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ABSTRACTRandom proje
tions have re
ently emerged as a powerfulmethod for dimensionality redu
tion. Theoreti
al resultsindi
ate that the method preserves distan
es quite ni
ely;however, empiri
al results are sparse. We present experi-mental results on using random proje
tion as a dimension-ality redu
tion tool in a number of 
ases, where the highdimensionality of the data would otherwise lead to burden-some 
omputations. Our appli
ation areas are the pro
ess-ing of both noisy and noiseless images, and information re-trieval in text do
uments. We show that proje
ting thedata onto a random lower-dimensional subspa
e yields re-sults 
omparable to 
onventional dimensionality redu
tionmethods su
h as prin
ipal 
omponent analysis: the similar-ity of data ve
tors is preserved well under random proje
-tion. However, using random proje
tions is 
omputationallysigni�
antly less expensive than using, e.g., prin
ipal 
om-ponent analysis. We also show experimentally that using asparse random matrix gives additional 
omputational sav-ings in random proje
tion.
Keywordsrandom proje
tion, dimensionality redu
tion, image data,text do
ument data, high-dimensional data
1. INTRODUCTIONIn many appli
ations of data mining, the high dimen-sionality of the data restri
ts the 
hoi
e of data pro
ess-ing methods. Su
h appli
ation areas in
lude the analysisof market basket data, text do
uments, image data and soon; in these 
ases the dimensionality is large due to eithera wealth of alternative produ
ts, a large vo
abulary, or theuse of large image windows, respe
tively. A statisti
ally op-timal way of dimensionality redu
tion is to proje
t the data�On leave at Nokia Resear
h Center
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onto a lower-dimensional orthogonal subspa
e that 
apturesas mu
h of the variation of the data as possible. The best(in mean-square sense) and most widely used way to do thisis prin
ipal 
omponent analysis (PCA); unfortunately it isquite expensive to 
ompute for high-dimensional data sets.A 
omputationally simple method of dimensionality redu
-tion that does not introdu
e a signi�
ant distortion in thedata set would thus be desirable.In random proje
tion (RP), the original high-dimensionaldata is proje
ted onto a lower-dimensional subspa
e usinga random matrix whose 
olumns have unit lengths. RPhas been found to be a 
omputationally eÆ
ient, yet suf-�
iently a

urate method for dimensionality redu
tion ofhigh-dimensional data sets. While this method has attra
tedlots of interest, empiri
al results are sparse.In this paper we give experimental results on using RP asa dimensionality redu
tion tool on high-dimensional imageand text data sets. In both appli
ation areas, random pro-je
tion is 
ompared to well known dimensionality redu
tionmethods. We show that despite the 
omputational simpli
-ity of random proje
tion, it does not introdu
e a signi�
antdistortion in the data.The data sets used in this paper are of very di�erent na-tures. Our image data is from mono
hrome images of nat-ural s
en
es. An image is presented as a matrix of pixelbrightness values, the distribution of whi
h is generally ap-proximately Gaussian: symmetri
 and bell-shaped. Textdo
ument data is presented in ve
tor spa
e [25℄, in whi
hea
h do
ument forms one d-dimensional ve
tor where d isthe vo
abulary size. The i-th element of the ve
tor indi-
ates (some fun
tion of) the frequen
y of the i-th vo
abu-lary term in the do
ument. Do
ument data is often highlysparse or peaked: only some terms from the vo
abulary arepresent in one do
ument, and most entries of the do
umentve
tor are zero. Also, do
ument data has a nonsymmetri
,positively skewed distribution, as the term frequen
ies arenonnegative. It is instru
tive to see how random proje
tionworks as a dimensionality redu
tion tool in the 
ontext ofthese two very di�erent appli
ation areas.We also present results on images 
orrupted by noise, andour experimental results indi
ate that random proje
tion isnot sensitive to impulse noise. Thus random proje
tion isa promising alternative to some existing methods in noiseredu
tion (e.g. median �ltering), too.This paper is organized as follows. At the end of this intro-du
tion we dis
uss related work on random proje
tions andsimilarity sear
h. Se
tion 2 presents di�erent dimensionality



