Graph Coloring on Coarse Grained Multicomputers

Assefaw Hadish GebremedHitsabelle Gérin Lassou8
Jens GustedtJan Arne Tellé

aUniv. of Bergen, Norway. email: assefaw@ii.uib.no
PINRIA Rocquencourt, France. email: Isabelle.Guerin-Lasg@inria.fr
CLORIA & INRIA Lorraine, France. email: Jens.Gustedt@]|onia.f
dUniv. of Bergen, Norway. email: telle@ii.uib.no

Abstract

We present an efficient and scalable Coarse Grained Mulpoten (CGM) coloring algo-
rithm that colors a grapks with at mostA + 1 colors wheré) is the maximum degree in
G. This algorithm is given in two variantsandomizedanddeterministic We show that on

a p-processor CGM model the proposed algorithms require dlphtiane of O(%) and

a total work and overall communication cost©f|G|). These bounds correspond to the

average case for the randomized version and to the worstfoathe deterministic variant.

Key words: graph algorithms, parallel algorithms, graph coloringa@e Grained Multi-
computers

1 Introduction

The graph coloring problem deals with the assignment oftpesintegers (col-

ors) to the vertices of a graph such that adjacent verticastiget the same color
and the number of colors used is minimized. A wide range dfweald problems,

among others, time tabling and scheduling, frequency assegt, register alloca-
tion, and efficient estimation of sparse matrices in optatian, have successfully
been modeled using the graph coloring problem. See Lewasid@®994), Gamst
(1986), Chaitin et al. (1981), and Coleman and Moré (198B83bme of the works
in each of these applications respectively. Besides mogledal world problems,
graph coloring plays a crucial role in the field of parallehgautation. In particular,

when a computational task is modeled using a graph wheredtiees represent
the subtasks and the edges correspond to the relationsloipgatnem, graph col-
oring is used in dividing the subtasks into independent thetiscan be performed

Preprint submitted to Elsevier Preprint

concurrently.

The graph coloring problem is known to be NP-complete (seeysand Johnson
(1979)), making heuristic approaches inevitable in pcactlhere exist a number
of sequential graph coloring heuristics that are quiteatiife in coloring graphs en-
countered in practical applications. See Coleman and Nk983) for some of the
popular heuristics. However, due to their inherent seqakbemature, these heuristics
are difficult to parallelize. In fact, in Greenlaw et al. (B)9coloring the vertices
of a graph in a given order where each vertex is assigned th#estcolor that has
not been given to any of its neighbors is shown to be P-comp@bnsequently,
parallel graph coloring heuristics of different flavour thhne effective sequential
coloring heuristics had to be suggested. One of the impbct@mtributions in this
regard is the parallel maximal independent set finding algor of Luby (1986)
and the coloring algorithm based on it. Subsequently, Jand$?lassmann (1993)
improved Luby’s algorithm and in addition usgdaph partitioningas a means to
achieve a distributed memory coloring heuristic based @h@kmessage-passing.
Unfortunately, Jones and Plassmann did not get any spesuiaglieir experimen-
tal studies. Later, Allwright et al. (1995) performed a cargtive study of the
implementations of the Jones-Plassmann algorithm and atieer variations and
reported that none of the algorithms included in the stuéydgd any speedup.
The justification for the usage of these parallel coloringrigtics has been the fact
that they made solving large-scale problems, that couldtiwrwise fit onto the
memory of a sequential machine, possible.

Despite these discouraging experiences, Gebremedhin anda&42000) recently
proposed ashared memoryarallel coloring algorithm that yields good speedup.
Their theoretical analysis using the PRAM model shows thatalgorithm is ex-
pected to provide an almost linear speedup and experimessialts conducted on
the Origin 2000 supercomputer using graphs that arise froite felement methods
and eigenvalue computations validate the theoreticayaizal

The purpose of this paper is to make this successful appifeasiible for a larger
variety of architectures by extending it to the Coarse GadiMulticomputer (CGM)
model of parallel computation; see Dehne et al. (1996). TB&IGnodel makes an
abstraction of the interconnection network among the @eaes of a parallel com-
puter (or network of computers) and captures the efficied@/marallel algorithm
using only a few parameters. Several experiments showlleaGM model is of
practical relevance: implementations of algorithms folaied in the CGM model
in general turn out to be portable, predictable, and efficisee Guérin Lassous
et al. (00a) and Guérin Lassous et al. (00b).

