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ABSTRACTRandom projetions have reently emerged as a powerfulmethod for dimensionality redution. Theoretial resultsindiate that the method preserves distanes quite niely;however, empirial results are sparse. We present experi-mental results on using random projetion as a dimension-ality redution tool in a number of ases, where the highdimensionality of the data would otherwise lead to burden-some omputations. Our appliation areas are the proess-ing of both noisy and noiseless images, and information re-trieval in text douments. We show that projeting thedata onto a random lower-dimensional subspae yields re-sults omparable to onventional dimensionality redutionmethods suh as prinipal omponent analysis: the similar-ity of data vetors is preserved well under random proje-tion. However, using random projetions is omputationallysigni�antly less expensive than using, e.g., prinipal om-ponent analysis. We also show experimentally that using asparse random matrix gives additional omputational sav-ings in random projetion.
Keywordsrandom projetion, dimensionality redution, image data,text doument data, high-dimensional data
1. INTRODUCTIONIn many appliations of data mining, the high dimen-sionality of the data restrits the hoie of data proess-ing methods. Suh appliation areas inlude the analysisof market basket data, text douments, image data and soon; in these ases the dimensionality is large due to eithera wealth of alternative produts, a large voabulary, or theuse of large image windows, respetively. A statistially op-timal way of dimensionality redution is to projet the data�On leave at Nokia Researh Center
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onto a lower-dimensional orthogonal subspae that apturesas muh of the variation of the data as possible. The best(in mean-square sense) and most widely used way to do thisis prinipal omponent analysis (PCA); unfortunately it isquite expensive to ompute for high-dimensional data sets.A omputationally simple method of dimensionality redu-tion that does not introdue a signi�ant distortion in thedata set would thus be desirable.In random projetion (RP), the original high-dimensionaldata is projeted onto a lower-dimensional subspae usinga random matrix whose olumns have unit lengths. RPhas been found to be a omputationally eÆient, yet suf-�iently aurate method for dimensionality redution ofhigh-dimensional data sets. While this method has attratedlots of interest, empirial results are sparse.In this paper we give experimental results on using RP asa dimensionality redution tool on high-dimensional imageand text data sets. In both appliation areas, random pro-jetion is ompared to well known dimensionality redutionmethods. We show that despite the omputational simpli-ity of random projetion, it does not introdue a signi�antdistortion in the data.The data sets used in this paper are of very di�erent na-tures. Our image data is from monohrome images of nat-ural senes. An image is presented as a matrix of pixelbrightness values, the distribution of whih is generally ap-proximately Gaussian: symmetri and bell-shaped. Textdoument data is presented in vetor spae [25℄, in whiheah doument forms one d-dimensional vetor where d isthe voabulary size. The i-th element of the vetor indi-ates (some funtion of) the frequeny of the i-th voabu-lary term in the doument. Doument data is often highlysparse or peaked: only some terms from the voabulary arepresent in one doument, and most entries of the doumentvetor are zero. Also, doument data has a nonsymmetri,positively skewed distribution, as the term frequenies arenonnegative. It is instrutive to see how random projetionworks as a dimensionality redution tool in the ontext ofthese two very di�erent appliation areas.We also present results on images orrupted by noise, andour experimental results indiate that random projetion isnot sensitive to impulse noise. Thus random projetion isa promising alternative to some existing methods in noiseredution (e.g. median �ltering), too.This paper is organized as follows. At the end of this intro-dution we disuss related work on random projetions andsimilarity searh. Setion 2 presents di�erent dimensionality



redution methods. Setion 3 gives the experimental resultsof dimensionality redution on image data, and Setion 4 ontext data. Finally, Setion 5 gives a onlusion.
