algebras of 
ertain well-foundedrelations, as will be explained shortly.



2. MODAL ALGEBRAS 3972.2 Complex Algebras of Kripke FramesLet R be a binary relation on a set S. On the powerset algebra SbS there are twonormal operators naturally asso
iated with R, taking ea
h T � S to its dire
t imageR(T ) = fs 2 S : 9t 2 T (tRs)g;and to its inverse image R�1(T ) = fs 2 S : 9t 2 T (sRt)g;respe
tively. The algebrai
 tradition has worked with dire
t images, for reasons thatwill be 
lari�ed in Se
tion 3.1, while the logi
al tradition has used inverse imagesbe
ause of 
onventions asso
iated with Kripke semanti
s (Se
tion 5.3). The 
hoi
ereally is a matter of 
onvention, sin
e the inverse image of T under R is the same thingas the dire
t image of T under the inverse relation R�1. We will follow the logi
altradition here, and also will use the notation mR for the inverse image operator:mR(T ) = fs 2 S : 9t 2 T (sRt)g:The dual operator to mR is lR : SbS ! SbS, wherelR(T ) = �mR(�T ) = fs 2 S : 8t (sRt implies t 2 T )g:These des
riptions display the role of mR and lR as quanti�ers, existential and uni-versal, relative to, or bounded by, the relation R.The pair hS;Ri is known in modal logi
 as a Kripke frame, or K-frame. More generallywe de�ne a K-frame of type � to be a relational stru
tureS = hS;R�i�<�with ea
h R� being a binary relation on S. The full 
omplex algebra of S isCmS = hSbS;mR� i�<�;whi
h is a modal algebra of type �. Any algebra that is (isomorphi
 to) a subalgebra ofCmS is a 
omplex algebra of type �. The terminology derives from group theory of theNineteenth Century: before set theory be
ame the lingua fran
a of mathemati
iansthe word \
omplex" was used to denote a 
olle
tion of elements (subset) of a group.In the 
ase of a K-frameS = hS;R0; R1i of type 2, CmS is a tense algebra, i.e. mR0and mR1 are 
onjugate, i� R0 and R1 are mutually inverse: R1 = R�10 . Importantexamples are the frames hS;<;>i where S is one of the number systems Z;Q;R,representing a dis
rete, dense or 
ontinuous 
ow of time respe
tively.Our observations about 
onjuga
y indi
ate that for a type 1 frame S = hS;Ri, mRis self 
onjugate i� R = R�1, i.e. i� R is symmetri
. Analogously, if R is re
exivethen T � mR(T ) for all T 2 SbS, while 
onversely it suÆ
es to have fsg � mR(fsg)for all s 2 S to make R re
exive.These examples illustrate the fa
t that there is an extensive 
atalogue of 
onditionson R that are equivalent to various equational properties of CmS. This was �rstdemonstrated by J�onsson and Tarski [32, Theorem 3.5℄, several of whose observationsare in
luded in the following table.
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: A SurveyEquational Property of CmS Equivalent 
ondition on Rx � mx re
exivemmx � mx transitive
losure algebra quasi-order (re
exive and transitive)x � lmx symmetri
monadi
 algebra equivalen
e relationmx � lx fun
tionalmx = lx total fun
tiondiagonalisable transitive with R�1 well-founded(
f. [6℄ for a proof of the last entry.)Some potent questions arise. Given a modal algebra A satisfying a 
ondition fromthe left 
olumn, is A isomorphi
 to a 
omplex algebra based on a frame satisfying the
orresponding 
ondition from the right 
olumn? To address su
h issues requires therepresentation theory of the next se
tion.Does every MA-equation 
orrespond to a \natural" 
ondition on frames? Note �rstthat any equational assertion about CmS 
an be translated via the de�nitions of mRand lR into a senten
e in the universal monadi
 se
ond-order logi
 of S, i.e. a senten
ethat quanti�es universally over subsets of S. For instan
e, the 
ondition8T (T � mR(T ))is equivalent to 8T 8s (s 2 T ! 9t (t 2 T ^ sRt))when T ranges over SbS. But this itself proves to be equivalent to the simple �rst-order 
ondition 8s(sRs) of re
exivity. Indeed all entries in the right 
olumn ex
eptthe last are expressible in the �rst-order language (with equality) of S. But the 
lassfS : CmS is diagonalisablegis not elementary, i.e. not de�nable by any set of senten
es in �rst-order logi
, sin
ethe 
ondition \R�1 is well-founded" is not preserved by elementary equivalen
e. Inparti
ular, an ultrapower of a frame satisfying this 
ondition will not in general satisfyit. It transpires that for any equational 
lass V of modal algebras, 
losure of the 
lassfS : CmS 2 Vgunder ultrapowers is ne
essary and suÆ
ient for it to be an elementary 
lass (
f.Corollary 4.12).Do all �rst-order 
onditions on R 
hara
terise an equational property of CmS?In fa
t not: irre
exivity (8s:(sRs)) and antisymmetry are two 
ounterexamples, as
an be shown by using the notion of bounded morphism between frames (and is soshown in Se
tion 4.2). In that 
ase, whi
h �rst-order 
onditions are equational? Thisquestion 
an be formulated in the following way: if K is an elementary 
lass of frames,when is there an equational 
lass of algebras V for whi
hCmS 2 V i� S 2 K?There is an answer to this in terms of the 
losure of K under 
ertain model-theoreti

onstru
tions (Theorem 5.9). The proof applies duality theory (Se
tion 4) to Birkho�'s
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hara
terisation of equational 
lasses of algebras as those 
losed under homomor-phisms, subalgebras, and dire
t produ
ts.These various questions provoked by the phenomena exhibited in the above tablewill be taken up below and answered as generally as possible for polymodal operators.3 BAO's3.1 Polymodal OperatorsAn operator of rank , or arity, n on a BA B is a fun
tion m : Bn ! B that isadditive in ea
h of its arguments. This means that for ea
h i < n and any elementsa0; : : : ; ai�1; ai+1; : : : ; an�1, the unary fun
tionx 7! m(a0; : : : ; ai�1; x; ai+1; : : : ; an�1)is additive. m is normal if for ea
h i < n it satis�es the equationm(a0; : : : ; ai�1; 0; ai+1; : : : ; an�1) = 0:Note that the de�nition allows that n = 0: a nullary operation (i.e. a 
onstantm 2 B)is a normal operator. If n > 1, m is polymodal.A type in this 
ontext is a pair � = h�� ; �� i with �� an ordinal and �� : �� ! !a rank fun
tion assigning a natural number �� (�) � 0 to ea
h � < �. A Booleanalgebra with operators (BAO) of type � is an algebraA = hB;m�i�<��with ea
h m� an operator of rank �� (�) on the BA B. A is normal if ea
h m� isnormal. If �� (�) = 1 for all � we have the earlier notion of an MA of type �� .A relational stru
ture of type � has the formS = hS;R�i�<��with ea
h R� being an (�� (�) + 1)-ary relation on S, i.e. R� � S�� (�)+1 (if �� (�) = 1for all � then S is a K-frame of type �� ). To build a 
omplex algebra out of S we haveto explain how to obtain an operator on SbS of rank n from a relation R � Sn+1. Inthe original 
ase of the 
omplex algebra of a group (S; �) the group operation lifts toa binary operation on the powerset of S by puttingT0 � T1 = ft0 � t1 : t0 2 T0 and t1 2 T1g= image of T0 � T1 under the group operation:Generalising, an n-ary operation f : Sn ! S lifts to the n-ary operationmf : (SbS)n ! (SbS)having mf (T0; : : : ; Tn�1) = f -image of T0 � � � � � Tn�1= ff(t0; : : : ; tn�1) : ti 2 Ti all i < n g:
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: A SurveyNow if R = fht0; : : : ; tn�1; si : f(t0; : : : ; tn�1) = sg is the n+ 1-ary graph of f , thenthe right-side of the de�nition of mf 
an be des
ribed as theR-image of T0 � � � � � Tn�1= fs 2 S : 9t0 � � � 9tn�1(R(t0; : : : ; tn�1; s) and ti 2 Ti all i < n) g:But now this is a des
ription that makes sense for any n+1-ary relationR, and we havethe promised explanation of why the algebrai
 tradition has found it mathemati
allynatural to work with dire
t images of relations. On the other hand we 
an \permute"the de�nition by 
hoosing any of the n + 1 arguments of R to �ll the role of theunquanti�ed variable s. Thus an arbitrary relation R � Sn+1 de�nes n + 1 normaloperators on SbS. We will opt to maintain 
onta
t with the logi
al tradition hereand single out the �rst argument of R, thereby de�ning mR : (SbS)n ! (SbS) byextension of the n = 1 
ase of Se
tion 2.2:mR(T0; : : : ; Tn�1)= fs 2 S : 9t0 � � � 9tn�1(R(s; t0; : : : ; tn�1) and ti 2 Ti all i < n) g(when n = 0, i.e. R � S, mR is just the 
onstant R 2 SbS). Then the (full) 
omplexalgebra of the stru
ture S = hS;R�i�<�� 
an be de�ned asCmS = hSbS;mR� i�<�� :3.2 Canoni
al EntitiesAsso
iated with a Boolean algebraB is the set SB of ultra�lters ofB and the inje
tiveBA-homomorphism �B : B � SbSB having �B(x) = fs 2 SB : x 2 sg. This is thefundamental Stone representation ofB as the isomorphi
 algebra of sets �B(B), whi
his in general a proper subalgebra of SbSB.Given an n-ary fun
tion m : Bn ! B, an n + 1-ary relation Rm � (SB)n+1 isde�ned byRm(s; t0; : : : ; tn�1) i� m(t0 � � � � � tn�1) � si� (8i < n (xi 2 ti) ) implies m(x0; : : : ; xn�1) 2 s:When n = 0 this entails Rm = fs 2 SB : m 2 sg = �B(m). When n = 1 we have,using the in�x notation for binary relations,sRmt i� fmx : x 2 tg � s i� fx : lx 2 sg � t:The relation Rm indu
es the normal operator mRm on SbSB. In order for �B topreserve the operations m and mRm , i.e.�B(m(x0; : : : ; xn�1)) = mRm(�B(x0); : : : ; �B(xn�1));it must be the 
ase that for ea
h s 2 SB and x0; : : : ; xn�1 2 B, the 
onditionm(x0; : : : ; xn�1) 2 sis equivalent to9t0; : : : ; tn�1 2 SB(Rm(s; t0; : : : ; tn�1) and (8i < n)(xi 2 ti)):



3. BAO'S 401The impli
ation from top to bottom holds by the de�nition of Rm, and the wholeequivalen
e holds when n = 0, again from the de�nitions. The diÆ
ult part is toprove it from bottom to top when n � 1, and this requiresm to be a normal operator.One way to pro
eed is to 
onstru
t the ultra�lters ti by indu
tion on i in su
h a waythat the following two 
lauses hold:(i) xi 2 ti,(ii) if yk 2 tk for all k � i, then m(y0; : : : ; yi; xi+1; : : : ; xn�1) 2 s.Then when i = n� 1, 
lause (ii) immediately yields Rm(s; t0; : : : ; tn�1) by de�nitionof Rm. Together with (i), this will 
omplete the proof.The indu
tive argument is to �x a j � n � 1, and suppose that for ea
h i < j, tihas been de�ned to satisfy (i) and (ii). Letuj = fz : 8i < j 9yi 2 ti(m(y0; : : : ; yj�1; z; xj+1; : : : ; xn�1) =2 s )g:Using the fa
t that m is additive and normal it 
an be shown that uj is an ideal of Bthat is disjoint from the prin
ipal �lter generated by xj . But then B must 
ontain anultra�lter tj that in
ludes xj and is disjoint from uj . This is enough to ensure that(i) and (ii) hold with j in pla
e of i.The full details of this argument may be found in Theorem 2.2.1 of [14℄, where theproof is shown to work for any normal operator on a distributive latti
e.Now to ea
h BAO A = hB;m�i�<�� of type � we 
an asso
iate the type-� relationalstru
ture C stA = hSB; Rm� i�<��whi
h we 
all the 
anoni
al stru
ture of A. Its 
omplex algebra will be denoted 1EmA and is the 
anoni
al embedding algebra of A:EmA = CmC stA:Writing �A for the fun
tion �B determined by the underlying BA B of A, we have:Theorem 3.1 If A is a normal BAO, the fun
tion �A : A ! EmA is an inje
tiveBAO-homomorphism, representing A, by its isomorphi
 image in EmA, as a 
omplexalgebra.This result is due to J�onsson and Tarski [32℄ who developed it from a more abstra
tstandpoint, in two stages, using the notion of perfe
t extension. If Boolean algebraB is a subalgebra of Boolean algebra B� , then B� is a perfe
t extension of B, andB is a regular subalgebra of B� , if B� is 
omplete and atomi
 and satis�es(I) if x and y are distin
t atoms of B� , there is an element b of B with x � b andy � b = 0,(II) if D is a subset of B whose join in B� is 1, then D has a �nite subset whose joinin B� is 1.1In general, \sans serif" 
apitals E, H, P, S : : : will be used as the �rst letter in symboli
 names for operations onalgebras, while \bla
kboard bold" letters C; E; H; S; U: : : o

ur likewise in names of operations on stru
tures (
f.espe
ially Se
tion 4.4).
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onditions 
hara
terise B� uniquely up to isomorphism. But if B is identi�edwith �B(B) � SbSB, then SbSB ful�lls these 
onditions, and so every BA has aperfe
t extension. In the topologi
al version of the Stone representation, the membersof �B(B) form a 
lopen base for a topology on SB. Conditions (I) and (II) expressthe fa
t that the resulting spa
e is Hausdor� and 
ompa
t.By analogy with the topologi
al 
ase, an element of a perfe
t extension B� is 
alled
losed if it is the meet of a set of elements from B. Let C be the set of 
losed elementsof B� . A fun
tion m : Bn ! B indu
es the n-ary fun
tion m� on B� de�ned by theformula m�(x) = Xx�y2Cn Yy�z2Bnm(z) for all x 2 (B�)n (y)(here � and � are the produ
t orderings). If m is an operator then m� is an extensionof m that is 
ompletely additive (preserves arbitrary joins) in ea
h of its argumentsand is the largest su
h extension of m (in the pointwise ordering of fun
tions).There is also an abstra
t approa
h to m� in the style of (I) and (II). If At denotesthe set of atoms of B� , 
onsider the statement(III) m�(x) =Yx�z2Bnm(z) for all x 2 (At)n,whi
h is implied by the formula (y). A BAOA� = hB� ;m��i�<��is a perfe
t extension of A = hB;m�i�<�� , and A a regular subalgebra of A�, if (I)and (II) hold, ea
h m�� is 
ompletely additive, and (III) holds with m� in pla
e of mfor all � < �� . These axioms 
hara
terise A� uniquely up to isomorphism, and the
onstru
tion of m� by (y) establishes the Extension Theorem of [32, Th. 2.15℄ thatevery BAO A has a perfe
t extension A�.Now if A is normal then A� is normal and is isomorphi
 to the 
omplex algebraCmS of some relational stru
ture S. Here the underlying set of S 
an be taken asthe set of atoms of A�, and the relation R� of S asfhs; t0; : : : ; t�� (�)�1i : s � m��(t0; : : : ; t�� (�)�1)g:In this way we arrive at the Representation Theorem of [32, Th. 3.10℄ that everynormal BAO of type � is isomorphi
 to a regular subalgebra of the 
omplex algebraof a relational stru
ture of type � .Thus we may say that the de�nitions of 
anoni
al stru
ture C stA and 
anoni
alembedding algebra EmA gives a parti
ular realisation of the abstra
t notion of perfe
textension. It is also noteworthy that in terms of the topologi
al representation basedon SB, axiom (III) for m� is equivalent to the requirement that the relation Rm� bea 
losed subset of (SB)�� (�)+1 in the produ
t topology.If A is �nite then A �= A�, ea
h ultra�lter of A is prin
ipal and 
an be identi�edwith its generating element (an atom), and we get:Theorem 3.2 If A is a �nite BAO, then A is isomorphi
 to the full 
omplex algebraof its 
anoni
al stru
ture C stA.



