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Strong Cyclic Planning RevisitedMarco Daniele1;2, Paolo Traverso1, and Moshe Y. Vardi3?1 IRST, Istituto per la Ricerca Scienti�ca e Tecnologica, 38050 Povo, Trento, Italy2 Dipartimento di Informatica e Sistemistica, Universit�a \La Sapienza", 00198 Roma3 Department of Computer Science, Rice University, Houston TX 77251, USAdaniele@irst.itc.it, leaf@irst.itc.it, vardi@cs.rice.eduAbstract. Several realistic non-deterministic planning domains requireplans that encode iterative trial-and-error strategies, e.g., \pick up ablock until succeed". In such domains, a certain e�ect (e.g., action suc-cess) might never be guaranteed a priori of execution and, in principle,iterative plans might loop forever. Here, the planner should generate it-erative plans whose executions always have a possibility of terminatingand, when they do, they are guaranteed to achieve the goal. In this paper,we de�ne the notion of strong cyclic plan, which formalizes in temporallogic the above informal requirements for iterative plans, de�ne a plan-ning algorithm based on model-checking techniques, and prove that thealgorithm is guaranteed to return strong cyclic plans when they exist orto terminate with failure when they do not. We show how this approachcan be extended to formalize plans that are guaranteed to achieve thegoal and do not involve iterations (strong plans) and plans that have apossibility (but are not guaranteed) to achieve the goal (weak plans). Theresults presented in this paper constitute a formal account for \planningvia model checking" in non-deterministic domains, which has never beenprovided before.1 IntroductionClassical planning [16, 21] makes some fundamental assumptions: the planner hascomplete information about the initial state of the world, e�ects of the executionof actions are deterministic, and the solution to the planning problem can beexpressed as a sequence of actions. These assumptions are unrealistic in severalpractical domains (e.g., robotics, scheduling, and control). The initial state ofa planning problem may be partially speci�ed and the execution of an actionin the same state may have many possible e�ects. Moreover, plans as sequencesof actions are bound to failure: non-determinism must be tackled by planningconditional behaviors, which depend on the information that can be gathered atexecution time. For instance, in a realistic robotic application, the action \pick-up a block" cannot be simply described as a strips-like operator [16] whose e�ectis that \the block is at hand" of the robot. \Pick-up a block" might result eitherin a success or failure, and the result cannot be known a priori of execution. A? Supported in part by NSF grants CCR-9628400 and CCR-9700061.



useful plan, depending on the action outcome, should execute di�erent actions,e.g., try to pick-up the block again if the action execution has failed.Most often, a conditional plan is not enough: plans encoding iterative trial-and-error strategies, like \pick up a block until succeed", are the only acceptablesolutions. In several realistic domains, a certain e�ect (e.g., action success) mightnever be guaranteed a priori of execution and, in principle, iterative plans mightloop forever, under an in�nite sequence of failures. The planner, however, shouldgenerate iterative plans whose executions always have a possibility of terminatingand, when they do, they are guaranteed to achieve the goal.The starting point of the work presented in this paper is the framework ofplanning via model checking, together with the related system mbp, �rst pre-sented in [7] and then extended to deal with non-deterministic domains in [10, 9](see also [18] for an introduction to Planning as Model Checking). [7] proposesthe idea to use model checking techniques to do planning and proposes an algo-rithm for generating weak plans, i.e., plans that may achieve the goal but are notguaranteed to do so. [10] proposes an algorithm to generate strong plans, i.e.,plans that are guaranteed to achieve a desired goal in spite of non-determinism.[9] extends [10] to generate strong cyclic plans, whose aim is to encode itera-tive trial-and-error strategies. However, no formal notion of strong cyclic plan isgiven in [9] and, as far as we know, in any other work.In this paper we provide a framework for planning via model checking whereweak, strong, and strong cyclic plans can be speci�ed uniformly in temporal logic.In the paper, we focus on strong cyclic plans, since their formal speci�cations andthe provision of a correct algorithm is still an open problem at the current state-of-the-art. Indeed, this paper builds on [9] making the following contributions.{ We provide a formal de�nition of strong cyclic plan based on the well-knownComputation Tree Logic (CTL) [14]. The idea is that a strong cyclic plan is asolution such that \for each possible execution, always during the execution,there exists the possibility of eventually achieving the goal". The formaliza-tion is obtained by exploiting the universal and existential path quanti�ersof CTL, as well as the \always" and \eventually" temporal connectives.{ We de�ne a new algorithm for strong cyclic planning. It is guaranteed togenerate plans that cannot get stuck in loops with no possibility to terminate.The algorithm in [9] did not satisfy this requirement. Moreover, the newalgorithm improves the quality of the solutions by eliminating nonrelevantactions.{ We prove that the algorithm presented in this paper is correct and complete,i.e., it generates strong cyclic plans according to the formal de�nition while,if no strong cyclic solutions exist, it terminates with failure.The results presented in this paper provide a formal account for planningvia model checking that has never been given before. Indeed, after providing aclear framework for strong cyclic plans, we show how it can be easily extendedto express weak and strong plans. Weak plans are such that there exists at leastone execution that eventually achieves the goal, strong plans are such that allexecutions eventually achieve the goal.



