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Abstract

A space-filling curve is a linear traversal of a discrete finite multi-dimensional space. In order that this traversal

be useful in many applications, the curve should preserve “locality”.

We quantify “locality” and bound the locality of multi-dimensional space-filling curves. Classic Hilbert space-

filling curves come close to achieving optimal locality.
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1 Introduction

Denote [N ] = {1, .., N}. A discrete m-dimensional space-filling curve of length Nm is a bijective mapping

C : [Nm] −→ [N ]m such that d(C(i), C(i + 1)) = 1 for all i ∈ [Nm − 1], where d() is the Euclidean metric.

In other words, the curve C of length Nm traverses all Nm points of the m-dimensional grid with side length

N , making unit steps and turns only at right angles. For a historical account of classical space-filling curve

constructions, see [8].

Space-filling curves are useful in applications where a traversal (scan) of a multidimensional grid is needed.

Some algorithms perform local computations on neighborhoods, or exploit spatial correlation present in the data,

so the preservation of “locality” during the traversal is desirable. By “locality”, we mean that the traversal reflects

proximity between the points of [N ]m, namely that points close in [N ]m are also close in the traversal order, and

vice versa. Sample applications are image halftoning ([11] and references therein), data organization [4], data

compression [5] and color quantization [9].

The little work on this topic to date has addressed only one direction of this question, namely, how to design

space-filling curves such that points close in the multidimensional space are also close along the curve. In general,

as we shall show later (Theorem 2), this is impossible - for every space-filling curve C there will always be at

least one pair of close points in [N ]m which are very far apart along C. However, as these cases are rare, on the

average, the situation will be much better. Perez, Kamata and Kawaguchi [7] quantify this using the average

locality measure

L(C) =
∑

i,j∈[Nm],i<j

|i− j|
d(C(i), C(j))

(1)

and describe a hierarchical construction for two-dimensional space-filling curves, which comes close to minimizing

this measure.

Mitchison and Durbin [6] investigate similar measures of locality, taking into account only short (unit) Euclidean

distances. This is because they regard the grid as an abstract lattice graph, ignoring its underlying geometry.

They treat general two-dimensional mappings C : [N2] −→ [N ]2 (not necessarily defining a curve). Their family

of measures, parametrized by q ∈ [0, 1], is:

Lq(C) =
∑

{i,j∈[N2]:i<j,d(C(i),C(j))=1}
|i− j|q (2)

Interestingly enough, for the case q = 1, which may be compared to the measure (1), the optimal mapping turns
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out to be quite different from that in [7] (it is not even a curve).

For the more interesting case q < 1, which de-emphasizes longer distances along the curve, Mitchison and

Durbin prove the lower bound

Lq(C) ≥ 1
1 + 2q

N1+2q + O(N2q)

and provide an explicit construction CN for any N with good, albeit suboptimal, locality. They conjecture that

the optimal mapping must define a curve with a ”fractal” character.

Voorhies [10] defines a more heuristic measure of locality, related to computer graphics applications, and

experimentally compares the measures obtained for a variety of space-filling curves. He concludes that the

Hilbert curve [3] is superior to other curves in this respect.

In this correspondence, we mainly address the converse question, i.e. to which extent can two points, which are

close in the traversal order along the curve, be far apart in the multi-dimensional Euclidean metric. To quantify

this, we use the following measures:

L1(C) = max
i,j∈[Nm],i<j

d(C(i), C(j))m

|i− j| (3)

L2(C) = min
i,j∈[Nm],i<j

d(C(i), C(j))m

|i− j| (4)

The use of the exponent m in (3) and (4) is justified by the fact that the maximal distance between points of

[N ]m is O(N), and between two points of [Nm] is O(Nm). This correspondence presents bounds on L1(C) and

L2(C).

Certain curve designs may be used to produce a family of curves for increasing values of N : C = {CN : N =

1, 2 . . .}. In this case, it is interesting to investigate the limits (with a slight abuse of notation)

L1(C) = lim
N→∞

L1(CN )

L2(C) = lim
N→∞

L2(CN ) .

Essentially, we show that, for any m-dimensional curve family C, if these limits exist, then L1(C) ≥ 2m − 1, and

L2(C) = 0.
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2 Locality of Space-Filling Curves

In this section, we provide a lower bound on L1 and an upper bound on L2 for multi-dimensional space-filling

curves.

Theorem 1 If C is a discrete m-dimensional (m > 1) space-filling curve on [N ]m, then

L1(C) > (2m − 1)(1− 1/N)m .