In this paper we propose a CGM coloring algorithm that coboggaphG with at
mostA + 1 colors wheré\ is the maximum degree i@. The algorithm is given in
two variants: one randomized and the other deterministie.sWbw that the pro-

posed algorithms require a parallel time @(%) and a total work and overall

communication cost 0®(|G|). These bounds correspond to the average case for
the randomized version and to the worst-case for the detestia variant.

The remainder of this paper is organized as follows. In $ac® we review the
CGM model of parallel computation and the graph coloringotem. In Section 3
we discuss a good data organization for our CGM algorithnaspasent the ran-
domized variant of the algorithm along with its various sukimes. In Section 4
we provide an average-case analysis of the randomizedithigds time and work
complexity. In Section 5 we show how to derandomize our atlgorto achieve the
same good time and work complexity also in the worst-cag®allyi in Section 6
we give some concluding remarks.

2 Background

2.1 Coarse grained models of parallel computation

In the last decade several efforts have been made to definelsnofdparallel (or
distributed) computation that are more realistic than tlassical PRAM models;
see Fortune and Wyllie (1978) or Karp and Ramachandran {®8@n overview
of PRAM models. In contrast to the PRAM models that suppoaettie number of
processorg is polynomial in the input siz8l, the new models areoarse grained
i.e. they assume that andN are orders of magnitude apart. Due to this assump-
tion, the coarse grained models map much better on existaigtactures where in
general the number of processors is in the order of hundmedite size of the data
to be handled could be in the order of billions.

The introduction oBulk Synchronous ParalldBSP) bridging model for parallel
computation by Valiant (1990) marked the beginning of theeasing research in-
terest in coarse grained parallel computation. The BSP imede later modified
along different directions. For example, Culler et al. (3p8uggested the LogP
model as an extension of Valiant's BSP model in which asymobus execution
was modeled and a parameter was added to better accountiianwaication over-
head. In an effort to define a parallel computation modelrtains the advantages
of coarse grained models while at the same time is simple ¢o(insolves few
parameters), Dehne et al. (1996) suggested the CGM model.

The CGM model considered in this paper is well suited for thgigh of algorithms
that are not too dependent on a particular architecture andasic assumptions of
the model are listed below.
e The model consists gb processors and all the processors have the same size
M = O(N/p) of memory, where\ is the input size.
e An algorithm on this model proceeds in so-callegperstepsA superstep

consists of one phase of local computation and one phasdersprocessor
communication.
e The communication network between the processors can teaayb

The goal when designing an algorithm in this model is to kéepsum total of the
computational cost per processor, the overall commuminatost, and idle time
of each processor withift /s(p), whereT is the runtime of the best sequential
algorithm on the same input, and thpeedup @) is a function that should be as
close top as possible.

To achieve this, it is desirable to keep the number of suppssbf such an algo-
rithm as low as possible, preferably withiM). The rationale here lies in the fact
that, among others, tHatencyand thebandwidthof an architecture determine the
communication overhead. Latency is the minimal time a ngssa&eds tatartup
before any data reaches its destiny and bandwidth is thealbybroughput per
time unit of the communication network. In each superstgupaessor may need
to do at mosO(p) communications and hence a number of superstepg\f en-
sures that the total latency is at m&@tM p) = O(N) and therefore lies within the
complexity bound of the overall computational cost we apéte for such an algo-
rithm. The bandwidth restriction of a specific platform masl be observed, and
here the best strategy is to reduce the communication voasmeuch as possible.
See Guérin Lassous et al. (00a) for an overview of algostimplementations and
experiments on the CGM model.

As a legacy from the PRAM model, it is usually assumed thanimaber of su-
persteps should be polylogarithmic m However, the assumption seems to have
no practical justification. In fact, there is no known rebaiship between the coarse
grained models and the complexity clasBE and algorithms that simply ensure
number of supersteps that are functiongpdbut not ofN) perform quite well in
practice; see Goudreau et al. (1996).

To be able to organize the supersteps well, it is naturaldoras that each processor
can store a vector of sizefor every other processor. Thus the following inequality
is assumed throughout this paper,

p? < M. 1)

2.2 Graph coloring

A graph coloring is a labeling of the vertices of a graph- (V, E) with positive
integers, callectolors such that adjacent vertices do not obtain the same color.
It can equivalently be viewed as searching for a partitiomhef vertex set of the
graph intoindependent set$ he primary objective of graph coloring is to minimize
the number of colors used. Even though coloring a graph wighféwest number

of colors is an NP-hard problem, in many applications colgrusing a bounded
number of colors, possibly far from the minimum, may suffiearticularly in many
parallel graph algorithms, a bounded coloring (partitintoiindependent sets) is
needed as a subroutine. For example, graph coloring is ms#teidevelopment
of a parallel algorithm for computing the eigenvalues otaiermatrices by Manne
(1998) and in parallel partial differential equation sabk/By Allwright et al. (1995).

