Direct Construction of Minimal Acyclic
Subsequential Transducers

Stoyan Mihov! and Denis Maurel?

! Linguistic Modelling Laboratory
LPDP - Bulgarian Academy of Sciences
stoyan@lml.bas.bg
? LI (Computer Laboratory) University of Tours
E3i, 64 avenue Jean-Portalis, F37200 Tours, France
maurel@univ-tours.fr

Abstract. This paper presents an algorithm for direct building of min-
imal acyclic subsequential transducer, which represents a finite relation
given as a sorted list of words with their outputs. The algorithm con-
structs the minimal transducer directly = without constructing inter-
mediate tree-like or pseudo-minimal transducers. In NLP applications
our algorithm provides significantly better efficiency than the other al-
gorithms building minimal transducer for large-scale natural language
dictionaries. Some experimental comparisons are presented at the end of
the paper.

1 Introduction

For the application of large-scale dictionaries two major problems have to be
solved: fast lookup speed and compact representation. Using automata we can
achieve fast lookup by determinization and compact representation by minimiza-
tion. For providing information for the recognized words we have to construct
automata with outputs or transducers. The use of automata with labels on the
final states for representation of dictionaries is presented by Dominique Revuz
in [8]. In [6, 7] Mehryar Mohri reviews the application of transducers for Natural
Language Processing. He compares the benefits using subsequential transduc-
ers. The transducers are more compact in some cases and can be combined by
composition or other relational operators. The transducers can be applied also
for the reverse direction to find the input words which are mapped to a given
output.

In this paper we focus on building the minimal subsequential transducer for
a given input list of words with their outputs. This is the procedure required
for the initial construction of the transducer representing a dictionary. Earlier
presented methods are building temporary transducers for the input list first,
and later they have to be minimized. This temporary transducers can be huge
compared to the resulting minimized one. For example in [6] Mehryar Mohri
writes:

“But, as with automata, one cannot construct directly the p-subsequential
transducer representing a large-scale dictionary. The tree construction
mentioned above leads indeed to a blow up for a large number of en-
tries. So, here again, one needs first to split the dictionary into several
parts, construct the corresponding p-subsequential transducers, mini-
mize them, and then perform the union of these transducers and remi-
nimize the resulting one.”

In [3] Denis Maurel is building efficiently the pseudo-minimal subsequential
transducer, which can be significantly smaller than the tree-like transducer. The
pseudo-minimal transducer has to be additionally minimized. Our experiments
are showing that for large-scale dictionaries the pseudo-minimal subsequential
transducer is about 10 times larger than the minimized transducer.

In this paper we present an algorithm for building minimal subsequential
transducer for a given sorted list without the necessity of building any interme-
diate non-minimal transducers. The algorithm is a combination of the algorithm
for direct construction of minimal acyclic Finite-State automaton given in [2, 4]
with the methods for construction of minimal subsequential transducers given
in [3,5]. The resulting subsequential transducer is minimal.

In comparison with the approach of Mehryar Mohri we don’t build minimal
intermediate transducers for parts of the dictionary which after deterministic
union have to be minimized again. We are proceeding incrementally word by
word building the minimal except for the last word transducer.

2 Mathematical Concepts

In this section we present shortly the mathematical basics used in the algorithm
for direct construction of minimal subsequential transducers. A more detailed
presentation with the corresponding proofs for the minimal except for a word
automata is given in [4].

2.1 Subsequential Transducers

Definition 1. A p-subsequential transducer is a tuple T = (¥, A, S, s, F, u, \,¥),
where:

— X is a finite input alphabet;

— A is a finite output alphabet;

— S is a finite set of states;

— s € S is the starting state;

— F C S is the set of final states;

— pu: S x X — S is a partial function called the transition function;

— A: S x X = A* is a partial function called the output function;

— W F — 24 is the final function. We will require that Vr € F (|#(r)| < p).

The function p is extended naturally over S x X* as in the case for finite state
automata:

VreS (u*(r,e)=r);Vre SVo € X¥*Vae X (u*(r,oa) = u(p*(r,0),a)).
The function A is extended over S x X* by the following definition:
Vr e S (AN (r,e) =¢€); Vr € SVYo € X*Va € ¥ (A (r,oa) = XN (r,0)\(u* (r,0),a)).

