
The Complexity of Automated
Reasoning

by

André Vellino

A Thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy in the

University of Toronto

© 1989 André Vellino

ii

Abstract

This thesis explores the relative complexity of proofs produced by the

automatic theorem proving procedures of analytic tableaux, linear resolution,

the connection method, tree resolution and the Davis-Putnam procedure. It is

shown that tree resolution simulates the improved tableau procedure and that

SL-resolution and the connection method are equivalent to restrictions of the

improved tableau method. The theorem by Tseitin that the Davis-Putnam

Procedure cannot be simulated by tree resolution is given an explicit and

simplified proof. The hard examples for tree resolution are contradictions

constructed from simple Tseitin graphs.

iii

Acknowledgements

I would like to thank Steven Thomason, Marvin Belzer, David

Goodman and William Older for their comments on early drafts of my thesis. I

am very grateful to John Bell, James Brown, Hector Levesque, and John Slater

for serving on my committee and also to William Seager for his equally

interesting comments and his continual encouragements. But most of all, I

wish to thank Alasdair Urquhart not only for his guidance and inspiring

enthusiasm, but also for his patience and generous help. This work would not

have been possible without him.

iv

Table of Contents

Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Theorems and Lemmas viii
1 Introduction 1

1-1 Automated Theorem Proving 2
1-2 Is P = NP? 3
1-3 Overview of the thesis 5

2 Basic Notions 8
2-1 Propositional Calculus 8
2-2 Proof Systems 10
2-3 Graphs and Trees 12
2-4 Measures of Complexity 15

2-4.1 Simulation 16
2-4.2 Proof Length vs. Search Space 17

3 Analytic Tableaux and Resolution Trees 19
3-1 Analytic Tableaux 19

3-1.1 Clash Restricted Analytic Tableau 22
3-1.2 Improved Analytic Tableau 26

3-2 Resolution Proofs and Tree Proofs 28
3-2.1 Lengths of Resolution Proofs 30

3-3 Tree resolution and analytic tableaux 34
4 Refinements and Extensions of Resolution 38

4-1 The Davis-Putnam Procedure 39
4-2 Regular Resolution 40

4-2.1 Splitting Rule 44
4-3 Extended Resolution 45

5 Linear Resolution 47
5-1 Linear Resolution 47

5-1.1 Linear Resolution p-simulates Tree Resolution 50
5-2 SL-Resolution 53

5-2.1 Linear Resolution and Analytic Tableaux 62

v

6 The Connection Method 66
6-1 The Connection Method 66

6-1.1 Structured Matrices 68
6-2 Connection Method and Analytic Tableaux 72
6-3 Conclusions 77

7 Hard Examples For Tree Resolution 79
7-1 Graph Clauses 79
7-2 Tseitin's Theorem 85

7-2.1 Examples 88
7-3 Tree Resolution cannot simulate DPP 91

8 Conclusion 95
8-1 Open Problems 97

9 APPENDIX 99
10 BIBLIOGRAPHY 101

vi

List of Figures

Figure 1-3.i 6
Figure 2-3.i 13
Figure 2-3.ii 13
Figure 2-3.iii 14
Figure 3-1.i 20
Figure 3-1.ii 21
Figure 3-1.iii 21
Figure 3-1.1.i 23
Figure 3-1.1.ii 23
Figure 3-1.1.iii 24
Figure 3-1.1.iv 25
Figure 3-1.1.v 25
Figure 3-1.2.i 27
Figure 3-2.i 29
Figure 3-2.ii 30
Figure 3-2.1.i (a) 32
Figure 3-2.1.i (b) 32
Figure 3-3.i 35
Figure 3-3.ii 36
Figure 3-3.iii 37
Figure 4-2.i 41
Figure 4-2.ii 42
Figure 4-2.iii 43
Figure 4-2.1.i 45
Figure 5-1.i 49
Figure 5-1.1.i 52
Figure 5-1.1.ii 53
Figure 5-2.i 58
Figure 5-2.ii 61
Figure 5-2.1.ii 64
Figure 5-2.1.iii 64

vii

Figure 5-2.1.iv 65
Figure 6-2.i 74
Figure 6-2.ii 76
Figure 6-2.iii 76
Figure 7-1.i 81
Figure 7-1.ii 83
Figure 7-1.iii 84
Figure 7-2.i 87
Figure 7-3.i 92
Figure 7-3.ii 92
Figure 7-3.iii 94

viii

List of Theorems and Lemmas

Lemma 3-2.2. 33
Theorem 3-3.1. 34
Lemma 4-2.1. 42
Lemma 4-2.2. 43
Lemma 5-1.1. 49
Lemma 5-1.2. 50
Lemma 5-1.1.1 51
Theorem 5-2.1. 60
Theorem 5-2.1.1. 63
Theorem 6-2.1 72
Lemma 7-1.1. 83
Lemma 7-1.2. 83
Lemma 7-1.3 84
Lemma 7-1.4 84
Theorem 7-2.1 86
Theorem 7-3.1 93

1

CHAPTER 1

Introduction

One proof method for a system of logic is more powerful than another

to the degree that it simplifies the task of producing derivations of theorems.

For example, in Mendelson's axiomatic system for the propositional calculus

[Mendelson 1964] the proof of even a simple tautology such as A → A can be

relatively long, yet trivial to prove in a natural deduction system.

The intuition that some proof systems are more powerful than others is

a natural one but it is not obvious how precisely this relation should be

defined. The view taken in this thesis is that the power of a proof system is

inversely proportional to its proof complexity, i.e. to the rate of growth of the

length of the shortest possible proofs for theorems in that system relative to

the size of these theorems. Although there are other possible measures, such

as how difficult proofs are to discover or how long they take to produce

mechanically, proof complexity is more general because it sets absolute limits

on these other measures.

Until recently, the relative complexity of different logical systems, as

measured by the lengths of the proofs they produced, had been given scant

attention. The growing interest in the existence of a hierarchy of complexity

among theorem proving methods has come from two fields in computer

2

science: automated theorem proving (ATP) and the theoretical question "is

P=NP?". This introduction briefly describes these motivations and presents

an overview of the main results of the thesis.

1-1 Automated Theorem Proving

Although the earliest computer programs for proving theorems dealt

mainly with propositional logic [Newell, Shaw and Simon 1957, Davis and

Putnam 1960], the ultimate aim of this research was to develop theorem

proving procedures for the full (first order) predicate calculus. The grand goal

of theorem proving, at least in the early years, could be viewed as the

culmination of the rationalist dream: the mechanization of thought.

The lack of success of early automatic theorem provers was initially

thought to be caused by inadequacies in the basic proof searching strategies.

The optimistic hope was that better search strategies would increase the

efficiency of these programs to the point where they could emulate human

thinking. What was not known at the time was that the problem of producing

short proofs for theorems in the propositional calculus, let alone the predicate

calculus, is intrinsically difficult.

There are basically two kinds of complexity measures of interest in

automated theorem proving: how much time it takes for a procedure to find a

proof and how much space (computer memory) is required to search for it.

One reason that proof length has not been a favoured measure is that there is

a practical distinction between the "worst case" and the "average case". Even

if a theorem proving procedure is very inefficient at proving some classes of

tautologies, it may still be considered acceptable if most theorems can be

3

proved efficiently most of the time. Thus although proof length provides

valuable indications of the inherent limitations of a proof procedure, the focus

of complexity analysis in the field of ATP has been driven primarily by the

goal of reducing the average amount of computing resources (time and space)

needed to prove most theorems [Goldberg 1979].

1-2 Is P = N P ?

The study of worst-case proof complexity of automatic theorem

proving procedures is also motivated by questions regarding the limits of

computability. If it can be shown that there exists a decision procedure which

can verify whether or not a formula F is a tautology in a number of steps that

is a polynomial function of the length of F, then a major open question in

computer science, "is P = NP?", would be answered [Cook 1971a].

If one makes a distinction between problems that a computer program

can always solve in an amount of time which is a polynomial function of their

length—problems in the class P—and another class of problems—the class

NP—for which it is possible only to verify, in polynomial time, whether or not

a proposed solution is indeed a solution to the problem, then the question

arises whether P is the same as NP.

Consider the following questions:

(Q1) Does a formula F in the propositional calculus contain an even number

of occurrences of each of its propositional symbols?

(Q2) Does there exists a set of truth-value assignments to the atomic

propositions in a formula G that makes G true?

4

Since (Q1) is a decision problem that can be solved in polynomial time

(a polynomial function of the length of F), it belongs to the class P. However,

the problem (Q2), also known as the SATISFIABILITY problem, belongs to

the class NP. This is because it is possible to verify whether or not a given set

of truth value assignments (a proposed solution) satisfies G in an amount of

time which is a polynomial function of length of G. While the class NP clearly

contains P, it may (or may not) contain problems not contained in P. In other

words the question of whether or not P=NP is an open one.

The complements of the classes P and NP —co-P and co-NP—can be

explained analogously. To take the complements of the examples above, the

problem (co-Q1) of whether a formula F does not contain an even number of

occurrences each of its propositional symbols has the same complexity as (Q1),

i.e. P= co-P. However, the problem (co-Q2) of whether there is no truth value

assignment to the propositional symbols in a formula G that satisfies it, is not

known to belong to NP. Since this problem is equivalent to deciding whether

all truth value assignments to the propositional symbols in ~G satisfy it, the

problem is referred to as the TAUTOLOGY problem.

Some problems in the class NP—the class of NP-complete problems—

are generic in the sense that if NP-P is non-empty then they are characteristic

elements of that class. The SATISFIABILITY problem has the distinction of

being the first one known to belong to the class NP-complete [Cook 1971a].

It follows that the TAUTOLOGY problem is co-NP-complete and any

complexity result for it applies to all problems in co-NP. The importance of the

class co-NP is that, if NP ≠ co-NP then P ≠ NP. Now, according to a result in

5

[Cook and Reckhow 1979] NP = co-NP if and only if there exists an efficient

(polynomial) proof system for TAUTOLOGY. Thus, one way to show that P ≠

NP is to show that there is no polynomial time proof procedure for all

tautologies.

1-3 Overview of the thesis

To show that proving tautologies is intractable for any proof

procedure, it may be helpful to know that specific proof procedures can be

"defeated", i.e. that there are tautologies which are hard for them to prove.

For some proof systems, it is possible simply to construct such hard-to-prove

tautologies, indeed there may be constructive examples that are hard to prove

for all proof systems. (Experience with particular examples that defeat specific

proof systems seems to indicate, however, that constructive techniques may

not be powerful enough to settle the TAUTOLOGY question.)

Rather than showing that a particular tautology or class of tautologies

is hard for a proof system A, it is usually simpler to show that another proof

system B, already known to be "defeated" by hard examples, simulates A.

That is, one shows that any proof α in A can be transformed into a proof β in

B which proves the same tautology and that the length of β is a polynomial

function of the length of α. Conversely, one can also show that proof system

A cannot simulate another system B by showing that there are tautologies

that are hard for A are not hard for B, i.e. B is strictly more powerful than A.

The simulates relation (defined in section 2.4.1) imposes a partial

ordering among proof systems, and, although many simulation relations are

known [Reckhow 1975], there are still a number of gaps in the literature. In

6

particular, there are several proof procedures used in automated theorem

proving for which adequate complexity measures are not known. This thesis

attempts to fill these gaps for some specific proof procedures. A schematic

diagram of the main simulation results is drawn in figure 1-3.i.

IACR Tableau

Improved Analytic Tableau

Connection Method

Tree Resolution

s-linear Resolution

I PCR Tableau

5-1.1

3-3.1

6-2.1

5-2.1
SL-Resolution

Figure 1-3.i

The proof that tree resolution simulates the improved tableau procedure

is given in chapter 3. SL-resolution and the connection method are shown to

be equivalent to restrictions of the improved tableau method in chapters 5 and

6 respectively.

In chapter 4 we describe the Davis-Putnam procedure (DPP) and some

known results about regular resolution. In chapter 7 we present an explicit

and simplified proof of Tseitin's theorem that the DPP is strictly more powerful

7

than tree resolution (and hence the other three) by constructing examples of

tautologies that are hard for tree resolution, but not hard for the DPP. Chapter

8 concludes with some speculations about the general significance of

complexity results for automated reasoning.

8

CHAPTER 2

Basic Notions

The literature on theorem proving methods explored in this thesis

employs a notation that differs somewhat from the conventional terminology

in philosophical logic. We begin, therefore, with some definitions for basic

notions in the propositional calculus. This is followed by a brief introduction

to some elementary concepts in graph theory that are useful in the analysis of

proof complexity as well as in the construction of interesting classes of

contradictory propositions. Since later chapters explore the differences in the

lengths of derivations for different proof systems we also introduce the

notions of proof length, efficiency and simulation.

2-1 Propositional Calculus

We say that the symbols of the propositional calculus PC belong either

to the set of logical constants, comprising the unary operator ~ and the

binary connectives:

{ ∨ , &,≡, → }

or to the infinite set of atomic propositional variables:

{ a, b, c,..., a1, b1, c1,}.

A literal in PC is either a propositional variable l or its negation ~l.

The complement of a literal ~l (l) is l (~l). A formula is either a literal or an

9

expression of the form α ⊗ β, where α and β are formulas and ⊗ is one of the

binary connectives.

A clause, denoted by upper case letters {A, B, C..., A1, B1,...} is either a

finite formula of the form α ∨ β, where α and β are either literals or clauses, or

the formula containing no literals, ∅ , referred to as the empty clause. The

empty clause is also called the contradictory clause. A clause with just a

single literal is called a unit clause.

Since the literals contained in a clause are all related by the same

connective ∨ , we will often represent the clause α ∨ β either in the

abbreviated form αβ or as a set of literals { a1,a2,...b1,b2...}. A set of clauses

{ A, B, C...} is considered to be a conjunction of clauses, or equivalently, a

formula in Conjunctive Normal Form (CNF).