One of the simplest and yet quite effective sequential k&asi for graph coloring

is thegreedyalgorithm that visits the vertices of the graph in some oedet in each

visit assigns a vertex the smallest color that has not beeh lmgany of the vertex’s
neighbors. It is easy to see that, for a grdpk- (V,E), such a greedy algorithm
always uses at mo#t+ 1 colors, whereA = max,cy {degree of/}. In Greenlaw

et al. (1995), a restricted variant of the greedy algoritimvhich the ordering of

the vertices is predefined, and the algorithm is require@spect the given order,
is termed ad exicographically FirstA + 1-coloring (LFA + 1-coloring). We refer

to the case where this restriction is absent and where thereqlirement is that
the resulting coloring uses at mds#- 1 colors, simply aé + 1-coloring.

LFA + 1-coloring is known to be P-complete; see Greenlaw et aR%1LBut for
special classes of graphs, soM€ algorithms have been developed for it. For ex-
ample, Chelbus et al. (1989) show that fi@e structuredyraphs LA + 1-coloring

is in NC. In the absence of the lexicographically first requiremarfewNC algo-
rithms for general graphs have been proposed. Luby (1985yiwvan ariNC A+ 1-
coloring algorithm by reducing the coloring problem to theximal independent
set problem. Moreover, Karchmer and Naor (1988), Karlo#§d), and Hajnal and
Szemerédi (1990) have each presented diffekeDalgorithms for Brook’s color-
ing (a coloring that uses at maAtcolors for a graph whose chromatic number is
bounded byA). Earlier, Naor (1987) had established that coloring ptagraphs
using five colors is ilNC.

However, all of thes®&lC coloring algorithms are mainly of theoretical interest as
they require polynomial number of processors, whereaseatity, one has only
a limited number of processors on a given parallel compunethis regard, Ge-
bremedhin and Manne (2000) have recently shown a practicbéHective shared
memory paralleA + 1-coloring algorithm. They show that distributing the vest
of a graph evenly among the available processors and cgltravertices on each
processor concurrently, while checking for color compisitipwith already col-
ored neighbors, creates very few conflicts. More specificttle probability that a
pair of adjacent vertices are colored at exactly the sanmtanee of the computa-
tion is quite small. On a somewhat simplified level, the alfpon of Gebremedhin
and Manne works by tackling the list of vertices numberedftbton in a ‘round
robin’ manner. At a given timg where 1<t <r andr = (%}, processoR, colors
vertex(i — 1) -r +t. The shared memory assumptions ensureRhaiay access the
color information of any vertex at unit cost of time. Adjatertices that are in
fact handled at exactly the same time are the only cause®fmeecn as they may

result in conflicts. Gebremedhin and Manne show that the mumitsuch conflicts
is small on expectation, and that conflicts can easily bdveda posteriori Their
resulting algorithm colors a general gra@h-= (V, E) with A+ 1 colors in expected
time O(|G|/p), when the number of processagrss such thap < |V|/+/2|E].

However, in a distributed memory setting, the most commaeda our target
model CGM, one has to be more careful about access to dateedboa other
processors.

3 A CGM A+ 1-coloring algorithm

We start this section by a discussion on how we intend toidige the input graph
among the available processors for our C@M 1-coloring algorithms. Then, the
randomized variant of our algorithm is presented in a topsaidashion, starting
with an overview and filling the details as the presentatimteeds.

3.1 Data distribution

In general a good data organization is crucial for the efficyeof a distributed
memory parallel algorithm. For our CGM-coloring algorithmparticular, the in-
put graphG = (V, E) is organized in the following manner.

e Each processdr (1 <i < p) is responsible for a subse% of the vertices
V= Uiplei)- With a slight abuse of notation, the processor hostingreexe
vis denoted by,.

e Each edge= {v,w} € E is represented as ar¢g w) stored af,, and(w, V)
stored ar,.

e For each arg¢v,w) processoP, stores the identity oR, and thus the location
of the arc(w, V). This is to avoid a logarithmic blow-up due to searching for
Rw-

e The arcs are sorted lexicographically and stored as a lihkeger vertex.