The set L(T) = {0 € X*|u*(s,0) € F} is called the input language of the
transducer 7. The subsequential transducer maps each word from the input
language to a set of at most p output words. The output function O : L(T) —
24" of the transducer is defined as follows:

Vo € L(T) (Or(0) = X (5,0) - ¥ (" (s, 0)).

Two transducers 7 and 7' are called equivalent when L(7) = L(7"') and
O1 =07

Definition 2. Let T = (X, A, S, s, F, u, \,¥) be a subsequential transducer.

1. The state r € S is called reachable from t € S, when 3o € X* (u*(t, o) =r).
2. We define the subtransducer starting in s' € S as:
Tls =(X,A,5",8",FNS" yuls x5, AN s x5,¥|rns), where:
S' = {r € S|r is reachable from s'}.
3. Two states s1,s2 € S are called equivalent, when Als, and A|,, are equivalent
(when L(T1,,) = L(T,,) and Or,, = O,.).

We cannot use directly the minimization algorithms developed for automata
because in some cases by moving the output labels (or parts of them) along the
paths we can get a smaller transducer. To avoid this we have to use transducers
which has the property that the output is pushed back toward the initial state
as far as possible. Mehryar Mohri [5] shows that there is a minimal transducer
which satisfies this property. We will define this more formally bellow.

With u A v we denote the longest common prefix of the words v and v from
X* and with v~ (uv) we denote the word v — the quotient of the left division of
uv by u. For the set of words A = {a;,as,...,a,} with A A we will denote the
word AA=a; ANaa A...Aay.

With D(7) we will denote the set of the prefixes of L(T):

D(T) ={ue 2*|qw e T* (uw € L(T))}.

We define the function g7 : D(T) — A* as follows:

gr(e)=¢ ; gr(u) = /\ /\ Or(uw), for u € D(T),u # €.

weX* & uweL(T)

Now we are ready to define the canonical subsequential transducer.

Definition 3. The subsequential transducer T = (X, A, S, s, F, u, A\, ¥) is called
canonical if the following condition holds:

Vr € SVa € X Vo € * (u*(s,0) = r & 'u(r,a)) = A(r,a) = [g7(0)] " g7(0ca))

We can see that the condition above corresponds to the property that the
output is pushed back to the initial state as much as possible.

The subsequential transducer T is called minimal if any other transducer
equivalent to 7 has more or equally many states as T .

Theorem 1. For every subsequential transducer T there exists a minimal canon-
ical subsequential transducer equivalent to T .

Theorem 2. If there are no different equivalent states in the canonical subse-
quential transducer T then T is minimal.

A more complete presentation of the minimal subsequential transducers can
be find in [5]).

2.2 Minimal Except for a Word Subsequential Transducer

Definition 4. Let T = (¥, A,S, s, F, u, \, W) be a subsequential transducer with
input language L(T). Then the transducer T is called minimal except for the
word w € X*, when the following conditions hold:

1. Every state is reachable from the starting state and from every state a final
state is reachable;

2. w is a prefiz of the last word in the lexicographical order of L(T);
In that case we can introduce the following notations:

w:w]TwQT...wkT,wherewiTGZ,forizl,27...,k (1)
to =s;t] =ptg,wl);t] =p(t] w)); o5 t] =pl_,wl) (2)
T={t],t],....t]} (3)

~o

In the set S\ T there are no different equivalent states;
4. ¥r e SYie{l,2,....k}Va € X (u(r,a) =t; <> (i >0&r=t_1 &a=
TY) -
w;))7
5. T is a canonical subsequential transducer.

Ezample 1. An acyclic 2-subsequential transducer over the input alphabet {a, b, ¢}
is given on Figure 1. The input language of the transducer is [{apr, aug, dec, feb,
jan, jul}.] The output function of the transducer is: O(apr) = {30}; O(aug) =
{31}; O(dec) = {31};0(feb) = {28,29}; O(jan) = {31}; O(jul) = {31}. This

transducer is minimal except for the word jul.

Proposition 1. A subsequential transducer which is minimal except for the
empty word € is minimal.

Fig. 1. Subsequential transducer minimal except for jul.

Lemma 1. Let the subsequential transducer T = (X, A, S, s, F, u, \,¥) be min-
imal except for w = wyws ... wg, w # . Let there be no state equivalent to ty in
the set S\ T. Then T is also minimal except for the word W' = wywsy ... wg_1.