The set of variables S contained in a clause C may be given a truth

value assignment (tva) by a map T : S —> {true, false}. Let V be a tva to the

variables S in C. Then the truth value of C is a function ℑ (V) into the set

{true, false}. The total number of tva's to C is 2n where n is the number of

variables in C, |S|. A complete listing of all the possible tva's to variables of a

clause C and their transformation by the truth-functional connectives of C is

the truth-table for C.

A clause C (or a set of clauses Σ) is satisfied by a tva V to the variables

in C (Σ) iff ℑ (V)=true. C (Σ) is satisfiable if there is some tva that satisfies C

(Σ). If all the possible tva's for C (Σ) satisfy C (Σ), then C (Σ) is a tautology. C

(Σ) is falsified by a tva V to the variables S in C (Σ) iff ℑ (V)=false. If all the

tva's falsify C (Σ), then C (Σ) is inconsistent or unsatisfiable.

10

If Σ is an inconsistent set of clauses and ℑ (V) is a tva to the variables S

in Σ then ℑ (V) is critical for a clause C ∈ Σ if ℑ (V) satisfies all the clauses in Σ

except C. Σ is minimally inconsistent if there exists a critical tva for every

clause in Σ.

2-2 Proof Systems

Following [Cook and Reckhow 1979] we define a proof system as

follows. For a finite alphabet Γ, let Γ* be the set of finite strings over Γ and a

language Λ over Γ* be any subset of Γ*. If m ∈ Γ* then we say that |m| is the

number of occurrences of symbols in m . Given a function f :Γ l* —> Λ ,

Γ* ⊇ Γ l*, we say that f is polynomial-time computable if f is computable by a

deterministic Turing machine in a number of steps bounded by some

polynomial function of |m|. A proof system for a language Λ is a polynomial-

time function f from Γl* onto Λ.

This general notion of a proof system subsumes all the methods

described in this thesis. The proof of a tautology C in the language of the

propositional calculus PC, for example, is a string of characters S that can be

mapped into C in a polynomial number of steps: i.e. f (S) = C (the last line of

the proof.) For instance, the truth-table method for ascertaining that a clause

C is tautologous (unsatisfiable) simply tabulates all the possible truth value

assignments to the variables in C to verify that all of the combinations of truth

value assignments to the literals in C satisfy (falsify) C. If the truth-table is

taken as the string, then even though the truth-table has a size 2n (where n is

the number of literals) the verification that the truth-table is the truth-table for

C is a polynomial function of its size. Similarly, the analytic tableau and

11

connection method systems described in chapters 3 and 6 can be regarded as

proof systems in this general sense.

An axiomatic proof system such as the resolution method consists of a

privileged set of clauses called axioms and a set of truth-preserving rules of

inference that allow the construction of a clause from other clauses and / or

axioms. A proof for a clause C, the conclusion, is a sequence of clauses

C1...Cn such that

(1) C = Cn, and;

(2) Ci, for 1 ≤ i ≤ n, is either an axiom or derived from other clauses

using a rule of inference.

An inference of C from a set of clauses Σ is truth-preserving if and only

if all the tva's J on the variables VΣ in Σ such that ℑ (J) = true are such that

ℑ (K)=true , where K is the set of truth-value assignments to the variables Vc

in the clause C.

The special class of proofs whose axioms are an inconsistent set of

clauses are called refutations and their conclusion is always the contradictory

clause ∅ . Showing that the contradiction follows from a set of clauses using a

truth-preserving rule of inference is therefore equivalent to showing that the

negation of the formula in CNF is a tautology.

2-3 Graphs and Trees

We define some notions from graph theory [Bondy and Murty 1976]

because some interesting classes of tautologies are best represented by graphs

(see chapter 7). These same concepts are also useful in connection with the

12

analysis of resolution proof trees and analytic tableaux introduced in the next

chapter.

A graph G is a set V of vertices that are connected by a set of edges E:

G = (V, E). The number of elements in V (E) is denoted |V| (|E|). If |V| and |E|

are finite, the graph is said to be finite. An edge e in a graph is associated with

two vertices vi and vj called its end-points. A graph that has distinct edges

with the same end-points is said to have multiple edges. A graph may also

contain loop edges whose end-points are the same vertex, however graphs

containing loops will not be considered further.

The two end-points vi and vj of an edge e are said to be adjacent and e

is incident with vi and with vj. The degree d(v) of a vertex v, is the number of

edges that are incident with v. The degree d(G) of a graph G = (V, E), is the

maximum of d(vi) for all vi ∈ V.

A w a l k between v j and v k in the graph G is a sequence

<vj, ej, vj+1, ej+1, ..., vk-1, ek, vk > of alternate vertices and edges such that ei is

incident with vi, vi+1, for 0 ≤ i ≤ k. If the vertices and edges of a walk are

distinct then it is a path. A circuit is a non-empty path to which the first

element has been appended (i.e. whose first and last vertices are the same).

Two vertices are connected if there is a path between them. We say a graph is

connected if all its vertices are connected. Figure 2-3.i shows a connected

graph

13

v
1

v
2

v
3

a
b

c

v
4

d

Figure 2-3.i
A connected graph G = ({v1, v2, v3, v4}, { a, b, c, d })

A directed graph or digraph is a graph G = (V, A), where V is a set of

vertices and A is a set of ordered pairs of elements called arcs or directed

edges. If a is an arc (vi, vj) then vi is the tail of a and vj is the head of a. In a

diagram, arcs are drawn with arrows, as in figure 2-3.ii

v
1

v
2

v
3

a
b

c

Figure 2-3.ii
A digraph G = ({v1, v2, v3}, {(v3, v2,),(v2, v3), (v2, v1)}

The indegree d-(v) of a vertex v is the number of arcs whose head is v.

The outdegree d+(v) of a v is the number of arcs whose tail is v. For example

v2 in figure 2-3.ii has indegree 1 and outdegree 2.

A tree is a connected graph with no circuits. A node is a vertex on a

tree. A rooted tree is a tree with a distinguished node, the root. The leaves of

a rooted tree are all the vertices, other than the root, having degree 1. A tree

14

with a root of degree 2 and whose non-leaf nodes are of degree 3 is a binary

tree. A path from a node n to a leaf l is a branch from n to l.

It will often be useful to think of a logical proof in terms of a directed

tree, i.e. a directed graph with no directed circuits. The root of a directed

rooted tree has indegree 0 and its leaves have outdegree 0. The children of a

node n are the heads of the arcs whose tail is n and the parent of a node n is

the tail of the arc whose head is n. A descendant node is either a child node

or one of its children whereas an ancestor node is either a parent node or one

of its ancestor nodes.

We adopt the convention of drawing a tree so that the leaves of the

tree are lowermost and each subsequent connected edge is positioned above

the previous one. All the nodes immediately below a given node are its

children whereas the node above a given node is its parent. Most of the

directed trees considered in this thesis will be drawn with the arrows implicit.

a

b

e f

c

d

g h

Figure 2-3.iii
A directed rooted tree

It is also useful to define a specific order for visiting the nodes of a tree.

In particular, a postorder traversal of a tree traverses the sub-trees of the first

(left-most) sub-tree, visits the root and then traverses the remaining sub-trees

15

[Knuth 1968, p.316]. A leaf node is traversed by doing nothing. Thus, the

postorder traversal of the tree in figure 2-3.iii is ebfacgdh.

2-4 Measures of Complexity

We are interested not only in the absolute lengths of proofs but also in

the rate of growth of proofs as a function of the number of input clauses

(axioms).

We say that for the functions f and g, f is of the order of g, f = O(g) if

there is a constant c > 0 and some n0 such that, for every n , n > n0,

|f(n)| ≤ c |g (n)|. Moreover, g grows faster than f, written f < g , if

lim n→ ∞ f(n) / g(n) = 0. On the other hand, f and g will converge if

lim n→ ∞ f(n) / g(n) = c for some c > 0. The function f is said to be

superpolynomial if p < f for every polynomial p. For example, if p(x)= x2 + 3x

and f(x) = 2x then p < f. Note that the relation f = O(g) is an equivalence

relation.

The proof that a set of clauses is inconsistent may require a number of

steps that is a superpolynomial function of the number of input clauses. Such

problems are said to be intractable.

Remarks : Although the distinction between polynomial and

superpolynomial functions is sharp, it is not evident what importance should

be given to it. For any fixed interval of real numbers we can find a polynomial

function whose value is greater, in that interval, than any preassigned

superpolynomial function. Hence, even though superpolynomial functions

16

always grow faster than polynomial ones, they do not always have larger

values for any particular problem.

For some practical problems, in computer science for example, it may be

better (more efficient) to use an algorithm that suffers from a combinatorial

explosion for problems greater than a fixed size rather than use an algorithm

whose execution time is a polynomial function of the size of the input, but

whose values get very large even for small problem sizes. For instance, the

problem of Linear Programming is known to be soluble in polynomial time but

the exponential time Simplex algorithm is still used in practical applications

because it works well for relatively small problems [Gibbons 1985, Appendix].

2-4.1 Simulation

Given two proof systems, A and B , for a fixed language Λ , and a

procedure P which transforms any proof of a clause produced by system A

into a proof of the same clause in system B we say that system B simulates

system A. Moreover, if P is polynomial-time computable then we say that

system B p-simulates system A. In this case, B p-simulates A if P transforms a

proof in system A into a proof in system B without increasing the length of the

proof by more than a polynomial function of the length of A.

The idea behind the simulation results in this thesis is to show that any

proof of length L, obtained in a proof system A, can be translated into another

proof system B, without increasing its length by more than a polynomial

function of L. But the p-simulates relation is not symmetric. Indeed, there

are examples of inconsistent sets of clauses whose minimum refutation length

is k in system B but whose minimal length in system A is a superpolynomial

17

function of k. In that case, system B is, from the complexity point of view,

strictly more powerful than system A.

2-4.2 Proof Length vs. Search Space

It is possible for a theorem proving procedure to produce a short

refutation for a set of clauses and yet require an exhaustive search of (almost)

all the possible near-refutations in order to find it. In other words, a more

powerful theorem proving technique might yield a shorter refutation than any

obtainable by a less powerful theorem prover yet may take a long time to find

it.

However, if it can be shown that a theorem proving procedure

produces refutations whose minimal length is a super-polynomial function of

the number of input clauses, then even if the procedure finds the shortest

proof in the most direct and efficient way, the intractability of the proof

procedure is guaranteed by the necessarily large size of the refutation.

In the chapters ahead we consider proof methods such as restrictions of

resolution and analytic tableaux whose purpose is to achieve the efficient

automation of the general methods. The set of possible refutations for the

refinement of a proof technique is generally different from the set of proofs

that are possible without the restriction. Moreover, it is possible that the

lengths of minimal proofs deduced from a restricted method is of the same

order—and may even coincide with—the minimal proofs obtainable without

the restriction. On the other hand, restrictions may also have minimal proofs

that cannot p-simulate minimal proofs obtained without the restriction.

18

Chapter 3

Analytic Tableaux and Resolution Trees

This chapter provides an account of two basic proof methods for the

propositional calculus: analytic tableau, and tree resolution. We then define

refinements of the analytic tableau method—ancestor and parent restrictions,

and the improved tableau—and compare the relative sizes of the proofs that

these systems generate. We also show that tree resolution p-simulates the

improved analytic tableau.

3-1 Analytic Tableaux

The method of analytic tableau may be defined for the general

propositional calculus [Smullyan 1968], but here we will be considering only

analytic tableaux for sets of clauses.

An analytic tableau θ for a set of clauses Σ, is a tree such that all the

nodes in θ other than the root node are labelled by literals occurring in Σ and,

for each interior node k in the tree, the set of literals labelling the children of k

is a clause in Σ. The root node of any analytic tableau for clauses will be

designated by the special symbol ϑ .

19

For example, the clause ab~cd is decomposed at node k in an analytic

tableau as follows:

k

a b ~c d

Figure 3-1.i
Clause ab~cd decomposed in an analytic tableau

A branch is closed if it contains both a literal and its complement. An

analytic tableau is closed if all its branches close but open if at least one

branch is not closed and all the clauses in Σ have been decomposed at some

node in that branch.

It is easy to see that if Σ is a consistent set of clauses, an assignment of

truth values to the literals which makes Σ true can be read off an open branch

of its analytic tableau.

Conversely, all the branches of an analytic tableau for a set Σ of clauses

are closed if and only if Σ is inconsistent.

20

For example, a proof that the clauses { ab, ~ab, ~b } are unsatisfiable is

a

~a

b

~b

XX

ϑ

b

~b

X

Figure 3-1.ii
Closed analytic tableau for { ab, ~ab, ~b }

whereas a consistent assignment of truth values to the clauses

Σ = { ab, a~bc, ~c } may be read off from any one of its three open branches

ϑ

a

ba

~c ~c ~c

~b

X

ba

c

~c

X

Figure 3-1.iii
Open analytic tableau for { ab, a~bc, ~c }

Thus one of the tva's that make Σ true can be read off the left-most

branch for instance and are T(a)=true, T(c)=false.

3-1.1 Clash Restricted Analytic Tableau

The search for minimal sized tableaux proofs, particularly for sets of

non-minimally inconsistent clauses, can be quite inefficient if the tableau

21

method is unrestricted. One restriction of the general tableau method that

might reduce the search space is to impose the rule that each clause

decomposition closes a branch in the tableau. This is equivalent to the

condition that the clause decomposed at each node k in the tableau contain at

least one literal that clashes with (i.e. is the complement of) a literal labelling k

or an ancestor of k. We will call such a tableau an ancestor clash restricted

(ACR) analytic tableau.