The paper is structured as follows. We de�ne the notion of planning problemin Section 2 and the notion of strong cyclic solutions in Section 3. The descriptionof the planning algorithm is given in Section 4. Finally, in Section 5 we showhow the framework can be extended to formalize weak and strong plans. Weconclude the paper with a comparison with some related work.2 The Planning ProblemA (non-deterministic) planning domain can be described in terms of 
uents,which may assume di�erent values in di�erent states, actions and a transitionfunction describing how (the execution of) an action leads from one state topossibly many di�erent states.De�nition 1 (Planning Domain). A planning domain D is a 4-tuplehF; S;A;Ri where F is the �nite set of 
uents, S � 2F is the set of states, A isthe �nite set of actions, and R : S �A 7! 2S is the transition function.Fluents belonging (not belonging) to some state s are assigned to true (false)in s. Our de�nitions deal with Boolean 
uents while examples are easier todescribe through 
uents ranging over generic �nite domains1. R(s; a) returnsall the states the execution of a from s can lead to. The action a is said to beexecutable in the state s if R(s; a) 6= ;.A (non-deterministic) planning problem is a planning domain, a set of initialstates and a set of goal states.De�nition 2 (Planning Problem). A planning problem P is a 3-tuplehD; I;Gi where D is the planning domain, I � S is the set of initial states andG � S is the set of goal states.Both I and G can be represented through two Boolean functions I and G overF , which de�ne the sets of states in which they hold. From now on, we switchbetween the two representations, as sets or functions, as the context requires.Non-determinism occurs twice in the above de�nitions. First, we have a setof initial states, and not a single initial state. Second, the execution of an actionfrom a state is a set of states, and not a single state.As an explanatory example, let us consider the situation depicted in Figure 1(left). The situation is a very small excerpt from an application we are developingfor the Italian Space Agency [4]. A tray (T) provides two positions in which twocontainers (C1 and C2) for solutions may be hosted. In addition, a kettle (K) mayhost one container for boiling its solution. The kettle is provided with a switch (S)that can operate only if the container is well positioned on the kettle. This situa-tion can be formalized as shown in Figure 1 (right). The set F of (non-Boolean)
uents is fC1; C2; Sg. C1 and C2 represent the positions of the containers, andcan be on-T (on tray), on-K-ok (on kettle, steady), or on-K-ko (on kettle, notsteady). S represents the status of the kettle's switch (on or off). The set of states1 For non-Boolean variables, we use a Boolean encoding similarly to [15].



