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Abstract

This is a review of those aspects of the theory of varieties of Boolean algebras with operators (BAQO’s)
that emphasise connections with modal logic and structural properties that are related to natural
properties of logical systems.

It begins with a survey of the duality that exists between BAQO’s and relational structures, focus-
ing on the notions of bounded morphisms, inner substructures, disjoint and bounded unions, and
canonical extensions of structures that originate in the study of validity-preserving operations on
Kripke frames. This duality is then applied to polymodal propositional logics having finitary inten-
sional connectives that generalise the Box and Diamond connectives of unary modal logic. Issues
discussed include validity in canonical structures, completeness and incompleteness under the re-
lational semantics, and characterisations of logics by elementary classes of structures and by finite
structures.

Tt turns out that a logic is strongly complete for the relational semantics iff the variety of algebras
it defines is complex, which means that every algebra in the variety is embeddable into a full powerset
algebra that is also in the variety. A hitherto unpublished formulation and proof of this is given
(Theorem 5.6.1) that applies to quasi-varieties. This is followed by an algebraic demonstration
that the temporal logic of Dedekind complete linear orderings defines a complex variety, adapting
Gabbay’s model-theoretic proof that this logic is strongly complete.

1 Introduction

This article provides an introduction to the study of varieties of Boolean algebras with
operators, emphasising their connections with modal logic, and focusing on structural
properties (canonicity, completeness, complexity, elementary generation) that are re-
lated to natural properties of logical systems.

Now an operator on a Boolean algebra B is a finitary function 8" — B that is join
preserving in each of its arguments. Functions of this type that are unary (n = 1) pro-
vide natural interpretations of modal connectives, and there is an intimate relationship
between their algebraic theory and the Kripke semantics for modal logics. Standard
algebraic constructions (subalgebras, homomorphisms, direct products) correspond to
certain truth-preserving constructions on Kripke models (bounded morphisms, inner
submodels, disjoint unions). This correspondence is a duality in category-theoretic
terms, and can be developed for arbitrary operators. Thus we may refer to the sit-
uation of n = 1 as being the modal case of a general theory of finitary operators on
Boolean algebras, and when n > 1 such operators may be called polymodal.

There appear to be two traditions of algebraic logic in this area. The algebraic
tradition, founded on the seminal work of Jénsson and Tarski [32, 33], has focused on
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versions [26, 28, 27, 45, 46] and their connections with first-order logic and set theory.
The logical tradition has emphasised the use of unary operators in the study of modal
and temporal logics, with highlights including the early work of McKinsey and Tarski
[40, 44] on Lewis modal systems and intuitionistic logic; the pioneering use of algebra
by Bull [8] in proving that all normal extensions of the modal logic S4.3 have the
finite model property and in obtaining the first axiomatisations of the temporal logics
of discrete and continuous time [9]; Thomason’s incomplete temporal logic [55]; and
Blok’s demonstration [5] of the pervasiveness of the incompleteness phenomenon.
More recently there have been applications focusing on the connections between weak
versions of first-order quantificational logic and modal logics [47, 3, 4].

Algebraic methods can be effectively employed to obtain model-theoretic results.
An example is the application of duality in [22] to characterise those classes of Kripke
frames that are defined by a set of modal formulae (Theorem 5.9 below). On the other
hand, the vigorous development of model-theoretic studies of modal logics under the
Kripke semantics has produced notions and results that translate into significant
observations about varieties of Boolean algebras with operators (BAO’s). Here many
examples come to mind:

e The study of model-theoretic conditions under which a modal formula is valid
(Correspondence Theory) can be viewed as the analysis of those conditions on
a relational structure which ensure that its algebra of subsets (complez algebra)
satisfies certain equations. It is also concerned which the connection between prop-
erties of a BAO 2 and those of its canonical structure Cst 2, which is a relational
structure defined on the Stone-type representation of 2. The powerset algebra of
Cst 2 is the canonical extension of 2, and contains a subalgebra isomorphic to 2.

e The work of Sahlqvist [49] giving a general completeness theorem for a large
syntactically defined class of modal axioms extends the class of properties known
to be preserved by canonical extensions of BAQO’s, and can be given an elegant
algebraic treatment [31].

The canonical frames widely used to prove completeness theorems for modal logics
are essentially the same thing as the canonical structures of the Lindenbaum-Tarski
algebras of these logics, which are themselves the free algebras in the varieties that
the logics define.

e The discovery of Fine [12] that an elementary class of Kripke frames determines
a logic validated by its canonical frames generalises to the result [14, 15] that the
powerset algebras of an ultraproduct-closed class of structures generate a variety
of BAO’s closed under canonical extensions.

The question of whether a logic is complete with respect to some class of Kripke
frames corresponds to the question of whether a variety of algebras is generated
by its powerset algebras.

e The property of a logic being strongly complete with respect to a class of Kripke
frames (i.e. every consistent set of formulae is satisfiable in a model on a frame in
the class) proves to be equivalent to that of a variety V of BAO’s being complex,
meaning that each member of ¥V can be embedded into a powerset algebra that
belongs to V (see Theorem 5.14 below for a hitherto unpublished formulation of
this relationship that applies to quasi-varieties).
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The purpose of this article is to survey these matters, not in an encyclopaedic fashion,
but with a view to explaining the major ideas and their interconnections, including
indications of proofs for the more substantial results, and providing references to
the literature for details. There are numerous overlapping (and conflicting) uses of
terminology and notation in this literature, and more may be perpetrated here, but
an attempt will be made to offer some guidance as to these various conventions.
The intention is to exhibit the two fundamental facets of algebraic logic: on the one
hand the investigation of mathematical structures that arise by abstraction from the
properties of logical systems, and on the other hand the use of algebra to establish
significant results about such logical systems.

The reader is assumed to be familiar with the theory of Boolean algebras and their
subalgebras, homomorphisms, representation by ultrafilters etc., and with the basic
formalisms of universal algebra. In particular, the standard symbols H,S,P will be
used to denote the operations of closure of a class of algebras under (isomorphic
copies of) homomorphic images, subalgebras, and direct products, respectively. An
equational class or wvariety is a class V of algebras defined by some set of equations.
VarW denotes the variety generated by a class W of algebras (i.e. the smallest variety
containing W). Repeated use is made of the following facts.

e (Birkhoff’s Theorem) V is a variety iff it is closed under homomorphic images,
subalgebras, and direct products: HY CV, SV CV, and PV C V.

e (Tarski) VarW is equal to HSPW.

e Var)V is the class of all models of the equational theory in infinitely many variables
of W ,ie. 2 € VarW if, and only if, 2 satisfies every equation that holds of all
members of W.

2 Modal Algebras

We begin with a discussion of the modal case, as preparation for the general polymodal
situation.

A Boolean algebra (BA) will be presented in the form 8 = (B, +,-,~,0,1). For
any set S, the associated powerset algebra is

SbS =(SbS,u,n,—,0,S),
where Sb S is the collection {T: T'C S} of all subsets of S.

2.1 Operators

A function m : B — B is called an operator on a Boolean algebra B if it is additive:
m(z +y) = mz + my for all z,y € B. m is normal if m0 = 0. Any operator has

m(xzy + -+ x,) =mz + -+ maz,

for any n > 2. Since 0 is the join of the empty set, a normal operator can alternatively
be specified as a function satsfying

m(Y0) = Ym(C)
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for any finite C' C B, including C' = ). All of the operators we will discuss are normal.
The dual of an operator m is the function [ : B — B having

lx = (m(z))" .

I is multiplicative (I(z - y) = lz - ly), and has [1 = 1 if m is normal. Thus the dual
of a normal operator preserves the lattice meet of any finite subset of B. A notation
such as m? is sometimes used for the dual to indicate the dependence on m. Our use
of the letters m and [ derives from the common use of M and L to denote the modal
“possibility” and “necessity” connectives.

If a is an ordinal, a normal modal algebra (MA) of type « is an algebra
A= (B, mg)s<a

with each mj a normal operator on the BA 8. Most studied have been type 1 algebras
(B, m) and temporal algebras (B, mg, my1) which are type 2 algebras whose pair of
operators are conjugate, meaning that for all z,y € B,

mor-y =0 iff myy-x=0.
This is equivalent to the equationally expressible condition that for all = € B,
z < lgmiz - lympzx.
Some important equationally defined classes of type 1 algebras are the following.

e Closure algebras. These are MA’s (8B, m) in which
r + mmzx < maz,

and are sometimes known as topological Boolean algebras [42, 43]. They include
the algebras (Sb.S,m) with S a topological space and mT the closure of the set T
in S. The dual operator IT gives the topological interior of T'. In a general closure
algebra an element = is thus called closed if mz = z, and open if lx = z (i.e. if x~
is closed). Closure algebras model the modal logic S4 (which is defined in Section
5.2).

e Monadic algebras. These are the closure algebras in which xz < Imaz, which is
equivalent to requiring that elements are closed iff they are open, or that the
closure operator m is conjugate to itself. Monadic algebras can also be described
as the one-dimensional cylindric algebras [26] and polyadic algebras [24]. They
model the logic S5 (again see Section 5.2).

Diagonalisable algebras. These satisfy
mx < m(z — mz).

They model the provability interpretation of modality, in which “necessarily A”
means “it is provable in Peano arithmetic that A” [6, 54]. The equational class of
diagonalisable algebras is generated by powerset algebras of certain well-founded
relations, as will be explained shortly.
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2.2 Complex Algebras of Kripke Frames

Let R be a binary relation on a set S. On the powerset algebra Sb.S there are two
normal operators naturally associated with R, taking each T' C S to its direct image

R(T)={se S:3teT(tRs)},
and to its inverse image
R (T)={se€ S:3teT(sRt)},

respectively. The algebraic tradition has worked with direct images, for reasons that
will be clarified in Section 3.1, while the logical tradition has used inverse images
because of conventions associated with Kripke semantics (Section 5.3). The choice
really is a matter of convention, since the inverse image of 7' under R is the same thing
as the direct image of T under the inverse relation R~'. We will follow the logical
tradition here, and also will use the notation mpg for the inverse image operator:

mpr(T)={s € S:3teT(sRt)}.
The dual operator to mp is lg : Sb.S — Sb S, where
Ir(T) = —mp(—T) = {s € S:Vt(sRt implies t € T')}.

These descriptions display the role of mp and lg as quantifiers, existential and uni-
versal, relative to, or bounded by, the relation R.

The pair (S, R) is known in modal logic as a Kripke frame, or K-frame. More generally
we define a K-frame of type o to be a relational structure

6= <Sa Rﬁ)ﬁ<r¥
with each R being a binary relation on S. The full complez algebra of & is
Cm6 = <SbS, mRﬁ)g<m

which is a modal algebra of type . Any algebra that is (isomorphic to) a subalgebra of
Cm G is a complez algebra of type a. The terminology derives from group theory of the
Nineteenth Century: before set theory became the lingua franca of mathematicians
the word “complex” was used to denote a collection of elements (subset) of a group.

In the case of a K-frame & = (S, Ro, R;) of type 2, Cm & is a tense algebra, i.e. mpg,
and mpg, are conjugate, iff Ry and R; are mutually inverse: Ry = Rgl. Important
examples are the frames (S, <,>) where S is one of the number systems 7, Q R,
representing a discrete, dense or continuous flow of time respectively.

Our observations about conjugacy indicate that for a type 1 frame & = (S, R), mp
is self conjugate iff R = R™!, i.e. iff R is symmetric. Analogously, if R is reflexive
then T C mp(T) for all T € Sb S, while conversely it suffices to have {s} C mg({s})
for all s € S to make R reflexive.

These examples illustrate the fact that there is an extensive catalogue of conditions
on R that are equivalent to various equational properties of Cm&. This was first
demonstrated by Jénsson and Tarski [32, Theorem 3.5], several of whose observations
are included in the following table.
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Equational Property of Cm& | Equivalent condition on R

x < mx reflexive

mmx < mx transitive

closure algebra quasi-order (reflexive and transitive)
z <lImx symmetric

monadic algebra equivalence relation

mx < lz functional

mzx = lx total function

diagonalisable transitive with R~" well-founded

(cf. [6] for a proof of the last entry.)

Some potent questions arise. Given a modal algebra 2 satisfying a condition from
the left column, is 2 isomorphic to a complex algebra based on a frame satisfying the
corresponding condition from the right column? To address such issues requires the
representation theory of the next section.

Does every MA-equation correspond to a “natural” condition on frames? Note first
that any equational assertion about Cm & can be translated via the definitions of mg
and [ into a sentence in the universal monadic second-order logic of G, i.e. a sentence
that quantifies universally over subsets of S. For instance, the condition

VT (T € mg(T))

is equivalent to
VI'Vs(se€T — 3t (t € T A sRt))

when 7T ranges over SbS. But this itself proves to be equivalent to the simple first-
order condition Vs(sRs) of reflexivity. Indeed all entries in the right column except
the last are expressible in the first-order language (with equality) of &. But the class

{6 : Cm& is diagonalisable}

is not elementary, i.e. not definable by any set of sentences in first-order logic, since
the condition “R~! is well-founded” is not preserved by elementary equivalence. In
particular, an ultrapower of a frame satisfying this condition will not in general satisfy
it. It transpires that for any equational class V of modal algebras, closure of the class

{6:Cm6G eV}

under ultrapowers is necessary and sufficient for it to be an elementary class (cf.
Corollary 4.12).

Do all first-order conditions on R characterise an equational property of Cm&?
In fact not: irreflexivity (Vs—(sRs)) and antisymmetry are two counterexamples, as
can be shown by using the notion of bounded morphism between frames (and is so
shown in Section 4.2). In that case, which first-order conditions are equational? This
question can be formulated in the following way: if I is an elementary class of frames,
when is there an equational class of algebras V for which

CmG& eV iff 6eKk?

There is an answer to this in terms of the closure of I under certain model-theoretic
constructions (Theorem 5.9). The proof applies duality theory (Section 4) to Birkhoff’s
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characterisation of equational classes of algebras as those closed under homomor-
phisms, subalgebras, and direct products.

These various questions provoked by the phenomena exhibited in the above table
will be taken up below and answered as generally as possible for polymodal operators.

3 BAO’s
3.1 Polymodal Operators

An operator of rank, or arity, n on a BA B is a function m : B" — B that is
additive in each of its arguments. This means that for each i < n and any elements
ag, .-« ,ai—1,0i41,--- ,0,—1, the unary function

x> m(ag, ... ,Qi—1, T, Qix1y - Gp—1)
is additive. m is normal if for each i < n it satisfies the equation
m(a’O:' B :ai7170:ai+1:' B 7an71) =0.

Note that the definition allows that n = 0: a nullary operation (i.e. a constant m € B)
is a normal operator. If n > 1, m is polymodal.