A more stringent clash restriction is to specify that some literal in every

decomposed clause clash with the literal labelling the parent node, i.e. that

every non-leaf node k in the tableau is labelled with a literal that clashes with

a literal labelling a child of k. We say that such a tableau is parent clash

restricted (PCR). Both ACR and PCR analytic tableaux methods are

complete: a set Σ of clauses is inconsistent if and only if there exists both an

ACR and a PCR analytic tableau for Σ.

Contrast the following analytic tableaux for the refutation of the set

{ab, ~ab, ~b, ~ac, ef }.

22

~a

X

e f

b

~b

~a b

~b

X

X

X

ϑ

a b

~b

X

Figure 3-1.1.i
Tableau with no restrictions for {ab, ~ab, ~b, ~ac, ef }

ϑ

a

~a

b

~b

XX

~a c

~b

X

X

b

Figure 3-1.1.ii
Tableau with ancestor clash restriction for {ab, ~ab, ~b, ~ac, ef }

23

a

~a

b

~b

XX

ϑ

b

~b

X

Figure 3-1.1.iii
Tableau with parent clash restriction for{ab, ~ab, ~b, ~ac, ef }

These show that P C R and A C R tableaux can be shorter than

unrestricted analytic tableaux. Thus, as a heuristic for searching, this

restriction appears to minimize the decomposition of irrelevant clauses.

Whether or not PCR or ACR tableaux p-simulate unrestricted analytic

tableaux is an open question. However, we know that some minimal

unrestricted tableau are smaller than either PCR or ACR tableaux. The

examples that show this are constructed as follows.

Consider a set S of 2(2n - 1) distinct positive literals from which the set

C of 2n - 1 clauses, each containing exactly two distinct literals, such that each

literal in S occurs only once in C. Then construct an open analytic tableau

containing only one decomposition of each clause in C. This tableau can be

closed by the set of 2n clauses each containing n negative occurrences of

literals in S. The resulting tableau Tn has (n + 2)2n - 2 nodes.

For instance, the tableau on figure 3-1.1.iv is minimal and all the PCR or

ACR tableaux for those sets of clauses are larger.

24

ϑ

a b

c d e f

h i j k l m n

~a ~c ~g ~a ~c ~h ~a ~d ~i ~a ~d ~j ~b ~e ~k ~b ~e ~l ~b ~f ~m ~b ~f ~n

g

X XXX

Figure 3-1.1.iv
Minimal tableau for {ab, cd, ef, gh, ij, kl, mn, ~a~c~g, ~a~c~h, ~a~d~i,

~a~d~j, ~b~e~k, ~b~e~l, ~b~f~m, ~b~f~n}

Since each clause in these minimally inconsistent sets is decomposed

exactly once, by construction, the class of tableaux Tn is minimal for n ≥ 3. If

either the PCR or ACR restriction is placed on the construction of such a

tableau then the same clause must be decomposed more than once because

the symmetry of the literal clashes in the tree is broken. This is illustrated by

observing the start of an ACR tableau for T3.

ϑ

a b

c d

~a

X X

X
~c ~g

~a
X

~d ~i

ϑ

a

c d

~a

X

X
~c ~g

~a
X

~d ~i
X

b

Figure 3-1.1.v
Partial ACR tableaux for T3

Given the start clause ab, the next clause beneath a must be one of the

four clauses containing ~a, say ~a~c~g. The branch containing ~c can be

25

closed by cd in a parent clash decomposition (right hand side of figure 3-1.1.v)

or after some ancestor clash (left hand side of the figure). In either case there

are still two more clauses containing ~c and ~d which have yet to be

decomposed (since the set is minimally inconsistent) and whose branches must

be closed by another decomposition of cd.

3-1.2 Improved Analytic Tableau

There is a simple extension to the analytic tableau method that

increases its efficiency as a method for proving theorems and produces a

considerable reduction in the complexity of its proofs. (A short and elegant

implementation of this method in the logic programming language Prolog is

described in the appendix.)

We will say that an analytic tableau is an improved (I) analytic tableau

for a set of clauses Σ if it is completed or checked which we define

simultaneously by induction as follows:

(i) A sub-tableau is completed if it is closed.

(ii) If a branch of a sub-tableau ends in a literal l and there is an

ancestor of this node that has a child also labelled with l which is

at the top of a completed sub-tableau then the branch ending in l

is checked.

(iii) A sub-tableau is completed if all its branches are closed or

checked.

26

For example, a completed I-analytic tableau for the clauses

{ ab, ~ab, ~b } is given in figure 3-1.2.i. Compare this with the tableau in

figure 3-1.ii.

a

~a

b

~b

XX
b

ϑ

Figure 3-1.2.i
Completed I-analytic tableau for { ab, ~ab, ~b }

To show the soundness of this method it is sufficient to observe that

any completed I-analytic tableau can be transformed into a closed tableau by

replacing every check mark by a closed sub-tableau containing no check

marks (check marks cannot justify each other cyclically). Without loss of

generality, we will assume that I-analytic tableaux are constructed so that the

check marks occur to the left of the nodes by which they are justified. This is

always possible since the literals in each clause are not order sensitive.

Remarks: Checking a branch that ends in a literal l simply has the

effect of reporting (or delaying) the justification for closing that branch to the

decomposition of clauses on another branch ending in l, provided that both

occurrences of the literal have the same ancestor. The checking of a literal

always reports its decomposition to a literal belonging to an ancestor clause

and effectively merges nodes in the tableau, allowing them to share the

closure of a sub-tableau.

27

3-2 Resolution Proofs and Tree Proofs

The rule of resolution was introduced in its present form by J. A.

Robinson [Robinson 1965] as a general method for automated theorem

proving. Using only this rule, any theorem (tautology) in the full propositional

calculus may be proved simply by converting its negation into conjunctive

normal form (CNF), i.e. a set of clauses, and deducing a contradiction.

Two clauses C and D are said to clash if there is a literal l such that

l ∈ C and ~l ∈ D. Two clauses that clash may be resolved by deleting or

annihilating the complementary literals and forming a new clause — the

resolvent — by disjoining the remaining parts of the clauses. Thus, the

resolution of the clashing clauses abc with e~ca is abea.

When a clause contains the same literal more than once, that literal may

be merged : the clause abea merges the two occurrences of the literal a to

form abe.

A resolution proof of a clause C from a set of clauses Σ is a sequence

of clauses such that each clause is either an input clause (a clause belonging

to Σ) or a resolvent of two previous clauses, and C is the last clause in the

sequence. A resolution refutation is a resolution proof of the contradictory

clause ∅ (the resolvent of l and ~l for any literal l).

For example, a resolution proof that the clause qr follows from the set

of clauses {prs, ~pqr, pr~s} is (with justifications in the right margin)

28

1) prs input clause

2) ~pqr input clause

3) pr~s input clause

4) qrs 1, 2

5) qr~s 2, 3

6) qr 4, 5

Alternatively this proof may be represented by the directed acyclic

graph (DAG)

qrs qr~s

qr

~pqrprs pr~s

Figure 3-2.i
DAG representation of a proof of qr from {prs, ~pqr, pr~s}

A resolution proof (refutation) may also be thought of as a binary tree

whose conclusion C (contradictory clause ∅) is at the root, whose interior

nodes contain resolvent clauses and whose leaves are the clauses in Σ. Thus a

proof of the clause qr from the set of clauses {prs, ~pqr, pr~s} can be

represented as the tree:

29

qrs qr~s

qr

~pqrprs pr~s~pqr

Figure 3-2.ii
Resolution Proof Tree of qr from {prs, ~pqr, pr~s}

Note that this tree proof differs from the graph above in that the input

clause ~pqr occurs twice. In general, any clause used more than once in a tree

proof must be re-derived whereas in the linear (or graph) representation

clauses that have already been proved may be referred to anywhere further

down the proof.

Note that if { A1, A2, ...An, P } is an unsatisfiable (inconsistent) set of

clauses then a resolution refutation is a proof that the clause

~A1 v ~A2 v ...v ~An v ~P is a tautology. Thus any tautology expressed in

DNF may be proved using resolution.

3-2.1 Lengths of Resolution Proofs

We say that the size of a binary resolution proof tree T, L(T), is the

number of leaf nodes in T. This number is a good gauge of the size of the

whole tree because the total number of nodes in T is simply given by 2L(T)-1.

We contrast this measure with a measure for the linear length of a proof, N(T),

which is simply the total number of distinct nodes in the proof tree T, i.e. the

number of applications of the resolution rule plus the number of input clauses.

The number N(T) can also be thought of as the number of nodes in the DAG

representation of T.

30

The size of a minimal resolution proof tree T of clause C from the set of

clauses Σ is

LC(Σ) = min {L(T): T is a tree proof of C from Σ}

Similarly the length of a minimal tree proof of C from Σ is

NC(Σ) = min {N(T): T is a tree proof of C from Σ}.

We say that clause A subsumes clause B if all the literals in A are literals

in B; i.e. A logically implies B. Now we prove a lemma about minimal

resolution refutations:

Lemma 3-2.1.

No minimal refutation contains two clauses A and B such that (i) A

subsumes B and (ii) A is used in deriving B.

proof: By induction on the number of literals in B, we show that if

(i) and (ii) are true, there is always a shorter refutation obtained by

replacing the sub-proof of B by the sub-proof of A. In the base case

where B=l, A is either ∅ or l. In either case the tree obtained by

substituting the sub-tree whose root is B by the sub-tree whose root

is A is smaller.

For the inductive case (see figure 3-2.1.i), let B=A U X U l. Now,

delete each occurrence of l between B and the root (∅) and remove

all the sub-trees that resolve on literals contained in clauses

containing ~l. This transforms B to B' = A U X. By induction

31

hypothesis, there is a smaller proof tree (both in L and N size) with

the sub-proof of A substituted for the sub-proof of B. •

B = A X l

A

UUUU UUUU

T
A

∅

Y~l

A

T
A

∅

 Figure 3-2.1.i (a) Figure 3-2.1.i (b)

Corollary 3-2.1.: No minimal refutation contains a tautology.

proof: Suppose a minimal refutation contains a tautologous clause

p~pB. Then there must be a resolution of this clause by some other

clause say ~pA to form ~pBA. But since ~pA subsumes ~pBA the

original refutation is not minimal. •

Now we prove a theorem due to G. S. Tseitin [Tseitin 1968] that relates

LC(Σ) and NC(Σ), namely;

Lemma 3-2.2.

(i)
NC(Σ) + 1

2 ≤ LC(Σ)

(ii) (3 / 2) NC(Σ)-1 ≥ LC(Σ)

32

proof: (i) Since the number of steps in the linear representation of a

minimal resolution proof can never exceed the number of nodes in

the tree T of that proof, and that the number of nodes in the tree is

2LC(Σ) - 1, NC(Σ) ≤ 2LC(Σ) - 1.

(ii) We show this by induction on the length of the proof of C from

Σ , N C (Σ) (henceforth n for short). For the base case n = 1,

LC(Σ) = 1 = (3 / 2)0. Assume the theorem is true for k ≤ n and let

C = AB be obtained by resolution on a literal p from two previous

clauses of the form A~p and Bp. (Since there are at least 3 clauses in

the proof, 3 ≤ n.) By inductive assumption, each of these two

clauses have proofs for which the theorem holds. In the worst case,

these two clauses immediately precede C, i.e.

.

.

.

n-1 Bp

n A~p

n+1 AB

There are two cases to consider. If either A~p or Bp is an axiom

then

 LC(Σ) ≤ 1 + (3 / 2)n-1 ≤ (3 / 2)n = (3 / 2)NC(Σ)

If, on the other hand, both A~p and Bp have been derived from

previous clauses, we know by inductive hypothesis that

NBp(Σ) ≤ n-1. By the corollary to lemma 3-2.1, A~p cannot be

derived by resolving Bp with any clause which clashes with Bp

33

(otherwise A would contain p and A~p would be a tautology) and it

follows that NA~p(Σ) ≤ n-1. Thus

LC(Σ) ≤ 2(3 / 2)n-2

< (3 / 2)2 (3 / 2)n-2

= (3 / 2)n

= (3 / 2)NC(Σ) •

3-3 Tree resolution and analytic tableaux

We now prove the theorem that tree resolution p-simulates improved

analytic tableaux.

Theorem 3-3.1.

Let θ be a tableau using the set of clauses Σ. Then there is a tree

resolution proof T of a sub-clause of C from Σ where C is the

disjunction of literals found at the leaves of incomplete branches of θ

and L(T) ≤ I(θ), where L(T) is the number of leaf nodes in T and I(θ)

is the number of internal nodes in θ.

proof: The theorem is proved by an induction on the depth of

analytic tableau.

case 1 : for the tableau θ of depth 1 we have only one clause

decomposition:

34

a

ϑ

. . . .a
1 2 n

a

Figure 3-3.i

none of whose branches is either checked or closed, and thus the

corresponding tree resolution proof is simply the clause

a1 a2 ... an

inductive case: Assume the theorem is true for tableaux of depth less

than or equal to m. Let the tableau θ of depth m+1 be as in figure 3-

3.ii and let Pk be the set of literals at the leaves of the open branches

of θk. We can assume, without loss of generality, that the literals in

θk which are checked occur only in {ak+1,...an} (see section 3-1.2).

The claim is that there exists a tree resolution proof of a sub-clause C

of U {P1..Pk..Pn} of the right size.

ϑ

. . . .a a
1 k na

θ θ1 k nθ

. . . .

Figure 3-3.ii

Now delete the top clause {a1 .. ak .. an}, from θ and remove the

corresponding checks and crosses from the sub-tableaux θ1..θk..θn.

This produces a new set of sub-tableaux θ'1..θ'k..θ'n containing new

35

open branches. In θ'k for example, the literals at the newly open

branches must be a subset of {~ak, ak+1,...,an}. Thus the set of literals

at the leaves of incomplete branches of θ'k is a subset, Ck of

Pk U {~ak, ak+1,...,an}.

