
Algebrai Polymodal Logi: ASurveyROBERT GOLDBLATT, Shool of Mathematial and ComputingSienes, Vitoria University, P. O. Box 600, Wellington, NewZealand. E-mail: Rob.Goldblatt�vuw.a.nzAbstratThis is a review of those aspets of the theory of varieties of Boolean algebras with operators (BAO's)that emphasise onnetions with modal logi and strutural properties that are related to naturalproperties of logial systems.It begins with a survey of the duality that exists between BAO's and relational strutures, fous-ing on the notions of bounded morphisms, inner substrutures, disjoint and bounded unions, andanonial extensions of strutures that originate in the study of validity-preserving operations onKripke frames. This duality is then applied to polymodal propositional logis having �nitary inten-sional onnetives that generalise the Box and Diamond onnetives of unary modal logi. Issuesdisussed inlude validity in anonial strutures, ompleteness and inompleteness under the re-lational semantis, and haraterisations of logis by elementary lasses of strutures and by �nitestrutures.It turns out that a logi is strongly omplete for the relational semantis i� the variety of algebrasit de�nes is omplex , whih means that every algebra in the variety is embeddable into a full powersetalgebra that is also in the variety. A hitherto unpublished formulation and proof of this is given(Theorem 5.6.1) that applies to quasi-varieties. This is followed by an algebrai demonstrationthat the temporal logi of Dedekind omplete linear orderings de�nes a omplex variety, adaptingGabbay's model-theoreti proof that this logi is strongly omplete.1 IntrodutionThis artile provides an introdution to the study of varieties of Boolean algebras withoperators, emphasising their onnetions with modal logi, and fousing on struturalproperties (anoniity, ompleteness, omplexity, elementary generation) that are re-lated to natural properties of logial systems.Now an operator on a Boolean algebra B is a �nitary funtion Bn ! B that is joinpreserving in eah of its arguments. Funtions of this type that are unary (n = 1) pro-vide natural interpretations of modal onnetives, and there is an intimate relationshipbetween their algebrai theory and the Kripke semantis for modal logis. Standardalgebrai onstrutions (subalgebras, homomorphisms, diret produts) orrespond toertain truth-preserving onstrutions on Kripke models (bounded morphisms, innersubmodels, disjoint unions). This orrespondene is a duality in ategory-theoretiterms, and an be developed for arbitrary operators. Thus we may refer to the sit-uation of n = 1 as being the modal ase of a general theory of �nitary operators onBoolean algebras, and when n > 1 suh operators may be alled polymodal.There appear to be two traditions of algebrai logi in this area. The algebraitradition, founded on the seminal work of J�onsson and Tarski [32, 33℄, has foused onthe study of relation algebras [23, 36, 30℄ and ylindri algebras and their relativised393L. J. of the IGPL, Vol. 8 No. 4, pp. 393{450 2000 Oxford University Press



394 Algebrai Polymodal Logi: A Surveyversions [26, 28, 27, 45, 46℄ and their onnetions with �rst-order logi and set theory.The logial tradition has emphasised the use of unary operators in the study of modaland temporal logis, with highlights inluding the early work of MKinsey and Tarski[40, 44℄ on Lewis modal systems and intuitionisti logi; the pioneering use of algebraby Bull [8℄ in proving that all normal extensions of the modal logi S4.3 have the�nite model property and in obtaining the �rst axiomatisations of the temporal logisof disrete and ontinuous time [9℄; Thomason's inomplete temporal logi [55℄; andBlok's demonstration [5℄ of the pervasiveness of the inompleteness phenomenon.More reently there have been appliations fousing on the onnetions between weakversions of �rst-order quanti�ational logi and modal logis [47, 3, 4℄.Algebrai methods an be e�etively employed to obtain model-theoreti results.An example is the appliation of duality in [22℄ to haraterise those lasses of Kripkeframes that are de�ned by a set of modal formulae (Theorem 5.9 below). On the otherhand, the vigorous development of model-theoreti studies of modal logis under theKripke semantis has produed notions and results that translate into signi�antobservations about varieties of Boolean algebras with operators (BAO's). Here manyexamples ome to mind:� The study of model-theoreti onditions under whih a modal formula is valid(Correspondene Theory) an be viewed as the analysis of those onditions ona relational struture whih ensure that its algebra of subsets (omplex algebra)satis�es ertain equations. It is also onerned whih the onnetion between prop-erties of a BAO A and those of its anonial struture C stA, whih is a relationalstruture de�ned on the Stone-type representation of A. The powerset algebra ofC stA is the anonial extension of A, and ontains a subalgebra isomorphi to A.� The work of Sahlqvist [49℄ giving a general ompleteness theorem for a largesyntatially de�ned lass of modal axioms extends the lass of properties knownto be preserved by anonial extensions of BAO's, and an be given an elegantalgebrai treatment [31℄.� The anonial frames widely used to prove ompleteness theorems for modal logisare essentially the same thing as the anonial strutures of the Lindenbaum-Tarskialgebras of these logis, whih are themselves the free algebras in the varieties thatthe logis de�ne.� The disovery of Fine [12℄ that an elementary lass of Kripke frames determinesa logi validated by its anonial frames generalises to the result [14, 15℄ that thepowerset algebras of an ultraprodut-losed lass of strutures generate a varietyof BAO's losed under anonial extensions.� The question of whether a logi is omplete with respet to some lass of Kripkeframes orresponds to the question of whether a variety of algebras is generatedby its powerset algebras.� The property of a logi being strongly omplete with respet to a lass of Kripkeframes (i.e. every onsistent set of formulae is satis�able in a model on a frame inthe lass) proves to be equivalent to that of a variety V of BAO's being omplex,meaning that eah member of V an be embedded into a powerset algebra thatbelongs to V (see Theorem 5.14 below for a hitherto unpublished formulation ofthis relationship that applies to quasi-varieties).



2. MODAL ALGEBRAS 395The purpose of this artile is to survey these matters, not in an enylopaedi fashion,but with a view to explaining the major ideas and their interonnetions, inludingindiations of proofs for the more substantial results, and providing referenes tothe literature for details. There are numerous overlapping (and oniting) uses ofterminology and notation in this literature, and more may be perpetrated here, butan attempt will be made to o�er some guidane as to these various onventions.The intention is to exhibit the two fundamental faets of algebrai logi: on the onehand the investigation of mathematial strutures that arise by abstration from theproperties of logial systems, and on the other hand the use of algebra to establishsigni�ant results about suh logial systems.The reader is assumed to be familiar with the theory of Boolean algebras and theirsubalgebras, homomorphisms, representation by ultra�lters et., and with the basiformalisms of universal algebra. In partiular, the standard symbols H ; S ;P will beused to denote the operations of losure of a lass of algebras under (isomorphiopies of) homomorphi images, subalgebras, and diret produts, respetively. Anequational lass or variety is a lass V of algebras de�ned by some set of equations.VarW denotes the variety generated by a lassW of algebras (i.e. the smallest varietyontaining W). Repeated use is made of the following fats.� (Birkho�'s Theorem) V is a variety i� it is losed under homomorphi images,subalgebras, and diret produts: HV � V , SV � V , and PV � V .� (Tarski) VarW is equal to HSPW .� VarW is the lass of all models of the equational theory in in�nitely many variablesof W , i.e. A 2 VarW if, and only if, A satis�es every equation that holds of allmembers of W .2 Modal AlgebrasWe begin with a disussion of the modal ase, as preparation for the general polymodalsituation.A Boolean algebra (BA) will be presented in the form B = hB;+; �;� ; 0; 1i. Forany set S, the assoiated powerset algebra isSbS = hSbS;[;\;�; ;; Si;where SbS is the olletion fT : T � Sg of all subsets of S.2.1 OperatorsA funtion m : B ! B is alled an operator on a Boolean algebra B if it is additive:m(x+ y) = mx+my for all x; y 2 B. m is normal if m0 = 0. Any operator hasm(x1 + � � �+ xn) = mx1 + � � �+mxnfor any n � 2. Sine 0 is the join of the empty set, a normal operator an alternativelybe spei�ed as a funtion satsfyingm(PC) =Pm(C)



396 Algebrai Polymodal Logi: A Surveyfor any �nite C � B, inluding C = ;. All of the operators we will disuss are normal.The dual of an operator m is the funtion l : B ! B havinglx = (m(x�))�:l is multipliative (l(x � y) = lx � ly), and has l 1 = 1 if m is normal. Thus the dualof a normal operator preserves the lattie meet of any �nite subset of B. A notationsuh as md is sometimes used for the dual to indiate the dependene on m. Our useof the letters m and l derives from the ommon use of M and L to denote the modal\possibility" and \neessity" onnetives.If � is an ordinal, a normal modal algebra (MA) of type � is an algebraA = hB;m�i�<�with eahm� a normal operator on the BAB. Most studied have been type 1 algebrashB;mi and temporal algebras hB;m0;m1i whih are type 2 algebras whose pair ofoperators are onjugate, meaning that for all x; y 2 B,m0x � y = 0 i� m1y � x = 0:This is equivalent to the equationally expressible ondition that for all x 2 B,x � l0m1x � l1m0x:Some important equationally de�ned lasses of type 1 algebras are the following.� Closure algebras. These are MA's hB;mi in whihx+mmx � mx;and are sometimes known as topologial Boolean algebras [42, 43℄. They inludethe algebras hSbS;mi with S a topologial spae and mT the losure of the set Tin S. The dual operator lT gives the topologial interior of T . In a general losurealgebra an element x is thus alled losed if mx = x, and open if lx = x (i.e. if x�is losed). Closure algebras model the modal logi S4 (whih is de�ned in Setion5.2).� Monadi algebras. These are the losure algebras in whih x � lmx, whih isequivalent to requiring that elements are losed i� they are open, or that thelosure operator m is onjugate to itself. Monadi algebras an also be desribedas the one-dimensional ylindri algebras [26℄ and polyadi algebras [24℄. Theymodel the logi S5 (again see Setion 5.2).� Diagonalisable algebras. These satisfymx � m(x�mx):They model the provability interpretation of modality, in whih \neessarily A"means \it is provable in Peano arithmeti that A" [6, 54℄. The equational lass ofdiagonalisable algebras is generated by powerset algebras of ertain well-foundedrelations, as will be explained shortly.



2. MODAL ALGEBRAS 3972.2 Complex Algebras of Kripke FramesLet R be a binary relation on a set S. On the powerset algebra SbS there are twonormal operators naturally assoiated with R, taking eah T � S to its diret imageR(T ) = fs 2 S : 9t 2 T (tRs)g;and to its inverse image R�1(T ) = fs 2 S : 9t 2 T (sRt)g;respetively. The algebrai tradition has worked with diret images, for reasons thatwill be lari�ed in Setion 3.1, while the logial tradition has used inverse imagesbeause of onventions assoiated with Kripke semantis (Setion 5.3). The hoiereally is a matter of onvention, sine the inverse image of T under R is the same thingas the diret image of T under the inverse relation R�1. We will follow the logialtradition here, and also will use the notation mR for the inverse image operator:mR(T ) = fs 2 S : 9t 2 T (sRt)g:The dual operator to mR is lR : SbS ! SbS, wherelR(T ) = �mR(�T ) = fs 2 S : 8t (sRt implies t 2 T )g:These desriptions display the role of mR and lR as quanti�ers, existential and uni-versal, relative to, or bounded by, the relation R.The pair hS;Ri is known in modal logi as a Kripke frame, or K-frame. More generallywe de�ne a K-frame of type � to be a relational strutureS = hS;R�i�<�with eah R� being a binary relation on S. The full omplex algebra of S isCmS = hSbS;mR� i�<�;whih is a modal algebra of type �. Any algebra that is (isomorphi to) a subalgebra ofCmS is a omplex algebra of type �. The terminology derives from group theory of theNineteenth Century: before set theory beame the lingua frana of mathematiiansthe word \omplex" was used to denote a olletion of elements (subset) of a group.In the ase of a K-frameS = hS;R0; R1i of type 2, CmS is a tense algebra, i.e. mR0and mR1 are onjugate, i� R0 and R1 are mutually inverse: R1 = R�10 . Importantexamples are the frames hS;<;>i where S is one of the number systems Z;Q;R,representing a disrete, dense or ontinuous ow of time respetively.Our observations about onjugay indiate that for a type 1 frame S = hS;Ri, mRis self onjugate i� R = R�1, i.e. i� R is symmetri. Analogously, if R is reexivethen T � mR(T ) for all T 2 SbS, while onversely it suÆes to have fsg � mR(fsg)for all s 2 S to make R reexive.These examples illustrate the fat that there is an extensive atalogue of onditionson R that are equivalent to various equational properties of CmS. This was �rstdemonstrated by J�onsson and Tarski [32, Theorem 3.5℄, several of whose observationsare inluded in the following table.



398 Algebrai Polymodal Logi: A SurveyEquational Property of CmS Equivalent ondition on Rx � mx reexivemmx � mx transitivelosure algebra quasi-order (reexive and transitive)x � lmx symmetrimonadi algebra equivalene relationmx � lx funtionalmx = lx total funtiondiagonalisable transitive with R�1 well-founded(f. [6℄ for a proof of the last entry.)Some potent questions arise. Given a modal algebra A satisfying a ondition fromthe left olumn, is A isomorphi to a omplex algebra based on a frame satisfying theorresponding ondition from the right olumn? To address suh issues requires therepresentation theory of the next setion.Does every MA-equation orrespond to a \natural" ondition on frames? Note �rstthat any equational assertion about CmS an be translated via the de�nitions of mRand lR into a sentene in the universal monadi seond-order logi of S, i.e. a sentenethat quanti�es universally over subsets of S. For instane, the ondition8T (T � mR(T ))is equivalent to 8T 8s (s 2 T ! 9t (t 2 T ^ sRt))when T ranges over SbS. But this itself proves to be equivalent to the simple �rst-order ondition 8s(sRs) of reexivity. Indeed all entries in the right olumn exeptthe last are expressible in the �rst-order language (with equality) of S. But the lassfS : CmS is diagonalisablegis not elementary, i.e. not de�nable by any set of sentenes in �rst-order logi, sinethe ondition \R�1 is well-founded" is not preserved by elementary equivalene. Inpartiular, an ultrapower of a frame satisfying this ondition will not in general satisfyit. It transpires that for any equational lass V of modal algebras, losure of the lassfS : CmS 2 Vgunder ultrapowers is neessary and suÆient for it to be an elementary lass (f.Corollary 4.12).Do all �rst-order onditions on R haraterise an equational property of CmS?In fat not: irreexivity (8s:(sRs)) and antisymmetry are two ounterexamples, asan be shown by using the notion of bounded morphism between frames (and is soshown in Setion 4.2). In that ase, whih �rst-order onditions are equational? Thisquestion an be formulated in the following way: if K is an elementary lass of frames,when is there an equational lass of algebras V for whihCmS 2 V i� S 2 K?There is an answer to this in terms of the losure of K under ertain model-theoretionstrutions (Theorem 5.9). The proof applies duality theory (Setion 4) to Birkho�'s



3. BAO'S 399haraterisation of equational lasses of algebras as those losed under homomor-phisms, subalgebras, and diret produts.These various questions provoked by the phenomena exhibited in the above tablewill be taken up below and answered as generally as possible for polymodal operators.3 BAO's3.1 Polymodal OperatorsAn operator of rank , or arity, n on a BA B is a funtion m : Bn ! B that isadditive in eah of its arguments. This means that for eah i < n and any elementsa0; : : : ; ai�1; ai+1; : : : ; an�1, the unary funtionx 7! m(a0; : : : ; ai�1; x; ai+1; : : : ; an�1)is additive. m is normal if for eah i < n it satis�es the equationm(a0; : : : ; ai�1; 0; ai+1; : : : ; an�1) = 0:Note that the de�nition allows that n = 0: a nullary operation (i.e. a onstantm 2 B)is a normal operator. If n > 1, m is polymodal.A type in this ontext is a pair � = h�� ; �� i with �� an ordinal and �� : �� ! !a rank funtion assigning a natural number �� (�) � 0 to eah � < �. A Booleanalgebra with operators (BAO) of type � is an algebraA = hB;m�i�<��with eah m� an operator of rank �� (�) on the BA B. A is normal if eah m� isnormal. If �� (�) = 1 for all � we have the earlier notion of an MA of type �� .A relational struture of type � has the formS = hS;R�i�<��with eah R� being an (�� (�) + 1)-ary relation on S, i.e. R� � S�� (�)+1 (if �� (�) = 1for all � then S is a K-frame of type �� ). To build a omplex algebra out of S we haveto explain how to obtain an operator on SbS of rank n from a relation R � Sn+1. Inthe original ase of the omplex algebra of a group (S; �) the group operation lifts toa binary operation on the powerset of S by puttingT0 � T1 = ft0 � t1 : t0 2 T0 and t1 2 T1g= image of T0 � T1 under the group operation:Generalising, an n-ary operation f : Sn ! S lifts to the n-ary operationmf : (SbS)n ! (SbS)having mf (T0; : : : ; Tn�1) = f -image of T0 � � � � � Tn�1= ff(t0; : : : ; tn�1) : ti 2 Ti all i < n g:



400 Algebrai Polymodal Logi: A SurveyNow if R = fht0; : : : ; tn�1; si : f(t0; : : : ; tn�1) = sg is the n+ 1-ary graph of f , thenthe right-side of the de�nition of mf an be desribed as theR-image of T0 � � � � � Tn�1= fs 2 S : 9t0 � � � 9tn�1(R(t0; : : : ; tn�1; s) and ti 2 Ti all i < n) g:But now this is a desription that makes sense for any n+1-ary relationR, and we havethe promised explanation of why the algebrai tradition has found it mathematiallynatural to work with diret images of relations. On the other hand we an \permute"the de�nition by hoosing any of the n + 1 arguments of R to �ll the role of theunquanti�ed variable s. Thus an arbitrary relation R � Sn+1 de�nes n + 1 normaloperators on SbS. We will opt to maintain ontat with the logial tradition hereand single out the �rst argument of R, thereby de�ning mR : (SbS)n ! (SbS) byextension of the n = 1 ase of Setion 2.2:mR(T0; : : : ; Tn�1)= fs 2 S : 9t0 � � � 9tn�1(R(s; t0; : : : ; tn�1) and ti 2 Ti all i < n) g(when n = 0, i.e. R � S, mR is just the onstant R 2 SbS). Then the (full) omplexalgebra of the struture S = hS;R�i�<�� an be de�ned asCmS = hSbS;mR� i�<�� :3.2 Canonial EntitiesAssoiated with a Boolean algebraB is the set SB of ultra�lters ofB and the injetiveBA-homomorphism �B : B � SbSB having �B(x) = fs 2 SB : x 2 sg. This is thefundamental Stone representation ofB as the isomorphi algebra of sets �B(B), whihis in general a proper subalgebra of SbSB.Given an n-ary funtion m : Bn ! B, an n + 1-ary relation Rm � (SB)n+1 isde�ned byRm(s; t0; : : : ; tn�1) i� m(t0 � � � � � tn�1) � si� (8i < n (xi 2 ti) ) implies m(x0; : : : ; xn�1) 2 s:When n = 0 this entails Rm = fs 2 SB : m 2 sg = �B(m). When n = 1 we have,using the in�x notation for binary relations,sRmt i� fmx : x 2 tg � s i� fx : lx 2 sg � t:The relation Rm indues the normal operator mRm on SbSB. In order for �B topreserve the operations m and mRm , i.e.�B(m(x0; : : : ; xn�1)) = mRm(�B(x0); : : : ; �B(xn�1));it must be the ase that for eah s 2 SB and x0; : : : ; xn�1 2 B, the onditionm(x0; : : : ; xn�1) 2 sis equivalent to9t0; : : : ; tn�1 2 SB(Rm(s; t0; : : : ; tn�1) and (8i < n)(xi 2 ti)):



3. BAO'S 401The impliation from top to bottom holds by the de�nition of Rm, and the wholeequivalene holds when n = 0, again from the de�nitions. The diÆult part is toprove it from bottom to top when n � 1, and this requiresm to be a normal operator.One way to proeed is to onstrut the ultra�lters ti by indution on i in suh a waythat the following two lauses hold:(i) xi 2 ti,(ii) if yk 2 tk for all k � i, then m(y0; : : : ; yi; xi+1; : : : ; xn�1) 2 s.Then when i = n� 1, lause (ii) immediately yields Rm(s; t0; : : : ; tn�1) by de�nitionof Rm. Together with (i), this will omplete the proof.The indutive argument is to �x a j � n � 1, and suppose that for eah i < j, tihas been de�ned to satisfy (i) and (ii). Letuj = fz : 8i < j 9yi 2 ti(m(y0; : : : ; yj�1; z; xj+1; : : : ; xn�1) =2 s )g:Using the fat that m is additive and normal it an be shown that uj is an ideal of Bthat is disjoint from the prinipal �lter generated by xj . But then B must ontain anultra�lter tj that inludes xj and is disjoint from uj . This is enough to ensure that(i) and (ii) hold with j in plae of i.The full details of this argument may be found in Theorem 2.2.1 of [14℄, where theproof is shown to work for any normal operator on a distributive lattie.Now to eah BAO A = hB;m�i�<�� of type � we an assoiate the type-� relationalstruture C stA = hSB; Rm� i�<��whih we all the anonial struture of A. Its omplex algebra will be denoted 1EmA and is the anonial embedding algebra of A:EmA = CmC stA:Writing �A for the funtion �B determined by the underlying BA B of A, we have:Theorem 3.1 If A is a normal BAO, the funtion �A : A ! EmA is an injetiveBAO-homomorphism, representing A, by its isomorphi image in EmA, as a omplexalgebra.This result is due to J�onsson and Tarski [32℄ who developed it from a more abstratstandpoint, in two stages, using the notion of perfet extension. If Boolean algebraB is a subalgebra of Boolean algebra B� , then B� is a perfet extension of B, andB is a regular subalgebra of B� , if B� is omplete and atomi and satis�es(I) if x and y are distint atoms of B� , there is an element b of B with x � b andy � b = 0,(II) if D is a subset of B whose join in B� is 1, then D has a �nite subset whose joinin B� is 1.1In general, \sans serif" apitals E, H, P, S : : : will be used as the �rst letter in symboli names for operations onalgebras, while \blakboard bold" letters C; E; H; S; U: : : our likewise in names of operations on strutures (f.espeially Setion 4.4).



402 Algebrai Polymodal Logi: A SurveyThese onditions haraterise B� uniquely up to isomorphism. But if B is identi�edwith �B(B) � SbSB, then SbSB ful�lls these onditions, and so every BA has aperfet extension. In the topologial version of the Stone representation, the membersof �B(B) form a lopen base for a topology on SB. Conditions (I) and (II) expressthe fat that the resulting spae is Hausdor� and ompat.By analogy with the topologial ase, an element of a perfet extension B� is alledlosed if it is the meet of a set of elements from B. Let C be the set of losed elementsof B� . A funtion m : Bn ! B indues the n-ary funtion m� on B� de�ned by theformula m�(x) = Xx�y2Cn Yy�z2Bnm(z) for all x 2 (B�)n (y)(here � and � are the produt orderings). If m is an operator then m� is an extensionof m that is ompletely additive (preserves arbitrary joins) in eah of its argumentsand is the largest suh extension of m (in the pointwise ordering of funtions).There is also an abstrat approah to m� in the style of (I) and (II). If At denotesthe set of atoms of B� , onsider the statement(III) m�(x) =Yx�z2Bnm(z) for all x 2 (At)n,whih is implied by the formula (y). A BAOA� = hB� ;m��i�<��is a perfet extension of A = hB;m�i�<�� , and A a regular subalgebra of A�, if (I)and (II) hold, eah m�� is ompletely additive, and (III) holds with m� in plae of mfor all � < �� . These axioms haraterise A� uniquely up to isomorphism, and theonstrution of m� by (y) establishes the Extension Theorem of [32, Th. 2.15℄ thatevery BAO A has a perfet extension A�.Now if A is normal then A� is normal and is isomorphi to the omplex algebraCmS of some relational struture S. Here the underlying set of S an be taken asthe set of atoms of A�, and the relation R� of S asfhs; t0; : : : ; t�� (�)�1i : s � m��(t0; : : : ; t�� (�)�1)g:In this way we arrive at the Representation Theorem of [32, Th. 3.10℄ that everynormal BAO of type � is isomorphi to a regular subalgebra of the omplex algebraof a relational struture of type � .Thus we may say that the de�nitions of anonial struture C stA and anonialembedding algebra EmA gives a partiular realisation of the abstrat notion of perfetextension. It is also noteworthy that in terms of the topologial representation basedon SB, axiom (III) for m� is equivalent to the requirement that the relation Rm� bea losed subset of (SB)�� (�)+1 in the produt topology.If A is �nite then A �= A�, eah ultra�lter of A is prinipal and an be identi�edwith its generating element (an atom), and we get:Theorem 3.2 If A is a �nite BAO, then A is isomorphi to the full omplex algebraof its anonial struture C stA.



3. BAO'S 403The word \anonial" is used extensively in this subjet, and we will extend it evenfurther by following the pratie of [31℄ of referring to a perfet extension of A asits anonial extension. In addition, the anonial extension ExS of a relationalstruture S is the anonial struture of the full omplex algebra of S. ExS is a newstruture built out of S and is alled by some authors the ultra�lter extension of S,sine its points are the ultra�lters on the underlying set S of S.Thus both algebras and strutures now have anonial extensions, and the readerwill need to identify whih is intended from the ontext. They are most readilyompared by the equations ExS = C st CmSEmA = CmC stA:Note also that EmCmS = CmC st CmS = CmExS:3.3 Canonial, Complex and Complete VarietiesAs a �rst appliation of the representation theory just desribed, onsider the varietyVl of losure algebras. If A = hB;mi is a losure algebra, then its anonial strutureC stA = hSB; Rmi is a quasi-ordering. The fat that x � mx in A ensures thatfmx : x 2 sg � s, and hene sRms for any s 2 SB, so Rm is reexive. Also, ifsRmtRmu and x 2 u then mmx 2 s and hene mx 2 s as mmx � mx, showing thatsRmu. Thus Rm is transitive. A number of observations about Vl then follow:� every member of Vl is isomorphi to a regular subalgebra of the full omplexalgebra of a quasi-ordering;� sine the omplex algebra of a quasi-ordering is a losure algebra (f. the table ofSetion 2.2), the anonial extension EmA = CmC stA belongs to Vl. Hene Vlis losed under the operation A 7! EmA.� Vl is generated as a variety by its full omplex algebras.If A is a monadi algebra, then the ondition x � lmx fores Rm to be symmetri.Therefore these three observations hold if Vl is replaed by the variety Vmn of monadialgebras, \quasi-ordering" is replaed by \equivalene relation", and \losure algebra"is replaed by \monadi algebra".However, the situation is di�erent for the variety Vdg of diagonalisable algebras. IfS = h!;Ri with mRn i� m > n, then R is transitive and R�1 is well-founded, sothat CmS belongs to Vdg. Now let A be the subalgebra of CmS onsisting of the�nite and the o�nite subsets of !. We also have A 2 Vdg. However EmA is not inVdg. To see this, let s be the set of all o�nite sets. Then s is an ultra�lter of A,so it is a member of C stA. If T 2 s then T is a non-empty subset of !, so mR(T )is o�nite { indeed mR(T ) = fm : m > ng where n is the least member of T { andhene mR(T ) 2 s. This shows that sRmRs in C stA, whih is enough to violate thede�ning ondition mx � m(x�mx)of Vdg in EmA when x = fsg, sine then 0 6= x � mx while m(x�mx) = m0 = 0.



404 Algebrai Polymodal Logi: A SurveyThis example shows that Vdg is not losed under anonial extensions. An examplehas been given in [14, Th. 3.7.1℄ of a diagonalisable algebra that is not isomorphito a subalgebra of any diagonalisable algebra of the form CmS (we will give anotherdemonstration of this fat in Setion 5.6). Nonetheless Vdg is generated by its fullomplex algebras, sine it is known that it is generated by its �nite members, andevery �nite algebra is isomorphi to one of the form CmS (Theorem 3.2).If K is a lass of strutures, we de�neCmK = fA : A �= CmS for some S 2 Kg:Sine a omplex algebra per se is one that is isomorphi to a subalgebra of CmS forsome S, the lass of omplex algebras of K is SCmK. The variety VarK generated byK is the smallest variety ontaining CmK, i.e. VarK = VarCmK = HSPCmK.For a lass W of BAO's, the lass of strutures in W is de�ned to beStrW = fS : CmS 2 Wg:If W is losed under isomorphism then so is StrW , and CmStrW �W . Hene if V isa variety, it ontains the variety generated by its own strutures: VarStrV � V .Armed with these onepts, we now introdue three fundamental de�nitions on-erning a variety V .� V is anonial if it is losed under anonial extensions:A 2 V implies EmA 2 V .� V is omplex if every member of V is isomorphially embeddable into the fullomplex algebra of some struture in V , i.e. if V is equal to SCmK for some lassK of strutures, and hene onsists entirely of omplex algebras. Equivalently, aomplex variety is one satisfying V = SCmStrV .� V is omplete if it is generated by a lass of full omplex algebras, i.e. V = VarKfor some lass of strutures K, or equivalently V = VarStrV .It is immediate that if V = SCmK then V = VarK, so every omplex variety is om-plete. The diagonalisable algebras Vdg form a omplete variety that is not omplex.Every anonial variety is omplex, as A is embeddable in EmA = CmC stA, andif EmA 2 V then C stA 2 StrV . Thus EmV � V implies V = SCmC stV . An instaneof a non-anonial omplex variety is the one generated by the type 2 real-numberframe hR; <;>i. This example will be disussed in detail in Setion 5.6.While eah of these three properties of a variety are in general distint, it turnsout that when StrV is losed under ultrapowers they beome equivalent (f. Corollary4.14). We will see in Setions 5.4{5.6 that eah of them orresponds to a signi�antproperty of modal logis.The question of whih varieties are anonial omes down to the question of whihequations are preserved by anonial extensions of algebras. The �rst general resultabout this was given by J�onsson and Tarski in Theorem 2.18 of [32℄ whih establishedthat any equation holding in a BAO A and not involving the Boolean omplementationoperation must ontinue to hold in any perfet extension of A. Later work in modallogi, ulminating in [49℄, greatly extended the lass of suh preserved properties.This will be disussed further in Setion 5.5.



4. DUALITY 4054 DualityEah of the fundamental algebrai operations H (homomorphi images) S (subalge-bras) and P (diret produts) that haraterise varieties has a orresponding operationon relational strutures. We disuss them in turn.4.1 Bounded MorphismsLet S1 = hS1; R1�i�<�� and S2 = hS2; R2�i�<�� be strutures of type � . A boundedmorphism f : S1 ! S2 is a funtion f : S1 ! S2 satisfying, for eah � < �� ,R1�(s0; : : : ; s�� (�)) implies R2�(f(s0); : : : ; f(s�� (�))); andR2�(f(s); u1; : : : ; u�� (�)) implies there exist t1 : : : ; t�� (�) 2 S1 suh thatf(tk) = uk for 1 � k � �� (�); andR1�(s; t1; : : : ; t�� (�)):For K-frames with binary relations, this takes the forms0R1� s1 implies f(s0)R2� f(s1) andf(s)R2� u implies there exists t 2 S1 suh that f(t) = u and sR1� t;whih an be expressed even more suintly asf(s)R2� u i� 9t 2 S1(f(t) = u and sR1� t):In modal logi suh funtions are often alled p-morphisms for reasons that are ob-sure, or zig-zag morphisms in view of their \bak-and-forth" harater. Our hoieof the adjetive \bounded" reets the use of bounded existential quanti�ation inexpressing the seond part of the de�nition. There is a model-theoreti preservationtheorem showing that a �rst-order sentene preserved by surjetive bounded mor-phisms is equivalent to a positive sentene in whih quanti�ers only our in the\R-bounded" forms8v0 � � � 8vn�1(R(v; v0; : : : ; vn�1)! '); 9v0 � � � 9vn�1(R(v; v0; : : : ; vn�1) ^ ')(f. e.g. [14, Th. 4.2.5℄, and Setion 4.6 below).There is another way of explaining what a bounded morphism is that may appeal tosome mathematial tastes. This is based on the observation that a relation R � Sn+1an be identi�ed with the funtion R[-℄ : S ! SbSn havingR[s℄ = fht1; ; : : : ; ; tni : R(s; t1; : : : ; tn)g:The de�nition of bounded morphism is equivalent to the requirement that for alls 2 S1, f(R1� [s℄) = R2� [f(s)℄;whih states that the following diagram ommutes (where n = �� (�) and fn is thefuntion indued oordinate-wise by f).S1 R1� [-℄�! SbSn1#f #fnS2 R2� [-℄�! SbSn2