1.1 Related workPapadimitriou et al. [22℄ use random projetion in thepreproessing of textual data, prior to applying LSI. Theypresent experimental results on an arti�ially generated setof douments. In their approah, the olumns of the ran-dom projetion matrix are assumed stritly orthogonal, butatually this need not be the ase, as we shall see in ourexperiments.Kaski [17, 16℄ has presented experimental results in usingthe random mapping in the ontext of the WEBSOM1 sys-tem. Kurimo [20℄ applies random projetion to the indexingof audio douments, prior to using LSI and SOM. Kleinberg[19℄ and Indyk and Motwani [14℄ use random projetionsin nearest-neighbor searh in a high dimensional Eulideanspae, and also present theoretial insights. Dasgupta [6, 7℄has used random projetions in learning high-dimensionalGaussian mixture models. Other appliations of randomprojetion inlude e.g. [4, 28℄.The problems of dimensionality redution and similaritysearh have often been addressed in the information retrievalliterature, and other approahes than random projetionhave been presented. Ostrovsky and Rabani [21℄ give a di-mension redution operation that is suitable for lustering.Agrawal et al. [3℄ map time series into frequeny domain bythe disrete Fourier transform and only retain the �rst fewfrequenies. Keogh and Pazzani [18℄ redue the dimensionof time series data by segmenting the time series into se-tions and indexing only the setion means. Aggarwal et al.[2℄ index market basket data by a spei� signature table,whih easens the similarity searh. Wavelet transforms ([12,27℄ et.) are a ommon method of signal ompression.
2. METHODS FOR DIMENSIONALITY RE-

DUCTION

2.1 Random projectionIn random projetion, the original d-dimensional data isprojeted to a k-dimensional (k << d) subspae throughthe origin, using a random k � d matrix R whose olumnshave unit lengths. Using matrix notation where Xd�N is theoriginal set of N d-dimensional observations,XRPk�N = Rk�dXd�N (1)is the projetion of the data onto a lower k-dimensionalsubspae. The key idea of random mapping arises fromthe Johnson-Lindenstrauss lemma [15℄: if points in a ve-tor spae are projeted onto a randomly seleted subspaeof suitably high dimension, then the distanes between thepoints are approximately preserved. For a simple proof ofthis result, see [10, 8℄.Random projetion is omputationally very simple: form-ing the random matrix R and projeting the d � N datamatrix X into k dimensions is of order O(dkN), and if thedata matrix X is sparse with about  nonzero entries perolumn, the omplexity is of order O(kN) [22℄.Stritly speaking, (1) is not a projetion beause R is gen-erally not orthogonal. A linear mapping suh as (1) an1See http://websom.hut.fi/websom/

ause signi�ant distortions in the data set if R is not or-thogonal. Orthogonalizing R is unfortunately omputation-ally expensive. Instead, we an rely on a result presentedby Heht-Nielsen [13℄: in a high-dimensional spae, thereexists a muh larger number of almost orthogonal than or-thogonal diretions. Thus vetors having random diretionsmight be suÆiently lose to orthogonal, and equivalentlyRTR would approximate an identity matrix. In our exper-iments, the mean squared di�erene between RTR and anidentity matrix was about 1=k per element.When omparing the performane of random projetionto that of other methods of dimensionality redution, it is in-strutive to see how the similarity of two vetors is distortedin the dimensionality redution. We measure the similarityof data vetors either as their Eulidean distane or as theirinner produt. In the ase of image data, Eulidean distaneis a widely used measure of similarity. Text douments, onthe other hand, are generally ompared aording to theosine of the angle between the doument vetors; if dou-ment vetors are normalized to unit length, this orrespondsto the inner produt of the doument vetors.We write the Eulidean distane between two data ve-tors x1 and x2 in the original large-dimensional spae asjjx1�x2jj. After the random projetion, this distane is ap-proximated by the saled Eulidean distane of these vetorsin the redued spae:pd=k jjRx1 �Rx2jj (2)where d is the original and k the redued dimensionality ofthe data set. The saling term pd=k takes into aountthe derease in the dimensionality of the data: aording tothe Johnson-Lindenstrauss lemma, the expeted norm of aprojetion of a unit vetor onto a random subspae throughthe origin is pk=d [15℄.The hoie of the random matrixR is one of the key pointsof interest. The elements rij of R are often Gaussian dis-tributed, but this need not be the ase. Ahlioptas [1℄ hasreently shown that the Gaussian distribution an be re-plaed by a muh simpler distribution suh asrij = p3 �8><>:+1 with probability 160 with probability 23�1 with probability 16 : (3)In fat, pratially all zero mean, unit variane distributionsof rij would give a mapping that still satis�es the Johnson-Lindenstrauss lemma. Ahlioptas' result means further om-putational savings in database appliations, as the ompu-tations an be performed using integer arithmetis. In ourexperiments we shall use both Gaussian distributed randommatries and sparse matries (3), and show that Ahlioptas'theoretial result indeed has pratial signi�ane. In on-text of the experimental results, we shall refer to RP whenthe projetion matrix is Gaussian distributed and SRP whenthe matrix is sparse and distributed aording to (3). Oth-erwise, the shorthand RP refers to any random projetion.
