CENTRO PER LA RICERCA
SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy

Tel.: +39 0461 314312

Fax: +39 0461 302040

e—mail: prdoc@itc.it — url: http://www.itc.it

STRONG CYCLIC PLANNING
REVISITED

Daniele M., Traverso P.,
Vardi M. Y.

August 1999

Technical Report # 9908-03

O Istituto Trentino di Cultura, 1999

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for early dissemination of its contents. In view of the transfert of copy right to the outside publisher, its
distribution outside of ITC priorto publication should be limited to peer communications and specific requests. After outside publication,
material will be available only in the form authorized by the copyright owner.

Strong Cyclic Planning Revisited

Marco Daniele!2, Paolo Traverso', and Moshe Y. Vardi®*

! IRST, Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo, Trento, Italy
2 Dipartimento di Informatica e Sistemistica, Universita “La Sapienza”, 00198 Roma
3 Department of Computer Science, Rice University, Houston TX 77251, USA
daniele@irst.itc.it, leaf@irst.itc.it, vardi@cs.rice.edu

Abstract. Several realistic non-deterministic planning domains require
plans that encode iterative trial-and-error strategies, e.g., “pick up a
block until succeed”. In such domains, a certain effect (e.g., action suc-
cess) might never be guaranteed a priori of execution and, in principle,
iterative plans might loop forever. Here, the planner should generate it-
erative plans whose executions always have a possibility of terminating
and, when they do, they are guaranteed to achieve the goal. In this paper,
we define the notion of strong cyclic plan, which formalizes in temporal
logic the above informal requirements for iterative plans, define a plan-
ning algorithm based on model-checking techniques, and prove that the
algorithm is guaranteed to return strong cyclic plans when they exist or
to terminate with failure when they do not. We show how this approach
can be extended to formalize plans that are guaranteed to achieve the
goal and do not involve iterations (strong plans) and plans that have a
possibility (but are not guaranteed) to achieve the goal (weak plans). The
results presented in this paper constitute a formal account for “planning
via model checking” in non-deterministic domains, which has never been
provided before.

1 Introduction

Classical planning [16, 21] makes some fundamental assumptions: the planner has
complete information about the initial state of the world, effects of the execution
of actions are deterministic, and the solution to the planning problem can be
expressed as a sequence of actions. These assumptions are unrealistic in several
practical domains (e.g., robotics, scheduling, and control). The initial state of
a planning problem may be partially specified and the execution of an action
in the same state may have many possible effects. Moreover, plans as sequences
of actions are bound to failure: non-determinism must be tackled by planning
conditional behaviors, which depend on the information that can be gathered at
execution time. For instance, in a realistic robotic application, the action “pick-
up a block” cannot be simply described as a STRIPS-like operator [16] whose effect
is that “the block is at hand” of the robot. “Pick-up a block” might result either
in a success or failure, and the result cannot be known a priori of execution. A

* Supported in part by NSF grants CCR-9628400 and CCR-9700061.

useful plan, depending on the action outcome, should execute different actions,
e.g., try to pick-up the block again if the action execution has failed.

Most often, a conditional plan is not enough: plans encoding iterative trial-
and-error strategies, like “pick up a block until succeed”, are the only acceptable
solutions. In several realistic domains, a certain effect (e.g., action success) might
never be guaranteed a priori of execution and, in principle, iterative plans might
loop forever, under an infinite sequence of failures. The planner, however, should
generate iterative plans whose executions always have a possibility of terminating
and, when they do, they are guaranteed to achieve the goal.

The starting point of the work presented in this paper is the framework of
planning via model checking, together with the related system MBP, first pre-
sented in [7] and then extended to deal with non-deterministic domains in [10, 9]
(see also [18] for an introduction to Planning as Model Checking). [7] proposes
the idea to use model checking techniques to do planning and proposes an algo-
rithm for generating weak plans, i.e., plans that may achieve the goal but are not
guaranteed to do so. [10] proposes an algorithm to generate strong plans, i.e.,
plans that are guaranteed to achieve a desired goal in spite of non-determinism.
[9] extends [10] to generate strong cyclic plans, whose aim is to encode itera-
tive trial-and-error strategies. However, no formal notion of strong cyclic plan is
given in [9] and, as far as we know, in any other work.

