
Diret Constrution of Minimal AyliSubsequential TransduersStoyan Mihov1 and Denis Maurel21 Linguisti Modelling LaboratoryLPDP { Bulgarian Aademy of Sienesstoyan�lml.bas.bg2 LI (Computer Laboratory) { University of ToursE3i, 64 avenue Jean-Portalis, F37200 Tours, Franemaurel�univ-tours.frAbstrat. This paper presents an algorithm for diret building of min-imal ayli subsequential transduer, whih represents a �nite relationgiven as a sorted list of words with their outputs. The algorithm on-struts the minimal transduer diretly { without onstruting inter-mediate tree-like or pseudo-minimal transduers. In NLP appliationsour algorithm provides signi�antly better eÆieny than the other al-gorithms building minimal transduer for large-sale natural languageditionaries. Some experimental omparisons are presented at the end ofthe paper.1 IntrodutionFor the appliation of large-sale ditionaries two major problems have to besolved: fast lookup speed and ompat representation. Using automata we anahieve fast lookup by determinization and ompat representation by minimiza-tion. For providing information for the reognized words we have to onstrutautomata with outputs or transduers. The use of automata with labels on the�nal states for representation of ditionaries is presented by Dominique Revuzin [8℄. In [6, 7℄ Mehryar Mohri reviews the appliation of transduers for NaturalLanguage Proessing. He ompares the bene�ts using subsequential transdu-ers. The transduers are more ompat in some ases and an be ombined byomposition or other relational operators. The transduers an be applied alsofor the reverse diretion { to �nd the input words whih are mapped to a givenoutput.In this paper we fous on building the minimal subsequential transduer fora given input list of words with their outputs. This is the proedure requiredfor the initial onstrution of the transduer representing a ditionary. Earlierpresented methods are building temporary transduers for the input list �rst,and later they have to be minimized. This temporary transduers an be hugeompared to the resulting minimized one. For example in [6℄ Mehryar Mohriwrites:

\But, as with automata, one annot onstrut diretly the p-subsequentialtransduer representing a large-sale ditionary. The tree onstrutionmentioned above leads indeed to a blow up for a large number of en-tries. So, here again, one needs �rst to split the ditionary into severalparts, onstrut the orresponding p-subsequential transduers, mini-mize them, and then perform the union of these transduers and remi-nimize the resulting one."In [3℄ Denis Maurel is building eÆiently the pseudo-minimal subsequentialtransduer, whih an be signi�antly smaller than the tree-like transduer. Thepseudo-minimal transduer has to be additionally minimized. Our experimentsare showing that for large-sale ditionaries the pseudo-minimal subsequentialtransduer is about 10 times larger than the minimized transduer.In this paper we present an algorithm for building minimal subsequentialtransduer for a given sorted list without the neessity of building any interme-diate non-minimal transduers. The algorithm is a ombination of the algorithmfor diret onstrution of minimal ayli Finite-State automaton given in [2, 4℄with the methods for onstrution of minimal subsequential transduers givenin [3, 5℄. The resulting subsequential transduer is minimal.In omparison with the approah of Mehryar Mohri we don't build minimalintermediate transduers for parts of the ditionary whih after deterministiunion have to be minimized again. We are proeeding inrementally word byword building the minimal exept for the last word transduer.2 Mathematial ConeptsIn this setion we present shortly the mathematial basis used in the algorithmfor diret onstrution of minimal subsequential transduers. A more detailedpresentation with the orresponding proofs for the minimal exept for a wordautomata is given in [4℄.2.1 Subsequential TransduersDe�nition 1. A p-subsequential transduer is a tuple T = h�;�; S; s; F; �; �; 	i,where:{ � is a �nite input alphabet;{ � is a �nite output alphabet;{ S is a �nite set of states;{ s 2 S is the starting state;{ F � S is the set of �nal states;{ � : S �� ! S is a partial funtion alled the transition funtion;{ � : S �� ! �� is a partial funtion alled the output funtion;{ 	 : F ! 2�� is the �nal funtion. We will require that 8r 2 F (j	(r)j � p).