A type in this context is a pair 7 = (&, pr) with a; an ordinal and p, : a; - w
a rank function assigning a natural number p,(8) > 0 to each 8 < a. A Boolean
algebra with operators (BAO) of type T is an algebra

2= (B,mgs)s<a-

with each mg an operator of rank p,(3) on the BA 8. 2 is normal if each mg is
normal. If p.(8) = 1 for all 3 we have the earlier notion of an MA of type ;.
A relational structure of type T has the form

6 = (S, Rﬁ>,3<aq—

with each Ry being an (p,(3) + 1)-ary relation on S, i.e. Rg C SP~(D+1 (if p, (3) = 1
for all 8 then & is a K-frame of type ). To build a complex algebra out of & we have
to explain how to obtain an operator on Sb.S of rank n from a relation R C S”*'. In
the original case of the complex algebra of a group (S, ) the group operation lifts to
a binary operation on the powerset of S by putting

Ty -T7 = {tg-t1:t0€TOandt1€T1}

= image of Ty x T} under the group operation.
Generalising, an n-ary operation f : S™ — S lifts to the n-ary operation
my : (SbS)" — (Sb.S)
having

my¢(To, ..., Tno1) = f-imageof To x -+ x T4
= {f(f[), ,tnfl) Iti ETi 3,117<77}



400 Algebraic Polymodal Logic: A Survey

Now if R = {(to,... ;tn—1,5) : f(to,... ,tn—1) = s} is the n + l-ary graph of f, then

the right-side of the definition of ms can be described as the

R-image of Ty x -+ - x T),_4
= {S €S: at(] . "Etnfl(R(t(],. .. ,tnfl,S) and ti € Tl all 7 < 77) }

But now this is a description that makes sense for any n+1-ary relation R, and we have
the promised explanation of why the algebraic tradition has found it mathematically
natural to work with direct images of relations. On the other hand we can “permute”
the definition by choosing any of the n + 1 arguments of R to fill the role of the
unquantified variable s. Thus an arbitrary relation R C S™*! defines n + 1 normal
operators on Sb.S. We will opt to maintain contact with the logical tradition here
and single out the first argument of R, thereby defining mpg : (SbS)" — (Sb.S) by
extension of the n = 1 case of Section 2.2:

mR(TO:"' 7Tn7])
= {S € SZEtO"'th,](R(&tOP.. ,tn,]) and t; € T; allz<n)}

(when n =0, i.e. R C S, mp is just the constant R € SbS). Then the (full) complex
algebra of the structure & = (S, Rg)s<a, can be defined as

Cm6G = <SbSl m/RB>6<(I‘r'

3.2 Canonical Entities

Associated with a Boolean algebra B is the set Sy of ultrafilters of B and the injective
BA-homomorphism ng : B — SbSy having ng(z) = {s € Sy : € s}. This is the
fundamental Stone representation of B as the isomorphic algebra of sets ng (98), which
is in general a proper subalgebra of Sb Sgy.

Given an n-ary function m : B® — B, an n + l-ary relation R, C (Sx)"*! is
defined by

Rm(S,tO,. .. ,tnfl) iff m(t() X - X tnfl) g S
iff (Vi < n(x; €t;)) implies m(zg,... ,Tn_1) € s.

When n = 0 this entails R,,, = {s € Sy : m € s} = np(m). When n = 1 we have,
using the infix notation for binary relations,

sRypt iff {mz:zet} Cs iff {z:lzes}Ct

The relation R, induces the normal operator mpg, on SbSg. In order for nyg to
preserve the operations m and mpg,, i.e.

Ubs; (m,(.’l,'(), B 7'7:7171)) = mRg,, (7)% ('7:0)7 R /)] (mnfl))a
it must be the case that for each s € Sy and zg,... ,z,_1 € B, the condition
m(xo,... ,Tn_1) €S

is equivalent to

E't(),. .. ,tnfl € S%(Rm(s,t(],. .. ,tnfl) and (V7 < 77)(’1“1 € f,))
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The implication from top to bottom holds by the definition of R,,, and the whole
equivalence holds when n = 0, again from the definitions. The difficult part is to
prove it from bottom to top when n > 1, and this requires m to be a normal operator.
One way to proceed is to construct the ultrafilters ¢; by induction on ¢ in such a way
that the following two clauses hold:

(1) T; € t;,
(i) if yp €ty for all k < i, then m(yo,-.. ,Yi; Tit1,--- ,Tn_1) € 8.
Then when i = n — 1, clause (ii) immediately yields R, (s, %o, ... ,tn—1) by definition

of R,,. Together with (i), this will complete the proof.
The inductive argument is to fix a j < n — 1, and suppose that for each i < j, t;
has been defined to satisfy (i) and (ii). Let

uj ={z:Vi<jIy; € ti(m(yo,... .Yj—1,%,Tjt1,-.. ., Tn_1) ¢ s)}.

Using the fact that m is additive and normal it can be shown that u; is an ideal of B
that is disjoint from the principal filter generated by z;. But then B must contain an
ultrafilter ¢; that includes z; and is disjoint from u;. This is enough to ensure that
(i) and (ii) hold with j in place of i.

The full details of this argument may be found in Theorem 2.2.1 of [14], where the
proof is shown to work for any normal operator on a distributive lattice.

Now to each BAO A = (B, mg)s<q. of type 7 we can associate the type-7 relational
structure

Cst2A = <S%,Rmﬁ)ﬁ<(yr

which we call the canonical structure of 2. Tts complex algebra will be denoted '
Em& and is the canonical embedding algebra of A:

Em®A = CmCst .

Writing ng for the function 7y determined by the underlying BA 98 of 2, we have:

Theorem 3.1 If 2 is a normal BAQO, the function ny : A — Em® is an injective
BAO-homomorphism, representing A, by its isomorphic image in Em2A, as a complex
algebra.

This result is due to Jonsson and Tarski [32] who developed it from a more abstract
standpoint, in two stages, using the notion of perfect extension. If Boolean algebra
B is a subalgebra of Boolean algebra B7, then B” is a perfect extension of 8, and
B is a regular subalgebra of B7 if B? is complete and atomic and satisfies

(I) if z and y are distinct atoms of B, there is an element b of B with z < b and
Y- b= 07

(IT) if D is a subset of B whose join in B is 1, then D has a finite subset whose join
in B7 is 1.

lln general, “sans serif” capitals E, H, P, S ... will be used as the first letter in symbolic names for operations on
algebras, while “blackboard bold” letters C, E, H, S, U ... occur likewise in names of operations on structures (cf.
especially Section 4.4).
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These conditions characterise 87 uniquely up to isomorphism. But if 8 is identified
with 79 (B) C SbSsy, then SbSy fulfills these conditions, and so every BA has a
perfect extension. In the topological version of the Stone representation, the members
of ny (B) form a clopen base for a topology on Sg. Conditions (I) and (II) express
the fact that the resulting space is Hausdorff and compact.

By analogy with the topological case, an element of a perfect extension B is called
closed if it is the meet of a set of elements from B. Let C be the set of closed elements
of B7. A function m : B™ — B induces the n-ary function m? on B7 defined by the
formula

m’(z) = Z H m(z) for all z € (B7)" (1)

r>yeCm y<zeB"

(here < and > are the product orderings). If m is an operator then m? is an extension
of m that is completely additive (preserves arbitrary joins) in each of its arguments
and is the largest such extension of m (in the pointwise ordering of functions).

There is also an abstract approach to m? in the style of (I) and (II). If At denotes
the set of atoms of B7, consider the statement

(III) m?(z) = Hzgzemm(z) for all z € (At)™,
which is implied by the formula (f). A BAO
A7 = <%J7mg>ﬁ<aq—

is a perfect extension of 2 = (B, mg)s<a,, and A a regular subalgebra of A7, if (I)
and (II) hold, each m is completely additive, and (III) holds with mg in place of m
for all 8 < a,. These axioms characterise 2” uniquely up to isomorphism, and the
construction of m? by (}) establishes the Extension Theorem of [32, Th. 2.15] that
every BAO 2 has a perfect extension 2A7.

Now if 2 is normal then 2(” is normal and is isomorphic to the complex algebra
Cm & of some relational structure &. Here the underlying set of & can be taken as
the set of atoms of 2”, and the relation Rg of & as

{{s;tos st (3)-1) : 8 <mG(to, ...ty (3)-1)}

In this way we arrive at the Representation Theorem of [32, Th. 3.10] that every
normal BAO of type 7 is isomorphic to a regular subalgebra of the complex algebra
of a relational structure of type .

Thus we may say that the definitions of canonical structure Cst2 and canonical
embedding algebra Em2l gives a particular realisation of the abstract notion of perfect
extension. It is also noteworthy that in terms of the topological representation based
on Sy, axiom (III) for mg is equivalent to the requirement that the relation R,,, be
a closed subset of (Sg)?~(?)+1 in the product topology.

If A is finite then A = A7, each ultrafilter of 2 is principal and can be identified
with its generating element (an atom), and we get:

Theorem 3.2 If A is a finite BAO, then 2 is isomorphic to the full complex algebra
of its canonical structure Cst .
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The word “canonical” is used extensively in this subject, and we will extend it even
further by following the practice of [31] of referring to a perfect extension of 2 as
its canonical extension. In addition, the canonical extension Ex& of a relational
structure & is the canonical structure of the full complex algebra of &. Ex & is a new
structure built out of & and is called by some authors the ultrafilter extension of &,
since its points are the ultrafilters on the underlying set S of &.

Thus both algebras and structures now have canonical extensions, and the reader
will need to identify which is intended from the context. They are most readily
compared by the equations

Ex &
EmA

CstCm S
CmCst 2.

Note also that
EmCmG =CmCstCm& = CmEx S.

3.3  Canonical, Complex and Complete Varieties

As a first application of the representation theory just described, consider the variety
V. of closure algebras. If 24 = (B, m) is a closure algebra, then its canonical structure
CstA = (Sy, Rp) is a quasi-ordering. The fact that z < mz in 2 ensures that
{mz : z € s} C s, and hence sR,,s for any s € Sy, so R,, is reflexive. Also, if
sRyutR,u and © € u then mma € s and hence mz € s as mmax < mz, showing that
sR,,u. Thus R,, is transitive. A number of observations about V,; then follow:

e every member of V. is isomorphic to a regular subalgebra of the full complex
algebra of a quasi-ordering;

e since the complex algebra of a quasi-ordering is a closure algebra (cf. the table of
Section 2.2), the canonical extension Em2 = CmCst 2 belongs to V.. Hence V,,
is closed under the operation 2 — Em%|.

e V. is generated as a variety by its full complex algebras.

If 2 is a monadic algebra, then the condition = < Imz forces R,, to be symmetric.
Therefore these three observations hold if V,; is replaced by the variety V,,,, of monadic
algebras, “quasi-ordering” is replaced by “equivalence relation”, and “closure algebra”
is replaced by “monadic algebra”.

However, the situation is different for the variety Vg, of diagonalisable algebras. If
6 = (w, R) with mRn iff m > n, then R is transitive and R~! is well-founded, so
that Cm& belongs to Vg,. Now let 2 be the subalgebra of Cm& consisting of the
finite and the cofinite subsets of w. We also have 2 € V;,. However Em%l is not in
Vig- To see this, let s be the set of all cofinite sets. Then s is an ultrafilter of 2,
so it is a member of Cst2. If T € s then T is a non-empty subset of w, so mg(T)
is cofinite indeed mp(T) = {m : m > n} where n is the least member of T and
hence mg(T) € s. This shows that sR,,,s in Cst2, which is enough to violate the
defining condition

mz < m(x — mzx)

of Vig in Em2 when = = {s}, since then 0 # = < maz while m(z — mz) = m0 = 0.
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This example shows that Vg, is not closed under canonical extensions. An example
has been given in [14, Th. 3.7.1] of a diagonalisable algebra that is not isomorphic
to a subalgebra of any diagonalisable algebra of the form Cm& (we will give another
demonstration of this fact in Section 5.6). Nonetheless Vg, is generated by its full
complex algebras, since it is known that it is generated by its finite members, and
every finite algebra is isomorphic to one of the form Cm& (Theorem 3.2).

If K is a class of structures, we define
CmK ={2A:A2=Cm6 for some & € K}.

Since a complex algebra per se is one that is isomorphic to a subalgebra of Cm& for
some &, the class of complex algebras of K is SCm K. The variety VarKC generated by
K is the smallest variety containing CmK, i.e. VarC = VarCm/K = HSPCm K.

For a class W of BAQ'’s, the class of structures in YV is defined to be

St ={6:Cm6G € W}

If W is closed under isomorphism then so is Str)V, and CmStr)V C W. Hence if V is
a variety, it contains the variety generated by its own structures: VarStry C V.

Armed with these concepts, we now introduce three fundamental definitions con-
cerning a variety V.

e V is canonical if it is closed under canonical extensions:
A € V implies Em®A € V.

eV is complezr if every member of V is isomorphically embeddable into the full
complex algebra of some structure in V, i.e. if V is equal to SCmK for some class
K of structures, and hence consists entirely of complex algebras. Equivalently, a
complex variety is one satisfying ¥V = SCmStrV.

e V is complete if it is generated by a class of full complex algebras, i.e. ¥V = VarK
for some class of structures K, or equivalently V = VarStr).

It is immediate that if V = SCm K then V = VarK, so every complex variety is com-
plete. The diagonalisable algebras V;, form a complete variety that is not complex.

Every canonical variety is complex, as 2 is embeddable in Em2l = CmCst 2, and
if Em®2A € V then Cst2 € StrV. Thus EmVY C V implies V = SCmCst V. An instance
of a non-canonical complex variety is the one generated by the type 2 real-number
frame (R, <,>). This example will be discussed in detail in Section 5.6.

While each of these three properties of a variety are in general distinct, it turns
out that when StrV is closed under ultrapowers they become equivalent (cf. Corollary
4.14). We will see in Sections 5.4-5.6 that each of them corresponds to a significant
property of modal logics.

The question of which varieties are canonical comes down to the question of which
equations are preserved by canonical extensions of algebras. The first general result
about this was given by Jénsson and Tarski in Theorem 2.18 of [32] which established
that any equation holding in a BAO 2 and not involving the Boolean complementation
operation must continue to hold in any perfect extension of 2. Later work in modal
logic, culminating in [49], greatly extended the class of such preserved properties.

This will be discussed further in Section 5.5.
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4 Duality

Each of the fundamental algebraic operations H (homomorphic images) S (subalge-
bras) and P (direct products) that characterise varieties has a corresponding operation
on relational structures. We discuss them in turn.

4.1 Bounded Morphisms
Let &1 = (S1, Rj)p<a, and &y = (S, R3)p<a, be structures of type 7. A bounded

morphism f: &1 — G5 is a function f :S; — S, satisfying, for each 8 < a.,
Rj(s0,---,5,.(3)) implies R3(f(s0),---,f(s.(5))) and
R%(f(s),ul, ... u, (3)) implies there exist ¢ ... ,t, (3) € Si such that
f(tk) = ug for 1 <k < p,(B), and
Rlﬁ(s, tl, ce ,tp_,_(ﬁ)).
For K-frames with binary relations, this takes the form
SoR]ﬁ s1  implies f(so)R% fs1) and
f(s)R% u implies there exists ¢t € S; such that f(¢) = v and sR}; t,
which can be expressed even more succinctly as
f(s)R%u iff 3t e S (f(t) =u and sR}; t).

In modal logic such functions are often called p-morphisms for reasons that are ob-
scure, or zig-zag morphisms in view of their “back-and-forth” character. Our choice
of the adjective “bounded” reflects the use of bounded existential quantification in
expressing the second part of the definition. There is a model-theoretic preservation
theorem showing that a first-order sentence preserved by surjective bounded mor-
phisms is equivalent to a positive sentence in which quantifiers only occur in the
“R-bounded” forms

, Fug vy (R(v,v0, -+ s Un_1) A @)

(cf. e.g. [14, Th. 4.2.5], and Section 4.6 below).

There is another way of explaining what a bounded morphism is that may appeal to
some mathematical tastes. This is based on the observation that a relation R C S™*!
can be identified with the function R[-]: S — SbS™ having

Rs| = {(ti,. .., tn)  R(s,t1,... .t)}.

The definition of bounded morphism is equivalent to the requirement that for all
s € 517

Vg - Vo1 (R(v,v0, - .., Un—1) = )

F(R3ls]) = R3[f(s)),
which states that the following diagram commutes (where n = p,(8) and f" is the
function induced coordinate-wise by f).

RL[-
s, =l Sh ST
1r Lrr
R[]

Sy 25 SbhSy
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A bounded morphism f : &; — &, induces the function f* : Sb6S, — SbS; that
pulls subsets of Sy back along f to their inverse images, i.e. f*(T) = f~1(T). Then
f* proves to be a homomorphism from Cm&, to Cm &y, and indeed the reader may
check that the conditions defining a bounded morphism are exactly what is required
to make f1 preserve the polymodal operators:

f+(mR§(T0=--- To(3)-1)) = ng(er(To):--- ST, )-1)),

which is the ultimate explanation of why bounded morphisms are the natural maps
to deal with in this context.

Assigning the complex algebra Cm& to &, and f* to f gives a contravariant func-
tor from the category of relational structures of type 7 with bounded morphisms as
arrows to the category of BAQO’s of type 7 with BAO homomorphisms as arrows. This
functor is part of a dual equivalence between the former category and the subcate-
gory of the latter category consisting of complete and atomic BAO’s with complete
homomorphisms. For modal algebras and K-frames, this equivalence is discussed in
detail in [57].