redu
tion methods. Se
tion 3 gives the experimental resultsof dimensionality redu
tion on image data, and Se
tion 4 ontext data. Finally, Se
tion 5 gives a 
on
lusion.
1.1 Related workPapadimitriou et al. [22℄ use random proje
tion in theprepro
essing of textual data, prior to applying LSI. Theypresent experimental results on an arti�
ially generated setof do
uments. In their approa
h, the 
olumns of the ran-dom proje
tion matrix are assumed stri
tly orthogonal, buta
tually this need not be the 
ase, as we shall see in ourexperiments.Kaski [17, 16℄ has presented experimental results in usingthe random mapping in the 
ontext of the WEBSOM1 sys-tem. Kurimo [20℄ applies random proje
tion to the indexingof audio do
uments, prior to using LSI and SOM. Kleinberg[19℄ and Indyk and Motwani [14℄ use random proje
tionsin nearest-neighbor sear
h in a high dimensional Eu
lideanspa
e, and also present theoreti
al insights. Dasgupta [6, 7℄has used random proje
tions in learning high-dimensionalGaussian mixture models. Other appli
ations of randomproje
tion in
lude e.g. [4, 28℄.The problems of dimensionality redu
tion and similaritysear
h have often been addressed in the information retrievalliterature, and other approa
hes than random proje
tionhave been presented. Ostrovsky and Rabani [21℄ give a di-mension redu
tion operation that is suitable for 
lustering.Agrawal et al. [3℄ map time series into frequen
y domain bythe dis
rete Fourier transform and only retain the �rst fewfrequen
ies. Keogh and Pazzani [18℄ redu
e the dimensionof time series data by segmenting the time series into se
-tions and indexing only the se
tion means. Aggarwal et al.[2℄ index market basket data by a spe
i�
 signature table,whi
h easens the similarity sear
h. Wavelet transforms ([12,27℄ et
.) are a 
ommon method of signal 
ompression.
2. METHODS FOR DIMENSIONALITY RE-

DUCTION

2.1 Random projectionIn random proje
tion, the original d-dimensional data isproje
ted to a k-dimensional (k << d) subspa
e throughthe origin, using a random k � d matrix R whose 
olumnshave unit lengths. Using matrix notation where Xd�N is theoriginal set of N d-dimensional observations,XRPk�N = Rk�dXd�N (1)is the proje
tion of the data onto a lower k-dimensionalsubspa
e. The key idea of random mapping arises fromthe Johnson-Lindenstrauss lemma [15℄: if points in a ve
-tor spa
e are proje
ted onto a randomly sele
ted subspa
eof suitably high dimension, then the distan
es between thepoints are approximately preserved. For a simple proof ofthis result, see [10, 8℄.Random proje
tion is 
omputationally very simple: form-ing the random matrix R and proje
ting the d � N datamatrix X into k dimensions is of order O(dkN), and if thedata matrix X is sparse with about 
 nonzero entries per
olumn, the 
omplexity is of order O(
kN) [22℄.Stri
tly speaking, (1) is not a proje
tion be
ause R is gen-erally not orthogonal. A linear mapping su
h as (1) 
an1See http://websom.hut.fi/websom/


ause signi�
ant distortions in the data set if R is not or-thogonal. Orthogonalizing R is unfortunately 
omputation-ally expensive. Instead, we 
an rely on a result presentedby He
ht-Nielsen [13℄: in a high-dimensional spa
e, thereexists a mu
h larger number of almost orthogonal than or-thogonal dire
tions. Thus ve
tors having random dire
tionsmight be suÆ
iently 
lose to orthogonal, and equivalentlyRTR would approximate an identity matrix. In our exper-iments, the mean squared di�eren
e between RTR and anidentity matrix was about 1=k per element.When 
omparing the performan
e of random proje
tionto that of other methods of dimensionality redu
tion, it is in-stru
tive to see how the similarity of two ve
tors is distortedin the dimensionality redu
tion. We measure the similarityof data ve
tors either as their Eu
lidean distan
e or as theirinner produ
t. In the 
ase of image data, Eu
lidean distan
eis a widely used measure of similarity. Text do
uments, onthe other hand, are generally 
ompared a