406 Algebrai Polymodal Logi: A SurveyA bounded morphism f : S1 ! S2 indues the funtion f+ : SbS2 ! SbS1 thatpulls subsets of S2 bak along f to their inverse images, i.e. f+(T ) = f�1(T ). Thenf+ proves to be a homomorphism from CmS2 to CmS1, and indeed the reader mayhek that the onditions de�ning a bounded morphism are exatly what is requiredto make f+ preserve the polymodal operators:f+(mR2� (T0; : : : ; T�� (�)�1)) = mR1� (f+(T0); : : : ; f+(T�� (�)�1));whih is the ultimate explanation of why bounded morphisms are the natural mapsto deal with in this ontext.Assigning the omplex algebra CmS to S, and f+ to f gives a ontravariant fun-tor from the ategory of relational strutures of type � with bounded morphisms asarrows to the ategory of BAO's of type � with BAO homomorphisms as arrows. Thisfuntor is part of a dual equivalene between the former ategory and the subate-gory of the latter ategory onsisting of omplete and atomi BAO's with ompletehomomorphisms. For modal algebras and K-frames, this equivalene is disussed indetail in [57℄.The standard symbols� and� will be used to denote funtions that are injetive andsurjetive, respetively. The notations S1 � S2 and S1 � S2 indiate that thereexists a bounded morphism from S1 to S2 that is injetive or surjetive, respetively.Similarly, A1 � A2 and A1 � A2 indiate the existene of injetive and surjetivehomomorphisms between algebras.The dual orrespondene interhanges injetions and surjetions: if f : S1 � S2then f+ : CmS2 � CmS1, and if f : S1 � S2 then f+ : CmS2� CmS1.A surjetive bounded morphism will be alled a bounded epimorphism, and if S1 �S2, then S2 is a bounded epimorphi image of S1. When this happens, the injetionCmS2� CmS1 makes CmS2 isomorphi to a subalgebra of CmS1. HeneLemma 4.1 If S2 is a bounded epimorphi image of S1, then CmS2 � CmS1 andevery equation satis�ed by CmS1 is satis�ed by CmS2.A homomorphism g : A1 ! A2 of BAO's gives rise to a bounded morphism g+ :C stA2 ! C stA1 of their assoiated anonial strutures. g+ assigns to eah ultra�lters of A2 its inverse image fx 2 A1 : g(x) 2 sg, whih is an ultra�lter of A1. Theproof that g+ is a bounded morphism is elaborate, and similar in strategy to theproof desribed in Setion 3.2 that the anonial embedding funtion �B preservespolymodal operators. Full details may be found in Theorem 2.3.2 of [14℄.The orrespondene g 7! g+ also interhanges injetions and surjetions: if g :A1 � A2 then g+ : C stA2 � C stA1, and if g : A1 � A2 then g+ : C stA2 � C stA1.Thus if A1 is (isomorphi to) a subalgebra of A2, then C stA1 is a bounded epimorphiimage of C stA2. (The reader should be aware that the pre�x \epi" is sometimes usedfor homomorphisms between algebras to indiate a ategory-theoreti property weakerthan surjetivity. In the present artile however the word \epimorphism" will only beapplied to bounded morphisms of strutures, and will be used preisely to indiatetheir surjetivity.)Note that g+ : C stA2 ! C stA1 in its turn indues the homomorphism (g+)+ fromCmC stA1 to CmC stA2, i.e. from EmA1 to EmA2. Thus if A1 � A2 or A1 � A2,then EmA1� EmA2 or EmA1 � EmA2, respetively.



4. DUALITY 407Likewise, from a bounded morphism f : S1 ! S2 we get the bounded morphism(f+)+ from C st CmS1 to C st CmS2, i.e. (f+)+ : ExS1 ! ExS2. Thus if S1 � S2or S1 � S2, then ExS1� ExS2 or ExS1 � ExS2, respetively.As an appliation of this duality, we haveTheorem 4.2 A variety V is anonial if, and only if, it ontains the anonial ex-tensions of all its in�nitely-generated free algebras.Proof. If A 2 V , then there is an in�nitely-generated free A1 in V with A1 � A.Then EmA1 � EmA, so if V ontains EmA1, it will ontain EmA by losure underhomomorphi images.There is a useful generalisation of the notion of bounded morphism whih we will alla bounded ultra�lter map from a struture S to a BAO A of the same type � . Letf : S ! C stA be a funtion assigning to eah point s in S an ultra�lter f(s) of A.Then f indues the funtion f+ : A! CmS, de�ned for eah element a of A byf+(a) = fs 2 S : a 2 f(s)g:The properties of ultra�lters ensure that f+ is a Boolean algebra homomorphism. fwill be alled a bounded ultra�lter map from S to A if it satis�es, for all � < �� ,s 2 S, and a0; : : : ; a�� (�)�1 2 A,m�(a0; : : : ; a�� (�)�1) 2 f(s) i� there exist t0; : : : ; t�� (�)�1 2 S suhthat R�(s; t0; : : : ; t�� (�)�1) andai 2 f(ti) for all i < �� (�):This is the ondition that ensures that f+ preserves the polymodal operators m� ofA and mR� of CmS, and hene is a BAO homomorphism.f will be said to over A if for eah non-zero element a of A there is some s 2 Ssuh that a 2 f(s). This ensures thata 6= 0 implies f+(a) 6= ;;so that f+ is an injetion of A into CmS. To summarize:Theorem 4.3 If there exists a bounded ultra�lter map from S to A that overs A,then the indued homomorphism A ! CmS is injetive and makes A isomorphi toa subalgebra of CmS. �A bounded ultra�lter map f from S to CmT may be thought of as a bounded ul-tra�lter map from S to the struture T. Suh a map overs CmT preisely when itsrange inludes all prinipal ultra�lters of CmT.A speial ase of this arises from a bounded morphism f : S ! T, whih an beidenti�ed with the ultra�lter map f# : S ! C st CmT = ExT for whih f#(s) is theprinipal ultra�lter fU � T : f(s) 2 Ug



408 Algebrai Polymodal Logi: A Surveyof CmT generated by ff(s)g. f# overs CmT preisely when f is surjetive.Ultra�lter maps were introdued for type 1 Kripke frames in [57℄, where it wasshown that the ategory of frames with bounded ultra�lter maps is dually equiva-lent to the ategory of omplete and atomi modal algebras with ordinary algebraihomomorphisms as arrows.Bounded ultra�lter maps will be used in Setion 5.6 in proving that the varietygenerated by Dedekind-omplete linear orderings is omplex.4.2 Non-Equational PropertiesBounded morphisms an be used to show that there is no equation that is satis�ed bythe omplex algebra of a type 1 frame preisely when its binary relation is irreexive,i.e. 8s:(sRs).Let S1 be the frame h!;<i and S2 the one-element frame hf0g; Ri with 0R0. Theunique map ! ! f0g is a bounded epimorphism, so every equation satis�ed by CmS1is satis�ed by CmS2 (4.1). But S1 is irreexive while S2 is not.Notie that another property enjoyed by S1 but not S2 is asymmetry, i.e. if sRtthen not tRs, so this is not equationally de�nable either.Similarly, there is no equation that we an add to the de�nition of \losure algebra"to haraterise those quasi-ordered frames that are partially ordered, meaning thatthey are antisymmetri: sRt and tRs implies s = t. If S01 is the partial order h!;�iand S02 = hf0; 1g; Ri with R the universal relation, then putting f(m) = 1 i� m iseven gives a bounded epimorphism S01 ! S02 showing that equations are preservedin passing from CmS01 to CmS02. But S02 is not antisymmetri.By the same token, we an use bounded morphisms to impose onditions like irreex-ivity and antisymmetry when representing ertain algebras as omplex algebras. Forexample, if a frame S = hS;Ri ontains a point s that is reexive, i.e. sRs, we removes and replae it by a opy fhn; si : n < !g of the frame h!;<i. Eah new point hn; sibears the same relation to the old points that s did, the old points are unaltered intheir relation to eah other, and �nallyhn; siRhm; si i� n < m:Thus none of the new points are reexive, and the new frame S0 has a boundedmorphism f onto S, that ats by f(hn; si) = s and otherwise is the identity funtion.It follows that CmS is isomorphi to a subalgebra of CmS0. By removing all reexivepoints in this way, it an be shown that any modal algebra an be embedded into theomplex algebra of a K-frame whose relations are irreexive.This tehnique, whih is sometimes alled \bulldozing" in modal logi, has beenmost e�etively used for modifying frames S = hS;Ri with R a transitive binaryrelation. On suh a frame an equivalene relation � is given bys � t i� s = t or (sRt and tRs):The equivalene lass Cs = ft : s � tg is alled the luster of s. PuttingCs � Ct i� sRt



4. DUALITY 409gives a well-de�ned relation between lusters that is transitive and antisymmetri.Hene putting Cs < Ct i� Cs � Ct and Cs 6= Cti� sRt and not tRsde�nes < to be a strit ordering, i.e. transitive and irreexive, hene asymmetri.There are three types of luster. A degenerate luster onsists of a single irreexivepoint, a simple one onsists of a single reexive point, and a proper luster ontainsat least two points, whih must be reexive beause the relation R is universal on aproper luster. Thus a partial ordering is itself a transitive frame in whih all lustersare simple, and a strit ordering is one in whih all lusters are degenerate.A partial ordering is alled linear if it is onneted, i.e. one of sRt and tRs holdsfor all distint s; t. If C is a proper luster in S, we \atten" C to a linear orderingby �rst taking an arbitrary linear ordering �C of C and then replaing C by ! opiesof �C , i.e. one for eah natural number. The new frame S0 has !�C in plae of C,with the new points being ordered by puttinghn; siR0hm; ti i� n < m or else n = m and s �C t:Then similarly to the above ase we an show that S is a bounded epimorphi imageof S0, with S0 having a sequene of simple lusters fhn; sig in plae of C.This onstrution leads to the following onlusions:� every quasi-ordering is a bounded epimorphi image of a partial ordering;� every onneted quasi-ordering is a bounded epimorphi image of a linear ordering;� every losure algebra is isomorphi to a subalgebra of the omplex algebra of apartial ordering, and hene� the variety Vl of losure algebras is generated by the omplex algebras of partialorderings.If, instead of �C , we take a strit linear ordering <C of C and puthn; siR0hm; ti i� n < m or else n = m and s <C t;the result is to bulldoze C into a strit linear ordering. By doing this to all non-degenerate lusters we show that every transitive frame is a bounded epimorphi imageof a strit ordering, and every onneted transitive frame is a bounded epimorphiimage of a strit linear ordering.The study of linear temporal logi is based on onneted time-frames, whih aretype 2 frames of the form S = hS;R;R�1i with R (and R�1) being transitive andonneted. Bounded morphisms for suh strutures have to respet both R and R�1,and so in bulldozing a luster C we use Z�C, i.e. replae C by one opy of �C or <Cfor eah integer, giving a strit linear ordering that is endless in both diretions. Inthis way it is shown that every onneted time-frame is a bounded epimorphi imageof a strit linear time-frame, and every reexive onneted time-frame is a boundedepimorphi image of a linearly ordering. In ertain irumstanes we an then arrythis even further by replaing eah member of Z� C by a opy of the rationals Qto obtain a dense linear ordering having the original frame as a bounded epimorphiimage.



410 Algebrai Polymodal Logi: A Survey4.3 Inner SubstruturesA struture S1 = hS1; R1�i�<�� is an inner substruture of S2 = hS2; R2�i�<�� ifS1 � S2, and the inlusion S1 ,! S2 is a bounded morphism from S1 to S2. This isequivalent to requiring that S1 be a substruture of S2 in the standard sense, i.e.R1� = R2� \ S�� (�)+11 ;and that R2�(s; t1; : : : ; t�� (�)) and s 2 S1 implies t1; : : : ; t�� (�) 2 S1(f. [14, Lemma 3.2.2℄).The image of any bounded morphism is always an inner substruture of the odomain.In partiular, if f : S1 ! S2 is an injetive bounded morphism then the image of f isan inner substruture of S2 isomorphi to S1 under f , and onversely. For instane,if a BAO A2 is a homomorphi image of A1, then the epimorphism A1 � A2 induesan injetive bounded morphism C stA2 � C stA1 making the anonial struture ofA2 isomorphi to an inner substruture of the anonial struture of A1.Observe also that from a bounded injetion S1 � S2 we get a surjetive homomo-morphism CmS2 � CmS1 whih preserves equations. HeneLemma 4.4 If S1 is isomorphi to an inner substruture of S2, then CmS1 is ahomomorphi image of CmS2 and every equation satis�ed by CmS2 is satis�ed byCmS1.For type 1 frames, the de�nition of S1 = hS1; R1i being an inner substruture ofS2 = hS2; R2i is partiularly diret: S1 is a subset of S2, R1 is the restrition of R2to S1, and S1 is losed under R2 in the sense thatif sR2t and s 2 S1, then t 2 S1.In modal logi some authors refer here to S1 being a generated subframe of S2, thename originating from the emphasis there is in modal model theory on subframesthat are generated by a single element. To onsider this notion, let s be a point in atype 1 frame S = hS;Ri. Then the subframe generated by s is the substruture Ssof S whose underlying set Ss is the intersetion of all inner substrutures of S thatontain s. Ss is itself an inner substruture of S, withSs = ft 2 S : sR�tg;where R� is the reexive transitive losure of R. Thus t 2 Ss i� there exists a sequenet0; : : : ; tn of members of S (for some n � 0) suh thats = t0Rt1R � � �Rtn = t:The importane of this notion derives from the fat that in a modal model based onS (f. Setion 5.3), truth-values of formulae at s depend only on the truth-values atpoints in Ss.For a general struture S = hS;R�i�<�� of type � , the haraterisation of thesmallest inner substruture Ss of S ontaining the point s is rather more elaborate,



4. DUALITY 411but in similar vein. First, de�ne a binary relation RS on S by puttingtRSu i� 9� < �� and 9u1; : : : ; u�� (�) 2 S suh thatR�(t; u1; : : : ; u�� (�)) and u = ui for some i � �� (�):Then Ss is the inner substruture of the frame hS;RSi that is generated by s, i.e.Ss = ft 2 S : sR�Stg:Now the bounded inlusion Ss ,! S indues the homomorphism gs : CmS� CmSshaving gs(T ) = T \ Ss. Sine gs(T ) 6= ; if s 2 T , it follows that the produt maphgs : s 2 Si is an injetion of SbS into the produt of the algebras CmSs, and sinethe gs's are surjetive, this give a subdiret-produt representationCmS�Ys2S CmSsof CmS in terms of the omplex algebras of point-generated strutures. In fat this isa representation by subdiretly irreduibles: the algebra CmSs is always subdiretlyirreduible, as shown in [14, Th. 3.3.2℄.If A is a subalgebra of CmS, then taking As to be the subalgebra of CmSs that isthe image of A under gs, by similar reasoning we get the subdiret representationA�Ys2SAs:Combined with the representation underlying Theorem 3.1, this yieldsTheorem 4.5 Every normal BAO has a subdiret representation by omplex algebrasbased on point-generated strutures.An important ase of the notion of inner substruture arises in the ontext of thestudy of ylindri algebras, spei�ally in the onept of a weak Cartesian struture.If U is a set then �U is the set of all sequenes x = hx� : � < �i of length � whoseterms x� all belong to U . �U is known as the �-dimensional Cartesian spae withbase U . Eah subset S of �U determines the strutureS(S) = hS;RS� ; ES��i�;�<�;where RS� = fhx; yi : x; y 2 S and x� = y� for all � < � with � 6= �g;ES�� = fx 2 S : x� = x�g:When S = �U , strutures of the form S(�U) are alled (full) Cartesian strutures ofdimension �, and the strutures isomorphi to these form the lass Ft�.Complex algebras that are based on Cartesian strutures S(�U) are known asylindri set algebras of dimension � and form the lass Cs� [HMTII, De�nition



412 Algebrai Polymodal Logi: A Survey3.1.1℄. (Note that if S 6= �U , CmS(S) may not be a ylindri algebra at all.) Thusif I is the isomorphism losure operator, thenICs� = SCmFt�:A representable ylindri algebra of dimension � is an algebra that is isomorphi toa diret produt of ylindri set algebras of dimension �. Thus the lass RCA� ofrepresentable ylindri algebras is given byRCA� = SPCmFt�:In [19, Lemma 3.4℄ we show thatRCA� = SPCmSFt�;where S denotes the operation of forming the lass of inner substrutures of themembers of a given lass of strutures (f. Setion 4.4). This fat, together withresults desribed in Setion 4.6 below, an be used to give a new proof that RCA�is a anonial variety.Now if x 2 �U then the weak Cartesian spae with base U and dimension � deter-mined by x is the set�U (x) = fy 2 �U : f� < � : y� 6= x�g is �niteg;and S(�U (x)) is a weak Cartesian struture of dimension �. The lassWt� onsistsof all strutures isomorphi to those of the form S(�U (x)).In the ase that � is �nite, then by de�nition �U (x) = �U , and so S(�U (x)) is justS(�U) itself, i.e. in this ase all weak Cartesian strutures are full. But in any asewe have that S(�U (x)) is the inner substruture S(�U)x of S(�U) point-generatedby x, as desribed above. This follows beause the relation RS(�U) used to de�neS(�U)x satis�es xRS(�U)y i� f� < � : y� 6= x�g is �nite.RS(�U) is in fat the smallest equivalene relation on �U that ontains all the relationsRS� , and the point-generated struture S(�U)x is based on the RS(�U)-equivalenelass of the point x. Thus distint weak Cartesian substrutures ofS(�U) are disjoint,and if T is any inner substruture of S(�U) then T will be the disjoint union of thoseweak Cartesian substrutures generated by points of T. It follows thatCmT �= Yx2TCmS(�U (x));and this establishes the relationshipCmSFt� � PCmWt�:Further haraterisations of representable ylindri algebras obtained in [19℄ inludeRCA� = SPCmSWt� = SPCmWt�:



4. DUALITY 4134.4 The Calulus of Class OperationsFirst, here is a summary of the main features of the duality between BAO's andrelational strutures thus far developed:� A bounded morphism f : S1 ! S2 indues a homomorphism f+ : CmS2 !CmS1, suh that if f : S1 � S2 then f+ : CmS2 � CmS1, and if f : S1 � S2then f+ : CmS2 � CmS1.� A homomorphism g : A1 ! A2 indues a bounded morphism g+ : C stA2 ! C stA1suh that if g : A1 � A2 then g+ : C stA2 � C stA1, and if g : A1 � A2 theng+ : C stA2� C stA1.� If S1 is (isomorphi to) an inner substruture of S2, then CmS1 is a homomorphiimage of CmS2.� If S2 is a bounded epimorphi image of S1, then CmS2 is isomorphi to a subal-gebra of CmS1.� If A1 is (isomorphi to) a subalgebra of A2, then C stA1 is a bounded epimorphiimage of C stA2.� If A2 is a homomorphi image of A1, then C stA2 is isomorphi to an inner sub-struture of C stA1.� If A1 � A2 or A1 � A2, respetively, then EmA1 � EmA2 or EmA1 � EmA2,respetively.� If S1 � S2 or S1 � S2, respetively, then ExS1 � ExS2 or ExS1 � ExS2,respetively.Now for a lass K of strutures, let H K be the lass of all bounded epimorphi imagesof members of K, and SK the lass of all strutures that are isomorphi to an innersubstruture of some member of K. We an ombine these operations to form SHK,H H K et., and also ombine them with other operations on lasses of strutures oralgebras, as in SCmH K et. To ompare suh lass operations X ;Y , the partialordering X � Y is de�ned to mean that XK � YK for all lasses K. Thus the �rstduality statement above entails thatCmS � HCm and CmH � SCm :Theorem 4.6(1) H H = H , SS= S.(2) SH � H S .(3) If V is losed under subalgebras and homomorphi images, then StrV is losedunder H and S and reets Ex , i.e. ExS 2 StrV implies S 2 StrV.(4) EmSCm � SCmEx .(5) HCmS = HCm and SCmH = SCm .(6) C st HS � SH C st .(7) C st HSCm � SH E x .Proof. (1) and (2) are fairly routine and left to the reader.



414 Algebrai Polymodal Logi: A Survey(3) Closure of StrV under H and S is given by Lemmas 4.1 and 4.4. For reetion ofEx , observe that from the anonial embeddingCmS� EmCmS = CmExSit follows that if CmExS 2 V then CmS 2 V , as desired.(4) Let A 2 SCmK. Then A� CmS for some S 2 K. HeneEmA� EmCmS = CmExS;showing EmA 2 SCmExK.(5) We noted above that CmS � HCm . ThereforeHCmS � HHCm = HCm � HCmS;giving HCmS = HCm . Similarly SCmH = SCm follows from CmH � SCm .(6) If A 2 HSW , forW a lass of BAO's, then there are algebras A1;A2 with A2 2 Wand A� A1� A2:Hene by duality, C stA� C stA1 � C stA2;showing C stA 2 SH C stW , as desired.(7) By (6) C st HSCmK � SH C st CmK. But C st CmK = ExK by de�nition of Ex .The results listed in 4.4.1 provide an e�etive alulus for reasoning about the losureproperties of various lasses (f. the proof of 4.5.3 and 4.6.6 below for example).We may view 4.4.1(4) as saying that the operator Em an pass to the right of theombination SCm to beome Ex , while 4.4.1(5) says that HCm absorbs S on theright, et.4.5 Disjoint and Bounded UnionsThe dual to the algebrai onstrution of diret produts is the strutural operationof formation of disjoint unions. If fSj : j 2 Jg is a olletion of � -strutures Sj =hSj ; Rj�i�<�� , then their disjoint union is the � -strutureaJ Sj = hSJ (Xj � fjg); R�i�<�� ;where R� = fhhs0; ji; : : : ; hs�� (�); jii : j 2 J and Rj�(s0; : : : ; s�� (�))g:Essentially then,`J Sj is the union of a olletion of pairwise disjoint opies Sj�fjgof the strutures Sj .For eah i 2 J , the orrespondene s 7! hs; ii gives an injetive bounded morphismSi 7!`J Sj , whose image Si �fig is an inner substruture of `J Sj isomorphi to



4. DUALITY 415Si. In pratie it is often onvenient to identify this image with Si, i.e. to regard theSj 's as being pairwise disjoint, and `J Sj as simply being their union. Then eahSj is itself an inner substruture of the disjoint union.The duality between diret produts and disjoint unions is provided by an isomor-phism YJ CmSj �= CmaJ Sjassoiating to eah member hTj : j 2 Ji of the diret produt of the CmSj 's, thedisjoint union of the Tj 's ([14, Lemma 3.4.1℄). Hene in generalPCmK = CmUdK;where UdK is the lass of disjoint unions of strutures isomorphi to members of K.A given family fSj fj! S : j 2 Jg of funtions with the same odomain S induesnaturally the funtion aJ Sj f! S;where f(hs; ji) = fj(s). It is readily seen that if eah fj is a bounded morphism, thenf is also a bounded morphism.A struture S is the bounded union of fSj : j 2 Jg if it is the union of the Sj 's asinner substrutures, i.e. if(1) eah Sj is an inner substruture of S, and(2) S = SfSj : j 2 Jg.In this ase, if Sj fj! S is the inlusion Sj ,! S, then the funtion f : `J Sj ! Sof the previous paragraph is a bounded epimorphism. Thus a bounded union ofstrutures is a bounded epimorphi image of their disjoint union. A weak onverseof this is also true: a bounded epimorphi image of a disjoint union `J Sj is thebounded union of the images of the Sj 's.Notie also that a disjoint union`J Sj is itself the bounded union of the isomorphiopies Sj � fjg of the Sj 's.We use the notation Ub for the operation of forming bounded unions, analogouslyto Ud .Observe that if S is the bounded union of fSj : j 2 Jg, then from (1) by duality weget a surjetive homomorphism CmS� CmSj for eah j 2 J , and these surjetionsgive rise to the produt map from CmS to QJ CmSj taking eah T � S to theelement hT \ Sj : j 2 Ji of the diret produt of the CmSj 's. But then it followsfrom (2) that this produt map is injetive, so we have a subdiret embeddingCmS�YJ CmSj :Moreover, if the Sj 's happen to be pairwise disjoint then this embedding is surjetiveand reprodues the isomorphism between Cm`J Sj and QJ CmSj desribed above.The upshot of this disussion is that� the notion of bounded union is dual to that of subdiret produt.



416 Algebrai Polymodal Logi: A SurveyTheorem 4.7(1) PCm = CmUd .(2) If V is losed under diret produts, then StrV is losed under disjoint unions.(3) UdUd = Ud , UbUb = Ub .(4) Ud � Ub � H Ud = H Ub = UbH .(5) UdH � H Ud .(6) SUd = UdS.(7) SUb � UbS � H SUd = H SUb .Proof. (1) was observed above, and (2) follows from it. The remainder are left tothe reader.We are now in a position to establish some haraterisations of anoniity.Theorem 4.8 The variety VarK generated by a lass of strutures K is anonialif, and only if, the lass StrVarK of strutures in VarK is losed under anonialextensions.Proof. If S 2 StrVarK then CmS 2 VarK so if VarK is anonial then EmCmS 2VarK. But EmCmS = CmExS, so this makes ExS 2 StrVarK as desired.For the onverse, if A belongs to VarK = HSPCmK there exists an algebra A� anda subfamily fSj : j 2 Jg of K suh thatA� A��YJ CmSj �= Cm(aJ Sj):Putting S =`J Sj , we then getEmA� EmA�� EmCmS = CmExS:But CmS is in VarK, by losure under produts and isomorphism, so CmExS is inVarK if StrVarK is assumed losed under Ex . Closure of VarK under subalgebras andhomomorphi images then implies EmA 2 VarK. Hene VarK is anonial.Theorem 4.9 A variety V of BAO's is anonial if, and only if,(1) V is omplete, and(2) the lass StrV of strutures in V is losed under anonial extensions.Proof. A anonial variety is omplete, while losure of StrV under anonial exten-sions is a speial ase of anoniity, as the �rst part of the previous proof shows.Now suppose that (1) and (2) hold. Sine V is omplete, it is generated by its lassof strutures StrV , soV = HSPCmStrV= HSCmUdStrV as PCm = CmUd (4:7(1))= HSCmStrV ;the last step being beause StrV is losed under disjoint unions (4.7(2)).



4. DUALITY 417Thus if A belongs to V then A 2 HSCmStrV , so the anonial struture C stA is inC st HSCmStrV . Now by Theorem 4.6(7),C st HSCmStrV � SH E xStrV ;and by our hypothesis (2) ExStrV � StrV . But StrV is losed under H and S by4.6(3), so altogether SH E xStrV � StrV and therefore C stA 2 StrV . Hene EmA =CmC stA 2 V .This proves that if A is in V then so is EmA, i.e. V is anonial.A more detailed analysis of the relationship between properties of StrV and anoniityof V is given in [14, Setions 3.5, 3.7℄.4.6 Ultrapowers and UltraprodutsPuK is the lass of all strutures that are isomorphi to an ultraprodut of membersof K. PwK is likewise de�ned as the losure of K under ultrapowers. The symbolRu denotes the inverse Pw�1 to the operation Pw : RuK is the lass of ultrarootsof K, omprising those strutures S having some ultrapower SJ=F isomorphi to amember of K.K is de�ned to be an elementary lass of relational strutures if it is the lass ofall models of some set of sentenes in the �rst-order language of its type. Elementarylasses are haraterised as those losed under Pu and Ru .There are a number of fundamental results about ultrapowers and ultraprodutsthat bear on the relationship between elementary logi and the equational logi ofomplex algebras. The �rst we onsider isTheorem 4.10 The lass StrV of strutures in a variety V is losed under ultraroots.Proof. This follow from the fat that for any ultraprodut (QJ Sj)=F there is aninjetive homomorphism (YJ CmSj)=F � Cm(YJ Sj=F );as desribed in detail in [14, 3.6.5℄. In the ase of an ultrapower this takes the form� : (CmS)J=F � Cm(SJ=F );where, for T 2 (CmS)J , � maps T=F to the set�(T=F ) = ff=F 2 SJ=F : fj : f(j) 2 T (j)g 2 Fg:Composing � with the (elementary) embedding of algebras CmS� (CmS)J=F yieldsCmS� Cm(SJ=F ):By losure of V under subalgebras, it follows that SJ=F 2 StrV implies S 2 StrV ,i.e. StrV is losed under Ru .



418 Algebrai Polymodal Logi: A SurveyThe symbols Pu and Pw will be used for the operations of forming ultraproduts andultrapowers of algebras. Thus the �rst two sentenes of the proof just given assertthat PuCm � SCmPu and PwCm � SCmPw ;while the embedding CmS� Cm(SJ=F ) establishesCmRu � SCm ;and hene SCmRu = SCm .Theorem 4.10 implies that StrV is elementary i� it is losed under ultraproduts.But in fat lasses of the form StrV are even more onstrained than this: it is enoughfor them to be losed under ultrapowers for it to follow that they are elementary. Theproof of this result is based on the following observation.Theorem 4.11 An ultraprodut of a olletion of strutures fSj : j 2 Jg is iso-morphi to an inner substruture of an ultrapower of their disjoint union. HenePu � SPwUd .Proof. There is a natural bounded injetion(YJ Sj)=F � (aJ Sj)J=Ftaking f=F to g=F , where g(j) = hf(j); ji. Cf. [14, 3.8.3℄ for details.Corollary 4.12 For any variety of BAO's V, the following are equivalent.(1) StrV is an elementary lass.(2) StrV is losed under elementary equivalene.(3) StrV is losed under ultrapowers.(4) StrV is losed under ultraproduts.Proof. That (1) implies (2) and (2) implies (3) is standard. That (3) implies (4)follows from Theorem 4.11 and the fat that StrV is always losed under disjointunions, inner substrutures and isomorphism. Finally, as already noted, (4) implies(1) as a onsequene of 4.6.1 and the haraterisation of elementary lasses as thoselosed under Pu and Ru .Corollary 4.6.3 is the algebrai generalisation of a result that Johan van Benthemoriginally proved for the lass of Kripke frames validating a modal formula. Hisapproah used a model-theoreti ompatness argument. A disussion of that proofis given in [20℄.The next result is essentially an ultrapowers version of an appliation of saturatedmodels to modal logi that �rst appeared in [12℄.Theorem 4.13 For any struture S, the anonial extension ExS is a bounded epi-morphi image of some ultrapower of S. Hene Ex � H Pw .



4. DUALITY 419Proof. Given an ultrapower SJ=F , a mapSJ=F ! C st CmSof the desired form is obtained by assigning to eah element f=F of SJ=F the setfT � S : fj 2 J : f(j) 2 Tg 2 Fg;whih is indeed an ultra�lter of CmS and hene a member of the anonial strutureof CmS. If the ultrapower SJ=F is !-saturated, this map is a bounded epimorphism,as shown in detail in Setion 3.6 of [14℄.Corollary 4.14 For any variety of BAO's V, if StrV is losed under ultrapowers,then the following are equivalent.(1) V is anonial.(2) V is omplex.(3) V is omplete.Proof. We have already observed that (1) implies (2) and (2) implies (3) in general.But if StrV is losed under ultrapowers, then sine it is always losed under boundedepimorphi images (4.6(3)), 4.6.4 implies that it must also be losed under anonialextensions. Hene by Theorem 4.9, if it is omplete then it is anonial.Theorem 4.15 If a variety of BAO's is generated by an elementary lass of stru-tures, then it is anonial.Proof. We give the main features of a proof that has been disussed in detail in thepapers [14, 15, 19℄. There are two main additional ingredients. First, the fat that anultraprodut of bounded unions of strutures an be represented as a bounded unionof ultraproduts of those strutures: PuUb � UbPu (f. Theorem 2.4 of [19℄ for theproof). To be preise, we need a speial ase of this fat, namely(i) PwUd � H UdPu .Seond, a result that shows how the anonial strutures of members of VarK an beonstruted out of members of K:(ii) C st VarK � SH UdPuK.The proof of (ii), whih holds for any lass K, is as follows.C st VarK = C st HSPCmK by de�nition of Var= C st HSCmUdK as PCm = CmUd (4:7(1))� SH E xUdK by 4.6(7)� SH H PwUdK by 4.13� SH H H UdPuK by (i)= SH UdPuK by 4.6(1).Now suppose that our variety is VarK and K is elementary. Then PuK = K, so asStrVarK ontains K and is losed under S, H , and Ud , from (ii) we then getC st VarK � SH UdK � StrVarK:



420 Algebrai Polymodal Logi: A SurveyTherefore EmVarK = CmC st VarK � CmStrVarK � VarK;showing that VarK is anonial.In the proof just given, we only used the fat that PuK = K and not the strongerassumption that K is elementary (i.e. Ru -losed as well). However, for an arbitrary Kwe have VarK = VarRuK, sine RuK � StrVarK (4.10), and when PuK = K we havethat RuK is an elementary lass, the smallest one ontaining K. In this sense we mayalways assume we are dealing with an elementary generating lass for the variety inquestion, rather than just a Pu-losed one.Now when VarK is anonial, it onsists of omplex algebras and so an be desribedas SCmN for some lass of strutures N . This N is by no means unique, and an betaken to be elementary when K is, as shown by the following result from [19, 4.10{4.12℄.Theorem 4.16 If PuK = K, and N is any lass satisfying(y) C st VarK � N � StrVarK;then EmVarK � CmN � VarK, and so VarK = SCmN . In partiular if M is anylass satisfying C st VarK �M = PuM� StrVarK;then N = RuM is an elementary lass ful�lling (y).In some ases, an assumption weaker than Pu-losure an be used to show that alass of omplex algebras forms a variety losed under anonial extensions. Themost general statement of this kind known to the author is� If PuK � H SUdK, then SCmSUdK is a anonial variety equal to HSPCmK.A proof of this is given in [19℄, where the result is applied to give another proof that thelass of representable ylindri algebras of a given dimension form a anonial variety.This appliation uses our haraterisation of RCA� as SCmSUdFt� (Setion 4.3above), together with the following results about ultraproduts of Cartesian and weakCartesian strutures: PuUbFt� � UbFt�;CmWt� � SCmPwFt�:The proof method an also be applied to other kind of algebras whose elements are�-ary relations, inluding the ylindri-relativised set algebras that are involved inreent studied of fragments of �rst-order logi [47, 3, 39℄ and representable quasi-polyadi algebras [46℄.An unresolved issue in this subjet is whether the onverse of 4.15 is true, i.e. whetherevery anonial variety V must be of the form VarK for some elementary lass K. Allknown anonial varieties are of this form (inluding examples involving ylindri al-gebras and relation algebras), and experiene from modal logi suggests that a naturalway to approah the problem is to fous on the free V-algebra AV! on denumerablymany generators and the �rst-order theory of its anonial struture C stAV! . Theorem4.15 of [19℄ provides the following justi�ation of this approah:



4. DUALITY 421� If a variety of BAO's V is generated by some elementary lass of strutures, thenit is generated by the elementary lass of those strutures that satisfy the same�rst-order sentenes as the struture C stAV! .This result an in turn be strengthened by limiting the lass of �rst-order sentenesinvolved. A �rst-order sentene will be alled quasi-modal if it is of the form 8v'with ' being onstruted from amongst atomi formulae and the onstants ? and >using at most ^ (onjuntion), _ (disjuntion), and bounded universal and existentialquanti�ers 8v0 � � � 8vn�1(R(v; v0; : : : ; vn�1)!  )9v0 � � � 9vn�1(R(v; v0; : : : ; vn�1) ^  )with v distint from v0; : : : ; vn�1. Any quasi-modal sentene is preserved by S, H ,and Ud while onversely, if a set of �rst-order sentenes is preserved by these threeoperations, then it is logially equivalent to a set of quasi-modal sentenes. Thiswas proven in [59℄ for the language of a binary prediate, and in [14, Setion 4℄ forlanguages of arbitrary type.This preservation theorem was analysed further in [19, Setion 7℄ (where quasi-modal sentenes were alled \pseudo-equational"). The analysis showed that if 	Kis the set of all quasi-modal sentenes true of a lass K of strutures, and Mod	K isthe lass of all models of 	K, thenMod	K = RuUbRuUbRu H SK:Sine StrVarK is losed under the operations Ru ;Ub ; H ;S it follows thatMod	K � StrVarK:Moreover we have SH UdPuK �Mod	Ksine 	K is preserved by S, H , Ud , and Pu , so result (ii) in the proof of 4.6.6 yieldsC st VarK �Mod	K:Thus we an apply 4.16 with N =Mod	K to infer thatif PuK = K then VarK = SCmMod	K.Now for a variety V , if 	V is the quasi-modal theory of the struture C stAV! , then itis shown in [19℄ that when V = VarK for some Pu-losed K, thenSCmMod	K = SCmMod	V(although possibly 	K 6= 	V). Combined with the above results, this yieldsTheorem 4.17 If a variety of BAO's V is generated by some elementary lass ofstrutures, then V = SCmMod	V , where 	V is the quasi-modal theory of the anon-ial struture C stAV! .



422 Algebrai Polymodal Logi: A Survey5 Polymodal Logi5.1 Languages and LogisA modality is a linguisti onstrution that takes a statement ' and forms a newstatement that asserts something about the way in whih ' is true. There are manywords and phrases of ordinary language that funtion as modalities, and some ofthese form interde�nable pairs, like possibly/neessarily, eventually/heneforth, andit is permissible that/it ought to be. In formal languages, the symbols � and areoften used for for a pair of modalities of this type, with the interde�nability given by= :�:; � = : ::We will be disussing languages with several (possibly in�nitely many) suh modalonnetives, so we use ordinals to index them and present them in the form h� i; [� ℄with [� ℄ = :h� i:; h� i = :[� ℄::Most studies of modal logi are based on a language with denumerably many propo-sitional variables. Here we will �nd it useful to onsider languages with larger setsof variables, so from the outset we suppose we have a distint variable p� for eahordinal �, and for eah in�nite ardinal number � de�ne�� = fp� : � < �g:Then for eah ordinal �, a modal language L�(�) is generated from ��, the usualBoolean onnetives, and a olletion fh� i : � < �g of \diamond" modalities. Theset of formulae ' of L�(�) is given by the de�nition' ::= p� j ? j :' j '1 _ '2 j h� i'where � ranges over ordinals less than � and � over ordinals less than �. Otheronnetives are given by the usual abbreviations' ^  for :(:' _ : )'!  for :' _  '$  for ('!  ) ^ ( ! ')[� ℄' for :h� i:':Thus the standard language for type 1 logi is L!(1) and that for type 2 logi, in-luding temporal logi, is L!(2). Languages of the kind L�(�) may be alled unarysine they involve only one-plaed modal onnetives. More generally, given a type� = h�� ; �� i as de�ned in Setion 3.1, an assoiated language L�(�) is de�ned for eahin�nite ardinal � by using onnetives h� i of rank �� (�) for � < �� . The formulaeof L�(�) are spei�ed by' ::= p� j ? j :' j '1 _ '2 j h� i('0; : : : ; '�� (�)�1);and now the �� (�)-ary \box" operator assoiated with h� i has[� ℄('0; : : : ; '�� (�)�1) = :h� i(:'0; : : : ;:'�� (�)�1):A logi in the language L�(�) is de�ned to be any set � of L�(�)-formulae suh that



5. POLYMODAL LOGIC 423� � inludes all L�(�)-formulae that are instanes of tautologies, and� � is losed under the inferene rule of Detahment, i.e.if '; '!  2 �, then  2 �.� is uniform if it is losed under the rule of uniform substitution of L�(�)-formulaefor propositional variables. � is a normal logi if it ontains the shemata(K) h� i('0; : : : ;  _ �; : : : ; '�� (�)�1)!h� i('0; : : : ;  ; : : : ; '�� (�)�1) _ h� i('0; : : : ; �; : : : ; '�� (�)�1);(N) :h� i('0; : : : ;?; : : : ; '�� (�)�1);and satis�es the Monotoniity ruleif  ! � 2 �, thenh� i('0; : : : ;  ; : : : ; '�� (�)�1)! h� i('0; : : : ; �; : : : ; '�� (�)�1) 2 �.The members of a logi are alled its theorems, and we write `� ' to mean that ' isa �-theorem, i.e. `� ' i� ' 2 �:If �[f'g is a set of formulae, then ' is �-deduible from �, denoted � `� ', if thereexist �nitely many  0; : : : ;  n�1 2 � suh that`�  0 ! ( 1 ! (� � � ! ( n�1 ! ') � � � ))(in the ase n = 0, this means that `� '). We write � 6`� ' when ' is not �-deduiblefrom �.� is a �-onsistent set of formulae if � 6`� ?, and is �-maximal if it is �-onsistentand for eah L�(�)-formula ', either ' 2 � or :' 2 �.Put S�� = f� : � is a �-maximal set of L�(�)-formulaeg:By a result usually known as Lindenbaum's Lemma, every �-onsistent set is ex-tendible to a �-maximal set of L�(�)-formulae. Hene if 6`� ?, so that there do exist�-onsistent sets, then S�� 6= ;. The anonial �-struture is then the type � strutureS�� = hS�� ; R�� i�<�� ;where R�� (�;�0; : : : ;��� (�)�1)i� fh� i('0; : : : ; '�� (�)�1) : 'i 2 �i all i < �� (�)g � �:For unary languages S�� is known as the anonial �-frame.Assoiated with any normal logi � in a language L�(�) is an algebra A�� , a BAOof type � , alled the Lindenbaum-Tarski algebra of �. The olletion of all L�(�)-formulae forms an absolutely free algebra of type � under the operations on formulae



424 Algebrai Polymodal Logi: A Surveyindued by the onnetives _;^;:;?;>; h� i, and A�� is the quotient of this algebraby the ongruene �=�, where' �=�  i� `� '$  :Thus the elements of A�� are the equivalene lassesk'k = f : `� '$  g;with the operations k'k+ k k = k' _  kk'k � k k = k' ^  kk'k� = k:'k0 = k?k1 = k>km�(k'0k; : : : ; k'�� (�)�1k) = kh� i('0; : : : ; '�� (�)�1)k:The axiom shemata (K) and (N) and the Monotoniity rule are needed to show thatm� is a well-de�ned normal additive operator. In A�� we havek'k � k k i� `� '!  ;k'k = 1 i� `� ':If � is a �-maximal set of formulae, thenx� = fk'k : ' 2 �gis an ultra�lter of A�� . The orrespondene � 7! x� proves to be a bijetion betweenS�� and the set of ultra�lters of A�� whih respets the relations R�� of S�� and Rm�of the anonial struture of A�� (Setion 3.2). In other words:� the anonial �-struture S�� is isomorphi to the anonial struture C stA�� ofthe Lindenbaum-Tarski algebra A�� of �.We will see shortly that A�� is the free algebra on � generators in a variety of BAO'sdetermined by the normal logi �.5.2 Algebrai SemantisLet A = hB;m�i�<�� be a BAO of type � and ' an L�(�)-formula whose variablesare among p�0 ; : : : ; p�n�1 with �0 < � � � < �n�1. Then ' indues an n-ary operationA(') on A whih is de�ned by indution on the formation of ' as follows.A(p�i)(a0; : : : ; an�1) = aiA(?)(a0; : : : ; an�1) = 0A(:')(a0; : : : ; an�1) = A(')(a0; : : : ; an�1)�A('1 _ '2)(a0; : : : ; an�1) = A('1)(a0; : : : ; an�1) +A('2)(a0; : : : ; an�1)



5. POLYMODAL LOGIC 425andA(h� i('0; : : : ; '�� (�)�1))(a0; : : : ; an�1) =m�(A('0)(a0; : : : ; an�1); : : : ;A('�� (�)�1)(a0; : : : ; an�1)).' is valid in A, A j= ', if the funtion A(') is onstantly equal to 1. If V is a lass ofBAO's, then V j= ' if A j= ' for all A 2 V .If � is a set of formulae, then A j= � if A j= ' for all ' 2 �. It is readily seen thatA(') = A( ) i� A j= '$  i� A('$  ) = 1 onstantly.Now a formula ' may be regarded as a term in the language of a BAO A, with thepropositional variables of ' treated as variables ranging over the elements of A, andthe symbols _;^;:;?;>; h� i naming the A-operations +; �;� ; 0; 1;m�. Then A(') isjust the term operation on A indued by ' as a term. Every term for A orrespondsto a formula, and every term funtion is of the form A(') for some formula '. Fromthis there follows an equivalene between formulae and BAO equations. Formula 'is valid in A if, and only if, A satis�es the equation \' = 1". Eah equation is of theform \' =  " for some formulae, and is satis�ed in A i� the formula ' $  is validin A. Thus for a set of formulae �, the lass of algebrasfA : A j= �gis an equational lass, whih we denote Var�, and every equational lass is of thisform. Var� is losed under the operations H ; S ;P , i.e. these operations preservevalidity of formulae.For any lass V of BAO's, the set�V = f' : V j= 'gis a normal uniform logi. In partiular,�A = f' : A j= 'gis a normal uniform logi for eah algebra A. Thus if A j= �, then � � �A and�A ontains the normal uniform logi �(�) generated by �, whih is de�ned as theintersetion of all suh logis that ontain �. Consequently,A j= � i� A j= �(�);and Var� = Var�(�): every variety of algebras is the lass of all algebrai models ofsome logi of the form �(�).We say that a logi � is haraterised by a lass V of BAO's, or that � axiomatisesV , if for any formula ', `� ' i� A j= ' for all A 2 V :In other words, � is haraterised by V if, and only if, � = �V .Every normal uniform logi � turns out to be of the form �A, beause suh a � isharaterised by its Lindenbaum-Tarski algebra:(y) `� ' i� A�� j= ':



426 Algebrai Polymodal Logi: A SurveyHene the equational theory of A�� is just the set of equations de�ned by �, and Var�is the variety generated by A�� . From this it follows that � 7! Var� is a bijetiveorrespondene between normal uniform logis and varieties.The proof of (y) follows from the fat that in generalA�� (')(k 0k; : : : ; k n�1k) = k'[p�i= i℄k;where the formula '[p�i= i℄ is the result of uniformly substituting  i for the variablep�i in ' for all i < n. Then if `� ', by uniform substitution we have `� '[p�i= i℄and hene A�� (')(k 0k; : : : ; k n�1k) = 1;for any  i, showing that A�� (') = 1 onstantly. But sine(z) A�� (')(kp�0k; : : : ; kp�n�1k) = k'[p�i=p�i ℄k = k'k;if 6`� ', then A�� (')(kp�0k; : : : ; kp�n�1k) 6= 1, so A�� 6j= '.Theorem 5.1 In the variety Var�, A�� is a free algebra on the set of generatorsk��k = fkp�k : � < �g:Proof. It is evident from the de�nition of A�� that it is generated as a BAO by k��k.Given a funtion f : k��k ! A, sine homomorphisms preserve term operations itfollows from (z) that the only possible lifting of f to a homomorphism f : A�� ! Awould be to take f(k'k) = A(')(f(kp�0k); : : : ; f(kp�n�1k)):This does indeed give a homomorphism of BAO's, provided that it is well-de�ned.But if k'k = k k then `� ' $  , so if A belongs to Var� then A j= ' $  andhene A(') = A( ) as desired.Theorem 5.2 The smallest normal logi in L�(�) is haraterised by the lass of allBAO's.Proof. By \the smallest" is meant the intersetion of all normal logis. Let � bethis intersetion. Then � is ontained in �A for any BAO A, whih shows that the�-theorems are valid in all BAO's. This is the Soundness part of the haraterisation.Conversely, for the Completeness part, if a formula is valid in all BAO's, then it isvalid in the Lindenbaum-Tarski algebra A�� , and so is a �-theorem, as above.Algebrai haraterisations of many logis an be obtained by this method. Forinstane, in the language L!(1) with modality � , the logi S4 is de�ned as thesmallest normal logi ontaining the shemata(T) '! �', and(4) ��'! �'.These shemata are valid in any losure algebra, so if A is a losure algebra thenS4 � �A. But (T) and (4) fore the Lindenbaum-Tarski algebra AS4! for S4 to be alosure algebra, so if ' is valid in all losure algebras then it is valid in AS4! , and hene`S4 '. This shows



5. POLYMODAL LOGIC 427� S4 is haraterised by the variety Vl of all losure algebras, whih is generated byAS4! .For the logi S5, de�ned as the smallest normal logi ontaining (T), (4) and theshema'! �',we show by similar reasoning that� S5 is haraterised by the variety Vmn of all monadi algebras, whih is generatedby AS5! .To onlude this setion, we briey disuss the question of how the notion of a logian be made language independent. Sine any formula or equation has only �nitelymany variables, to de�ne a logi or an equational lass we really need only n variablesfor arbitrary �nite n. Hene the languages L!(�) suÆe for this purpose. At thesame time the de�nition of a partiular logi in many ases should be independent ofthe size of the set of variables. For instane, in any modal language L�(1), whateverthe ardinal � may be, we should be able to say that \S4" means the smallest normallogi ontaining the shemata (T) and (4). If a logi is de�ned as a set of formulae(theorems), rather than as a system of axioms and inferene rules, then we need tosay something about how the di�erent instantiations of this logi are related as theset �� of propositional variables varies with �.If � is a normal uniform logi in a language L�(�), and � is any ardinal greaterthan �, then by \� in L�(�)" we mean the set �� of L�(�)-formulae that are obtainedby uniform substitution in L�(�) from �-theorems in L�(�). This is the smallestnormal uniform logi in L�(�) ontaining the original �. On the other hand, if� > � � !, there is a unique logi �� in L�(�) suh that � arises in this way from�� by substitution. �� is simply the set of L�(�)-formulae that belong to �.A natural way to approah this issue from the point of view of algebra is to observethat � de�nes the variety Var� whih in turn, for eah �, spei�es the logif' in L�(�) : Var� j= 'g:With the help of the Lindenbaum-Tarski algebra onstrution, it an be shown thatthis is the same as the logi �� just de�ned.5.3 Kripke SemantisWe turn now to the relational semantis attributed to Kripke, and motivate this byreviewing the interpretation of some unary modalities. The distintion between aninterde�nable pair h� i; [� ℄ an be aounted for logially by observing that h� idistributes aross a disjuntion, in the sense that`� h� i(' _  )$ h� i' _ h� i for a normal logi �, while [� ℄ orrespondingly respets onjuntion:`� [� ℄(' ^  )$ [� ℄' ^ [� ℄ :