T
C1

I OS
C2

K C2: on-K-koS: offC1: on-Tfix-position fix-positionmove(C2,T) switch-onswitch-off switch-offswitch-on move(C1,T)move(C1,K)C2: on-TS: offC1: on-K-koC2: on-TS: offC1: on-T C2: on-TS: offC1: on-K-okC2: on-K-okS: offC1: on-T C2: on-K-okS: onC1: on-T C2: on-TS: onC1: on-K-okS2S3S1 S4 S5S7S6move(C2,K)
Fig. 1. An example (left) and its formalization (right).is represented by the nodes of the graph, which de�ne 
uents' values. The setof actions is represented by the edges' labels. Actions move(C1,T), move(C2,T),switch-on, and switch-off, are deterministic; move(C1,K), move(C2,K), andfix-position, are not. Indeed, when moving containers from the tray to thekettle, it can happen the containers are not correctly positioned. Moreover, it canbe possible the wrong container is picked up and moved upon the kettle. Thus,R(S4; move(C1; K)) = R(S4; move(C2; K)) = fS2; S3; S6; S7g. Still, when trying tosettle a container, it is possible getting no e�ect. Thus, R(S3; fix-position) =fS2; S3g and R(S7; fix-position) = fS6; S7g. The planning problem is to boilthe solution contained in C1 starting from a situation where C1 is on the trayand the kettle's switch is o�, that is, I is C1 = on-T ^ S = off (grey nodes, inFigure 1), and G is C1 = on-K-ok^ S = on (black node, in Figure 1).A remark is in order. Non-deterministic planning problems can be expressedin di�erent speci�cation languages. For instance, in [7, 10, 9] the AR language[17] is used. Alternatively, we might use any language that allows us to expressnon-determinism, i.e., the fact that an action has multiple outcomes or, in otherwords, disjunctive postconditions. strips-like [16] or adl-like [21] languages(e.g., pddl) are not expressive enough.3 Strong Cyclic PlansWhen dealing with non-determinism, plans have to be able to represent con-ditional and iterative behaviors. We de�ne plans as state-action tables (resem-bling universal plans [22]) that associate actions to states. The execution of astate-action table can result in conditional and iterative behaviors. Intuitively,a state-action table execution can be explained in terms of a reactive loop thatsenses the state of the world and chooses one among the corresponding actions,if any, for the execution until the goal is reached.De�nition 3 (State-Action Table). A state-action table SA for a planningproblem P is a set of pairs fhs; ai : s 2 S nG; a 2 A; and a is executable in sg.The states of a state-action table may be any state, except for those in theset of goal states. Intuitively, this corresponds to the fact that when the planachieves the goal no further action needs to be executed. Hereafter, we write



State ActionS1 switch-offS3 fix-positionS2 move(C2,T)S6 move(C1,T)S4 move(C1,K)S4 move(C2,K)S7 fix-positionS6 switch-onFig. 2. A state-action table.States(SA) for denoting the set of states in the state-action table SA, i.e.,States(SA)= fs : 9a 2 A:hs; ai 2 SAg.De�nition 4 (Total State-Action Table). A state-action table SA for aplanning problem P is total if, for all hs; ai 2 SA, R(s; a) � States(SA) [G.Intuitively, in a total state-action table, each state that can be reached by ex-ecuting an action either is a goal state or has a corresponding action in thestate-action table. The notion of total state-action table is important in orderto capture strong (cyclic) plans, i.e., plans that must be speci�ed for all pos-sible outcomes of actions. In Figure 2, a total state-action table related to ourexample is shown.Given a notion of plan as a state-action table, the goal is to formalize strongcyclic plans in terms of temporal logic speci�cations on the possible executionsof state-action tables. A preliminary step is to formalize the notion of executionof a state-action table.De�nition 5 (Execution). Let SA be a state-action table for the planningproblem P . An execution of SA starting from the state s0 2 States(SA)[G isan in�nite sequence s0s1 : : : of states in S such that, for all i � 0, either si 2 Gand si = si+1, or si 62 G and, for some a 2 A, hsi; ai 2 SA and si+1 2 R(si; a).Executions are in�nite sequences of states. Depending on non-determinism, wemay have many possible executions corresponding to a state-action table. Eachnongoal state si has as successor a state si+1 reachable from si by executing anaction corresponding to si in the state-action table; when the sequence reachesa goal state, the execution is extended with an in�nite sequence of the samegoal state. Of course, nontotal state-action tables may induce also executionsdangling at nongoal states, i.e., executions reaching a nongoal state for which noaction is provided.The total state-action tables we are interested in, i.e., strong cyclic plans,are such that, informally, all their executions either lead to the goal or loop overa set of states from which the goal could be eventually reached. With respectto the state-action table of Figure 2, an example of the former case is executingswitch-on when at S6, which surely leads to the goal; while an example of thelatter case is executing fix-position in S7 that, even if looping at S7, may leadto S6 and, therefore, to the goal.