By induction hypothesis, there exists a tree resolution proof Tk of

the clause Ck, such that L(Tk) ≤ I(θ'k). There are n such resolution

proofs T1, T2,...Tn of clauses C1, C2,...Cn.

Now we construct the resolution proof T of C from C1, C2,...Cn and

the clause C0={a1...ak,...an} as follows. If C1 contains ~a1 then

resolve C1 against C0 to obtain a sub-clause of {a2...ak,...an} U P1 .

If C1 does not contain ~a1 then C1 is already a sub-clause of

{a2,...ak,...an} U P1.

Suppose then, that we obtain a resolution proof of D, a sub-clause of

{ak+1,...an} U {P1, P2,...Pk} in this manner and we are trying to

obtain a resolution proof of E, a sub-clause of {ak+2,...an} U {P1,

P2,...Pk, Pk+1}. If Ck+1 does not contain ~ak+1 then the tree for E is

Tk+1. If D does not contain ak+1 then E is D . Otherwise, E is

obtained by resolution on D and Ck+1. When Ck+1 = Cn, E becomes

a sub-clause of U {P1, P2,...Pn}

36

T
k

E

+1

Ck+1
D

Figure 3-3.iii

We can therefore obtain the tree T in at most n resolution steps

containing n sub-trees Tk plus the clause C0. Thus L(T) = 1 + ∑
i=1

n
 L(Tk)

and

I(θ) = 1 + ∑
i=1

n
 I(θk). Thus L(T) ≤ I(θ). •

Corollary

Tree resolution p-simulates the analytic tableau method. •

This corollary was proved in [Cook and Reckhow 1974].

37

Chapter 4

Refinements and Extensions of Resolution

Although the rule of resolution is sufficient to refute any contradictory

set of clauses, it is not, by itself, a practical theorem proving technique.

Without some strategy that guides the resolution theorem prover to avoid

certain paths, it may take an inordinately large number of steps to find a proof,

even if the length of the proof itself is small.

Researchers in ATP have therefore attempted to supplement resolution

with proof strategies that produce both the shortest proofs and the most

efficient strategy for finding them while also retaining the completeness

property of the general resolution method. One way to incorporate a proof

strategy for how a proof should unfold is to apply a refinement or a

restriction to the resolution method. Typically, a restriction on the resolution

proof procedure reduces the number of possible resolution proofs (and blind-

alley non-proofs) by restricting the possible sequences of literal annihilations.

What this means is that the space of all possible resolution proofs is pruned by

the restriction. But the pruning may also eliminate the shortest proofs from

the space of all possible proofs.

From the point of view of ATP, it would be ideal to find a restriction

that guarantees the elimination of necessarily inefficient proofs but does not,

38

at the same time, prune away the shortest possible ones. The search for such

an ideal refinement of resolution has lead to a plethora of proof strategies.

Although our principal concern in later chapters will be the SL

refinement of linear resolution, there are a variety of other methods and some

results associated with them are introduced here for the sake of comparison

and completeness.

4-1 The Davis-Putnam Procedure

The first effective ATP method for producing resolution refutations was

the Davis-Putnam procedure (DPP). Although the original paper describing

this procedure [Davis and Putnam 1960] antedates the discovery of resolution,

it is usually thought of and presented as a resolution procedure.

One way to express the DPP, found in the secondary literature [Galil

1977] is this:

1) Pick a variable l from the set S of variables in Σ and delete literal l

from S.

2) Resolve all the clauses containing l with the clauses containing ~l

and put the resolvent clauses in Σ'.

3) If a resolution between two unit clauses of the form ~l and l takes

place, the contradiction ∅ been reached and Σ is inconsistent.

Otherwise, form the set Σ U Σ' and delete from it all the clauses

containing either l or ~l and repeat the procedure with this new set.

39

It follows from lemma 3-2.1 that there is no point in inferring a clause

that is already implied by a preceding clause (either an axiom or another

resolvent). Therefore, it increases the computational efficiency of this method

to add a rule of subsumption for each of the set formation steps. The rule of

subsumption allows DPP to

4) delete all the clauses in a set of clauses that are subsumed by any

other clause in that set.

Refutations obtained from the DPP are characterized by the order in

which variables are resolved. Moreover, the order of variable elimination from

some sets of inconsistent clauses has been shown to affect drastically the

lengths of some refutations. If literals are eliminated in a specific order, the

resulting proofs are short, but if they are eliminated in a different order, the

proofs are long [Galil 1977]. It is also known that the DPP method without

the subsumption rule cannot simulate the DPP with subsumption [Cook

1971b].

4-2 Regular Resolution

The restriction of regularity was first discussed by Tseitin [Tseitin

1968]. The restriction applies to the sequence of resolvents in each of the

branches in a resolution proof tree. A proof tree T is said to be regular if no

branch of T has both a clause that contains a literal l and a clause containing

its complement. If the derivation is a refutation then this amounts to the

constraint that no literal be resolved on more than once in a given branch.

Thus all the resolution trees produced by the DPP are regular.

40

For example, the proof tree in figure 3-4.i is regular whereas the tree in

figure 4-2.i is not because one of its branches contains both pqr and ~pqr.

qrs

qr

~pqr

prs

pr~s

~pqr

pqr

Figure 4-2.i
Irregular resolution proof tree of qr from {prs, ~pqr, pr~s}

The restriction of regularity is important because the tree size of regular

proofs is known to be minimal. That is, for any contradictory set Σ of clauses

there is a regular resolution refutation of minimal tree size [Tseitin 1968].

Intuitively, the reason for this is that it is always possible to prune away

irregularities in an irregular proof, without increasing its size.

On the other hand, it has been shown that the linear proof length N(T)

of a regular resolution proof tree T is not always shorter than the linear length

of an irregular proof, i.e. the DAGs representing some irregular proof trees are

sometimes smaller than the graph representing the minimal regular resolution

proof tree [Wenqi and Xiangdong 1985].

We need two definitions to prove two useful lemmas about regular

resolution trees. These lemmas are due to G.S. Tseitin [Tseitin 1968].

If A is a clause then A-p is the result of deleting the literal p from A.

41

If Σ is a set of clauses then Σ / p is the result of both deleting p from

clauses in Σ containing p and deleting the clauses in Σ containing

~p.

Lemma 4-2.1.

Given a regular resolution proof tree T of a clause A (the root of T)

from the set of clauses Σ, and a literal x ∈ A, where A ∈ Σ, then there

is a regular resolution proof of A-x from Σ / x.

proof: We induce on the sub-trees of T. For the base case (tree of

length 0) A ∈ Σ. Then for any x ∈ A, A-x ∈ Σ / x. For the inductive

case, let A = B U C be derived by resolution on q:

B U C

B qU C U ~q

T
B

T
C

Figure 4-2.ii

Supposing that x ∈ A, then by induction hypothesis, there are

regular resolution derivations of (B U q)-x and (C U ~q)-x from Σ / x.

Now, q cannot be x since x ∈ A and the sub-trees TB and TC are

regular. So we can resolve (B U q)-x and (C U ~q)-x to obtain

(B U C)-x. •

42

To illustrate this lemma, consider the derivation of the clause qr from

Σ = {prs , ~ p q r , p r ~ s }, (see figure 3-2.ii). Then, by definition,

Σ / r = {ps, ~pq, pr~s} and the proof tree of q from Σ / r is:

q s q~s

q

~pqp s p~s~pq

Figure 4-2.iii

Another useful lemma about regular resolution proofs is

Lemma 4-2.2.

If Σ / l | ∅ , then either

(i) Σ | l and Ll(Σ) ≤ L(Σ / l); or

(ii) Σ | ∅ and L(Σ) ≤ L(Σ / l)

proof: (i) If the derivation of ∅ from Σ / l uses any input clause from

Σ / l which resulted from the deletion of l from any clause in Σ, then

by adding l to all the clauses in Σ from which it was removed and

also to all the resolvents derived from such axioms, we obtain a

derivation of l from Σ of the same L-complexity as the original

derivation.

(ii) If the derivation of ∅ from Σ / l does not involve any input clause

which resulted from the deletion of l then it is already a derivation of

∅ and L(Σ) ≤ L(Σ / l). •

43

4-2.1 Splitting Rule

The first computer implementation of the Davis-Putnam procedure

reported in [Davis, Logemann and Loveland 1962] actually describes a

slightly different procedure that we may call the splitting rule. The splitting

rule is defined as follows:

1) Pick a variable l from the set S of variables in Σ and delete l from

S.

2) Create the sets of clauses Σ'= Σ / ~l and Σ''= Σ / l as defined for

lemma 4-2.1.

3) For each set of clauses generated by step 1 repeat step 1 for Σ' and

Σ'' so long as neither is the set containing the contradictory clause

∅ .

The subsumption rule introduced for the DPP in the previous section

may also be used for the splitting rule.

For example, if Σ = {a~b, ~ab, b~c, ~bc, ac, ~a~c} , then a splitting rule

refutation is

44

a~b, ~ab, b~c, ~bc, ac, ~a~c{ }

b, b~c, ~bc,~c{ } ~b, b~c, ~bc, c{ }

~b{ }∅ ,~b, b{ }

{ }∅{ }∅

{ }~c∅ ,~c, c{ }

{ }∅{ }∅

Figure 4-2.1.i

In this case, the symmetry of the enumeration tree merely reflects the

relationship of the clauses to one another, not any intrinsic characteristic of

the method.

The splitting rule produces what has been called [Galil 1975, Reckhow

1975] enumeration trees. It is known [Galil 1975] that the splitting rule,

semantic trees and regular tree resolution have the same worst case

complexity.

4-3 Extended Resolution

Proof strategies may refine the structure of a resolution proof but there

are also ways of making it more powerful. One such method is extended

resolution which permits definitions that abbreviate terms as steps in a proof.

Since definitions may be iterated, this may result in substantially shorter proofs

in some cases.

45

If a and b are variables in the set of clauses Σ whereas c is a variable

not in Σ, then we can extend the set of clauses Σ with the set of clauses E

generated by the conjunctive normal form for the formula c ≡ (a ⊗ b) where ⊗

is any one of the 16 possible truth-functional binary connectives. For the case

where ⊗ is &, the set of clauses E is { ~ca, ~cb, ~a~bc }.

An extended resolution refutation of a set of clauses Σ is a resolution

refutation of Σ' = Σ U E, where E is an extension of Σ.

Some tautologies may thus be efficiently proved with extended

resolution, whereas they could not with resolution alone. For example the

class of clauses that encodes the proposition that n objects cannot fit into n-1

holes, called pigeonhole clauses have been shown to be intractable for

resolution [Haken 1985] yet polynomial in length for extended resolution

[Cook 1976]. This class of clauses has also been shown to be tractable for

Frege systems in [Buss 1987].

46

Chapter 5

Linear Resolution

In this chapter we examine a refinement of resolution that has been

studied extensively in the field of automatic theorem proving: linear

resolution. We give a detailed proof of the result in [Kowalski and Kuehner

1971] that linear resolution with subsumption, s-linear resolution, p-simulates

regular tree resolution. We also examine a restriction of linear resolution, SL-

resolution, interesting in part because it forms the basis of the programming

language Prolog [Lloyd 1984]. We show that the SL refinement of resolution

p-simulates and is p-simulated by the ancestor clash-restricted improved

analytic tableau.

5-1 Linear Resolution

A linear resolution proof is a resolution proof where each resolvent is

one of the parents of the next resolvent and the other parent is either an input

clause or a previous resolvent. Resolvents neither of whose parents are input

clauses are said to follow by reduction.

In the following we consider linear resolution proofs that obey the

subsumption restriction: s-linear proofs. The subsumption restriction is placed

on the reduction steps as follows.

47

We say that an s-linear resolution proof of clause C, from a set of

clauses Σ is a sequence Ψ =C1...Cn of clauses such that

(i) Cn = C.

(ii) C1 is an input clause.

(iii) Ck, 1 < k ≤ n, is derived by resolution on Ck-1 and Cj, where Cj is not a

tautology, and either

a) Cj ∈ Σ (input resolution) or

b) C j ∈ Ψ and 1 < j ≤ k-1 (reduction step), provided that the

resolvent Ck subsumes Cj.

A linear resolution proof may be represented as a special kind of graph

called a vine [Andrews 1968]. To each resolvent there corresponds an interior

node on the vine and each instance of an input clause used in the proof

corresponds to a leaf node. Each interior node has two parents one of which

is the immediately preceding interior node and the other either a leaf node or

another interior node. These arcs differentiate vines from rooted binary trees.

For example for Σ = { a~b, ~ab, b~c, ~bc, ac, ~a~c} a linear resolution vine is:

48

∅

~ab ac

bc ~bc

c b~c

b

a

a~b

~c

~a~c

Figure 5-1.i

The subsumption condition in the definition of s-linear resolution

ensures that a resolvent obtained by reduction does not introduce variables

that have already been eliminated by previous resolutions. For reasons

analogous to the ones given for corollary 3-2.1, disallowing tautologous

resolvents never lengthens a linear resolution proof.

Some general properties of linear resolution proofs should be

mentioned here.

Lemma 5-1.1.

There is a linear resolution proof of P from Σ such that every

resolvent has an ancestor clause which is a unit literal (unit

resolution) if and only if there is a linear resolution proof of P from Σ

49

with no reduction steps (i.e. every clause in definition 2 (b) is a

member of Σ)

proof: [Chang & Lee 1973] p.134.

Lemma 5-1.2.

If Σ is a set of clauses, none of which is a unit clause, then a linear

refutation of Σ must include at least one reduction step, namely the

last one.

proof: The last step is a resolution of clauses of the form p and ~p

(for some literal p) and since no input clause is a unit clause both p

and ~p must have been derived from Σ. Hence the reduction step. •

Note that the reduction step is what makes a linear resolution proof

irregular. Hence, by the lemma, any linear refutation of a minimally

inconsistent set of clauses not containing a unit clause is irregular.