3. BAO'S 403The word \
anoni
al" is used extensively in this subje
t, and we will extend it evenfurther by following the pra
ti
e of [31℄ of referring to a perfe
t extension of A asits 
anoni
al extension. In addition, the 
anoni
al extension ExS of a relationalstru
ture S is the 
anoni
al stru
ture of the full 
omplex algebra of S. ExS is a newstru
ture built out of S and is 
alled by some authors the ultra�lter extension of S,sin
e its points are the ultra�lters on the underlying set S of S.Thus both algebras and stru
tures now have 
anoni
al extensions, and the readerwill need to identify whi
h is intended from the 
ontext. They are most readily
ompared by the equations ExS = C st CmSEmA = CmC stA:Note also that EmCmS = CmC st CmS = CmExS:3.3 Canoni
al, Complex and Complete VarietiesAs a �rst appli
ation of the representation theory just des
ribed, 
onsider the varietyV
l of 
losure algebras. If A = hB;mi is a 
losure algebra, then its 
anoni
al stru
tureC stA = hSB; Rmi is a quasi-ordering. The fa
t that x � mx in A ensures thatfmx : x 2 sg � s, and hen
e sRms for any s 2 SB, so Rm is re
exive. Also, ifsRmtRmu and x 2 u then mmx 2 s and hen
e mx 2 s as mmx � mx, showing thatsRmu. Thus Rm is transitive. A number of observations about V
l then follow:� every member of V
l is isomorphi
 to a regular subalgebra of the full 
omplexalgebra of a quasi-ordering;� sin
e the 
omplex algebra of a quasi-ordering is a 
losure algebra (
f. the table ofSe
tion 2.2), the 
anoni
al extension EmA = CmC stA belongs to V
l. Hen
e V
lis 
losed under the operation A 7! EmA.� V
l is generated as a variety by its full 
omplex algebras.If A is a monadi
 algebra, then the 
ondition x � lmx for
es Rm to be symmetri
.Therefore these three observations hold if V
l is repla
ed by the variety Vmn of monadi
algebras, \quasi-ordering" is repla
ed by \equivalen
e relation", and \
losure algebra"is repla
ed by \monadi
 algebra".However, the situation is di�erent for the variety Vdg of diagonalisable algebras. IfS = h!;Ri with mRn i� m > n, then R is transitive and R�1 is well-founded, sothat CmS belongs to Vdg. Now let A be the subalgebra of CmS 
onsisting of the�nite and the 
o�nite subsets of !. We also have A 2 Vdg. However EmA is not inVdg. To see this, let s be the set of all 
o�nite sets. Then s is an ultra�lter of A,so it is a member of C stA. If T 2 s then T is a non-empty subset of !, so mR(T )is 
o�nite { indeed mR(T ) = fm : m > ng where n is the least member of T { andhen
e mR(T ) 2 s. This shows that sRmRs in C stA, whi
h is enough to violate thede�ning 
ondition mx � m(x�mx)of Vdg in EmA when x = fsg, sin
e then 0 6= x � mx while m(x�mx) = m0 = 0.
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losed under 
anoni
al extensions. An examplehas been given in [14, Th. 3.7.1℄ of a diagonalisable algebra that is not isomorphi
to a subalgebra of any diagonalisable algebra of the form CmS (we will give anotherdemonstration of this fa
t in Se
tion 5.6). Nonetheless Vdg is generated by its full
omplex algebras, sin
e it is known that it is generated by its �nite members, andevery �nite algebra is isomorphi
 to one of the form CmS (Theorem 3.2).If K is a 
lass of stru
tures, we de�neCmK = fA : A �= CmS for some S 2 Kg:Sin
e a 
omplex algebra per se is one that is isomorphi
 to a subalgebra of CmS forsome S, the 
lass of 
omplex algebras of K is SCmK. The variety VarK generated byK is the smallest variety 
ontaining CmK, i.e. VarK = VarCmK = HSPCmK.For a 
lass W of BAO's, the 
lass of stru
tures in W is de�ned to beStrW = fS : CmS 2 Wg:If W is 
losed under isomorphism then so is StrW , and CmStrW �W . Hen
e if V isa variety, it 
ontains the variety generated by its own stru
tures: VarStrV � V .Armed with these 
on
epts, we now introdu
e three fundamental de�nitions 
on-
erning a variety V .� V is 
anoni
al if it is 
losed under 
anoni
al extensions:A 2 V implies EmA 2 V .� V is 
omplex if every member of V is isomorphi
ally embeddable into the full
omplex algebra of some stru
ture in V , i.e. if V is equal to SCmK for some 
lassK of stru
tures, and hen
e 
onsists entirely of 
omplex algebras. Equivalently, a
omplex variety is one satisfying V = SCmStrV .� V is 
omplete if it is generated by a 
lass of full 
omplex algebras, i.e. V = VarKfor some 
lass of stru
tures K, or equivalently V = VarStrV .It is immediate that if V = SCmK then V = VarK, so every 
omplex variety is 
om-plete. The diagonalisable algebras Vdg form a 
omplete variety that is not 
omplex.Every 
anoni
al variety is 
omplex, as A is embeddable in EmA = CmC stA, andif EmA 2 V then C stA 2 StrV . Thus EmV � V implies V = SCmC stV . An instan
eof a non-
anoni
al 
omplex variety is the one generated by the type 2 real-numberframe hR; <;>i. This example will be dis
ussed in detail in Se
tion 5.6.While ea
h of these three properties of a variety are in general distin
t, it turnsout that when StrV is 
losed under ultrapowers they be
ome equivalent (
f. Corollary4.14). We will see in Se
tions 5.4{5.6 that ea
h of them 
orresponds to a signi�
antproperty of modal logi
s.The question of whi
h varieties are 
anoni
al 
omes down to the question of whi
hequations are preserved by 
anoni
al extensions of algebras. The �rst general resultabout this was given by J�onsson and Tarski in Theorem 2.18 of [32℄ whi
h establishedthat any equation holding in a BAO A and not involving the Boolean 
omplementationoperation must 
ontinue to hold in any perfe
t extension of A. Later work in modallogi
, 
ulminating in [49℄, greatly extended the 
lass of su
h preserved properties.This will be dis
ussed further in Se
tion 5.5.
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h of the fundamental algebrai
 operations H (homomorphi
 images) S (subalge-bras) and P (dire
t produ
ts) that 
hara
terise varieties has a 
orresponding operationon relational stru
tures. We dis
uss them in turn.4.1 Bounded MorphismsLet S1 = hS1; R1�i�<�� and S2 = hS2; R2�i�<�� be stru
tures of type � . A boundedmorphism f : S1 ! S2 is a fun
tion f : S1 ! S2 satisfying, for ea
h � < �� ,R1�(s0; : : : ; s�� (�)) implies R2�(f(s0); : : : ; f(s�� (�))); andR2�(f(s); u1; : : : ; u�� (�)) implies there exist t1 : : : ; t�� (�) 2 S1 su
h thatf(tk) = uk for 1 � k � �� (�); andR1�(s; t1; : : : ; t�� (�)):For K-frames with binary relations, this takes the forms0R1� s1 implies f(s0)R2� f(s1) andf(s)R2� u implies there exists t 2 S1 su
h that f(t) = u and sR1� t;whi
h 
an be expressed even more su

in
tly asf(s)R2� u i� 9t 2 S1(f(t) = u and sR1� t):In modal logi
 su
h fun
tions are often 
alled p-morphisms for reasons that are ob-s
ure, or zig-zag morphisms in view of their \ba
k-and-forth" 
hara
ter. Our 
hoi
eof the adje
tive \bounded" re
e
ts the use of bounded existential quanti�
ation inexpressing the se
ond part of the de�nition. There is a model-theoreti
 preservationtheorem showing that a �rst-order senten
e preserved by surje
tive bounded mor-phisms is equivalent to a positive senten
e in whi
h quanti�ers only o

ur in the\R-bounded" forms8v0 � � � 8vn�1(R(v; v0; : : : ; vn�1)! '); 9v0 � � � 9vn�1(R(v; v0; : : : ; vn�1) ^ ')(
f. e.g. [14, Th. 4.2.5℄, and Se
tion 4.6 below).There is another way of explaining what a bounded morphism is that may appeal tosome mathemati
al tastes. This is based on the observation that a relation R � Sn+1
an be identi�ed with the fun
tion R[-℄ : S ! SbSn havingR[s℄ = fht1; ; : : : ; ; tni : R(s; t1; : : : ; tn)g:The de�nition of bounded morphism is equivalent to the requirement that for alls 2 S1, f(R1� [s℄) = R2� [f(s)℄;whi
h states that the following diagram 
ommutes (where n = �� (�) and fn is thefun
tion indu
ed 
oordinate-wise by f).S1 R1� [-℄�! SbSn1#f #fnS2 R2� [-℄�! SbSn2
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: A SurveyA bounded morphism f : S1 ! S2 indu
es the fun
tion f+ : SbS2 ! SbS1 thatpulls subsets of S2 ba
k along f to their inverse images, i.e. f+(T ) = f�1(T ). Thenf+ proves to be a homomorphism from CmS2 to CmS1, and indeed the reader may
he
k that the 
onditions de�ning a bounded morphism are exa
tly what is requiredto make f+ preserve the polymodal operators:f+(mR2� (T0; : : : ; T�� (�)�1)) = mR1� (f+(T0); : : : ; f+(T�� (�)�1));whi
h is the ultimate explanation of why bounded morphisms are the natural mapsto deal with in this 
ontext.Assigning the 
omplex algebra CmS to S, and f+ to f gives a 
ontravariant fun
-tor from the 
ategory of relational stru
tures of type � with bounded morphisms asarrows to the 
ategory of BAO's of type � with BAO homomorphisms as arrows. Thisfun
tor is part of a dual equivalen
e between the former 
ategory and the sub
ate-gory of the latter 
ategory 
onsisting of 
omplete and atomi
 BAO's with 
ompletehomomorphisms. For modal algebras and K-frames, this equivalen
e is dis
ussed indetail in [57℄.The standard symbols� and� will be used to denote fun
tions that are inje
tive andsurje
tive, respe
tively. The notations S1 � S2 and S1 � S2 indi
ate that thereexists a bounded morphism from S1 to S2 that is inje
tive or surje
tive, respe
tively.Similarly, A1 � A2 and A1 � A2 indi
ate the existen
e of inje
tive and surje
tivehomomorphisms between algebras.The dual 
orresponden
e inter
hanges inje
tions and surje
tions: if f : S1 � S2then f+ : CmS2 � CmS1, and if f : S1 � S2 then f+ : CmS2� CmS1.A surje
tive bounded morphism will be 
alled a bounded epimorphism, and if S1 �S2, then S2 is a bounded epimorphi
 image of S1. When this happens, the inje
tionCmS2� CmS1 makes CmS2 isomorphi
 to a subalgebra of CmS1. Hen
eLemma 4.1 If S2 is a bounded epimorphi
 image of S1, then CmS2 � CmS1 andevery equation satis�ed by CmS1 is satis�ed by CmS2.A homomorphism g : A1 ! A2 of BAO's gives rise to a bounded morphism g+ :C stA2 ! C stA1 of their asso
iated 
anoni
al stru
tures. g+ assigns to ea
h ultra�lters of A2 its inverse image fx 2 A1 : g(x) 2 sg, whi
h is an ultra�lter of A1. Theproof that g+ is a bounded morphism is elaborate, and similar in strategy to theproof des
ribed in Se
tion 3.2 that the 
anoni
al embedding fun
tion �B preservespolymodal operators. Full details may be found in Theorem 2.3.2 of [14℄.The 
orresponden
e g 7! g+ also inter
hanges inje
tions and surje
tions: if g :A1 � A2 then g+ : C stA2 � C stA1, and if g : A1 � A2 then g+ : C stA2 � C stA1.Thus if A1 is (isomorphi
 to) a subalgebra of A2, then C stA1 is a bounded epimorphi
image of C stA2. (The reader should be aware that the pre�x \epi" is sometimes usedfor homomorphisms between algebras to indi
ate a 
ategory-theoreti
 property weakerthan surje
tivity. In the present arti
le however the word \epimorphism" will only beapplied to bounded morphisms of stru
tures, and will be used pre
isely to indi
atetheir surje
tivity.)Note that g+ : C stA2 ! C stA1 in its turn indu
es the homomorphism (g+)+ fromCmC stA1 to CmC stA2, i.e. from EmA1 to EmA2. Thus if A1 � A2 or A1 � A2,then EmA1� EmA2 or EmA1 � EmA2, respe
tively.



4. DUALITY 407Likewise, from a bounded morphism f : S1 ! S2 we get the bounded morphism(f+)+ from C st CmS1 to C st CmS2, i.e. (f+)+ : ExS1 ! ExS2. Thus if S1 � S2or S1 � S2, then ExS1� ExS2 or ExS1 � ExS2, respe
tively.As an appli
ation of this duality, we haveTheorem 4.2 A variety V is 
anoni
al if, and only if, it 
ontains the 
anoni
al ex-tensions of all its in�nitely-generated free algebras.Proof. If A 2 V , then there is an in�nitely-generated free A1 in V with A1 � A.Then EmA1 � EmA, so if V 
ontains EmA1, it will 
ontain EmA by 
losure underhomomorphi
 images.There is a useful generalisation of the notion of bounded morphism whi
h we will 
alla bounded ultra�lter map from a stru
ture S to a BAO A of the same type � . Letf : S ! C stA be a fun
tion assigning to ea
h point s in S an ultra�lter f(s) of A.Then f indu
es the fun
tion f+ : A! CmS, de�ned for ea
h element a of A byf+(a) = fs 2 S : a 2 f(s)g:The properties of ultra�lters ensure that f+ is a Boolean algebra homomorphism. fwill be 
alled a bounded ultra�lter map from S to A if it satis�es, for all � < �� ,s 2 S, and a0; : : : ; a�� (�)�1 2 A,m�(a0; : : : ; a�� (�)�1) 2 f(s) i� there exist t0; : : : ; t�� (�)�1 2 S su
hthat R�(s; t0; : : : ; t�� (�)�1) andai 2 f(ti) for all i < �� (�):This is the 
ondition that ensures that f+ preserves the polymodal operators m� ofA and mR� of CmS, and hen
e is a BAO homomorphism.f will be said to 
over A if for ea
h non-zero element a of A there is some s 2 Ssu
h that a 2 f(s). This ensures thata 6= 0 implies f+(a) 6= ;;so that f+ is an inje
tion of A into CmS. To summarize:Theorem 4.3 If there exists a bounded ultra�lter map from S to A that 
overs A,then the indu
ed homomorphism A ! CmS is inje
tive and makes A isomorphi
 toa subalgebra of CmS. �A bounded ultra�lter map f from S to CmT may be thought of as a bounded ul-tra�lter map from S to the stru
ture T. Su
h a map 
overs CmT pre
isely when itsrange in
ludes all prin
ipal ultra�lters of CmT.A spe
ial 
ase of this arises from a bounded morphism f : S ! T, whi
h 
an beidenti�ed with the ultra�lter map f# : S ! C st CmT = ExT for whi
h f#(s) is theprin
ipal ultra�lter fU � T : f(s) 2 Ug
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overs CmT pre
isely when f is surje
tive.Ultra�lter maps were introdu
ed for type 1 Kripke frames in [57℄, where it wasshown that the 
ategory of frames with bounded ultra�lter maps is dually equiva-lent to the 
ategory of 
omplete and atomi
 modal algebras with ordinary algebrai
homomorphisms as arrows.Bounded ultra�lter maps will be used in Se
tion 5.6 in proving that the varietygenerated by Dedekind-
omplete linear orderings is 
omplex.4.2 Non-Equational PropertiesBounded morphisms 
an be used to show that there is no equation that is satis�ed bythe 
omplex algebra of a type 1 frame pre
isely when its binary relation is irre
exive,i.e. 8s:(sRs).Let S1 be the frame h!;<i and S2 the one-element frame hf0g; Ri with 0R0. Theunique map ! ! f0g is a bounded epimorphism, so every equation satis�ed by CmS1is satis�ed by CmS2 (4.1). But S1 is irre
exive while S2 is not.Noti
e that another property enjoyed by S1 but not S2 is asymmetry, i.e. if sRtthen not tRs, so this is not equationally de�nable either.Similarly, there is no equation that we 
an add to the de�nition of \
losure algebra"to 
hara
terise those quasi-ordered frames that are partially ordered, meaning thatthey are antisymmetri
: sRt and tRs implies s = t. If S01 is the partial order h!;�iand S02 = hf0; 1g; Ri with R the universal relation, then putting f(m) = 1 i� m iseven gives a bounded epimorphism S01 ! S02 showing that equations are preservedin passing from CmS01 to CmS02. But S02 is not antisymmetri
.By the same token, we 
an use bounded morphisms to impose 
onditions like irre
ex-ivity and antisymmetry when representing 
ertain algebras as 
omplex algebras. Forexample, if a frame S = hS;Ri 
ontains a point s that is re
exive, i.e. sRs, we removes and repla
e it by a 
opy fhn; si : n < !g of the frame h!;<i. Ea
h new point hn; sibears the same relation to the old points that s did, the old points are unaltered intheir relation to ea
h other, and �nallyhn; siRhm; si i� n < m:Thus none of the new points are re
exive, and the new frame S0 has a boundedmorphism f onto S, that a
ts by f(hn; si) = s and otherwise is the identity fun
tion.It follows that CmS is isomorphi
 to a subalgebra of CmS0. By removing all re
exivepoints in this way, it 
an be shown that any modal algebra 
an be embedded into the
omplex algebra of a K-frame whose relations are irre
exive.This te
hnique, whi
h is sometimes 
alled \bulldozing" in modal logi
, has beenmost e�e
tively used for modifying frames S = hS;Ri with R a transitive binaryrelation. On su
h a frame an equivalen
e relation � is given bys � t i� s = t or (sRt and tRs):The equivalen
e 
lass Cs = ft : s � tg is 
alled the 
luster of s. PuttingCs � Ct i� sRt