2.2 PCA, SVD and LSIIn prinipal omponent analysis (PCA), the eigenvaluedeomposition of the data ovariane matrix is omputed asEfXXT g = E�ET where the olumns of matrix E are theeigenvetors of the data ovariane matrix EfXXT g and �is a diagonal matrix ontaining the respetive eigenvalues.



If dimensionality redution of the data set is desired, thedata an be projeted onto a subspae spanned by the mostimportant eigenvetors:XPCA = ETk X (4)where the d� k matrix Ek ontains the k eigenvetors or-responding to the k largest eigenvalues. PCA is an op-timal way to projet data in the mean-square sense: thesquared error introdued in the projetion is minimized overall projetions onto a k-dimensional spae. Unfortunately,the eigenvalue deomposition of the data ovariane matrix(whose size is d�d for d-dimensional data) is very expensiveto ompute. The omputational omplexity of estimatingthe PCA is O(d2N) + O(d3) [11℄. There exists omputa-tionally less expensive methods [26, 24℄ for �nding only afew eigenvetors and eigenvalues of a large matrix; in ourexperiments, we use appropriate Matlab routines to realizethese.A losely related method is singular value deomposition(SVD): X = USV T where orthogonal matries U and Vontain the left and right singular vetors of X, respetively,and the diagonal of S ontains the singular values of X. Us-ing SVD, the dimensionality of the data an be redued byprojeting the data onto the spae spanned by the left sin-gular vetors orresponding to the k largest singular values:XSVD = UTk X (5)where Uk is of size d�k and ontains these k singular vetors.Like PCA, SVD is also expensive to ompute. There existsnumerial routines suh as the power or the Lanzos method[5℄ that are more eÆient than PCA for sparse data matriesX, and that is why we shall use SVD instead of PCA in theontext of sparse text doument data. For a sparse datamatrix Xd�N with about  nonzero entries per olumn, theomputational omplexity of SVD is of order O(dN) [22℄.Latent semanti indexing (LSI) [9, 22℄ is a dimensionalityredution method for text doument data. Using LSI, thedoument data is presented in a lower-dimensional \topi"spae: the douments are haraterized by some underlying(latent, hidden) onepts referred to by the terms. LSI anbe omputed either by PCA or SVD of the data matrix ofN d-dimensional doument vetors.
2.3 Discrete cosine transformDisrete osine transform (DCT) is a widely used methodfor image ompression and as suh it an also be used indimensionality redution of image data. DCT is ompu-tationally less burdensome than PCA and its performaneapproahes that of PCA. DCT is also optimal for humaneye: the distortions introdued our at the highest frequen-ies only, and the human eye tends to neglet these as noise.DCT an be performed by simple matrix operations [23, 27℄:an image is transformed to the DCT spae and dimensional-ity redution is done in the inverse transform by disardingthe transform oeÆients orresponding to the highest fre-quenies. Computing the DCT is not data-dependent, inontrast to PCA that needs the eigenvalue deomposition ofdata ovariane matrix; that is why DCT is orders of mag-nitude heaper to ompute than PCA. Its omputationalomplexity is of the order O(dN log2(dN)) for a data ma-trix of size d�N [27℄.