In this paper we provide a framework for planning via model checking where
weak, strong, and strong cyclic plans can be specified uniformly in temporal logic.
In the paper, we focus on strong cyclic plans, since their formal specifications and
the provision of a correct algorithm is still an open problem at the current state-
of-the-art. Indeed, this paper builds on [9] making the following contributions.

— We provide a formal definition of strong cyclic plan based on the well-known
Computation Tree Logic (CTL) [14]. The idea is that a strong cyclic plan is a
solution such that “for each possible execution, always during the execution,
there ezists the possibility of eventually achieving the goal”. The formaliza-
tion is obtained by exploiting the universal and existential path quantifiers
of CTL, as well as the “always” and “eventually” temporal connectives.

— We define a new algorithm for strong cyclic planning. It is guaranteed to
generate plans that cannot get stuck in loops with no possibility to terminate.
The algorithm in [9] did not satisfy this requirement. Moreover, the new
algorithm improves the quality of the solutions by eliminating nonrelevant
actions.

— We prove that the algorithm presented in this paper is correct and complete,
i.e., it generates strong cyclic plans according to the formal definition while,
if no strong cyclic solutions exist, it terminates with failure.

The results presented in this paper provide a formal account for planning
via model checking that has never been given before. Indeed, after providing a
clear framework for strong cyclic plans, we show how it can be easily extended
to express weak and strong plans. Weak plans are such that there exists at least
one execution that eventually achieves the goal, strong plans are such that all
executions eventually achieve the goal.

The paper is structured as follows. We define the notion of planning problem
in Section 2 and the notion of strong cyclic solutions in Section 3. The description
of the planning algorithm is given in Section 4. Finally, in Section 5 we show
how the framework can be extended to formalize weak and strong plans. We
conclude the paper with a comparison with some related work.

2 The Planning Problem

A (non-deterministic) planning domain can be described in terms of fluents,
which may assume different values in different states, actions and a transition
function describing how (the execution of) an action leads from one state to
possibly many different states.

Definition 1 (Planning Domain). A planning domain D is a 4-tuple
(F,S, A, R) where F is the finite set of fluents, S C 2F is the set of states, A is
the finite set of actions, and R : S x A 25 is the transition function.

Fluents belonging (not belonging) to some state s are assigned to TRUE (FALSE)
in s. Our definitions deal with Boolean fluents while examples are easier to
describe through fluents ranging over generic finite domains'. R(s,a) returns
all the states the execution of a from s can lead to. The action a is said to be
executable in the state s if R(s,a) # 0.

A (non-deterministic) planning problem is a planning domain, a set of initial
states and a set of goal states.

Definition 2 (Planning Problem). A planning problem P is a 3-tuple
(D, I,G) where D is the planning domain, I C S is the set of initial states and
G C S is the set of goal states.

Both I and G can be represented through two Boolean functions Z and G over
F', which define the sets of states in which they hold. From now on, we switch
between the two representations, as sets or functions, as the context requires.

Non-determinism occurs twice in the above definitions. First, we have a set
of initial states, and not a single initial state. Second, the execution of an action
from a state is a set of states, and not a single state.

As an explanatory example, let us consider the situation depicted in Figure 1
(left). The situation is a very small excerpt from an application we are developing
for the Italian Space Agency [4]. A tray (T) provides two positions in which two
containers (C; and Cy) for solutions may be hosted. In addition, a kettle (K) may
host one container for boiling its solution. The kettle is provided with a switch (S)
that can operate only if the container is well positioned on the kettle. This situa-
tion can be formalized as shown in Figure 1 (right). The set F' of (non-Boolean)
fluents is {C;1,C2,S8}. C; and Cy represent the positions of the containers, and
can be on-T (on tray), on-K-ok (on kettle, steady), or on-K-ko (on kettle, not

steady). S represents the status of the kettle’s switch (on or off). The set of states

! For non-Boolean variables, we use a Boolean encoding similarly to [15].