ording to the
osine of the angle between the do
ument ve
tors; if do
u-ment ve
tors are normalized to unit length, this 
orrespondsto the inner produ
t of the do
ument ve
tors.We write the Eu
lidean distan
e between two data ve
-tors x1 and x2 in the original large-dimensional spa
e asjjx1�x2jj. After the random proje
tion, this distan
e is ap-proximated by the s
aled Eu
lidean distan
e of these ve
torsin the redu
ed spa
e:pd=k jjRx1 �Rx2jj (2)where d is the original and k the redu
ed dimensionality ofthe data set. The s
aling term pd=k takes into a

ountthe de
rease in the dimensionality of the data: a

ording tothe Johnson-Lindenstrauss lemma, the expe
ted norm of aproje
tion of a unit ve
tor onto a random subspa
e throughthe origin is pk=d [15℄.The 
hoi
e of the random matrixR is one of the key pointsof interest. The elements rij of R are often Gaussian dis-tributed, but this need not be the 
ase. A
hlioptas [1℄ hasre
ently shown that the Gaussian distribution 
an be re-pla
ed by a mu
h simpler distribution su
h asrij = p3 �8><>:+1 with probability 160 with probability 23�1 with probability 16 : (3)In fa
t, pra
ti
ally all zero mean, unit varian
e distributionsof rij would give a mapping that still satis�es the Johnson-Lindenstrauss lemma. A
hlioptas' result means further 
om-putational savings in database appli
ations, as the 
ompu-tations 
an be performed using integer arithmeti
s. In ourexperiments we shall use both Gaussian distributed randommatri
es and sparse matri
es (3), and show that A
hlioptas'theoreti
al result indeed has pra
ti
al signi�
an
e. In 
on-text of the experimental results, we shall refer to RP whenthe proje
tion matrix is Gaussian distributed and SRP whenthe matrix is sparse and distributed a

ording to (3). Oth-erwise, the shorthand RP refers to any random proje
tion.
2.2 PCA, SVD and LSIIn prin
ipal 
omponent analysis (PCA), the eigenvaluede
omposition of the data 
ovarian
e matrix is 
omputed asEfXXT g = E�ET where the 
olumns of matrix E are theeigenve
tors of the data 
ovarian
e matrix EfXXT g and �is a diagonal matrix 
ontaining the respe
tive eigenvalues.



