
Functional Database Query Languages asTyped Lambda Calculi of Fixed Order(Extended Abstract)Gerd G. Hillebrand�yBrown Universityggh@cs.brown.edu Paris C. Kanellakis�Brown Universitypck@cs.brown.eduAbstractWe present a functional framework for database query lan-guages, which is analogous to the conventional logical frame-work of �rst-order and �xpoint formulas over �nite struc-tures. We use atomic constants of order 0, equality amongthese constants, variables, application, lambda abstraction,and let abstraction; all typed using �xed order (� 5) func-tionalities. In this framework, proposed in [21] for arbitraryorder functionalities, queries and databases are both typedlambda terms, evaluation is by reduction, and the main pro-gramming technique is list iteration. We de�ne two fami-lies of languages: TLI=i or simply-typed list iteration of or-der i+3 with equality, and MLI=i or ML-typed list iterationof order i+3 with equality; we use i+3 since our list represen-tation of databases requires at least order 3. We show that:FO-queries � TLI=0 � MLI=0 � LOGSPACE-queries �TLI=1 = MLI=1 = PTIME-queries � TLI=2 , where equalityis no longer a primitive in TLI=2 . We also show that MLtype inference, restricted to �xed order, is polynomial in thesize of the program typed. Since programming by using loworder functionalities and type inference is common in func-tional languages, our results indicate that such programssu�ce for expressing e�cient computations and that theirML-types can be e�ciently inferred.1 IntroductionMotivation and Background: The logical frame-work of �rst-order and �xpoint formulas over �nitestructures has been the principal vehicle of theoreticalresearch in database query languages; see [17, 18, 12, 13]for some of its earlier formulations. This framework hasgreatly inuenced the design and analysis of relationaland complex-object database query languages and has�Research supported by ONR Contract N00014-91-J-4052,ARPA Order 8225yCurrently visiting INRIA Rocquencourt, France

facilitated the integration of logic programming tech-niques in databases. The main motivation has been thatcommon relational database queries are expressible inrelational calculus and algebra [17], Datalog: and vari-ous �xpoint logics [4, 5, 29, 13, 14]. Most importantly, asshown in [23, 38], every PTIME query can be expressedusing Datalog: on ordered structures; and, as shownin [4], it su�ces to use Datalog: syntax under a varietyof semantics to express various �xpoint logics. In addi-tion, extensions have been proposed to this frameworkto manipulate complex-object databases, based on high-order formulas over �nite structures, e.g., [2, 1]; see [3]for a short overview.Despite the success of logical frameworks, it is notclear how to use them for the description and manipu-lation of object-oriented databases . Functional program-ming , with its emphasis on abstraction and on datatypes, might provide more insight into object-orienteddatabase problems. There is a growing body of workon functional query languages, from the early FQL lan-guage of [11] to the more recent work on structural re-cursion as a query language [8, 10, 9, 25, 39]. In thiscontext, it is natural to ask: \Is there a functional ana-log of the logical framework of �rst-order and �xpointformulas over �nite structures?" In [21] we partly an-swered this question by computing on �nite structureswith the typed �-calculus. In this paper, we continueour investigation with a focus on �xed order fragmentsof the typed �-calculus, where order is a measure of thenesting of type functionalities. We show that these frag-ments are functional analogs of relational calculus andalgebra and of �xpoint characterizations of PTIME.The simply typed �-calculus [15] (typed �-calculusor TLC for short) with its syntax and beta-reductionstrategies can be viewed as a framework for databasequery languages which is between the declarative calculiand the procedural algebras. We use the \Curry view"of TLC without type annotations and infer monomor-phic or simple types. We also use TLC=, the typed�-calculus with atomic constants and an equality onthem, and the associated delta-reduction of [15]. Byadding let-polymorphism to TLC, Milner's ML lan-1



guage [34, 35] combines the convenience of type infer-ence and the exibility of polymorphism. So we alsoconsider ML-typings. We refer to Section 2 for thenecessary background in TLC (Section 2.1), ML (Sec-tion 2.2, and list iteration (Section 2.3).The expressive power of TLC was originally analyzedin terms of computations on simply typed Church nu-merals (see, e.g., [6, 19, 36]). Unfortunately, the simplytyped Church numeral input-output convention imposessevere limitations on expressive power. Only a fragmentof PTIME is expressible this way (i.e., the extendedpolynomials). This does not illustrate the full capabil-ities of TLC. That more expressive power is possiblefollows from the fact that provably hard decision prob-lems can be embedded in TLC, see [37, 33], and thatdi�erent typings allow exponentiation [19].One way of expressing all of PTIME, while avoid-ing the anomalies associated with representations overChurch numerals was recently demonstrated by Leivantand Marion [31]. By augmenting the simply typedlambda calculus with a pairing operator and a \bottomtier" consisting of the free algebra of words over f0; 1gwith associated constructor, destructor, and discrimi-nator functions, they obtained various calculi in whichthere exist simple characterizations of PTIME. (SinceCobham's early work there have been a number of in-teresting functional characterizations of PTIME, e.g.,[16, 20, 7]). In summary, to exhibit the power of TLCone must add features as in [31] or modify the input-output conventions.In [21] we re-examined the expressive power of thetyped �-calculus, but over appropriately typed encod-ings of �nite structures. We examined both the \pure"TLC and the \impure" TLC= and we obtained the fol-lowing results: (1) TLC expresses exactly the elemen-tary queries and, thus, is a functional language for thecomplex-object queries of [1]. (2) Every PTIME-querycan be embedded in TLC so that its evaluation can beperformed in polynomial time with the proper reductionstrategy. (3) Every PTIME-query can be embedded inTLC=, where the order of type functionalities is 4, sothat its evaluation can be performed in polynomial timewith the proper reduction strategy.In this paper we analyze �xed order fragments of TLCand TLC=. More speci�cally we use: atomic constantsof order 0, equality among these atomic constants, vari-ables, application, lambda abstraction, and let abstrac-tion; all typed using at most order 5 functionalities. Inthis framework queries and databases are both typedlambda terms, evaluation is by reduction, and the mainprogramming technique is list iteration. We de�ne twofamilies of languages: TLI=i or simply-typed list itera-tion of order i+3 with equality, and MLI=i or ML-typedlist iteration of order i+3 with equality (we use i+3 sinceour list representation of databases requires at least or-