Lemma 2. Let the subsequential transducer T = (X, A, S, s, F, u, \,¥) be min-
imal except for w = wiws ... wg, w # €. Let the state p € S\ T be equivalent to
the state ty,. Then the transducer:

T = (2, 4,8\ {ts}, s, F\ {ta}, 1, Ms\geay x5 Uls\qe,y) where:

u(r,a) ,in case r £ty_1 Va# wg and u(r,a) is defined
p(r,a)=<p ,in case r =ty_1,a = wy
not defined otherwise

is equivalent to the transducer T and is minimal except for the word w' =
wiwy ... We_1-

Lemma 3. Let the subsequential transducer T = (X, A, S, s, F, u, \, W) be min-
imal except for w = wiws ... wy. Then for t; holds the following statement:

ty s equivalent tor € S\ T
(tre ForeFR)&(tre F-U(ty) =9(r) &
Vae X ((_"/l’(fkaa) & —|!,u(r, (1)) \% ('/l’(fk/a) & !H(T7 (l) &

//’(tlm (1) = ,u(r, (l) &)‘(tka (l) =)‘(Ta (l)))

Theorem 3. Let the subsequential transducer T = (X, A,S,s, F,u, \,¥) be
minimal except for w' = wiws ... wy. Let ¢ € L(T) be the last word in the
lexicographical order of the input language of the transducer. Let w be a word
which is greater in lexicographical order than 1. Let the T € A* be the out-
put for w. Let w' be the longest common prefiz of ¥ and w. In that case we
can denote W = WiWs ... WypWhyt1 --- Wk k > m. Let us use W,, to denote the
word W, = wws ... w, ;n =1,2,...,k and Wy = e. Let us use A,, to de-
note the word A, = XN (to, W,) A 7. Let us define the subsequential transducer
T =(X,8,s,F' (N, W' as follows:

tmtlstmio, - .., tx are new states such that SN {tmi1,tmis, ..., tx} =0
S'=SU{tmitstmaz, - bk}
F'=FU {tk}
tit1 ,incaser =t;,m<i<k—1a=w;41
, ; S and is d d and
1 (r,) = wu(r,a) ,in case r € S and u(r,a) is defined an

r#tm Va# Wy
is not defined otherwise

(\(r,a) ,in caser = S\ {to, t1,...,tr}
V(r =tg & a# w)
[An1]7 ' A, ,incaser =t, 1, a=w,,n=12,...,m
N(r,a) = < [AL]) 7" A*(to, Wya) , in case 7 = t,,a # wpy1,n=1,2,...,m
Ap] ' ,in case T = t;,,a = Wy
€ ,in caser =tp,a =wpi,m=m+1,... k—1
L is not defined otherwise
U (r) ,in caser & {t1,ta,.. .t} &r€F
W'(r) = {e} , in case T =t
[An] "N (to, W) - W (r) , in caser =t, € F,n=1,2,...,m
is not defined otherwise

Then the subsequential transducer T' is minimal except for w, and the following
holds: L(T") = L(T)U{w}, O | = O7 and O1 (w) = {7}.

Theorem 4. Let the subsequential transducer T = (X, A, S s, F,u,\,¥) be
minimal except for w = wiws ... wy and w € L(T) be the last word in the
lezicographical order of the input language of the transducer. Let T € A* be a
new output for w, such that 7 ¢ O7(w). Let us use W, to denote the word
W, = wqws...w, ;n = 1,2,...,k and Wy = . Let us use A, to denote
the word A, = X*(to, Wn) A 7. Let us define the subsequential transducer T' =
(X,S,s, F,u, N, ¥') as follows:

A(r, a) ,in caser = S\ {to,...,tx} V(r =to & a # wn)

)\’(T' a) = [Anfl]fl/ln ,incaser =t, 1,a=wy,n=1,2,...,k

[An] "IN (to, Wha) , in case r = ty,a # wpy1,m=1,2,... k—1
is not defined otherwise

¥ (r) ,in case T & {t1,ta,...,.tp} &r€eF
(AR A*(to, W) - W (t,) ,incaser =t, € Fn=1,2,...,k—1

W’(T‘) = [Ak]fl)* (t(], Wk) . !p(tk)U
U{[Ax] 17} , in case T =ty
is mot defined otherwise

Then the subsequential transducer T' is minimal except for w, and the following
holds: L(T') = L(T), Or/|r(m)\{w} = OTlL(T)\{w} and O (w) = O7(w) U{T}.

We can use the proving schema introduced in [4] to prove the lemmae and
theorems for minimal except for a word subsequential transducer. The only dif-
ference is that we have to check that the resulting transducers are canonical.