4. DUALITY 409gives a well-de�ned relation between 
lusters that is transitive and antisymmetri
.Hen
e putting Cs < Ct i� Cs � Ct and Cs 6= Cti� sRt and not tRsde�nes < to be a stri
t ordering, i.e. transitive and irre
exive, hen
e asymmetri
.There are three types of 
luster. A degenerate 
luster 
onsists of a single irre
exivepoint, a simple one 
onsists of a single re
exive point, and a proper 
luster 
ontainsat least two points, whi
h must be re
exive be
ause the relation R is universal on aproper 
luster. Thus a partial ordering is itself a transitive frame in whi
h all 
lustersare simple, and a stri
t ordering is one in whi
h all 
lusters are degenerate.A partial ordering is 
alled linear if it is 
onne
ted, i.e. one of sRt and tRs holdsfor all distin
t s; t. If C is a proper 
luster in S, we \
atten" C to a linear orderingby �rst taking an arbitrary linear ordering �C of C and then repla
ing C by ! 
opiesof �C , i.e. one for ea
h natural number. The new frame S0 has !�C in pla
e of C,with the new points being ordered by puttinghn; siR0hm; ti i� n < m or else n = m and s �C t:Then similarly to the above 
ase we 
an show that S is a bounded epimorphi
 imageof S0, with S0 having a sequen
e of simple 
lusters fhn; sig in pla
e of C.This 
onstru
tion leads to the following 
on
lusions:� every quasi-ordering is a bounded epimorphi
 image of a partial ordering;� every 
onne
ted quasi-ordering is a bounded epimorphi
 image of a linear ordering;� every 
losure algebra is isomorphi
 to a subalgebra of the 
omplex algebra of apartial ordering, and hen
e� the variety V
l of 
losure algebras is generated by the 
omplex algebras of partialorderings.If, instead of �C , we take a stri
t linear ordering <C of C and puthn; siR0hm; ti i� n < m or else n = m and s <C t;the result is to bulldoze C into a stri
t linear ordering. By doing this to all non-degenerate 
lusters we show that every transitive frame is a bounded epimorphi
 imageof a stri
t ordering, and every 
onne
ted transitive frame is a bounded epimorphi
image of a stri
t linear ordering.The study of linear temporal logi
 is based on 
onne
ted time-frames, whi
h aretype 2 frames of the form S = hS;R;R�1i with R (and R�1) being transitive and
onne
ted. Bounded morphisms for su
h stru
tures have to respe
t both R and R�1,and so in bulldozing a 
luster C we use Z�C, i.e. repla
e C by one 
opy of �C or <Cfor ea
h integer, giving a stri
t linear ordering that is endless in both dire
tions. Inthis way it is shown that every 
onne
ted time-frame is a bounded epimorphi
 imageof a stri
t linear time-frame, and every re
exive 
onne
ted time-frame is a boundedepimorphi
 image of a linearly ordering. In 
ertain 
ir
umstan
es we 
an then 
arrythis even further by repla
ing ea
h member of Z� C by a 
opy of the rationals Qto obtain a dense linear ordering having the original frame as a bounded epimorphi
image.
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turesA stru
ture S1 = hS1; R1�i�<�� is an inner substru
ture of S2 = hS2; R2�i�<�� ifS1 � S2, and the in
lusion S1 ,! S2 is a bounded morphism from S1 to S2. This isequivalent to requiring that S1 be a substru
ture of S2 in the standard sense, i.e.R1� = R2� \ S�� (�)+11 ;and that R2�(s; t1; : : : ; t�� (�)) and s 2 S1 implies t1; : : : ; t�� (�) 2 S1(
f. [14, Lemma 3.2.2℄).The image of any bounded morphism is always an inner substru
ture of the 
odomain.In parti
ular, if f : S1 ! S2 is an inje
tive bounded morphism then the image of f isan inner substru
ture of S2 isomorphi
 to S1 under f , and 
onversely. For instan
e,if a BAO A2 is a homomorphi
 image of A1, then the epimorphism A1 � A2 indu
esan inje
tive bounded morphism C stA2 � C stA1 making the 
anoni
al stru
ture ofA2 isomorphi
 to an inner substru
ture of the 
anoni
al stru
ture of A1.Observe also that from a bounded inje
tion S1 � S2 we get a surje
tive homomo-morphism CmS2 � CmS1 whi
h preserves equations. Hen
eLemma 4.4 If S1 is isomorphi
 to an inner substru
ture of S2, then CmS1 is ahomomorphi
 image of CmS2 and every equation satis�ed by CmS2 is satis�ed byCmS1.For type 1 frames, the de�nition of S1 = hS1; R1i being an inner substru
ture ofS2 = hS2; R2i is parti
ularly dire
t: S1 is a subset of S2, R1 is the restri
tion of R2to S1, and S1 is 
losed under R2 in the sense thatif sR2t and s 2 S1, then t 2 S1.In modal logi
 some authors refer here to S1 being a generated subframe of S2, thename originating from the emphasis there is in modal model theory on subframesthat are generated by a single element. To 
onsider this notion, let s be a point in atype 1 frame S = hS;Ri. Then the subframe generated by s is the substru
ture Ssof S whose underlying set Ss is the interse
tion of all inner substru
tures of S that
ontain s. Ss is itself an inner substru
ture of S, withSs = ft 2 S : sR�tg;where R� is the re
exive transitive 
losure of R. Thus t 2 Ss i� there exists a sequen
et0; : : : ; tn of members of S (for some n � 0) su
h thats = t0Rt1R � � �Rtn = t:The importan
e of this notion derives from the fa
t that in a modal model based onS (
f. Se
tion 5.3), truth-values of formulae at s depend only on the truth-values atpoints in Ss.For a general stru
ture S = hS;R�i�<�� of type � , the 
hara
terisation of thesmallest inner substru
ture Ss of S 
ontaining the point s is rather more elaborate,



4. DUALITY 411but in similar vein. First, de�ne a binary relation RS on S by puttingtRSu i� 9� < �� and 9u1; : : : ; u�� (�) 2 S su
h thatR�(t; u1; : : : ; u�� (�)) and u = ui for some i � �� (�):Then Ss is the inner substru
ture of the frame hS;RSi that is generated by s, i.e.Ss = ft 2 S : sR�Stg:Now the bounded in
lusion Ss ,! S indu
es the homomorphism gs : CmS� CmSshaving gs(T ) = T \ Ss. Sin
e gs(T ) 6= ; if s 2 T , it follows that the produ
t maphgs : s 2 Si is an inje
tion of SbS into the produ
t of the algebras CmSs, and sin
ethe gs's are surje
tive, this give a subdire
t-produ
t representationCmS�Ys2S CmSsof CmS in terms of the 
omplex algebras of point-generated stru
tures. In fa
t this isa representation by subdire
tly irredu
ibles: the algebra CmSs is always subdire
tlyirredu
ible, as shown in [14, Th. 3.3.2℄.If A is a subalgebra of CmS, then taking As to be the subalgebra of CmSs that isthe image of A under gs, by similar reasoning we get the subdire
t representationA�Ys2SAs:Combined with the representation underlying Theorem 3.1, this yieldsTheorem 4.5 Every normal BAO has a subdire
t representation by 
omplex algebrasbased on point-generated stru
tures.An important 
ase of the notion of inner substru
ture arises in the 
ontext of thestudy of 
ylindri
 algebras, spe
i�
ally in the 
on
ept of a weak Cartesian stru
ture.If U is a set then �U is the set of all sequen
es x = hx� : � < �i of length � whoseterms x� all belong to U . �U is known as the �-dimensional Cartesian spa
e withbase U . Ea
h subset S of �U determines the stru
tureS(S) = hS;RS� ; ES��i�;�<�;where RS� = fhx; yi : x; y 2 S and x� = y� for all � < � with � 6= �g;ES�� = fx 2 S : x� = x�g:When S = �U , stru
tures of the form S(�U) are 
alled (full) Cartesian stru
tures ofdimension �, and the stru
tures isomorphi
 to these form the 
lass F
t�.Complex algebras that are based on Cartesian stru
tures S(�U) are known as
ylindri
 set algebras of dimension � and form the 
lass Cs� [HMTII, De�nition
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: A Survey3.1.1℄. (Note that if S 6= �U , CmS(S) may not be a 
ylindri
 algebra at all.) Thusif I is the isomorphism 
losure operator, thenICs� = SCmF
t�:A representable 
ylindri
 algebra of dimension � is an algebra that is isomorphi
 toa dire
t produ
t of 
ylindri
 set algebras of dimension �. Thus the 
lass RCA� ofrepresentable 
ylindri
 algebras is given byRCA� = SPCmF
t�:In [19, Lemma 3.4℄ we show thatRCA� = SPCmSF
t�;where S denotes the operation of forming the 
lass of inner substru
tures of themembers of a given 
lass of stru
tures (
f. Se
tion 4.4). This fa
t, together withresults des
ribed in Se
tion 4.6 below, 
an be used to give a new proof that RCA�is a 
anoni
al variety.Now if x 2 �U then the weak Cartesian spa
e with base U and dimension � deter-mined by x is the set�U (x) = fy 2 �U : f� < � : y� 6= x�g is �niteg;and S(�U (x)) is a weak Cartesian stru
ture of dimension �. The 
lassW
t� 
onsistsof all stru
tures isomorphi
 to those of the form S(�U (x)).In the 
ase that � is �nite, then by de�nition �U (x) = �U , and so S(�U (x)) is justS(�U) itself, i.e. in this 
ase all weak Cartesian stru
tures are full. But in any 
asewe have that S(�U (x)) is the inner substru
ture S(�U)x of S(�U) point-generatedby x, as des
ribed above. This follows be
ause the relation RS(�U) used to de�neS(�U)x satis�es xRS(�U)y i� f� < � : y� 6= x�g is �nite.RS(�U) is in fa
t the smallest equivalen
e relation on �U that 
ontains all the relationsRS� , and the point-generated stru
ture S(�U)x is based on the RS(�U)-equivalen
e
lass of the point x. Thus distin
t weak Cartesian substru
tures ofS(�U) are disjoint,and if T is any inner substru
ture of S(�U) then T will be the disjoint union of thoseweak Cartesian substru
tures generated by points of T. It follows thatCmT �= Yx2TCmS(�U (x));and this establishes the relationshipCmSF
t� � PCmW
t�:Further 
hara
terisations of representable 
ylindri
 algebras obtained in [19℄ in
ludeRCA� = SPCmSW
t� = SPCmW
t�:
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ulus of Class OperationsFirst, here is a summary of the main features of the duality between BAO's andrelational stru
tures thus far developed:� A bounded morphism f : S1 ! S2 indu
es a homomorphism f+ : CmS2 !CmS1, su
h that if f : S1 � S2 then f+ : CmS2 � CmS1, and if f : S1 � S2then f+ : CmS2 � CmS1.� A homomorphism g : A1 ! A2 indu
es a bounded morphism g+ : C stA2 ! C stA1su
h that if g : A1 � A2 then g+ : C stA2 � C stA1, and if g : A1 � A2 theng+ : C stA2� C stA1.� If S1 is (isomorphi
 to) an inner substru
ture of S2, then CmS1 is a homomorphi
image of CmS2.� If S2 is a bounded epimorphi
 image of S1, then CmS2 is isomorphi
 to a subal-gebra of CmS1.� If A1 is (isomorphi
 to) a subalgebra of A2, then C stA1 is a bounded epimorphi
image of C stA2.� If A2 is a homomorphi
 image of A1, then C stA2 is isomorphi
 to an inner sub-stru
ture of C stA1.� If A1 � A2 or A1 � A2, respe
tively, then EmA1 � EmA2 or EmA1 � EmA2,respe
tively.� If S1 � S2 or S1 � S2, respe
tively, then ExS1 � ExS2 or ExS1 � ExS2,respe
tively.Now for a 
lass K of stru
tures, let H K be the 
lass of all bounded epimorphi
 imagesof members of K, and SK the 
lass of all stru
tures that are isomorphi
 to an innersubstru
ture of some member of K. We 
an 
ombine these operations to form SHK,H H K et
., and also 
ombine them with other operations on 
lasses of stru
tures oralgebras, as in SCmH K et
. To 
ompare su
h 
lass operations X ;Y , the partialordering X � Y is de�ned to mean that XK � YK for all 
lasses K. Thus the �rstduality statement above entails thatCmS � HCm and CmH � SCm :Theorem 4.6(1) H H = H , SS= S.(2) SH � H S .(3) If V is 
losed under subalgebras and homomorphi
 images, then StrV is 
losedunder H and S and re
e
ts Ex , i.e. ExS 2 StrV implies S 2 StrV.(4) EmSCm � SCmEx .(5) HCmS = HCm and SCmH = SCm .(6) C st HS � SH C st .(7) C st HSCm � SH E x .Proof. (1) and (2) are fairly routine and left to the reader.
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: A Survey(3) Closure of StrV under H and S is given by Lemmas 4.1 and 4.4. For re
e
tion ofEx , observe that from the 
anoni
al embeddingCmS� EmCmS = CmExSit follows that if CmExS 2 V then CmS 2 V , as desired.(4) Let A 2 SCmK. Then A� CmS for some S 2 K. Hen
eEmA� EmCmS = CmExS;showing EmA 2 SCmExK.(5) We noted above that CmS � HCm . ThereforeHCmS � HHCm = HCm � HCmS;giving HCmS = HCm . Similarly SCmH = SCm follows from CmH � SCm .(6) If A 2 HSW , forW a 
lass of BAO's, then there are algebras A1;A2 with A2 2 Wand A� A1� A2:Hen
e by duality, C stA� C stA1 � C stA2;showing C stA 2 SH C stW , as desired.(7) By (6) C st HSCmK � SH C st CmK. But C st CmK = ExK by de�nition of Ex .The results listed in 4.4.1 provide an e�e
tive 
al
ulus for reasoning about the 
losureproperties of various 
lasses (
f. the proof of 4.5.3 and 4.6.6 below for example).We may view 4.4.1(4) as saying that the operator Em 
an pass to the right of the
ombination SCm to be
ome Ex , while 4.4.1(5) says that HCm absorbs S on theright, et
.4.5 Disjoint and Bounded UnionsThe dual to the algebrai
 
onstru
tion of dire
t produ
ts is the stru
tural operationof formation of disjoint unions. If fSj : j 2 Jg is a 
olle
tion of � -stru
tures Sj =hSj ; Rj�i�<�� , then their disjoint union is the � -stru
tureaJ Sj = hSJ (Xj � fjg); R�i�<�� ;where R� = fhhs0; ji; : : : ; hs�� (�); jii : j 2 J and Rj�(s0; : : : ; s�� (�))g:Essentially then,`J Sj is the union of a 
olle
tion of pairwise disjoint 
opies Sj�fjgof the stru
tures Sj .For ea
h i 2 J , the 
orresponden
e s 7! hs; ii gives an inje
tive bounded morphismSi 7!`J Sj , whose image Si �fig is an inner substru
ture of `J Sj isomorphi
 to
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ti
e it is often 
onvenient to identify this image with Si, i.e. to regard theSj 's as being pairwise disjoint, and `J Sj as simply being their union. Then ea
hSj is itself an inner substru
ture of the disjoint union.The duality between dire
t produ
ts and disjoint unions is provided by an isomor-phism YJ CmSj �= CmaJ Sjasso
iating to ea
h member hTj : j 2 Ji of the dire
t produ
t of the CmSj 's, thedisjoint union of the Tj 's ([14, Lemma 3.4.1℄). Hen
e in generalPCmK = CmUdK;where UdK is the 
lass of disjoint unions of stru
tures isomorphi
 to members of K.A given family fSj fj! S : j 2 Jg of fun
tions with the same 
odomain S indu
esnaturally the fun
tion aJ Sj f! S;where f(hs; ji) = fj(s). It is readily seen that if ea
h fj is a bounded morphism, thenf is also a bounded morphism.A stru
ture S is the bounded union of fSj : j 2 Jg if it is the union of the Sj 's asinner substru
tures, i.e. if(1) ea
h Sj is an inner substru
ture of S, and(2) S = SfSj : j 2 Jg.In this 
ase, if Sj fj! S is the in
lusion Sj ,! S, then the fun
tion f : `J Sj ! Sof the previous paragraph is a bounded epimorphism. Thus a bounded union ofstru
tures is a bounded epimorphi
 image of their disjoint union. A weak 
onverseof this is also true: a bounded epimorphi
 image of a disjoint union `J Sj is thebounded union of the images of the Sj 's.Noti
e also that a disjoint union`J Sj is itself the bounded union of the isomorphi

opies Sj � fjg of the Sj 's.We use the notation Ub for the operation of forming bounded unions, analogouslyto Ud .Observe that if S is the bounded union of fSj : j 2 Jg, then from (1) by duality weget a surje
tive homomorphism CmS� CmSj for ea
h j 2 J , and these surje
tionsgive rise to the produ
t map from CmS to QJ CmSj taking ea
h T � S to theelement hT \ Sj : j 2 Ji of the dire
t produ
t of the CmSj 's. But then it followsfrom (2) that this produ
t map is inje
tive, so we have a subdire
t embeddingCmS�YJ CmSj :Moreover, if the Sj 's happen to be pairwise disjoint then this embedding is surje
tiveand reprodu
es the isomorphism between Cm`J Sj and QJ CmSj des
ribed above.The upshot of this dis
ussion is that� the notion of bounded union is dual to that of subdire
t produ
t.