If dimensionality redu
tion of the data set is desired, thedata 
an be proje
ted onto a subspa
e spanned by the mostimportant eigenve
tors:XPCA = ETk X (4)where the d� k matrix Ek 
ontains the k eigenve
tors 
or-responding to the k largest eigenvalues. PCA is an op-timal way to proje
t data in the mean-square sense: thesquared error introdu
ed in the proje
tion is minimized overall proje
tions onto a k-dimensional spa
e. Unfortunately,the eigenvalue de
omposition of the data 
ovarian
e matrix(whose size is d�d for d-dimensional data) is very expensiveto 
ompute. The 
omputational 
omplexity of estimatingthe PCA is O(d2N) + O(d3) [11℄. There exists 
omputa-tionally less expensive methods [26, 24℄ for �nding only afew eigenve
tors and eigenvalues of a large matrix; in ourexperiments, we use appropriate Matlab routines to realizethese.A 
losely related method is singular value de
omposition(SVD): X = USV T where orthogonal matri
es U and V
ontain the left and right singular ve
tors of X, respe
tively,and the diagonal of S 
ontains the singular values of X. Us-ing SVD, the dimensionality of the data 
an be redu
ed byproje
ting the data onto the spa
e spanned by the left sin-gular ve
tors 
orresponding to the k largest singular values:XSVD = UTk X (5)where Uk is of size d�k and 
ontains these k singular ve
tors.Like PCA, SVD is also expensive to 
ompute. There existsnumeri
al routines su
h as the power or the Lan
zos method[5℄ that are more eÆ
ient than PCA for sparse data matri
esX, and that is why we shall use SVD instead of PCA in the
ontext of sparse text do
ument data. For a sparse datamatrix Xd�N with about 
 nonzero entries per 
olumn, the
omputational 
omplexity of SVD is of order O(d
N) [22℄.Latent semanti
 indexing (LSI) [9, 22℄ is a dimensionalityredu
tion method for text do
ument data. Using LSI, thedo
ument data is presented in a lower-dimensional \topi
"spa
e: the do
uments are 
hara
terized by some underlying(latent, hidden) 
on
epts referred to by the terms. LSI 
anbe 
omputed either by PCA or SVD of the data matrix ofN d-dimensional do
ument ve
tors.
2.3 Discrete cosine transformDis
rete 
osine transform (DCT) is a widely used methodfor image 
ompression and as su
h it 
an also be used indimensionality redu
tion of image data. DCT is 
ompu-tationally less burdensome than PCA and its performan
eapproa
hes that of PCA. DCT is also optimal for humaneye: the distortions introdu
ed o

ur at the highest frequen-
ies only, and the human eye tends to negle
t these as noise.DCT 
an be performed by simple matrix operations [23, 27℄:an image is transformed to the DCT spa
e and dimensional-ity redu
tion is done in the inverse transform by dis
ardingthe transform 
oeÆ
ients 
orresponding to the highest fre-quen
ies. Computing the DCT is not data-dependent, in
ontrast to PCA that needs the eigenvalue de
omposition ofdata 
ovarian
e matrix; that is why DCT is orders of mag-nitude 
heaper to 
ompute than PCA. Its 
omputational
omplexity is of the order O(dN log2(dN)) for a data ma-trix of size d�N [27℄.
3. RESULTS ON IMAGE DATA

The data set 
onsisted of N = 1000 image windows drawnfrom 13 mono
hrome images2 of natural s
enes.The sizes ofthe original images were 256 � 256 pixels, and windows ofsize 50 � 50 were randomly drawn from the images. Ea
himage window was presented as one d-dimensional 
olumnve
tor (d = 2500).
3.1 Noiseless image dataWhen 
omparing di�erent methods for dimensionality re-du
tion, the 
riteria are the amount of distortion 
ausedby the method and its 
omputational 
omplexity. In the
ase of image data we measure the distortion by 
omparingthe Eu
lidean distan
e between two dimensionality redu
eddata ve
tors to their Eu
lidean distan
e in the original high-dimensional spa
e. In the 
ase of random proje
tion, theEu
lidean distan
e in the redu
ed spa
e is s
aled as shownin (2); with other methods, no s
aling is performed.We �rst tested the e�e
t of the redu
ed dimensionality us-ing di�erent values of k in [1; 800℄. At ea
h k, the dimension-ality redu
ing matrix operation was 
omputed anew. Figure1 shows the error in the distan
e between members of a pairof data ve
tors, averaged over 100 pairs. The results of ran-dom proje
tion with a Gaussian distributed random matrix(RP), random proje
tion with a sparse random matrix as in(3) (SRP), prin
ipal 
omponent analysis (PCA) and dis
rete
osine transform (DCT) are shown, together with their 95per 
ent 
on�den
e intervals.
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Figure 1: The error produ
ed by RP (+), SRP (�),PCA (�) and DCT (Æ) on image data, and 95 % 
on-�den
e intervals over 100 pairs of data ve
tors.In Figure 1 it is 
learly seen that random proje
tion (RPand SRP) yields very a

urate results: dimensionality re-du
tion by random proje
tion does not distort the data sig-ni�
antly more than PCA. At dimensions k > 600, randomproje
tion and PCA give quite a