428 Algebrai Polymodal Logi: A Survey>From another perspetive, in terms of intended interpretations, \diamond" modal-ities funtion like existential quanti�ers over states/ worlds/ situations, while \box"modalities are like universal quanti�ers. Here are some illustrations:Modality Interpretationpossibly in some possible worldneessarily in all possible worldseventually at some future timeheneforth at all future timesit is onsistent that in some modelit is provable that in all modelsafter the program �nishes after all terminating exeutionsthe program enables there is a terminating exeution suh thatA model for a unary language L�(�) is a pair M = hS; V i where S = hS;R�i�<� isa K-frame, onsisting of binary relations R� on S, andV : �� ! SbSis a valuation funtion assigning a subset V (p�) of S to the variable p� for eah � < �.V (p�) is to be thought of as the set of points at whih p� is true. The satisfationrelation \' is true at point s in M", denotedM j=s ';is de�ned indutively by the lausesM j=s p� i� s 2 V (p�)M 6j=s ? (i.e. not M j= ?)M j=s ' _  i� M j=s ' or M j=s  M j=s h� i' i� for some t 2 S, sR�t and M j=t ';and hene M j=s [� ℄' i� for all t 2 S, sR�t implies M j=t ':These last two lauses formally express the harater of h� i and [� ℄ as boundedexistential and universal quanti�ers.For a polymodal language L�(�) of type � , a model takes the form M = hS; V iwhere now S is a relational struture of type � . The de�nition of satisfation ismodi�ed to readM j=s h� i('0; : : : ; '�� (�)�1) i� for some t0; : : : ; t�� (�)�1 2 S;R�(s; t0; : : : ; t�� (�)�1) andM j=ti 'i for all i < �� (�):Formula ' is true in model M, M j= ', if it is true at all points in M, i.e. ifM j=s ' for all s 2 S:' is valid in the struture S, S j= ', if



5. POLYMODAL LOGIC 429M j= ' for all models M = hS; V i based on S.A logi � is haraterised by a lass C of models, or strutures, if eah formula is a�-theorem preisely when it is true, or valid respetively, in all members of C:`� ' i� C j= ':For any model M, the set �M = f' :M j= 'gis a normal logi, while for any struture S,�S = f' : S j= 'gis a normal and uniform logi.If � is a normal logi in a language L�(�), then � has a single harateristi modelM�� = hS�� ; V �i, alled the anonial �-model , where S�� is the anonial �-struturede�ned in Setion 5.1, and V �(p�) = f� 2 S�� : p� 2 �g:A fundamental result, whih uses the proof theory of normal logis, is thatM�� j=� ' i� ' 2 �for all formulae ' and all � 2 S�� (this is a model-theoreti analogue of the algebraiargument showing that the anonial embedding funtion �B of Setion 3.2 is a BAO-homomorphism). Sine the only formulae that belong to all �-maximal sets are the�-theorems, this entails that M�� j= ' i� `� ';whih establishes that M�� haraterises �.It follows immediately thatS�� j= ' implies `� ';but the onverse need not hold. There are logis that are not validated by theiranonial struture, as will be explained further below (Theorem 5.7).To relate Kripke semantis to the algebrai semantis, we reformulate the de�nitionof the satisfation relation in models. A given modelM assoiates with eah formula' the \truth-set" M(') = fs :M j=s 'gof all points in M at whih ' is true. The lauses speifying satisfation amount tothe following properties of truth sets.M(p�) = V (p�)M(?) = ;M(:') = S � M(')M(' _  ) = M(') [M( )M(h� i('0; : : : ; '�� (�)�1)) = mR� (M('0); : : : ;M('�� (�)�1)):



430 Algebrai Polymodal Logi: A SurveyThis shows that the truth of ' is obtained from the term funtion CmS(') induedby ' on the omplex algebra of S. Preisely, the following an be proven by indutionon the formation of ':Theorem 5.3 If ' is a formula whose variables are among p�0 ; : : : ; p�n�1 with �0 <� � � < �n�1, then for any model M on S,CmS(')(M(p�0 ); : : : ;M(p�n�1)) =M('): �Corollary 5.4 S j= ' i� CmS j= '.Proof. If S 6j= ' then M 6j= ' for some model M on S, so M(') 6= S. By 5.3.1 it isfollows diretly that CmS(') is not the \onstantly 1" funtion, so CmS 6j= '.Conversely, if ' is not valid in CmS, thenCmS(')(T0; : : : ; T�n�1)) 6= Sfor some Ti 2 SbS. Letting M be any model on S having M(p�i) = T�i for i < n,5.3.1 again implies M(') 6= S, so S 6j= '.Now if a formula is valid in all BAO's, then it is valid in all omplex algebras and so,by 5.3.2 is valid in all strutures. Conversely, if ' is valid in all strutures, then itis valid in the anonial struture C stA of any BAO, and so by 5.3.2 is valid in thealgebra CmC stA = EmA. In view of the embedding A � EmA and the fat thatvalidity is preserved by subalgebras and isomorphism, it follows that A j= '. ThisshowsTheorem 5.5 A formula is valid in all strutures of type � if, and only if, it is validin all BAO's of type � . Hene the smallest normal logi in L�(�) is haraterised bythe lass of all �-strutures. �In order to obtain relational haraterisations of other logis, we an ombine thealgebrai ompleteness theorems of Setion 5.2 with various representation theoremsfrom Setions 3 and 4. Here are some typial results.Theorem 5.6(1) The logi S4 is haraterised by the lass of all quasi-orderings, as well as by thelass of all partial orderings.(2) The logi S5 is haraterised by the lass of all equivalene relations, as well as bythe lass of K-frames S = hS;Ri in whih the relation R is universal.Proof. (1) For the Soundness part, it is readily seen that if S is a quasi-ordering thenS4 � �S. For the onverse, if A is a losure algebra, then as shown in Setion 3.3C stA is a quasi-order, so if ' is valid in all quasi-orders it is valid in C stA andhene as in the proof of 5.3.3 is valid in A. This shows that a formula valid in allquasi-orders is valid in all losure algebras, and so is an S4-theorem by the workof Setion 5.2.For the ase of partial orderings, we similarly use the result of Setion 4.2 that alosure algebra an be embedded into the omplex algebra of a partial ordering.



5. POLYMODAL LOGIC 431(2) The fat that S5 is haraterised by equivalene relations is shown by extendingthe analysis of S4, using the fat that if A is a monadi algebra then C stA is anequivalene relation. But for any K-frame S there is an embeddingCmS�Ys2S CmSswhere Ss is the inner substruture of S generated by the point s (f. Setion4.3). Now if S is an equivalene relation then Ss is the equivalene lass of s,on whih the equivalene relation is universal. Thus if a formula is valid in alluniversal frames, then it is valid in eah CmSs and so by preservation of validityunder P and S is valid in CmS for any equivalene relation S, and therefore isan S5-theorem.Instead of working with anonial strutures C stA of algebras, an alternative butequivalent approah to these results is to diretly use the axioms of a logi like S4to prove that the anonial frame S�� has the desired properties, like reexivenessand transitivity, that ensure that it validates the logi. Although there are numerousaxioms for whih this method works, it does not apply to all. A ounter-example isthe L!(1)-logi KW, where W is the shema�'! �(' ^ :�'):VarKW is the variety Vdg of all diagonalisable algebras.Theorem 5.7 The shema W is not valid in the anonial KW-frame SKW! .Proof. Let A be the algebra of all �nite or o�nite subsets of the frame S = h!;>i.It was shown in Setion 3.3 that A 2 Vdg but EmA =2 Vdg, hene W is not valid inC stA.Sine the Lindenbaum-Tarski algebra AKW! for KW is free in Vdg on denumerablymany generators (Theorem 5.1), there is a surjetive homomorphism AKW! � A, andhene by duality an injetive bounded C stA � C stAKW! . It follows that W annotbe valid in C stAKW! , or else it would be valid in C stA. But SKW! is isomorphi toC stAKW! (Setion 5.1).5.4 Completeness and InompletenessEah normal uniform logi � is haraterised by the variety Var� of all algebrasthat validate �. Correspondingly for the relational semantis we may ask: is �haraterised by the lass Str� = fS : S j= �gof all strutures that validate �? For this to hold it suÆes that every formula validin Str� be a �-theorem. (Note that Str� is the same as the lass StrVar� of allstrutures in the variety Var�.)We will say that a logi � is omplete if it is haraterised by some lass K ofstrutures. Suh a K is ontained in Str�, from whih it follows that � is ompleteif, and only if, it is haraterised by Str�.



432 Algebrai Polymodal Logi: A SurveyThe property of ompleteness does not depend on the ardinality of the language.If the statement (`� ' i� K j= ') holds for all L!(�)-formulae ', then it an be shownto hold for all L�(�)-formulae '� when k > !, using the fat for any suh '� there isan L!(�)-formula ' suh that ' and '� are substitution instanes of eah other.Now if K haraterises �, then CmK � Var� and, invoking the equivalene offormulae and algebrai equations, eah equation valid in CmK is equivalent to a �-theorem and hene hold in Var�. This implies that Var� is the variety VarK =HSPCmK generated by K. Consequently� � is a omplete logi i� Var� is generated by Str�, i.e. i� Var� is a ompletevariety in the sense of Setion 3.3.It was disovered by Thomason [55℄ that there exist inomplete logis, ones for whihVar� is a non-trivial variety that is not generated by Str�. This �rst example wasa temporal logi for whih there are no validating frames at all: Str� = ;! Laterexamples of inomplete modal logis were found by Thomason [56℄ and Fine [11℄. Thesimplest example now known [7℄ is the smallest normal logi ontaining the shema�'! �:(�'$ '):The full possibility of the phenomenon of inompleteness was established by Blok [5℄.He showed that for any variety V of type 1 modal algebras satisfying x � mx thereare unountably many other varieties W with StrW = StrV , so that W has exatlythe same powerset algebras as V . All of these varieties ontain VarStrV , whih is theonly one of them that is omplete.The question as to when a lass of algebras is de�ned by a set of equations wasanswered by Birkho�'s theorem about losure under the operations H ; S ;P . The dualof this question for relational strutures is to ask when a lass K of strutures is equalto the lass Str� of all strutures validating some set of formulae �. Classes of theform Str� will be alled polymodal axiomati lasses, sine they are de�ned by aset of polymodal formulae. For suh lasses satisfying ertain natural properties (e.g.PwK = K) there is a haraterisation involving the dual operations to H ; S ;P . Beforedemonstrating this (in 5.4.2) we note that the property of being polymodal axiomatimay be viewed as being dual to the property of ompleteness. This is beause avariety V is omplete if and only if V = VarStrV ;an equation whose dual for a lass K of strutures isK = StrVarK:We haveLemma 5.8 A lass K of relational strutures is polymodal axiomati if, and only if,K = StrVarK.Proof. In general the variety VarK generated by K is equal to the lass Var�K ofall algebras validating the logi �K = f' : K j= 'g haraterised by K. Thus the



5. POLYMODAL LOGIC 433lass StrVarK of strutures in VarK is equal to the polymodal axiomati lass Str�Kof strutures validating �K. Hene if K = StrVarK, then K is polymodal axiomati.Conversely, suppose K = Str� for some �. Then if S 2 StrVarK, the algebraCmS belongs to VarK and so validates any formulae that are valid in K. In partiularCmS j= �, so S 2 Str� = K. This establishes StrVarK = K as desired.Theorem 5.9 Let K be a lass of strutures that is losed under ultrapowers. ThenK is polymodal axiomati if, and only if,(1) K is losed under bounded epimorphi images, inner substrutures and disjointunions; and(2) K reets anonial extensions, i.e. ExS 2 K implies S 2 K.Proof. Every polymodal axiomati lass satis�es (1) and (2). For the onverse weuse the fat, shown in the proof of Theorem 4.15, that for arbitrary K,C st VarK � SH E xUdK � SH PwUdK:Now if PwK = K and K satis�es (1) then SH PwUdK = K. But then if S 2 StrVarK,we have CmS 2 VarK, soExS = C st CmS 2 C st VarK � K;and hene S 2 K if K reets Ex (2). This shows that under the given hypothesesStrVarK = K, implying that K is polymodal axiomati by Lemma 5.4.1.Theorem 5.4.2 was �rst presented in [22℄ under the hypothesis (for type 1 frames)that K is losed under elementary equivalene. Inspetion of the proof just givenreveals that an alternative suÆient hypothesis would be that K is losed underanonial extensions. More importantly, in view of the disussion in Setion 2.2about orrespondenes between de�nable properties of S and equational propertiesof CmS, the Theorem gives as a speial ase a haraterisation of those elementarylasses that are polymodal axiomati. A syntati haraterisation of the elementarylasses that are losed under H ;S ;Ud (5.4.2(1)) is provided by the notion of a quasi-modal �rst-order sentene as desribed at the end of Setion 4.6. There is urrently nosuh \preservation theorem" known for elementary lasses satisfying both 5.9(1) and5.9(2). That this is a non-trivial question is shown by the fat that the quasi-modalsentene 8v9w (vRw ^ wRw)is preserved by H , S, and Ud , but is not reeted by Ex sine it holds in the strutureEx h!;<i.The onverse question of when a polymodal axiomati lass is elementary is alreadyanswered by the analysis of Corollary 4.12. The lass Str� of strutures validating� is the same as the lass StrVar� of strutures in the variety Var� of algebrasvalidating �. So putting V = Var� in 4.6.3 immediately gives:Theorem 5.10 A polymodal axiomati lass is elementary if, and only if, it is losedunder ultrapowers. �



434 Algebrai Polymodal Logi: A Survey5.5 Canonial LogisIt is a standard pratie in modal logi to say that a normal logi � in the languageL!(1) is anonial if it is validated by the anonial �-struture S�! . However � hasmanifestations in the languages L�(1) for � � ! and hene anonial frames in all ofthese languages. A onvenient abstrat way of dealing with these speial strutures isprovided by the observation from Setion 5.1 that S�� is isomorphi to the anonialstruture C stA�� of the Lindenbaum-Tarski algebra A�� , and that the latter is the freealgebra on � generators in the variety Var� de�ned by � (Theorem 5.1). MoreoverC stA�� validates � if, and only if, it belongs to the lass StrVar� of strutures inVar�, i.e. i� its omplex algebra EmA�� belongs to Var�.We will say that a logi � in a language of arbitrary type is �-anonial if � is validin C stA�� . Note that if � < � then by freeness A�� � A�� and hene C stA�� � C stA�� ,so that A�� j= � implies A�� j= �.Sine there are free algebras on �nitely many generators, we an use this approahto onsider �-anoniity for �nite �. In fat there exist logis that are �-anonial forall � < ! but are not !-anonial. One example, analysed in detail in [19, Setion 6℄,is the smallest type 1 logi ontaining :���>, and the shemata (4) and��' ^ ��:'! �(�' ^ �:'):For this logi Var� is loally-�nite, i.e. all �nitely generated members are �nite. Henefor � < !, the free algebra A�� in Var� on � generators is �nite and so EmA�� �= A�� 2Var�. But EmA�! =2 Var�.A logi � will be de�ned to be anonial if it is �-anonial for all � � !. We haveTheorem 5.11 A logi � is anonial if, and only if, the variety Var� is anonialin the sense that EmVar� � Var�.Proof. Theorem 4.2 established that Var� is anonial i� it ontains EmA for allin�nitely-generated free A in Var�, whih we now see means that C stA�� 2 StrVar�for all ardinals � � !.It is immediate that anoniity implies ompleteness: if � is a logi in L�(�) thatis valid in S�� then it is haraterised by S�� . This provides a methodology thathas been used to obtain ompleteness theorems for numerous logis by the followingproedure.1. Find some ondition �� on strutures with respet to whih the logi � is sound,i.e. every struture satisfying �� validates �.2. Prove that the anonial �-struture S�! satis�es ��, and hene validates �.3. Sine S�! invalidates all non-theorems of � via its anonial model M�! , onludethat � is haraterised by S�! , as well as by the lass of all strutures satisfying��.In all known examples �� is a �rst-order ondition on strutures, de�ning a sublassStr�� of Str�. It is not neessary for �� to exatly haraterise � (i.e. Str�� = Str�)