416 Algebrai
 Polymodal Logi
: A SurveyTheorem 4.7(1) PCm = CmUd .(2) If V is 
losed under dire
t produ
ts, then StrV is 
losed under disjoint unions.(3) UdUd = Ud , UbUb = Ub .(4) Ud � Ub � H Ud = H Ub = UbH .(5) UdH � H Ud .(6) SUd = UdS.(7) SUb � UbS � H SUd = H SUb .Proof. (1) was observed above, and (2) follows from it. The remainder are left tothe reader.We are now in a position to establish some 
hara
terisations of 
anoni
ity.Theorem 4.8 The variety VarK generated by a 
lass of stru
tures K is 
anoni
alif, and only if, the 
lass StrVarK of stru
tures in VarK is 
losed under 
anoni
alextensions.Proof. If S 2 StrVarK then CmS 2 VarK so if VarK is 
anoni
al then EmCmS 2VarK. But EmCmS = CmExS, so this makes ExS 2 StrVarK as desired.For the 
onverse, if A belongs to VarK = HSPCmK there exists an algebra A� anda subfamily fSj : j 2 Jg of K su
h thatA� A��YJ CmSj �= Cm(aJ Sj):Putting S =`J Sj , we then getEmA� EmA�� EmCmS = CmExS:But CmS is in VarK, by 
losure under produ
ts and isomorphism, so CmExS is inVarK if StrVarK is assumed 
losed under Ex . Closure of VarK under subalgebras andhomomorphi
 images then implies EmA 2 VarK. Hen
e VarK is 
anoni
al.Theorem 4.9 A variety V of BAO's is 
anoni
al if, and only if,(1) V is 
omplete, and(2) the 
lass StrV of stru
tures in V is 
losed under 
anoni
al extensions.Proof. A 
anoni
al variety is 
omplete, while 
losure of StrV under 
anoni
al exten-sions is a spe
ial 
ase of 
anoni
ity, as the �rst part of the previous proof shows.Now suppose that (1) and (2) hold. Sin
e V is 
omplete, it is generated by its 
lassof stru
tures StrV , soV = HSPCmStrV= HSCmUdStrV as PCm = CmUd (4:7(1))= HSCmStrV ;the last step being be
ause StrV is 
losed under disjoint unions (4.7(2)).



4. DUALITY 417Thus if A belongs to V then A 2 HSCmStrV , so the 
anoni
al stru
ture C stA is inC st HSCmStrV . Now by Theorem 4.6(7),C st HSCmStrV � SH E xStrV ;and by our hypothesis (2) ExStrV � StrV . But StrV is 
losed under H and S by4.6(3), so altogether SH E xStrV � StrV and therefore C stA 2 StrV . Hen
e EmA =CmC stA 2 V .This proves that if A is in V then so is EmA, i.e. V is 
anoni
al.A more detailed analysis of the relationship between properties of StrV and 
anoni
ityof V is given in [14, Se
tions 3.5, 3.7℄.4.6 Ultrapowers and Ultraprodu
tsPuK is the 
lass of all stru
tures that are isomorphi
 to an ultraprodu
t of membersof K. PwK is likewise de�ned as the 
losure of K under ultrapowers. The symbolRu denotes the inverse Pw�1 to the operation Pw : RuK is the 
lass of ultrarootsof K, 
omprising those stru
tures S having some ultrapower SJ=F isomorphi
 to amember of K.K is de�ned to be an elementary 
lass of relational stru
tures if it is the 
lass ofall models of some set of senten
es in the �rst-order language of its type. Elementary
lasses are 
hara
terised as those 
losed under Pu and Ru .There are a number of fundamental results about ultrapowers and ultraprodu
tsthat bear on the relationship between elementary logi
 and the equational logi
 of
omplex algebras. The �rst we 
onsider isTheorem 4.10 The 
lass StrV of stru
tures in a variety V is 
losed under ultraroots.Proof. This follow from the fa
t that for any ultraprodu
t (QJ Sj)=F there is aninje
tive homomorphism (YJ CmSj)=F � Cm(YJ Sj=F );as des
ribed in detail in [14, 3.6.5℄. In the 
ase of an ultrapower this takes the form� : (CmS)J=F � Cm(SJ=F );where, for T 2 (CmS)J , � maps T=F to the set�(T=F ) = ff=F 2 SJ=F : fj : f(j) 2 T (j)g 2 Fg:Composing � with the (elementary) embedding of algebras CmS� (CmS)J=F yieldsCmS� Cm(SJ=F ):By 
losure of V under subalgebras, it follows that SJ=F 2 StrV implies S 2 StrV ,i.e. StrV is 
losed under Ru .
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: A SurveyThe symbols Pu and Pw will be used for the operations of forming ultraprodu
ts andultrapowers of algebras. Thus the �rst two senten
es of the proof just given assertthat PuCm � SCmPu and PwCm � SCmPw ;while the embedding CmS� Cm(SJ=F ) establishesCmRu � SCm ;and hen
e SCmRu = SCm .Theorem 4.10 implies that StrV is elementary i� it is 
losed under ultraprodu
ts.But in fa
t 
lasses of the form StrV are even more 
onstrained than this: it is enoughfor them to be 
losed under ultrapowers for it to follow that they are elementary. Theproof of this result is based on the following observation.Theorem 4.11 An ultraprodu
t of a 
olle
tion of stru
tures fSj : j 2 Jg is iso-morphi
 to an inner substru
ture of an ultrapower of their disjoint union. Hen
ePu � SPwUd .Proof. There is a natural bounded inje
tion(YJ Sj)=F � (aJ Sj)J=Ftaking f=F to g=F , where g(j) = hf(j); ji. Cf. [14, 3.8.3℄ for details.Corollary 4.12 For any variety of BAO's V, the following are equivalent.(1) StrV is an elementary 
lass.(2) StrV is 
losed under elementary equivalen
e.(3) StrV is 
losed under ultrapowers.(4) StrV is 
losed under ultraprodu
ts.Proof. That (1) implies (2) and (2) implies (3) is standard. That (3) implies (4)follows from Theorem 4.11 and the fa
t that StrV is always 
losed under disjointunions, inner substru
tures and isomorphism. Finally, as already noted, (4) implies(1) as a 
onsequen
e of 4.6.1 and the 
hara
terisation of elementary 
lasses as those
losed under Pu and Ru .Corollary 4.6.3 is the algebrai
 generalisation of a result that Johan van Benthemoriginally proved for the 
lass of Kripke frames validating a modal formula. Hisapproa
h used a model-theoreti
 
ompa
tness argument. A dis
ussion of that proofis given in [20℄.The next result is essentially an ultrapowers version of an appli
ation of saturatedmodels to modal logi
 that �rst appeared in [12℄.Theorem 4.13 For any stru
ture S, the 
anoni
al extension ExS is a bounded epi-morphi
 image of some ultrapower of S. Hen
e Ex � H Pw .



4. DUALITY 419Proof. Given an ultrapower SJ=F , a mapSJ=F ! C st CmSof the desired form is obtained by assigning to ea
h element f=F of SJ=F the setfT � S : fj 2 J : f(j) 2 Tg 2 Fg;whi
h is indeed an ultra�lter of CmS and hen
e a member of the 
anoni
al stru
tureof CmS. If the ultrapower SJ=F is !-saturated, this map is a bounded epimorphism,as shown in detail in Se
tion 3.6 of [14℄.Corollary 4.14 For any variety of BAO's V, if StrV is 
losed under ultrapowers,then the following are equivalent.(1) V is 
anoni
al.(2) V is 
omplex.(3) V is 
omplete.Proof. We have already observed that (1) implies (2) and (2) implies (3) in general.But if StrV is 
losed under ultrapowers, then sin
e it is always 
losed under boundedepimorphi
 images (4.6(3)), 4.6.4 implies that it must also be 
losed under 
anoni
alextensions. Hen
e by Theorem 4.9, if it is 
omplete then it is 
anoni
al.Theorem 4.15 If a variety of BAO's is generated by an elementary 
lass of stru
-tures, then it is 
anoni
al.Proof. We give the main features of a proof that has been dis
ussed in detail in thepapers [14, 15, 19℄. There are two main additional ingredients. First, the fa
t that anultraprodu
t of bounded unions of stru
tures 
an be represented as a bounded unionof ultraprodu
ts of those stru
tures: PuUb � UbPu (
f. Theorem 2.4 of [19℄ for theproof). To be pre
ise, we need a spe
ial 
ase of this fa
t, namely(i) PwUd � H UdPu .Se
ond, a result that shows how the 
anoni
al stru
tures of members of VarK 
an be
onstru
ted out of members of K:(ii) C st VarK � SH UdPuK.The proof of (ii), whi
h holds for any 
lass K, is as follows.C st VarK = C st HSPCmK by de�nition of Var= C st HSCmUdK as PCm = CmUd (4:7(1))� SH E xUdK by 4.6(7)� SH H PwUdK by 4.13� SH H H UdPuK by (i)= SH UdPuK by 4.6(1).Now suppose that our variety is VarK and K is elementary. Then PuK = K, so asStrVarK 
ontains K and is 
losed under S, H , and Ud , from (ii) we then getC st VarK � SH UdK � StrVarK:
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anoni
al.In the proof just given, we only used the fa
t that PuK = K and not the strongerassumption that K is elementary (i.e. Ru -
losed as well). However, for an arbitrary Kwe have VarK = VarRuK, sin
e RuK � StrVarK (4.10), and when PuK = K we havethat RuK is an elementary 
lass, the smallest one 
ontaining K. In this sense we mayalways assume we are dealing with an elementary generating 
lass for the variety inquestion, rather than just a Pu-
losed one.Now when VarK is 
anoni
al, it 
onsists of 
omplex algebras and so 
an be des
ribedas SCmN for some 
lass of stru
tures N . This N is by no means unique, and 
an betaken to be elementary when K is, as shown by the following result from [19, 4.10{4.12℄.Theorem 4.16 If PuK = K, and N is any 
lass satisfying(y) C st VarK � N � StrVarK;then EmVarK � CmN � VarK, and so VarK = SCmN . In parti
ular if M is any
lass satisfying C st VarK �M = PuM� StrVarK;then N = RuM is an elementary 
lass ful�lling (y).In some 
ases, an assumption weaker than Pu-
losure 
an be used to show that a
lass of 
omplex algebras forms a variety 
losed under 
anoni
al extensions. Themost general statement of this kind known to the author is� If PuK � H SUdK, then SCmSUdK is a 
anoni
al variety equal to HSPCmK.A proof of this is given in [19℄, where the result is applied to give another proof that the
lass of representable 
ylindri
 algebras of a given dimension form a 
anoni
al variety.This appli
ation uses our 
hara
terisation of RCA� as SCmSUdF
t� (Se
tion 4.3above), together with the following results about ultraprodu
ts of Cartesian and weakCartesian stru
tures: PuUbF
t� � UbF
t�;CmW
t� � SCmPwF
t�:The proof method 
an also be applied to other kind of algebras whose elements are�-ary relations, in
luding the 
ylindri
-relativised set algebras that are involved inre
ent studied of fragments of �rst-order logi
 [47, 3, 39℄ and representable quasi-polyadi
 algebras [46℄.An unresolved issue in this subje
t is whether the 
onverse of 4.15 is true, i.e. whetherevery 
anoni
al variety V must be of the form VarK for some elementary 
lass K. Allknown 
anoni
al varieties are of this form (in
luding examples involving 
ylindri
 al-gebras and relation algebras), and experien
e from modal logi
 suggests that a naturalway to approa
h the problem is to fo
us on the free V-algebra AV! on denumerablymany generators and the �rst-order theory of its 
anoni
al stru
ture C stAV! . Theorem4.15 of [19℄ provides the following justi�
ation of this approa
h:
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lass of stru
tures, thenit is generated by the elementary 
lass of those stru
tures that satisfy the same�rst-order senten
es as the stru
ture C stAV! .This result 
an in turn be strengthened by limiting the 
lass of �rst-order senten
esinvolved. A �rst-order senten
e will be 
alled quasi-modal if it is of the form 8v'with ' being 
onstru
ted from amongst atomi
 formulae and the 
onstants ? and >using at most ^ (
onjun
tion), _ (disjun
tion), and bounded universal and existentialquanti�ers 8v0 � � � 8vn�1(R(v; v0; : : : ; vn�1)!  )9v0 � � � 9vn�1(R(v; v0; : : : ; vn�1) ^  )with v distin
t from v0; : : : ; vn�1. Any quasi-modal senten
e is preserved by S, H ,and Ud while 
onversely, if a set of �rst-order senten
es is preserved by these threeoperations, then it is logi
ally equivalent to a set of quasi-modal senten
es. Thiswas proven in [59℄ for the language of a binary predi
ate, and in [14, Se
tion 4℄ forlanguages of arbitrary type.This preservation theorem was analysed further in [19, Se
tion 7℄ (where quasi-modal senten
es were 
alled \pseudo-equational"). The analysis showed that if 	Kis the set of all quasi-modal senten
es true of a 
lass K of stru
tures, and Mod	K isthe 
lass of all models of 	K, thenMod	K = RuUbRuUbRu H SK:Sin
e StrVarK is 
losed under the operations Ru ;Ub ; H ;S it follows thatMod	K � StrVarK:Moreover we have SH UdPuK �Mod	Ksin
e 	K is preserved by S, H , Ud , and Pu , so result (ii) in the proof of 4.6.6 yieldsC st VarK �Mod	K:Thus we 
an apply 4.16 with N =Mod	K to infer thatif PuK = K then VarK = SCmMod	K.Now for a variety V , if 	V is the quasi-modal theory of the stru
ture C stAV! , then itis shown in [19℄ that when V = VarK for some Pu-
losed K, thenSCmMod	K = SCmMod	V(although possibly 	K 6= 	V). Combined with the above results, this yieldsTheorem 4.17 If a variety of BAO's V is generated by some elementary 
lass ofstru
tures, then V = SCmMod	V , where 	V is the quasi-modal theory of the 
anon-i
al stru
ture C stAV! .
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5.1 Languages and Logi
sA modality is a linguisti
 