urate results but the errorprodu
ed by DCT is 
learly visible. At smaller dimensionsalso PCA distorts the data. This tells us that the variationin the data is mostly 
aptured by the �rst 600 prin
ipal 
om-ponents, be
ause the error in PCA is dependent on the sumof omitted eigenvalues, and k is equal to the number of eigen-2Available fromhttp://www.
is.hut.fi/proje
ts/i
a/data/images/



values retained. In 
ontrast, the random proje
tion method
ontinues to give a

urate results until k = 10. One expla-nation for the su

ess of random proje
tion is the J-L s
alingterm pd=k (Formula (2)), whi
h takes into a

ount the de-
rease in the dimensionality. In PCA, su
h s
aling wouldonly be useful in the smallest dimensions but a straightfor-ward rule is diÆ
ult to give.Another point of interest is the 
omputational 
omplex-ity of the methods. Figure 2 shows the number of Mat-lab's 
oating point operations needed when using RP, SRP,PCA or DCT in dimensionality redu
tion, in a logarithmi
s
ale. It 
an be seen that PCA is signi�
antly more burden-some than random proje
tion or DCT. (In the 
ase of DCT,only the 
hosen data ve
tors were transformed instead ofthe whole data set; this makes the number of 
oating pointoperations rather small.)
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Figure 2: Number of Matlab's 
oating point oper-ations needed when redu
ing the dimensionality ofimage data using RP (+), SRP (�), PCA (�) andDCT (Æ), in a logarithmi
 s
ale.From Figures 1{2 we 
an 
on
lude that random proje
-tion is a 
omputationally inexpensive method of dimension-ality redu
tion while preserving the distan
es of data ve
torspra
ti
ally as well as PCA and 
learly better than DCT.Even more, at smallest dimensions RP outperforms bothPCA and DCT.Dimensionality redu
tion on image data di�ers slightlyfrom another 
ommon pro
edure, image 
ompression, inwhi
h the image is transformed into a more e
onomi
al formfor e.g. transmission, and then transformed ba
k into theoriginal spa
e. The transformation is often 
hosen so thatthe resulting image looks as similar as possible to the orig-inal image, to a human eye. In this respe
t, the dis
rete
osine transform has proven optimal. To see how an im-age whose dimensionality is redu
ed by RP would look like,the random mapping should be inverted. The pseudoin-verse of R is expensive to 
ompute, but sin
e R is almostorthogonal, the transpose of R is a good approximationof the pseudoinverse, and the image 
an be 
omputed asXnewd�N = RTd�kXRPk�N where XRP is the result of the randomproje
tion (1). Nonetheless, the obtained image is visuallyworse than a DCT 
ompressed image, to a human eye. Thusrandom proje
tion is su

essful in appli
ations where thedistan
e or similarity between data ve
tors should be pre-