der 3). Our input-output conventions are detailed inSection 3, for inputs (Section 3.1) and for queries (Sec-tion 3.2). We assume knowledge of the logical databaseframework.Contributions: Our new results are detailed in Sec-tions 4{7 and are as follows:(1) In Section 4.1 we show that: FO-queries �TLI=0 � MLI=0 . These proofs are variants of thosein [21], but on encodings that are more economical inorder of functionality. We also show that by varyingthe typing of equality (but not its order) it is pos-sible to express Parity, Majority and other non-FOqueries. In Section 4.2 we briey review the embeddingof PTIME-queries in TLI=1 of [21] and illustrate the useof types. For all these programs there are PTIME re-duction strategies.(2) In Section 5 we investigate the exibility of ML-typing. We show that for �xed order functionalities ML-type inference is PTIME in the size of programs. In gen-eral, type inference is EXPTIME-complete in the sizeof programs [26, 27]. Thus, in our MLI languages typeinference is provably e�cient. These languages do sim-plify our calculations. For example, PTIME-queries �MLI=1 is provable without any of the \type laundering"techniques of [21].(3) In Section 6 we present the main analytic resultsof this paper. These are upper bounds on the express-ibility of the TLI=i and MLI=i languages for i = 0; 1. Toshow these upper bounds we have to reason based on ourinput-output conventions. More speci�cally we provethat: TLI=1 � MLI=1 � PTIME-queries and TLI=0 �MLI=0 � LOGSPACE-queries. These proofs involve ananalysis of the structure of programs (Section 6.1) andan evaluator of programs (Section 6.2), which uses re-duction plus specialized data structures. One conse-quence of this analysis is a functional characterizationof PTIME that di�ers from those of [16, 20, 7, 31] inthe sense of having the fewest additions to TLC|justequality over atomic constants.(4) In Section 7 we show that every PTIME-querycan be embedded in TLI2, or TLC where the order oftype functionalities is 5, so that its evaluation can beperformed with a PTIME reduction strategy. This im-proves on [21] since it removes equality and still uses�xed order.Finally, we would like to note that our analysis (ex-cept for the ML type inference) is for terms of order 5or less. Beyond order 5 we believe (although we havenot worked out the details here) that it should be possi-ble to combine our basic machinery with the reductionsof [28, 22, 30] to express various exponential time andspace classes.We close with some open questions in Section 8.2



2 Programming in the Typed LambdaCalculus2.1 The Simply Typed Lambda Calculus:TLC and TLC=TLC: The syntax of TLC types is given by the gram-mar T � t j (T ! T ), where t ranges over a set oftype variables . Thus, � is a type, as are (� ! �) and(� ! (� ! �)). TLC �-terms are given by the gram-mar E � x j (EE) j �x: E , where x ranges over a set ofexpression variables , and by well-typedness . As usual,the type � ! � !  stands for � ! (� ! ) and the�-term P QR stands for (P Q)R.Well-typedness of expressions is de�ned by the follow-ing inference rules, where � is a function from expres-sion variables to types, and � [x: �] is the function �0augmenting or updating � with �0 (x) = �:(Var) � (x) = �� ` x: �(Abs) � [x:�] ` e:�0� ` �x: e:� ! �0(App) � ` e:� ! �0 � ` e0:�� ` e e0:�0We call a �-term E well-typed (or just typed) if � ` E:�is derivable by the above rules, for some � and �.In the above de�nition, we have adopted the \CurryView" of TLC, where types are inferred for unadornedterms using the (Var), (Abs), and (App) rules. Equiva-lently, we could have chosen the \Church View," wheretypes and terms are de�ned together and �-bound vari-ables are annotated with their type (i.e., we would have�x: �: e instead of �x: e in the (Abs) rule). In fact, in ourencodings below we will often provide type annotationsto make the type of a term clear.For typed �-terms e; e0, we write e��e0 (�-reduction)when e0 can be derived from e by renaming of a �-boundvariable, for example �x: �y: y �� �x: �z: z. We writee �� e0 (�-reduction) when e0 can be derived from eby replacing a subterm in e of the form (�x:E)E0 byE [x: = E0] (E with E0 substituted for all free occur-rences of x in E). Reduction preserves types. Let � bethe reexive, transitive closure of �� and ��.TLC=: We obtain TLC= by enriching the simply-typed �-calculus syntax with: (1) a countably in�niteset fo1; o2; : : :g of atomic constants of type o (some �xedtype variable), and (2) introducing an equality con-stant Eq of type o ! o ! � ! � ! � (for some �xedtype variable � di�erent from o). The type inferencesystem is the same with one modi�cation: the �'s musttreat the constants as free variables associated with the�xed types o and o! o ! � ! � ! � , respectively.