The standard symbols > and — will be used to denote functions that are injective and
surjective, respectively. The notations &; — &, and &; — &, indicate that there
exists a bounded morphism from &; to &5 that is injective or surjective, respectively.
Similarly, 2; — 25 and 2; — 2, indicate the existence of injective and surjective
homomorphisms between algebras.

The dual correspondence interchanges injections and surjections: if f : &7 — &y
then f*:CmGy - Cm&y, and if f : 6; - Gy then fT: Cm &S, — CmG;.

A surjective bounded morphism will be called a bounded epimorphism, and if &1 —
G, then G5 is a bounded epimorphic image of G;. When this happens, the injection
Cm G, — Cm&; makes Cm &5y isomorphic to a subalgebra of Cm&;. Hence

Lemma 4.1 If G5 is a bounded epimorphic image of &1, then Cm&y — Cm &y and
every equation satisfied by Cm &y is satisfied by Cm G,.

A homomorphism g : 23 — 2, of BAO’s gives rise to a bounded morphism gy :
Cst 2, — Cst 2y of their associated canonical structures. g, assigns to each ultrafilter
s of A, its inverse image {z € Ay : g(z) € s}, which is an ultrafilter of ;. The
proof that g is a bounded morphism is elaborate, and similar in strategy to the
proof described in Section 3.2 that the canonical embedding function 7y preserves
polymodal operators. Full details may be found in Theorem 2.3.2 of [14].

The correspondence g — g4 also interchanges injections and surjections: if g :
A1 — 2y then gy : CstAy; - Cst2y, and if g : Ay — Ay then g4 @ CstAy — Cst 2.
Thus if 2, is (isomorphic to) a subalgebra of 2,5, then Cst 2, is a bounded epimorphic
image of Cst . (The reader should be aware that the prefix “epi” is sometimes used
for homomorphisms between algebras to indicate a category-theoretic property weaker
than surjectivity. In the present article however the word “epimorphism” will only be
applied to bounded morphisms of structures, and will be used precisely to indicate
their surjectivity.)

Note that g4 : Cst 2y — Cst2l; in its turn induces the homomorphism (g4 )% from
CmGCst 2y to CmCst Ay, i.e. from Em®A; to Em®As. Thus if Ay — As or Ay — As,
then Em®2; — Em2; or Em2(; — Em%,, respectively.
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Likewise, from a bounded morphism f : &; = &5 we get the bounded morphism
(ff)4 from CstCm &, to CstCm Gy, ie. (f1), : ExS; — ExSy. Thus if & — S,
or &; - G,, then Ex&; — Ex G, or Ex &1 — Ex &4, respectively.

As an application of this duality, we have

Theorem 4.2 A variety V is canonical if, and only if, it contains the canonical ex-
tensions of all its infinitely-generated free algebras.

Proor. If A € V, then there is an infinitely-generated free 2; in V with 2A; — 2.
Then Em2; — Em#, so if V contains Em®l;, it will contain Em® by closure under
homomorphic images. | |

There is a useful generalisation of the notion of bounded morphism which we will call
a bounded ultrafilter map from a structure & to a BAO 2 of the same type 7. Let
f 6 — Cst2l be a function assigning to each point s in & an ultrafilter f(s) of 2.
Then f induces the function f : 2 — Cm &, defined for each element a of A by

ffa)={se€S:a€ f(s)}

The properties of ultrafilters ensure that f* is a Boolean algebra homomorphism. f
will be called a bounded ultrafilter map from & to 2 if it satisfies, for all 8 < a,,
s€S,and ag,...,a, g-1 €2,

mg(ao, ... a, 3y—1) € f(s) iff there exist ty,... 1, (3y-1 € S such

that Rg(s,to,... ,t, (3)—1) and

a; € f(t;) for all i < p-(8).

This is the condition that ensures that f* preserves the polymodal operators mg of
2l and mpg, of Cm&, and hence is a BAO homomorphism.

f will be said to cover 2 if for each non-zero element a of 2 there is some s € S
such that a € f(s). This ensures that

a#0 implies f*(a)#0,
so that f* is an injection of A into Cm &. To summarize:

Theorem 4.3 If there exists a bounded ultrafilter map from & to 2A that covers 2,
then the induced homomorphism 2 — Cm & is injective and makes A isomorphic to

a subalgebra of Cm&. ]

A bounded ultrafilter map f from & to CmT may be thought of as a bounded ul-
trafilter map from & to the structure . Such a map covers Cm¥ precisely when its
range includes all principal ultrafilters of Cm%.

A special case of this arises from a bounded morphism f : & — ¥, which can be
identified with the ultrafilter map fg : & - CstCmT = Ex T for which fx(s) is the
principal ultrafilter

{UCT: f(s)eU}
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of Cm¥ generated by {f(s)}. f# covers Cm%¥ precisely when f is surjective.
Ultrafilter maps were introduced for type 1 Kripke frames in [57], where it was
shown that the category of frames with bounded ultrafilter maps is dually equiva-
lent to the category of complete and atomic modal algebras with ordinary algebraic
homomorphisms as arrows.
Bounded ultrafilter maps will be used in Section 5.6 in proving that the variety

generated by Dedekind-complete linear orderings is complex.

4.2 Non-FEquational Properties

Bounded morphisms can be used to show that there is no equation that is satisfied by
the complex algebra of a type 1 frame precisely when its binary relation is irreflexive,
i.e. Vs—(sRs).

Let &, be the frame (w, <) and &, the one-element frame ({0}, R) with 0R0. The
unique map w — {0} is a bounded epimorphism, so every equation satisfied by Cm &,
is satisfied by Cm &, (4.1). But &; is irreflexive while &, is not.

Notice that another property enjoyed by &; but not &, is asymmetry, i.e. if sRt
then not tRs, so this is not equationally definable either.

Similarly, there is no equation that we can add to the definition of “closure algebra”
to characterise those quasi-ordered frames that are partially ordered, meaning that
they are antisymmetric: sR¢ and ¢Rs implies s = ¢. If &} is the partial order (w, <)
and 6}, = ({0,1}, R) with R the universal relation, then putting f(m) = 1 iff m is
even gives a bounded epimorphism &} — &), showing that equations are preserved
in passing from Cm &} to Cm&),. But &) is not antisymmetric.

By the same token, we can use bounded morphisms to impose conditions like irreflex-
ivity and antisymmetry when representing certain algebras as complex algebras. For
example, if a frame & = (S, R) contains a point s that is reflexive, i.e. sRs, we remove
s and replace it by a copy {(n,s) : n < w} of the frame (w, <). Each new point (n, s)
bears the same relation to the old points that s did, the old points are unaltered in
their relation to each other, and finally

(n,s)R(m,s) iff n<m.

Thus none of the new points are reflexive, and the new frame &’ has a bounded
morphism f onto &, that acts by f((n,s)) = s and otherwise is the identity function.
It follows that Cm & is isomorphic to a subalgebra of Cm &’. By removing all reflexive
points in this way, it can be shown that any modal algebra can be embedded into the
complex algebra of a K-frame whose relations are irreflexive.

This technique, which is sometimes called “bulldozing” in modal logic, has been
most effectively used for modifying frames & = (S, R) with R a transitive binary
relation. On such a frame an equivalence relation ~ is given by

s~t iff s=tor (sRt and tRs).
The equivalence class Cs = {t : s ~ t} is called the cluster of s. Putting

Cs S Ct lff SRt
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gives a well-defined relation between clusters that is transitive and antisymmetric.
Hence putting

Cy < Cy iff OSSC,: and CS#Ct
iff sRt and not tRs

defines < to be a strict ordering, i.e. transitive and irreflexive, hence asymmetric.

There are three types of cluster. A degenerate cluster consists of a single irreflexive
point, a simple one consists of a single reflexive point, and a proper cluster contains
at least two points, which must be reflexive because the relation R is universal on a
proper cluster. Thus a partial ordering is itself a transitive frame in which all clusters
are simple, and a strict ordering is one in which all clusters are degenerate.

A partial ordering is called linear if it is connected, i.e. one of sRt and tRs holds
for all distinct s,t. If C' is a proper cluster in &, we “flatten” C to a linear ordering
by first taking an arbitrary linear ordering <¢ of C and then replacing C' by w copies
of <¢, i.e. one for each natural number. The new frame &' has w x C in place of C,
with the new points being ordered by putting

(n,s)R'(m,t)y iff n <morelsen=mand s <c t.

Then similarly to the above case we can show that & is a bounded epimorphic image
of &', with &’ having a sequence of simple clusters {(n, s)} in place of C.
This construction leads to the following conclusions:

e every quasi-ordering is a bounded epimorphic image of a partial ordering;

e every connected quasi-ordering is a bounded epimorphic image of a linear ordering;

e every closure algebra is isomorphic to a subalgebra of the complex algebra of a
partial ordering, and hence

e the variety V. of closure algebras is generated by the complex algebras of partial
orderings.

If, instead of <, we take a strict linear ordering <¢ of C and put
(n,s)R'(m,t)y iff n <morelsen=m and s <c¢ t,

the result is to bulldoze C into a strict linear ordering. By doing this to all non-
degenerate clusters we show that every transitive frame is a bounded epimorphic image
of a strict ordering, and every connected transitive frame is a bounded epimorphic
image of a strict linear ordering.

The study of linear temporal logic is based on connected time-frames, which are
type 2 frames of the form & = (S, R, R™') with R (and R~!) being transitive and
connected. Bounded morphisms for such structures have to respect both R and R~',
and so in bulldozing a cluster C we use Z x C, i.e. replace C' by one copy of <¢ or <¢
for each integer, giving a strict linear ordering that is endless in both directions. In
this way it is shown that every connected time-frame is a bounded epimorphic image
of a strict linear time-frame, and every reflexive connected time-frame is a bounded
epimorphic image of a linearly ordering. In certain circumstances we can then carry
this even further by replacing each member of Z x C by a copy of the rationals Q
to obtain a dense linear ordering having the original frame as a bounded epimorphic
image.
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4.8 Inner Substructures

A structure 6; = (Sl,Ré>5<aT is an inner substructure of Gy = (SQ,R%)5<QT if
S1 € Ss, and the inclusion S; < S5 is a bounded morphism from &; to &,. This is
equivalent to requiring that &, be a substructure of G, in the standard sense, i.e.

1 _ p2 pr(B)+1
R;=R;N S5 ,
and that
R%(s,tl, sty () and s € 51 implies #y,...,t, (3 € S1

(cf. [14, Lemma 3.2.2]).

The image of any bounded morphism is always an inner substructure of the codomain.
In particular, if f : 67 — &, is an injective bounded morphism then the image of f is
an inner substructure of &5 isomorphic to &7 under f, and conversely. For instance,
if a BAO 25 is a homomorphic image of 2, then the epimorphism 2A; — 25 induces
an injective bounded morphism Cst 2, — Cst2(; making the canonical structure of
20, isomorphic to an inner substructure of the canonical structure of 2.

Observe also that from a bounded injection &; — &5 we get a surjective homomo-
morphism Cm &, -» Cm &, which preserves equations. Hence

Lemma 4.4 If &, is isomorphic to an inner substructure of &s, then Cm&y is a
homomorphic image of Cm&y and every equation satisfied by Cm&, is satisfied by
Cm 61.

For type 1 frames, the definition of &; = (Si, R1) being an inner substructure of
Sy = (S, Ry) is particularly direct: Sy is a subset of Sa, R is the restriction of Ro
to S1, and Sy is closed under R, in the sense that

if sRot and s € Sy, then t € S;.

In modal logic some authors refer here to &, being a generated subframe of G4, the
name originating from the emphasis there is in modal model theory on subframes
that are generated by a single element. To consider this notion, let s be a point in a
type 1 frame & = (S, R). Then the subframe generated by s is the substructure G
of & whose underlying set S; is the intersection of all inner substructures of & that
contain s. G is itself an inner substructure of &, with

S,={teS:sR't},

where R* is the reflexive transitive closure of R. Thus ¢ € S, iff there exists a sequence
to, ... ,tn of members of S (for some n > 0) such that

The importance of this notion derives from the fact that in a modal model based on
S (cf. Section 5.3), truth-values of formulae at s depend only on the truth-values at
points in G;.

For a general structure & = (S, Rg)3<q. of type 7, the characterisation of the
smallest inner substructure G, of & containing the point s is rather more elaborate,
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but in similar vein. First, define a binary relation Rg on S by putting

tReu iff 38 < a; and Ju,... ,u, (3 € S such that
Rg(t,u1,... ,u, () and u = u; for some i < p,(8).

Then & is the inner substructure of the frame (S, Rg) that is generated by s, i.e.
S, ={t € S:sRgt}.

Now the bounded inclusion &, — & induces the homomorphism g, : Cm& — Cm &,
having ¢,(T) = T N S,. Since g4(T) # @ if s € T, it follows that the product map
(gs : s € S) is an injection of SbS into the product of the algebras Cm &, and since
the g,’s are surjective, this give a subdirect-product representation

CmG — H Cm&,
seS

of Cm & in terms of the complex algebras of point-generated structures. In fact this is
a representation by subdirectly irreducibles: the algebra Cm &y is always subdirectly
irreducible, as shown in [14, Th. 3.3.2].

If A is a subalgebra of Cm &, then taking 2 to be the subalgebra of Cm &, that is
the image of 2 under g, by similar reasoning we get the subdirect representation

A— [ 2%

seS
Combined with the representation underlying Theorem 3.1, this yields

Theorem 4.5 Every normal BAO has a subdirect representation by complex algebras
based on point-generated structures.

An important case of the notion of inner substructure arises in the context of the
study of cylindric algebras, specifically in the concept of a weak Cartesian structure.
If U is a set then U is the set of all sequences © = (z, : A < «a) of length « whose
terms z, all belong to U. *U is known as the a-dimensional Cartesian space with
base U. Each subset S of *U determines the structure

G(S) = <S7 R§, Efﬂ))\,u<a7
where

RY = {{z,y) :z,y € S and z, =y, for all p < @ with p # A},
Efu = {zeS:z\=2x,}

When S = “U, structures of the form &(*U) are called (full) Cartesian structures of
dimension «, and the structures isomorphic to these form the class Fct,.

Complex algebras that are based on Cartesian structures &(*U) are known as
cylindric set algebras of dimension o and form the class Cs, [HMTII, Definition



412 Algebraic Polymodal Logic: A Survey

3.1.1]. (Note that if S # “U, Cm&(S) may not be a cylindric algebra at all.) Thus
if I is the isomorphism closure operator, then

ICs, = SCmFet,,.

A representable cylindric algebra of dimension « is an algebra that is isomorphic to
a direct product of cylindric set algebras of dimension «. Thus the class RCA, of
representable cylindric algebras is given by

RCA, =SPCmFct,.
In [19, Lemma 3.4] we show that
RCA, =SPCmS Fet,,

where S denotes the operation of forming the class of inner substructures of the
members of a given class of structures (cf. Section 4.4). This fact, together with
results described in Section 4.6 below, can be used to give a new proof that RCA,
is a canonical variety.

Now if z € *U then the weak Cartesian space with base U and dimension o deter-
mined by x is the set

(!U(T) — {U cay - {)\ < a:yx ;é ;1,')\} is ﬁnite},

and &(*“U®)) is a weak Cartesian structure of dimension . The class Wet, consists
of all structures isomorphic to those of the form &(“U(*)).

In the case that a is finite, then by definition *U*) = U/, and so &(*U®)) is just
S(*U) itself, i.e. in this case all weak Cartesian structures are full. But in any case
we have that &(*U™)) is the inner substructure &(°U), of &(*U) point-generated
by z, as described above. This follows because the relation Rg(ay) used to define
&(*U), satisfies

rRe@euyy it {A<a:yx#zy\}is finite.