onstru
tion that takes a statement ' and forms a newstatement that asserts something about the way in whi
h ' is true. There are manywords and phrases of ordinary language that fun
tion as modalities, and some ofthese form interde�nable pairs, like possibly/ne
essarily, eventually/hen
eforth, andit is permissible that/it ought to be. In formal languages, the symbols � and areoften used for for a pair of modalities of this type, with the interde�nability given by= :�:; � = : ::We will be dis
ussing languages with several (possibly in�nitely many) su
h modal
onne
tives, so we use ordinals to index them and present them in the form h� i; [� ℄with [� ℄ = :h� i:; h� i = :[� ℄::Most studies of modal logi
 are based on a language with denumerably many propo-sitional variables. Here we will �nd it useful to 
onsider languages with larger setsof variables, so from the outset we suppose we have a distin
t variable p� for ea
hordinal �, and for ea
h in�nite 
ardinal number � de�ne�� = fp� : � < �g:Then for ea
h ordinal �, a modal language L�(�) is generated from ��, the usualBoolean 
onne
tives, and a 
olle
tion fh� i : � < �g of \diamond" modalities. Theset of formulae ' of L�(�) is given by the de�nition' ::= p� j ? j :' j '1 _ '2 j h� i'where � ranges over ordinals less than � and � over ordinals less than �. Other
onne
tives are given by the usual abbreviations' ^  for :(:' _ : )'!  for :' _  '$  for ('!  ) ^ ( ! ')[� ℄' for :h� i:':Thus the standard language for type 1 logi
 is L!(1) and that for type 2 logi
, in-
luding temporal logi
, is L!(2). Languages of the kind L�(�) may be 
alled unarysin
e they involve only one-pla
ed modal 
onne
tives. More generally, given a type� = h�� ; �� i as de�ned in Se
tion 3.1, an asso
iated language L�(�) is de�ned for ea
hin�nite 
ardinal � by using 
onne
tives h� i of rank �� (�) for � < �� . The formulaeof L�(�) are spe
i�ed by' ::= p� j ? j :' j '1 _ '2 j h� i('0; : : : ; '�� (�)�1);and now the �� (�)-ary \box" operator asso
iated with h� i has[� ℄('0; : : : ; '�� (�)�1) = :h� i(:'0; : : : ;:'�� (�)�1):A logi
 in the language L�(�) is de�ned to be any set � of L�(�)-formulae su
h that
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ludes all L�(�)-formulae that are instan
es of tautologies, and� � is 
losed under the inferen
e rule of Deta
hment, i.e.if '; '!  2 �, then  2 �.� is uniform if it is 
losed under the rule of uniform substitution of L�(�)-formulaefor propositional variables. � is a normal logi
 if it 
ontains the s
hemata(K) h� i('0; : : : ;  _ �; : : : ; '�� (�)�1)!h� i('0; : : : ;  ; : : : ; '�� (�)�1) _ h� i('0; : : : ; �; : : : ; '�� (�)�1);(N) :h� i('0; : : : ;?; : : : ; '�� (�)�1);and satis�es the Monotoni
ity ruleif  ! � 2 �, thenh� i('0; : : : ;  ; : : : ; '�� (�)�1)! h� i('0; : : : ; �; : : : ; '�� (�)�1) 2 �.The members of a logi
 are 
alled its theorems, and we write `� ' to mean that ' isa �-theorem, i.e. `� ' i� ' 2 �:If �[f'g is a set of formulae, then ' is �-dedu
ible from �, denoted � `� ', if thereexist �nitely many  0; : : : ;  n�1 2 � su
h that`�  0 ! ( 1 ! (� � � ! ( n�1 ! ') � � � ))(in the 
ase n = 0, this means that `� '). We write � 6`� ' when ' is not �-dedu
iblefrom �.� is a �-
onsistent set of formulae if � 6`� ?, and is �-maximal if it is �-
onsistentand for ea
h L�(�)-formula ', either ' 2 � or :' 2 �.Put S�� = f� : � is a �-maximal set of L�(�)-formulaeg:By a result usually known as Lindenbaum's Lemma, every �-
onsistent set is ex-tendible to a �-maximal set of L�(�)-formulae. Hen
e if 6`� ?, so that there do exist�-
onsistent sets, then S�� 6= ;. The 
anoni
al �-stru
ture is then the type � stru
tureS�� = hS�� ; R�� i�<�� ;where R�� (�;�0; : : : ;��� (�)�1)i� fh� i('0; : : : ; '�� (�)�1) : 'i 2 �i all i < �� (�)g � �:For unary languages S�� is known as the 
anoni
al �-frame.Asso
iated with any normal logi
 � in a language L�(�) is an algebra A�� , a BAOof type � , 
alled the Lindenbaum-Tarski algebra of �. The 
olle
tion of all L�(�)-formulae forms an absolutely free algebra of type � under the operations on formulae
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ed by the 
onne
tives _;^;:;?;>; h� i, and A�� is the quotient of this algebraby the 
ongruen
e �=�, where' �=�  i� `� '$  :Thus the elements of A�� are the equivalen
e 
lassesk'k = f : `� '$  g;with the operations k'k+ k k = k' _  kk'k � k k = k' ^  kk'k� = k:'k0 = k?k1 = k>km�(k'0k; : : : ; k'�� (�)�1k) = kh� i('0; : : : ; '�� (�)�1)k:The axiom s
hemata (K) and (N) and the Monotoni
ity rule are needed to show thatm� is a well-de�ned normal additive operator. In A�� we havek'k � k k i� `� '!  ;k'k = 1 i� `� ':If � is a �-maximal set of formulae, thenx� = fk'k : ' 2 �gis an ultra�lter of A�� . The 
orresponden
e � 7! x� proves to be a bije
tion betweenS�� and the set of ultra�lters of A�� whi
h respe
ts the relations R�� of S�� and Rm�of the 
anoni
al stru
ture of A�� (Se
tion 3.2). In other words:� the 
anoni
al �-stru
ture S�� is isomorphi
 to the 
anoni
al stru
ture C stA�� ofthe Lindenbaum-Tarski algebra A�� of �.We will see shortly that A�� is the free algebra on � generators in a variety of BAO'sdetermined by the normal logi
 �.5.2 Algebrai
 Semanti
sLet A = hB;m�i�<�� be a BAO of type � and ' an L�(�)-formula whose variablesare among p�0 ; : : : ; p�n�1 with �0 < � � � < �n�1. Then ' indu
es an n-ary operationA(') on A whi
h is de�ned by indu
tion on the formation of ' as follows.A(p�i)(a0; : : : ; an�1) = aiA(?)(a0; : : : ; an�1) = 0A(:')(a0; : : : ; an�1) = A(')(a0; : : : ; an�1)�A('1 _ '2)(a0; : : : ; an�1) = A('1)(a0; : : : ; an�1) +A('2)(a0; : : : ; an�1)



5. POLYMODAL LOGIC 425andA(h� i('0; : : : ; '�� (�)�1))(a0; : : : ; an�1) =m�(A('0)(a0; : : : ; an�1); : : : ;A('�� (�)�1)(a0; : : : ; an�1)).' is valid in A, A j= ', if the fun
tion A(') is 
onstantly equal to 1. If V is a 
lass ofBAO's, then V j= ' if A j= ' for all A 2 V .If � is a set of formulae, then A j= � if A j= ' for all ' 2 �. It is readily seen thatA(') = A( ) i� A j= '$  i� A('$  ) = 1 
onstantly.Now a formula ' may be regarded as a term in the language of a BAO A, with thepropositional variables of ' treated as variables ranging over the elements of A, andthe symbols _;^;:;?;>; h� i naming the A-operations +; �;� ; 0; 1;m�. Then A(') isjust the term operation on A indu
ed by ' as a term. Every term for A 
orrespondsto a formula, and every term fun
tion is of the form A(') for some formula '. Fromthis there follows an equivalen
e between formulae and BAO equations. Formula 'is valid in A if, and only if, A satis�es the equation \' = 1". Ea
h equation is of theform \' =  " for some formulae, and is satis�ed in A i� the formula ' $  is validin A. Thus for a set of formulae �, the 
lass of algebrasfA : A j= �gis an equational 
lass, whi
h we denote Var�, and every equational 
lass is of thisform. Var� is 
losed under the operations H ; S ;P , i.e. these operations preservevalidity of formulae.For any 
lass V of BAO's, the set�V = f' : V j= 'gis a normal uniform logi
. In parti
ular,�A = f' : A j= 'gis a normal uniform logi
 for ea
h algebra A. Thus if A j= �, then � � �A and�A 
ontains the normal uniform logi
 �(�) generated by �, whi
h is de�ned as theinterse
tion of all su
h logi
s that 
ontain �. Consequently,A j= � i� A j= �(�);and Var� = Var�(�): every variety of algebras is the 
lass of all algebrai
 models ofsome logi
 of the form �(�).We say that a logi
 � is 
hara
terised by a 
lass V of BAO's, or that � axiomatisesV , if for any formula ', `� ' i� A j= ' for all A 2 V :In other words, � is 
hara
terised by V if, and only if, � = �V .Every normal uniform logi
 � turns out to be of the form �A, be
ause su
h a � is
hara
terised by its Lindenbaum-Tarski algebra:(y) `� ' i� A�� j= ':
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e the equational theory of A�� is just the set of equations de�ned by �, and Var�is the variety generated by A�� . From this it follows that � 7! Var� is a bije
tive
orresponden
e between normal uniform logi
s and varieties.The proof of (y) follows from the fa
t that in generalA�� (')(k 0k; : : : ; k n�1k) = k'[p�i= i℄k;where the formula '[p�i= i℄ is the result of uniformly substituting  i for the variablep�i in ' for all i < n. Then if `� ', by uniform substitution we have `� '[p�i= i℄and hen
e A�� (')(k 0k; : : : ; k n�1k) = 1;for any  i, showing that A�� (') = 1 
onstantly. But sin
e(z) A�� (')(kp�0k; : : : ; kp�n�1k) = k'[p�i=p�i ℄k = k'k;if 6`� ', then A�� (')(kp�0k; : : : ; kp�n�1k) 6= 1, so A�� 6j= '.Theorem 5.1 In the variety Var�, A�� is a free algebra on the set of generatorsk��k = fkp�k : � < �g:Proof. It is evident from the de�nition of A�� that it is generated as a BAO by k��k.Given a fun
tion f : k��k ! A, sin
e homomorphisms preserve term operations itfollows from (z) that the only possible lifting of f to a homomorphism f : A�� ! Awould be to take f(k'k) = A(')(f(kp�0k); : : : ; f(kp�n�1k)):This does indeed give a homomorphism of BAO's, provided that it is well-de�ned.But if k'k = k k then `� ' $  , so if A belongs to Var� then A j= ' $  andhen
e A(') = A( ) as desired.Theorem 5.2 The smallest normal logi
 in L�(�) is 
hara
terised by the 
lass of allBAO's.Proof. By \the smallest" is meant the interse
tion of all normal logi
s. Let � bethis interse
tion. Then � is 
ontained in �A for any BAO A, whi
h shows that the�-theorems are valid in all BAO's. This is the Soundness part of the 
hara
terisation.Conversely, for the Completeness part, if a formula is valid in all BAO's, then it isvalid in the Lindenbaum-Tarski algebra A�� , and so is a �-theorem, as above.Algebrai
 
hara
terisations of many logi
s 
an be obtained by this method. Forinstan
e, in the language L!(1) with modality � , the logi
 S4 is de�ned as thesmallest normal logi
 
ontaining the s
hemata(T) '! �', and(4) ��'! �'.These s
hemata are valid in any 
losure algebra, so if A is a 
losure algebra thenS4 � �A. But (T) and (4) for
e the Lindenbaum-Tarski algebra AS4! for S4 to be a
losure algebra, so if ' is valid in all 
losure algebras then it is valid in AS4! , and hen
e`S4 '. This shows
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hara
terised by the variety V
l of all 
losure algebras, whi
h is generated byAS4! .For the logi
 S5, de�ned as the smallest normal logi
 
ontaining (T), (4) and thes
hema'! �',we show by similar reasoning that� S5 is 
hara
terised by the variety Vmn of all monadi
 algebras, whi
h is generatedby AS5! .To 
on
lude this se
tion, we brie
y dis
uss the question of how the notion of a logi

an be made language independent. Sin
e any formula or equation has only �nitelymany variables, to de�ne a logi
 or an equational 
lass we really need only n variablesfor arbitrary �nite n. Hen
e the languages L!(�) suÆ
e for this purpose. At thesame time the de�nition of a parti
ular logi
 in many 
ases should be independent ofthe size of the set of variables. For instan
e, in any modal language L�(1), whateverthe 
ardinal � may be, we should be able to say that \S4" means the smallest normallogi
 
ontaining the s
hemata (T) and (4). If a logi
 is de�ned as a set of formulae(theorems), rather than as a system of axioms and inferen
e rules, then we need tosay something about how the di�erent instantiations of this logi
 are related as theset �� of propositional variables varies with �.If � is a normal uniform logi
 in a language L�(�), and � is any 
ardinal greaterthan �, then by \� in L�(�)" we mean the set �� of L�(�)-formulae that are obtainedby uniform substitution in L�(�) from �-theorems in L�(�). This is the smallestnormal uniform logi
 in L�(�) 
ontaining the original �. On the other hand, if� > � � !, there is a unique logi
 �� in L�(�) su
h that � arises in this way from�� by substitution. �� is simply the set of L�(�)-formulae that belong to �.A natural way to approa
h this issue from the point of view of algebra is to observethat � de�nes the variety Var� whi
h in turn, for ea
h �, spe
i�es the logi
f' in L�(�) : Var� j= 'g:With the help of the Lindenbaum-Tarski algebra 
onstru
tion, it 
an be shown thatthis is the same as the logi
 �� just de�ned.5.3 Kripke Semanti
sWe turn now to the relational semanti
s attributed to Kripke, and motivate this byreviewing the interpretation of some unary modalities. The distin
tion between aninterde�nable pair h� i; [� ℄ 
an be a

ounted for logi
ally by observing that h� idistributes a
ross a disjun
tion, in the sense that`� h� i(' _  )$ h� i' _ h� i for a normal logi
 �, while [� ℄ 
orrespondingly respe
ts 
onjun
tion:`� [� ℄(' ^  )$ [� ℄' ^ [� ℄ :
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tive, in terms of intended interpretations, \diamond" modal-ities fun
tion like existential quanti�ers over states/ worlds/ situations, while \box"modalities are like universal quanti�ers. Here are some illustrations:Modality Interpretationpossibly in some possible worldne
essarily in all possible worldseventually at some future timehen
eforth at all future timesit is 
onsistent that in some modelit is provable that in all modelsafter the program �nishes after all terminating exe
utionsthe program enables there is a terminating exe
ution su
h thatA model for a unary language L�(�) is a pair M = hS; V i where S = hS;R�i�<� isa K-frame, 
onsisting of binary relations R� on S, andV : �� ! SbSis a valuation fun
tion assigning a subset V (p�) of S to the variable p� for ea
h � < �.V (p�) is to be thought of as the set of points at whi
h p� is true. The satisfa
tionrelation \' is true at point s in M", denotedM j=s ';is de�ned indu
tively by the 
lausesM j=s p� i� s 2 V (p�)M 6j=s ? (i.e. not M j= ?)M j=s ' _  i� M j=s ' or M j=s  M j=s h� i' i� for some t 2 S, sR�t and M j=t ';and hen
e M j=s [� ℄' i� for all t 2 S, sR�t implies M j=t ':These last two 
lauses formally express the 
hara
ter of h� i and [� ℄ as boundedexistential and universal quanti�ers.For a polymodal language L�(�) of type � , a model takes the form M = hS; V iwhere now S is a relational stru
ture of type � . The de�nition of satisfa
tion ismodi�ed to readM j=s h� i('0; : : : ; '�� (�)�1) i� for some t0; : : : ; t�� (�)�1 2 S;R�(s; t0; : : : ; t�� (�)�1) andM j=ti 'i for all i < �� (�):Formula ' is true in model M, M j= ', if it is true at all points in M, i.e. ifM j=s ' for all s 2 S:' is valid in the stru
ture S, S j= ', if