The funtion � is extended naturally over S ��� as in the ase for �nite stateautomata:8r 2 S (��(r; ") = r) ; 8r 2 S 8� 2 �� 8a 2 � (��(r; �a) = �(��(r; �); a)):The funtion � is extended over S ��� by the following de�nition:8r 2 S (��(r; ") = "); 8r 2 S 8� 2 �� 8a 2 � (��(r; �a) = ��(r; �)�(��(r; �); a)):The set L(T) = f� 2 �� j��(s; �) 2 Fg is alled the input language of thetransduer T . The subsequential transduer maps eah word from the inputlanguage to a set of at most p output words. The output funtion OT : L(T)!2�� of the transduer is de�ned as follows:8� 2 L(T) (OT (�) = ��(s; �) � 	(��(s; �))):Two transduers T and T 0 are alled equivalent when L(T) = L(T 0) andOT = OT 0 .De�nition 2. Let T = h�;�; S; s; F; �; �; 	i be a subsequential transduer.1. The state r 2 S is alled reahable from t 2 S, when 9� 2 �� (��(t; �) = r).2. We de�ne the subtransduer starting in s0 2 S as:T js0 = h�;�; S0; s0; F \ S0; �jS0��; �jS0�� ; 	 jF\S0i, where:S0 = fr 2 S j r is reahable from s0g.3. Two states s1; s2 2 S are alled equivalent, when Ajs1 and Ajs2 are equivalent(when L(T js1) = L(T js2) and OT js1 = OT js2).We annot use diretly the minimization algorithms developed for automatabeause in some ases by moving the output labels (or parts of them) along thepaths we an get a smaller transduer. To avoid this we have to use transduerswhih has the property that the output is pushed bak toward the initial stateas far as possible. Mehryar Mohri [5℄ shows that there is a minimal transduerwhih satis�es this property. We will de�ne this more formally bellow.With u ^ v we denote the longest ommon pre�x of the words u and v from�� and with u�1(uv) we denote the word v { the quotient of the left division ofuv by u. For the set of words A = fa1; a2; : : : ; ang with VA we will denote theword VA = a1 ^ a2 ^ : : : ^ an.With D(T) we will denote the set of the pre�xes of L(T):D(T) = fu 2 �� j 9w 2 �� (uw 2 L(T))g:We de�ne the funtion gT : D(T)! �� as follows:gT (") = " ; gT (u) = ^w2�� & uw2L(T)^OT (uw), for u 2 D(T); u 6= ":Now we are ready to de�ne the anonial subsequential transduer.

De�nition 3. The subsequential transduer T = h�;�; S; s; F; �; �; 	i is alledanonial if the following ondition holds:8r 2 S 8a 2 � 8� 2 �� ((��(s; �) = r & !�(r; a))! �(r; a) = [gT (�)℄�1gT (�a))We an see that the ondition above orresponds to the property that theoutput is pushed bak to the initial state as muh as possible.The subsequential transduer T is alled minimal if any other transduerequivalent to T has more or equally many states as T .Theorem 1. For every subsequential transduer T there exists a minimal anon-ial subsequential transduer equivalent to T .Theorem 2. If there are no di�erent equivalent states in the anonial subse-quential transduer T then T is minimal.A more omplete presentation of the minimal subsequential transduers anbe �nd in [5℄).2.2 Minimal Exept for a Word Subsequential TransduerDe�nition 4. Let T = h�;�; S; s; F; �; �; 	i be a subsequential transduer withinput language L(T). Then the transduer T is alled minimal exept for theword ! 2 ��, when the following onditions hold:1. Every state is reahable from the starting state and from every state a �nalstate is reahable;2. ! is a pre�x of the last word in the lexiographial order of L(T);In that ase we an introdue the following notations:! = wT1 wT2 : : : wTk , where wTi 2 � , for i = 1; 2; : : : ; k (1)tT0 = s ; tT1 = �(tT0 ; wT1) ; tT2 = �(tT1 ; wT2) ; : : : ; tTk = �(tTk�1; wTk) (2)T = ftT0 ; tT1 ; : : : ; tTk g (3)3. In the set S n T there are no di�erent equivalent states;4. 8r 2 S 8i 2 f1; 2; : : : ; kg 8a 2 � (�(r; a) = ti $ (i > 0 & r = ti�1 & a =wTi));5. T is a anonial subsequential transduer.Example 1. An ayli 2-subsequential transduer over the input alphabet fa; b; gis given on Figure 1. The input language of the transduer is [fapr, aug, de, feb,jan, julg.℄ The output funtion of the transduer is: O(apr) = f30g;O(aug) =f31g;O(de) = f31g;O(feb) = f28; 29g;O(jan) = f31g;O(jul) = f31g. Thistransduer is minimal exept for the word jul.Proposition 1. A subsequential transduer whih is minimal exept for theempty word " is minimal.