Ry is in fact the smallest equivalence relation on U that contains all the relations
Rf and the point-generated structure &(*U), is based on the Rg~p)-equivalence
class of the point z. Thus distinct weak Cartesian substructures of §(*U) are disjoint,
and if ¥ is any inner substructure of &(*U) then ¥ will be the disjoint union of those
weak Cartesian substructures generated by points of ¥. It follows that

CmT = [ Cme(*U™),

rET

and this establishes the relationship
CmS Fet, C PCmWret,.
Further characterisations of representable cylindric algebras obtained in [19] include

RCA, =SPCmSWrct, = SPCmWrct,.
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4.4 The Calculus of Class Operations

First, here is a summary of the main features of the duality between BAO’s and
relational structures thus far developed:

e A bounded morphism f : &; — &, induces a homomorphism f* : Cm&, —
Cm &y, such that if f: &; »» G5 then fT: CmGy - CmGy, and if f: &) - &y
then f*:Cm&, — CmG;.

e A homomorphism g : 2l; — 25 induces a bounded morphism g, : Cst 2, — Cst 2,
such that if g : 2; »— Ay then gy : CstAy — CstAy, and if g : Ay — Ay then
g+ (CSthQ — (CStQ[].

e If &; is (isomorphic to) an inner substructure of G,, then Cm &, is a homomorphic
image of Cm Gs.

e If G5 is a bounded epimorphic image of &1, then Cm &5 is isomorphic to a subal-
gebra of Cm&;.

e If 2, is (isomorphic to) a subalgebra of s, then Cst®2l; is a bounded epimorphic
image of Cst2,.

e If 5 is a homomorphic image of 2, then Cst %, is isomorphic to an inner sub-
structure of Cst ;.

o If Ay — Ay or A; — As, respectively, then Em2A; — Em2A; or Em®2; — Em%s,
respectively.

o If 61 — 62 or 61 —» 62, respectively, then EXGl — ]EXGQ or EXGl - ]EXGQ,
respectively.

Now for a class K of structures, let H/XC be the class of all bounded epimorphic images
of members of K, and S K the class of all structures that are isomorphic to an inner
substructure of some member of K. We can combine these operations to form S HK,
HHK etc., and also combine them with other operations on classes of structures or
algebras, as in SCmHK etc. To compare such class operations X,Y, the partial
ordering X <Y is defined to mean that XX C YK for all classes K. Thus the first
duality statement above entails that

CmS <HCm and CmH <SCm.

Theorem 4.6

(1) HH = H, SS =S8.

(2) SH < HS.

(3) If V is closed under subalgebras and homomorphic images, then StrV is closed
under H and S and reflects Ex, i.e. Ex& € StrV implies & € Str).

(4) EmSCm < SCmEx.

(5) HCmS = HCm and SCmH = SCm.

(6) CstHS < SHCst .

(7) CstHSCm < SHEXx .

PrOOF. (1) and (2) are fairly routine and left to the reader.
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(3) Closure of StrV under H and S is given by Lemmas 4.1 and 4.4. For reflection of
[Ex , observe that from the canonical embedding

Cm& - EmCm& = CmEx &

it follows that if CmEx & € V then Cm& € V), as desired.
(4) Let 2t € SCmK. Then 2 — Cm& for some & € K. Hence

Em2— EmCm& = CmEx G,

showing Em2l € SCmEx K.
(5) We noted above that CmS < HCm. Therefore

HCmS <HHCm =HCm < HCmS,

giving HCmS = HCm. Similarly SCmH = SCm follows from CmH < SCm.

(6) If A € HSW, for W a class of BAQ'’s, then there are algebras 2, > with 2, € W
and
A« Ay — As.

Hence by duality,
Cst A — Cst Ay « Cst s,

showing Cst 2l € SHCst W, as desired.
(7) By (6) Cst HSCm K C SHCst Cm K. But Cst CmK = Ex K by definition of Ex.

The results listed in 4.4.1 provide an effective calculus for reasoning about the closure
properties of various classes (cf. the proof of 4.5.3 and 4.6.6 below for example).
We may view 4.4.1(4) as saying that the operator Em can pass to the right of the
combination SCm to become Ex, while 4.4.1(5) says that HCm absorbs S on the
right, etc.

4.5 Disjoint and Bounded Unions

The dual to the algebraic construction of direct products is the structural operation
of formation of disjoint unions. If {&; : j € J} is a collection of 7-structures &; =
(Sj, R})p<a., then their disjoint union is the T-structure

[18; = U, (X; x {i}), Rs)s<a.,

J

where )
Rg ={((50,4)s--- +(8p.(8),7)) : j € J and Ré(so,... »Sp(8))}-

Essentially then, [ ; &; is the union of a collection of pairwise disjoint copies &; x {5}
of the structures &;.

For each i € J, the correspondence s — (s,4) gives an injective bounded morphism
6&; — [[, 6;, whose image &; x {i} is an inner substructure of [[ , &; isomorphic to
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;. In practice it is often convenient to identify this image with &;, i.e. to regard the
6;’s as being pairwise disjoint, and [], &; as simply being their union. Then each
8, is itself an inner substructure of the disjoint union.

The duality between direct products and disjoint unions is provided by an isomor-

phism
H CmG,; = Cm H S,
J J

associating to each member (T; : j € J) of the direct product of the Cm&;’s, the
disjoint union of the T}’s ([14, Lemma 3.4.1]). Hence in general

PCmK =CmUdK,

where Ud IC is the class of disjoint unions of structures isomorphic to members of K.

A given family {6, LA S : j € J} of functions with the same codomain & induces
naturally the function
[Is; s,
J

where f((s,j)) = f;j(s). It is readily seen that if each f; is a bounded morphism, then
f is also a bounded morphism.

A structure & is the bounded union of {&; : j € J} if it is the union of the &;’s as
inner substructures, i.e. if

(1) each &; is an inner substructure of &, and

2)S=U{S;:jeJ}

In this case, if &; ﬁ) G is the inclusion S; — S, then the function f : [[,6; — &
of the previous paragraph is a bounded epimorphism. Thus a bounded union of
structures is a bounded epimorphic image of their disjoint union. A weak converse
of this is also true: a bounded epimorphic image of a disjoint union []; &; is the
bounded union of the images of the §;’s.

Notice also that a disjoint union [ [, &; is itself the bounded union of the isomorphic
copies 6; x {j} of the &;’s.

We use the notation Ub for the operation of forming bounded unions, analogously
to Ud.

Observe that if & is the bounded union of {&; : j € J}, then from (1) by duality we
get a surjective homomorphism Cm& — Cm&; for each j € J, and these surjections
give rise to the product map from Cm& to [[,Cm&; taking each T C S to the
element (I'N S; : j € J) of the direct product of the Cm&;’s. But then it follows
from (2) that this product map is injective, so we have a subdirect embedding

CmG — HCmGj.
J

Moreover, if the &;’s happen to be pairwise disjoint then this embedding is surjective
and reproduces the isomorphism between Cm [[; &; and [[; Cm &, described above.
The upshot of this discussion is that

e the notion of bounded union is dual to that of subdirect product.
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Theorem 4.7
1

(1)
(2) If V is closed under direct products, then StrV is closed under disjoint unions.
(3) UdUd =Ud, UbUb = Ub.

(4) Ud < Ub < HUd = HUb = UbH.

(5) UdH < HUd .

(6) SUd = UdS.

(7) SUb < UbS < HSUd = HS Ub.

PrOOF. (1) was observed above, and (2) follows from it. The remainder are left to
the reader. [ ]

We are now in a position to establish some characterisations of canonicity.

Theorem 4.8 The variety VarK generated by a class of structures K is canonical
if, and only if, the class StrVarK of structures in VarK is closed under canonical
extensions.

PRrROOF. If & € StrVarK then Cm& € VarK so if VarK is canonical then EmCm& €
VarKC. But EmMCmG = CmEx &, so this makes Ex & € StrVarK as desired.

For the converse, if 2 belongs to Var/lC = HSPCm K there exists an algebra 20* and
a subfamily {&; : j € J} of K such that

A« A" — HCmG_i = Cm(H S;).

Putting & = [[; 6;, we then get
Em2l « Em2A* — EmCm& = CmEx 6.

But Cm& is in VarK, by closure under products and isomorphism, so CmEx & is in
Var IC if StrVar K is assumed closed under Ex. Closure of Var K under subalgebras and
homomorphic images then implies Em® € Var K. Hence VarC is canonical. [ |

Theorem 4.9 A variety V of BAO’s is canonical if, and only if,

(1) V is complete, and
(2) the class StrV of structures in V is closed under canonical extensions.

PROOF. A canonical variety is complete, while closure of StrV under canonical exten-
sions is a special case of canonicity, as the first part of the previous proof shows.

Now suppose that (1) and (2) hold. Since V is complete, it is generated by its class
of structures StrV, so

vV HSPCmStry
= HSCmUdStrY as PCm =CmUd (4.7(1))

— HSCmStrV,

the last step being because StrV is closed under disjoint unions (4.7(2)).
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Thus if 2 belongs to V then 2 € HSCm Str), so the canonical structure Cst2l is in
Cst HSCmStrV. Now by Theorem 4.6(7)

3

Cst HSCmStrY C SHEx StrV,

and by our hypothesis (2) ExStrV C StrV. But StrV is closed under H and S by
4.6(3), so altogether SHEx Str}V C StrV and therefore Cst2 € StrV. Hence Em® =
CmGCstA € V.

This proves that if 2 is in V then so is Em%, i.e. V is canonical. [ |

A more detailed analysis of the relationship between properties of Str) and canonicity
of V is given in [14, Sections 3.5, 3.7].

4.6 Ultrapowers and Ultraproducts

PuC is the class of all structures that are isomorphic to an ultraproduct of members
of K. Pwk is likewise defined as the closure of K under ultrapowers. The symbol
Ru denotes the inverse Pw~—! to the operation Pw: RuK is the class of ultraroots
of K, comprising those structures & having some ultrapower &7 /F isomorphic to a
member of K.

K is defined to be an elementary class of relational structures if it is the class of
all models of some set of sentences in the first-order language of its type. Elementary
classes are characterised as those closed under Pu and Ru .

There are a number of fundamental results about ultrapowers and ultraproducts
that bear on the relationship between elementary logic and the equational logic of
complex algebras. The first we consider is

Theorem 4.10 The class StrV of structures in a variety V is closed under ultraroots.

PRrROOF. This follow from the fact that for any ultraproduct (J]; &;)/F there is an
injective homomorphism

([[cms;)/F — cm([] &,/F).
J J

as described in detail in [14, 3.6.5]. In the case of an ultrapower this takes the form
:(Cm&)’/F— Cm(&7/F),
where, for T € (Cm&)”, § maps T/F to the set
6(T/F) = {f/F € & |F: {j: f(j) € T(j)} € F}.
Composing @ with the (elementary) embedding of algebras Cm& — (Cm&)” /F yields
Cm& — Cm (67 /F).

By closure of V under subalgebras, it follows that &7 /F € StrV implies & € StrV,
i.e. StrV is closed under Ru. [ |
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The symbols Pu and Pw will be used for the operations of forming ultraproducts and
ultrapowers of algebras. Thus the first two sentences of the proof just given assert
that

PuCm <SCmPu and PwCm <SCmPw,
while the embedding Cm& — Cm (&7 /F) establishes

CmRu <SCm,

and hence SCmRu = SCm.

Theorem 4.10 implies that Str) is elementary iff it is closed under ultraproducts.
But in fact classes of the form Str) are even more constrained than this: it is enough
for them to be closed under ultrapowers for it to follow that they are elementary. The
proof of this result is based on the following observation.

Theorem 4.11 An ultraproduct of a collection of structures {&; : j € J} is iso-
morphic to an inner substructure of an ultrapower of their disjoint union. Hence
Pu < SPwld.

PROOF. There is a natural bounded injection

(IIen/F— (qIen’/F
J

I
taking f/F to g/F, where g(j) = (f(4),4). Cf. [14, 3.8.3] for details. [ |
Corollary 4.12 For any variety of BAO’s V, the following are equivalent.

(1) StrV is an elementary class.

(2) StrV is closed under elementary equivalence.
(3) StrV is closed under ultrapowers.
(4)

4) StrV is closed under ultraproducts.

PrOOF. That (1) implies (2) and (2) implies (3) is standard. That (3) implies (4)
follows from Theorem 4.11 and the fact that Str) is always closed under disjoint
unions, inner substructures and isomorphism. Finally, as already noted, (4) implies
(1) as a consequence of 4.6.1 and the characterisation of elementary classes as those
closed under Pu and Ru. [ |

Corollary 4.6.3 is the algebraic generalisation of a result that Johan van Benthem
originally proved for the class of Kripke frames validating a modal formula. His
approach used a model-theoretic compactness argument. A discussion of that proof
is given in [20].

The next result is essentially an ultrapowers version of an application of saturated
models to modal logic that first appeared in [12].

Theorem 4.13 For any structure &, the canonical extension Ex S is a bounded epi-
morphic image of some ultrapower of 6. Hence Ex < HPw.
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PROOF. Given an ultrapower G'I/F7 a map
67 /F - CstCm&
of the desired form is obtained by assigning to each element f/F of &7/F the set
{rcs:{jel:fj)eT}erF},

which is indeed an ultrafilter of Cm & and hence a member of the canonical structure
of Cm&. If the ultrapower &7/ F is w-saturated, this map is a bounded epimorphism,
as shown in detail in Section 3.6 of [14].

Corollary 4.14 For any variety of BAO’s V, if StrV is closed under ultrapowers,
then the following are equivalent.

(1) V is canonical.
(2) V is comple.
(3) V is complete.

PROOF. We have already observed that (1) implies (2) and (2) implies (3) in general.
But if StrV is closed under ultrapowers, then since it is always closed under bounded
epimorphic images (4.6(3)), 4.6.4 implies that it must also be closed under canonical
extensions. Hence by Theorem 4.9, if it is complete then it is canonical. [ |

Theorem 4.15 If a variety of BAO’s is generated by an elementary class of struc-
tures, then it is canonical.

PROOF. We give the main features of a proof that has been discussed in detail in the
papers [14, 15, 19]. There are two main additional ingredients. First, the fact that an
ultraproduct of bounded unions of structures can be represented as a bounded union
of ultraproducts of those structures: PulUb < UbPu (cf. Theorem 2.4 of [19] for the
proof). To be precise, we need a special case of this fact, namely

(i)  PwlUd < HUdPu.

Second, a result that shows how the canonical structures of members of Var K can be
constructed out of members of K:

(ii) CstVarK C SHUd PuKC.

The proof of (ii), which holds for any class K, is as follows.

CstVarK = GCstHSPCmK by definition of Var
= GCstHSCmUdK as PCm =CmUd (4.7(1))
C SHExUdK by 4.6(7)
C SHHPwUdK by 4.13
C SHHHUdPuK by (i)

SHUd Puk by 4.6(1).

Now suppose that our variety is VarK and K is elementary. Then Puk = K, so as
StrVar K contains K and is closed under S, H, and Ud, from (ii) we then get

Cst VarK C SHUd K C StrVarKk.
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Therefore
EmVarK = CmCst VarK C CmStrVarK C VarK,

showing that Var X is canonical. | |

In the proof just given, we only used the fact that Pukl = K and not the stronger
assumption that K is elementary (i.e. Ru-closed as well). However, for an arbitrary K
we have VarXC = VarRu I, since Ru K C StrVarK (4.10), and when PuX = K we have
that Ru [ is an elementary class, the smallest one containing . In this sense we may
always assume we are dealing with an elementary generating class for the variety in
question, rather than just a Pu-closed one.

Now when VarK is canonical, it consists of complex algebras and so can be described
as SCmN for some class of structures A/. This A is by no means unique, and can be
taken to be elementary when K is, as shown by the following result from [19, 4.10
4.12].

Theorem 4.16 If Puk = K, and N is any class satisfying
@) CstVarK C N C StrVarK,
then EmVarK C CmN C VarK, and so VarK = SCmN. In particular if M is any

class satisfying
CstVarK C M = PuM C StrVark,
then N' = Ru M is an elementary class fulfilling (1).

In some cases, an assumption weaker than Pu-closure can be used to show that a
class of complex algebras forms a variety closed under canonical extensions. The
most general statement of this kind known to the author is

o If PuK CHSUdK, then SCmSUdK is a canonical variety equal to HSP Cm K.