Cy: on-T Cp: on-K-ok
51() C2: on-K-ok Co: on-T
S: on S: on

Cy

switch-off switch-q
move(Cy ,T)

C2 switch-p)
: Cp: on-K-ok
: 5 Co: on-T
H §: off
Io¥atl o Tove K

j 0]

Cp: on-K-ko
Co: on-T
St off

Fig. 1. An example (left) and its formalization (right).

is represented by the nodes of the graph, which define fluents’ values. The set
of actions is represented by the edges’ labels. Actions move(C;,T), move(Cy,T),
switch-on, and switch-off, are deterministic; move (C;,K), move(Cy,K), and
fix-position, are not. Indeed, when moving containers from the tray to the
kettle, it can happen the containers are not correctly positioned. Moreover, it can
be possible the wrong container is picked up and moved upon the kettle. Thus,
R(S4,move(Cy,K)) = R(S4,move(Cy,K)) = {S2, 53,56, S7}. Still, when trying to
settle a container, it is possible getting no effect. Thus, R(Ss3, fix-position) =
{S2,S3} and R(S7,fix-position) = {Ss, S7}. The planning problem is to boil
the solution contained in C; starting from a situation where C; is on the tray
and the kettle’s switch is off, that is, Z is C; = on-T A S = off (grey nodes, in
Figure 1), and G is C; = on-K-ok A S = on (black node, in Figure 1).

A remark is in order. Non-deterministic planning problems can be expressed
in different specification languages. For instance, in [7,10,9] the AR language
[17] is used. Alternatively, we might use any language that allows us to express
non-determinism, i.e., the fact that an action has multiple outcomes or, in other
words, disjunctive postconditions. STRIPS-like [16] or ADL-like [21] languages
(e.g., PDDL) are not expressive enough.

3 Strong Cyclic Plans

When dealing with non-determinism, plans have to be able to represent con-
ditional and iterative behaviors. We define plans as state-action tables (resem-
bling universal plans [22]) that associate actions to states. The execution of a
state-action table can result in conditional and iterative behaviors. Intuitively,
a state-action table execution can be explained in terms of a reactive loop that
senses the state of the world and chooses one among the corresponding actions,
if any, for the execution until the goal is reached.

Definition 3 (State-Action Table). A state-action table SA for a planning
problem P is a set of pairs {(s,a) :s € S\ G,a € A, and a is executable in s}.

The states of a state-action table may be any state, except for those in the
set of goal states. Intuitively, this corresponds to the fact that when the plan
achieves the goal no further action needs to be executed. Hereafter, we write

|State|Action |

S1 |switch-off
Ss |fix-position
Sy |move(Cy,T)
S¢ |move(Cy,T)
S4 |move(Cy,K)
S4 |move(Csy,K)
S7 |fix-position
Se¢ |switch-on

Fig. 2. A state-action table.

STATES(SA) for denoting the set of states in the state-action table SA, i.e.,
STATES(SA)= {s:3Ja € A(s,a) € SA}.

Definition 4 (Total State-Action Table). A state-action table SA for a
planning problem P is total if, for all (s,a) € SA, R(s,a) C STATES(SA) UG.

Intuitively, in a total state-action table, each state that can be reached by ex-
ecuting an action either is a goal state or has a corresponding action in the
state-action table. The notion of total state-action table is important in order
to capture strong (cyclic) plans, i.e., plans that must be specified for all pos-
sible outcomes of actions. In Figure 2, a total state-action table related to our
example is shown.

Given a notion of plan as a state-action table, the goal is to formalize strong
cyclic plans in terms of temporal logic specifications on the possible executions
of state-action tables. A preliminary step is to formalize the notion of execution
of a state-action table.

Definition 5 (Execution). Let SA be a state-action table for the planning
problem P. An execution of SA starting from the state so € STATES(SA)UG is
an infinite sequence sgsi ... of states in S such that, for all i > 0, either s; € G
and s; = Siy1, or s; € G and, for some a € A, (s;,a) € SA and s;11 € R(s;, a).

Executions are infinite sequences of states. Depending on non-determinism, we
may have many possible executions corresponding to a state-action table. Each
nongoal state s; has as successor a state s; 1 reachable from s; by executing an
action corresponding to s; in the state-action table; when the sequence reaches
a goal state, the execution is extended with an infinite sequence of the same
goal state. Of course, nontotal state-action tables may induce also executions
dangling at nongoal states, i.e., executions reaching a nongoal state for which no
action is provided.