5. POLYMODAL LOGIC 429M j= ' for all models M = hS; V i based on S.A logi
 � is 
hara
terised by a 
lass C of models, or stru
tures, if ea
h formula is a�-theorem pre
isely when it is true, or valid respe
tively, in all members of C:`� ' i� C j= ':For any model M, the set �M = f' :M j= 'gis a normal logi
, while for any stru
ture S,�S = f' : S j= 'gis a normal and uniform logi
.If � is a normal logi
 in a language L�(�), then � has a single 
hara
teristi
 modelM�� = hS�� ; V �i, 
alled the 
anoni
al �-model , where S�� is the 
anoni
al �-stru
turede�ned in Se
tion 5.1, and V �(p�) = f� 2 S�� : p� 2 �g:A fundamental result, whi
h uses the proof theory of normal logi
s, is thatM�� j=� ' i� ' 2 �for all formulae ' and all � 2 S�� (this is a model-theoreti
 analogue of the algebrai
argument showing that the 
anoni
al embedding fun
tion �B of Se
tion 3.2 is a BAO-homomorphism). Sin
e the only formulae that belong to all �-maximal sets are the�-theorems, this entails that M�� j= ' i� `� ';whi
h establishes that M�� 
hara
terises �.It follows immediately thatS�� j= ' implies `� ';but the 
onverse need not hold. There are logi
s that are not validated by their
anoni
al stru
ture, as will be explained further below (Theorem 5.7).To relate Kripke semanti
s to the algebrai
 semanti
s, we reformulate the de�nitionof the satisfa
tion relation in models. A given modelM asso
iates with ea
h formula' the \truth-set" M(') = fs :M j=s 'gof all points in M at whi
h ' is true. The 
lauses spe
ifying satisfa
tion amount tothe following properties of truth sets.M(p�) = V (p�)M(?) = ;M(:') = S � M(')M(' _  ) = M(') [M( )M(h� i('0; : : : ; '�� (�)�1)) = mR� (M('0); : : : ;M('�� (�)�1)):
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tion CmS(') indu
edby ' on the 
omplex algebra of S. Pre
isely, the following 
an be proven by indu
tionon the formation of ':Theorem 5.3 If ' is a formula whose variables are among p�0 ; : : : ; p�n�1 with �0 <� � � < �n�1, then for any model M on S,CmS(')(M(p�0 ); : : : ;M(p�n�1)) =M('): �Corollary 5.4 S j= ' i� CmS j= '.Proof. If S 6j= ' then M 6j= ' for some model M on S, so M(') 6= S. By 5.3.1 it isfollows dire
tly that CmS(') is not the \
onstantly 1" fun
tion, so CmS 6j= '.Conversely, if ' is not valid in CmS, thenCmS(')(T0; : : : ; T�n�1)) 6= Sfor some Ti 2 SbS. Letting M be any model on S having M(p�i) = T�i for i < n,5.3.1 again implies M(') 6= S, so S 6j= '.Now if a formula is valid in all BAO's, then it is valid in all 
omplex algebras and so,by 5.3.2 is valid in all stru
tures. Conversely, if ' is valid in all stru
tures, then itis valid in the 
anoni
al stru
ture C stA of any BAO, and so by 5.3.2 is valid in thealgebra CmC stA = EmA. In view of the embedding A � EmA and the fa
t thatvalidity is preserved by subalgebras and isomorphism, it follows that A j= '. ThisshowsTheorem 5.5 A formula is valid in all stru
tures of type � if, and only if, it is validin all BAO's of type � . Hen
e the smallest normal logi
 in L�(�) is 
hara
terised bythe 
lass of all �-stru
tures. �In order to obtain relational 
hara
terisations of other logi
s, we 
an 
ombine thealgebrai
 
ompleteness theorems of Se
tion 5.2 with various representation theoremsfrom Se
tions 3 and 4. Here are some typi
al results.Theorem 5.6(1) The logi
 S4 is 
hara
terised by the 
lass of all quasi-orderings, as well as by the
lass of all partial orderings.(2) The logi
 S5 is 
hara
terised by the 
lass of all equivalen
e relations, as well as bythe 
lass of K-frames S = hS;Ri in whi
h the relation R is universal.Proof. (1) For the Soundness part, it is readily seen that if S is a quasi-ordering thenS4 � �S. For the 
onverse, if A is a 
losure algebra, then as shown in Se
tion 3.3C stA is a quasi-order, so if ' is valid in all quasi-orders it is valid in C stA andhen
e as in the proof of 5.3.3 is valid in A. This shows that a formula valid in allquasi-orders is valid in all 
losure algebras, and so is an S4-theorem by the workof Se
tion 5.2.For the 
ase of partial orderings, we similarly use the result of Se
tion 4.2 that a
losure algebra 
an be embedded into the 
omplex algebra of a partial ordering.
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t that S5 is 
hara
terised by equivalen
e relations is shown by extendingthe analysis of S4, using the fa
t that if A is a monadi
 algebra then C stA is anequivalen
e relation. But for any K-frame S there is an embeddingCmS�Ys2S CmSswhere Ss is the inner substru
ture of S generated by the point s (
f. Se
tion4.3). Now if S is an equivalen
e relation then Ss is the equivalen
e 
lass of s,on whi
h the equivalen
e relation is universal. Thus if a formula is valid in alluniversal frames, then it is valid in ea
h CmSs and so by preservation of validityunder P and S is valid in CmS for any equivalen
e relation S, and therefore isan S5-theorem.Instead of working with 
anoni
al stru
tures C stA of algebras, an alternative butequivalent approa
h to these results is to dire
tly use the axioms of a logi
 like S4to prove that the 
anoni
al frame S�� has the desired properties, like re
exivenessand transitivity, that ensure that it validates the logi
. Although there are numerousaxioms for whi
h this method works, it does not apply to all. A 
ounter-example isthe L!(1)-logi
 KW, where W is the s
hema�'! �(' ^ :�'):VarKW is the variety Vdg of all diagonalisable algebras.Theorem 5.7 The s
hema W is not valid in the 
anoni
al KW-frame SKW! .Proof. Let A be the algebra of all �nite or 
o�nite subsets of the frame S = h!;>i.It was shown in Se
tion 3.3 that A 2 Vdg but EmA =2 Vdg, hen
e W is not valid inC stA.Sin
e the Lindenbaum-Tarski algebra AKW! for KW is free in Vdg on denumerablymany generators (Theorem 5.1), there is a surje
tive homomorphism AKW! � A, andhen
e by duality an inje
tive bounded C stA � C stAKW! . It follows that W 
annotbe valid in C stAKW! , or else it would be valid in C stA. But SKW! is isomorphi
 toC stAKW! (Se
tion 5.1).5.4 Completeness and In
ompletenessEa
h normal uniform logi
 � is 
hara
terised by the variety Var� of all algebrasthat validate �. Correspondingly for the relational semanti
s we may ask: is �
hara
terised by the 
lass Str� = fS : S j= �gof all stru
tures that validate �? For this to hold it suÆ
es that every formula validin Str� be a �-theorem. (Note that Str� is the same as the 
lass StrVar� of allstru
tures in the variety Var�.)We will say that a logi
 � is 
omplete if it is 
hara
terised by some 
lass K ofstru
tures. Su
h a K is 
ontained in Str�, from whi
h it follows that � is 
ompleteif, and only if, it is 
hara
terised by Str�.
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ompleteness does not depend on the 
ardinality of the language.If the statement (`� ' i� K j= ') holds for all L!(�)-formulae ', then it 
an be shownto hold for all L�(�)-formulae '� when k > !, using the fa
t for any su
h '� there isan L!(�)-formula ' su
h that ' and '� are substitution instan
es of ea
h other.Now if K 
hara
terises �, then CmK � Var� and, invoking the equivalen
e offormulae and algebrai
 equations, ea
h equation valid in CmK is equivalent to a �-theorem and hen
e hold in Var�. This implies that Var� is the variety VarK =HSPCmK generated by K. Consequently� � is a 
omplete logi
 i� Var� is generated by Str�, i.e. i� Var� is a 
ompletevariety in the sense of Se
tion 3.3.It was dis
overed by Thomason [55℄ that there exist in
omplete logi
s, ones for whi
hVar� is a non-trivial variety that is not generated by Str�. This �rst example wasa temporal logi
 for whi
h there are no validating frames at all: Str� = ;! Laterexamples of in
omplete modal logi
s were found by Thomason [56℄ and Fine [11℄. Thesimplest example now known [7℄ is the smallest normal logi
 
ontaining the s
hema�'! �:(�'$ '):The full possibility of the phenomenon of in
ompleteness was established by Blok [5℄.He showed that for any variety V of type 1 modal algebras satisfying x � mx thereare un
ountably many other varieties W with StrW = StrV , so that W has exa
tlythe same powerset algebras as V . All of these varieties 
ontain VarStrV , whi
h is theonly one of them that is 
omplete.The question as to when a 
lass of algebras is de�ned by a set of equations wasanswered by Birkho�'s theorem about 
losure under the operations H ; S ;P . The dualof this question for relational stru
tures is to ask when a 
lass K of stru
tures is equalto the 
lass Str� of all stru
tures validating some set of formulae �. Classes of theform Str� will be 
alled polymodal axiomati
 
lasses, sin
e they are de�ned by aset of polymodal formulae. For su
h 
lasses satisfying 
ertain natural properties (e.g.PwK = K) there is a 
hara
terisation involving the dual operations to H ; S ;P . Beforedemonstrating this (in 5.4.2) we note that the property of being polymodal axiomati
may be viewed as being dual to the property of 
ompleteness. This is be
ause avariety V is 
omplete if and only if V = VarStrV ;an equation whose dual for a 
lass K of stru
tures isK = StrVarK:We haveLemma 5.8 A 
lass K of relational stru
tures is polymodal axiomati
 if, and only if,K = StrVarK.Proof. In general the variety VarK generated by K is equal to the 
lass Var�K ofall algebras validating the logi
 �K = f' : K j= 'g 
hara
terised by K. Thus the
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lass StrVarK of stru
tures in VarK is equal to the polymodal axiomati
 
lass Str�Kof stru
tures validating �K. Hen
e if K = StrVarK, then K is polymodal axiomati
.Conversely, suppose K = Str� for some �. Then if S 2 StrVarK, the algebraCmS belongs to VarK and so validates any formulae that are valid in K. In parti
ularCmS j= �, so S 2 Str� = K. This establishes StrVarK = K as desired.Theorem 5.9 Let K be a 
lass of stru
tures that is 
losed under ultrapowers. ThenK is polymodal axiomati
 if, and only if,(1) K is 
losed under bounded epimorphi
 images, inner substru
tures and disjointunions; and(2) K re
e
ts 
anoni
al extensions, i.e. ExS 2 K implies S 2 K.Proof. Every polymodal axiomati
 
lass satis�es (1) and (2). For the 
onverse weuse the fa
t, shown in the proof of Theorem 4.15, that for arbitrary K,C st VarK � SH E xUdK � SH PwUdK:Now if PwK = K and K satis�es (1) then SH PwUdK = K. But then if S 2 StrVarK,we have CmS 2 VarK, soExS = C st CmS 2 C st VarK � K;and hen
e S 2 K if K re
e
ts Ex (2). This shows that under the given hypothesesStrVarK = K, implying that K is polymodal axiomati
 by Lemma 5.4.1.Theorem 5.4.2 was �rst presented in [22℄ under the hypothesis (for type 1 frames)that K is 
losed under elementary equivalen
e. Inspe
tion of the proof just givenreveals that an alternative suÆ
ient hypothesis would be that K is 
losed under
anoni
al extensions. More importantly, in view of the dis
ussion in Se
tion 2.2about 
orresponden
es between de�nable properties of S and equational propertiesof CmS, the Theorem gives as a spe
ial 
ase a 
hara
terisation of those elementary
lasses that are polymodal axiomati
. A synta
ti
 
hara
terisation of the elementary
lasses that are 
losed under H ;S ;Ud (5.4.2(1)) is provided by the notion of a quasi-modal �rst-order senten
e as des
ribed at the end of Se
tion 4.6. There is 
urrently nosu
h \preservation theorem" known for elementary 
lasses satisfying both 5.9(1) and5.9(2). That this is a non-trivial question is shown by the fa
t that the quasi-modalsenten
e 8v9w (vRw ^ wRw)is preserved by H , S, and Ud , but is not re
e
ted by Ex sin
e it holds in the stru
tureEx h!;<i.The 
onverse question of when a polymodal axiomati
 
lass is elementary is alreadyanswered by the analysis of Corollary 4.12. The 
lass Str� of stru
tures validating� is the same as the 
lass StrVar� of stru
tures in the variety Var� of algebrasvalidating �. So putting V = Var� in 4.6.3 immediately gives:Theorem 5.10 A polymodal axiomati
 
lass is elementary if, and only if, it is 
losedunder ultrapowers. �
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al Logi
sIt is a standard pra
ti
e in modal logi
 to say that a normal logi
 � in the languageL!(1) is 
anoni
al if it is validated by the 
anoni
al �-stru
ture S�! . However � hasmanifestations in the languages L�(1) for � � ! and hen
e 
anoni
al frames in all ofthese languages. A 
onvenient abstra
t way of dealing with these spe
ial stru
tures isprovided by the observation from Se
tion 5.1 that S�� is isomorphi
 to the 
anoni
alstru
ture C stA�� of the Lindenbaum-Tarski algebra A�� , and that the latter is the freealgebra on � generators in the variety Var� de�ned by � (Theorem 5.1). MoreoverC stA�� validates � if, and only if, it belongs to the 
lass StrVar� of stru
tures inVar�, i.e. i� its 
omplex algebra EmA�� belongs to Var�.We will say that a logi
 � in a language of arbitrary type is �-
anoni
al if � is validin C stA�� . Note that if � < � then by freeness A�� � A�� and hen
e C stA�� � C stA�� ,so that A�� j= � implies A�� j= �.Sin
e there are free algebras on �nitely many generators, we 
an use this approa
hto 
onsider �-
anoni
ity for �nite �. In fa
t there exist logi
s that are �-
anoni
al forall � < ! but are not !-
anoni
al. One example, analysed in detail in [19, Se
tion 6℄,is the smallest type 1 logi
 
ontaining :���>, and the s
hemata (4) and��' ^ ��:'! �(�' ^ �:'):For this logi
 Var� is lo
ally-�nite, i.e. all �nitely generated members are �nite. Hen
efor � < !, the free algebra A�� in Var� on � generators is �nite and so EmA�� �= A�� 2Var�. But EmA�! =2 Var�.A logi
 � will be de�ned to be 
anoni
al if it is �-
anoni
al for all � � !. We haveTheorem 5.11 A logi
 � is 
anoni
al if, and only if, the variety Var� is 
anoni
alin the sense that EmVar� � Var�.Proof. Theorem 4.2 established that Var� is 
anoni
al i� it 
ontains EmA for allin�nitely-generated free A in Var�, whi
h we now see means that C stA�� 2 StrVar�for all 
ardinals � � !.It is immediate that 
anoni
ity implies 
ompleteness: if � is a logi
 in L�(�) thatis valid in S�� then it is 
hara
terised by S�� . This provides a methodology thathas been used to obtain 
ompleteness theorems for numerous logi
s by the followingpro
edure.1. Find some 
ondition �� on stru
tures with respe
t to whi
h the logi
 � is sound,i.e. every stru
ture satisfying �� validates �.2. Prove that the 
anoni
al �-stru
ture S�! satis�es ��, and hen
e validates �.3. Sin
e S�! invalidates all non-theorems of � via its 
anoni
al model M�! , 
on
ludethat � is 
hara
terised by S�! , as well as by the 
lass of all stru
tures satisfying��.In all known examples �� is a �rst-order 
ondition on stru
tures, de�ning a sub
lassStr�� of Str�. It is not ne
essary for �� to exa
tly 
hara
terise � (i.e. Str�� = Str�)



5. POLYMODAL LOGIC 435for the method to apply. For example take � as the smallest normal modal logi

ontaining the s
hemata�(('1 ! �'1) ^ � � � ^ ('n ! �'n))for all n < !, and �� as the quasi-modal 
ondition8v9w (vRw ^ wRw)mentioned in the previous se
tion. Then � is sound for �� and S�! satis�es ��, but� is also valid in h!;<i, a stru
ture in whi
h �� is 
learly false (
f. [29℄).A very general situation in whi
h �� does exa
tly de�ne Str� is provided by thework of Sahlqvist [49℄, whi
h is generalised to arbitrary types in [10℄. This givesthe broadest known synta
ti
 de�nition of a 
lass of formulae to whi
h the 
anoni
alstru
ture methodology applies. To des
ribe this, de�ne a formula ' to be positive, ornegative respe
tively, if every variable of ' o

urs within the s
ope of an even, or oddrespe
tively, number of negations. A box string is a formula of the form[�0 ℄ � � � [�n�1 ℄pwhere p is a variable and ea
h [�i ℄ is a unary box modality. A Sahlqvist ante
edentis a formula 
onstru
ted from the 
onstants ?;>, box strings and negative formulaeusing only ^;_ and diamond poly-modalities. A Sahlqvist formula is one 
onstru
tedout of impli
ations '!  in whi
h ' is a Sahlqvist ante
edent and  is any positiveformula by using only ^ and formation of box polymodalities [� ℄('0; : : : ; 'n�1) inwhi
h none of the arguments 'i have any variables in 
ommon.For ea
h Sahlqvist formula ', let �' be the smallest normal uniform logi
 
ontain-ing '. There is an e�e
tive pro
edure asso
iating with su
h ' a �rst-order senten
e�' that holds exa
tly in the members of Str�' (
f. [10, Se
tion 3℄), so Str�' is anelementary 
lass. The fa
t that �' is validated by its 
anoni
al frameS�'! was demon-strated model-theoreti
ally in [49℄, but there is now an elegant algebrai
 approa
h [31℄for showing that a variety 
hara
terised by Sahlqvist formulae is 
anoni
al.The simplest type 1 formula that is not a Sahlqvist formula is the well-knownM
Kinsey axiom �'! � ':This was shown not to be 
anoni
al in [16℄, indi
ating that there is no natural wayto extend the 
lass of Sahlqvist formulae to a larger 
lass of 
anoni
al formulae.The following fundamental result was also �rst shown model-theoreti
ally for modallogi
, by Fine in [12℄.Theorem 5.12 If a logi
 is 
hara
terised by an elementary 
lass of stru
tures, thenit is 
anoni
al.Proof. Let � be 
hara
terised by the 
lass K. Then an algebra A is in the varietyVarK generated by K i� it validates all formulae validated by K, i.e. i� A j= �. ThusVarK = Var�. But if K is elementary, by Theorem 4.15 VarK is 
anoni
al, and so �is 
anoni
al by Theorem 5.11.