A proof of this is given in [19], where the result is applied to give another proof that the
class of representable cylindric algebras of a given dimension form a canonical variety.
This application uses our characterisation of RCA, as SCmSUdFct, (Section 4.3
above), together with the following results about ultraproducts of Cartesian and weak
Cartesian structures:

PulUb Fet,
CmWcet,

Ub Fet,;

-
C SCmPwFct,.

The proof method can also be applied to other kind of algebras whose elements are
a-ary relations, including the cylindric-relativised set algebras that are involved in
recent studied of fragments of first-order logic [47, 3, 39] and representable quasi-
polyadic algebras [46].

An unresolved issue in this subject is whether the converse of 4.15 is true, i.e. whether
every canonical variety V must be of the form VarK for some elementary class . All
known canonical varieties are of this form (including examples involving cylindric al-
gebras and relation algebras), and experience from modal logic suggests that a natural
way to approach the problem is to focus on the free V-algebra 217 on denumerably
many generators and the first-order theory of its canonical structure Cst Y. Theorem
4.15 of [19] provides the following justification of this approach:
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o If a variety of BAO’s V is generated by some elementary class of structures, then
it is generated by the elementary class of those structures that satisfy the same
first-order sentences as the structure Cst Y.

This result can in turn be strengthened by limiting the class of first-order sentences
involved. A first-order sentence will be called quasi-modal if it is of the form Vuvy
with ¢ being constructed from amongst atomic formulae and the constants L and T
using at most A (conjunction), V (disjunction), and bounded universal and existential
quantifiers

Yoo - - Vop—1(R(v,v0, ... ,up—1) = )

Jug -+ - Fup—1 (R(v,v0, ... ,Un—1) A1)

with v distinct from vy, ... ,v,_1. Any quasi-modal sentence is preserved by S, H,
and Ud while conversely, if a set of first-order sentences is preserved by these three
operations, then it is logically equivalent to a set of quasi-modal sentences. This
was proven in [59] for the language of a binary predicate, and in [14, Section 4] for
languages of arbitrary type.

This preservation theorem was analysed further in [19, Section 7] (where quasi-
modal sentences were called “pseudo-equational”). The analysis showed that if ¥y
is the set of all quasi-modal sentences true of a class K of structures, and Mod ¥ is
the class of all models of ¥, then

Mod ¥y = RuUbRuUbRuHS K.
Since StrVarK is closed under the operations Ru, Ub, H, S it follows that
Mod Wy C StrVarKk.

Moreover we have

SHUd PuK C Mod ¥k

since Ui is preserved by S, H, Ud, and Pu, so result (ii) in the proof of 4.6.6 yields
CstVarK C Mod Wi
Thus we can apply 4.16 with ' = Mod ¥ to infer that

if Pukl = K then VarK = SCmMod Ui.

Now for a variety V, if ¥y is the quasi-modal theory of the structure Cst Y, then it
is shown in [19] that when V = VarK for some Pu-closed K, then

SCmMod\I!;C = SCmMod\IIV

(although possibly Ui # ¥y). Combined with the above results, this yields

Theorem 4.17 If a variety of BAO’s V is generated by some elementary class of
structures, then YV = SCm Mod Uy, where Wy, is the quasi-modal theory of the canon-
ical structure Cst AY.
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5 Polymodal Logic
5.1 Languages and Logics

A modality is a linguistic construction that takes a statement ¢ and forms a new
statement that asserts something about the way in which ¢ is true. There are many
words and phrases of ordinary language that function as modalities, and some of
these form interdefinable pairs, like possibly/necessarily, eventually/henceforth, and
it is permissible that/it ought to be. In formal languages, the symbols & and [ are
often used for for a pair of modalities of this type, with the interdefinability given by

We will be discussing languages with several (possibly infinitely many) such modal
connectives, so we use ordinals to index them and present them in the form (3),[3]
with
[Bl==(B)~,  (B)=-[B]~

Most studies of modal logic are based on a language with denumerably many propo-
sitional variables. Here we will find it useful to consider languages with larger sets
of variables, so from the outset we suppose we have a distinct variable p, for each
ordinal A, and for each infinite cardinal number k define

@N:{p)\i)\<li}.

Then for each ordinal «, a modal language L («) is generated from ®,;, the usual
Boolean connectives, and a collection {(3) : f < a} of “diamond” modalities. The
set of formulae ¢ of £, («) is given by the definition

pu=pal Lol Vel (B

where A ranges over ordinals less than x and (3 over ordinals less than «. Other
connectives are given by the usual abbreviations

Aty for =(=p V)
=Y for —pVy

e for (p=>P)A W — @)
[Ble  for —(B)~e.

Thus the standard language for type 1 logic is £, (1) and that for type 2 logic, in-
cluding temporal logic, is £, (2). Languages of the kind £, (a) may be called unary
since they involve only one-placed modal connectives. More generally, given a type
T = (@, pr) as defined in Section 3.1, an associated language £,;(7) is defined for each
infinite cardinal k by using connectives (3) of rank p.(8) for 8 < a,. The formulae
of L, (1) are specified by

pu=pal L =pler Ve | (B) @0, 0p8)-1)
and now the p(8)-ary “box” operator associated with () has

[B1(po, - @p,(3-1) = (B (=0, - - s =0, (8)-1)-
A logic in the language £, (7) is defined to be any set A of L, (7)-formulae such that
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e A includes all £, (7)-formulae that are instances of tautologies, and

e A is closed under the inference rule of Detachment, i.e.
if o, p > €A, then ¥ € A.

A is uniform if it is closed under the rule of uniform substitution of £, (7)-formulae
for propositional variables. A is a normal logic if it contains the schemata

(K) (6)(@0; 71/}VX, 790p7(6)71) —
<ﬂ>(¢07 :1/):"' :gop-,-(ﬁ)fl) \% (ﬁ)(@o, 3 Xy :gop-,-(ﬁ)fl):
(N) _‘<ﬁ>(()007 7J-7"' 7(pp,-(ﬁ)71)7

and satisfies the Monotonicity rule

if v - x € A, then
(8050 3)—1) = (B) @0, X5+ @p (3)-1) € A
The members of a logic are called its theorems, and we write Fp ¢ to mean that ¢ is

a A-theorem, i.e.
Fa () iff (S A.

If TU{e} is a set of formulae, then ¢ is A-deducible from T', denoted T' k5 ¢, if there
exist finitely many g, ... ,9,_1 € I such that

Fato = (Y1 = (= (Yn—1 = ¢) )

(in the case n = 0, this means that F5 ). We write I" /4 ¢ when ¢ is not A-deducible
from T.

I"is a A-consistent set of formulae if ' Iy L, and is A-mazimal if it is A-consistent
and for each L (7)-formula ¢,

either p € ' or =p € I

Put
SN = {T': T is a A-maximal set of L, (7)-formulae}.

By a result usually known as Lindenbaum’s Lemma, every A-consistent set is ex-
tendible to a A-maximal set of L, (7)-formulae. Hence if /5 L, so that there do exist
A-consistent sets, then SA # (). The canonical A-structure is then the type 7 structure

62 = <S£ R3)6<f¥r7

where

RE(F/AOI 7Ap.,-(ﬁ)7]) .
iff {<ﬁ>(4p0 .- 790,07(6)71) 1y € Ajalli < p‘l’(ﬂ)} cr.

For unary languages &2 is known as the canonical A-frame.
Associated with any normal logic A in a language L. (7) is an algebra 2%, a BAO

of type 7, called the Lindenbaum-Tarski algebra of A. The collection of all £, (7)-
formulae forms an absolutely free algebra of type 7 under the operations on formulae
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induced by the connectives V, A, =, L, T, (), and Q[Q is the quotient of this algebra

by the congruence 2, , where

Y ENY

iff I—A(p(—)’(/).

Thus the elements of A} are the equivalence classes

lell ={¢: Fa v &9},

with the operations

lell + Mgl = lle vyl
lell - Nl = lle Ayl
lell™ = ll=ell
0 = [IL
L= |7l
ms(lleolls - llep m-al) = KB @05 s 00,81l

The axiom schemata (K) and (N) and the Monotonicity rule are needed to show that
mg is a well-defined normal additive operator. In 2% we have

ift Fpp—1,
iff I—A .

el < 112l
lell =1

If T is a A-maximal set of formulae, then

zr = {ll¢ll s p € T}
is an ultrafilter of 2[2 The correspondence T' — xp proves to be a bijection between
SA and the set of ultrafilters of A} which respects the relations Rg of 6% and R,
of the canonical structure of A2 (Section 3.2). In other words:

e the canonical A-structure G is isomorphic to the canonical structure Cst A} of
the Lindenbaum-Tarski algebra 912 of A.

We will see shortly that 22 is the free algebra on & generators in a variety of BAO’s
determined by the normal logic A.

5.2  Algebraic Semantics

Let A = (B, mg)g<q. be a BAO of type 7 and ¢ an L, (7)-formula whose variables
are among pr,, - -- ,Pa,_; with Ag < --- < A,_1. Then ¢ induces an n-ary operation
2A(p) on A which is defined by induction on the formation of ¢ as follows.

Alpx,)(aog, ... ,an—1) = a;
A(L)(ag,--- ,an_1) = 0
A(=p)(ao; .- ;an-1) A(p)(ag, .- an-1)"
A(p1 Va)lag, ... ,an—1) = Wlp1)(ao, ... ,an—1)+ Alp2)(ag, ... ,an-1)
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and

2A((B) (w0, - - - :‘pp.,-(ﬁ)fl))(aow" yAp_1) =
mg(™A(po)(ao, ... ,an-1),..., A0, (3)-1)(a0, ... ,an_1)).

@ is valid in A, 2A |= ¢, if the function A(y) is constantly equal to 1. If V is a class of
BAO’s, then V = ¢ if A = ¢ for all A € V.
If A is a set of formulae, then 2 = A if A = ¢ for all p € A. It is readily seen that

Alp) =AM) iff A=y iff A(p <> ) =1 constantly.

Now a formula ¢ may be regarded as a term in the language of a BAO 2(, with the
propositional variables of ¢ treated as variables ranging over the elements of 2, and
the symbols V, A, =, L, T, () naming the ™A-operations +,-, ,0,1,mg. Then 2A(yp) is
just the term operation on 2 induced by ¢ as a term. Every term for 2 corresponds
to a formula, and every term function is of the form 2(¢) for some formula ¢. From
this there follows an equivalence between formulae and BAO equations. Formula ¢
is valid in 2 if, and only if, 2 satisfies the equation “p = 1”. Each equation is of the
form “p = ¢” for some formulae, and is satisfied in 2 iff the formula ¢ < v is valid
in . Thus for a set of formulae A, the class of algebras

{A: A=A}

is an equational class, which we denote VarA, and every equational class is of this
form. VarA is closed under the operations H,S P, i.e. these operations preserve
validity of formulae.

For any class V of BAO’s, the set

Ay ={p:V ¢}

is a normal uniform logic. In particular,

Ay ={p: A =g}

is a normal uniform logic for each algebra 2. Thus if A E A, then A C Ay and
Ag contains the normal uniform logic A(A) generated by A, which is defined as the
intersection of all such logics that contain A. Consequently,

A=A iff A= A(A),
and VarA = VarA(A): every variety of algebras is the class of all algebraic models of
some logic of the form A(A).

We say that a logic A is characterised by a class V of BAQ’s, or that A aziomatises
V, if for any formula ¢,

Fae iff A @ foral A e V.

In other words, A is characterised by V if, and only if, A = Ay.
Every normal uniform logic A turns out to be of the form Ag, because such a A is
characterised by its Lindenbaum-Tarski algebra:

(1) Fap iff A=
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Hence the equational theory of 22 is just the set of equations defined by A, and Var A
is the variety generated by 2. From this it follows that A ~ VarA is a bijective
correspondence between normal uniform logics and varieties.

The proof of (1) follows from the fact that in general

A (@) ([olls - o 1n—1ll) = llelpas /2l

where the formula p[py, /1] is the result of uniformly substituting ¢; for the variable
pa; in ¢ for all i < n. Then if k5 ¢, by uniform substitution we have Fa @[py, /1]
and hence

R (@) (1ol - l[nll) =1,
for any 1;, showing that A} () = 1 constantly. But since

0 AR Uprolls - lIpra ) = llelpr, /pal]
if ¥ @, then 2 (@) (Iproll, - s [P, [l) # 1, 50 A} = .

Theorem 5.1 In the variety VarA, 912 is a free algebra on the set of generators

[@xll = {llpall - A < K}

PROOF. It is evident from the definition of A2 that it is generated as a BAO by ||®,]|.
Given a function f : ||®.|| — 2, since homomorphisms preserve term operations it
follows from (i) that the only possible lifting of f to a homomorphism f : A} — A
would be to take

= llell,

fUlell) = 2A(@) (f(IPaolD, - F(llpa, -, 11)-

This does indeed give a homomorphism of BAQ’s, provided that it is well-defined.
But if |||l = [|¢|| then Fo ¢ < 9, so if A belongs to VarA then 2 = ¢ + ¢ and
hence A(p) = A() as desired. | |

Theorem 5.2 The smallest normal logic in L(7) is characterised by the class of all
BAO’s.

PRrROOF. By “the smallest” is meant the intersection of all normal logics. Let A be
this intersection. Then A is contained in Ag for any BAO 2, which shows that the
A-theorems are valid in all BAQO’s. This is the Soundness part of the characterisation.

Conversely, for the Completeness part, if a formula is valid in all BAQO’s, then it is
valid in the Lindenbaum-Tarski algebra Qlﬁ and so is a A-theorem, as above. [ |

Algebraic characterisations of many logics can be obtained by this method. For
instance, in the language £, (1) with modality <, the logic S4 is defined as the
smallest normal logic containing the schemata

(T) ¢ = O¢, and
4) OOp = Op.
These schemata are valid in any closure algebra, so if 2 is a closure algebra then
S4 C Ag. But (T) and (4) force the Lindenbaum-Tarski algebra 254 for S4 to be a

closure algebra, so if ¢ is valid in all closure algebras then it is valid in 25*, and hence
Fs4 . This shows
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e S is characterised by the variety V. of all closure algebras, which is generated by
2,

For the logic S5, defined as the smallest normal logic containing (T), (4) and the
schema

= OO,
we show by similar reasoning that

e S5 is characterised by the variety Vi, of all monadic algebras, which is generated
by A5

To conclude this section, we briefly discuss the question of how the notion of a logic
can be made language independent. Since any formula or equation has only finitely
many variables, to define a logic or an equational class we really need only n variables
for arbitrary finite n. Hence the languages £, (7) suffice for this purpose. At the
same time the definition of a particular logic in many cases should be independent of
the size of the set of variables. For instance, in any modal language L, (1), whatever
the cardinal k may be, we should be able to say that “S4” means the smallest normal
logic containing the schemata (T) and (4). If a logic is defined as a set of formulae
(theorems), rather than as a system of axioms and inference rules, then we need to
say something about how the different instantiations of this logic are related as the
set @, of propositional variables varies with k.

If A is a normal uniform logic in a language L. (7), and p is any cardinal greater
than &, then by “Ain £, (7)” we mean the set A, of £,(7)-formulae that are obtained
by uniform substitution in £,(7) from A-theorems in L. (7). This is the smallest
normal uniform logic in £,(7) containing the original A. On the other hand, if
Kk > p > w, there is a unique logic A, in £,(7) such that A arises in this way from
A, by substitution. A, is simply the set of £, (7)-formulae that belong to A.

A natural way to approach this issue from the point of view of algebra is to observe
that A defines the variety VarA which in turn, for each p, specifies the logic

{¢in L,(1) : VarA |= ¢}.

With the help of the Lindenbaum-Tarski algebra construction, it can be shown that
this is the same as the logic A, just defined.