3. RESULTS ON IMAGE DATA

The data set onsisted of N = 1000 image windows drawnfrom 13 monohrome images2 of natural senes.The sizes ofthe original images were 256 � 256 pixels, and windows ofsize 50 � 50 were randomly drawn from the images. Eahimage window was presented as one d-dimensional olumnvetor (d = 2500).
3.1 Noiseless image dataWhen omparing di�erent methods for dimensionality re-dution, the riteria are the amount of distortion ausedby the method and its omputational omplexity. In thease of image data we measure the distortion by omparingthe Eulidean distane between two dimensionality redueddata vetors to their Eulidean distane in the original high-dimensional spae. In the ase of random projetion, theEulidean distane in the redued spae is saled as shownin (2); with other methods, no saling is performed.We �rst tested the e�et of the redued dimensionality us-ing di�erent values of k in [1; 800℄. At eah k, the dimension-ality reduing matrix operation was omputed anew. Figure1 shows the error in the distane between members of a pairof data vetors, averaged over 100 pairs. The results of ran-dom projetion with a Gaussian distributed random matrix(RP), random projetion with a sparse random matrix as in(3) (SRP), prinipal omponent analysis (PCA) and disreteosine transform (DCT) are shown, together with their 95per ent on�dene intervals.
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Figure 1: The error produed by RP (+), SRP (�),PCA (�) and DCT (Æ) on image data, and 95 % on-�dene intervals over 100 pairs of data vetors.In Figure 1 it is learly seen that random projetion (RPand SRP) yields very aurate results: dimensionality re-dution by random projetion does not distort the data sig-ni�antly more than PCA. At dimensions k > 600, randomprojetion and PCA give quite aurate results but the errorprodued by DCT is learly visible. At smaller dimensionsalso PCA distorts the data. This tells us that the variationin the data is mostly aptured by the �rst 600 prinipal om-ponents, beause the error in PCA is dependent on the sumof omitted eigenvalues, and k is equal to the number of eigen-2Available fromhttp://www.is.hut.fi/projets/ia/data/images/



values retained. In ontrast, the random projetion methodontinues to give aurate results until k = 10. One expla-nation for the suess of random projetion is the J-L salingterm pd=k (Formula (2)), whih takes into aount the de-rease in the dimensionality. In PCA, suh saling wouldonly be useful in the smallest dimensions but a straightfor-ward rule is diÆult to give.Another point of interest is the omputational omplex-ity of the methods. Figure 2 shows the number of Mat-lab's oating point operations needed when using RP, SRP,PCA or DCT in dimensionality redution, in a logarithmisale. It an be seen that PCA is signi�antly more burden-some than random projetion or DCT. (In the ase of DCT,only the hosen data vetors were transformed instead ofthe whole data set; this makes the number of oating pointoperations rather small.)
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Figure 2: Number of Matlab's oating point oper-ations needed when reduing the dimensionality ofimage data using RP (+), SRP (�), PCA (�) andDCT (Æ), in a logarithmi sale.From Figures 1{2 we an onlude that random proje-tion is a omputationally inexpensive method of dimension-ality redution while preserving the distanes of data vetorspratially as well as PCA and learly better than DCT.Even more, at smallest dimensions RP outperforms bothPCA and DCT.Dimensionality redution on image data di�ers slightlyfrom another ommon proedure, image ompression, inwhih the image is transformed into a more eonomial formfor e.g. transmission, and then transformed bak into theoriginal spae. The transformation is often hosen so thatthe resulting image looks as similar as possible to the orig-inal image, to a human eye. In this respet, the disreteosine transform has proven optimal. To see how an im-age whose dimensionality is redued by RP would look like,the random mapping should be inverted. The pseudoin-verse of R is expensive to ompute, but sine R is almostorthogonal, the transpose of R is a good approximationof the pseudoinverse, and the image an be omputed asXnewd�N = RTd�kXRPk�N where XRP is the result of the randomprojetion (1). Nonetheless, the obtained image is visuallyworse than a DCT ompressed image, to a human eye. Thusrandom projetion is suessful in appliations where thedistane or similarity between data vetors should be pre-

served under dimensionality redution as well as possible,but where the data is not intended to be visualized for thehuman eye. These appliations inlude, e.g., mahine vi-sion: it would be possible to automatially detet whetheran (on-line) image from a surveillane amera has hangedor not.