The total state-action tables we are interested in, i.e., strong cyclic plans,
are such that, informally, all their executions either lead to the goal or loop over
a set of states from which the goal could be eventually reached. With respect
to the state-action table of Figure 2, an example of the former case is executing
switch-on when at Sg, which surely leads to the goal; while an example of the
latter case is executing fix-positionin Sy that, even if looping at S;, may lead
to Sg and, therefore, to the goal.

In order to capture the notion of strong cyclic plan, we need a formal frame-
work that allows us to state temporal properties of executions. We have chosen
the branching time logic CTL [14], which provides universal and existential path
quantifiers and temporal operators like “eventually” and “always”. CTL formulas
are defined starting from a finite set P of propositions, the Boolean connectives,
the temporal connectives X (“next-time”) and U (“until”), and the path quan-
tifiers E (“exists”) and A (“for all”). Given a finite set P of propositions, CTL
formulas are inductively defined as follows:

— Each element of P is a formula;
— —p, YV ¢, EXep, AXe), E(¢Ur)), and A(pUy) are formulas if ¢ and ¢ are.

CTL semantics is given with respect to Kripke structures. A Kripke structure
K is a triple (W, T,L) where W is a set of worlds, T C W x W is a total
transition relation, and L : W — 2% is a labeling function. A path 7 in K is
a sequence wows ... of worlds in W such that, for ¢ > 0, T(w;, w;t+1). In what
follows, K, w |= v denotes that ¢ holds in the world w of K. CTL semantics is
then inductively defined as follows:

— K,wog Epiff p € L(wy), for p e P

- K,wg E Y ift K, wo £ ¢

- KwyEyVoiff K,wy =1 or K,wy = ¢

— K,wy [= EX¢ iff there exists a path wows ... such that K, w; = 9

— K,wy = AX¢ iff for all paths wow, ... we have K,wy = ¢

— K,wo | E(¢U) iff there exist a path wow; ... and ¢ > 0 such that K, w; = ¢
and, for all 0 < j <4, K,w; = ¢

— K,wy = A(¢U) iff for all paths wow; .. . there exists ¢ > 0 such that K, w; |=
¢ and, for all 0 < j <, K,w; = ¢

We introduce the usual abbreviations AFi) = A(TRUEUY) (F stands for “future”
or “eventually”), EFY) = E(TRUEU%), AGy) = —EF—) (G stands for “globally” or
“always”), and EGy) = —AF—).

The executions of a total state-action table SA for the planning problem P
can be encoded as paths of the Kripke structure K&, induced by SA.

Definition 6 (Induced Kripke Structure). Let SA be a total state-action
table for the planning problem P. The Kripke structure K&, induced by SA is
defined as:

— W&, = StaTES(SA) UG;
— T&\(s,8") iff (s,a) € SA and s' € R(s,a), or s =s' and s € G;
= Lgu(s) = s.

The totality of TéDA is guaranteed by the totality of SA. Strong cyclic plans can
be specified through a temporal logic formula on their executions.

Definition 7 (Strong Cyclic Plan). A strong cyclic plan for a planning prob-
lem P is a total state-action table SA for P such that T C WE, and, for alls € T,
we have KgA, s = AGEFG.

function STRONGCYCLICPLAN(P)
I:=1\G,; SCP:={(s,a):s€ S\G,a € A, ais executable in s}; OldSCP:=_
while (OldSCP#SCP) do
OldSCP.=SCP
SCP:=PRUNEUNCONNECTED(P, PRUNEOUTGOING(P, SCP))
endwhile
if (I C StATES(SCP))
then return SCP
else return Fail

©ONSO AN =

14. function PRUNEOUTGOING(P, SA)

15. Outgoing := COMPUTEOUTGOING (P, SA)
16. while (Outgoing # 0) do

17. SA:=SA\ Outgoing

18. Outgoing := COMPUTEOUTGOING (P, SA)
19. endwhile

20. return SA

21. function PRUNEUNCONNECTED(P, SA)

22. ConnectedToG := 0; OldConnectedToG := L

23. while ConnectedToG # OldConnectedToG do

24. OldConnectedToG:=ConnectedToG

25. ConnectedToG:=SA N ONESTEPBACK(P, ConnectedToG)
26. endwhile

27. return ConnectedToG

Fig. 3. The algorithm.