5.8  Kripke Semantics

We turn now to the relational semantics attributed to Kripke, and motivate this by
reviewing the interpretation of some unary modalities. The distinction between an
interdefinable pair (3),[] can be accounted for logically by observing that (3)
distributes across a disjunction, in the sense that

Fa (B V) < (B)p V(B

for a normal logic A, while [ 8] correspondingly respects conjunction:

Fa [Blp A) < [Blp A[BY.
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JFrom another perspective, in terms of intended interpretations, “diamond” modal-
ities function like existential quantifiers over states/ worlds/ situations, while “box”
modalities are like universal quantifiers. Here are some illustrations:

Modality Interpretation

possibly in some possible world

necessarily in all possible worlds

eventually at some future time

henceforth at all future times

it is consistent that in some model

it is provable that in all models

after the program finishes | after all terminating executions

the program enables there is a terminating execution such that

A model for a unary language £, () is a pair M = (&, V) where & = (S, Rg)g<q is
a K-frame, consisting of binary relations Rg on S, and

V:d,—>SbS

is a valuation function assigning a subset V (p,) of S to the variable p, for each A < k.
V(px) is to be thought of as the set of points at which py is true. The satisfaction
relation “p is true at point s in 9", denoted

m ‘:s ®,
is defined inductively by the clauses

M = pa iff s €V(pa)

M s L (i.e. not M |= L)

M=oV iff M=, por M=,

M=, (Bl iff for somet € S, sRgt and M = o,

and hence
M=, [Ble iff forallt e S, sRgt implies M = ¢.

These last two clauses formally express the character of (8) and [S] as bounded
existential and universal quantifiers.

For a polymodal language £, (7) of type 7, a model takes the form M = (S,V)
where now & is a relational structure of type 7. The definition of satisfaction is
modified to read

M= (B) o, .- ¢p,(3)—1) iff for some to,... 1, (31 €5,
Rﬁ(S,to, ces ,tp_,_(,g),]) and
M =, i for all i < pr(8).

Formula ¢ is true in model M, M = ¢, if it is true at all points in M, i.e. if
M=, p forall s € S.

 is valid in the structure &, & | ¢, if



5. POLYMODAL LOGIC 429
M = ¢ for all models M = (S, V) based on &.

A logic A is characterised by a class C of models, or structures, if each formula is a
A-theorem precisely when it is true, or valid respectively, in all members of C:

Fap iff CEop.
For any model 90, the set

A = {: M = ¢}
is a normal logic, while for any structure &,

Ae ={p:6 =y}

is a normal and uniform logic.

If A is a normal logic in a language L, (7), then A has a single characteristic model
IMA = (&2, VA), called the canonical A-model, where &2 is the canonical A-structure
defined in Section 5.1, and

VA(p)\) = {F S Sé\ 1Py € F}
A fundamental result, which uses the proof theory of normal logics, is that
MY Erp iff pel

for all formulae ¢ and all T € S? (this is a model-theoretic analogue of the algebraic
argument showing that the canonical embedding function 7g of Section 3.2 is a BAO-
homomorphism). Since the only formulae that belong to all A-maximal sets are the
A-theorems, this entails that

M = i Fagp,
which establishes that 9 characterises A.
It follows immediately that
GY E ¢ implies Fj o,

but the converse need not hold. There are logics that are not validated by their
canonical structure, as will be explained further below (Theorem 5.7).

To relate Kripke semantics to the algebraic semantics, we reformulate the definition
of the satisfaction relation in models. A given model 9t associates with each formula
o the “truth-set”

M(p) = {s: M =, ¢}
of all points in 9T at which ¢ is true. The clauses specifying satisfaction amount to
the following properties of truth sets.

Mpr) = Vipa)
ML) = 0
M(—p) = S — My)
MpVy) = Mip)UM(p)
MU BP0, 0o, (3)-1)) = mrz(M(pa); .-, My, (3)-1))-
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This shows that the truth of ¢ is obtained from the term function Cm &(p) induced
by ¢ on the complex algebra of &. Precisely, the following can be proven by induction
on the formation of ¢:

Theorem 5.3 If ¢ is a formula whose variables are among px,, ... ,Dx,_, With A\g <
<o+ < Ap—1, then for any model M on &,

CmG((p)(gﬁ(p)\o): s 7m(p>\nf1)) = m((p)
0
Corollary 5.4 SlEe¢ iff CmG E .

PROOF. If & [~ ¢ then M £~ ¢ for some model M on &, so M(p) # S. By 5.3.1 it is
follows directly that Cm &(p) is not the “constantly 1” function, so Cm& [~ .
Conversely, if ¢ is not valid in Cm &, then

Cm&(p)(To,... ,Tx, ) #S

for some T; € SbS. Letting 9t be any model on & having M(py,) = Ty, for i < n,
5.3.1 again implies M(p) # S, s0 & [~ ¢. | |

Now if a formula is valid in all BAQ’s, then it is valid in all complex algebras and so,
by 5.3.2 is valid in all structures. Conversely, if ¢ is valid in all structures, then it
is valid in the canonical structure Cst2l of any BAO, and so by 5.3.2 is valid in the
algebra CmCstA = Em2. In view of the embedding A — Em® and the fact that
validity is preserved by subalgebras and isomorphism, it follows that 2 |= . This
shows

Theorem 5.5 A formula is valid in all structures of type 7 if, and only if, it is valid
in all BAO’s of type 7. Hence the smallest normal logic in L(T) is characterised by
the class of all T-structures. ]

In order to obtain relational characterisations of other logics, we can combine the
algebraic completeness theorems of Section 5.2 with various representation theorems
from Sections 3 and 4. Here are some typical results.

Theorem 5.6

(1) The logic S4 is characterised by the class of all quasi-orderings, as well as by the
class of all partial orderings.

(2) The logic S5 is characterised by the class of all equivalence relations, as well as by
the class of K-frames & = (S, R) in which the relation R is universal.

PRrOOF. (1) For the Soundness part, it is readily seen that if & is a quasi-ordering then
S4 C As. For the converse, if  is a closure algebra, then as shown in Section 3.3
Cst 2 is a quasi-order, so if ¢ is valid in all quasi-orders it is valid in Cst 2 and
hence as in the proof of 5.3.3 is valid in 2. This shows that a formula valid in all
quasi-orders is valid in all closure algebras, and so is an S4-theorem by the work
of Section 5.2.

For the case of partial orderings, we similarly use the result of Section 4.2 that a
closure algebra can be embedded into the complex algebra of a partial ordering.
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(2) The fact that S5 is characterised by equivalence relations is shown by extending
the analysis of S4, using the fact that if 2 is a monadic algebra then Cst2( is an
equivalence relation. But for any K-frame & there is an embedding

CmG — H Cm&,
seS

where &5 is the inner substructure of & generated by the point s (cf. Section
4.3). Now if & is an equivalence relation then & is the equivalence class of s,
on which the equivalence relation is universal. Thus if a formula is valid in all
universal frames, then it is valid in each Cm &4 and so by preservation of validity
under P and S is valid in Cm & for any equivalence relation &, and therefore is
an S5-theorem.

| |

Instead of working with canonical structures Cst2 of algebras, an alternative but
equivalent approach to these results is to directly use the axioms of a logic like S4
to prove that the canonical frame 6’,: has the desired properties, like reflexiveness
and transitivity, that ensure that it validates the logic. Although there are numerous
axioms for which this method works, it does not apply to all. A counter-example is
the £, (1)-logic KW, where W is the schema

Cp = Olpn-3Op).

VarKW is the variety V4, of all diagonalisable algebras.
Theorem 5.7 The schema W is not valid in the canonical KW-frame GEW

PROOF. Let 2 be the algebra of all finite or cofinite subsets of the frame & = (w, >).
It was shown in Section 3.3 that A € Vg, but Em®2 ¢ Vy,, hence W is not valid in
Cst 2.

Since the Lindenbaum-Tarski algebra 2AXW for KW is free in V4, on denumerably
many generators (Theorem 5.1), there is a surjective homomorphism AXW — 9, and
hence by duality an injective bounded Cst 2 — Cst AXW. Tt follows that W cannot
be valid in CstAXW | or else it would be valid in Cst2(. But &XW is isomorphic to
Cst AXW (Section 5.1). [ |

5.4  Completeness and Incompleteness

Each normal uniform logic A is characterised by the variety VarA of all algebras
that validate A. Correspondingly for the relational semantics we may ask: is A
characterised by the class

StrA ={6:6 = A}

of all structures that validate A? For this to hold it suffices that every formula valid
in StrA be a A-theorem. (Note that StrA is the same as the class StrVarA of all
structures in the variety VarA.)

We will say that a logic A is complete if it is characterised by some class K of
structures. Such a K is contained in StrA, from which it follows that A is complete
if, and only if, it is characterised by StrA.
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The property of completeness does not depend on the cardinality of the language.
If the statement (-5 ¢ iff K |= ¢) holds for all £, (7)-formulae ¢, then it can be shown
to hold for all £, (7)-formulae ¢* when k > w, using the fact for any such ¢* there is
an L, (7)-formula ¢ such that ¢ and ¢* are substitution instances of each other.

Now if K characterises A, then Cm/X C VarA and, invoking the equivalence of
formulae and algebraic equations, each equation valid in Cm/C is equivalent to a A-
theorem and hence hold in VarA. This implies that VarA is the variety VarK =
HSPCm K generated by K. Consequently

e A is a complete logic iff VarA is generated by StrA, i.e. iff VarA is a complete
variety in the sense of Section 3.3.

It was discovered by Thomason [55] that there exist incomplete logics, ones for which
VarA is a non-trivial variety that is not generated by StrA. This first example was
a temporal logic for which there are no validating frames at all: StrA = (! Later
examples of incomplete modal logics were found by Thomason [56] and Fine [11]. The
simplest example now known [7] is the smallest normal logic containing the schema

Cp = O~ (O & o).

The full possibility of the phenomenon of incompleteness was established by Blok [5].
He showed that for any variety V of type 1 modal algebras satisfying x < mxz there
are uncountably many other varieties W with StrWW = StrV, so that W has exactly
the same powerset algebras as V. All of these varieties contain VarStrV, which is the
only one of them that is complete.

The question as to when a class of algebras is defined by a set of equations was
answered by Birkhoff’s theorem about closure under the operations H,S, P. The dual
of this question for relational structures is to ask when a class K of structures is equal
to the class StrA of all structures validating some set of formulae A. Classes of the
form StrA will be called polymodal aziomatic classes, since they are defined by a
set of polymodal formulae. For such classes satisfying certain natural properties (e.g.
Pw/C = K) there is a characterisation involving the dual operations to H,S, P. Before
demonstrating this (in 5.4.2) we note that the property of being polymodal axiomatic
may be viewed as being dual to the property of completeness. This is because a
variety V is complete if and only if

V = VarStrV,
an equation whose dual for a class K of structures is
K = StrVarK.

We have

Lemma 5.8 A class K of relational structures is polymodal aziomatic if, and only if,
K = StrVarK.

PROOF. In general the variety VarK generated by K is equal to the class VarAg of
all algebras validating the logic Ax = {¢ : K E ¢} characterised by K. Thus the
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class StrVarKC of structures in Var K is equal to the polymodal axiomatic class StrAx
of structures validating Ax. Hence if K = StrVarK, then K is polymodal axiomatic.

Conversely, suppose K = StrA for some A. Then if & € StrVarK, the algebra
Cm G belongs to Var K and so validates any formulae that are valid in K. In particular
Cm6 = A, so 6 € StrA = K. This establishes StrVarK = K as desired. ||

Theorem 5.9 Let K be a class of structures that is closed under ultrapowers. Then
K is polymodal aziomatic if, and only if,

(1) K is closed under bounded epimorphic images, inner substructures and disjoint
unions; and

(2) K reflects canonical extensions, i.e. ExS € K implies & € K.

ProOF. Every polymodal axiomatic class satisfies (1) and (2). For the converse we
use the fact, shown in the proof of Theorem 4.15, that for arbitrary X,

Cst VarK C SHEx Ud K C S HIPw Ud K.

Now if PwK = K and K satisfies (1) then SHPw Ud X = K. But then if & € StrVark,
we have Cm & € VarK, so

Ex® = CstCmG € CstVarK C K,

and hence & € K if K reflects Ex (2). This shows that under the given hypotheses
StrVarK = K, implying that K is polymodal axiomatic by Lemma 5.4.1.

Theorem 5.4.2 was first presented in [22] under the hypothesis (for type 1 frames)
that K is closed under elementary equivalence. Inspection of the proof just given
reveals that an alternative sufficient hypothesis would be that K is closed under
canonical extensions. More importantly, in view of the discussion in Section 2.2
about correspondences between definable properties of & and equational properties
of Cm&, the Theorem gives as a special case a characterisation of those elementary
classes that are polymodal axiomatic. A syntactic characterisation of the elementary
classes that are closed under H, S, Ud (5.4.2(1)) is provided by the notion of a quasi-
modal first-order sentence as described at the end of Section 4.6. There is currently no
such “preservation theorem” known for elementary classes satisfying both 5.9(1) and
5.9(2). That this is a non-trivial question is shown by the fact that the quasi-modal
sentence

Yo3w (vRw A wRw)

is preserved by H, S, and Ud, but is not reflected by Ex since it holds in the structure
Ex (w, <).

The converse question of when a polymodal axiomatic class is elementary is already
answered by the analysis of Corollary 4.12. The class StrA of structures validating
A is the same as the class StrVarA of structures in the variety VarA of algebras
validating A. So putting V = VarA in 4.6.3 immediately gives:

Theorem 5.10 A polymodal aziomatic class is elementary if, and only if, it is closed
under ultrapowers. ]
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5.5  Canonical Logics

It is a standard practice in modal logic to say that a normal logic A in the language
L,,(1) is canonical if it is validated by the canonical A-structure G2. However A has
manifestations in the languages £, (1) for £ > w and hence canonical frames in all of
these languages. A convenient abstract way of dealing with these special structures is
provided by the observation from Section 5.1 that GQ is isomorphic to the canonical
structure Cst A2 of the Lindenbaum-Tarski algebra A2, and that the latter is the free
algebra on k generators in the variety VarA defined by A (Theorem 5.1). Moreover
Cst A} validates A if, and only if, it belongs to the class StrVarA of structures in
VarA, i.e. iff its complex algebra Em QIQ belongs to VarA.

We will say that a logic A in a language of arbitrary type is k-canonical if A is valid
in Cst2A}. Note that if 4 < & then by freeness 2% — Q[ﬁ and hence Cst Qlﬁ — Cst AL,
so that A} = A implies Q[ﬁ E A

Since there are free algebras on finitely many generators, we can use this approach
to consider k-canonicity for finite k. In fact there exist logics that are k-canonical for
all kK < w but are not w-canonical. One example, analysed in detail in [19, Section 6],
is the smallest type 1 logic containing -~ O O T, and the schemata (4) and

OO NOOp = OO A O—y).

For this logic Var A is locally-finite, i.e. all finitely generated members are finite. Hence
for k < w, the free algebra 22 in VarA on k generators is finite and so Em22 = A2 ¢
VarA. But Em2} ¢ VarA.

A logic A will be defined to be canonical if it is k-canonical for all kK > w. We have

Theorem 5.11 A logic A is canonical if, and only if, the variety VarA is canonical
in the sense that EmVarA C VarA.

PROOF. Theorem 4.2 established that VarA is canonical iff it contains Em%l for all
infinitely-generated free 2 in VarA, which we now see means that Cst 22 € StrVarA
for all cardinals k > w. [ |

It is immediate that canonicity implies completeness: if A is a logic in L.(7) that
is valid in G2 then it is characterised by G*. This provides a methodology that
has been used to obtain completeness theorems for numerous logics by the following
procedure.

1. Find some condition 74 on structures with respect to which the logic A is sound,
i.e. every structure satisfying 7 validates A.
2. Prove that the canonical A-structure G satisfies 74, and hence validates A.

3. Since &2 invalidates all non-theorems of A via its canonical model 9t3, conclude
that A is characterised by &3, as well as by the class of all structures satisfying
TA -

In all known examples m, is a first-order condition on structures, defining a subclass
Strma of StrA. It is not necessary for w5 to exactly characterise A (i.e. Strrp = StrA)
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for the method to apply. For example take A as the smallest normal modal logic
containing the schemata

O(pr = Q1) A Alpn = Own))

for all n < w, and 7y as the quasi-modal condition
Yo3w (vRw A wRw)

mentioned in the previous section. Then A is sound for 75 and & satisfies 74, but
A is also valid in (w, <), a structure in which 7 is clearly false (cf. [29]).