In this data distribution, we require that the degree of eamtex be less thaD =
(%1, whereN = |E|. Vertices with degree greater th&nare treated in a separate
preprocessing step.

If the input of the algorithm is not of the desired form, it ca efficiently trans-
formed into one by carrying out the following steps.
e Generate two arcs for each edge as described above,
e Radix sort (see Guérin Lassous et al. (00a) for a CGM radit) fiwe list of
arcs such that each processor receives thg\aw) if it is responsible for
vertexw,

initial phase

main phase

Algorithm 1: A+ 1-coloring on a CGM withp processors

Input: Base graplt = (V, E), the subgraph induced by vertices of degree greater
thanD = [N/p], the listsF, of forbidden colors of verticeg € V.

Output: A valid coloring of G = (V, E) with at mostA + 1 colors.

Sequentigh 4+ 1ColoringH,{FK}v) (see Algorithm 3);
ParallelRecursiu+ 1ColoringG,{ R }v) (see Algorithm 2);

e Let every processor note its identity on these sibling arcs,
e Radix sort the list of arcs such that every processor resdigeproper arcs
(arcs(v,w) if it is responsible for vertex).

3.2 The algorithm

As the time complexity of sequentidl+ 1-coloring is linear in the size of the
graph |G|, our aim is to design a parallel algorithm in CGM wi@(%) work
per processor an@(|G|) overall communication cost. In an overview, our CGM
coloring algorithm consists of two phases, iaitial and a mairrecursivephase;
see Algorithm 1.

In the initial phase, the subgraph induced by the verticél deégree greater than
(%1 is colored sequentially on one of the processors. Cledrbret are at mosp
such vertices since otherwise we would have more thauges in total. Thus the
subgraph induced by these vertices has at méstdges. Sincg? is assumed to
be less thaiM, the induced subgraph fits on a single processor Bsagnd a call
to Algorithm 3 colors it sequentially. Algorithm 3 is alsoadsin another situation
than coloring such vertices. We defer the discussion on ¢ta&ild of Algorithm 3
to Section 3.2.1 where the situation that calls for its sdaase is presented.

The main part of Algorithm 1 is the call to Algorithm 2 whichawrsively colors
any graphG such that the maximum degrée< M. The basic idea of the algorithm
is based on placing the vertices residing on each procestodifferenttimeslots
The assignment of timeslots to the vertices gives rise tactegories of edges. The
first category consists of edges which connect verticesnigathie same timeslot.
We call these edgdsad and all other edgegood Figure 1 shows an example of a
graph distributed on 6 processors and 4 timeslots in whietb#d edges are shown
in bold.

In a nutshell, Algorithm 2 proceeds timeslot by timeslot wehim each timeslot the
graph defined by the bad edges and the vertices incident amithiglentified and
the algorithm is called recursively with the identified gnegs input while the rest
of the input graph is colored concurrently.

In Algorithm 2, while partitioning the vertices into timeslots, where Xk k < p,

P

P>

P3

P4

Py

I+

Fig. 1. Graph on 72 vertices distributed onto 6 processodsdaimeslots.

we would like achieve as even a distribution as possible. CHileto Algorithm 6

in line group verticesdoes this by using the degree of each vertex as a criterion.
This randomized algorithm is presented in Section 3.2.h2re the issue of load
balancing is briefly discussed. Prior to calling Algorithmvértices with ‘high de-
grees’ that would otherwise result in an uneven load balane¢reated separately;
see linehigh degree The algorithm for treating high degree vertices, Algamith,

is presented in Section 3.2.2.1.

Notice that an attempt to concurrently color vertices iecidon a bad edge may
result in an inconsistent coloring (conflict). In a similatuation, Gebremedhin
and Manne, in their shared memory formulation, tentatialgw such conflicts
and resolve eventual conflicts in a later sequential phase sticcess of their ap-
proach lies in the fact that the expected size of the edgesnfiict is relatively
small. In our case, we deal with the potential confliatpriori. We first identify
the subgraphs that could result in conflict and then colosdlsibgraphs in paral-
lel recursively until their union is small enough to fit onteetmemory of a single
processor. See linadentify conflicts andrecurse in Algorithm 2. Note that, in
general, some processors may receive more vertices thansotlWe must ensure
that these recursive calls do not produce a blow-up in coatjaut and commu-
nication. In order to ensure that the subgraph that goesretorsion is evenly
distributed among the processors, a call to Algorithm 7 iglenat linebalance
load. Algorithm 7 is discussed in Section 3.2.2.3.