The reduction rules of TLC= are obtained by enrich-ing the operational semantics of TLC as follows. Forevery pair of constants oi; oj : o, we add to � the reduc-tion rule(Eq oi oj)���x: �: �y: �: x if i = j,�x: �: �y: �: y if i 6= j.These are known as delta reductions.TLC and TLC= enjoy the following properties, see[15, 6]:Church-Rosser: If e� e0 and e� e00, then there existsa �-term e000 such that e0 � e000 and e00 � e000.Strong normalization: For each e, there exists an in-teger n such that if e� e0, then the derivation involvesno more than n individual �-reductions.Principal Type: A typed �-term E has a principaltype, that is a type from which all other types can beobtained via substitution.Type Inference: One can show that given E it is de-cidable in linear time whether E is a typed �-term.Also, given � ` E:� it is decidable in linear time ifthis statement is derivable by the above rules. (Boththese algorithms use �rst-order uni�cation, e.g., see [26].They work with or without type annotations and withor without constants in the �'s.)Functionality Order: The order of a type, whichmeasures the higher-order functionality of a �-term ofthat type, is de�ned as order (t) = 0 for a type variable t,and order (�0 ! �00) = max (1 + order (�0); order (�00)).We also refer to the order of a typed �-term as the orderof its type. Note that, the order of the �xed type vari-ables o and � is 0. The above de�nitions and propertieshold for fragments of TLC and TLC=, where order ofterms is some �xed k. In such fragments we use theabove inference rules (Var), (Abs), and (App), but withall types restricted to order k.2.2 let-Polymorphism: Core-MLCore-ML: The syntax of core-ML is the syntax ofTLC augmented with one new expression construct:E � x j (EE) j �x: E j let x = E in E . The simplestway of explaining ML types involves the same monomor-phic types and rules (Var), (Abs), and (App) used forTLC with one additional rule that captures the poly-morphism (see [26]):(Let) � ` e0:�0 � ` e [x: = e0]:�� ` let x = e0 in e : �We call a �-term E ML-typed if � ` E:� is derivableby the (Var), (Abs), (App), and (Let) rules, for some� and �. The operational semantics for let x = M inN is the same as for (�x:N)M . So core-ML has thesame expressive power as TLC. However, core-ML al-lows more exibility in typing.3



For example, let x = (�z: z) in (xx) is in core-ML but (�x: x x) (�z: z) is not in TLC; the equivalentprogram in TLC is what we get after one reduction of(�x: x x) (�z: z), namely (�z: z) (�z: z).The analogous de�nitions, expressibility, principaltype and type inference properties hold for core-ML=,where constants and their equality are added as inTLC=. Order of functionality is de�ned in the sameway. There are two di�erences: (1) Type inference is nolonger in linear time but EXPTIME-complete [26, 27].(2) Arbitrary order core-ML, core-ML=, TLC, andTLC= all have the same expressive power, but for �xedorder type inference allows more core-ML than TLCprograms to be typed, so it might provide more express-ibility.2.3 Elementary Recursion via List IterationWe briey review how list iteration works. Supposefx1; x2; : : :; xkg is a set of �-terms, each of type �; thenL � �c:�! � ! �: �n:�: c x1 (c x2 : : : (c xk n) : : :)is a �-term of type (� ! � ! �) ! � ! �, for anytype �|in other words, L is a typable term no matterwhat type � we choose (though one �xed term mustbe chosen when we compute). We abbreviate this listconstruction as [x1; x2; : : :; xk]; the variables c and nabstract over the list constructors Cons and Nil. Listiteration implements various cases of primitive recur-sion.For example, a standard coding of Boolean logic usesTrue � �x: �: �y: �: x and False � �x: �: �y: �: y, bothof type Bool � � ! � ! � . De�ne the exclusive oras Xor � �p:Bool: �q:Bool: �x: �: �y: �: p (q y x) (q x y),and the parity of a list of Boolean values asParity � �L: (Bool ! Bool! Bool)! Bool ! Bool:LXor False:Unlike circuit complexity, the size of the programcomputing parity is constant, because the iterative ma-chinery is taken from the data, i.e., the list L. Listiteration is a powerful programming technique, whichcan be used in the context of TLC and TLC= to encodeany elementary recursion [37, 33]. However, some careis needed if one is to maintain well-typedness [21].3 Representing Databases and Queries3.1 Databases as Lambda TermsRelations are represented in our framework as follows.Let O = fo1; o2; : : :g be the set of constants of the TLC=calculus. For convenience, we assume that this set ofconstants also serves as the universe over which relationsare de�ned.