5-1.1 Linear Resolution p-simulates Tree Resolution

Now we prove a version of a lemma by Kowalski and Kuehner from

which it follows that linear resolution p-simulates tree resolution. It is worth

noting that, in the original formulation of this lemma, the term "minimal proof"

refers to what is called in this thesis a "regular proof".

Lemma 5-1.1.1

For any regular resolution tree refutation T of Σ with some leaf

clause C, C ∈ Σ, there is a s-linear refutation R of Σ, with start clause

50

C, of size L(R) ≤ L(T) + K, where K is some constant times the

number of interior nodes in T.

proof: (i) The base step is trivial. (ii) For the induction step: Assume

the lemma is true for proofs of length < L(T). In particular let T' be

the sub-tree of T with literal a as the root node. T' is a proof of a

from Σ and L(T') < L(T). Using lemma 4-2.2 let T*' be the regular

resolution refutation of Σ / a. By induction hypothesis there is a

linear resolution refutation of Σ / a, with start node C-a, R*' (note

that C cannot contain ~a since, by assumption, the proof tree T' is

regular). Let R' be the linear resolution refutation that results from

the restitution of the literal a into the clauses in R*' where it was

deleted. Then R' is the linear resolution proof of a from Σ. By

hypothesis, R' is of length L(T') + K' where K' is some constant times

the number of interior nodes in T'.

By inductive hypothesis, the lemma also holds for T'', the sub-tree of

T that constitutes a tree resolution proof of ~a from Σ. Let R'' be the

proof of ∅ from Σ / ~a with start clause B-~a. By hypothesis, R'' is

of length L(T'') + K''. To R'' perform the following surgery: Add a to

the start clause and resolve it with clause B to form B-~a. Then,

before every resolvent Ci'' whose input parent was Si''-~a insert the

clause Ci'' U {~a} and count the inference from Ci'' U {~a} to Ci'' as

a reduction step. Since the number of reduction steps is at most

equal to N, the number of interior nodes in T, the union of the proof

R' and R'' is the linear resolution proof R such that

51

L (R) ≤ L (R ') + L (R '') + N = L (T ') + K' + L (T '') + K'' + N

 = L(T) + K.

where K = K' + K''+ N

Example: Consider the regular resolution refutation tree for the set of

clauses Σ = { a~b, ~ab, b~c, ~bc, ac, ~a~c }

∅

~a

~ab ~a~b

~a~c ~bc

a~b

a

ab

acb~c

Figure 5-1.1.i
Regular resolution refutation tree for { a~b, ~ab, b~c, ~bc, ac, ~a~c }

A reconstruction of the linear refutation for S is as follows. Perform the

operation described in the proof on the maximal interior head node, in this

case the contradictory clause ∅ . This breaks up the proof into two sub-trees

R' and R'', which, as it happens, are already linear proofs.

52

R'

ac

a~bab

b~c

a

~ab

~a

~b

∅

~c ~bc

~a~c

ac

a~bab

b~c

a

R

~bc~c

∅

~b b

R''

Figure 5-1.1.ii

5 -2 SL-Resolution

Using only the definition above, linear resolution proofs do not provide

any specific search strategy (e.g. which clauses to use for the first resolution,

when to perform reduction steps, which literal to resolve on at any given

point, etc.) to optimize the search for short resolution proofs. Without some

further restrictions simple linear resolution may produce repetitious

subderivations. The main results of this section will focus on the SL

refinement of linear resolution—linear resolution with selection function—first

introduced by Kowalski and Kuehner [1971]. SL-resolution is also a general

form of OL (ordered linear) resolution [Chang and Lee 1973, p. 144-159].

53

The strategy underlying SL-resolution is derived from considerations

common to semantic resolution and set of support resolution (see [Chang

and Lee 1973, Chapter 6]). The idea with both of these restrictions is to force

a choice of resolutions that will yield a contradiction quickly by imposing a

strict order on the elimination of the literals. Since a partial tva that satisfies a

group of clauses also satisfies all its resolvents it follows that a good strategy

is to separate a (minimally) inconsistent set of clauses into two classes of self-

consistent but mutually inconsistent clauses and resolve the clauses from each

set against one another.

Applied to linear resolution, this insight means that the tva assigned to

the literals of the set of input clauses S, must be critical for the start clause of

the linear proof: that is, make the start clause false and each of the other input

clauses true. The choice of start clause in a linear proof therefore imposes an

order on the resolutions of clauses with one another. A further restriction on

the progression of resolutions is to specify the order in which literals in a

resolvent should be annihilated. In SL-resolution the literal scheduled for the

next resolution on the vine is the right-most literal of the current clause.

To avoid redundant sub-proofs, it is useful to keep track of the

previous resolutions representing a clash of tva's. This means that a certain

amount of syntactic overhead must be grafted onto each clause in a linear

resolution in order to maintain a record of both the ordering of the literals in

the clauses and the previously resolved literals, the proof then verifies that no

tva can be consistently assigned to all the clauses in S - {start clause} U {start

clause}. We ignore the method of choosing appropriate tva's and set of

support. The results below are independent of such heuristic mechanisms.

54

To keep track of each literal which is resolved on from an input clause

and to ensure that the next resolvent inherits the semantic information about

the previously resolved literal until the information is no longer necessary,

every resolved literal in an SL-resolution proof is kept track of by framing the

resolved literal in the position in which it occurs in the previous resolvent.

([Kowalski and Kuehner 1971] distinguish between A-literals, here called

framed literals and B-literals, here called unframed literals, following [Chang

and Lee 1973].)

A sequence of sets of literals is called a chain. Each literal belonging to

a chain is either framed or unframed depending on whether the literal has

undergone a previous resolution. Input clauses then, are chains of unframed

literals and SL resolvents, in general, are chains containing framed literals.

We call each sequence of contiguous unframed literals in a chain a cell.

Thus a chain is a sequence of cells. Note that while the order of the elements

in a cell is immaterial, the order of cells in the chain is significant since it

partially determines the order in which literals are resolved.

Now, if any resolvent contains both a literal framed and its complement

unframed, the reduction operation is trivial: it consists in simply deleting the

unframed literal. On the other hand, a framed literal indicates that its

resolution has already been performed. Therefore a resolution on a framed

literal is equivalent to using the resolvent immediately prior to the framing of

that literal, thus forming an arc in the vine. If the right-most cell is empty, it

may be discarded (retention of the information that previous resolutions on

these literals has been performed is no longer necessary).

55

The choice of literal for resolution depends on a selection function

which picks out a literal from the right-most cell containing a non-framed

literal. The question of which literal is to be selected on for resolution does

not affect the results below.

We can now define an SL-resolution [Kowalski and Kuehner 1971]

proof of C from a set of chains (clauses) Σ as a sequence of C1...Cn of chains

such that:

(1) Cn=C.

(2) C1 is an input clause

(3) Ck, 1 < k ≤ n is obtained from Ck-1 by one of extension (with an

input chain) or reduction (with a previous resolvent).

(4) No two literals occurring at distinct positions in Ck have the same

variable unless Ck+1 is a reduction step (admissibility restriction).

A resolvent Ci is obtained by extension with an input chain B iff (a)-(c):

(a) The right-most literal in Ci-1 is an unframed literal.

(b) The selected literal l in Ci-1 (picked out by the selection function)

is the complement of the left-most literal in B.

(c) Ci is the chain obtained by concatenating Ci-1 / l, <l> and B / ~l,

in that order. The literal l in Ci-1 is framed in Ci and every other

literal has the same status as it had in its ancestor.

A resolvent Ci is obtained by reduction iff (a)-(c):

(a) The right-most literal in Ci-1 is an unframed literal.

56

(b) The literal l occurs both framed and unframed in Ci-1.

(c) Ci is the chain obtained by deleting the unframed occurrence of l

in Ci-1.

Ci is obtained by truncation iff (a)-(b):

(a) The right-most literal l in Ci-1 is a framed literal.

(b) Ci is obtained by deleting every framed literal to the right of the

right-most unframed literal in Ci-1.

Ci is obtained by merging iff :

(a) Ci-1 contains two or more occurrences of an unframed literal l.

(b) Ci is obtained by deleting all the occurrences of l subsequent to

the first.

For instance, an SL-resolution refutation for the set of clauses Σ = {a~b,

~ab, b~c, ~bc, ac, ~a~c} is:

57

∅

b<~a>c

b~a ac

~cb

b

a

~ba

b<~a><c>b

b<~a><c>

~a~c

<a>~c c~b

<a><~c>~b

merge

t r u n c a t e

Figure 5-2.i

Contrast this figure with figure 5-1.i.

It should be noted from the definition of SL-resolution that, from the

point of view of a worst case complexity measure, neither merging nor

truncation nor reduction are crucial. The number of truncations will be a

maximum in a refutation with no reductions. If the number of resolution steps

is K, there will be at most K more truncation steps.

As for merging, it is evident that if L is the number of distinct literals in

Σ then the merging procedure need be performed at most L*K times, where K

58

is the number of extension steps in the proof — only a linear increase.

Similarly, the definition of reduction makes it clear that reduction steps can be

made just by keeping track of previous resolutions (by framing literals). But

since reduction steps add no new literals to the resolvent, performing the

reduction step is computationally equivalent to merging literals. One need

only scan the resolvent chain to check for the presence of a framed

(unframed) literal and its unframed (framed) complement. Moreover, the

number of reduction steps is also bounded by the number of extension steps.

The worst case is when the number of merges in the proof is smallest, i.e. 0.

Then each input resolution will add a maximum of N-1 literals to the chain,

where N is the length of the longest input clause. Assuming that all the

remaining literals are eliminated by reduction, the greatest number of reduction

steps is bounded by K*(N-1) where K is the number of input clauses used in

the proof times N-1.

Having observed that the merging, reduction and truncation steps can

be ignored when analyzing the complexity of SL-resolution refutations, we

now show that SL-resolution refutations are at least as complex as minimal

regular resolution refutations. This means that the size of the tree proof,

measured as the number of nodes on the tree, is of the same order as the

number of resolvent chains produced by linear resolution. It follows from this

result that if the tree size of a minimal regular refutation of a set of clauses Σ

increases superpolynomially with the size of Σ [Tseitin 68] then so does the

size of the SL proof from Σ.

59

Theorem 5-2.1.

Tree resolution refutations p-simulates SL-resolution refutations.

proof: Consider an SL-resolution refutation of Σ. The base case for

the induction is where Σ={p,~p}. Then the SL-resolution refutation

is identical to the tree refutation. For |Σ|>2, there are two cases.

Case (i). The last resolution is an input resolution (resolution with an

input clause). This can happen just in case there is a unit clause ~p

in Σ and an SL-resolution proof of the chain p from Σ. Let N be the

size of the SL sub-proof of p from Σ then the size of the SL

refutation of Σ is N+1. To the sub-proof of p from Σ delete every

occurrence of p and omit all the chains containing ~p. Then we

have an SL proof of ∅ from Σ / p of size less than or equal to N. By

induction hypothesis there is a minimal regular resolution tree proof

T of ∅ from Σ / p of size O(N). Thus, substituting p in the input

clauses of T where p was deleted, yields a regular proof of p from Σ

of size O(N). The size of the minimal tree proof of ∅ from Σ,

constructed by resolving p with the input clause ~p, is O(N)+1, since

~p ∈ Σ.

Case (ii). Let L be an SL-resolution refutation of length M such that

the last resolution is a reduction step. Let ~p be the ancestor chain

used in the reduction step, i.e. the proof has the form:

60

p

∅

~p

...

...

C<a>D

~aDCa

Part 2

Part 1

Figure 5-2.ii

If the first half (Part 1 in figure 5-2.ii) of the SL proof of ~p is of

length K, then the same argument as in case 1 applies and there is a

tree resolution proof of ~p from Σ of O(K). Let L' be the sub-proof

of p in L, of length N', sandwiched in between the proof of ~p and ∅

(Part 2 in figure 5-2.ii). We need to show that L' has a

corresponding tree resolution proof of the same size. Now L'

contains no unframed occurrence of ~p since by the admissibility

restriction no two literals occurring at distinct positions can have the

same variable unless a reduction step is made. Therefore all the

occurrences of p in the spine (the non leaf nodes) of the sub-proof

must be eliminated by reduction steps (since reduction is mandatory

for SL). Deletion of all the occurrences of p in L' thus produces a

proof of ∅ from Σ / p of length N'. By induction hypothesis there is

61

a tree proof of ∅ from Σ / p of size O(N'). Thus there is a tree proof

of p from Σ of the same size O(N'). Thus there is a regular tree proof

of ∅ from Σ of size K + O(N') + 1 = O(M).•

This a more precise version of lemma 6 in [Kowalski and Kuehner

1971].

5-2.1 Linear Resolution and Analytic Tableaux

In this section we show that SL-resolution and the improved parent

clash restricted (IPCR) analytic tableau method exactly simulate each other.

Let θ be an IPCR analytic tableau for the set of clauses Σ. Since the

decomposition of the literals in a clause can be performed in any order, we can

assume that the tableau is constructed in such a way that, at each

decomposition stage, the literals are ordered so that the parent clashed literal is

always right-most in the extension step. However, the tableaux are

constructed depth-first from left to right.

Now let C' be the clause formed by traversing θ in reverse postorder

(see section 2.3) gathering all and only the unchecked literals at the leaves of

θ up to and including the literal on the left-most open branch. Let C'' be the

result of replacing every literal p in C' that corresponds to a literal whose

branch is closed by a parent literal, by the framed literal <~p>. Then let C be

the result of deleting from C'' all the literals q whose branch is checked or

closed by a complementary ancestor in θ.