In the recursive calls one must handle the restrictions #énatimposed by pre-
viously colored vertices. We extend the problem specificeind assume that a
vertexv also has a lisF, of forbidden colors that initially is empty. An important
issue for the complexity bounds is that a forbidden coloddea toR, only when
the knowledge about it arrives d®. The listR, as a whole will only be touched
once, namely whewis finally colored.

Observe also that the recursive calls in Ineeurse need not be synchronized. In
other words, it is not necessary (nor desired) that the [smns start recursion

Algorithm 2: Parallel Recursivé + 1-coloring

Input: SubgraphG’' = (V',E’) of a base grapks = (V,E) with M’ edges per pro-
cessor such thaty < M’, M the initial input size per processor, ligts of
forbidden colors for the vertices.

Output: A valid coloring of G’ with at mostAg + 1 colors.

base caseif (|G| < %) then Sequential + 1Coloring@G',{F,}\) (see Algorithm 3);

high degree

group vertices

identify conflicts

balance load

recurse

color vertex

send messages

receive messages

else

HandleHighDegreeVerticeG(,{F, }v,2Kk) (see Algorithm 5);
foreach P, do

Let Uy for t 1,....k be result
GroupVerticesIntoTimeslotg(,k), (see Algorithm 6);
For each vertex denote the index of its timeslot lty;
foreach arc (v,w) do collect the timeslot, in a send buffer foRy;
Send out the tuples\ty);

| Receive the timeslots from the other processors;

fort=1tokdo
foreach processor Pdo
Consider all arce = (v,w) with v e U;; andty =ty =1t;

L Name this se§ and consider the vertic&g; that have such an arc;
Grec =BalancdUP ; V5,UP; S) (see Algorithm 7);
ParallelRecursiv+ 1ColoringGrec,{ Fv }v);
foreach processor Pdo
foreachuncolored vertex v with, t=t do Colorv with least legal color;
foreacharc (v,w) with ve U;, ty, =t and t, >t do Collect the color of
vin a send buffer foB,;
Send out the tuplesycolor ofv);

Receive the colors from the other processors;
foreachreceived tuples (w, color of o add color ofv to Fy;

of the call

at exactly the same moment in time. During recursion, whenctllls reach the
communication phase of the algorithm, they will automdlydae synchronized in
waiting for data from each other.

Clearly, the subgraph defined by the good edges and thettantivertices can be
colored concurrently by the available processors. In paldr, each processor is
responsible for coloring its set of vertices as shown in tokr vertex of Algo-
rithm 2. In determining the least available color to a verexch processor main-
tains a Boolean vectddcolors This vector is indexed with the colors and initial-
ized with all values set to “true”. Then when processing desev, the entries of
Bcolorscorresponding ter's list of forbidden colors are set to “false”. After that,
the first item inBcolorsthat still is true is looked for and chosen as the colov.of
Then, the vector is reset by assigning all its modified vathesvalue “true” again
for future use.

Algorithm 3: SequentialA + 1Coloring
Input: M the initial input size per processor, subgrdgh= (V/,E’) of a base graph
G = (V,E) with |E’| <M and listsF, of forbidden colors for the vertices.
find allowed foreach processor Pdo
LetU/ =U;NV’ be the vertices o&’ that are stored oR;
For eachv € U/ letd(v) be the degree of in G/;
A, = ComputeAllowedColors(d(v),{ R }v) (see Algorithm 4);

Communicatd’ and all listsA, to Py;
color sequentially for processor E’dO
Collect the graplG’ together with the listg\;;
Color each vertex it&’ with least available color;
| Send the resulting colors back to the corresponding procgss

communicate foreach processor Pdo
Inform all neighbors o) of the colors that have been assigned,;
| Receive the colors from the other processors and updatestbBlaccordingly;

Algorithm 4. Compute Allowed Colors

Input : vtogether with its actual degrev) and its (unordered) lid§, of forbidden
colors; A Boolean vectatolorswith all values set térue.

Output: a sorted listA, of the leastd(v) + 1 allowed colors fow

foreachc € K, do Setcolorgc] = false

for (c=1; |A/ <d(v); ++c)do if colorgc] then A, = A, +C;

foreachc € K, do Setcolorgc] =true;

After a processor has colored a vertex, it communicates ¢ anformation to
processors hosting a neighbor. In each timeslot the messag®e other processors
are grouped together, seend messageasndreceive messaged his way at most
p— 1 messages are sent per processor per timeslot.