436 Algebrai
 Polymodal Logi
: A SurveyCorollary 5.13 If a logi
 � is 
omplete, and the 
lass Str� of stru
tures is 
losedunder ultrapowers, then � is 
anoni
al.Proof. Suppose Str� (= StrVar�) is 
losed under ultrapowers. Then by Corollary4.12 it is an elementary 
lass. But if � is 
omplete it is 
hara
terised by Str�, so then
anoni
ity follows from 5.12.It is important to re
ognise that the fa
t that the 
lass of stru
tures validating a logi
is elementary does not by itself guarantee 
anoni
ity. An additional hypothesis about
ompleteness is ne
essary. For instan
e, there are logi
s � that are in
omplete andtherefore not 
anoni
al, but for whi
h Str� is an elementary 
lass. One example isthe in
omplete temporal logi
 of [55℄ having Str� = ;. Another is the in
ompletemodal logi
 of [56℄ for whi
h Str� is the 
lass of all quasi-orderings, i.e. the logi
 isdistin
t from S4 but is valid in exa
tly the same stru
tures as S4.The 
onverse of Theorem 5.5.2 { that every 
anoni
al logi
 is 
hara
terised by anelementary 
lass of stru
tures { is one of the main unsolved 
onje
tures of this subje
t.A related 
onje
ture is this:� if � is !-
anoni
al, then it is 
anoni
al,or equivalently� if C stA�! j= �, then C stA�� j= � for all � > !.The intuition behind this is that if some �-theorem is falsi�able in C stA�� for anin�nite �, then it should be falsi�able in the 
anoni
al stru
ture of the denumerablygenerated algebra A�! .To prove the 
onje
ture it would be enough (by 5.12) to prove that if � is !-
anoni
al then it is 
hara
terised by an elementary 
lass. Now the dis
ussion followingTheorem 4.16 indi
ates that � is 
hara
terised by an elementary 
lass i� it is 
har-a
terised by the 
lass of models of the �rst-order theory of C stA�! . Thus a naturalapproa
h to setting this 
onje
ture about the suÆ
ien
y of !-
anoni
ity would be toshow thatif � is valid in C stA�! , then it is valid in every stru
ture elementarily equivalentto C stA�! .Theorem 4.6.8 gives further information about the synta
ti
 form of �rst-order sen-ten
es involved in elementary 
hara
terisations of logi
s:if � is 
hara
terised by an elementary 
lass then it is 
hara
terised by the 
lassof all models of the quasi-modal theory of C stA�! .(See [18, Se
tion 11.4℄ for details. Quasi-modal senten
es were de�ned at the end ofSe
tion 4.6 above.)In a re
ent arti
le [21℄, the author has investigated the quasi-modal theories of the
anoni
al stru
tures C stA�� for all � � !. They turn out to be the same, and indeed tobe the same as the quasi-modal theories of the 
anoni
al stru
tures of two importantsub-logi
s of �. The results of [21℄ 
an be summarized as follows.� All of the 
anoni
al stru
tures C stA�� of a given logi
 � have the same quasi-modal�rst-order theory 	�.
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hara
terise a logi
 �e whi
h is the largest sublogi
 of � to be
hara
terised by some elementary 
lass.� The 
anoni
al stru
tures of �e also have 	� as their quasi-modal theory.� There is a largest sublogi
 �
 of � that is 
hara
terised by its own 
anoni
alstru
tures. Sin
e �e is 
anoni
al (5.5.2), �e � �
.� The 
anoni
al stru
tures of �
 also have 	� as their quasi-modal theory. Thus	� = 	�
 = 	�e .� All �nite stru
tures validating � are models of 	�. If � is 
hara
terised by its�nite stru
tures (see Se
tion 6), then 	� is equal to the quasi-modal theory ofthese stru
tures.Of 
ourse if all 
anoni
al logi
s are elementarily 
hara
terised, then �e = �
. Butthat is the unresolved question.5.6 Strong Completeness and Complex VarietiesLet � be a normal logi
 in a language L�(�). � is 
alled strongly �-
omplete if thereexists a 
lass K of � -stru
tures su
h that the following hold:� every member of K validates �, i.e. K � Str�; and� if � is any �-
onsistent set of L�(�)-formulae, then � is satis�able at some pointof some model based on a stru
ture that belongs to K.If su
h a K exists, then K 
hara
terises �, so � is 
omplete. It also follows dire
tlythat �-
anoni
ity implies strong �-
ompleteness, sin
e if S�� validates � then puttingK = fS��g ful�lls the above de�nition. This is be
ause if � is �-
onsistent it 
an beextended to a �-maximal set �, and thenM�� j=� �;where M�� is the 
anoni
al �-model on S�� .An example of a 
omplete logi
 for whi
h strong 
ompleteness fails is the modallogi
 KW, dis
ussed at the end of Se
tion 5.3, whi
h is 
hara
terised by the varietyVdg of diagonalisable algebras, as well as by StrKW whi
h is the 
lass of framesS = hS;Ri in whi
h R is transitive and R�1 is well-founded, i.e. there are no in�nite\R-sequen
es" s0Rs1R � � �RsnRsn+1 � � � � � �Put '1 = �p1;'n+1 = (pn ! �pn+1);� = f'n : 1 � n < !g:Then � is KW-
onsistent, but 
annot be satis�ed in any model based on a a KW-frame. For, if Mn is any model on the KW-frame hf0; : : : ; ng; <i that hasMn(pi) =fig for 1 � i � n, then Mn j=0 'i for all 1 � i � n. This shows that every �nitesubset of � is satis�able in a model on a KW-frame and so must be KW-
onsistent.
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e the proof theory of KW is �nitary, this entails that � itself is KW-
onsistent.However if M j=s0 � and the frame S of M is transitive, then there must be anR-sequen
e as above with M j=sn pn for all n � 1, hen
e S is not a KW-frame.An algebrai
 version of this argument was used in [14, Theorem 3.7.1℄ to deriveanother negative property of KW, namely that its variety Vdg is not 
omplex, i.e. isnot of the form SCmK for any K. These two negative properties are really two sidesof the same 
oin, be
ause it turns out that a variety is 
omplex i� its asso
iated logi
is strongly 
omplete in all 
ardinalities. In fa
t we 
an formulate this more strongly asthe following result about quasi-varieties, whi
h are 
lasses of algebras that are 
losedunder subalgebras (S), dire
t produ
ts (P), and ultraprodu
ts (Pu). (The version forvarieties was dis
overed independently by F. Wolter.)Theorem 5.14 Let V be a quasi-variety.(1) If V is 
omplex, then its asso
iated logi
 is strongly �-
omplete for all in�nite
ardinals �.(2) If the logi
 asso
iated with V is strongly �-
omplete for all in�nite �, then thehomomorphi
 
losure HV of V is 
omplex.Consequently, if a quasi-variety V is 
omplex, then the variety HV generated by V isalso 
omplex.Proof. Re
all that the logi
 asso
iated with V is� = f' in L!(�) : V j= 'g:Then Var� is the variety generated by V , so as V is S -P-
losed we do have Var� = HVas 
laimed.(1) Assume that V is 
omplex. Take � � !, with �� the logi
 indu
ed in L�(�) by
losure of � under substitution. Let A 2 V be the Lindenbaum-Tarski algebra for�� in the language L�(�). Then A belongs to V , be
ause it is a free algebra in thevariety Var� generated by V (5.2.1), and V , being 
losed under S and P , 
ontainsall su
h free algebras.Now if � is any ��-
onsistent set of L�(�)-formula, thenk�k = fk'k : ' 2 �gis a subset of A with the �nite meet property: every �nite subset of k�k hasnon-zero meet in A. It follows, by a standard 
ompa
tness argument, there is analgebra A� that has A as a subalgebra and has a non-zero element x that is alower bound for k�k:0 6= x � k'k for all ' 2 �.Indeed A� 
an be 
onstru
ted as an ultrapower of A, so Pu -
losure of V allows usto 
on
lude that A� 2 V .Sin
e V is 
omplex, we 
an assume that A�, and hen
e A, is a subalgebra of the
omplex algebra CmS of some stru
ture that belongs to StrV , and so has S j= ��.Let s be an element of x in S. Then s 2 k'k for all k'k 2 �. PuttingV (p�) = kp�k � S



5. POLYMODAL LOGIC 439de�nes a model M on S having M(') = k'k for all ', and hen
eM j=s �:This establishes that every ��-
onsistent set of L�(�)-formulae is satis�able in amodel on a stru
ture validating ��, giving strong �-
ompleteness.(2) Suppose that � is strongly �-
omplete for � � !. To prove HV 
omplex we needto show that if A 2 HV , then A� CmT and CmT 2 HV for some stru
ture T. Wewill show this �rst for the 
ase that A is a subalgebra of CmS for some stru
tureS that is generated by a point s (N.B. we do not assume CmS 2 HV here). Let� be any in�nite 
ardinal for whi
h there is a surje
tionV : �� � A;and put M = hS; V i. Then ea
h truth-set M(') is in A, and ea
h member of Ais su
h a truth-set, indeed is one of the form M(p�). Let� = f' in L�(�) :M j=s 'g:Sin
e A j= ��, � is ��-
onsistent (in fa
t it is ��-maximal). By strong �-
ompleteness there exists a stru
ture T0 validating �� and a model N0 on T su
hthat N0 j=t � for some t. Let T be the inner substru
ture of T0 generated by thepoint t, and N the restri
tion to T of the model N0, havingN(') = N0(') \ T:Then N j=t �, and so (y) M j=s ' i� N j=t 'for all ' in L�(�). Moreover T validates ��, so CmT 2 Var�� = HV .It thus remains to show that A � CmT. For this purpose, 
onsider the 
orre-sponden
e � :M(') 7! N(')between A and Sb T . First we need to show that � is a well-de�ned inje
tion, i.e.M(') =M( ) i� N(') = N( ):This will be explained for the 
ase of the simplest language with a single modality� , so that S and T are type 1 frames with a single binary relation. If M(') 6=M( ) then there is some point u in S with, say, ' ^ : true in M at u. Sin
e Sis generated by s, the analysis of Se
tion 4.3 shows that sRnSu for some n. Hen
ethe formula (z) �� � � ��| {z }n times (' ^ : )is true inM at s, and so by (y) is true in N at t. From this is follows that '^: istrue at some point in N, showing that N(') 6= N( ). The proof that N(') 6= N( )impliesM(') 6=M( ) is the same, using the other impli
ation of (y) and the fa
tthat t generates T.
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 Polymodal Logi
: A SurveyThe argument for stru
tures of arbitary type follows the same pattern, using thegeneral des
ription of point-generated stru
tures from Se
tion 4.3 and some more
ompli
ated formulae in pla
e of (z). The properties of truth-sets ensure that � isa homomorphism, and hen
e gives an embedding A� CmT 2 HV as desired.For the 
ase of an arbitrary A 2 HV , by Theorem 4.5 there is a subdire
t repre-sentation A�Ys2SAsof A by 
omplex algebras As based on point-generated stru
tures. Ea
h As is inHV , as A � As, so by the above argument there is a stru
ture Ts 2 StrHV su
hthat As� CmTs. ThenA�Ys2SAs�Ys2S CmTs �= Cm(T);where T =as2S Ts 2 StrHVby 
losure of StrHV under disjoint unions. This proves that HV is a 
omplexvariety.The last part of the statement of Theorem 5.6.1 now follows dire
tly by applying (1)and then (2).The assumption of Pu-
losure is essential in Theorem 5.6.1, as may be seen by takingV as the 
omplex 
lass SCmStrKW dis
ussed just before 5.6.1. In this example Vis 
losed under S and P , but not under Pu , and the variety it generates is the non-
omplex 
lass Vdg of diagonalisable algebras.The question of whether there exist 
omplex varieties that are not 
anoni
al is nowseen to be equivalent to the question of the existen
e of strongly 
omplete logi
s thatare not 
anoni
al. In fa
t one su
h is the logi
 �R 
hara
terised by the type 2 framehR; <;>i;where R is the set of real numbers. This logi
 is not 
anoni
al, for reasons that willbe 
lari�ed below, but was shown in [13℄ to be strongly !-
omplete: every 
onsistentset of L!(2)-formulae is satis�able in a model on the real-number frame itself.It 
an be inferred from this that the variety Var�R de�ned by �R is 
omplex butnot 
anoni
al, as was �rst noti
ed by F. Wolter [61℄. But instead of appealing toTheorem 5.14, the idea of Gabbay's strong 
ompleteness proof 
an be adapted to givean interesting dire
t algebrai
 
onstru
tion showing Var�R 
omplex. We will 
arrythis out now for a slightly simpler example: the temporal logi
 of Dedekind 
ompletestri
t orderings. For this purpose the two diamond modalities of a type 2 languagewill be written hF i and hP i, with their duals being [ F ℄ and [ P ℄. Here \F" is for\future" and \P" for \past". The additive operators of a type 2 algebra are mF andmP, with duals lF and lP. A type 2 frame will be written as S = hS;RF; RPi. Theoperators on CmS indu
ed by RF aremRF(T ) = fs 2 S : 9t (sRFt and t 2 T )g



5. POLYMODAL LOGIC 441and its dual lRF(T ) = fs 2 S : 8t (sRFt implies t 2 T )g;and similarly for mRP and lRP .A linear temporal logi
 is any normal logi
 
ontaining the following s
hemata, whi
h
ome in three pairs that are \mirror images", i.e. ea
h member of the pair is obtainedfrom the other by inter
hanging F and P.'! [ P ℄hF i''! [ F ℄hP i'hF ihF i'! hF i'hP ihP i'! hP i'[ F ℄(' ^ [ F ℄'!  ) _ [ F ℄( ^ [ F ℄ ! ')[ P ℄(' ^ [ P ℄'!  ) _ [ P ℄( ^ [ P ℄ ! '):The �rst pair are valid in a frame pre
isely when RP = R�1F (
f. the dis
ussion of
onjugate operators in Se
tions 2.1 and 2.2), so that frames for this pair are uniquelydetermined as soon as RF is spe
i�ed. The se
ond pair 
hara
terise transitivity of RFand RP. The last pair ensure thatsRFt ^ sRFu implies (t = u or tRFu or uRFt);and 
orrespondingly for RP. In a frame S validating any linear temporal logi
, theinner subframe Ss generated by a point s is based on the setft 2 S : sRFt or s = t or tRFsg:Ss is 
onne
ted , i.e. satis�es8t8u (t 6= u implies tRFu or uRFt);and 
onsists of a linear sequen
e of 
lusters as de�ned in Se
tion 4.2. These 
lusters
an then be 
attened by the bulldozer 
onstru
tion to show that there is a boundedepimorphism T � Ss with T a stri
t linear ordering (irre
exive, transitive, 
on-ne
ted) having CmSs� CmT.Now the s
hemata de�ning a linear temporal logi
 � are preserved by 
anoni
alextensions. Thus if A j= � then C stA j= �. Then taking the subdire
t representa-tion in terms of point-generated stru
tures of C stA that underlies Theorem 4.5, andapplying the observations of the previous paragraph, the following 
an be 
on
luded.Theorem 5.15 Any algebra validating a linear temporal logi
 has a subdire
t repre-sentation by 
omplex algebras based on stri
t linear orderings. �Now if S = hS;RF; RPi is a stri
t linear ordering with RP = R�1F , then a subset I ofS is an initial segment of S ifsRFt and t 2 I implies s 2 I:Then I � lRP(I), and the 
omplement I
 = S � I of I satis�es I
 � lRF(I
) sin
es 2 I
 and sRFt implies t 2 I
. I is a proper initial segment if its 
omplement isnon-empty. All members of this 
omplement are upper bounds of I .
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: A SurveyA gap is a non-empty proper initial segment that has no least upper bound. If I isa gap then I has no greatest member, so if s is in I then s is in mRF(I), and thereforenot in lRF(I
). Thus I
 = lRF(I
). Also I
 has no least member, so ea
h member ofI
 is in mRP(I
). It follows thatlRF(I
)�mRP lRF(I
) = I
 �mRP(I
) = ;:A stri
t linear order is Dedekind 
omplete if it has no gaps. Both h!;<i and hR; <i areDedekind 
omplete. Any stri
t linear order T has a Dedekind 
ompletion, an extensionto a Dedekind 
omplete order S obtained by \�lling in the gaps in T". Formally this
an be a
hieved by taking S as the set of proper initial segments of T ordered byproper in
lusion �. T 
an be regarded as a subordering of S by identifying ea
h s inT with the initial segment ft 2 T : tRFsg. When s 2 S � T , this initial segment is agap in T.It was dis
overed by Arthur Prior that there is a type 2 formula that 
hara
terisesDedekind 
ompleteness (there is no su
h type 1 formula). Prior's axiom is the s
hemahF i:' ^ hF i[ F ℄'! hF i([ F ℄' ^ :hP i[ F ℄');whi
h is valid in any Dedekind 
omplete stri
t linear ordering.Lemma 5.16 (Gap Lemma) Let S be a stri
t linear ordering and A a subalgebraof CmS. If A validates Prior's axiom, then no gap of S 
an belong to A.Proof. Suppose there is a gap I 2 A, with 
omplement I
 2 A, and take s 2 I . AsI has no greatest element, there exists t 2 I with sRFt, and so s 2 mRF(I). But Ihas as upper bound any u 2 I
 = lRF(I
), with sRFu, so s 2 mRF lRF(I
).Now we saw above that lRF(I
)�mRP lRF(I
) = ;, and sos =2 mRF(lRF(I
)�mRP lRF(I
)) = mRF; = ;:This shows thatmRF(I) \mRF lRF(I
) 6� mRF(lRF(I
)�mRP lRF(I
));in violation of Prior's axiom.Theorem 5.17 If �D is the smallest linear temporal logi
 that in
ludes Prior's axiom,then the variety Var�D of all type 2 algebras that validate �D is 
omplex but not
anoni
al.Proof. We deal with non-
anoni
ity �rst. The type 2 frame h!;<;>i is a Dedekind
omplete stri
t linear ordering, and the set of �nite or 
o�nite subsets of ! forms asubalgebra A of CmS whi
h validates �D. The 
anoni
al stru
ture C stA 
onsists ofthe prin
ipal ultra�lters fX 2 A : n 2 Xgfor ea
h n < !, together with the set s of all 
o�nite sets, whi
h satis�es sRs in C stA.Thus C stA looks like a 
opy of h!;<i with a single re
exive point added at the rightend, so that the 
opy of ! fun
tions like a gap (although the linear ordering is nolonger stri
t). Pre
isely, in EmA we havelF(fsg) = mPlF(fsg) = (fsg);