Fig. 1. Subsequential transduer minimal exept for jul.Lemma 1. Let the subsequential transduer T = h�;�; S; s; F; �; �; 	i be min-imal exept for ! = w1w2 : : : wk, ! 6= ". Let there be no state equivalent to tk inthe set S n T . Then T is also minimal exept for the word !0 = w1w2 : : : wk�1.Lemma 2. Let the subsequential transduer T = h�;�; S; s; F; �; �; 	i be min-imal exept for ! = w1w2 : : : wk, ! 6= ". Let the state p 2 S n T be equivalent tothe state tk. Then the transduer:T 0 =
�;�; S n ftkg; s; F n ftkg; �0; �jSnftkg�� ; 	 jSnftkg� where:�0(r; a) = 8<:�(r; a) , in ase r 6= tk�1 _ a 6= wk and �(r; a) is de�nedp , in ase r = tk�1; a = wknot de�ned otherwiseis equivalent to the transduer T and is minimal exept for the word !0 =w1w2 : : : wk�1.Lemma 3. Let the subsequential transduer T = h�;�; S; s; F; �; �; 	i be min-imal exept for ! = w1w2 : : : wk. Then for tk holds the following statement:tk is equivalent to r 2 S n T $((tk 2 F $ r 2 F) & (tk 2 F ! 	(tk) = 	(r)) &8a 2 � ((:!�(tk ; a) & :!�(r; a)) _ (!�(tk; a) & !�(r; a) &

�(tk; a) = �(r; a) & �(tk ; a) = �(r; a))):Theorem 3. Let the subsequential transduer T = h�;�; S; s; F; �; �; 	 i beminimal exept for !0 = w1w2 : : : wm. Let 2 L(T) be the last word in thelexiographial order of the input language of the transduer. Let ! be a wordwhih is greater in lexiographial order than . Let the � 2 �� be the out-put for !. Let !0 be the longest ommon pre�x of and !. In that ase wean denote ! = w1w2 : : : wmwm+1 : : : wk; k > m. Let us use Wn to denote theword Wn = w1w2 : : : wn ; n = 1; 2; : : : ; k and W0 = ". Let us use �n to de-note the word �n = ��(t0;Wn) ^ � . Let us de�ne the subsequential transduerT 0 = h�;S0; s; F 0; �0; �0; 	 0i as follows:tm+1; tm+2; : : : ; tk are new states suh that S \ ftm+1; tm+2; : : : ; tkg = ;S0 = S [ftm+1; tm+2; : : : ; tkgF 0 = F [ftkg�0(r; a) =8>><>>: ti+1 , in ase r = ti;m � i � k � 1; a = wi+1�(r; a) , in ase r 2 S and �(r; a) is de�ned andr 6= tm _ a 6= wm+1is not de�ned otherwise�0(r; a) = 8>>>>>>>><>>>>>>>>:
�(r; a) , in ase r = S n ft0; t1; : : : ; tkg_(r = t0 & a 6= w1)[�n�1℄�1�n , in ase r = tn�1; a = wn; n = 1; 2; : : : ;m[�n℄�1��(t0;Wna) , in ase r = tn; a 6= wn+1; n = 1; 2; : : : ;m[�m℄�1� , in ase r = tm; a = wm+1" , in ase r = tn; a = wn+1; n = m+ 1; : : : ; k � 1is not de�ned otherwise	 0(r) = 8>><>>:	(r) , in ase r 62 ft1; t2; : : : ; tkg & r 2 Ff"g , in ase r = tk[�n℄�1��(t0;Wn) � 	(r) , in ase r = tn 2 F; n = 1; 2; : : : ;mis not de�ned otherwiseThen the subsequential transduer T 0 is minimal exept for !, and the followingholds: L(T 0) = L(T) [f!g, OT 0 jL(T) = OT and OT 0(!) = f�g.Theorem 4. Let the subsequential transduer T = h�;�; S; s; F; �; �; 	 i beminimal exept for ! = w1w2 : : : wk and ! 2 L(T) be the last word in thelexiographial order of the input language of the transduer. Let � 2 �� be anew output for !, suh that � 62 OT (!). Let us use Wn to denote the wordWn = w1w2 : : : wn ; n = 1; 2; : : : ; k and W0 = ". Let us use �n to denotethe word �n = ��(t0;Wn) ^ � . Let us de�ne the subsequential transduer T 0 =h�;S; s; F; �; �0; 	 0i as follows:�0(r; a) = 8>><>>:�(r; a) , in ase r = S n ft0; : : : ; tkg _ (r = t0 & a 6= w1)[�n�1℄�1�n , in ase r = tn�1; a = wn; n = 1; 2; : : : ; k[�n℄�1��(t0;Wna) , in ase r = tn; a 6= wn+1; n = 1; 2; : : : ; k � 1is not de�ned otherwise

	 0(r) =8>>>><>>>>:	(r) , in ase r 62 ft1; t2; : : : ; tkg & r 2 F[�n℄�1��(t0;Wn) � 	(tn) , in ase r = tn 2 F; n = 1; 2; : : : ; k � 1[�k℄�1��(t0;Wk) � 	(tk)[[f[�k℄�1�g , in ase r = tkis not de�ned otherwiseThen the subsequential transduer T 0 is minimal exept for !, and the followingholds: L(T 0) = L(T), OT 0 jL(T)nf!g = OT jL(T)nf!g and OT 0(!) = OT (!) [f�g.We an use the proving shema introdued in [4℄ to prove the lemmae andtheorems for minimal exept for a word subsequential transduer. The only dif-ferene is that we have to hek that the resulting transduers are anonial.We an use the following equations for an eÆient omputation of the fun-tions �0 and 0 for the last two theorems.
1 = �(t0; w1) ^ � ; l1 = �11 �(t0; w1) ; �1 = �11 ��
2 = (l1�(t1; w2)) ^ �1 ; l2 = �12 (l1�(t1; w2)) ; �2 = �12 �1�
3 = (l2�(t2; w3)) ^ �2 ; l3 = �13 (l2�(t2; w3)) ; �3 = �13 �2�...