3.2.1 The base case

The base case of the recursion is handled by a call to Alguréliseebase casén
Algorithm 2). Note that the sizes of the lidts of forbidden colors that the vertices
might have collected during higher levels of recursion mayally be too large and
their union might not fit on a single processor. To handle $hisation properly, we
proceed in three steps as shown in Algorithm 3. Notice thgbAthm 3 is the same
routine called in the initial phase of Algorithm 1.

In the stepfind allowed, for each vertew € V' a short list ofallowed colors A,

is computed. Observe that a vertexan always be colored using one color from
the set{1,2,...,d(v) + 1}, whered(v) is the degree o¥. Hence a list ofd(v) +

1 allowed colors suffices to take all restrictions of forleddcolors into account.
Using a similar technique as describedcolor vertex of Algorithm 2, we can

10

Algorithm 5: Handle High Degree Vertices
Input: SubgraphG’' = (V',E’) of a base grapks = (V,E) with M’ edges per pro-
cessor such thdty < M/, listsF, of forbidden colors for the vertices and a
parameten.
foreach processor Pdo
find all v € U; with degree higher thaM’/q (Note: all degrees are less than
N/p);
| send the names and the degrees of these vertidgs to
for processor Pdo
Receive lists of high degree vertices;
Group these vertices intd < g timeslotsW, ..., W of at mostp vertices each
and of a degree sum of at mosti 2p for each timeslot;
| Communicate the timeslots to the other processors;

oreach processor Pdo
Receive the timeslots for the high degree verticdd;in
Communicate these values to all the neighbors of thesecesrti
Receive the corresponding information from the other pssoes;
| Computek i fort =1,...,k" where one endpoint is W UU;;
fort =1tok' do
Let B; = Ui<j<pEri and denote bys; = (W, Et) the induced subgraph of high
degree vertices of timeslot
| Sequentiah+ 1ColoringGt,{F}v) (see Algoritm 3);

—h

obtain a sorted lisA, of allowed colors forv in time proportional tgF,| 4 d(v).
This is done by the call to Algorithm 4 in linénd allowed. Then in the step
color sequentially, the vertices of the input graph are colored sequentialiggus
their computed lists of allowed colors. In the final siepmmunicate the color
information of the vertices is communicated.

3.2.2 Load balancing

In this section we address the issue of load balancing. lotlgn 2, three matters
that potentially result in an uneven load balance are (i) kigriation in the degrees
of the vertices, (ii) high variation in the sum of the degr@eshe timeslots, and

(ii1) the recursive calls on the subgraphs that go into reicur. The following three

paragraphs are concerned with these points.

3.2.2.1 Handling high degree vertices Whereas for the shared memory algo-
rithm differences in degrees of the vertices that are cdlaneparallel just causes
a slight asynchrony in the execution of the algorithm, in aMC&etting it might
result in a severe load imbalance and even in memory overff@poocessor.

11

Line group vertices of Algorithm 2 groups the vertices intk < p timeslots of

about equal degree sum. If the variation in the degrees ofdhteces is too large,
such a grouping would not be even. For example, if we have eney of very

large degree, it would always dominate the degree sum ofnits slot thereby
creating imbalance. So, we have to make sure that the defireach vertex is
fairly small, namely smaller thafiM’/q| whereq is a parameter of Algorithm 5.
Observe that the notion of ‘small’ degree depends on thetisjze M’ and thus
may change during the course of the algorithm. This is why eednto have the
line high degreein every recursive call and not only at the top level call. <itat

gis a multiple ofk, the number of timeslots of Algorithm 2.

Thus, the high degree vertices that we indeed have to trezdch recursive call
are those verticeg with [M’/q] < degv) < M’. Such vertices are handled using
Algorithm 5, which essentially divides the set of high deguertices intdk’ < g
timeslots and colors each of the subgraphs induced by thsslots sequentially.

3.2.2.2 Grouping vertices into timeslots Algorithm 6 partitions the vertices
into k timeslots. It does so by first dividing the set of vertice®igtoups of size&
and then distributing the vertices of each group into thardistimeslots. Observe
that no communication is required during the course of tlgsrthm.

The partition obtained with this algorithm is relativelylaced.

Lemma 1 On each processor P, the difference of the degree sums oétliees
in any two timeslots is at most the maximum degree over dilcesrthat P holds.