Let r = f(o1;1; o1;2; : : :; o1;k); (o2;1; o2;2; : : :; o2;k); : : :;(om;1; om;2; : : :; om;k)g � Ok be a k-ary relation over O.The encoding r of r is the �-term�c: �n:(c o1;1 o1;2 : : : o1;k(c o2;1 o2;2 : : : o2;k� � �(c om;1 om;2 : : : om;k n) : : :));which can be thought of as a generalized Church nu-meral that not only iterates a given function a certainnumber of times, but also provides di�erent data at eachiteration.If r contains at least two tuples, the principal typeof r is (o ! � � � ! o ! � ! �) ! � ! �, where� is a free type variable.1 The order of this type is 2,independent of the arity of r. We abbreviate this typeas o�k . Instances of this type, obtained by substitutingsome type expression � for �, are abbreviated as o�k, or,if the exact nature of � does not matter, as o�k.It is fairly easy to see that a principal type of o�kcharacterizes the generalized Church numerals in thefollowing sense:Lemma 3.1 Let f be any TLC= term without free vari-ables and in normal form (i.e., with no beta- or delta-reduction possible) of type o�k , where � is a type variabledi�erent from o. Then either f � �c: c o1;1 : : : o1;k orf � r for some relation r � Ok.Remark: Since the two terms �c: c o1;1 : : : o1;k and�c: �n: c o1;1 : : : o1;k n, �-convert (see [6]) to each other,they cannot be distinguished at the type level. For thisreason, we allow both forms as valid representations ofrelations containing just one tuple.3.2 Query LanguagesWe now de�ne our query languages. For purposes ofcomparison we use the same syntax in both TLI andMLI de�nitions. That is, in MLI we interpret the out-ermost �'s as let's. The other let's in MLI can beeliminated, without problems of expressibility or (as welater show) type inference.De�nition 3.2 A query program of arity (k1; : : :; kl; k)in TLI=i (the language of typed list iteration of orderi + 3 with equality) is a typed TLC= term Q of orderi+ 3 such that: Q has the form �R1 : : : �Rl:M and forevery database of arity (k1; : : :; kl) encoded by r1 : : : rl itis possible to type (�R1 : : : �Rl:M) r1 : : : rl as o�k.1If r is empty or contains only one tuple, this type is only aninstance of the principal type of r.4



De�nition 3.3 A query program of arity (k1; : : :; kl; k)in MLI=i (the language of ML-typed list iteration of or-der i+ 3 with equality) is a typed core-ML= term Q oforder i + 3 such that: Q has the form �R1 : : : �Rl:Mand for every database of arity (k1; : : :; kl) encoded byr1 : : : rl it is possible to type (�R1 : : : �Rl:M) r1 : : : rlas o�k with the bindings �R1 : : : �Rl typed as let's.These de�nitions are semantic because they involvequanti�cation over all inputs. By Lemma 3.1 and thefact that � is a type variable di�erent from o, it is easy tosee that every program in these languages is guaranteedto have a correct output given correct inputs. Thesesemantic de�nitions can be made syntactic:Lemma 3.4 Given (k1; : : :; kl; k) and a typed �-term(�R1 : : : �Rl:M) of TLC= or core-ML= of order i + 3one can e�ciently decide if it is a query of TLI=i orMLI=i . Moreover, all inputs to this term can be typedwith the same monomorphic type.In the setting of these query languages input and out-put terms are monomorphically typed. Unlike [19, 36],we allow that the monomorphic types of inputs and out-puts di�er. Outputs are always typed as o�k but inputscan be typed as o�k. This convention is necessary forexpressing all of PTIME.4 Embedding Database Queries inTLI=0 and TLI=1To illustrate the power of list iteration, we show howto express various well-known database queries in TLI=0and TLI=1 . Our encodings show that TLI=0 expressesrelational algebra and that TLI=1 expresses all PTIMEqueries. If, in addition to the typing Eq: o ! o !� ! � ! � prescribed in Section 2.1, we also allowEq to be typed as Eq: o ! o ! o ! o ! o (therebyintroducing a weak form of polymorphism), we obtain aversion TLI'0 of TLI=0 that expresses relational algebra,parity, majority, and (deterministic) graph accessibility.4.1 Embeddings in TLI=0 and TLI'0Relational Algebra: In [21], we showed how to ex-press relational algebra using list iteration. Due to adi�erent input/output format, our encodings involved�-terms of order 5. With straightforward modi�cations,these terms work under the present input/output con-ventions and the rank drops down to 3. We give theCartesian product and intersection operators as exam-ples and refer the reader to [21] for the other operators.Times: o�k ! o�l ! o�k+l ��R: o�k: �S: o�l :�c: o ! � � � ! o ! � ! �: �n: �:R (�x1: o : : : �xk : o: �T : �:

S (�y1: o : : : �yl: o: �U : �:c x1 : : : xk y1 : : : yl U)T )nIntersection: o�k ! o�k ! o�k ��R: o�k: �S: o�k:�c: o ! � � � ! o! � ! �: �n: �:R (�x1: o : : : �xk: o: �T : �:(Member x1 : : : xk S) (c x1 : : : xk T )T )nwhereMember: kz }| {o ! � � � ! o! o�k ! Bool ��x1: o : : : �xk: o: �R: o�k:�u: �: �v: �:R (�y1: o : : : �yk: o: �T : �:Eq x1 y1 (Eq x2 y2 : : : (Eq xk yk uT )T ) : : : T ) vParity: The following term computes whether a rela-tion R contains an odd or even number of tuples. Ifthe cardinality of R is even, the output is the singletonlist [1], otherwise it is the singleton list [0] (here 0 and 1are TLC constants). The type of Eq in this example iso! o ! o ! o! o, i.e., this term is a TLI'0 query.Parity: ook ! o�1 ��R: ook:�c: o ! � ! �: �n: �:c (R (�x1: o : : : �xk: o: �P : o: (EqP 0) 1 0) 0)nMajority: Here the input consists of a binary rela-tion R, where each tuple contains a unique constant inthe �rst column (to make the tuple unique) and eitherthe constant 1 or the constant 0 in the second column.The task is to determine whether there are more 1'sthan 0's in the second column. The following term de-cides this, reducing to [1] if the answer is \yes" andto [0] otherwise. It uses the \labels" in the �rst columnof R as numbers, treating the (unique) constant in the�rst column of the i-th tuple of R as the number i� 1.Again, this term is a TLI'0 query.Majority: oo2 ! o�1 ��R: oo2:�c: o ! � ! �: �n: �:c (CompareR(R (�x1: o: �x2: o: �T : o:(Eq x2 1) (SuccR T )T )FirstR)(R (�x1: o: �x2: o: �T : o:(Eq x2 0) (SuccR T )T )FirstR)0 0 1)nHere, FirstR, SuccR, and CompareR are functions thatoperate on the \labels" in the �rst column of R. FirstR5



returns the label of the �rst tuple in R, (SuccR x) re-turns the label of the tuple following the one labeled x,and (CompareR x y a b c) compares the positions in R ofthe tuples labeled x and y, reducing to a if x precedes y,to b if x and y are equal, and to c if y precedes x. Theseterms can be written as follows:FirstR �R (�x1: o: �x2: o: �T : o: x1) 0(SuccR x) �R (�x1: o: �x2: o: �T : o:CompareR x1 xT T x1) x(CompareR x y a b c) �R (�x1: o: �x2: o: �T : o:Eq x y b (Eq x1 x a (Eq x1 y c T ))) bDeterministic Graph Accessibility: Suppose thatG is a directed graph in which each node has at most oneoutgoing edge. The (deterministic) graph accessibilityproblem consists of determining, for two given vertices(u; v), whether there is a path in G from u to v. Weassume that G is given as a binary relation R containingtuples of the form �x;Parent (x)� and that S is a binaryrelation containing a single tuple (u; v). The followingTLI'0 term decides whether u is an ancestor of v in G,reducing to [1] if the answer is \yes" and to [0] otherwise.The idea is to use the list R twice: in an inner loop, tocompute the parent of a vertex, and in an outer loop,to iterate the parent operation until either the desiredvertex is found or jRj iterations have been done.DGAP: oo2 ! oo2 ! o�1 ��R: oo2: �S: oo2:�c: o ! � ! �: �n: �:c (S (�uv: o: �W : o:Eq v (Ancestor u) 1 0) 0)n;where(Ancestor u) �R (�x1: o: �x2: o: �T : o: (Eq T v)T (ParentT )) uand(Parent v) � R (�x1: o: �x2: o: �T :o: (Eq x1 v)x2 T ) vIt is interesting to note that deterministic graph acces-sibility is LOGSPACE-complete for �rst-order reduc-tions [24], but only if vertices can be labeled by tuplesof constants. This means that an instance of the prob-lem consists of a 2 k-ary relation R such that each tuple(x1; : : :; xk; y1; : : :; yk) 2 R denotes an edge from the ver-tex labeled (x1; : : :; xk) to the vertex labeled (y1; : : :; yk).It seems that this more general version of graph ac-cessibility cannot be expressed in TLI'0 , since it requireslist iteration over tuples of constants, which cannot be