We can use the following equations for an efficient computation of the func-
tions X' and ¢’ for the last two theorems.

<C] :A(to,'LU])/\T , l] :CflA(to,W]) , T1 :C;1T>

<CQ = (l])\(t]7w2)) /\T] , 12 = C;l(l])\(t],’wg)) , T2 = C;lT]>

<03 = (lz)\(t27w3)) N Ty , 13 = C;] (lg)\(t27w3)) , T3 = C§]T2>

<cm - (lmfl)\(tmfl s wm)) N Tim—1) lm = 01711 (lmflA(tmfl) wm)) Tm = C;11Tm71>

We can calulate ¢y, l,,, 7, iteratively forn =1,2,...,m.
We can proove by induction that:

en = N (to, Wy—1) AT (A (to, W) A T)
Lo = [N (to, W) A7) N (to, W)
T = [N (to, Wp) AT] 7
forn=1,2,...,m. Hence we have that:
N(tn_1,wpn) = ¢y
N(tn,a) =1, \(t,,a)
V' (ty) =1n - P(ty)
for a # wpy1,mn=1,2,...,m, and
X (tm, Wma1) = T for Theorem 3, or
W' (ty,) =l - P(tg) for Theorem 4.

Now we can proceed with the description of our method for direct building
of minimal subsequential transducer for a given sorted list of words.

Let a non-empty finite list of words L in lexicographical order be given. Let
for every word in L the corresponding output is given. Let w(?) denotes the i-th

word of the list and 7(9) denotes the output of the i-th word. We start with the
minimal canonical subsequential transducer which recognizes only the first word
of the list and outputs the output for the first word. This transducer can be built
trivially and is also minimal except for w(!). Using it as a basis we carry out an
induction on the words of the list. Let us assume that the transducer 7" with
language L(™ = {w(® |i = 1,2,...,n} has been built and that 4™ is minimal
except for w(™ and Oz (W) = 70 for i = 1,2,...,n. We have to build the
Transducer 7("*1) with language L™t = {w® |i = 1,2,...,n + 1} which is
minimal except for w(™*") and OFnt) (W) =70 fori=1,2,...,n+1.

Let w' be the longest common prefix of the words w™ and w™+"). Using
several times Lemma 1 and Lemma 2 (corresponding to the actual case) we build
the transducer 7" which is equivalent to 7(™ and is minimal except for w'. Now
we can use Theorem 3 (or Theorem 4 if w(™ = w("*+1) to build the transducer
T+ with language L") = LW U{w+t} = {w@ | =1,2,...,n+1} which
is minimal except for w1 and Of () (WD) =70 fori =1,2,...,n+ 1.

In this way by induction we build the minimal except for the last word of the
list transducer with language the list L and the given output. At the end using
again Lemma 1 and Lemma 2 we build the transducer equivalent to the former
one which is minimal except for the empty word. From Proposition 1 we have
that it is the minimal subsequential transducer for the list L and corresponding
output.

To distinguish efficiently between Lemma 1 and Lemma 2 we can use the
condition given in Lemma 3. O

Example 2. Let us consider the following example. On Figure 1 the transducer
minimal except jul with input language {apr, aug, dec, feb, jan, jul} and output
function O(apr) = {30}; O(aug) = {31}; O(dec) = {31}; O(feb) = {28,29};
O(jan) = {31}; O(jul) = {31} is given. After the application of Lemma 2
and Theorem 3 we will construct the transducer minimal except for jun where
O(jun) = {30}. This transducer is given on Figure 2. In this way we are adding
the next word with the corresponding output to the transducer.

3 Algorithm for building of minimal subsequential
transducer for a given sorted list

Here we give the pseudo-code in a Pascal-like language (like the language used
in [1]). We will presume that there are given implementations for Abstract Data
Types (ADT) representing transducer state and dictionary of transducer states.
Later we presume that NULL is the null constant for arbitrary abstract data

type.
On Transducer state we will need the following types and operations:

1. STATE is pointer to a structure representing a transducer state;

2. FIRST_CHAR, LAST_CHAR : are the first and the last char in the input
alphabet;

3. function NEW_STATE : STATE returns a new state;

/0
s s2 r

u/l
2 —E)

a/3 s5

e s12 b
f/2 s13 n
a/l S9
1/ 8|9
i3 u n/0
t0 tl t2 t3

Fig. 2. Subsequential transducer minimal except for jun.