Proof: Since the vertices are considered in descending order wfdbgrees, the
difference in degree sums between two timeslots is maxitmzieen one of the
timeslots always receives the vertex with the highest degréhe group and the
other the smallest. In group the vertex of highest degreevg ., and the one of
smallest degree ig; 1. Thus we can estimate the difference as follows:

[f1-1 [f1-1 [R1-1 [R1-2
Z) dedViki1) — Z) degVitk) < Z) dedViki1) — Z) degV(it+1)kr1)

which is in turn bounded bgedvi), wherev; has the maximum degree over all
vertices thaP holds.

]

From Lemma 1 and from the fact that we do not have high degneieae it follows
that the sum of the degrees of the vertices in any tlmeslcﬂmvdaen © and 32'\ﬁ

12

Algorithm 6: Group Vertices Randomly into Timeslots
Input: V' the set of vertice
foreach processor Pdo
Radix sort its vertices according to their descending degjre
Letv,...,Vs be this order of the vertices;
fori=0,...,[f]—1do

Let j1,..., jxk be a random permutation of the values.1,k;
L ASSIgNVik+1,- - -, V(i+1)k t0 timeslotsjy, ..., jx respectively;

3.2.2.3 Balancing during recursion In Algorithm 2, unless proper attention is
paid, the edges of the subgraph that goes into recursion mapenevenly dis-
tributed among the processors. To address this, we suggedgarithm that en-
sures thaGyec, the graph that goes into recursion in Algorithm 2, is evethily
tributed among the processors. See Algorithm 7.

Algorithm 7: Balance

Input: GraphG' = (V’,E’), such that eactae V' hasdegz (v) < |E'|/p.

Output: A redistribution ofV’ andE’ on the processors such that each processor
handles no more thad’ = 2|E’| /p edges.

Initialize a distributed arraipegindexed by’ that holds the degrees of all vertices;
Do a prefix sum oregand store this sum in a similar arr&ye;
foreach processor Pdo
foreachv e V' NU; do
Letj € {1,...,p} be such thajM’ < Pre]v] < (j +1)M’;
L Sendv and its adjacent edges to procesBgr

foreach processor Pdo
| receive the corresponding vertices and edges

Obviously Algorithm 7 runs in time proportional to the inmite on each processor
and has a constant number of supersteps.

4 Average case analysis

In this section we provide an average case analysis of AlgarR. In Section 5
we show how to replace the randomized algorithm, Algorithrny6a deterministic
one.

All the lemmas in this section refer to Algorithm 2 unlesgathotherwise.

Lemma 2 For any edge{v,w}, the probability that{ = ty, is at most%.

13

Proof: Consider Algorithm 6. We distinguish between two cases. firseis the
case where andw reside on different processors. In this case, the choiacethéo
timeslots ofv andw are clearly independent, implying that the probabilityttvas

in the same timeslot asis .

The same argument applies for the case whkiemedw reside on the same processor
but are not processed in the same group. Whenever they ane isaine group,
they are never placed into the same timeslot. Therefor@yteeall probability is
bounded byg.

Lemma 3 The expected sum total of the number of edges of all subgguhg
into recursion inrecurseis at most‘ET|.

Proof: The expected total number of edges going into recursionualdq the ex-
pected total number of bad edges. The latter is in turn equgdde: prob(eis bad,

which by Lemma 2 can be bounded @

Lemma 4 The expected overall size of the subgraphs at the ith remuisvel is
at most Nk', with at most Mk' per processor.

Proof: Notice that the choices of timeslots between two successotesion levels
may not be independent. However, the dependency that may actually reduces
the number of bad edges even more. This can be seen from asarglment as
that of Lemma 2: vertices that are in the same group of theegegequence in
Algorithm 6 are forced to be separated into two differentasiots. For all others,
the choices are again independent.

Thus, the total number of edges going into recursion can Ineeidiately bounded
by N/K'. The fact that it is also balanced across the processorgitodAgorithm 7.

Lemma5 The expected sum total of the sizes of all the subgraphs &gl any
processor during Algorithm 2 (including all recursions)agM).

Proof: By Lemma 4, the expected sum of the sizes of these graphs m&lbdiby
k
Z}k 'M = 1 M < 2M, 2

for all k > 2. Thus, the total expected size in all the steps per proces€gM).

]

Lemma 6 Foranyl < k< p, the expected number of supersteps is at most quadratic
in p.

14

Proof: The expected recursion depth of our algorithm is the minimnvafued such

thatN/k? < M = N/p, which impliesk? > p, i.e.d = [log, p]. The total number
of supersteps in each call (including the supersteps inilga 5) isc-k, for some

constant > 1. The constant captures the following supersteps:

some to handle high degree vertices,

one to propagate the chosen timeslots,

some to balance the edges inside each timesilot,

one to propagate the colors for each timeslot.