encoded as TLC= objects of order 0. Thus, the expres-sive power of TLI'0 appears to fall short of LOGSPACE.It is possible to express all of LOGSPACE by adding tu-ples of constants as primitive objects to the language,but this would sacri�ce the simplicity of the frameworkto some extent. (It can be shown that the TLI=0 �LOGSPACE result of Section 6 holds true even if TLI=0is augmented with a polymorphic equality and tuples;so TLI'0 + tuples = LOGSPACE.)4.2 Embeddings in TLI=1TLI=0 is not powerful enough to compute �xpoints ofrelational queries, because the language only allows theiteration of mappings from order-zero objects to order-zero objects. It is necessary to go to TLI=1 in order toiterate mappings from relations to relations. That TLI=1is su�cient follows from the encodings given in [21], plusthe fact that over a known domain, relations can berepresented by order-one objects, namely characteristicfunctions . The characteristic function fr of a k-ary re-lation r is a TLC= term of type o ! � � � ! o ! Bool,such that for any k constants oi1 ; : : :; oik ,(fr oi1 : : : oik u v)��u if (oi1 ; : : :; oik ) 2 r,v if (oi1 ; : : :; oik ) =2 r.Since the domain of a query can be computed from theinput relations (by forming the union of all columns), itis possible to write �-terms FuncToList and ListToFuncthat translate between the iterator and characteristicfunction representation of a relation. Using these oper-ators, a �xpoint query can be expressed in TLI=1 essen-tially as follows:� � �R1 : : : �Rl:FuncToList(Crank(�~x: �f:ListToFunc (Q (FuncToList f)))(ListToFunc Nil));where Q = �R:Q0 is the encoding of the �rst-orderquery to be iterated (with R1; : : :; Rl occurring freein Q), Nil = �c: �n: n denotes the empty list, and Crankis a su�ciently large cross product of the input relations,serving as a \crank" to iterate Q a polynomial numberof times.As explained in [21], additional care is necessary tomake � typable using monomorphic types. This is be-cause the inputs R1; : : :; Rl are used to iterate both overorder-one objects (in Crank) and over order-zero objects(in Q). With monomorphic types, this is normally im-possible. However, [21] shows how to get around thisproblem by introducing a \type-laundering" operatorthat essentially turns iterations over order-zero objectsinto iterations over order-one objects. By using this6



operator inside Q, the term � becomes typable in themonomorphic type system.A much simpler way around this problem is the useof let-polymorphism: By rewriting � aslet R1 = r1 in : : : let Rl = rl inFuncToList(Crank(�~x: �f:ListToFunc (Q (FuncToList f)))(ListToFunc Nil));where r1; : : :; rl are the encodings of the input relations,the variables R1; : : :; Rl are declared to be polymorphic,so it does not matter that their occurrences in Crankand Q require di�erent types. We will show in the nexttwo sections that the presence of let does not a�ect theexpressive power of TLI=1 and that for �xed order, let-expressions can be type checked in polynomial time, sothe introduction of let-polymorphism facilitates a morenatural programming style at no additional cost.5 The Bene�ts of let-Polymorphismand MLI=1As shown in the previous section, ML polymorphismprovides exibility in programming �xpoints. The letconstruct is used in the various MLI's to receive theinputs, but also can be used in the body of the program.The occurrences of let in the program body can beeliminated by reduction at the expense of program bodylength [26]. A problem with use of let in the programbody is that type inference may become ine�cient. Weshow, however, that the �xed order restriction can beused to eliminate this ine�ciency.Theorem 5.1 For each �xed k, type inference in or-der k core-ML= is polynomial in the program size.The proof has two parts. The �rst part involves therules (Var), (Abs), and (App). In general, to achievePTIME type inference in TLC one must use directedacyclic graph representations of types. For �xed order,we show that tree representations of unbounded fan-outand �xed depth su�ce. The second part involves therule (Let). Using the tree representations of the �rstpart it is possible to produce a polynomial bound onthe fan-out of the tree representations.6 PTIME and the Expressive Power ofTLI=1In this section, we show that TLI=1 and MLI=1 queriescan be evaluated in time polynomial in the size of the in-put relations. The evaluation algorithm is essentially a

�-reduction engine, augmented with certain \optimiza-tions" made possible by the restrictions on the I/O-behavior and the order of the query term. These \op-timizations" ensure that all terms occurring during thereduction sequence are of polynomial size.6.1 The Structure of TLI=1 TermsIn the following, let Q be a �xed TLI=1 or MLI=1 term.We can assume that Q is in normal form, becausethe reduction to normal form can be done in a pre-processing step that does not �gure in the data com-plexity of the query. We can also eliminate all let-expressions from Q by replacing every subterm of theform \let x = N inM" with M [x: = N ] and by agree-ing that variables corresponding to input relations areto be polymorphically typed.It is convenient to introduce some terminology for thesubterms ofQ. SinceQ is in normal form, every subtermof Q is of the form �x1: �x2 : : : �xk : f M1 : : :Ml, wherek; l � 0, x1; : : :; xk and f are variables, and M1; : : :;Mlare terms. An occurrence of a subterm T is called com-plete if k and l are maximal, i.e., if the occurrence is notof the form (�x: T ) or (T S). In this case,M1; : : :;Ml arecalled the arguments of f and f is called the functionsymbol governing the occurrence of Mi for 1 � i � l.It is easy to see that for every occurrence of a subtermof Q, there is a smallest complete subterm containingthat occurrence. In particular, every occurrence of avariable in Q not immediately to the right of a � isthe governing symbol for a well-de�ned (but possiblyempty) set of arguments.In order to simplify the evaluation algorithm, we will�rst preprocess Q into an equivalent query term withcertain structural properties. This transformation is in-dependent of any input relations, i.e., its data complex-ity is O (1). The following de�nition speci�es the specialkind of term the evaluation algorithm operates on.De�nition 6.1 Let Q be a TLI=1 term mapping l rela-tions of arities k1; : : :; kl to a relation of arity k. Q issaid to be in canonical form if the following conditionsare true:1. Q is of the form �R1 : : : �Rl: �c: �n:Q0.2. Every occurrence of Ri in Q0 (where 1 � i � l) is ofthe form Ri (�x1 : : : �xki : �f:M)N T1 : : : Tm, whereki is the arity of the i-th input relation, f is a vari-able of order � 1, M and N are terms of order � 1,and T1; : : :; Tm (where m � 0) are terms of order 0.We call f the accumulator variable for this occur-rence of Ri.3. Every occurrence of Eq in Q0 has exactly 4 argu-ments.4. Every occurrence of c in Q0 has exactly k + 1 argu-ments, where k is the arity of the output relation.5. Every occurrence of n in Q0 has exactly 0 arguments.7