3.2 Noise reduction in imagesIn our seond set of experiments we onsidered noisy im-ages. The images were orrupted by salt-and-pepper im-pulse noise: with probability 0.2, a pixel in the image wasturned blak or white. We wanted to projet the data insuh a way that the distane between two data vetors inthe redued noisy data spae would be as lose as possible tothe distane between these vetors in the high-dimensionalnoiseless data spae, even though the dimensionality redu-tion was applied to high-dimensional noisy images.A simple yet e�etive way of noise redution espeiallyin the ase of salt-and-pepper impulse noise is median �l-tering (MF) where eah pixel in the image is replaed bythe median of the pixel brightnesses in its neighborhood.The median is not a�eted by individual noise spikes and somedian �ltering eliminates impulse noise quite well [27℄. Aommon neighborhood size is 3�3 pixels whih was also usedin our experiments. MF is omputationally very eÆient, oforder O(dmN) for N image windows of d pixels, where mdenotes the size of the neighborhood (in our ase, m = 9).Also, MF does not require dimensionality redution; thus itsresult an be used as a yardstik when omparing methodsfor dimensionality redution and noise anellation.Figure 3 shows how the distane between two noisy imagewindows is distorted in dimensionality redution, omparedto their distane in the original high-dimensional, noiselessspae. Here we an ompare di�erent dimensionality re-dution methods with respet to their sensitivity to noise.We an see that median �ltering introdues quite a largedistortion in the image windows, despite that to a humaneye it removes impulse noise very eÆiently. The distor-tion is due to blurring: pixels are replaed by the median oftheir neighborhood, eliminating noise but also small details.PCA, DCT and random projetion perform quite similarlyto the noiseless ase. From Figure 3 we an onlude thatrandom projetion is a promising alternative to dimension-ality redution on noisy data, too, as it does not seem tobe sensitive to impulse noise. There exists of ourse manyother methods for noise redution, too. Here our interestwas mainly in dimensionality redution and not noise re-dution.
4. RESULTS ON TEXT DATANext, we applied dimensionality redution tehniques ontext doument data from four newsgroups of the 20 news-groups orpus3: si.rypt, si.med, si.spae and so.religion.hristian. The douments were onverted into term fre-queny vetors and some ommon terms were removed usingMCallum's Rainbow toolkit4 but no stemming was used.The data was not made zero mean, nor was the overallvariane of entries of the data matrix normalized. The do-ument vetors were only normalized to unit length. Thiskind of preproessing was di�erent from that applied to im-3Available from http://www.s.mu.edu/~textlearning4Available from http://www.s.mu.edu/~mallum/bow
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Figure 3: The error produed by RP (+), SRP (�),PCA (�), DCT (Æ) and MF (�) on noisy image data,with 95% on�dene intervals over 100 pairs of im-age windows. In MF dimensionality is not redued.age data. Together with the distint natures of image andtext data, di�erenes in preproessing yielded slightly dif-ferent results on these di�erent data sets. The size of thevoabulary was d = 5000 terms and the data set onsistedof N = 2262 newsgroup douments.We randomly hose pairs of data vetors (that is, dou-ments) and omputed their similarity as their inner produt.The error in the dimensionality redution was measured asthe di�erene between the inner produts before and afterthe dimensionality redution.