That is, starting from the initial states, whatever actions we choose to execute
and whatever their outcomes are, we always (AG) have a way of reaching the goal
(EFG). Notice that the state-action table in Figure 2 is a strong cyclic plan for
the planning problem at hand.

4 The Strong Cyclic Planning Algorithm

The idea underlying our algorithm is that sets of states (instead of single states)
are manipulated during the search. The implementation of the algorithm is based
on OBDDs (Ordered Binary Decision Diagrams) [3], which allow for compact
representation and efficient manipulation of sets. This opens up the possibility
to deal with domains involving large state spaces, as shown by the experimental
results in [9]. Our presentation is given in terms of the standard set operators
(e.g., C, \), hiding the fact that the actual implementation is performed through
OBDD manipulation routines. In principle, however, the algorithm could be
implemented through different techniques, provided that they make such set
operations available. The algorithm is presented in two steps: first, algorithms
computing basic strong cyclic plans are introduced (Figure 3 and 5), and then
an algorithm for improving such basic solutions is given (Figure 7).

Fig. 4. Pruning the state-action table.

Given a planning problem P, STRONGCYCLICPLAN(P) (Figure 3) generates
strong cyclic plans. The algorithm starts with the largest state-action table in
SCP (line 2), and repeatedly removes pairs that either spoil SC P totality or are
related to states from which the goal cannot be reached (line 5). If the resulting
SCP contains all the initial states (line 7), the algorithm returns it (line 8)
otherwise Fail is returned (line 9).

3

Pairs spoiling SCP totality are pruned by function PRUNEOUTGOING (lines
14-20), which iteratively removes state-action pairs that can lead to nongoal
states for which no action is considered. Its core is the function COMPUTEQUT-
GOING that, for a planning problem P and a state-action table S A, is defined as
{(s,a) € SA:3s' & STATES(SA)UG.s" € R(s,a)}. With respect to the example
shown in Figure 4 (left), during the first iteration, PRUNEOUTGOING removes
(S4, €) and, during the second one, it removes (Ss, b), giving rise to the situation
shown in Figure 4 (middle).

Having removed the dangling executions results in disconnecting Sy and S3
from the goal, and give rise to a cycle in which executions may get stuck with no
hope to terminate. This point, however, was not clear in the work presented in [9].
States from which the goal cannot be reached have to be pruned away. This task
is accomplished by the function PRUNEUNCONNECTED (lines 21 27) that, when
given with a planning problem P and a state-action table S A, loops backwards
inside the state-action table from the goal (line 25) to return the state-action
pairs related to states from which the goal is reachable. Looping backward is
realized through the function ONESTEPBACK that, when given with a planning
problem P and a state-action table S A, returns all the state-action pairs possibly
leading to states of SA or G. Formally, ONESTEPBACK(P, SA) = {(s,a) : s €
S\ G,a € A,3s" € STATES(SA) UG.s" € R(s,a)}. With respect to the example
shown in Figure 4 (middle), PRUNEUNCONNECTED removes both (S,,d) and
(Ss, ¢), producing the situation shown in Figure 4 (right). Having removed the
above pairs re-introduces dangling executions and, therefore, requires to apply
the pruning phase once more, leading to the empty set. In general, the pruning
phase has to be repeated until the putative strong plan SCP is not changed
either by PRUNEOUTGOING or by PRUNEUNCONNECTED (line 3).

As an alternative (see Figure 5), rather than starting with the largest state-
action table, one could start with an empty state-action table in AccSA (line 2)

1. function STRONGCYCLICPLAN(P)

2 I:=1\G,; SCP:=0; AccSA:= 0; OldAccSA:= L

3 while (I € STATES(SCP) and AccSA # OldAccSA) do

4. OldAccSA:=AccSA; AccSA:=ONESTEPBACK(P, AccSA)

5. SCP:=AccSA; OldSCP:=1

6 while (0ldSCP#SCP) do

7 OldSCP:=SCP

8 SCP:=PRUNEUNCONNECTED(P, PRUNEOUTGOING(P, SCP))

9. endwhile

10. endwhile

11. if (I C STATES(SCP))
12. then return SCP
13. else return Fail

Fig. 5. The incremental algorithm.

and incrementally extend it (line 4) until either a strong cyclic plan containing
all the initial states is found, or AceSA is not extendible anymore (line 3).