5. POLYMODAL LOGIC 435for the method to apply. For example take � as the smallest normal modal logiontaining the shemata�(('1 ! �'1) ^ � � � ^ ('n ! �'n))for all n < !, and �� as the quasi-modal ondition8v9w (vRw ^ wRw)mentioned in the previous setion. Then � is sound for �� and S�! satis�es ��, but� is also valid in h!;<i, a struture in whih �� is learly false (f. [29℄).A very general situation in whih �� does exatly de�ne Str� is provided by thework of Sahlqvist [49℄, whih is generalised to arbitrary types in [10℄. This givesthe broadest known syntati de�nition of a lass of formulae to whih the anonialstruture methodology applies. To desribe this, de�ne a formula ' to be positive, ornegative respetively, if every variable of ' ours within the sope of an even, or oddrespetively, number of negations. A box string is a formula of the form[�0 ℄ � � � [�n�1 ℄pwhere p is a variable and eah [�i ℄ is a unary box modality. A Sahlqvist anteedentis a formula onstruted from the onstants ?;>, box strings and negative formulaeusing only ^;_ and diamond poly-modalities. A Sahlqvist formula is one onstrutedout of impliations '!  in whih ' is a Sahlqvist anteedent and  is any positiveformula by using only ^ and formation of box polymodalities [� ℄('0; : : : ; 'n�1) inwhih none of the arguments 'i have any variables in ommon.For eah Sahlqvist formula ', let �' be the smallest normal uniform logi ontain-ing '. There is an e�etive proedure assoiating with suh ' a �rst-order sentene�' that holds exatly in the members of Str�' (f. [10, Setion 3℄), so Str�' is anelementary lass. The fat that �' is validated by its anonial frameS�'! was demon-strated model-theoretially in [49℄, but there is now an elegant algebrai approah [31℄for showing that a variety haraterised by Sahlqvist formulae is anonial.The simplest type 1 formula that is not a Sahlqvist formula is the well-knownMKinsey axiom �'! � ':This was shown not to be anonial in [16℄, indiating that there is no natural wayto extend the lass of Sahlqvist formulae to a larger lass of anonial formulae.The following fundamental result was also �rst shown model-theoretially for modallogi, by Fine in [12℄.Theorem 5.12 If a logi is haraterised by an elementary lass of strutures, thenit is anonial.Proof. Let � be haraterised by the lass K. Then an algebra A is in the varietyVarK generated by K i� it validates all formulae validated by K, i.e. i� A j= �. ThusVarK = Var�. But if K is elementary, by Theorem 4.15 VarK is anonial, and so �is anonial by Theorem 5.11.



436 Algebrai Polymodal Logi: A SurveyCorollary 5.13 If a logi � is omplete, and the lass Str� of strutures is losedunder ultrapowers, then � is anonial.Proof. Suppose Str� (= StrVar�) is losed under ultrapowers. Then by Corollary4.12 it is an elementary lass. But if � is omplete it is haraterised by Str�, so thenanoniity follows from 5.12.It is important to reognise that the fat that the lass of strutures validating a logiis elementary does not by itself guarantee anoniity. An additional hypothesis aboutompleteness is neessary. For instane, there are logis � that are inomplete andtherefore not anonial, but for whih Str� is an elementary lass. One example isthe inomplete temporal logi of [55℄ having Str� = ;. Another is the inompletemodal logi of [56℄ for whih Str� is the lass of all quasi-orderings, i.e. the logi isdistint from S4 but is valid in exatly the same strutures as S4.The onverse of Theorem 5.5.2 { that every anonial logi is haraterised by anelementary lass of strutures { is one of the main unsolved onjetures of this subjet.A related onjeture is this:� if � is !-anonial, then it is anonial,or equivalently� if C stA�! j= �, then C stA�� j= � for all � > !.The intuition behind this is that if some �-theorem is falsi�able in C stA�� for anin�nite �, then it should be falsi�able in the anonial struture of the denumerablygenerated algebra A�! .To prove the onjeture it would be enough (by 5.12) to prove that if � is !-anonial then it is haraterised by an elementary lass. Now the disussion followingTheorem 4.16 indiates that � is haraterised by an elementary lass i� it is har-aterised by the lass of models of the �rst-order theory of C stA�! . Thus a naturalapproah to setting this onjeture about the suÆieny of !-anoniity would be toshow thatif � is valid in C stA�! , then it is valid in every struture elementarily equivalentto C stA�! .Theorem 4.6.8 gives further information about the syntati form of �rst-order sen-tenes involved in elementary haraterisations of logis:if � is haraterised by an elementary lass then it is haraterised by the lassof all models of the quasi-modal theory of C stA�! .(See [18, Setion 11.4℄ for details. Quasi-modal sentenes were de�ned at the end ofSetion 4.6 above.)In a reent artile [21℄, the author has investigated the quasi-modal theories of theanonial strutures C stA�� for all � � !. They turn out to be the same, and indeed tobe the same as the quasi-modal theories of the anonial strutures of two importantsub-logis of �. The results of [21℄ an be summarized as follows.� All of the anonial strutures C stA�� of a given logi � have the same quasi-modal�rst-order theory 	�.



5. POLYMODAL LOGIC 437� The models of 	� haraterise a logi �e whih is the largest sublogi of � to beharaterised by some elementary lass.� The anonial strutures of �e also have 	� as their quasi-modal theory.� There is a largest sublogi � of � that is haraterised by its own anonialstrutures. Sine �e is anonial (5.5.2), �e � �.� The anonial strutures of � also have 	� as their quasi-modal theory. Thus	� = 	� = 	�e .� All �nite strutures validating � are models of 	�. If � is haraterised by its�nite strutures (see Setion 6), then 	� is equal to the quasi-modal theory ofthese strutures.Of ourse if all anonial logis are elementarily haraterised, then �e = �. Butthat is the unresolved question.5.6 Strong Completeness and Complex VarietiesLet � be a normal logi in a language L�(�). � is alled strongly �-omplete if thereexists a lass K of � -strutures suh that the following hold:� every member of K validates �, i.e. K � Str�; and� if � is any �-onsistent set of L�(�)-formulae, then � is satis�able at some pointof some model based on a struture that belongs to K.If suh a K exists, then K haraterises �, so � is omplete. It also follows diretlythat �-anoniity implies strong �-ompleteness, sine if S�� validates � then puttingK = fS��g ful�lls the above de�nition. This is beause if � is �-onsistent it an beextended to a �-maximal set �, and thenM�� j=� �;where M�� is the anonial �-model on S�� .An example of a omplete logi for whih strong ompleteness fails is the modallogi KW, disussed at the end of Setion 5.3, whih is haraterised by the varietyVdg of diagonalisable algebras, as well as by StrKW whih is the lass of framesS = hS;Ri in whih R is transitive and R�1 is well-founded, i.e. there are no in�nite\R-sequenes" s0Rs1R � � �RsnRsn+1 � � � � � �Put '1 = �p1;'n+1 = (pn ! �pn+1);� = f'n : 1 � n < !g:Then � is KW-onsistent, but annot be satis�ed in any model based on a a KW-frame. For, if Mn is any model on the KW-frame hf0; : : : ; ng; <i that hasMn(pi) =fig for 1 � i � n, then Mn j=0 'i for all 1 � i � n. This shows that every �nitesubset of � is satis�able in a model on a KW-frame and so must be KW-onsistent.



438 Algebrai Polymodal Logi: A SurveySine the proof theory of KW is �nitary, this entails that � itself is KW-onsistent.However if M j=s0 � and the frame S of M is transitive, then there must be anR-sequene as above with M j=sn pn for all n � 1, hene S is not a KW-frame.An algebrai version of this argument was used in [14, Theorem 3.7.1℄ to deriveanother negative property of KW, namely that its variety Vdg is not omplex, i.e. isnot of the form SCmK for any K. These two negative properties are really two sidesof the same oin, beause it turns out that a variety is omplex i� its assoiated logiis strongly omplete in all ardinalities. In fat we an formulate this more strongly asthe following result about quasi-varieties, whih are lasses of algebras that are losedunder subalgebras (S), diret produts (P), and ultraproduts (Pu). (The version forvarieties was disovered independently by F. Wolter.)Theorem 5.14 Let V be a quasi-variety.(1) If V is omplex, then its assoiated logi is strongly �-omplete for all in�niteardinals �.(2) If the logi assoiated with V is strongly �-omplete for all in�nite �, then thehomomorphi losure HV of V is omplex.Consequently, if a quasi-variety V is omplex, then the variety HV generated by V isalso omplex.Proof. Reall that the logi assoiated with V is� = f' in L!(�) : V j= 'g:Then Var� is the variety generated by V , so as V is S -P-losed we do have Var� = HVas laimed.(1) Assume that V is omplex. Take � � !, with �� the logi indued in L�(�) bylosure of � under substitution. Let A 2 V be the Lindenbaum-Tarski algebra for�� in the language L�(�). Then A belongs to V , beause it is a free algebra in thevariety Var� generated by V (5.2.1), and V , being losed under S and P , ontainsall suh free algebras.Now if � is any ��-onsistent set of L�(�)-formula, thenk�k = fk'k : ' 2 �gis a subset of A with the �nite meet property: every �nite subset of k�k hasnon-zero meet in A. It follows, by a standard ompatness argument, there is analgebra A� that has A as a subalgebra and has a non-zero element x that is alower bound for k�k:0 6= x � k'k for all ' 2 �.Indeed A� an be onstruted as an ultrapower of A, so Pu -losure of V allows usto onlude that A� 2 V .Sine V is omplex, we an assume that A�, and hene A, is a subalgebra of theomplex algebra CmS of some struture that belongs to StrV , and so has S j= ��.Let s be an element of x in S. Then s 2 k'k for all k'k 2 �. PuttingV (p�) = kp�k � S



5. POLYMODAL LOGIC 439de�nes a model M on S having M(') = k'k for all ', and heneM j=s �:This establishes that every ��-onsistent set of L�(�)-formulae is satis�able in amodel on a struture validating ��, giving strong �-ompleteness.(2) Suppose that � is strongly �-omplete for � � !. To prove HV omplex we needto show that if A 2 HV , then A� CmT and CmT 2 HV for some struture T. Wewill show this �rst for the ase that A is a subalgebra of CmS for some strutureS that is generated by a point s (N.B. we do not assume CmS 2 HV here). Let� be any in�nite ardinal for whih there is a surjetionV : �� � A;and put M = hS; V i. Then eah truth-set M(') is in A, and eah member of Ais suh a truth-set, indeed is one of the form M(p�). Let� = f' in L�(�) :M j=s 'g:Sine A j= ��, � is ��-onsistent (in fat it is ��-maximal). By strong �-ompleteness there exists a struture T0 validating �� and a model N0 on T suhthat N0 j=t � for some t. Let T be the inner substruture of T0 generated by thepoint t, and N the restrition to T of the model N0, havingN(') = N0(') \ T:Then N j=t �, and so (y) M j=s ' i� N j=t 'for all ' in L�(�). Moreover T validates ��, so CmT 2 Var�� = HV .It thus remains to show that A � CmT. For this purpose, onsider the orre-spondene � :M(') 7! N(')between A and Sb T . First we need to show that � is a well-de�ned injetion, i.e.M(') =M( ) i� N(') = N( ):This will be explained for the ase of the simplest language with a single modality� , so that S and T are type 1 frames with a single binary relation. If M(') 6=M( ) then there is some point u in S with, say, ' ^ : true in M at u. Sine Sis generated by s, the analysis of Setion 4.3 shows that sRnSu for some n. Henethe formula (z) �� � � ��| {z }n times (' ^ : )is true inM at s, and so by (y) is true in N at t. From this is follows that '^: istrue at some point in N, showing that N(') 6= N( ). The proof that N(') 6= N( )impliesM(') 6=M( ) is the same, using the other impliation of (y) and the fatthat t generates T.



440 Algebrai Polymodal Logi: A SurveyThe argument for strutures of arbitary type follows the same pattern, using thegeneral desription of point-generated strutures from Setion 4.3 and some moreompliated formulae in plae of (z). The properties of truth-sets ensure that � isa homomorphism, and hene gives an embedding A� CmT 2 HV as desired.For the ase of an arbitrary A 2 HV , by Theorem 4.5 there is a subdiret repre-sentation A�Ys2SAsof A by omplex algebras As based on point-generated strutures. Eah As is inHV , as A � As, so by the above argument there is a struture Ts 2 StrHV suhthat As� CmTs. ThenA�Ys2SAs�Ys2S CmTs �= Cm(T);where T =as2S Ts 2 StrHVby losure of StrHV under disjoint unions. This proves that HV is a omplexvariety.The last part of the statement of Theorem 5.6.1 now follows diretly by applying (1)and then (2).The assumption of Pu-losure is essential in Theorem 5.6.1, as may be seen by takingV as the omplex lass SCmStrKW disussed just before 5.6.1. In this example Vis losed under S and P , but not under Pu , and the variety it generates is the non-omplex lass Vdg of diagonalisable algebras.The question of whether there exist omplex varieties that are not anonial is nowseen to be equivalent to the question of the existene of strongly omplete logis thatare not anonial. In fat one suh is the logi �R haraterised by the type 2 framehR; <;>i;where R is the set of real numbers. This logi is not anonial, for reasons that willbe lari�ed below, but was shown in [13℄ to be strongly !-omplete: every onsistentset of L!(2)-formulae is satis�able in a model on the real-number frame itself.It an be inferred from this that the variety Var�R de�ned by �R is omplex butnot anonial, as was �rst notied by F. Wolter [61℄. But instead of appealing toTheorem 5.14, the idea of Gabbay's strong ompleteness proof an be adapted to givean interesting diret algebrai onstrution showing Var�R omplex. We will arrythis out now for a slightly simpler example: the temporal logi of Dedekind ompletestrit orderings. For this purpose the two diamond modalities of a type 2 languagewill be written hF i and hP i, with their duals being [ F ℄ and [ P ℄. Here \F" is for\future" and \P" for \past". The additive operators of a type 2 algebra are mF andmP, with duals lF and lP. A type 2 frame will be written as S = hS;RF; RPi. Theoperators on CmS indued by RF aremRF(T ) = fs 2 S : 9t (sRFt and t 2 T )g



5. POLYMODAL LOGIC 441and its dual lRF(T ) = fs 2 S : 8t (sRFt implies t 2 T )g;and similarly for mRP and lRP .A linear temporal logi is any normal logi ontaining the following shemata, whihome in three pairs that are \mirror images", i.e. eah member of the pair is obtainedfrom the other by interhanging F and P.'! [ P ℄hF i''! [ F ℄hP i'hF ihF i'! hF i'hP ihP i'! hP i'[ F ℄(' ^ [ F ℄'!  ) _ [ F ℄( ^ [ F ℄ ! ')[ P ℄(' ^ [ P ℄'!  ) _ [ P ℄( ^ [ P ℄ ! '):The �rst pair are valid in a frame preisely when RP = R�1F (f. the disussion ofonjugate operators in Setions 2.1 and 2.2), so that frames for this pair are uniquelydetermined as soon as RF is spei�ed. The seond pair haraterise transitivity of RFand RP. The last pair ensure thatsRFt ^ sRFu implies (t = u or tRFu or uRFt);and orrespondingly for RP. In a frame S validating any linear temporal logi, theinner subframe Ss generated by a point s is based on the setft 2 S : sRFt or s = t or tRFsg:Ss is onneted , i.e. satis�es8t8u (t 6= u implies tRFu or uRFt);and onsists of a linear sequene of lusters as de�ned in Setion 4.2. These lustersan then be attened by the bulldozer onstrution to show that there is a boundedepimorphism T � Ss with T a strit linear ordering (irreexive, transitive, on-neted) having CmSs� CmT.Now the shemata de�ning a linear temporal logi � are preserved by anonialextensions. Thus if A j= � then C stA j= �. Then taking the subdiret representa-tion in terms of point-generated strutures of C stA that underlies Theorem 4.5, andapplying the observations of the previous paragraph, the following an be onluded.Theorem 5.15 Any algebra validating a linear temporal logi has a subdiret repre-sentation by omplex algebras based on strit linear orderings. �Now if S = hS;RF; RPi is a strit linear ordering with RP = R�1F , then a subset I ofS is an initial segment of S ifsRFt and t 2 I implies s 2 I:Then I � lRP(I), and the omplement I = S � I of I satis�es I � lRF(I) sines 2 I and sRFt implies t 2 I. I is a proper initial segment if its omplement isnon-empty. All members of this omplement are upper bounds of I .