For example, in the tableau shown in figure 5-2.1.i, C' = b~ac~ae,

C''= b<a><~c>~ae and C = b<a><~c>e.

62

a

~a

b

ϑ

b~c

~a ce

XX

X

Figure 5-2.1.i

Theorem 5-2.1.1.

SL-resolution and IPCR analytic tableau exactly simulate each other.

proof: We must show that a sequence of tableaux θ1 θ2... θn

constructed in the stages described in section 3-1, corresponds to a

sequence of chains in an SL-resolution proof. For the case of the

singleton clause, Σ = { C }, the theorem is obvious. There are three

cases to consider:

Case 1: Extension

If p labels a node in θn and Cn = a1a2...ajp is the chain obtained

from θn by the construction above, then θn+1 is obtained by

extending the tableau θn with a clause C = ~pq1q2...qk.

63

p

θ

~pq
1

q
2

q
n
. . .

. . . θ
n

n +1

C
n

Figure 5-2.1.ii

The chain C n + 1 obtained by construction on θn + 1 is then

a1a2...aj<p>q1q2...qk which corresponds exactly to an input

resolution (extension) in the corresponding SL proof as shown in

figure 5-2.1.iii.

a a a <p> q q q1 2 j 1 2
.

k

1 2 j
. . .a a a p

1 2
. . .

k
~pq q q

.

.

.

.

.

.

CC
n

C +1n

Figure 5-2.1.iii

Case 2: Checking

Checking a literal in a tableau θ corresponds exactly to the merging

step in an SL proof. If there are two open branches containing the

literal p in θ then the SL clause obtained by construction has the

form a1a2...pq1q2..p... After checking the left-most open branch the

clause has the literal p merged to the left.

64

q q p.

. . .p.
.
.

n k

Figure 5-2.1.iv

Case 3: Crossing

Closing a branch in θ whose endnode is labelled by a literal that is

not complementary to a parent ancestor is the equivalent of the

reduction operation in SL-resolution. •

Thus, an SL-resolution refutation can be interpreted as instructions for

the construction of a IPCR analytic tableau and visa versa. This result is quite

interesting and somewhat unexpected insofar as analytic tableau methods and

resolution methods appear to be quite different.

65

CHAPTER 6

The Connection Method

The subject of this chapter is a proof technique advanced in [Bibel

1983] called the connection method (in this chapter unaccompanied page

references will be references to [Bibel 1983]). The connection method has

been proposed as an alternative to the resolution methods discussed so far,

but we shall show that while its formalism appears to be quite different, this

method is substantially the same as IACR analytic tableau.

6-1 The Connection Method

Whereas the resolution proof systems we have considered in previous

chapters prove that statements in CNF are contradictory, Bibel's connection

method proves statements in DNF are tautologies. But it is easy to see that a

contradictory formula in CNF becomes a tautology in DNF when "v" and "&"

are interchanged. So for the sake of continuity we shall consider the

connection method as a technique for proving that sets of clauses are

contradictory instead.

We can think of this conjunction of disjuncts as a matrix of literals, each

column of which is a clause. For example, if we let Σ be the set of clauses {

a~b, ~ab, ~bc, b~c, ac, ~a~c } we obtain the following matrix:

66

a ~a ~b b a

~b b c ~c c

~a

~c

Any matrix of literals of this kind represents a contradictory

conjunction of clauses provided there is no 'path' through the matrix such that

each column of the matrix has one literal lying on the path and such that no

two literals along the path clash. If such a path can be found then the original

disjunction is not a contradiction. Thus a proof that no such path exists is a

proof that the set of clauses is contradictory.

Bibel's connection method is an algorithm for proving that no path

exists through the literal matrix that does not contain a pair of clashing literals.

The following is a general sketch of the procedure. A more formal account is

given in the next section.

With the matrix of literals M,

(1) Start at column 1. Initialize the set of literals in the "trial" path,

(called the active path by Bibel) to the null set. Choose a literal in

column 1 for membership to a new (tentative) active path through

the matrix and mark the literal as having been chosen. The

remaining literals are marked as possible alternatives.

(2) If the active path is non-empty go to the first column that

contains both a literal complementary to some literal in the active

path and a literal that can extend the path (i.e. one not marked as

either impossible or already chosen). Then chose a literal in this

67

column whose propositional variable is not already in the active path

(i.e. such that neither it nor its complement are in the active path)

and mark the literals in the current column that clash with any of the

literals in the current active path as impossible continuations of the

current path. The remaining literals are then marked as possible

alternatives to the chosen literal.

(3) If no column can be chosen to continue the active path, then go

to the earliest marked alternative (choice point) and reset the active

path to the value it would have had if this new literal had been

chosen.

(4) If the active path is empty, and no literal is left in the matrix as

marked as a possible alternative, then the matrix is contradictory.

Otherwise, if a path through the matrix exists then the clauses are

satisfiable by the set of truth values to the variables that makes the

literals in the active path jointly true.

6-1.1 Structured Matrices

The formal account of the connection method offered below differs

only in notation from Bibel's. First we define a structure on a matrix and then

define the connection procedure in terms of transformations on that structure.

A structured matrix M for a set of clauses Σ is defined by three

constructions:

(1) A (possibly empty) push-down stack S of clauses selected from

the set Σ. The current clause is at the top of the stack S. Bibel

68

represents this stack by an integer-valued function α . So, for

example, if Σ = { a~b, ~ab, ~bc, b~c, ac, ~a~c } and the stack S is

~b c

b~c

a c

S

the α function yields

α(~bc) = 3

α(b~c) = 2

α(ac) = 1

(2) A boolean function β that assigns the value 0 (signaling the

impossible path or membership in the current active path) or 1

(possible alternative path) to each occurrence of a literal in each

clause of the stack.

(3) A choice function γ defined on a subset of the clauses in the

stack below the top clause. γ selects a literal occurrence l from each

clause on the stack so that β(l)=0. The set of literals selected by γ is

the active path.

In Bibel's graphic representation for β and γ, the active path is

represented by a shaded line and literals in a clause that clash with literals in

the active path are marked with a period, indicating that their β value is 0.

Thus a connection graph where the stack is three clauses deep might look like

this:

69

a ~a~bba

~b bc~cc

~a

~c

whereas in the stack based notation

~b c

b~c

a c

S

and

α(~bc) = 3 β(~b) = 0 β(c) = 0

α(b~c) = 2 β(b) = 0 β(~c) = 0

α(ac) = 1 β(a) = 1 β(c) = 0

The domain of γ is {ac, b~c} and γ(ac) = c, γ(b~c) = b, so that the active path is

{c, b}.

The rules for the connection method are then as follows. Given a

structured matrix M constructed from the set of clauses Σ, proceed to obtain

the matrix M' as follows:

(1) Begin the stack with a single clause C with all the β-values for the

literals in C set to 1.

70

(2) If there is no way to extend the active path of Σ to the top clause

D in Σ so that there is a literal l in the remaining clauses which

clashes with a literal in the extended active path, then

(a) Add to the top of the stack any new clause E from Σ

not already in the stack; and

(b) Set the β-values of all literals in the new clause E to 1

and all the literals in the rest of the stack to 0. The

domain of γ is now empty and we say that we have

obtained a new matrix from M by separation.

Otherwise;

(3) The matrix M' can be obtained from M by extension. If D is the

top clause in M then

(a) Extend the active path to D by choosing a literal l in D

such that β(l)=1.

(b) Add a new clause E to the top of the stack such that E

contains at least one literal k whose complement is in the

active path determined by γ.

(c) The β-values for the clauses in the stack remain the

same except that for the literal l in D just added to the

active path, β(l) = 0. For each literal m in E, β(m) = 0 if

the complement of m is in the active path.

(4) An extension may be followed immediately by truncation when

the top clause in the stack has all its literals set to 0 by β. In that

case the top clause and all the clauses immediately below it whose

71

literals all have 0 β-values, should be popped off the stack. The

new β-values and γ-values are the appropriate restrictions of the

previous values. If all the clauses are popped, i.e. the stack is

empty, there is no possible path and the clauses are contradictory.

(5) An extension step is factorized by setting β(l)=0 for every literal l

in the top clause whose occurrence in another clause in the stack

has its β-value equal to 1 and does not occur in the active path.

Remarks: The separation step is only ever used in the connection

method if the original set of clauses is not minimally inconsistent. Without loss

of generality all further discussion of the method will focus on minimally

inconsistent sets of clauses.

6-2 Connection Method and Analytic Tableaux

This section makes explicit the relationship between Bibel's connection

method and the analytic tableau method.

Theorem 6-2.1

The connection method p-simulates and is p-simulated by IACR

analytic tableaux.

proof: Consider an IACR analytic tableau θ for a set of minimally

inconsistent clauses Σ (see section 3-1.2). This tableau corresponds

to a matrix in a connection proof that Σ is inconsistent and every

step in the connection proof corresponds to a step in the

construction of another analytic tableau.

72

For the base case there are only two possible tableaux (modulo

clause decomposition order):

ϑ

~p

p

X

ϑ

p

and the corresponding steps in the connection proof are just.

p ~p p ~p

Consider the induction hypothesis in which the tableaux θ

correspond to the stack of clauses S = [Ck ..Ci.. C1], where Ci is the

clause expanded at node i in θ .

73

.

.

.

. . .

S

c
k

c
i

c
1

.

.

.

.

.

. .
.
.

n
1

n 2

n
i

k
n

. . .

. . .

. . .

. . .

θ

. . .

ϑ

Figure 6-2.i

For l ∈ Cj, let β(l) = 0 iff l labels an interior node in θ or l is checked.

Let all the interior nodes of the longest open branch be the set G. To

every literal l ∈ G set β(l)=0, and to every literal k in an expanded

clause that either clashes with an ancestor or is checked, assign

β(l) = 0. By the definition of the function γ in section 6.1.1,

G = { γ(D) : D ∈ S }. Now set α(D) to be the depth of expansion of

clause D in the literal tree, i.e. the number of literals in a branch from

a literal in D to the root of θ.

It is easy to see that each step in a connection method proof

corresponds to a step in the construction of an IACR analytic

tableau.

Since Σ is minimally inconsistent, there is no need to consider the

separation rule. There are only three possible connection method

steps: ex tens ion , extension followed by t runcat ion , and

factorization.

74

In the stack model of the connection method, extension adds a

clause to the top of the stack such that at least one literal in the

added clause is complementary to the adjacent clause or to an

element of the active path. The former corresponds to a tableau

crossing step and the latter to a tableau extension step.

An extension step followed by truncation corresponds to the

closure of a sub-tableau of θ. In other words all the literals in D are

crossed or checked and the next clause is decomposed below a

literal whose distance from the root (i.e. depth) is smaller than the

depth of the literals in D.

The rule of factorization is simulated by the checking of literals.

Setting β(l)=0 for every literal l in the top clause whose occurrence

in another clause in the stack has its β-value equal to 1 can be

viewed simply as an alternative notation for the checking operation

in a tableau. •

Remarks: This proof shows that the IACR tableau method and the

connection method are notational variants. If the connection method rules are

further restricted so that the literal (in the active path) which is chosen for

extension have the largest α -index (i.e. belong to the most recently

introduced clause), then a similar proof shows that this connection method is

equivalent to the IPCR tableau method.

To illustrate the theorem consider the connection matrices that refute

{klm, ~kl, ~l, ~m} :

75

k

l

m

~k

l
~l ~m

k

l

m

~k

l
~l ~m

k

l

m

~k

l
~l ~m

k

l

m

~k

l
~l ~m

a b

dc

Figure 6-2.ii

These connection matrices correspond exactly to the following

sequence of analytic tableaux:

ϑ

k

~k

m

X
l

l

ϑ

k

~k

m

~m

XX X
l

l

~l

ϑ

k

~k

m

X X
l

l

~l

ϑ

k ml

a b

dc

Figure 6-2.iii

76

6-3 Conclusions

Bibel has suggested that the connection method is superior in

generality, elegance, efficiency of computer implementation, and

computational complexity to all refinements of resolution, including linear

resolution [p.142-143]. Although the connection method might be preferable

to linear resolution for some reasons, it follows from theorem 6-2.1 that worst

case computational complexity is not one of them.

We have shown that the connection method exactly simulates the

improved clash restricted (IPCR) analytic tableau and we know from results in

chapter 3 that tree resolution p-simulates analytic tableaux. It follows, by

results proved in chapter 7, that the connection method does require a

superpolynomial number of proof steps for some tautologies. This fact

contradicts Bibel's opinion that

"...it is hard to believe that there are propositional formulas for
which the connection method requires an exponential number of
proof steps..." [p.170].

Moreover, since these tautologies admit of short proofs using other

refinements of resolution, namely the Davis-Putnam procedure, the connection

method is not the computationally least complex theorem proving method.

Other theorem proving techniques such as Kowalski's connection

graph resolution [Kowalski 1975, Shostak 1976] and Prawitz's matrix

reduction procedure [Prawitz 1970] have been compared to the connection

method [Bibel 1982]. These comparisons suggest that simulation results

similar to the one proved in this chapter can also be proved for these methods.

77

CHAPTER 7

Hard Examples For Tree Resolution

There is a class of inconsistent sets of clauses discovered by Tseitin

[Tseitin 1968] which may be used to show that the length of any regular

resolution refutation of an element of that class is a super-polynomial function

of the number of input clauses. This is the result proved in Tseitin's paper.

Similar results have recently been proved for the length of all unrestricted

resolution proofs [Haken 1985, Urquhart 1987, Chvátal and Szemerédi 1988]

although some of these demonstrations use non-constructive (probabilistic)

arguments.

In this chapter we reconstruct and attempt to clarify Tseitin's somewhat

sketchy proof that, for some classes of Tseitin clauses, regular tree refutations

are not bounded by a polynomial function of the number of input clauses

even though they have short (linear length) proofs using the Davis-Putnam

procedure. This therefore puts a complexity bound on the proof procedures

considered in previous chapters.