m = (lm�1�(tm�1; wm)) ^ �m�1; lm = �1m (lm�1�(tm�1; wm)); �m = �1m �m�1�We an alulate n; ln; �n iteratively for n = 1; 2; : : : ;m.We an proove by indution that:n = [��(t0;Wn�1) ^ � ℄�1(��(t0;Wn) ^ �)ln = [��(t0;Wn) ^ � ℄�1��(t0;Wn)�n = [��(t0;Wn) ^ � ℄�1�for n = 1; 2; : : : ;m. Hene we have that:�0(tn�1; wn) = n�0(tn; a) = ln�(tn; a)	 0(tn) = ln � 	(tn)for a 6= wn+1; n = 1; 2; : : : ;m, and�0(tm; wm+1) = �m for Theorem 3, or	 0(tk) = lk � 	(tk) for Theorem 4.Now we an proeed with the desription of our method for diret buildingof minimal subsequential transduer for a given sorted list of words.Let a non-empty �nite list of words L in lexiographial order be given. Letfor every word in L the orresponding output is given. Let !(i) denotes the i-th

word of the list and � (i) denotes the output of the i-th word. We start with theminimal anonial subsequential transduer whih reognizes only the �rst wordof the list and outputs the output for the �rst word. This transduer an be builttrivially and is also minimal exept for !(1). Using it as a basis we arry out anindution on the words of the list. Let us assume that the transduer T (n) withlanguage L(n) = f!(i) j i = 1; 2; : : : ; ng has been built and that A(n) is minimalexept for !(n) and OT (n)(!(i)) = � (i) for i = 1; 2; : : : ; n. We have to build theTransduer T (n+1) with language L(n+1) = f!(i) j i = 1; 2; : : : ; n + 1g whih isminimal exept for !(n+1) and OT (n+1)(!(i)) = � (i) for i = 1; 2; : : : ; n+ 1.Let !0 be the longest ommon pre�x of the words !(n) and !(n+1). Usingseveral times Lemma 1 and Lemma 2 (orresponding to the atual ase) we buildthe transduer T 0 whih is equivalent to T (n) and is minimal exept for !0. Nowwe an use Theorem 3 (or Theorem 4 if !(n) = !(n+1)) to build the transduerT (n+1) with language L(n+1) = L(n)[f!(n+1)g = f!(i) j i = 1; 2; : : : ; n+1gwhihis minimal exept for !(n+1) and OT (n+1)(!(i)) = � (i) for i = 1; 2; : : : ; n+ 1.In this way by indution we build the minimal exept for the last word of thelist transduer with language the list L and the given output. At the end usingagain Lemma 1 and Lemma 2 we build the transduer equivalent to the formerone whih is minimal exept for the empty word. From Proposition 1 we havethat it is the minimal subsequential transduer for the list L and orrespondingoutput.To distinguish eÆiently between Lemma 1 and Lemma 2 we an use theondition given in Lemma 3. utExample 2. Let us onsider the following example. On Figure 1 the transduerminimal exept jul with input language fapr; aug; de; feb; jan; julg and outputfuntion O(apr) = f30g; O(aug) = f31g; O(de) = f31g; O(feb) = f28; 29g;O(jan) = f31g; O(jul) = f31g is given. After the appliation of Lemma 2and Theorem 3 we will onstrut the transduer minimal exept for jun whereO(jun) = f30g. This transduer is given on Figure 2. In this way we are addingthe next word with the orresponding output to the transduer.3 Algorithm for building of minimal subsequentialtransduer for a given sorted listHere we give the pseudo-ode in a Pasal-like language (like the language usedin [1℄). We will presume that there are given implementations for Abstrat DataTypes (ADT) representing transduer state and ditionary of transduer states.Later we presume that NULL is the null onstant for arbitrary abstrat datatype.On Transduer state we will need the following types and operations:1. STATE is pointer to a struture representing a transduer state;2. FIRST CHAR, LAST CHAR : are the �rst and the last har in the inputalphabet;3. funtion NEW STATE : STATE returns a new state;