442 Algebrai Polymodal Logi: A SurveyA gap is a non-empty proper initial segment that has no least upper bound. If I isa gap then I has no greatest member, so if s is in I then s is in mRF(I), and thereforenot in lRF(I). Thus I = lRF(I). Also I has no least member, so eah member ofI is in mRP(I). It follows thatlRF(I)�mRP lRF(I) = I �mRP(I) = ;:A strit linear order is Dedekind omplete if it has no gaps. Both h!;<i and hR; <i areDedekind omplete. Any strit linear order T has a Dedekind ompletion, an extensionto a Dedekind omplete order S obtained by \�lling in the gaps in T". Formally thisan be ahieved by taking S as the set of proper initial segments of T ordered byproper inlusion �. T an be regarded as a subordering of S by identifying eah s inT with the initial segment ft 2 T : tRFsg. When s 2 S � T , this initial segment is agap in T.It was disovered by Arthur Prior that there is a type 2 formula that haraterisesDedekind ompleteness (there is no suh type 1 formula). Prior's axiom is the shemahF i:' ^ hF i[ F ℄'! hF i([ F ℄' ^ :hP i[ F ℄');whih is valid in any Dedekind omplete strit linear ordering.Lemma 5.16 (Gap Lemma) Let S be a strit linear ordering and A a subalgebraof CmS. If A validates Prior's axiom, then no gap of S an belong to A.Proof. Suppose there is a gap I 2 A, with omplement I 2 A, and take s 2 I . AsI has no greatest element, there exists t 2 I with sRFt, and so s 2 mRF(I). But Ihas as upper bound any u 2 I = lRF(I), with sRFu, so s 2 mRF lRF(I).Now we saw above that lRF(I)�mRP lRF(I) = ;, and sos =2 mRF(lRF(I)�mRP lRF(I)) = mRF; = ;:This shows thatmRF(I) \mRF lRF(I) 6� mRF(lRF(I)�mRP lRF(I));in violation of Prior's axiom.Theorem 5.17 If �D is the smallest linear temporal logi that inludes Prior's axiom,then the variety Var�D of all type 2 algebras that validate �D is omplex but notanonial.Proof. We deal with non-anoniity �rst. The type 2 frame h!;<;>i is a Dedekindomplete strit linear ordering, and the set of �nite or o�nite subsets of ! forms asubalgebra A of CmS whih validates �D. The anonial struture C stA onsists ofthe prinipal ultra�lters fX 2 A : n 2 Xgfor eah n < !, together with the set s of all o�nite sets, whih satis�es sRs in C stA.Thus C stA looks like a opy of h!;<i with a single reexive point added at the rightend, so that the opy of ! funtions like a gap (although the linear ordering is nolonger strit). Preisely, in EmA we havelF(fsg) = mPlF(fsg) = (fsg);



5. POLYMODAL LOGIC 443and so mF(lF(fsg)�mPlF(fsg)) = ;;while eah of the prinipal ultra�lters belongs tomF(�fsg) \mFlF(fsg):Thus Prior's axiom fails in EmA.To show that Var�D is omplex, we have to show that if A is any member of Var�Dthen there is a struture S with A� CmS and CmS 2 Var�D. As explained in thelatter part of the proof of Theorem 5.14, it suÆes to prove this for a lass of algebrasthat provide subdiret representations of all other members of Var�D. Therefore byTheorem 5.15 we an assume that A is a subalgebra of CmT for some strit linearordering T = hT;RFi. Now let S = hS;RFi be the Dedekind ompletion of T. ThenCmS validates Prior's axiom and so belongs to Var�D. Thus it is enough to showthat A� CmS to omplete the argument. By Theorem 4.3, this in turn redues tothe problem of showing that there is an ultra�lter map from S to A that overs A.This map is to be a funtion f : S! C stA satisfying, for all s 2 S and X 2 A,(i) mF(X) 2 f(s) i� for some t 2 S, sRFt and X 2 f(t);(ii) mP(X) 2 f(s) i� for some t 2 S, tRFs and X 2 f(t).Note that mF here means the operation on CmT, and hene on A, indued by RF inT, rather than the operation mRF indued on CmS. Thus for X � T ,mF(X) = fu 2 T : 9t 2 T (uRFt)g:Sine T will not in general be an inner substruture of S, we may well have mF(X) 6=mRF(X) for X 2 A. Similarly,mP(X) = fu 2 T : 9t 2 T (tRFu)g:Now for s in T, put f(s) = fX 2 A : s 2 Xg:This already ensures that f overs A, for if ; 6= X 2 A then any s 2 X has X 2 f(s).For s 2 S � T , letUs = fmF(X) : X 2 A and 9t 2 T (sRFt and t 2 X)g;Ls = fmP(X) : X 2 A and 9t 2 T (tRFs and t 2 X)g:Then Us [ Ls has the �nite intersetion property. To see this, suppose that for somen < ! there are elements Xi 2 A and ti 2 T suh that sRFti 2 Xi, and henemF(Xi) 2 Us, for all i < n. Now sine s is not in T , it represents a gap in T, and sothe set ft 2 T : sRFtg has no least element. Thus there exists some t 2 T suh thatsRFtRFti and hene t 2 mF(Xi) for all i < n. Moreover, beause sRFt, t is in everyset mP(X) from Ls.Sine Us [Ls has the �nite intersetion property, it is ontained in an ultra�lter ofA, whih we take to be f(s). This ompletes the de�nition of f .To derive (i) and (ii), we need two preliminary fats about this de�nition.



444 Algebrai Polymodal Logi: A Survey(iii) Let s 2 S � T , X 2 f(s), and t 2 T . Then tRFs implies t 2 mF(X), and sRFtimplies t 2 mP(X).To prove this, observe that validity of shema ('! [ P ℄hF i') in A entails that X �lPmF(X), so lPmF(X) 2 f(s), and hene mPlF(�X) =2 f(s). Thus mPlF(�X) =2 Ls.But then if tRFs, the de�nition of Ls implies that t =2 lF(�X), giving t 2 mF(X) asdesired. The other part of (iii) follows by the \mirror image" of this argument.As a orollary to (iii) we obtain(iv) Let s 2 S � T , X 2 f(s), and t 2 T . Then if tRFs, mF(X) 2 f(s) impliest 2 mF(X), and if sRFt, mP(X) 2 f(s) implies t 2 mP(X).For the proof, supposing tRFs and mF(X) 2 f(s), applying (iii) with X replaedby mF(X) gives t 2 mFmF(X). Validity of hF ihF i' ! hF i' in A then impliest 2 mF(X). Again the other part of the proof is a mirror image argument.Now for the proof of (i), �rst from right to left. Suppose that sRFt and X 2 f(t).We want mF(X) 2 f(s). There are two main ases. Firstly, if t 2 T then t 2 X andeither s 2 T , giving then s 2 mF(X) and so mF(X) 2 f(s), or else s 2 S � T , sothat mF(X) 2 Us by de�nition of Us, and again mF(X) 2 f(s). For the seond ase,suppose t =2 T . Again there are two subases. If s 2 T then applying result (iii) withs and t interhanged gives s 2 mF(X), so mF(X) 2 f(s). If however s =2 T , then sinesRFt and s and t both de�ne gaps in T there must be some u 2 T with sRFuRFt.But then by (iii) with t in plae of s and u in plae of t gives u 2 mF(X), so thereexists w 2 T suh that uRFw 2 X . Then sRFw, so mF(X) 2 Us � f(s).To prove (i) from left to right we invoke at last the validity of Prior's axiom in A, inthe form of the Gap Lemma 5.16. Suppose mF(X) 2 f(s). If s 2 T , then s 2 mF(X)so there is a t 2 T with sRFt and t 2 X , whene X 2 f(t) as desired. If howevers =2 T , then s de�nes the gap ft 2 T : tRFsg in T, and by (iv) every member of thisgap belongs to mF(X). But now if every t 2 T suh that sRFt had t =2 mF(X) wewould have ft 2 T : tRFsg = mF(X) 2 A;ontraditing the Gap Lemma. Therefore there must be some t 2 T with sRFt andt 2 mF(X), so that tRFu and u 2 X for some u 2 T . Then sRFu and X 2 f(u), andthe proof of (i) is �nished.The proof of (ii) would be the mirror image of that of (i) if we assumed that themirror image of Prior's axiom was valid in A. But in fat we an diretly use theaxiom itself again. The only essentially new situation arises when mP(X) 2 f(s) ands =2 T . Then similarly to the ase of (i) we �nd that if there was no t 2 T suh thattRFs and t 2 mP(X) we would haveft 2 T : sRFtg = mP(X):But in that ase ft 2 T : tRFsg = T �mP(X) 2 A;again ontraditing the Gap Lemma. Therefore there must be some t 2 T with tRFsand t 2 mP(X), leading to a u 2 T with uRFs and X 2 f(u).This ompletes the proof of the Theorem.



6. THE FINITE MODEL PROPERTY 445In onlusion, let �R be the smallest linear temporal logi ontaining Prior's axiomand the shema hF i'! hF ihF i'whih orresponds to the density ondition thatsRFt implies 9u (sRFuRFt):The following an be shown about the variety Var�R de�ned by this logi.� Var�R is generated by the omplex algebra of the real-number frame hR; <;>i.This follows from the fat, due to Bull [9℄, that �R is haraterised by this frame.� Var�R is a omplex variety. This is proved by an adaptation of the above ar-gument, establishing that any algebra in the variety an be embedded into theomplex algebra of a disjoint union of dense Dedekind omplete orderings.� Var�R is not anonial. The anonial extension of the real-number frame hasgaps and violates Prior's axiom. This extension looks similar to the nonstandardhyperreal number system, exept that the \positive in�nite" elements form a singleluster \at in�nity", and likewise for the negative in�nite elements. In fat one antake the ountable subalgebra A of CmR generated by the semi-in�nite intervals(�1; q), (q;1) with q rational and show that A is in Var�R but EmA is not.6 The Finite Model PropertyWe will now briey review a onept that has been important in the development ofgeneral theory about modal logi, as well as in determining the properties of partiularlogis. Essentially, a logi � has the �nite model property if it is haraterised by its�nite models. Preisely what this means depends on the notion of \model" involved,and there are three natural andidates: if � is a normal logi, then(1) � has the �nite algebra property if `� ' whenever ' is valid in all �nite algebrasA suh that A j= �;(2) � has the �nite frame property if `� ' whenever ' is valid in all �nite struturesS suh that S j= �;(3) � has the �nite model property if `� ' whenever ' is true in all �nite models Msuh that M j= �.It is readily seen that (1) and (2) are equivalent. This is beause a struture Svalidates the same formulae that the algebra CmS does, while a �nite normal BAOA is isomorphi to CmC stA (Theorem 3.2.2) and so validates the same formulae asthe �nite struture C stA. Hene a formula is valid in all �nite �-algebras i� it is validin all �nite �-strutures.It is immediate from the de�nitions that (2) implies (3), sine a formula true in all�-models will be valid in all �-strutures. But it turns out that for uniform logis,(3) implies (2) as well (for a proof, see [52, Corollary 3.8℄ or [17, Exerise 4.9℄). Thusfor normal uniform logis, all three notions oinide, and are generally referred to asthe \�nite model property".An example of a type 1 logi laking the �nite model property was provided byMakinson [38℄: this is the smallest normal logi ontaining the shemata



446 Algebrai Polymodal Logi: A Survey(T) '! �', and(Mk) ' ^ : '! �( ' ^ : ').The shema ��' ! �' (4) is valid in all �nite algebras for this logi, but isnot a theorem of the logi sine there are in�nite algebras validating (T) and (Mk)but not (4). An example is the algebra of �nite and o�nite subsets of h!;Ri, wheremRn i� m � n+1. This struture has beome known as the reession frame and hassigni�ant appliation beyond this example for whih it was originally onstruted byMakinson. In partiular, it underlies the major work of Blok [5℄ on inompleteness.The �nite model property provides a powerful method for demonstrating the de-idability of various logis, in view of the fat that� if a logi � is �nitely axiomatisable and has the �nite model property, then it isdeidable, i.e. there is an algorithm for deiding of an arbitrary formula ' whetheror not `� '.Here \�nitely axiomatisable" means that � is the smallest logi ontaining some�nite number of presribed shemata. To sketh briey why this result holds, observethat it an be algorithmially determined whether a given �nite algebra A satis�essome �nite number of given equations, and hene whether A validates a given �nitelyaxiomatisable logi �. Therefore by systematially enumerating the �nite algebrasand testing formulae for validity in them, as well as testing whether they are �-algebras, we an generate a list of formulae that are invalidated by at least one�-algebra. But the �nite model property implies that if 6`� ' then there is a �nite�-algebra that will invalidate ', a fat that will then be disovered by the systematitesting proedure. Thus every non-�-theorem will appear in the list, and so theproedure provides an e�etive enumeration of the set � � � of formulae not in �.But � itself is e�etively enumerable, sine it is a �nitely axiomatisable logi. Sinenow both � and �� � are e�etively enumerable, it follows that � is deidable.The restrition to �nitely axiomatisable logis in this analysis is essential. Logiswith the �nite model property need not be deidable if they are not �nitely axiomati-sable. Indeed it has been shown in [58℄ that for eah set X of natural numbers there isa modal logi �X that has the �nite frame property but whose degree of unsolvabilityis the same as that of X .The �rst appliation of algebrai methods to prove deidability of modal logis inthis way was made by J. C. C. MKinsey in [40℄. If A = hB;mi is the Lindenbaum-Tarski algebra of a type 1 logi � and 6`� ', then, as we saw in Setion 5.2, there isan interpretation of the variables of ' in A that invalidates '. If C is the �nite set ofelements of B \named" by subformulae of ' under this interpretation, and B0 is thesub-Boolean algebra of B generated by C, then B0 is �nite and an be made into amodal algebra under the new operator m0 : B0 ! B0 de�ned bym0x =Qfmy : x � y 2 B0 and my 2 B0g:The resulting �nite modal algebra still invalidates '. MKinsey showed further thatit also validates � in the ase that � is either of the well-known logis S2 and S4,thereby establishing the �nite model property and deidability for them.



7. OTHER TOPICS 447Pioneering studies of the �nite model property were made in a series of papers byR. A. Bull (f. [8, 9℄ and referenes ited therein). This involved a sophistiated anal-ysis and modi�ation of the �nite algebras produed by MKinsey's method, and ledto a demonstration that every normal uniform extension of the type 1 logi S4.3 (har-aterised by linearly ordered K-frames) has the �nite model property. The methodsubsequently yielded ompleteness proofs for the linear temporal logis haraterisedby the frames hZ; <;>i, hQ; <;>i, and hR; <;>i. Bull's work also ontained the�rst appliation to logial systems of Birkho�'s theory of subdiret representation ofalgebras in terms of subdiretly irreduibles.The method of MKinsey was adapted to the omplex algebra setting by Lemmon[34, Part IV℄. A model-theoreti version of his approah appeared in [35℄, and wasfurther developed by Segerberg [51, 52℄ under the name of �ltration. In essene,�ltration of a model M involves ollapsing M to a �nite model by identifying pointsthat assign the same truth-values to the members of some �xed set � of formulae.Typially � will be (based on) the set of subformulae of a partiular non-theorem 'that is to be falsi�ed in the resulting �nite model.Now if a logi has the �nite algebra/frame property then its assoiated variety willbe generated by its �nite members, and hene generated by the �nite strutures inthe variety. In other words, suh a logi must be omplete (Setion 5.4). Construtionof �nite models has in fat been an important proedure for proving ompleteness oraxiomatisation results for many logis. This is inevitable if the logi is de�ned byreferene to �nite strutures (e.g. the logi haraterised by �nite linear orderings),but the proedure has also proved vital when the anonial frame method breaks downbeause the logi in question is not anonial. This applies for instane to the temporallogi �R of real time. Another partiularly notable ase is propositional dynami logi[53, 25℄, where the only known method for proving ompleteness involves some variantof the �ltration approah.7 Other TopisThis artile has sought to indiate how the basi theory of Boolean algebras withoperators an be used to investigate properties of modal logis and similar logialsystems. There are other topis in this and related areas that ould be onsidered,inluding� the onnetion between interpolation properties of logis and amalgamation prop-erties of algebras;� the relationship between the Beth de�nability property of logis and the questionof surjetivity of epimorphisms between algebras;� the study of non-normal operators and assoiated non-normal logis;� the investigation of logis whose algebrai semantis is based on something otherthan Boolean algebras, suh as distributive latties, Heyting algebras, \semilattie-ordered residuated semigroups", and many others.Those who wish to pursue suh topis may �nd it pro�table to explore suh souresas the papers [46, 50, 2, 37℄, the books [1, 48℄, the dissertations [60, 39, 41℄, and thereferenes they ontain.
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