Proof: Consider the 2m corner points {1, N}m of the [N ]m grid. Any space-filling curve must start at some

arbitrary grid point, pass through these corner points in some order, and then end at another arbitrary grid point.

Consider the increasing sequence of indices {Pi}2m

i=1 of these corner points along any such ordering. Fig. 1 shows

the two possible distinct orderings of these 4 indices for the case m = 2. The Euclidean distance between any

two consecutive points is d(C(Pi), C(Pi+1)) ≥ N − 1. Since P2m − P1 < Nm, there exists an 1 ≤ i < 2m such

that Pi+1 − Pi < Nm/(2m − 1). For those two points we have d(C(Pi),C(Pi+1))
m

|Pi−Pi+1| > (2m − 1)(1− 1/N)m.

Remark: For the two-dimensional case, the limit constant given by Theorem 1 is 3. By a computerized exhaustive

search, we have improved this to 3.25, implying that the bound of Theorem 1 is not tight. This was achieved

by considering all possible paths through a specific configuration of 9 points in the plane, analogously to the 4

corner points in the theorem proof.

Whether |i− j| may be considered a good estimate for d(C(i), C(j))m depends on the existence of a positive

constant lower bound on L2(C). The answer to this is negative, relying on the following discrete analog of the

classic topological theorem ([2], Chap. 5, Theorem 2.3) that no mapping f : [0, 1] −→ [0, 1]m (m > 1) can be

continuous and also possess a continuous inverse.

Theorem 2 If C is a discrete m-dimensional space-filling curve on [N ]m, then

L2(C) = O(N1−m) .

Proof: Choose a segment S of C of length at least 1
4Nm and at most 3

4Nm. By the isoperimetric inequality on

the multi-dimensional grid [1], the boundary of S, namely the set of grid points in S which have an immediate

neighbor in C − S, denoted ∂S, satisfies |∂S| = Ω(Nm−1). 1 Form a list of the points of ∂S sorted by their

1Ω(f(N)) denotes a quantity which is not less than cf(N), for some constant c and sufficiently large N .
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position along C, and choose the point p at the middle of this list. The distance along C from p to the nearest

endpoint of S must now be at least b 1
2 |∂S|c. This distance bounds from below the distance along C between p

and any of its neighbors in C − S. The Euclidean distance between such a pair is 1, and the distance along the

curve is Ω(Nm−1), implying L2(C) = O(N1−m).

3 Hilbert Curves

The standard m-dimensional raster space-filling curve on [N ]m, denoted Rm
N , does not have good locality

properties, namely L1(Rm
N ) = Ω(Nm−1) (see Fig. 2). On the other hand, the Hilbert curve [3] is an excellent

example of a locality-preserving space-filling curve. The m-dimensional Hilbert curve of order k, denoted Hm
k ,

may be constructed recursively for any N = 2k, as described in Fig. 3. The locality of the Hilbert curve is

demonstrated by the following theorem, showing that it is close to optimal (compare with Theorem 1).

Theorem 3 If Hm
k is a m-dimensional Hilbert curve on [N ]m = [2k]m, then

L1(Hm
k ) ≤ (m + 3)m/22m .

Proof: Consider any subpath of length n along Hm
k . There exists an integer r such that (2m)r−1 < n ≤ (2m)r.

The fact that once Hm
k enters a grid quadrant of order r, it does not leave it until it has traversed all (2r)m grid

points in the quadrant, implies that the subpath must lie in the union of two adjacent quadrants containing (2r)m

grid points each (see Fig. 4(a)). If this were not true, the length of the subpath would be greater than (2r)m.

The diameter d of the set of grid points traversed by the subpath satisfies d2 ≤ (m− 1 + 4)(2r)2 (by Pythagoras’

theorem), therefore
dm

n
≤ (m + 3)m/22m

The upper bound of Theorem 3 is far from tight in all cases. For the two-dimensional case, we can improve the

constant 20 obtained from Theorem 3 almost to its optimal value:

Theorem 4 If H2
k is a two-dimensional Hilbert curve on [N ]2 = [2k]2, then

6(1−O(2−k)) ≤ L1(H2
k) ≤ 6

2
3

.
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Proof: Using the terminology of the proof of Theorem 3, a more detailed analysis of subpath containment in

quadrants of size 4r−1 (instead of quadrants of size 4r) shows that one of the following six possibilities must hold:

1. 4
164r < n ≤ 5

164r: d2 < 5
44r, hence d2/n ≤ 5.