The strong cyclic plans returned by STRONGCYCLICPLAN can be improved
in two directions. Consider the example in Figure 6, where S3 is the initial state.
The strong cyclic plan returned by STRONGCYCLICPLAN for such example com-
prises all the possible state-action pairs of the planning problem. Note, however,
that the pair (S,a) is absolutely useless, since it is unreachable from the ini-
tial state. Furthermore, the pair (Sys,d) is useless as well, because it moves the
execution away from the goal. Indeed, when reaching S, from Ss, one does not
want to go back to S3 through d. The algorithm for getting rid of the above is
shown in Figure 7.

Function PRUNEUNREACHABLE loops forward, inside the state-action table
returned by the basic algorithm, collecting state-action pairs related to states
that can be reached from the initial ones. Its core is the function ONESTEPFORTH
(line 7) that, when given with a planning problem P and a state-action table
ReachableFroml, returns the set of pairs related to states reachable by executing
actions in ReachableFroml. Formally, ONESTEPFORTH(P, ReachableFroml) =
{(s,a) : s € S,a € A, ais executable in s and 3(s’',a’) € ReachableFroml, s €
R(s',a")}. ReachableFroml is initialized with the pairs related to initial states
by GETINIT (line 4), defined as GETINIT(P,SCP) = {(s,a) € SCP : s € I}.

With respect to Figure 6, this first optimization phase chops out the pair (S, a)

Fig. 6. Problems of the basic algorithm.

—

function OprimizE(P, SCP)
2. return SHORTESTEXECUTIONS(P, PRUNEUNREACHABLE(P, SCP))

3. function PRUNEUNREACHABLE(P, SCP)

4 ReachableFromlI := GeTINIT(P, SCP); OldReachableFroml.= L

5 while (ReachableFromi# OldReachableFroml) do

6. OldReachableFromI:= ReachableFromI

7 ReachableFroml := ReachableFromIU SCP N ONESTEPFORTH(P, ReachableFroml)
8 endwhile
9 return ReachableFromlI

10. function SHORTESTEXECUTIONS(P, SCP)
11. Shortest := 0; OldShortest .= L
12. while (Shortest# OldShortest)

13. OldShortest:=Shortest
14. LastAdded := SCP N ONESTEPBACK(P, Shortest)
15. Shortest:=Shortest U PRUNEVISITED (LastAdded, Shortest)

16. endwhile
17. return Shortest

Fig. 7. Optimization.

while, with respect to the state-action table of Figure 2, (S;,switch-off) is
removed.

Function SHORTESTEXECUTIONS chops out all the pairs (s,a) that do not
start one of the shortest executions leading from s to the goal. Indeed, exe-
cutions passing through s can still reach the goal through one of the shortest
ones. Shortest executions are gathered in Shortest as a set of state-action pairs by
looping backward (line 14) inside the (optimized through PRUNEUNREACHABLE)
state-action table returned by the basic algorithm, and by introducing new pairs
only when related to states that have not been visited yet (line 15). This latter
task is performed by PRUNEVISITED, defined as PRUNEDVISITED(LastAdded,
Shortest) = {(s,a) € LastAdded : s ¢ STATES(Shortest)}. With respect to Fig-
ure 6, this second optimization phase chops out the pair (Ss,d) while, with
respect to the state-action table of Figure 2, (S¢,move(C;,T)) is removed.

The algorithms for generating and optimizing strong cyclic plans are guar-
anteed to terminate, are correct and complete (the proofs can be found in [11]):

Theorem 1. Let P be a planning problem. Then

1. OpTiMIZE(P, STRONGCYCLICPLAN(P)) terminates.
2. OpTIMIZE(P, STRONGCYCLICPLAN(P)) returns a strong cyclic plan for P if
and only if one exists.