served under dimensionality redu
tion as well as possible,but where the data is not intended to be visualized for thehuman eye. These appli
ations in
lude, e.g., ma
hine vi-sion: it would be possible to automati
ally dete
t whetheran (on-line) image from a surveillan
e 
amera has 
hangedor not.
3.2 Noise reduction in imagesIn our se
ond set of experiments we 
onsidered noisy im-ages. The images were 
orrupted by salt-and-pepper im-pulse noise: with probability 0.2, a pixel in the image wasturned bla
k or white. We wanted to proje
t the data insu
h a way that the distan
e between two data ve
tors inthe redu
ed noisy data spa
e would be as 
lose as possible tothe distan
e between these ve
tors in the high-dimensionalnoiseless data spa
e, even though the dimensionality redu
-tion was applied to high-dimensional noisy images.A simple yet e�e
tive way of noise redu
tion espe
iallyin the 
ase of salt-and-pepper impulse noise is median �l-tering (MF) where ea
h pixel in the image is repla
ed bythe median of the pixel brightnesses in its neighborhood.The median is not a�e
ted by individual noise spikes and somedian �ltering eliminates impulse noise quite well [27℄. A
ommon neighborhood size is 3�3 pixels whi
h was also usedin our experiments. MF is 
omputationally very eÆ
ient, oforder O(dmN) for N image windows of d pixels, where mdenotes the size of the neighborhood (in our 
ase, m = 9).Also, MF does not require dimensionality redu
tion; thus itsresult 
an be used as a yardsti
k when 
omparing methodsfor dimensionality redu
tion and noise 
an
ellation.Figure 3 shows how the distan
e between two noisy imagewindows is distorted in dimensionality redu
tion, 
omparedto their distan
e in the original high-dimensional, noiselessspa
e. Here we 
an 
ompare di�erent dimensionality re-du
tion methods with respe
t to their sensitivity to noise.We 
an see that median �ltering introdu
es quite a largedistortion in the image windows, despite that to a humaneye it removes impulse noise very eÆ
iently. The distor-tion is due to blurring: pixels are repla
ed by the median oftheir neighborhood, eliminating noise but also small details.PCA, DCT and random proje
tion perform quite similarlyto the noiseless 
ase. From Figure 3 we 
an 
on
lude thatrandom proje
tion is a promising alternative to dimension-ality redu
tion on noisy data, too, as it does not seem tobe sensitive to impulse noise. There exists of 
ourse manyother methods for noise redu
tion, too. Here our interestwas mainly in dimensionality redu
tion and not noise re-du
tion.
4. RESULTS ON TEXT DATANext, we applied dimensionality redu
tion te
hniques ontext do
ument data from four newsgroups of the 20 news-groups 
orpus3: s
i.
rypt, s
i.med, s
i.spa
e and so
.religion.
hristian. The do
uments were 
onverted into term fre-quen
y ve
tors and some 
ommon terms were removed usingM
Callum's Rainbow toolkit4 but no stemming was used.The data was not made zero mean, nor was the overallvarian
e of entries of the data matrix normalized. The do
-ument ve
tors were only normalized to unit length. Thiskind of prepro
essing was di�erent from that applied to im-3Available from http://www.
s.
mu.edu/~textlearning4Available from http://www.
s.
mu.edu/~m

allum/bow
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Figure 3: The error produ
ed by RP (+), SRP (�),PCA (�), DCT (Æ) and MF (�) on noisy image data,with 95% 
on�den
e intervals over 100 pairs of im-age windows. In MF dimensionality is not redu
ed.age data. Together with the distin
t natures of image andtext data, di�eren
es in prepro
essing yielded slightly dif-ferent results on these di�erent data sets. The size of thevo
abulary was d = 5000 terms and the data set 
onsistedof N = 2262 newsgroup do
uments.We randomly 
hose pairs of data ve
tors (that is, do
u-ments) and 
omputed their similarity as their inner produ
t.The error in the dimensionality redu
tion was measured asthe di�eren
e between the inner produ
ts before and afterthe dimensionality redu
tion.
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Figure 4: The error produ
ed by RP (+) and SVD(�) on text do
ument data, with 95% 
on�den
e in-tervals over 100 pairs of do
ument ve
tors.Figure 4 shows the error introdu
ed by dimensionality re-du
tion. The results are averaged over 100 do
ument pairs.The results of SVD and random proje
tion with a Gaus-sian distributed random matrix are shown, together with 95per 
ent 
on�den
e intervals. The redu
ed dimensionalityk took values in [1; 700℄. It is seen that random proje
tionis not quite as a

urate as SVD but in many appli
ationsthe error may be negle
table. The Johnson-Lindenstrauss