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Figure 4: The error produed by RP (+) and SVD(�) on text doument data, with 95% on�dene in-tervals over 100 pairs of doument vetors.Figure 4 shows the error introdued by dimensionality re-dution. The results are averaged over 100 doument pairs.The results of SVD and random projetion with a Gaus-sian distributed random matrix are shown, together with 95per ent on�dene intervals. The redued dimensionalityk took values in [1; 700℄. It is seen that random projetionis not quite as aurate as SVD but in many appliationsthe error may be negletable. The Johnson-Lindenstrauss

result [15℄ states that Eulidean distanes are retained wellin random projetion. The ase of inner produts is a di�er-ent one | Eulidean distanes of doument vetors wouldprobably have been preserved better. It is a ommon pra-tie to measure the similarity of doument vetors by theirinner produts; thus we present results on them.Despite using eÆient SVD routines for �nding a few sin-gular vetors of a sparse matrix, SVD is still orders of mag-nitude more burdensome than RP.Our results on text doument data indiate that randomprojetion an be used in dimensionality redution of largedoument olletions, with less omputational omplexitythan latent semanti indexing (SVD). Similarly to what waspresented in [22℄, RP an speed up latent semanti indexing(LSI): the dimensionality of the data is �rst redued by RPand the burdensome LSI is only omputed in the new low-dimensional spae. In [22℄ the douments were generatedarti�ially and the random matrix R was assumed stritlyorthogonal; our experiments show that neither of these re-stritions is atually neessary. Another ommon problem intext doument retrieval is query mathing. Random proje-tion might be useful in query mathing if the query is long,or if a set of similar douments instead of one partiulardoument were searhed for.
5. CONCLUSIONSWe have presented new and promising experimental re-sults on random projetion in dimensionality redution ofhigh-dimensional real-world data sets. When omparing dif-ferent methods for dimensionality redution, the riteria arethe amount of distortion aused by the method and its om-putational omplexity. Our results indiate that randomprojetion preserves the similarities of the data vetors welleven when the data is projeted to moderate numbers ofdimensions; the projetion is yet fast to ompute.Our appliation areas were of quite di�erent natures: noisyand noiseless images of natural senes, and text doumentsfrom a newsgroup orpus. In both appliation areas, randomprojetion proved to be a omputationally simple method ofdimensionality redution, while still preserving the similar-ities of data vetors to a high degree.We also presented experimental results of random pro-jetion using a sparsely populated random matrix intro-dued in [1℄. It is in fat not neessary to use a Gaussiandistributed random matrix but muh simpler matries stillobey the Johnson-Lindenstrauss lemma [15℄, giving ompu-tational savings.One should emphasize that random projetion is bene�-ial in appliations where the distanes of the original high-dimensional data points are meaningful as suh| if the orig-inal distanes or similarities are themselves suspet, there islittle reason to preserve them. For example, onsider usingthe data in neural network training. Projeting the dataonto a lower dimensional subspae speeds up the trainingonly if the training is based on interpoint distanes; suhproblems inlude lustering and k Nearest Neighbors et.Also, onsider the signi�ane of eah of the dimensions ofa data set. In a Eulidean spae, every dimension is equallyimportant and independent of the others, whereas e.g. ina proess monitoring appliation some measured quantities(that is, dimensions) might be losely related to others,and the interpoint distanes do not neessarily bear a learmeaning.



A still more realisti appliation of random projetionwould be to use it in a data mining problem, e.g. lustering,and ompare the results and omputational omplexity ofmining the original high-dimensional data and dimensional-ity redued data; this is a topi of a further study.An interesting open problem onerns k, the number ofdimensions needed for random projetions. The Johnson-Lindenstrauss result [15, 10, 8℄ gives bounds that are muhhigher than the ones that suÆe to give good results on ourempirial data. For example, in the ase of our image data,the lower bound for k on � = 0:2 is 1600 but in the ex-periments, k � 50 was enough. The Johnson-Lindenstraussresult, of ourse, is a worst-ase one, and it would be inter-esting to understand whih properties of our experimentaldata make it possible to get good results by using fewerdimensions.We onlude that random projetion is a good alternativeto traditional, statistially optimal methods of dimension-ality redution that are omputationally infeasible for highdimensional data. Random projetion does not su�er fromthe urse of dimensionality, quite ontrary to the traditionalmethods.
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