6. The only (free or bound) variables in Q of non-zeroorder are R1; : : :; Rl, c, and accumulator variables.7. Q is in normal form.Lemma 6.2 Let P be a TLI=1 term mapping l rela-tions of arities k1; : : :; kl to a relation of arity k. Thenthere is a TLI=1 term Q in canonical form such thatP and Q de�ne the same database query, i.e., for everylegal input r1; : : :; rl, the normal forms of (P R1 : : : Rl)and (QR1 : : : Rl) encode the same relation. Q can bee�ectively determined from P .The proof involves executing a series of transformationsof P that successively establish properties (1) to (7) ofthe canonical form without changing the semantics of P .For example, property (1) can be established by replac-ing P with �R1: �R2 : : : �Rl: �c: �n: P R1 R2 : : : Rl c nand property (2) can be established by replacing everyoccurrence of Ri in P by (�c: �n:Ri (�x1 : : : �xki : �f:c x1 : : : xki f)n) and reducing to normal form.Lemma 6.3 If Q = �R1 : : : �Rl: �c: �n:Q0 is in canon-ical form, then every complete subterm t of Q0 has theform �~x:M , where ~x is a vector of order-zero variablesand possibly one accumulator variable and M has oneof the following forms:1. Ri (�x1: o : : : �xki : o: �f :�:M)N T1 : : : Tm,2. EqS T U V ,3. c T1 : : : Tk Tk+1,4. f T1 : : : Tm, where f is an accumulator variable,5. x, where x is a variable of order 0 or a constant.(By de�nition of an accumulator variable, ~x contains anaccumulator variable if and only if t is the �rst argumentof an occurrence of some Ri.)Proof: By property (6) of the canonical form, the onlyvariables that may be �-bound inside Q0 are accumula-tor variables and variables of order 0, so only these canoccur in ~x.Let s be the top-level symbol of M , i.e., M =sM1 : : :Mn. By property (6), there are �ve possibilitiesfor s: it can be one of R1; : : :; Rl, in which case prop-erty (2) implies that M is of form (1); it can be Eq, inwhich case property (3) implies form (2); it can be c, inwhich case property (4) implies form (3); it can be anaccumulator variable, in which case form (4) applies; orit can be a variable of order 0 or a constant, in whichcase form (5) applies. 26.2 The Evaluation AlgorithmThe formal speci�cation of the evaluation algorithm istoo long to be included here. Instead, we will give aninformal description of the underlying ideas.An evaluation algorithm for TLI=1 terms essentiallyhas to deal with the �ve kinds of expressions listed inLemma 6.3. Once R1; : : :; Rl are instantiated, these ex-pressions normalize to terms of the form �~x:M , where

~x is a (possibly empty) vector of order 0 variables andM is a �-free term of order 0 built from Eq, c, vari-ables of order 0, and constants. Unfortunately, thesenormal forms can be of exponential size for two rea-sons: (1) an exponential number of occurrences of Eqor (2) an exponential number of occurrences of c. APTIME evaluation algorithm must deal with these twosituations.Problem (1) can be handled by the following obser-vation. Even though a normal form t may containan exponential number of occurrences of Eq, there isonly a polynomial (in the size of the domain) num-ber of di�erent assignments of constants to variablesof type o in t, thus many occurrences of Eq in t mustbe redundant. Suppose that O = fo1; : : :; oNg is thedatabase universe and that t is of the form �~x:M ,whereM is �-free. Let x1; : : :; xm be the variables ofMof type o and let Mi1;:::;im denote the normal form ofM [x1: = oi1 ; : : :; xm: = oim ]. Clearly, Mi1;:::;im does notcontain any occurrences of Eq. Now consider the termM 0 � (Eq x1 o1(Eq x2 o1. . .(Eq xm o1M1;1;:::;1;1(Eq xm o2M1;1;:::;1;2...(Eq xm oN�1M1;1;:::;1;N�1M1;:::;1;N )) : : :)...(Eq x2 o2. . .(Eq xm o1M1;2;:::;1;1(Eq xm o2M1;2;:::;1;2...This term has a polynomial number of occurrencesof Eq arranged as a \decision tree" with the termsMi1;:::;im at its leaves. Furthermore, M 0 is equivalentto M in the sense that for every choice of constants(oi1 ; : : :; oim), the terms M [x1: = oi1 ; : : :; xm: = oim ]and M 0 [x1: = oi1 ; : : :; xm:= oim ] convert to each other.Since the variables x1; : : :; xm must eventually be in-stantiated with constants anyway (the �nal output ofa query does not contain any variables of type o), theevaluation algorithm can return the term t0 � �~x:M 0instead of t without a�ecting the �nal result.Problem (2) can be handled as follows. The termsMi1;:::;im de�ned above are �-free and contain only con-stants, variables of type � , and the symbol c. It is easyto see that each such term must be either a constant, a8