2. 5
164r < n ≤ 6

164r: d2 < 29
164r, hence d2/n ≤ 5 4

5 .

3. 6
164r < n ≤ 7

164r: d2 < 10
4 4r, hence d2/n ≤ 6 2

3 .

4. 7
164r < n ≤ 8

164r: d2 < 10
4 4r, hence d2/n ≤ 5 5

7 .

5. 8
164r < n ≤ 12

164r: d2 < 13
4 4r, hence d2/n ≤ 6 1

2 .

6. 12
164r < n ≤ 4r: d2 < 5 · 4r, hence d2/n ≤ 6 2

3 .

For example, the subpath of Fig. 4(a) falls into category 5, as Fig. 4(b) illustrates. Taking the largest of the

locality measures among these cases establishes the upper bound on L1(H2
k).

For the lower bound, a subpath analogous to that illustrated in Fig. 5 (for k = 6, found by computer search)

exists in H2
k , for all k > 1, due to the recursive nature of the Hilbert curve. This subpath gives a locality measure

of 6(1 − O(2−k)). Indeed, for H2
k , it fills two adjacent quadrants of size 2k−3 × 2k−3, two quadrants of size

2k−4 × 2k−4 on either side of these two, aligned to a fixed direction, and so on until two quadrants of size 1. The

Euclidean distance between the two endpoints is

d = 2
k−3∑

i=0

2i + 1 = 2k−1 − 1

and the distance along the curve is

n = 2
k−3∑

i=0

4i + 1 =
2
3
4k−2 +

1
3

so d2/n = 6(1−O(2−k)).

Remark: For the three-dimensional case, Theorem 3 yields L1(H3
k) ≤ 117.56. By computer simulation, we have

found that L1(H3
k) ≤ 23.

4 Discussion

There remains a considerable gap between the lower bound on L1 for general space-filling curves (Theorem 1),

and the upper bound on L1 for the Hilbert curve family (Theorem 3). This leaves open the question whether
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there exist families of space-filling curves with locality properties better than those of the Hilbert curves for all

sizes.

It seems plausible that the Hilbert curves should also yield good results with respect to other measures of

locality, such as that of Mitchison and Durbin [6]. These authors conjecture that the space-filling curve with

optimal locality properties, measured by (2) with q < 1, must have a “fractal” character. Simulations performed

by us show that, in agreement with this prediction, in some cases the (fractal) Hilbert curves indeed outperform

the (non-fractal) curve constructed in [6].

In conclusion, we emphasize the practical implications of our results. Theorem 4 guarantees that if spatial

correlation exists among the values of a discrete 2D data array, a 1D algorithm (such as that compressing a 1D

data stream) may scan the the array along a Hilbert curve, and the loss in data correlation along the scan will

be bounded.
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(a) (b)

P1

P3

P4 P1

P4

P3

P2 P2

Figure 1: The two possible distinct traversals through the four corner points of the two-dimensional case considered

in the proof of Theorem 1. All other traversals are symmetric to these.

Figure 2: The two-dimensional raster space-filling curve R2
N on [N ]2. For the two grid points at the two ends of

any scan line, both the Euclidean distance and that along the curve are N − 1, so L1(R2
N ) = N − 1.
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(a) (b)

(c)

Figure 3: Recursive construction of the Hilbert curve: (a) The “seed” H2
1 . (b) H2

2 constructed from 4 (rotated)

versions of H2
1 . H2

k is constructed recursively in an analogous fashion. (c) The “seed” H3
1 . H3

k is constructed

recursively from the seed curve.

d

(a) (b)

d

m = 2, n = 40, r = 3, d2 = 82 + 162 = 320 m = 2, n = 40, r = 3, d2 = 82 + 122 = 208

Figure 4: Upper bounds on L1(H2
4 ): (a) Quantities of Theorem 3. Any Hilbert subpath of length 16 < n ≤ 64

must lie within two adjacent quadrants of size 8×8. (b) Case 5 of Theorem 4. The subpath of (a), as any Hilbert

subpath of length 32 < n ≤ 48, is actually contained in 4 adjacent quadrants of size 4× 4, resulting in a tighter

bound on d.
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Figure 5: The “worst” subpath of H2
6 determining the value of L1(H2

6 ). This path was found by exhaustive

search, using a computer. An analogous structure is present in H2
k for any value of k, due to the recursive nature

of the Hilbert curve.
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