Fig. 2. Subsequential transduer minimal exept for jun.4. funtion FINAL(STATE) : boolean returns true if the state is �nal andfalse otherwise;5. proedure SET FINAL(STATE, boolean) sets the �nality of the state tothe boolean parameter;6. funtion TRANSITION(STATE, har) : STATE returns the state to whihthe transduer transits from the parameter state with the parameter har;7. proedure SET TRANSITION(STATE, har, STATE) that sets the tran-sition from �rst parameter state by the parameter har to the seond pa-rameter state;8. funtion STATE OUTPUT(STATE) : set of string returns the output setof strings on �nal states;9. proedure SET STATE OUTPUT(STATE, set of string) sets the outputset of strings on �nal states;10. funtion OUTPUT(STATE, har) : string returns the output string for thetransition from the parameter state by the parameter har;11. proedure SET OUTPUT(STATE, har, string) sets the output string forthe transition from the parameter state by the parameter har;12. proedure PRINT TRANSDUCER(�le, STATE) prints the transduer start-ing from the parameter state to �le.Having de�ned the above operations we make use of the following threefuntions and proedures:

1. funtion COPY STATE(STATE) : STATE opies a state to a new one;2. proedure CLEAR STATE(STATE) lears all transitions of the state andsets it to non �nal;3. funtion COMPARE STATES(STATE, STATE) : integer ompares twostatesThe ADT on Ditionary of transduer states uses the COMPARE STATESfuntion above to ompare states. For the ditionary we need the following op-erations:1. funtion NEW DICTIONARY : DICTIONARY returns a new empty di-tionary;2. funtion MEMBER(DICTIONARY,STATE) : STATE returns state in theditionary equivalent to the parameter state or NULL if not present;3. proedure INSERT(DICTIONARY,STATE) inserts state to ditionary.Implementation for the above ADTs ould be found in e.g. [1℄. Now we areready to present the pseudo-ode of our algorithm.Algorithm 5. For diret building of minimal subsequential transduer present-ing the input list of words given in lexiographial order with their orrespondingoutputs.1 program Create Minimal Transduer for Given List (input, output);2 var3 MinimalTransduerStatesDitionary : DICTIONARY;4 TempStates : array [0..MAX WORD SIZE℄ of STATE;5 InitialState : STATE;6 PreviousWord, CurrentWord, CurrentOutput,WordSuÆx, CommonPre�x : string;7 tempString : string;8 tempSet : set of string;9 i, j, Pre�xLengthPlus1 : integer;10 : har;11 funtion FindMinimized (s : STATE) : STATE;12 freturns an equivalent state from the ditionary. If not present {inserts a opy of the parameter to the ditionary and returns it.g13 var r : STATE:14 begin15 r := MEMBER(MinimalTransduerStatesDitionary,s);16 if r = NULL then begin17 r := COPY STATE(s);18 INSERT(r);19 end;20 return(r);21 end; fFindMinimizedg22 begin

23 MinimalTransduerStatesDitionary := NEW DICTIONARY;24 for i := 0 to MAX WORD SIZE do25 TempState[i℄ := NEW STATE;26 PreviousWord := '';27 CLEAR STATE(TempState[0℄);28 while not eof(input) do begin29 fLoop for the words in the input listg30 readln(input,CurrentWord,CurrentOutput);31 f the following loop alulates the length of the longest ommonpre�x of CurrentWord and PreviousWord g32 i := 1;33 while (i<length(CurrentWord)) and (i<length(PreviousWord))and (PreviousWord[i℄ = CurrentWord[i℄) do34 i := i+1;35 Pre�xLengthPlus1 := i;36 fwe minimize the states from the suÆx of the previous word g37 for i := length(PreviousWord) downto Pre�xLengthPlus1 do38 SET TRANSITION(TempStates[i-1℄,PreviousWord[i℄,FindMinimized(TempStates[i℄));39 fThis loop initializes the tail states for the urrent wordg40 for i := Pre�xLengthPlus1 to length(CurrentWord) do begin41 CLEAR STATE(TempStates[i℄);42 SET TRANSITION(TempStates[i-1℄,CurrentWord[i℄,TempStates[i℄);43 end;44 