variable, or a list-like structurec o1;1 o1;2 : : : o1;k(c o2;1 o2;2 : : : o2;k� � �(c om;1 om;2 : : : om;k x)) : : :);where x is some variable of type � . If such a term isof exponential size, then only because the list containsmany duplicates. It is easy to see that elimination ofthese duplicates does not a�ect the output relation pro-duced by a query, even though it may cause the com-puted representation of the output to be di�erent (itwill be the duplicate-free version of the original repre-sentation). Thus, the evaluation algorithm is free to re-move duplicates from every termMi1;:::;im it constructs,thereby always returning terms of polynomial size.Using the above polynomial-size representation of or-der 1 terms, the evaluation of a canonical form query�R1 : : : �Rl: �c: �n:Q0 on input r1; : : :; rl now proceedsas a recursive descent into Q0. Subterms of the formRi (�~x: �f:M)N T1 : : : Tm are evaluated by evaluat-ing N �rst and then evaluating the \loop body"M oncefor each tuple in ri, from last to �rst, with ~x bound tothe current tuple and f bound to the result of the previ-ous iteration (in decision tree format). The �nal resultof the loop is then applied to the evaluated values ofT1 : : : Tm.Subterms of the form (EqS T U V ) or (c T1 : : : Tk+1)are evaluated by evaluating the arguments �rst and thenconstructing a decision tree for the result. Finally, sub-terms of the form f T1 : : : Tm are evaluated by substi-tuting the evaluated arguments (which must be order 0terms) into the decision tree for f .It is easy to see that this procedure terminates aftera number of steps polynomial in the size of r1; : : :; rland that the work performed at each steps is polyno-mial as well. Also, it does not matter to the evaluationalgorithm whether R1; : : :; Rl are monomorphically orpolymorphically typed. Hence, we have the followingresult:Theorem 6.4 Database queries de�ned by terms inTLI=1 and MLI=1 can be evaluated in PTIME.Combining this result with the encoding of �xpointqueries in TLI=1 presented in Section 4.2, we obtain:Theorem 6.5 The database queries de�nable by TLI=1and MLI=1 terms are exactly the PTIME queries.Note that TLI and MLI queries can discern the order-ing of the tuples in the input encoding (see, e.g., theCompare operator in Section 4.1), so TLI=1 and MLI=1express all PTIME queries, not just the generic ones.If the evaluation strategy described above is special-ized to TLI=0 and MLI=0 terms, it can be shown that

the resulting algorithm can be performed in logarith-mic space. Thus, we have:Theorem 6.6 Database queries de�ned by terms inTLI=0 and MLI=0 can be evaluated in LOGSPACE.7 Eliminating Equality: PTIME inTLI2Once list iteration over order 2 objects is allowed, it be-comes possible to express PTIME queries in the \pure"calculus, i.e., without Eq and constants. This is doneby coding the constants as projection functions (of or-der 1) and writing a �-term Eq (of order 2) that teststwo projection functions for equality. More precisely, ifthe database universe is the set O = fo1; : : :; oNg, thenthe i-th atom is encoded as the projection function�Ni � �x1 : : : �xN : xiand equality is encoded as�p: �q: �u: �v: p (q u N�1z }| {v : : : v) (q v u N�2z }| {v : : : v) : : : (q N�1z }| {v : : : v u)which, when applied to two projection functions �Ni and�Nj , reduces to �u v: u if i = j and to �u v: v otherwise.Relations are encoded as iterators in the usual way,except that explicit constants are replaced by the cor-responding projection functions. Note that the arityof the projection functions changes with the size of thedatabase universe, so the encoding of a relation r de-pends not only on r itself, but also on the database thatr appears in. The same goes for the equality predicate:di�erent databases may need di�erent encodings of Eq.Hence, in this setting Eq has to be part of the input.It is easy to see that the encoding of �xpoint queriesdescribed in Section 4.2 works unchanged in this newsetting, except that the symbol Eq has to be �-boundat the outermost level. The order of the query termsincreases by 1, because the characteristic function ofa relation now becomes an order 2 object (mapping kprojection functions to a Boolean). It follows that:Theorem 7.1 TLI2 expresses every PTIME query.8 Conclusions and Open ProblemsWe have presented embeddings of database query lan-guages in low order fragments of the typed �-calculus aswell as a new functional characterization of PTIME. Wehave shown that in �xed order fragments of the typed�-calculus there is su�cient expressive power for thePTIME queries and that type inference is e�cient.A number of interesting open problems remain, e.g.:(1) Determine the exact expressive power of TLI=i andMLI=i for i = 0 and various versions of equality. (2) De-termine the expressive power for TLI2, as well as forhigher orders, see [28, 22, 30]. (3) Determine functional9
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