A very general situation in which w5 does exactly define StrA is provided by the
work of Sahlqvist [49], which is generalised to arbitrary types in [10]. This gives
the broadest known syntactic definition of a class of formulae to which the canonical
structure methodology applies. To describe this, define a formula ¢ to be positive, or
negative respectively, if every variable of ¢ occurs within the scope of an even, or odd
respectively, number of negations. A boz string is a formula of the form

[ﬁo]"'[ﬁnq ]p

where p is a variable and each [§;] is a unary box modality. A Sahlquist antecedent
is a formula constructed from the constants 1, T, box strings and negative formulae
using only A,V and diamond poly-modalities. A Sahlquist formula is one constructed
out of implications ¢ — ¥ in which ¢ is a Sahlqvist antecedent and ¢ is any positive
formula by using only A and formation of box polymodalities [ 8](¢o,--. ,¥n—1) in
which none of the arguments ¢; have any variables in common.

For each Sahlqvist formula ¢, let A, be the smallest normal uniform logic contain-
ing ¢. There is an effective procedure associating with such ¢ a first-order sentence
m, that holds exactly in the members of StrA, (cf. [10, Section 3]), so StrA, is an

elementary class. The fact that A, is validated by its canonical frame &, was demon-
strated model-theoretically in [49], but there is now an elegant algebraic approach [31]
for showing that a variety characterised by Sahlqvist formulae is canonical.

The simplest type 1 formula that is not a Sahlqvist formula is the well-known
McKinsey aziom

OO e — OO

This was shown not to be canonical in [16], indicating that there is no natural way

3

to extend the class of Sahlgvist formulae to a larger class of canonical formulae.

The following fundamental result was also first shown model-theoretically for modal
logic, by Fine in [12].

Theorem 5.12 If a logic is characterised by an elementary class of structures, then
it is canonical.

PROOF. Let A be characterised by the class K. Then an algebra 2 is in the variety
Var K generated by K iff it validates all formulae validated by K, i.e. iff 2 = A. Thus
Var/C = VarA. But if K is elementary, by Theorem 4.15 Var is canonical, and so A
is canonical by Theorem 5.11. [ |
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Corollary 5.13 If a logic A is complete, and the class StrA of structures is closed
under ultrapowers, then A is canonical.

PROOF. Suppose StrA (= StrVarA) is closed under ultrapowers. Then by Corollary
4.12 it is an elementary class. But if A is complete it is characterised by StrA, so then
canonicity follows from 5.12. [ |

It is important to recognise that the fact that the class of structures validating a logic
is elementary does not by itself guarantee canonicity. An additional hypothesis about
completeness is necessary. For instance, there are logics A that are incomplete and
therefore not canonical, but for which StrA is an elementary class. One example is
the incomplete temporal logic of [55] having StrA = (. Another is the incomplete
modal logic of [56] for which StrA is the class of all quasi-orderings, i.e. the logic is
distinct from S4 but is valid in exactly the same structures as S4.

The converse of Theorem 5.5.2 — that every canonical logic is characterised by an
elementary class of structures—is one of the main unsolved conjectures of this subject.
A related conjecture is this:

e if A is w-canonical, then it is canonical,
or equivalently
o if Cst AN = A, then Cst AL = A for all k > w.

The intuition behind this is that if some A-theorem is falsifiable in Cst22 for an
infinite k, then it should be falsifiable in the canonical structure of the denumerably
generated algebra A3,

To prove the conjecture it would be enough (by 5.12) to prove that if A is w-
canonical then it is characterised by an elementary class. Now the discussion following
Theorem 4.16 indicates that A is characterised by an elementary class iff it is char-
acterised by the class of models of the first-order theory of Cst Q[ﬁ Thus a natural
approach to setting this conjecture about the sufficiency of w-canonicity would be to
show that

if A is valid in Cst A2, then it is valid in every structure elementarily equivalent
to Cst L.

Theorem 4.6.8 gives further information about the syntactic form of first-order sen-
tences involved in elementary characterisations of logics:

if A is characterised by an elementary class then it is characterised by the class
of all models of the quasi-modal theory of Cst A2,

(See [18, Section 11.4] for details. Quasi-modal sentences were defined at the end of
Section 4.6 above.)

In a recent article [21], the author has investigated the quasi-modal theories of the
canonical structures Cst Q[Q for all Kk > w. They turn out to be the same, and indeed to
be the same as the quasi-modal theories of the canonical structures of two important
sub-logics of A. The results of [21] can be summarized as follows.

e All of the canonical structures Cst A2 of a given logic A have the same quasi-modal
first-order theory WA,



5. POLYMODAL LOGIC 437

e The models of UA characterise a logic A® which is the largest sublogic of A to be
characterised by some elementary class.

e The canonical structures of A® also have ¥A as their quasi-modal theory.

e There is a largest sublogic A® of A that is characterised by its own canonical
structures. Since A° is canonical (5.5.2), A® C A°.

e The canonical structures of A¢ also have ¥* as their quasi-modal theory. Thus
TA = oA = oA

e All finite structures validating A are models of . If A is characterised by its
finite structures (see Section 6), then ¥" is equal to the quasi-modal theory of
these structures.

Of course if all canonical logics are elementarily characterised, then A® = A°. But
that is the unresolved question.

5.6 Strong Completeness and Complex Varieties

Let A be a normal logic in a language L. (7). A is called strongly k-complete if there
exists a class IC of 7-structures such that the following hold:

e every member of K validates A, i.e. K C StrA; and

e if A is any A-consistent set of L, (7)-formulae, then A is satisfiable at some point
of some model based on a structure that belongs to K.

If such a K exists, then K characterises A, so A is complete. It also follows directly
that k-canonicity implies strong k-completeness, since if G2 validates A then putting
K = {62} fulfills the above definition. This is because if A is A-consistent it can be
extended to a A-maximal set I', and then

mﬁ Fr A,

where 902 is the canonical A-model on &2.

An example of a complete logic for which strong completeness fails is the modal
logic KW, discussed at the end of Section 5.3, which is characterised by the variety
Vg of diagonalisable algebras, as well as by StrKW which is the class of frames
& = (S, R) in which R is transitive and R~ is well-founded, i.e. there are no infinite
“R-sequences”

soR$1R-- RspRSpqq -+

Put
o1 = Opi,
Pn+1 = D(pn - <>pn+1):
A = {pp:1<n<w}

Then A is KW-consistent, but cannot be satisfied in any model based on a a KW-
frame. For, if 9,, is any model on the KW-frame ({0, ... ,n}, <) that has 9, (p;) =
{i} for 1 < i < n, then M,, =¢ p; for all 1 < i < n. This shows that every finite
subset of A is satisfiable in a model on a KW-frame and so must be KW-consistent.
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Since the proof theory of KW is finitary, this entails that A itself is KW-consistent.
However if M =, A and the frame & of 9 is transitive, then there must be an
R-sequence as above with 9t =, p, for all n > 1, hence & is not a KW-frame.

An algebraic version of this argument was used in [14, Theorem 3.7.1] to derive
another negative property of KW, namely that its variety V,, is not complex, i.e. is
not of the form SCmK for any K. These two negative properties are really two sides
of the same coin, because it turns out that a variety is complex iff its associated logic
is strongly complete in all cardinalities. In fact we can formulate this more strongly as
the following result about quasi-varieties, which are classes of algebras that are closed
under subalgebras (S), direct products (P), and ultraproducts (Pu). (The version for
varieties was discovered independently by F. Wolter.)

Theorem 5.14 Let V be a quasi-variety.

(1) If V is complez, then its associated logic is strongly rk-complete for all infinite
cardinals k.

(2) If the logic associated with V is strongly k-complete for all infinite k, then the
homomorphic closure HY of V is complex.

Consequently, if a quasi-variety V is complex, then the variety HV generated by V is
also complex.

PRrROOF. Recall that the logic associated with V is
A={pin L,(1) : V = ¢}.

Then Var A is the variety generated by V, so as V is S-P-closed we do have VarA = HY
as claimed.

(1) Assume that V is complex. Take k > w, with A, the logic induced in £, (7) by
closure of A under substitution. Let 2 € V be the Lindenbaum-Tarski algebra for
A, in the language £, (7). Then 2 belongs to V, because it is a free algebra in the
variety Var A generated by V (5.2.1), and V, being closed under S and P, contains
all such free algebras.
Now if A is any A,-consistent set of £, (7)-formula, then

A= A{llell: € A}

is a subset of 2 with the finite meet property: every finite subset of ||A]| has
non-zero meet in 2A. It follows, by a standard compactness argument, there is an
algebra 20* that has 2 as a subalgebra and has a non-zero element z that is a
lower bound for ||A|[:

0 # z <||p] for all p € A.
Indeed 2A* can be constructed as an ultrapower of 2, so Pu-closure of V allows us
to conclude that 2* € V.
Since V is complex, we can assume that 20*, and hence 2, is a subalgebra of the
complex algebra Cm & of some structure that belongs to StrV, and so has & |= A,.
Let s be an element of 2 in &. Then s € ||g|| for all ||¢|| € A. Putting

Vipa) =llpall € S
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defines a model 90t on & having 9M(p) = ||¢]| for all ¢, and hence
M =5 A

This establishes that every A,-consistent set of £, (7)-formulae is satisfiable in a
model on a structure validating A, giving strong s-completeness.

(2) Suppose that A is strongly s-complete for £ > w. To prove HV complex we need
to show that if A € HV, then 2 — Cm% and Cm¥ € HV for some structure . We
will show this first for the case that 2 is a subalgebra of Cm & for some structure
G that is generated by a point s (N.B. we do not assume Cm& € HV here). Let
k be any infinite cardinal for which there is a surjection

V.®, » 2,

and put 9 = (6, V). Then each truth-set 9M(yp) is in A, and each member of 2A
is such a truth-set, indeed is one of the form M (p,). Let

A={pin Ly(1): M =5 ¢}.

Since 2 = A,, A is Aj-consistent (in fact it is A, -maximal). By strong k-
completeness there exists a structure ¥’ validating A, and a model 2 on ¥ such
that 9 |=; A for some ¢. Let ¥ be the inner substructure of ¥’ generated by the
point ¢, and D the restriction to T' of the model ', having

N(p) = N(p)NT.
Then N =; A, and so
(1) MEp if Np

for all ¢ in L, (7). Moreover T validates A,, so CmT € VarA, = HV.
It thus remains to show that 2 »» CmT¥. For this purpose, consider the corre-
spondence

0 : M(p) — N(p)

between 2 and SbT'. First we need to show that 6 is a well-defined injection, i.e.
M(p) =M(P) iff N(p) =N(¥).

This will be explained for the case of the simplest language with a single modality
<, so that & and ¥ are type 1 frames with a single binary relation. If 9(p) #
M (1)) then there is some point u in & with, say, ¢ A =) true in 9 at u. Since &
is generated by s, the analysis of Section 4.3 shows that sREu for some n. Hence

the formula
(1) OO Ol A1)
——————

n times
is true in 90t at s, and so by () is true in 9t at ¢. From this is follows that @ A=) is
true at some point in 9N, showing that 91(p) # 9(¢p). The proof that N(p) # N(y)
implies M(p) # M(¢) is the same, using the other implication of (f) and the fact
that ¢ generates ¥.
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The argument for structures of arbitary type follows the same pattern, using the
general description of point-generated structures from Section 4.3 and some more
complicated formulae in place of (). The properties of truth-sets ensure that 6 is
a homomorphism, and hence gives an embedding 2 — Cm¥T € HV as desired.

For the case of an arbitrary 2 € HV, by Theorem 4.5 there is a subdirect repre-

sentation
A— ]2
seS

of 2 by complex algebras 25 based on point-generated structures. Each 2l is in
HYV, as % — g, so by the above argument there is a structure T4 € StrHV such
that Ay — Cm%T,. Then

A— [[2% — [] CmT. = Cm (),

seS sES

where
T =[], estrHY
SES
by closure of StrHY under disjoint unions. This proves that HV is a complex
variety.

The last part of the statement of Theorem 5.6.1 now follows directly by applying (1)
and then (2). | |

The assumption of Pu-closure is essential in Theorem 5.6.1, as may be seen by taking
V as the complex class SCmStrKW discussed just before 5.6.1. In this example V
is closed under S and P, but not under Pu, and the variety it generates is the non-
complez class Vg, of diagonalisable algebras.

The question of whether there exist complex varieties that are not canonical is now
seen to be equivalent to the question of the existence of strongly complete logics that
are not canonical. In fact one such is the logic Ag characterised by the type 2 frame

<R7 <7 >>7

where R is the set of real numbers. This logic is not canonical, for reasons that will
be clarified below, but was shown in [13] to be strongly w-complete: every consistent
set of £, (2)-formulae is satisfiable in a model on the real-number frame itself.

It can be inferred from this that the variety VarAg defined by Ag is complex but
not canonical, as was first noticed by F. Wolter [61]. But instead of appealing to
Theorem 5.14, the idea of Gabbay’s strong completeness proof can be adapted to give
an interesting direct algebraic construction showing VarAg complex. We will carry
this out now for a slightly simpler example: the temporal logic of Dedekind complete
strict orderings. For this purpose the two diamond modalities of a type 2 language
will be written (F) and (P ), with their duals being [F] and [P]. Here “F” is for
“future” and “P” for “past”. The additive operators of a type 2 algebra are myp and
mp, with duals Ir and lp. A type 2 frame will be written as & = (S, Ry, Rp). The
operators on Cm& induced by Ry are

mpe(T)={s € S:3t(sRrt and t € T)}
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and its dual
lpe(T) ={s € S :Vt(sRpt implies t € T')}

and similarly for mp, and Ig,.

A linear temporal logic is any normal logic containing the following schemata, which
come in three pairs that are “mirror images”, i.e. each member of the pair is obtained
from the other by interchanging F and P.

@ = [PI(F)e
= [FI(P)e
F)o— (Flo
(Pl = (P)p
[ A[Flo =) VIF]@A[F]Y =)
[ A[Plo =) VI[P A[P]Y = ).

The first pair are valid in a frame precisely when Rp = REI (cf. the discussion of
conjugate operators in Sections 2.1 and 2.2), so that frames for this pair are uniquely
determined as soon as Ry is specified. The second pair characterise transitivity of Rp
and Rp. The last pair ensure that

(F
(P
[F
[P

sRpt A sRpu implies (¢t = u or tRpu or uRpt),

and correspondingly for Rp. In a frame & validating any linear temporal logic, the
inner subframe G4 generated by a point s is based on the set

{t€ S:sRptors=tortRps}.
S, is connected, i.e. satisfies
VitVu (t # u implies tRpu or uRpt),

and consists of a linear sequence of clusters as defined in Section 4.2. These clusters
can then be flattened by the bulldozer construction to show that there is a bounded
epimorphism ¥ — &, with ¥ a strict linear ordering (irreflexive, transitive, con-
nected) having Cm&,; — Cm¥.

Now the schemata defining a linear temporal logic A are preserved by canonical
extensions. Thus if A = A then Cst2 = A. Then taking the subdirect representa-
tion in terms of point-generated structures of Cst2 that underlies Theorem 4.5, and
applying the observations of the previous paragraph, the following can be concluded.

Theorem 5.15 Any algebra validating a linear temporal logic has a subdirect repre-
sentation by complex algebras based on strict linear orderings. ]

Now if & = (S, Rr, Rp) is a strict linear ordering with Rp = REl, then a subset I of
S is an initial segment of & if

sRpt and t € I implies s € I.

Then I C Ik, (I), and the complement I° = S — I of I satisfies I¢ C lg, (I¢) since
s € I° and sRyt implies t € I°. I is a proper initial segment if its complement is
non-empty. All members of this complement are upper bounds of I.
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A gap is a non-empty proper initial segment that has no least upper bound. If [ is
a gap then I has no greatest member, so if s is in I then s is in mg (1), and therefore
not in g, (I¢). Thus I¢ = [z, (I°). Also I¢ has no least member, so each member of
I¢is in mp, (I°). It follows that

lRF([C) — MRplRe (IF) =1°—mpg, (IP) =0.