4. function FINAL(STATE) : boolean returns true if the state is final and
false otherwise;
5. procedure SET_FINAL(STATE, boolean) sets the finality of the state to
the boolean parameter;
6. function TRANSITION(STATE, char) : STATE returns the state to which
the transducer transits from the parameter state with the parameter char;
7. procedure SET_TRANSITION(STATE, char, STATE) that sets the tran-
sition from first parameter state by the parameter char to the second pa-
rameter state;
8. function STATE_OUTPUT(STATE) : set of string returns the output set
of strings on final states;
9. procedure SET_STATE_OUTPUT(STATE, set of string) sets the output
set of strings on final states;
10. function OUTPUT(STATE, char) : string returns the output string for the
transition from the parameter state by the parameter char;
11. procedure SET_OUTPUT(STATE, char, string) sets the output string for
the transition from the parameter state by the parameter char;
12. procedure PRINT_TRANSDUCER(file, STATE) prints the transducer start-
ing from the parameter state to file.

Having defined the above operations we make use of the following three
functions and procedures:

1. function COPY_STATE(STATE) : STATE copies a state to a new one;

2. procedure CLEAR_STATE(STATE) clears all transitions of the state and
sets it to non final,

3. function COMPARE _STATES(STATE, STATE) : integer compares two
states

The ADT on Dictionary of transducer states uses the COMPARE_STATES
function above to compare states. For the dictionary we need the following op-
erations:

1. function NEW_DICTIONARY : DICTIONARY returns a new empty dic-
tionary;

2. function MEMBER(DICTIONARY,STATE) : STATE returns state in the
dictionary equivalent to the parameter state or NULL if not present;

3. procedure INSERT(DICTIONARY,STATE) inserts state to dictionary.

Implementation for the above ADTs could be found in e.g. [1]. Now we are
ready to present the pseudo-code of our algorithm.

Algorithm 5. For direct building of minimal subsequential transducer present-
ing the input list of words given in lexicographical order with their corresponding
outputs.

1 program Create_Minimal_Transducer_for_Given_List (input, output);
2 var
3 Minimal TransducerStatesDictionary : DICTIONARY;
4 TempStates : array [0. MAX_WORD_SIZE] of STATE;
5 InitialState : STATE;
6 Previous Word, CurrentWord, CurrentQOutput,
WordSuffix, CommonPrefix : string;
7 tempString : string;
8 tempSet : set of string;
9 i, j, PrefirLengthPlusl : integer;
10 ¢ : char;
11 function FindMinimized (s : STATE) : STATE;
12 {returns an equivalent state from the dictionary. If not present

inserts a copy of the parameter to the dictionary and returns it.}

13 var r : STATE:

14 begin

15 r := MEMBER (Minimal TransducerStatesDictionary,s);
16 if r = NULL then begin

17 r:= COPY_STATE(s);

18 INSERT(r);

19 end;

20 return(r);

21 end; { FindMinimized}

22 begin

23
24
25
26
27
28
29
30
31

32
38

94
95
96
37
38

39
40
41
42

43
44
45
46
47
48
49

50
51

52
58

94

56
56
57
58
59

MinimalTransducerStatesDictionary := NEW_DICTIONARY;
for i := 0 to MAX_ WORD_SIZE do
TempStatefi] := NEW_STATE;
PreviousWord := 7’;
CLEAR_STATE(TempState[0]);
while not eof(input) do begin
{Loop for the words in the input list}
readin(input, Current Word, Current Output);
{ the following loop calculates the length of the longest common
prefiz of CurrentWord and PreviousWord }
1= 1
while (i<length(CurrentWord)) and (i<length(PreviousWord))
and (PreviousWord[i] = CurrentWord[i]) do
1= 1+1;
PrefizLengthPlusl := i;
{we minimize the states from the suffiz of the previous word }
for i := length(Previous Word) downto PrefizrLengthPlus1 do
SET_-TRANSITION(TempStates[i-1], Previous Wordfi,
FindMinimized(TempStates[i]));
{ This loop initializes the tail states for the current word}
for i := PrefizLengthPlusl to length(CurrentWord) do begin
CLEAR_STATE(TempStates[i]);
SET_-TRANSITION(TempStates/[i-1], Current Wordfi,
TempStates/i]);
end;
if CurrentWords <> Previous Word then begin
SET_FINAL(TempStates[length(Current Word)], true);
SET_OUTPUT(TempStates[length(CurrentWord)], {”});
end;
for j := 1 to PrefizLengthPlusi-1 do begin