5. POLYMODAL LOGIC 443and so mF(lF(fsg)�mPlF(fsg)) = ;;while ea
h of the prin
ipal ultra�lters belongs tomF(�fsg) \mFlF(fsg):Thus Prior's axiom fails in EmA.To show that Var�D is 
omplex, we have to show that if A is any member of Var�Dthen there is a stru
ture S with A� CmS and CmS 2 Var�D. As explained in thelatter part of the proof of Theorem 5.14, it suÆ
es to prove this for a 
lass of algebrasthat provide subdire
t representations of all other members of Var�D. Therefore byTheorem 5.15 we 
an assume that A is a subalgebra of CmT for some stri
t linearordering T = hT;RFi. Now let S = hS;RFi be the Dedekind 
ompletion of T. ThenCmS validates Prior's axiom and so belongs to Var�D. Thus it is enough to showthat A� CmS to 
omplete the argument. By Theorem 4.3, this in turn redu
es tothe problem of showing that there is an ultra�lter map from S to A that 
overs A.This map is to be a fun
tion f : S! C stA satisfying, for all s 2 S and X 2 A,(i) mF(X) 2 f(s) i� for some t 2 S, sRFt and X 2 f(t);(ii) mP(X) 2 f(s) i� for some t 2 S, tRFs and X 2 f(t).Note that mF here means the operation on CmT, and hen
e on A, indu
ed by RF inT, rather than the operation mRF indu
ed on CmS. Thus for X � T ,mF(X) = fu 2 T : 9t 2 T (uRFt)g:Sin
e T will not in general be an inner substru
ture of S, we may well have mF(X) 6=mRF(X) for X 2 A. Similarly,mP(X) = fu 2 T : 9t 2 T (tRFu)g:Now for s in T, put f(s) = fX 2 A : s 2 Xg:This already ensures that f 
overs A, for if ; 6= X 2 A then any s 2 X has X 2 f(s).For s 2 S � T , letUs = fmF(X) : X 2 A and 9t 2 T (sRFt and t 2 X)g;Ls = fmP(X) : X 2 A and 9t 2 T (tRFs and t 2 X)g:Then Us [ Ls has the �nite interse
tion property. To see this, suppose that for somen < ! there are elements Xi 2 A and ti 2 T su
h that sRFti 2 Xi, and hen
emF(Xi) 2 Us, for all i < n. Now sin
e s is not in T , it represents a gap in T, and sothe set ft 2 T : sRFtg has no least element. Thus there exists some t 2 T su
h thatsRFtRFti and hen
e t 2 mF(Xi) for all i < n. Moreover, be
ause sRFt, t is in everyset mP(X) from Ls.Sin
e Us [Ls has the �nite interse
tion property, it is 
ontained in an ultra�lter ofA, whi
h we take to be f(s). This 
ompletes the de�nition of f .To derive (i) and (ii), we need two preliminary fa
ts about this de�nition.
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 Polymodal Logi
: A Survey(iii) Let s 2 S � T , X 2 f(s), and t 2 T . Then tRFs implies t 2 mF(X), and sRFtimplies t 2 mP(X).To prove this, observe that validity of s
hema ('! [ P ℄hF i') in A entails that X �lPmF(X), so lPmF(X) 2 f(s), and hen
e mPlF(�X) =2 f(s). Thus mPlF(�X) =2 Ls.But then if tRFs, the de�nition of Ls implies that t =2 lF(�X), giving t 2 mF(X) asdesired. The other part of (iii) follows by the \mirror image" of this argument.As a 
orollary to (iii) we obtain(iv) Let s 2 S � T , X 2 f(s), and t 2 T . Then if tRFs, mF(X) 2 f(s) impliest 2 mF(X), and if sRFt, mP(X) 2 f(s) implies t 2 mP(X).For the proof, supposing tRFs and mF(X) 2 f(s), applying (iii) with X repla
edby mF(X) gives t 2 mFmF(X). Validity of hF ihF i' ! hF i' in A then impliest 2 mF(X). Again the other part of the proof is a mirror image argument.Now for the proof of (i), �rst from right to left. Suppose that sRFt and X 2 f(t).We want mF(X) 2 f(s). There are two main 
ases. Firstly, if t 2 T then t 2 X andeither s 2 T , giving then s 2 mF(X) and so mF(X) 2 f(s), or else s 2 S � T , sothat mF(X) 2 Us by de�nition of Us, and again mF(X) 2 f(s). For the se
ond 
ase,suppose t =2 T . Again there are two sub
ases. If s 2 T then applying result (iii) withs and t inter
hanged gives s 2 mF(X), so mF(X) 2 f(s). If however s =2 T , then sin
esRFt and s and t both de�ne gaps in T there must be some u 2 T with sRFuRFt.But then by (iii) with t in pla
e of s and u in pla
e of t gives u 2 mF(X), so thereexists w 2 T su
h that uRFw 2 X . Then sRFw, so mF(X) 2 Us � f(s).To prove (i) from left to right we invoke at last the validity of Prior's axiom in A, inthe form of the Gap Lemma 5.16. Suppose mF(X) 2 f(s). If s 2 T , then s 2 mF(X)so there is a t 2 T with sRFt and t 2 X , when
e X 2 f(t) as desired. If howevers =2 T , then s de�nes the gap ft 2 T : tRFsg in T, and by (iv) every member of thisgap belongs to mF(X). But now if every t 2 T su
h that sRFt had t =2 mF(X) wewould have ft 2 T : tRFsg = mF(X) 2 A;
ontradi
ting the Gap Lemma. Therefore there must be some t 2 T with sRFt andt 2 mF(X), so that tRFu and u 2 X for some u 2 T . Then sRFu and X 2 f(u), andthe proof of (i) is �nished.The proof of (ii) would be the mirror image of that of (i) if we assumed that themirror image of Prior's axiom was valid in A. But in fa
t we 
an dire
tly use theaxiom itself again. The only essentially new situation arises when mP(X) 2 f(s) ands =2 T . Then similarly to the 
ase of (i) we �nd that if there was no t 2 T su
h thattRFs and t 2 mP(X) we would haveft 2 T : sRFtg = mP(X):But in that 
ase ft 2 T : tRFsg = T �mP(X) 2 A;again 
ontradi
ting the Gap Lemma. Therefore there must be some t 2 T with tRFsand t 2 mP(X), leading to a u 2 T with uRFs and X 2 f(u).This 
ompletes the proof of the Theorem.



6. THE FINITE MODEL PROPERTY 445In 
on
lusion, let �R be the smallest linear temporal logi
 
ontaining Prior's axiomand the s
hema hF i'! hF ihF i'whi
h 
orresponds to the density 
ondition thatsRFt implies 9u (sRFuRFt):The following 
an be shown about the variety Var�R de�ned by this logi
.� Var�R is generated by the 
omplex algebra of the real-number frame hR; <;>i.This follows from the fa
t, due to Bull [9℄, that �R is 
hara
terised by this frame.� Var�R is a 
omplex variety. This is proved by an adaptation of the above ar-gument, establishing that any algebra in the variety 
an be embedded into the
omplex algebra of a disjoint union of dense Dedekind 
omplete orderings.� Var�R is not 
anoni
al. The 
anoni
al extension of the real-number frame hasgaps and violates Prior's axiom. This extension looks similar to the nonstandardhyperreal number system, ex
ept that the \positive in�nite" elements form a single
luster \at in�nity", and likewise for the negative in�nite elements. In fa
t one 
antake the 
ountable subalgebra A of CmR generated by the semi-in�nite intervals(�1; q), (q;1) with q rational and show that A is in Var�R but EmA is not.6 The Finite Model PropertyWe will now brie
y review a 
on
ept that has been important in the development ofgeneral theory about modal logi
, as well as in determining the properties of parti
ularlogi
s. Essentially, a logi
 � has the �nite model property if it is 
hara
terised by its�nite models. Pre
isely what this means depends on the notion of \model" involved,and there are three natural 
andidates: if � is a normal logi
, then(1) � has the �nite algebra property if `� ' whenever ' is valid in all �nite algebrasA su
h that A j= �;(2) � has the �nite frame property if `� ' whenever ' is valid in all �nite stru
turesS su
h that S j= �;(3) � has the �nite model property if `� ' whenever ' is true in all �nite models Msu
h that M j= �.It is readily seen that (1) and (2) are equivalent. This is be
ause a stru
ture Svalidates the same formulae that the algebra CmS does, while a �nite normal BAOA is isomorphi
 to CmC stA (Theorem 3.2.2) and so validates the same formulae asthe �nite stru
ture C stA. Hen
e a formula is valid in all �nite �-algebras i� it is validin all �nite �-stru
tures.It is immediate from the de�nitions that (2) implies (3), sin
e a formula true in all�-models will be valid in all �-stru
tures. But it turns out that for uniform logi
s,(3) implies (2) as well (for a proof, see [52, Corollary 3.8℄ or [17, Exer
ise 4.9℄). Thusfor normal uniform logi
s, all three notions 
oin
ide, and are generally referred to asthe \�nite model property".An example of a type 1 logi
 la
king the �nite model property was provided byMakinson [38℄: this is the smallest normal logi
 
ontaining the s
hemata
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: A Survey(T) '! �', and(Mk) ' ^ : '! �( ' ^ : ').The s
hema ��' ! �' (4) is valid in all �nite algebras for this logi
, but isnot a theorem of the logi
 sin
e there are in�nite algebras validating (T) and (Mk)but not (4). An example is the algebra of �nite and 
o�nite subsets of h!;Ri, wheremRn i� m � n+1. This stru
ture has be
ome known as the re
ession frame and hassigni�
ant appli
ation beyond this example for whi
h it was originally 
onstru
ted byMakinson. In parti
ular, it underlies the major work of Blok [5℄ on in
ompleteness.The �nite model property provides a powerful method for demonstrating the de-
idability of various logi
s, in view of the fa
t that� if a logi
 � is �nitely axiomatisable and has the �nite model property, then it isde
idable, i.e. there is an algorithm for de
iding of an arbitrary formula ' whetheror not `� '.Here \�nitely axiomatisable" means that � is the smallest logi
 
ontaining some�nite number of pres
ribed s
hemata. To sket
h brie
y why this result holds, observethat it 
an be algorithmi
ally determined whether a given �nite algebra A satis�essome �nite number of given equations, and hen
e whether A validates a given �nitelyaxiomatisable logi
 �. Therefore by systemati
ally enumerating the �nite algebrasand testing formulae for validity in them, as well as testing whether they are �-algebras, we 
an generate a list of formulae that are invalidated by at least one�-algebra. But the �nite model property implies that if 6`� ' then there is a �nite�-algebra that will invalidate ', a fa
t that will then be dis
overed by the systemati
testing pro
edure. Thus every non-�-theorem will appear in the list, and so thepro
edure provides an e�e
tive enumeration of the set � � � of formulae not in �.But � itself is e�e
tively enumerable, sin
e it is a �nitely axiomatisable logi
. Sin
enow both � and �� � are e�e
tively enumerable, it follows that � is de
idable.The restri
tion to �nitely axiomatisable logi
s in this analysis is essential. Logi
swith the �nite model property need not be de
idable if they are not �nitely axiomati-sable. Indeed it has been shown in [58℄ that for ea
h set X of natural numbers there isa modal logi
 �X that has the �nite frame property but whose degree of unsolvabilityis the same as that of X .The �rst appli
ation of algebrai
 methods to prove de
idability of modal logi
s inthis way was made by J. C. C. M
Kinsey in [40℄. If A = hB;mi is the Lindenbaum-Tarski algebra of a type 1 logi
 � and 6`� ', then, as we saw in Se
tion 5.2, there isan interpretation of the variables of ' in A that invalidates '. If C is the �nite set ofelements of B \named" by subformulae of ' under this interpretation, and B0 is thesub-Boolean algebra of B generated by C, then B0 is �nite and 
an be made into amodal algebra under the new operator m0 : B0 ! B0 de�ned bym0x =Qfmy : x � y 2 B0 and my 2 B0g:The resulting �nite modal algebra still invalidates '. M
Kinsey showed further thatit also validates � in the 
ase that � is either of the well-known logi
s S2 and S4,thereby establishing the �nite model property and de
idability for them.



7. OTHER TOPICS 447Pioneering studies of the �nite model property were made in a series of papers byR. A. Bull (
f. [8, 9℄ and referen
es 
ited therein). This involved a sophisti
ated anal-ysis and modi�
ation of the �nite algebras produ
ed by M
Kinsey's method, and ledto a demonstration that every normal uniform extension of the type 1 logi
 S4.3 (
har-a
terised by linearly ordered K-frames) has the �nite model property. The methodsubsequently yielded 
ompleteness proofs for the linear temporal logi
s 
hara
terisedby the frames hZ; <;>i, hQ; <;>i, and hR; <;>i. Bull's work also 
ontained the�rst appli
ation to logi
al systems of Birkho�'s theory of subdire
t representation ofalgebras in terms of subdire
tly irredu
ibles.The method of M
Kinsey was adapted to the 
omplex algebra setting by Lemmon[34, Part IV℄. A model-theoreti
 version of his approa
h appeared in [35℄, and wasfurther developed by Segerberg [51, 52℄ under the name of �ltration. In essen
e,�ltration of a model M involves 
ollapsing M to a �nite model by identifying pointsthat assign the same truth-values to the members of some �xed set � of formulae.Typi
ally � will be (based on) the set of subformulae of a parti
ular non-theorem 'that is to be falsi�ed in the resulting �nite model.Now if a logi
 has the �nite algebra/frame property then its asso
iated variety willbe generated by its �nite members, and hen
e generated by the �nite stru
tures inthe variety. In other words, su
h a logi
 must be 
omplete (Se
tion 5.4). Constru
tionof �nite models has in fa
t been an important pro
edure for proving 
ompleteness oraxiomatisation results for many logi
s. This is inevitable if the logi
 is de�ned byreferen
e to �nite stru
tures (e.g. the logi
 
hara
terised by �nite linear orderings),but the pro
edure has also proved vital when the 
anoni
al frame method breaks downbe
ause the logi
 in question is not 
anoni
al. This applies for instan
e to the temporallogi
 �R of real time. Another parti
ularly notable 
ase is propositional dynami
 logi
[53, 25℄, where the only known method for proving 
ompleteness involves some variantof the �ltration approa
h.7 Other Topi
sThis arti
le has sought to indi
ate how the basi
 theory of Boolean algebras withoperators 
an be used to investigate properties of modal logi
s and similar logi
alsystems. There are other topi
s in this and related areas that 
ould be 
onsidered,in
luding� the 
onne
tion between interpolation properties of logi
s and amalgamation prop-erties of algebras;� the relationship between the Beth de�nability property of logi
s and the questionof surje
tivity of epimorphisms between algebras;� the study of non-normal operators and asso
iated non-normal logi
s;� the investigation of logi
s whose algebrai
 semanti
s is based on something otherthan Boolean algebras, su
h as distributive latti
es, Heyting algebras, \semilatti
e-ordered residuated semigroups", and many others.Those who wish to pursue su
h topi
s may �nd it pro�table to explore su
h sour
esas the papers [46, 50, 2, 37℄, the books [1, 48℄, the dissertations [60, 39, 41℄, and thereferen
es they 
ontain.
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