7-1 Graph Clauses

The aim of the proof is to find a class of inconsistent clauses for which

any regular tree refutation grows as a superpolynomial function of the number

of input clauses. To do this, we find a canonical, graphical representation for

78

contradictory clauses — so-called Tseitin clauses — and show that regular

tree resolution refutations for them grow exponentially with respect to the

number of nodes in the graph. A less direct proof of the same result may be

found in [Galil 1975].

In the following we use the notation adopted in [Urquhart 1987].

Tseitin clauses are constructed by labelling each edge in a finite undirected

graph G with a distinct literal to form a labelled graph Γ . Each vertex v ∈ Γ

has associated with it a charge, charge(v)=1 or charge(v)=0, and a set,

literals(v), consisting of the literals associated with each edge incident with v.

For a labelled graph Γ, we define its total charge to be:

charge(Γ) = ∑
v

(mod 2) charge(v).

If charge(Γ) = 1 (charge(Γ) = 0) we say the labelling of Γ is odd (even).

Associated with every vertex v is also a set of clauses clauses(v).

clauses(v) is the set of all clauses containing all the literals(v) such that the

number of complemented literals in each clause is odd if charge(v)=0, and

even if c h a r g e (v)=1. The set of clauses for a Tseitin graph

Σ(Γ) = U˚clauses(v), for all v ∈ Γ.

Example: Consider the connected graph Γ=({X, Y},{a, b, c}) such that

c h a r g e (X)=1, c h a r g e (Y)=0. The charge on a vertex is shown

diagrammatically in figure 7-1.i by its colouring (black or white).

79

X Y

a

b

c
Γ =

Figure 7-1.i

Σ(Γ), then, is given by clauses(X) = {~a~bc, a~b~c,~ab~c, abc}

clauses(Y) = {~abc, ab~c, a~bc, ~a~b~c}. Note that Σ(Γ) is inconsistent

because the set of clauses at vertex X with charge 1 is equivalent to the

formula

(1) a ≡ (b ≡ c)

whereas the set of clauses at vertex Y with charge 0 is equivalent to the

negation of that formula

(2) ~(a ≡ (b ≡ c))

Alternatively, we can express these formulas as the modulo 2 additions

(1') a ⊕ b ⊕ c = 1

(2') a ⊕ b ⊕ c = 0

which clearly constitutes a contradiction.

In general, for any connected graph Γ, clauses(v), for each v ∈ Γ can be

represented by the conjunctive normal form of the modulo 2 equation E(v)

a1 ⊕ a2 ⊕ ... ⊕ an = charge(v)

80

for ai ∈ literals(v). Summing the left hand side for all such equations for

v ∈ Γ will always produce two occurrences of each literal in Γ , if Γ is

connected and each edge has a distinct labelling. But ai ⊕ ai = 0, and if the

right hand side, charge(Γ), has the value 1 then the set of clauses Σ(Γ) is

contradictory. So if Σ(Γ) is satisfiable, charge(Γ) = 0.

Note that we can rewrite each equation E(v) by replacing one of the

literals ai by its complement on the left hand side and inverting the charge on

the right hand side. For example, the equations (1') and (2') are equivalent to

(1'') a ⊕ ~b ⊕ c = 0

(2'') a ⊕ ~b ⊕ c = 1

Since the substitution of a literal by its complement in a labelled graph

always affects the charge on two vertices we say that the charge has been

transferred.

We now show that if charge(Γ) = 0, then there is a satisfying

assignment of truth values to the literals in Σ(Γ). This can be seen by

observing that any vertext with charge 1 can be made to change to a vertex

with charge 0 by repeated charge transfer (since Γ is connected). Since

charge(Γ) = 0 there are an even number of vertices with charge 1, all the

vertices v may be converted to having charge(v) = 0 and the satisfying tva is

obtained by setting the literals on each edge to 0 (false). This proves the

following lemma:

81

Lemma 7-1.1.

Σ(Γ) is satisfiable iff charge(Γ) = 0.

Lemma 7-1.2.

If Γ is an unconnected labelled graph and D is a derivation of a

clause C from Σ(Γ), then there is a connected component Ψ of Γ

such that D is a derivation of C from Σ(Ψ).

proof: We prove by induction on the sub-trees of D that all the

input clauses belong to a single connected component. If C ∈ Σ(Γ)

then the connected component is simply a single vertex. For the

inductive case, consider the derivation of C = AB as a tree T and

induce on the sub-trees. Let C be the resolution of Ap and B~p:

Ap

AB

T
A

T
B

B~p

Figure 7-1.ii

Now, we assume that the lemma is true for the sub-trees TA and TB,

i.e. that ψ1 and ψ2 are the associated connected components of Γ .

Since p is in Ap and ~p is in B~p, each sub-tree TA and TB must

contain an input clause attached to a vertex adjacent to the edge in

82

Γ labelled with p. So the tree T has all its input clauses attached to

vertices in the component containing both Ψ1 and Ψ2. •

If Γ is a labelled graph and p is a literal then Γ / p is obtained by

deleting the edge labelled by either p or its complement. If the edge is labelled

by p then the charges attached to the vertices in Γ / p are unchanged. If the

edge is labelled by the complement of p then the charge is transferred from

one vertex to the adjacent one. Lemma 7-1.3 follows from this definition.

Lemma 7-1.3

charge(Ψ) = charge(Ψ / l).

Lemma 7-1.4

Given a labelled graph Ψ, Σ(Ψ / l) = Σ(Ψ) / l, for l any literal p or ~p.

proof: We need only consider the edge in Ψ labelled by l = p or

l = ~p.

X

l
Ψ =

Y

Figure 7-1.iii

Suppose B is a clause attached to the vertex X and B ∈ Σ(Ψ / l). If

l = p, then Bp is a clause in Σ(Ψ) since charge(X) remains unchanged

by the addition of the edge p. If l = ~p then B~p is a clause attached

83

to X because charge(X) with edge ~p is 1-charge(X) without the

edge ~p. In either case B ∈ Σ(Ψ) / l.

Conversely, suppose B ∈ Σ(Ψ) / l. If l = p and B is attached to

vertex X , then B can be obtained by deleting p from a clause

attached to X in Σ(Ψ), i.e. Bp. Therefore B ∈ Σ(Ψ / p) since deleting

the edge p does not change the charge. Similarly if l = ~p then B

can be obtained by deleting ~p from a clause B~p attached to X in

Σ(Ψ), provided the charge at X is inverted. Hence B ∈ Σ(Ψ / ~p).•

7-2 Tseitin's Theorem

We say that a connected graph is ruptured by the deletion of an edge

if it splits the graph into two connected components.

If G is an unlabelled connected graph and e is one of its edges, then Ge

is the result of deleting e from G if the deletion does not rupture G. If the

deletion of e ruptures G then the two connected components are Ge' and Ge''.

Let G be an unlabelled graph and Γ be any odd labelling of G. Then

the size of the tree refutation of Σ(Γ), L(Σ(Γ)) is abbreviated to L(G). This

definition is permitted because the refutation trees of clauses from any odd

labelling of some connected graph G are isomorphic after relettering the

literals.

Now Tseitin's theorem is

84

Theorem 7-2.1

If G is an unlabelled graph, then

1 if G is a single vertex{min a
 (G) otherwisea G∈

 (G) =
L

L

where L
a
 (G) is given by

{ (G)
a

=

2 (G) otherwisea

a (G) + (G) if a a ruptures G' ''

L
L

LL

proof: The proof is by induction on the number of edges in the

connected graph G. For the base case, if G consists of a single

vertex (no edges) then Σ(G) = { ∅ }, so L(G) = 1.

Now, let G have one or more edges and let T be a minimal size

refutation tree for Σ(G). Let Γ be the labelled graph that defines the

set of clauses Σ(G). Since G is connected, Σ(G) does not contain ∅ ,

so the last step in the proof must be by resolution:

85

p

∅

T
2

T
1

~p

Figure 7-2.i

Let a (in the statement of the theorem) be the edge which is labelled

with the literal p. There are two cases: deleting the edge a either (1)

ruptures G or (2) it doesn't.

Case 1: By assumption charge (Γ) = 1, so by lemma 7-1.3

charge(Γ / p) = 1. Thus, exactly one of the two components of Γ / p,

call it Ga' has an odd labelling. The other component, Ga'' must have

an odd labelling in Γ / ~p. Let T1' and T2' be the result of deleting p

and ~p from T1 and T2 respectively. By lemma 4-2.1, T1' and T2' are

the regular resolution refutations from Σ(Γ) / p and Σ(Γ) / ~p. By

lemma 7-1.4 above, T1' and T2' are refutations of the clauses Σ(Γ / p)

and Σ(Γ / ~p). From lemma 7-1.2 each of these derivations are

derivations from connected components of Σ(Γ / p) and Σ(Γ / ~p)

respectively. Since each of these components must have an odd

labelling (by lemma 7-1.1), it follows that T1' is a proof of ∅ from an

odd labelling of Ga' and T2' is a proof of ∅ from an odd labelling of

Ga''. Thus, the complexity of T is L(Ga') + L(Ga'') = La(G).

Case 2: By the same argument as in case 1, T1' is a derivation of ∅

from Σ(Γ / p) and T2' is a derivation of ∅ from Σ(Γ / ~p). But in this

86

case, both Γ / p and Γ / ~p are odd labellings of the connected graph

Γa. Hence, the complexity of both T1' and T2' is L(Γa), so the

complexity of T is 2L(Γa).

Now since the tree complexity of T is minimized by minimizing the

sum of the tree complexities of the two sub-trees T1 and T2, we

assume that the edge a is chosen to minimize La(G). Hence the

theorem. •

Remarks: Note that while tree complexity may be minimized by

minimizing the complexity of the sub-trees, this may not minimize the linear

length of a proof because of the possible overlap between clauses in T1 and

T2.

7-2.1 Examples

To illustrate theorem 7-2.1, observe that the graph with just one node

has L = 1, that a graph with two nodes and one edge has L = 2 and that one

with three nodes and two edges

e
d

has length 3 (2 + 1).

Now consider the graph:

87

a

e
d

c

bΓ

that represents the set of clauses

{ade, a~d~e, ~a~de, ~ad~e, a~b, ~ab, bc~e, b~ce, ~bce, ~b~c~e, c~d ~cd}

The deletion of literals <a, b, c, d, e> produces the following sequence

<Γ, Γ1, Γ2, Γ3, Γ4, Γ5> of sub-graphs:

a

e
d

c

bΓ e
d

c

bΓ1

e
d

c

Γ2 e
dΓ3

eΓ4 Γ5

And the complexity of Γ is given by

88

L(Γ) = 2*L(Γ1)
= 2* (1 + L(Γ2))
= 2* (1 + (2 * L(Γ3)))
= 2* (1 + (2 * (1 + L(Γ4))
= 2* (1 + (2 * (1 + 1 + L(Γ5))
= 2* (1 + (2 * (1 + 1 + 1)))
= 14

Theorem 7-2.1 may be reformulated as an algorithm for calculating the

size of a tree proof for inconsistent Tseitin clauses obtained by undertaking a

sequence of edge deletions on a connected graph G.

(1) Set the count on each vertex to 0.

(2) At the nth step, (a) delete an edge a (b) if the deletion does not

rupture the graph then add 1 to all the vertices of the component

to which a belongs, otherwise leave all associated numbers alone.

(3) The sequence ends when all edges of G have been deleted. The

complexity of a deletion sequence D for G is L(D) = ∑
v ∈ G

 2n(v)

where n(v) is the number associated with the vertex v when all the

edges have been deleted.

So theorem 7-2.1 may also be stated as

L(G) = min { L(D) | D is a deletion sequence for G }

For example, consider the application of this algorithm to the deletion

sequence S = <Γ′ , Γ′1, Γ′2, Γ′3, Γ′4, Γ′5> :

89

Γ′1

Γ′3

Γ′5

1

1

1

1

00

Γ′

Γ′2

Γ′4

00

1

1

1

1

1

2

2

2

1

2

2

2

1

2

2

2

The complexity of this deletion sequence is L(Γ′) = ∑
v ∈ G

 2n(v) = 14.

7-3 Tree Resolution cannot simulate DPP

In this section we show that there exist a class of Tseitin graphs that

have large minimal tree sizes but short minimal linear length proofs using the

DPP.

Let Gn be the set of graphs consisting of a chain of 2n vertices, with

each pair of adjacent vertices joined by a group of n edges. For example, the

graph for G3 is:

90

Figure 7-3.i

For such chain graphs Σ(Gn) contains 2(2n-1)=2n clauses of length n (attached

to the end nodes), and (2n-2)22n-1 = (2n-1-1)22n clauses of length 2n attached

to interior nodes. For example, G2 with charge(G2)=1 is

a

b

c

d

e

f

Figure 7-3.ii

and Σ(G2) is the set

{ab,~a~b,

~abcd, a~bcd, ab~cd, abc~d, a~b~c~d, ~ab~c~d, ~a~bc~d, ~a~b~cd,

~cdef, c~def, cd~ef, cde~f, c~d~e~f, ~cd~e~f, ~c~de~f, ~c~d~ef,

e~f, ~ef }

The large component in a graph from the deletion sequence is as

follows.

(1) Gn is the large component of Gn;

(2) If step n+1 does not rupture the large component then the large

component at step n+1 is the same as the large component at step

n (with the exception of a deleted edge).

91

(3) If step n+1 does rupture the large component into sub-graphs Γ1

and Γ2, then the new large component is Γ1 or Γ2 depending on

which has the larger number of vertices.