In order to capture the notion of strong cyclic plan, we need a formal frame-work that allows us to state temporal properties of executions. We have chosenthe branching time logic CTL [14], which provides universal and existential pathquanti�ers and temporal operators like \eventually" and \always". CTL formulasare de�ned starting from a �nite set P of propositions, the Boolean connectives,the temporal connectives X (\next-time") and U (\until"), and the path quan-ti�ers E (\exists") and A (\for all"). Given a �nite set P of propositions, CTLformulas are inductively de�ned as follows:{ Each element of P is a formula;{ : ,  _ �, EX , AX , E(�U ), and A(�U ) are formulas if � and  are.CTL semantics is given with respect to Kripke structures. A Kripke structureK is a triple hW;T;Li where W is a set of worlds, T � W � W is a totaltransition relation, and L : W 7! 2P is a labeling function. A path � in K isa sequence w0w1 : : : of worlds in W such that, for i � 0, T (wi; wi+1). In whatfollows, K;w j=  denotes that  holds in the world w of K. CTL semantics isthen inductively de�ned as follows:{ K;w0 j= p i� p 2 L(w0), for p 2 P{ K;w0 j= : i� K;w0 6j=  { K;w0 j=  _ � i� K;w0 j=  or K;w0 j= �{ K;w0 j= EX i� there exists a path w0w1 : : : such that K;w1 j=  { K;w0 j= AX i� for all paths w0w1 : : : we have K;w1 j=  { K;w0 j= E(�U ) i� there exist a path w0w1 : : : and i � 0 such thatK;wi j=  and, for all 0 � j < i, K;wj j= �{ K;w0 j= A(�U ) i� for all paths w0w1 : : : there exists i � 0 such thatK;wi j= and, for all 0 � j < i, K;wj j= �We introduce the usual abbreviations AF � A(trueU ) (F stands for \future"or \eventually"), EF � E(trueU ), AG � :EF: (G stands for \globally" or\always"), and EG � :AF: .The executions of a total state-action table SA for the planning problem Pcan be encoded as paths of the Kripke structure KPSA induced by SA.De�nition 6 (Induced Kripke Structure). Let SA be a total state-actiontable for the planning problem P . The Kripke structure KPSA induced by SA isde�ned as:{ WPSA = States(SA) [G;{ TPSA(s; s0) i� hs; ai 2 SA and s0 2 R(s; a), or s = s0 and s 2 G;{ LPSA(s) = s.The totality of TPSA is guaranteed by the totality of SA. Strong cyclic plans canbe speci�ed through a temporal logic formula on their executions.De�nition 7 (Strong Cyclic Plan). A strong cyclic plan for a planning prob-lem P is a total state-action table SA for P such that I �WPSA and, for all s 2 I,we have KPSA; s j= AGEFG.



1. function StrongCyclicPlan(P )2. I := I nG; SCP:= fhs; ai : s 2 S nG; a 2 A; a is executable in sg; OldSCP:=?3. while (OldSCP6=SCP) do4. OldSCP:=SCP5. SCP:=PruneUnconnected(P , PruneOutgoing(P , SCP))6. endwhile7. if (I � States(SCP))8. then return SCP9. else return Fail14. function PruneOutgoing(P , SA)15. Outgoing := ComputeOutgoing(P , SA)16. while (Outgoing 6= ;) do17. SA:=SAnOutgoing18. Outgoing := ComputeOutgoing(P , SA)19. endwhile20. return SA21. function PruneUnconnected(P , SA)22. ConnectedToG := ;; OldConnectedToG := ?23. while ConnectedToG 6= OldConnectedToG do24. OldConnectedToG:=ConnectedToG25. ConnectedToG:=SA \OneStepBack(P , ConnectedToG)26. endwhile27. return ConnectedToG Fig. 3. The algorithm.That is, starting from the initial states, whatever actions we choose to executeand whatever their outcomes are, we always (AG) have a way of reaching the goal(EFG). Notice that the state-action table in Figure 2 is a strong cyclic plan forthe planning problem at hand.4 The Strong Cyclic Planning AlgorithmThe idea underlying our algorithm is that sets of states (instead of single states)are manipulated during the search. The implementation of the algorithm is basedon OBDDs (Ordered Binary Decision Diagrams) [3], which allow for compactrepresentation and e�cient manipulation of sets. This opens up the possibilityto deal with domains involving large state spaces, as shown by the experimentalresults in [9]. Our presentation is given in terms of the standard set operators(e.g., �, n), hiding the fact that the actual implementation is performed throughOBDD manipulation routines. In principle, however, the algorithm could beimplemented through di�erent techniques, provided that they make such setoperations available. The algorithm is presented in two steps: �rst, algorithmscomputing basic strong cyclic plans are introduced (Figure 3 and 5), and thenan algorithm for improving such basic solutions is given (Figure 7).