5 Extensions: weak and strong solutions

In this paper we focus on finding strong cyclic solutions, which has been an
open problem at the current state-of-the-art for plan generation. However, strong

cyclic plans are of course not the only interesting solutions. In some practical
domains, it may be possible for the planner to generate strong plans, i.e., plans
which are not iterative and guarantee goal achievement. In other applications,
a plan may be allowed to lead to failures in very limited cases, i.e., some forms
of weak solutions might be acceptable. A planner may be required to generate
solutions of different “strength” according to the application domain.

Strong and weak plans have been introduced in [10]. We show here how
they can be specified as temporal formulas on plan executions. This requires to
generalize Definitions 5 and 6 for taking into account state-action tables that
are not total. Given the state-action table SA for the planning problem P, we
first define CLOSURE(SA) = {s & STATES(SA) : (s',a’) € SA,s € R(s',a')} UG.

Definition 8 (Execution). Let SA be a state-action table for the planning
problem P. An execution of SA starting from the state so € STATES(SA) U
CLOSURE(SA) is an infinite sequence sos1 ... of states in S such that, for all
i >0, either s; € CLOSURE(SA) and s; = sj+1, or s; ¢ CLOSURE(SA) and, for
some a € A, (s;,a) € SA and s;y1 € R(s;,a).

Definition 9 (Induced Kripke Structure). Let SA be a state-action table
for the planning problem P. The Kripke structure KX, induced by SA is defined
as

— W& = STATES(SA) U CLOSURE(SA);
— TE,(s,8") iff (s,a) € SA and s' € R(s,a), or s = s' and s € CLOSURE(SA);
= LE,(5) = 5.

In the case of total state-action tables, since CLOSURE(SA) = G, these latter
definitions collapse into the previous ones.

Definition 10 (Weak Plan). A weak plan for a planning problem P is a
state-action table SA for P such that T C WéDA and, for all s € I, we have
KE, s = EFG.

Definition 11 (Strong Plan). A strong plan for a planning problem P is a
total state-action table SA for P such that T C WéDA and, for all s € T, we have
KgA, s = AFG.

6 Conclusions and Related Work

In this paper we have presented a formal account for strong cyclic planning
in non-deterministic domains. We have formalized the notion of strong cyclic
plans, i.e., plans encoding iterative trial-and-error strategies that always have
a possibility of terminating and, when they do, are guaranteed to achieve the
goal in spite of non-determinism. Strong cyclic plans are plans whose executions
satisfy the CTL formula AGEFG, where G is a propositional formula representing
the set of goal states. We have shown how this approach can also embed “strong”
and “weak” plans, whose executions have to satisfy the CTL formulas AFG and

EFG, respectively. We have defined an algorithm that is guaranteed to generate
strong cyclic plans and to terminate, and have implemented it in MBP, a planner
built on top of the symbolic model checker NUSMV [6]. MBP is currently used
in an application for the “Italian Space Agency” (ASI) [4].

A future goal is to extend the planning task from the task of finding a plan
which leads to a set of states (the goal) to the task of synthesizing a plan which
satisfies some specifications in some temporal logic. This makes the planning
task very close to controller synthesis (see, e.g., [1,20]), which considers both
exogenous events and non-deterministic actions. From the controller synthesis
perspective, in this paper we synthesize memoryless plans. Due to its generality,
however, the work in [1,20] does not allow for concise solutions as state-action
tables, and it is to be investigated how it can express and deal with strong cyclic
plans. [19] proposes an approach to planning that has some similarities to the
work on synthesis but abandons completeness for computational efficiency.