Theorem 7-3.1

L(Gn) > 2n(n-1).

proof: Suppose D is an optimal deletion sequence for Gn. At the

end of the deletion sequence, the large component consists of a

single vertex. Since this vertex v belonged to the large component

at all earlier stages, this means that the component to which v

belongs must have been ruptured at least n times because every time

the large component is ruptured, the new large component contains

at least half the number of the vertices in the previous large

component. But to rupture a component of Gn requires the deletion

of n edges, so that the vertex v must, at the end of the deletion

sequence, bear the number n(n-1). Since L(Gn)= L(D) = ∑
v ∈ G

 2n(v)

L(Gn) > 2n(n-1) •

Now we compute the complexity of N(Gn) by using the Davis-Putnam

procedure. We delete the edges of Gn successively from left to right. The

procedure divides into 2n-1-1 stages, each stage consisting in the deletion of

the edges attached to adjacent vertices X and Y.

92

X

Y

.

.

. Y

Figure 7-3.iii

The clauses produced (and the input clauses used) at this stage involve

only the variables attached to X and Y, of which there are 2n (recall that all the

edges to the left of X are already deleted). There are at most 32n such clauses,

so the entire refutation produced by DPP has length (2n -1)32n, i.e. the entire

refutation contains at most

(2n-1)2(3.2)n < 2n(23.2n) = 24.2n.

Thus the length of the minimal DPP refutation is bounded by a

quadratic (polynomial) function of the size of the input. •

Corollary: Tree resolution cannot p-simulate the DPP.

proof: 2n(n-1) eventually dominates 2kn for any fixed k. This follows

from the fact that n(n-1) grows asymptotically faster than any linear

function. •

93

CHAPTER 8

Conclusion

This thesis aims to fill some lacunae in the landscape of the relative

complexity of automated theorem proving methods by showing how different

techniques (connection method, restrictions of the improved analytic tableau

and SL-resolution) compare with respect to the minimum lengths of proofs in

the worst-case. It was shown that SL-resolution and the connection method

are equivalent to refinements of the improved analytic tableau method and

that all of these automatic theorem proving methods can be p-simulated by

tree resolution. These results are significant in light of the theorem by Tseitin

that tree resolution cannot p-simulate the Davis-Putnam procedure, for which

we offer a more detailed proof than Tseitin's own.

The hierarchy of relative complexities is determined by the notion of

polynomial (p-) simulation which defines an equivalence relation among proof

methods. However, the significance of this notion is unclear. Since the value

of a polynomial function (of degree k, for some constant k) may always exceed

the value of a super-polynomial function (of degree n) for any given n, there

may be no distinction between the difficulty of proving (i.e. the length of a

proof for) a particular instance of a class of tautologies using a polynomial

proof method and the difficulty of proving the same tautology with a super-

polynomial proof method. The essential difference between one method and

94

the other is the rate of growth of proof lengths as the length of the tautology

(n) increases. The question then arises whether the rate of growth of worst-

case proofs for a given method says something meaningful about the power

of the method.

Our answer to this question is affirmative. If a proof system A that

properly p-simulates another system B (i.e. A p-simulates B but B does not p-

simulate A) then A has a rule of inference which permits significantly shorter

minimal length proofs, for some classes of tautologies, than B. If there exists a

short proof for a tautology in one proof system but not in another, this says

something about the extent to which our knowledge can be certified using

this proof technique, i.e. it sets limits—practical limits—to what it is that a

logical system can allow us to infer. (There is perhaps an analogy here with

another meta-logical property—decidability—that reflects the strength of a

logical system. Just as an undecidable system of logic is more expressive than

a decidable one, a proof system which properly p-simulates another has a more

powerful proof mechanism.)

What is it, then, about one inference mechanism that makes it more

powerful than another? One characteristic seems to be that more powerful

inference rules have a greater capacity for pattern-recognition. For example,

the improved analytic tableau method (i.e. tableaux with the checking rule),

has the advantage over analytic tableaux that identical sub-tableaux can be

collapsed into one (see figures 3-1.ii & 3-1.2.i). Similarly, if we take a look at

the minimal DAGs proofs generated by the Davis-Putnam procedure (DDP)

and compare them to the corresponding minimal tree proofs we see that the

95

DPP proofs eliminate the multiple occurrences of identical sub-proofs present

in the tree proof (see figures 3.2-i & 3.2-ii).

An even more powerful technique is found in those methods that

permit some degree of term-rewriting. Comparing the (relatively short)

extended resolution proofs of the pigeon hole clauses to the minimal

resolution proofs shows that the greater power of the extension rule is due to

the fact that the substitution of one literal for a sub-expression permits the

computation of a simple induction problem in polynomial time. Systems that

use axiom schemas allow greater degrees of freedom for term-rewriting and it

seems natural that they should be higher still in the hierarchy of proof systems.

Although quantum leaps in proof length reduction can be obtained by such

extensions, there is little evidence to suggest that there exists an automatic

theorem proving method that cannot be defeated by some class of tautologies.

8-1 Open Problems

There are several unanswered questions raised in this thesis whose

answers would help complete the details of figure 1-3.i. To summarize, they

are: (i) can IPCR analytic tableau simulate IACR analytic tableau? (ii) can

ACRI analytic tableau simulate unrestricted improved tableau? (iii) can

analytic tableau simulate the improved analytic tableau? (iv) can SL-resolution

simulate s-linear resolution?

Further research could be directed at answering similar questions

concerning the relative complexity of other restrictions of resolution such as

Lock resolution [Boyer 1971] and other kinds of theorem proving methods

such as connection graph resolution [Shostak 1976]. It would undoubtedly

96

be useful, both for deepening our understanding of these systems and for the

practical requirements of automated theorem proving, if it were possible to

characterize the Achilles heel that causes all these methods to suffer

combinatorial explosions. Examples that are hard for these systems such as

those produced by Tseitin graphs or pigeonhole clauses appear to have a

structure or "connectedness" that makes them hard for these simple systems.

A better understanding of this attribute could help to characterize the

limitations of these proof methods and to suggest techniques that might

circumvent them in a practical setting.

97

APPENDIX

In this section we briefly describe a particularly simple and elegant

Prolog program which implements the improved analytic tableau method in

five lines of computer-executable code. It has been shown empirically

(Vellino 1989) that this program is also superior (in performance or search

time) to resolution theorem provers, against some examples that are hard-to-

prove for resolution such as the pigeon-hole clauses.

The program operates on a list (conjunction) of lists (disjunctions) of

literals which have the form

 lit(NegOrPos,Variable)

where NegOrPos indicates the presence or absence of a negation sign in front

of the Variable. For example the clause ((a v ~b) & (b v ~c) is represented as

the list of lists

 [[lit(true,A),lit(false,B)],[lit(true,B),lit(false,C)]].

The complete program that implements the improved tableau method is this:

satisfiable([]).
satisfiable([C|Clauses]) :- satisfied(C), satisfiable(Clauses).

satisfied([lit(T,T)|_]).
satisfied([lit(true,false) | Literals]):- satisfied(Literals).
satisfied([lit(false,true) | Literals]):- satisfied(Literals).

The propositional variables (A, B, C...) in the clauses processed by the

program are first-order variables in predicate logic to which the program

attempts to assign satisfying truth-values by making at least one literal true in

98

each clause. This is done by instantiating these variables to values with which

they are prefixed. The propagation of these tva's is guaranteed by the

instantiation mechanism (unification) in Prolog, which obeys the rule of first-

order universal instantiation.

The first two lines in the program express (recursively) the idea that a

conjunction of formulas is satisfiable if each formula can be satisfied. The third

line either instantiates a free variable in the first literal of a clause to a

satisfying tva or confirms that the clause is satisfied if that variable has already

been instantiated. If a satisfying assignment for a literal closes all the branches

of the tree, Prolog backtracks to either the second or the third rule

(exclusively) for satisfied/1 which reverses the original tva (checking rule)

and recursively tries to assign a satisfying tva to the remaining literals. If a tva

was merely verified by the call to the first rule for satisfied/1, then neither

the second nor the third rule can apply since the variable acquired its truth-

value from a clause higher up the tree. Thus clauses containing the same

literal as some ancestor in the tree are not considered (since they are already

true).

Of course, this program does not implement any parent clash or

ancestor clash clause selection strategy. It merely considers the clauses in the

order in which they occur in the list.

99

BIBLIOGRAPHY

Andrews, P. B. (1968). "Resolution with Merging" J. ACM, Vol. 15, No. 3,
(Reprinted in Siekmann and Wrightson).

Bibel, W. (1982). Automated Theorem Proving. Vieweg Verlag,
Braunschweig; Wiesbaden: Vieweg.

Bibel, W. (1983). "A Comparative Study of Several Proof Procedures"
Artificial Intelligence 18, p. 269-293.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications,
American Elsevier, New York, and Macmillan, London.

Boyer, R. S. (1971) "Locking: a Restriction of Resolution" Ph.D. Thesis,
University of Texas at Austin.

Buss, S. A. (1987). "Polynomial Size Proofs of the Propositional Pigeonhole
Principle" Journal of Symbolic Logic, 52, pp. 916-927.

Chang, C. L., and Lee, R. T. C. (1973). Symbolic Logic and Mechanical

Theorem Proving, New York.

Chvátal, V., and Szemerédi, E. (1988). "Many Hard Examples for Resolution"
J. ACM. 35 No.4, pp. 759-768.

Cook, S. A. (1971a). "The Complexity of Theorem Proving Procedures" Proc.

3rd ACM STOC pp.151-158.

Cook, S. A. (1971b). "Examples for the Davis-Putnam Procedure", unpublished
manuscript, referenced in [Cook 1971a]

Cook, S. A. (1976). "A Short Proof of the Pigeon-Hole Principle Using
Extended Resolution", ACM SIGACT News 8 p. 28-32.

100

Cook, S. A., and Reckhow, R. A. (1974). "On the Length of Proofs in the
Propositional Calculus" Proc. 6th ACM STOC, pp.135-148.

Cook, S. A., and Reckhow, R. A. (1979). "The Relative Efficiency of
Propositional Proof Systems" Journal of Symbolic Logic, 44, pp.36-
50.

Davis, M., Logemann, G., and Loveland D. (1962). "A Machine Program for
Theorem Proving" Communications of the ACM 5, No. 7, July
(Reprinted in Siekmann and Wrightson.)

Davis, M., and Putnam, H. (1960). "A Computing Procedure for Quantification
Theory," J. ACM. 7 pp. 201-215.

Galil, Z. (1975). "The Complexity of Resolution Procedures for Theorem
Proving in the Propositional Calculus" Ph.D Thesis, TR 75-239
Cornell University.

Galil, Z. (1977). "On the Complexity of Regular Resolution and the Davis-
Putnam Procedure" Theoretical Computer Science 4 pp.23-46.

Garey, M. R., and Johnson, S. D. (1979). Computers and Intractability, A

Guide to the Theory of NP-Completeness, W.H. Freeman & Co.:
New York.

Gibbons, A. M. (1985). Algorithmic Graph Theory, Cambridge University
Press.

Goldberg, A. T. (1979). "On the Complexity of the Satisfiability Problem",
Courant Institute for Computer Science report #16, New York
University.

Haken, A. (1985). "The Intractability of Resolution" Theoretical Computer

Science 39 pp.297-308.

Kirkpatric, D. G. (1974). "Topics in the Complexity of Combinatorial
Algorithms" Ph.D. Thesis, University of Toronto.

101

Knuth, D. E. (1968). The Art of Computer Programming Vol.1, Addison-
Wesley.

Kowalski, R., and Kuehner, D. (1971). "Linear Resolution with Selection
Function" Artificial Intelligence 2 p. 227-260, Reprinted in
Siekmann and Wrightson (1983) Vol. 2.

Kowalski, R., (1975). "A proof procedure using connection graphs", J. ACM.
22, pp. 572-595.

Lewis, R. L. and Papadimitriou, C. H. (1981). Elements of the Theory of

Computation, Prentice-Hall: New Jersey (1981).

Lloyd, J. W., (1987). Foundations of Logic Programming (second edition)
Springer-Verlag, New York.

Loveland, D. W. (1970). "A Linear Format for Resolution", Symposium on

Automatic Demonstration, Lecture Notes in Mathematics, 125,
Springer-Verlag, New York, p. 147-163, Reprinted in Siekmann and
Wrightson (1983) Vol 2.

Mendelson, E. (1964). Introduction to Mathematical Logic (van Nostrand).

Prawitz, D. (1970). "A proof procedure with matrix reduction", Symposium on

Automatic Demonstration, Lecture Notes in Mathematics, 125,
Springer-Verlag, New York, p. 207-213.

Reckhow, R. A. (1975). "On the Lengths of Proofs in the Propositional
Calculus" Ph.D. Thesis University of Toronto.

Robinson, J. A. (1965). "A Machine Oriented Logic Based on the Resolution
Principle" J. ACM 12 , pp 23-41. Reprinted in Siekmann and
Wrightson (1983) Vol 1.

Shostak, R. E. (1976). "Refutation Graphs" Artificial Intelligence 7, pp.51-64.

102

Siekmann, J., and Wrightson, G., (eds.) (1983). Automation of Reasoning, Vols.
1 & 2, Springer-Verlag, Berlin.

Smullyan, R. (1968). First Order Logic Springer-Verlag, New York.

Tseitin, G. S. (1968). "On The Complexity of Derivation in The Propositional
Calculus" Studies in Constructive Mathematics and Mathematical

Logic part 2, (1968) p. 115-125. Reprinted in Siekmann and
Wrightson (1983) Vol 2.

Urquhart, A. I. F. (1987). "Hard Examples for Resolution" J. ACM. 34 No.1,
pp. 209-219.

Vellino, A. (1989). "A Prolog Implementation of an Analytic Tableau Theorem
Prover for the Propositional Calculus " BNR Computing Research

Lab Report 89024.

Wenqi, H., and Xiangdong, Y., (1985). "A DNF Without Regular Shortest
Consensus Path" (unpublished manuscript).