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GFig. 4. Pruning the state-action table.Given a planning problem P , StrongCyclicPlan(P ) (Figure 3) generatesstrong cyclic plans. The algorithm starts with the largest state-action table inSCP (line 2), and repeatedly removes pairs that either spoil SCP totality or arerelated to states from which the goal cannot be reached (line 5). If the resultingSCP contains all the initial states (line 7), the algorithm returns it (line 8),otherwise Fail is returned (line 9).Pairs spoiling SCP totality are pruned by function PruneOutgoing (lines14{20), which iteratively removes state-action pairs that can lead to nongoalstates for which no action is considered. Its core is the function ComputeOut-going that, for a planning problem P and a state-action table SA, is de�ned asfhs; ai 2 SA : 9s0 62 States(SA)[G:s0 2 R(s; a)g. With respect to the exampleshown in Figure 4 (left), during the �rst iteration, PruneOutgoing removeshS4; ei and, during the second one, it removes hS3; bi, giving rise to the situationshown in Figure 4 (middle).Having removed the dangling executions results in disconnecting S2 and S3from the goal, and give rise to a cycle in which executions may get stuck with nohope to terminate. This point, however, was not clear in the work presented in [9].States from which the goal cannot be reached have to be pruned away. This taskis accomplished by the function PruneUnconnected (lines 21{27) that, whengiven with a planning problem P and a state-action table SA, loops backwardsinside the state-action table from the goal (line 25) to return the state-actionpairs related to states from which the goal is reachable. Looping backward isrealized through the function OneStepBack that, when given with a planningproblem P and a state-action table SA, returns all the state-action pairs possiblyleading to states of SA or G. Formally, OneStepBack(P; SA) = fhs; ai : s 2S nG; a 2 A; 9s0 2 States(SA) [G:s0 2 R(s; a)g. With respect to the exampleshown in Figure 4 (middle), PruneUnconnected removes both hS2; di andhS3; ci, producing the situation shown in Figure 4 (right). Having removed theabove pairs re-introduces dangling executions and, therefore, requires to applythe pruning phase once more, leading to the empty set. In general, the pruningphase has to be repeated until the putative strong plan SCP is not changedeither by PruneOutgoing or by PruneUnconnected (line 3).As an alternative (see Figure 5), rather than starting with the largest state-action table, one could start with an empty state-action table in AccSA (line 2)



1. function StrongCyclicPlan(P )2. I := I nG; SCP:= ;; AccSA:= ;; OldAccSA:= ?3. while (I 6� States(SCP) and AccSA 6= OldAccSA) do4. OldAccSA:=AccSA; AccSA:=OneStepBack(P; AccSA)5. SCP:=AccSA; OldSCP:=?6. while (OldSCP6=SCP) do7. OldSCP:=SCP8. SCP:=PruneUnconnected(P , PruneOutgoing(P , SCP))9. endwhile10. endwhile11. if (I � States(SCP))12. then return SCP13. else return FailFig. 5. The incremental algorithm.and incrementally extend it (line 4) until either a strong cyclic plan containingall the initial states is found, or AccSA is not extendible anymore (line 3).The strong cyclic plans returned by StrongCyclicPlan can be improvedin two directions. Consider the example in Figure 6, where S3 is the initial state.The strong cyclic plan returned by StrongCyclicPlan for such example com-prises all the possible state-action pairs of the planning problem. Note, however,that the pair hS1; ai is absolutely useless, since it is unreachable from the ini-tial state. Furthermore, the pair hS4; di is useless as well, because it moves theexecution away from the goal. Indeed, when reaching S4 from S3, one does notwant to go back to S3 through d. The algorithm for getting rid of the above isshown in Figure 7.Function PruneUnreachable loops forward, inside the state-action tablereturned by the basic algorithm, collecting state-action pairs related to statesthat can be reached from the initial ones. Its core is the functionOneStepForth(line 7) that, when given with a planning problem P and a state-action tableReachableFromI, returns the set of pairs related to states reachable by executingactions in ReachableFromI. Formally, OneStepForth(P , ReachableFromI) =fhs; ai : s 2 S; a 2 A; a is executable in s and 9hs0; a0i 2 ReachableFromI; s 2R(s0; a0)g. ReachableFromI is initialized with the pairs related to initial statesby GetInit (line 4), de�ned as GetInit(P; SCP ) = fhs; ai 2 SCP : s 2 Ig.With respect to Figure 6, this �rst optimization phase chops out the pair hS1; ai
G