CommonPrefix := OUTPUT(TempStates[j-1], Current Word[j])

A CurrentOutput;

WordSuffiz := CommonPrefiz"' OUTPUT(TempStatesfj-1],
CurrentWord[j]);

SET_OUTPUT(TempStates[j-1], Current Word|[j],
CommonPrefix);

for ¢ := FIRST_CHAR to LAST_-CHAR do begin

if TRANSITION(TempStates[j],c) <> NULL then
SET_OUTPUT(TempStates[j],c,concat(WordSuffiz,
OUTPUT(TempStates[j],c)));

end;
if FINAL(TempStates[j]) then begin
tempSet := 0;

for tempString in STATE_OUTPUT(TempStates[j]) do

tempSet := tempSet U concat(WordSuffiz,tempString);

60 SET_STATE_OUTPUT(TempStates[j], tempSet);
61 end;

62 CurrentOutput := CommonPrefiz ' CurrentOutput;

63 end;

64 if CurrentWord = Previous Word then

65 SET_STATE_OUTPUT(TempStates[length(CurrentWord)],

STATE_OUTPUT(TempStates[length(Current Word)])
U CurrentOutput);

66 else SET_OUTPUT(TempStates[PrefizLengthPlus1-1],
Current Word[PrefizrLengthPlus1], Current Output);

67 PreviousWord := CurrentWord;

68 end; {while}

69 { here we are minimizing the states of the last word }

70 for i := length(CurrentWord) downto 1 do

71 SET_TRANSITION(TempStates[i-1], Previous Word]i],
FindMinimized(TempStates[i]));

72 InitialState := FindMinimized(TempStates[0]);

73 PRINT_-TRANSDUCER (output,InitialState);

74 end.

4 Implementation results and comparisons

Based on the main algorithm for direct building of minimal automata we have
created implementation for direct construction of minimal automaton with la-
beled final states and minimal subsequential transducer. The results are summa-
rized in the table bellow. We used a Bulgarian grammatical dictionary of simple
words with about 900000 entries for the experiments. An implementation of the
algorithm given in [3] has been used for the construction of the pseudo-minimal
subsequential transducer.

In [6] Mehryar Mohri reports that the construction with his method of the
p-subsequential transducer for a 672000 entries French dictionary takes 20’ on a
HP /9000 755 computer. All our experiments have been performed on a 500MHz
Pentium III personal computer with 128MB RAM.

References

1. A. Aho, J. Hopcroft, J. Ullman, Data Structures and Algorithms, Addison-Wesley,
Reading, Massachutes, 1983.

2. J. Daciuk, S. Mihov, B. Watson, R. Watson, Incremental Construction of Minimal
Acyclic Finite State Automata, Computational Linguistics, Vol. 26(1), 2000.

3. D. Maurel, Pseudo-minimal transducer, Theoretical Computer Science, Vol. 231(1),
129-139, 2000.

4. S. Mihov, Direct Building of Minimal Automaton for Given List, Annuaire de
I’Université de Sofia “St. Kl. Ohridski”, Faculté de Mathématique et Informatique,
volume 91, livre 1, 1998.

Table 1. Comparison between different automata for the representation of a large-scale
grammatical dictionary for Bulgarian.

Number of lines 895453
Initial size 27.5 MB
Pseudo- Minimal
Minimal minimal | automaton
Transducer|Transducer|with labeled
final states
States 43413 531397 47854
Transitions 106809 992412 110791
Codes 16378 16378 6016
P 5 - -
Size of codes 209K - 126K
Size of automaton 1.3M - 800K
Construction time 2’35” 25”7
Memory used 5M 108M 2.5M

5. M. Mohri, Minimization of Sequential Transducers, Lecture Notes in Computer
Science, Springer, Berlin, 1994.

6. M. Mohri, On Some Applications of Finite-State Automata Theory to Natural
Language Processing, Natural Language Engineering, Vol. 2(1), 1-20, 1996.

7. M. Mohri, Finite-State Transducers in Language and Speech Processing, Compu-
tational Linguistics, Vol. 23(2), 269-311, 1997.

8. D. Revuz, Dictionaires et lexiques Méthodes et algorithmes, Doctoral dissertation
in Computer Science, University Paris VII, Paris, 1991.