if CurrentWords <> PreviousWord then begin45 SET FINAL(TempStates[length(CurrentWord)℄, true);46 SET OUTPUT(TempStates[length(CurrentWord)℄, f"g);47 end;48 for j := 1 to Pre�xLengthPlus1-1 do begin49 CommonPre�x := OUTPUT(TempStates[j-1℄, CurrentWord[j℄)^ CurrentOutput;50 WordSuÆx := CommonPre�x�1 OUTPUT(TempStates[j-1℄,CurrentWord[j℄);51 SET OUTPUT(TempStates[j-1℄, CurrentWord[j℄,CommonPre�x);52 for := FIRST CHAR to LAST CHAR do begin53 if TRANSITION(TempStates[j℄,) <> NULL then54 SET OUTPUT(TempStates[j℄,,onat(WordSuÆx,OUTPUT(TempStates[j℄,)));55 end;56 if FINAL(TempStates[j℄) then begin57 tempSet := ;;58 for tempString in STATE OUTPUT(TempStates[j℄) do59 tempSet := tempSet [onat(WordSuÆx,tempString);

60 SET STATE OUTPUT(TempStates[j℄, tempSet);61 end;62 CurrentOutput := CommonPre�x�1 CurrentOutput;63 end;64 if CurrentWord = PreviousWord then65 SET STATE OUTPUT(TempStates[length(CurrentWord)℄,STATE OUTPUT(TempStates[length(CurrentWord)℄)[CurrentOutput);66 else SET OUTPUT(TempStates[Pre�xLengthPlus1-1℄,CurrentWord[Pre�xLengthPlus1℄,CurrentOutput);67 PreviousWord := CurrentWord;68 end; fwhileg69 f here we are minimizing the states of the last word g70 for i := length(CurrentWord) downto 1 do71 SET TRANSITION(TempStates[i-1℄,PreviousWord[i℄,FindMinimized(TempStates[i℄));72 InitialState := FindMinimized(TempStates[0℄);73 PRINT TRANSDUCER(output,InitialState);74 end.4 Implementation results and omparisonsBased on the main algorithm for diret building of minimal automata we havereated implementation for diret onstrution of minimal automaton with la-beled �nal states and minimal subsequential transduer. The results are summa-rized in the table bellow. We used a Bulgarian grammatial ditionary of simplewords with about 900000 entries for the experiments. An implementation of thealgorithm given in [3℄ has been used for the onstrution of the pseudo-minimalsubsequential transduer.In [6℄ Mehryar Mohri reports that the onstrution with his method of thep-subsequential transduer for a 672000 entries Frenh ditionary takes 20' on aHP/9000 755 omputer. All our experiments have been performed on a 500MHzPentium III personal omputer with 128MB RAM.Referenes1. A. Aho, J. Hoproft, J. Ullman, Data Strutures and Algorithms, Addison-Wesley,Reading, Massahutes, 1983.2. J. Daiuk, S. Mihov, B. Watson, R. Watson, Inremental Constrution of MinimalAyli Finite State Automata, Computational Linguistis, Vol. 26(1), 2000.3. D. Maurel, Pseudo-minimal transduer, Theoretial Computer Siene, Vol. 231(1),129-139, 2000.4. S. Mihov, Diret Building of Minimal Automaton for Given List, Annuaire del'Universit�e de So�a \St. Kl. Ohridski", Fault�e de Math�ematique et Informatique,volume 91, livre 1, 1998.

Table 1. Comparison between di�erent automata for the representation of a large-salegrammatial ditionary for Bulgarian.Number of lines 895453Initial size 27.5 MBPseudo- MinimalMinimal minimal automatonTransduer Transduer with labeled�nal statesStates 43413 531397 47854Transitions 106809 992412 110791Codes 16378 16378 6016p 5 { {Size of odes 209K { 126KSize of automaton 1.3M { 800KConstrution time 2'35" { 25"Memory used 5M 108M 2.5M5. M. Mohri, Minimization of Sequential Transduers, Leture Notes in ComputerSiene, Springer, Berlin, 1994.6. M. Mohri, On Some Appliations of Finite-State Automata Theory to NaturalLanguage Proessing, Natural Language Engineering, Vol. 2(1), 1-20, 1996.7. M. Mohri, Finite-State Transduers in Language and Speeh Proessing, Compu-tational Linguistis, Vol. 23(2), 269-311, 1997.8. D. Revuz, Ditionaires et lexiques { M�ethodes et algorithmes, Dotoral dissertationin Computer Siene, University Paris VII, Paris, 1991.