result [15℄ states that Eu
lidean distan
es are retained wellin random proje
tion. The 
ase of inner produ
ts is a di�er-ent one | Eu
lidean distan
es of do
ument ve
tors wouldprobably have been preserved better. It is a 
ommon pra
-ti
e to measure the similarity of do
ument ve
tors by theirinner produ
ts; thus we present results on them.Despite using eÆ
ient SVD routines for �nding a few sin-gular ve
tors of a sparse matrix, SVD is still orders of mag-nitude more burdensome than RP.Our results on text do
ument data indi
ate that randomproje
tion 
an be used in dimensionality redu
tion of largedo
ument 
olle
tions, with less 
omputational 
omplexitythan latent semanti
 indexing (SVD). Similarly to what waspresented in [22℄, RP 
an speed up latent semanti
 indexing(LSI): the dimensionality of the data is �rst redu
ed by RPand the burdensome LSI is only 
omputed in the new low-dimensional spa
e. In [22℄ the do
uments were generatedarti�
ially and the random matrix R was assumed stri
tlyorthogonal; our experiments show that neither of these re-stri
tions is a
tually ne
essary. Another 
ommon problem intext do
ument retrieval is query mat
hing. Random proje
-tion might be useful in query mat
hing if the query is long,or if a set of similar do
uments instead of one parti
ulardo
ument were sear
hed for.
5. CONCLUSIONSWe have presented new and promising experimental re-sults on random proje
tion in dimensionality redu
tion ofhigh-dimensional real-world data sets. When 
omparing dif-ferent methods for dimensionality redu
tion, the 
riteria arethe amount of distortion 
aused by the method and its 
om-putational 
omplexity. Our results indi
ate that randomproje
tion preserves the similarities of the data ve
tors welleven when the data is proje
ted to moderate numbers ofdimensions; the proje
tion is yet fast to 
ompute.Our appli
ation areas were of quite di�erent natures: noisyand noiseless images of natural s
enes, and text do
umentsfrom a newsgroup 
orpus. In both appli
ation areas, randomproje
tion proved to be a 
omputationally simple method ofdimensionality redu
tion, while still preserving the similar-ities of data ve
tors to a high degree.We also presented experimental results of random pro-je
tion using a sparsely populated random matrix intro-du
ed in [1℄. It is in fa
t not ne
essary to use a Gaussiandistributed random matrix but mu
h simpler matri
es stillobey the Johnson-Lindenstrauss lemma [15℄, giving 
ompu-tational savings.One should emphasize that random proje
tion is bene�-
ial in appli
ations where the distan
es of the original high-dimensional data points are meaningful as su
h| if the orig-inal distan
es or similarities are themselves suspe
t, there islittle reason to preserve them. For example, 
onsider usingthe data in neural network training. Proje
ting the dataonto a lower dimensional subspa
e speeds up the trainingonly if the training is based on interpoint distan
es; su
hproblems in
lude 
lustering and k Nearest Neighbors et
.Also, 
onsider the signi�
an
e of ea
h of the dimensions ofa data set. In a Eu
lidean spa
e, every dimension is equallyimportant and independent of the others, whereas e.g. ina pro
ess monitoring appli
ation some measured quantities(that is, dimensions) might be 
losely related to others,and the interpoint distan
es do not ne
essarily bear a 
learmeaning.



A still more realisti
 appli
ation of random proje
tionwould be to use it in a data mining problem, e.g. 
lustering,and 
ompare the results and 
omputational 
omplexity ofmining the original high-dimensional data and dimensional-ity redu
ed data; this is a topi
 of a further study.An interesting open problem 
on
erns k, the number ofdimensions needed for random proje
tions. The Johnson-Lindenstrauss result [15, 10, 8℄ gives bounds that are mu
hhigher than the ones that suÆ
e to give good results on ourempiri
al data. For example, in the 
ase of our image data,the lower bound for k on � = 0:2 is 1600 but in the ex-periments, k � 50 was enough. The Johnson-Lindenstraussresult, of 
ourse, is a worst-
ase one, and it would be inter-esting to understand whi
h properties of our experimentaldata make it possible to get good results by using fewerdimensions.We 
on
lude that random proje
tion is a good alternativeto traditional, statisti
ally optimal methods of dimension-ality redu
tion that are 
omputationally infeasible for highdimensional data. Random proje
tion does not su�er fromthe 
urse of dimensionality, quite 
ontrary to the traditionalmethods.
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