Most of the work in planning is focused on deterministic domains. Some
works extend classical planners to “contingent” planners (see, e.g., [27]), which
generate plans with conditionals, or to “conformant” planners [23, 8], which try
to find strong solutions as sequences of actions. Nevertheless, neither existing
contingent nor existing conformant planners are able to generate iterative plans
as strong cyclic solutions. Some deductive planning frameworks (see, e.g., [24,
25]) can be used to specify desired plans in non-deterministic domains. Neverthe-
less, the automatic generation of plans in these deductive frameworks is still an
open problem. Some works propose an approach that is similar to planning via
model checking. The TLplan system [2] (see also [12] for an automata-theoretic
approach) allows for control strategies expressed as Linear Time Temporal Logic
(LTL) [14] and implements a forward chaining algorithm that has strong simi-
larities with LTL standard model checking [26]. However, the planner deals only
with deterministic domains. Moreover, it is not clear how it could be extended
to express strong cyclic solutions (where both a universal and existential path
quantifiers are required) and to generate them. [5] proposes a framework based
on process algebra and mu-calculus for reasoning about nondeterministic and
concurrent actions. The framework is rather expressive, but it does not deal
with the problem of plan generation. In planning based on Markov Decision
Processes (MDP) (see, e.g., [13]), policies (much like state-action tables) are
constructed from stochastic automata, where actions induce transitions with an
associated probability, and states have an associated reward. The planning task
is reduced to constructing optimal policies w.r.t. rewards and probability distri-
butions. There is no explicit notion of weak, strong, and strong cyclic solution.

References

1. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and
timed systems. In Hybrid System II, volume 999 of LNCS. Springer Verlag, 1995.

2. F. Bacchus and F. Kabanza. Using temporal logic to express search control knowl-
edge for planning. Artificial Intelligence, 1998. Submitted for pubblication.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677 691, August 1986.

A. Cesta, P. Riccucci, M. Daniele, P. Traverso, E. Giunchiglia, M. Piaggio, and
M. Shaerf. Jerry: a system for the automatic generation and execution of plans for
robotic devices - the case study of the Spider arm. In Proc. of ISAIRAS-99, 1999.
X.J. Chen and G. de Giacomo. Reasoning about nondeterministic and concurrent
actions: A process algebra approach. Artificial Intelligence, 107(1):29-62, 1999.
A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a reimplementation
of smv. Technical Report 9801-06, IRST, Trento, Italy, January 1998.

A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via Model
Checking: A Decision Procedure for AR. In ECP97, pages 130 142, 1997.

A. Cimatti and M. Roveri. Conformant Planning via Model Checking. In Proc. of
ECP99, 1999.

A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of
Universal Plans in Non-Deterministic Domains. In Proc. of AAAI98, 1998.

A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-Deterministic
Domains via Model Checking. In Proc. of AIPS98, 1998.

M. Daniele, P. Traverso, and M. Y. Vardi. Strong Cyclic Planning Revisited.
Technical Report 9908-03, IRST, Trento, Italy, August 1999.

G. de Giacomo and M.Y. Vardi. Automata-theoretic approach to planning with
temporally extended goals. In Proc. of ECP99, 1999.

T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planning Under Time Con-
straints in Stochastic Domains. Artificial Intelligence, 76(1-2):35-74, 1995.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semantics,
chapter 16, pages 995 1072. Elsevier, 1990.

M. Ernst, T. Millstein, and D. Weld. Automatic SAT-compilation of planning
problems. In Proc. of IJCAI-97, 1997.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2(3-4):189-208, 1971.
E. Giunchiglia, G. N. Kartha, and V. Lifschitz. Representing action: Indeterminacy
and ramifications. Artificial Intelligence, 95(2):409-438, 1997.

F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc. of ECP99,
1999.

R. Goldman, D. Musliner, K. Krebsbach, and M. Boddy. Dynamic Abstraction
Planning. In Proc. of AAAI97, 1998.

O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Proc.
of 2nd International Conference on Temporal Logic, pages 91-106, 1997.

J. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for
ADL. In Proc. of KR-92, 1992.

M. J. Schoppers. Universal plans for Reactive Robots in Unpredictable Environ-
ments. In Proc. of IJCAI87, pages 1039 1046, 1987.

D. Smith and D. Weld. Conformant Graphplan. In AAAI98, pages 889 896.

S. Steel. Action under Uncertainty. J. of Logic and Computation, Special Issue on
Action and Processes, 4(5):777-795, 1994.

W. Stephan and S. Biundo. A New Logical Framework for Deductive Planning.
In Proc. of ITCAI93, pages 32-38, 1993.

M Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 15 November 1994.

D. Weld, C. Anderson, and D. Smith. Extending Graphplan to Handle Uncertainty
and Sensing Actions. In Proc. of AAAI98, pages 897-904, 1998.