A strict linear order is Dedekind complete if it has no gaps. Both (w, <) and (R, <) are
Dedekind complete. Any strict linear order ¥ has a Dedekind completion, an extension
to a Dedekind complete order & obtained by “filling in the gaps in ¥”. Formally this
can be achieved by taking & as the set of proper initial segments of ¥ ordered by
proper inclusion C. ¥ can be regarded as a subordering of & by identifying each s in
T with the initial segment {t € T : tRps}. When s € S — T, this initial segment is a
gap in ¥T.

It was discovered by Arthur Prior that there is a type 2 formula that characterises
Dedekind completeness (there is no such type 1 formula). Prior’s aziom is the schema

(F)=o A(F)[Flo = (F)([FloA=(P)[F]p),
which is valid in any Dedekind complete strict linear ordering.

Lemma 5.16 (Gap Lemma) Let & be a strict linear ordering and 2 a subalgebra
of Cm&. If A validates Prior’s axiom, then no gap of & can belong to 2.

PROOF. Suppose there is a gap I € 2, with complement I° € 2, and take s € I. As
I has no greatest element, there exists t € I with sRpt, and so s € mp, (I). But [
has as upper bound any u € I¢ = g, (I¢), with sRru, so s € mg,lg, ().

Now we saw above that g, (I¢) — mg,lg,. (I¢) = 0, and so

S ¢ MPpg (lRF(IC) - mRPlRF‘(IC)) = mRF‘@ = @
This shows that,

MRy (I) NMpg lRF (IP) Z MPRg (lRF (IP) — MPRp lRF (IC)):
in violation of Prior’s axiom. [ |

Theorem 5.17 If Ap is the smallest linear temporal logic that includes Prior’s axiom,
then the wvariety VarAp of all type 2 algebras that validate Ap is compler but not
canonical.

PrOOF. We deal with non-canonicity first. The type 2 frame (w, <, >) is a Dedekind
complete strict linear ordering, and the set of finite or cofinite subsets of w forms a
subalgebra 2 of Cm & which validates Ap. The canonical structure Cst 2 consists of
the principal ultrafilters

{XedA:ne X}

for each n < w, together with the set s of all cofinite sets, which satisfies sRs in Cst 2.
Thus Cst 2 looks like a copy of (w, <) with a single reflexive point added at the right
end, so that the copy of w functions like a gap (although the linear ordering is no
longer strict). Precisely, in Em2( we have

v ({s}) = mple({s}) = ({s}),
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and so
mg (lp ({s}) — mplr({s})) = 0,

while each of the principal ultrafilters belongs to

mp(—{s}) Nmelp({s}).

Thus Prior’s axiom fails in Em.

To show that Var Ap is complex, we have to show that if 2 is any member of Var Ap
then there is a structure & with 2 — Cm& and Cm& € VarAp. As explained in the
latter part of the proof of Theorem 5.14, it suffices to prove this for a class of algebras
that provide subdirect representations of all other members of VarAp. Therefore by
Theorem 5.15 we can assume that 2 is a subalgebra of Cm¥ for some strict linear
ordering ¥ = (T, Rp). Now let & = (S, Rr) be the Dedekind completion of ¥. Then
Cm & validates Prior’s axiom and so belongs to VarAp. Thus it is enough to show
that 2 — Cm& to complete the argument. By Theorem 4.3, this in turn reduces to
the problem of showing that there is an ultrafilter map from & to 2 that covers 2.
This map is to be a function f : & — Cst % satisfying, for all s € S and X € 2,

(1) mp(X) € f(s) iff for some t € S, sRpt and X € f(t);
(if) mp(X) € f(s) iff for some t € S, tRps and X € f(t).

Note that mp here means the operation on Cm¥, and hence on 2, induced by Ry in
%, rather than the operation mpg, induced on Cm&. Thus for X C T,

mp(X) ={ueT:3teT(uRrt)}.

Since T will not in general be an inner substructure of &, we may well have mp (X) #
mp,(X) for X € . Similarly,

mp(X)={ueT:3teT(tRru)}.

Now for s in ¥, put
fls)={X eUA:se X}

This already ensures that f covers 2, for if ) # X € 2 then any s € X has X € f(s).
For s € S — T, let

Us = {mp(X): X eAand It €T (sRpt and t € X)},
Ly = {mp(X): X e€Aand 3t €T (tRrs and t € X)}.

Then Ug U L has the finite intersection property. To see this, suppose that for some
n < w there are elements X; € A and t; € T such that sRrt; € X;, and hence
mr(X;) € Us, for all i < n. Now since s is not in T, it represents a gap in ¥, and so
the set {t € T : sRyt} has no least element. Thus there exists some ¢ € T such that
sRptRpt; and hence t € mp(X;) for all i < n. Moreover, because sRpt, t is in every
set mp(X) from L.

Since Us U Ly has the finite intersection property, it is contained in an ultrafilter of
2, which we take to be f(s). This completes the definition of f.

To derive (i) and (ii), we need two preliminary facts about this definition.
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(iii) Let s € S —T, X € f(s), and t € T. Then tRps implies t € mp(X), and sRyt
implies t € mp(X).

To prove this, observe that validity of schema (¢ — [P]{F )p) in 2 entails that X C
lpmy (X), so lpmp(X) € f(s), and hence mplp(—X) ¢ f(s). Thus mplp(—X) ¢ L.
But then if ¢tRps, the definition of L, implies that ¢ ¢ Ip(—X), giving t € mp(X) as
desired. The other part of (iii) follows by the “mirror image” of this argument.

As a corollary to (iii) we obtain

(iv) Let s € S—T, X € f(s), and t € T. Then if tRrs, mp(X) € f(s) implies
t € mp(X), and if sRyt, mp(X) € f(s) implies t € mp(X).

For the proof, supposing tRps and mp(X) € f(s), applying (iii) with X replaced
by mp(X) gives t € mpmp(X). Validity of (F){F)p — (F)¢ in 2 then implies
t € mp(X). Again the other part of the proof is a mirror image argument.

Now for the proof of (i), first from right to left. Suppose that sRpt and X € f(t).
We want mp(X) € f(s). There are two main cases. Firstly, if ¢ € T then ¢ € X and
either s € T, giving then s € my(X) and so my(X) € f(s), orelse s € S — T, so
that mg (X) € Us by definition of U, and again mgr(X) € f(s). For the second case,
suppose t ¢ T. Again there are two subcases. If s € T then applying result (iii) with
s and t interchanged gives s € mp(X), so mp(X) € f(s). If however s ¢ T', then since
sRpt and s and ¢ both define gaps in ¥ there must be some v € T with sRruRFpt.
But then by (iii) with ¢ in place of s and u in place of t gives u € mp(X), so there
exists w € T such that uRrw € X. Then sRrw, so mp(X) € Us C f(s).

To prove (i) from left to right we invoke at last the validity of Prior’s axiom in 2L, in
the form of the Gap Lemma 5.16. Suppose mp(X) € f(s). If s € T, then s € mp(X)
so there is a t € T with sRpt and ¢t € X, whence X € f(t) as desired. If however
s ¢ T, then s defines the gap {t € T : tRps} in T, and by (iv) every member of this
gap belongs to mp(X). But now if every ¢ € T such that sRpt had ¢t ¢ mp(X) we
would have

{t eT: tRFS} = mp(X) S 2[,

contradicting the Gap Lemma. Therefore there must be some t € T with sRpt and
t € mp(X), so that tRyu and u € X for some u € T. Then sRru and X € f(u), and
the proof of (i) is finished.

The proof of (ii) would be the mirror image of that of (i) if we assumed that the
mirror image of Prior’s axiom was valid in 2. But in fact we can directly use the
axiom itself again. The only essentially new situation arises when mp(X) € f(s) and
s ¢ T. Then similarly to the case of (i) we find that if there was no ¢t € T such that
tRps and t € mp(X) we would have

{t €T :sRypt} = mp(X).

But in that case
{teT:tRps} =T —mp(X) € L,

again contradicting the Gap Lemma. Therefore there must be some t € T with tRps
and t € mp(X), leading to a w € T with uRps and X € f(u).
This completes the proof of the Theorem. [ |
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In conclusion, let Ag be the smallest linear temporal logic containing Prior’s axiom
and the schema

(F)e = (F)(F)g

which corresponds to the density condition that
sRrt implies Ju (sRyuRpt).
The following can be shown about the variety VarAg defined by this logic.

e Var Ay is generated by the complex algebra of the real-number frame (R, <, >).
This follows from the fact, due to Bull [9], that Ag is characterised by this frame.

e VarAg is a complex variety. This is proved by an adaptation of the above ar-
gument, establishing that any algebra in the variety can be embedded into the
complex algebra of a disjoint union of dense Dedekind complete orderings.

e VarAp is not canonical. The canonical extension of the real-number frame has
gaps and violates Prior’s axiom. This extension looks similar to the nonstandard
hyperreal number system, except that the “positive infinite” elements form a single
cluster “at infinity”, and likewise for the negative infinite elements. In fact one can
take the countable subalgebra 2 of CmR generated by the semi-infinite intervals
(—oc,q), (g,00) with ¢ rational and show that 2 is in VarAg but Em%l is not.

6 The Finite Model Property

We will now briefly review a concept that has been important in the development of
general theory about modal logic, as well as in determining the properties of particular
logics. Essentially, a logic A has the finite model property if it is characterised by its
finite models. Precisely what this means depends on the notion of “model” involved,
and there are three natural candidates: if A is a normal logic, then

(1) A has the finite algebra property if Fa ¢ whenever ¢ is valid in all finite algebras
2 such that 2 = A;

(2) A has the finite frame property if Fa ¢ whenever ¢ is valid in all finite structures
G such that 6 |= A;

(3) A has the finite model property if Fx ¢ whenever ¢ is true in all finite models 9
such that 9t = A.

It is readily seen that (1) and (2) are equivalent. This is because a structure &
validates the same formulae that the algebra Cm& does, while a finite normal BAO
2 is isomorphic to CmCst 2 (Theorem 3.2.2) and so validates the same formulae as
the finite structure Cst 2. Hence a formula is valid in all finite A-algebras iff it is valid
in all finite A-structures.

It is immediate from the definitions that (2) implies (3), since a formula true in all
A-models will be valid in all A-structures. But it turns out that for uniform logics,
(3) implies (2) as well (for a proof, see [52, Corollary 3.8] or [17, Exercise 4.9]). Thus
for normal uniform logics, all three notions coincide, and are generally referred to as
the “finite model property”.

An example of a type 1 logic lacking the finite model property was provided by
Makinson [38]: this is the smallest normal logic containing the schemata
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(T) ¢ = O¢, and
(Mk) Op A =0O0¢ — O(O00p A =-O000y).

The schema OO — O (4) is valid in all finite algebras for this logic, but is
not a theorem of the logic since there are infinite algebras validating (T) and (Mk)
but not (4). An example is the algebra of finite and cofinite subsets of (w, R), where
mARn iff m < n+ 1. This structure has become known as the recession frame and has
significant application beyond this example for which it was originally constructed by
Makinson. In particular, it underlies the major work of Blok [5] on incompleteness.

The finite model property provides a powerful method for demonstrating the de-
cidability of various logics, in view of the fact that

o if a logic A is finitely axiomatisable and has the finite model property, then it is
decidable, i.e. there is an algorithm for deciding of an arbitrary formula @ whether
or not - .

Here “finitely axiomatisable” means that A is the smallest logic containing some
finite number of prescribed schemata. To sketch briefly why this result holds, observe
that it can be algorithmically determined whether a given finite algebra 2 satisfies
some finite number of given equations, and hence whether 2 validates a given finitely
axiomatisable logic A. Therefore by systematically enumerating the finite algebras
and testing formulae for validity in them, as well as testing whether they are A-
algebras, we can generate a list of formulae that are invalidated by at least one
A-algebra. But the finite model property implies that if [/ ¢ then there is a finite
A-algebra that will invalidate ¢, a fact that will then be discovered by the systematic
testing procedure. Thus every non-A-theorem will appear in the list, and so the
procedure provides an effective enumeration of the set ® — A of formulae not in A.
But A itself is effectively enumerable, since it is a finitely axiomatisable logic. Since
now both A and ® — A are effectively enumerable, it follows that A is decidable.

The restriction to finitely axiomatisable logics in this analysis is essential. Logics
with the finite model property need not be decidable if they are not finitely axiomati-
sable. Indeed it has been shown in [58] that for each set X of natural numbers there is
a modal logic A x that has the finite frame property but whose degree of unsolvability
is the same as that of X.

The first application of algebraic methods to prove decidability of modal logics in
this way was made by J. C. C. McKinsey in [40]. If 20 = (®8,m) is the Lindenbaum-
Tarski algebra of a type 1 logic A and t/s ¢, then, as we saw in Section 5.2, there is
an interpretation of the variables of ¢ in 2 that invalidates ¢. If C is the finite set of
elements of B “named” by subformulae of ¢ under this interpretation, and B’ is the
sub-Boolean algebra of B generated by C, then %' is finite and can be made into a
modal algebra under the new operator m' : B’ — B’ defined by

m'z =[[{my:z <y € B and my € B'}.

The resulting finite modal algebra still invalidates ¢. McKinsey showed further that
it also validates A in the case that A is either of the well-known logics S2 and S4,
thereby establishing the finite model property and decidability for them.
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Pioneering studies of the finite model property were made in a series of papers by
R. A. Bull (cf. [8, 9] and references cited therein). This involved a sophisticated anal-
ysis and modification of the finite algebras produced by McKinsey’s method, and led
to a demonstration that every normal uniform extension of the type 1 logic S4.3 (char-
acterised by linearly ordered K-frames) has the finite model property. The method
subsequently yielded completeness proofs for the linear temporal logics characterised
by the frames (Z,<,>), (Q,<,>), and (R,<,>). Bull’s work also contained the
first application to logical systems of Birkhoff’s theory of subdirect representation of
algebras in terms of subdirectly irreducibles.

The method of McKinsey was adapted to the complex algebra setting by Lemmon
[34, Part IV]. A model-theoretic version of his approach appeared in [35], and was
further developed by Segerberg [51, 52] under the name of filtration. In essence,
filtration of a model 9t involves collapsing 9 to a finite model by identifying points
that assign the same truth-values to the members of some fixed set I' of formulae.
Typically ' will be (based on) the set of subformulae of a particular non-theorem ¢
that is to be falsified in the resulting finite model.

Now if a logic has the finite algebra/frame property then its associated variety will
be generated by its finite members, and hence generated by the finite structures in
the variety. In other words, such a logic must be complete (Section 5.4). Construction
of finite models has in fact been an important procedure for proving completeness or
axiomatisation results for many logics. This is inevitable if the logic is defined by
reference to finite structures (e.g. the logic characterised by finite linear orderings),
but the procedure has also proved vital when the canonical frame method breaks down
because the logic in question is not canonical. This applies for instance to the temporal
logic AR of real time. Another particularly notable case is propositional dynamic logic
[53, 25], where the only known method for proving completeness involves some variant
of the filtration approach.

7 Other Topics

This article has sought to indicate how the basic theory of Boolean algebras with
operators can be used to investigate properties of modal logics and similar logical
systems. There are other topics in this and related areas that could be considered,
including

e the connection between interpolation properties of logics and amalgamation prop-
erties of algebras;

e the relationship between the Beth definability property of logics and the question
of surjectivity of epimorphisms between algebras;

e the study of non-normal operators and associated non-normal logics;

e the investigation of logics whose algebraic semantics is based on something other
than Boolean algebras, such as distributive lattices, Heyting algebras, “semilattice-
ordered residuated semigroups”, and many others.

Those who wish to pursue such topics may find it profitable to explore such sources
as the papers [46, 50, 2, 37], the books [1, 48], the dissertations [60, 39, 41], and the
references they contain.
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