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1. function Optimize(P , SCP)2. return ShortestExecutions(P , PruneUnreachable(P , SCP))3. function PruneUnreachable(P , SCP)4. ReachableFromI := GetInit(P; SCP ); OldReachableFromI:= ?5. while (ReachableFromI6=OldReachableFromI) do6. OldReachableFromI:=ReachableFromI7. ReachableFromI := ReachableFromI [ SCP \OneStepForth(P , ReachableFromI)8. endwhile9. return ReachableFromI10. function ShortestExecutions(P , SCP)11. Shortest := ;; OldShortest := ?12. while (Shortest6=OldShortest)13. OldShortest:=Shortest14. LastAdded := SCP \OneStepBack(P , Shortest)15. Shortest:=Shortest [ PruneVisited(LastAdded,Shortest)16. endwhile17. return Shortest Fig. 7. Optimization.while, with respect to the state-action table of Figure 2, hS1; switch-offi isremoved.Function ShortestExecutions chops out all the pairs hs; ai that do notstart one of the shortest executions leading from s to the goal. Indeed, exe-cutions passing through s can still reach the goal through one of the shortestones. Shortest executions are gathered in Shortest as a set of state-action pairs bylooping backward (line 14) inside the (optimized through PruneUnreachable)state-action table returned by the basic algorithm, and by introducing new pairsonly when related to states that have not been visited yet (line 15). This lattertask is performed by PruneVisited, de�ned as PrunedVisited(LastAdded,Shortest) = fhs; ai 2 LastAdded : s 62 States(Shortest)g. With respect to Fig-ure 6, this second optimization phase chops out the pair hS4; di while, withrespect to the state-action table of Figure 2, hS6; move(C1,T)i is removed.The algorithms for generating and optimizing strong cyclic plans are guar-anteed to terminate, are correct and complete (the proofs can be found in [11]):Theorem 1. Let P be a planning problem. Then1. Optimize(P;StrongCyclicPlan(P )) terminates.2. Optimize(P;StrongCyclicPlan(P )) returns a strong cyclic plan for P ifand only if one exists.5 Extensions: weak and strong solutionsIn this paper we focus on �nding strong cyclic solutions, which has been anopen problem at the current state-of-the-art for plan generation. However, strong



cyclic plans are of course not the only interesting solutions. In some practicaldomains, it may be possible for the planner to generate strong plans, i.e., planswhich are not iterative and guarantee goal achievement. In other applications,a plan may be allowed to lead to failures in very limited cases, i.e., some formsof weak solutions might be acceptable. A planner may be required to generatesolutions of di�erent \strength" according to the application domain.Strong and weak plans have been introduced in [10]. We show here howthey can be speci�ed as temporal formulas on plan executions. This requires togeneralize De�nitions 5 and 6 for taking into account state-action tables thatare not total. Given the state-action table SA for the planning problem P , we�rst de�ne Closure(SA) = fs 62 States(SA) : hs0; a0i 2 SA; s 2 R(s0; a0)g[G.De�nition 8 (Execution). Let SA be a state-action table for the planningproblem P . An execution of SA starting from the state s0 2 States(SA) [Closure(SA) is an in�nite sequence s0s1 : : : of states in S such that, for alli � 0, either si 2 Closure(SA) and si = si+1, or si 62 Closure(SA) and, forsome a 2 A, hsi; ai 2 SA and si+1 2 R(si; a).De�nition 9 (Induced Kripke Structure). Let SA be a state-action tablefor the planning problem P . The Kripke structure KPSA induced by SA is de�nedas{ WPSA = States(SA) [Closure(SA);{ TPSA(s; s0) i� hs; ai 2 SA and s0 2 R(s; a), or s = s0 and s 2 Closure(SA);{ LPSA(s) = s.In the case of total state-action tables, since Closure(SA) = G, these latterde�nitions collapse into the previous ones.De�nition 10 (Weak Plan). A weak plan for a planning problem P is astate-action table SA for P such that I � WPSA and, for all s 2 I, we haveKPSA; s j= EFG.De�nition 11 (Strong Plan). A strong plan for a planning problem P is atotal state-action table SA for P such that I �WPSA and, for all s 2 I, we haveKPSA; s j= AFG.6 Conclusions and Related WorkIn this paper we have presented a formal account for strong cyclic planningin non-deterministic domains. We have formalized the notion of strong cyclicplans, i.e., plans encoding iterative trial-and-error strategies that always havea possibility of terminating and, when they do, are guaranteed to achieve thegoal in spite of non-determinism. Strong cyclic plans are plans whose executionssatisfy the CTL formula AGEFG, where G is a propositional formula representingthe set of goal states. We have shown how this approach can also embed \strong"and \weak" plans, whose executions have to satisfy the CTL formulas AFG and
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