Thus, the total number of supersteps on recursion leiget - k' and the expected
number of supersteps is bounded as follows

flogepl
Zx c-K <c-Ko%PH —c.k. p. (3)

Lemma 7 The expected overall work involvedhase case is O(M).

Proof: Algorithm 3 on inputG’' = (V/,E’) and lists of forbidden color§, has
overall work and communication cost proportional@| and the size of the lists
R

There arekl'°%P| expected calls to Algorithm 3 in Algorithm 2; therefoR is
expected to handIk/'°% M% edges andk/'0% Fﬂ% < kl-tlog p% < kp% = M.

This implies an expected work and communication co$d@) for base case D

Lemma 8 The expected overall work per processor involvediigh degree is
O(M).

Proof: In Algorithm 2, in the first call to Algorithm 5N = M), every processor
holds at mosty = 2k high degree vertices (i.e verticesof degreedeg,(G) such
that . < deg/(G) < T). Otherwise, it would hold more th&iM/q) - g =M edges.
So, overall, there are at mogt g such vertices for the first level of recursion. Pro-
cessoiP; distributes thes®(p?) vertices ontd’ timeslots such that each timeslot
has a degree sum of at mod¥l 2p = 2M. Thus, each timeslot induces a graph
of expected size M /k'. Subsequently, sequentid+ 1-coloring is called for the
subgraph induced by each timeslot, for total wa{M) = O(M’).

By induction we see that in thd/q level of recursion, if a vertexis of high degree,
its degreadeq,(Gyec) has to beMH < deg/(Grec) < M'. Using the same argument as

the one above, it can be shown that the total work to handgethertices i©O(M’).

From Lemma 5, the total expected work in all the steps pergusar iSO(M). |]

15

Lemma 9 The expected overall work per processor involvegrioup vertices is
O(M).

Proof: Observe that the radix sort can be donédifM’), since the sort keys are
less thanM’. The random permutations can easily be computed locallineat
time.

Again, Lemma 5 proves the claim. D

Theorem 1 For any 1 < k < p, the expected work, communication, and idle time
per processor of Algorithm 2 is within(@®1). In particular, the expected total run-
time per processor is M).

Proof: From Lemma 6 we see that the expected number of superst€i?s;
hence by inequality (1) the expected communication ovetigeaerated in all the
supersteps i®(M).

We proceed by showing that the work and communication thabegssor has to

perform in Algorithm 2 is a function of the number of edges battprocessor, i.e.

M. Inserting a new forbidden color into an unsorted kgtan be done in constant
time. Since an edge contributes an item to the list of forbrddolors of one of its

incident vertices at most once, the size of such a list is dedy the degree of the
vertex. Thus, the total size of these lists on any of the m®oes will never exceed
the input sizeM’ (recall that vertices of degree greater tl%have been handled in
the preprocessing step).

As discussed in Section 3.2, a Boolean ve®&oolorsis used in determining the
color to be assigned to a vertex. In the absence of high degréees no list, will

be longer thad® and hence the size 8icolorsneed not exceel’ + 1. Even when
this restriction is relaxed, as shown in Section 3.2.2.1need at mosp colors for
vertices of degree greater thi p and need not add more thAh+1 colors, where

A’ is the maximum degree among the remaining vertidés(M’). Overall, this
means that we have at mgst- M’ + 1 colors and hence the vect®colorsstill fits

on a single processor. SBeolorscan be initialized in a preprocessing step in time
Oo(M’).

After that, coloring any vertex can be done in time proportional to the size of
Ay, which is bounded by the degree wfThus, the overall time spent per proces-
sor in coloring vertices i©(M’). By Lemma 5, the expected total time (including
recursions) per processor@M).

Lemmas 7, 8, and 9 show that the contributionae casehigh degree and
recurse in Algorithm 2 are withinO(M) per processor, proving the claim on the
total amount of work per processor.

As for processor idle time, observe that the bottlenecklithal algorithms as pre-

16

sented is the sequential processing of parts of the grappsdagssor 1. Since the
total run time (of Algorithm 3) on processor 1 is expected €0diM), the same
expected bound holds for the idle time of the other processor]

5 An add-on to achieve a good worst-case behavior

So far, for a possible implementation of our algorithm, wedhaome degree of
freedom in choosing the number of timeslaétsif our goal is just to get results
based orexpectedialues as shown in Section 4, we can avoid recursion by choos-
ing k = p and by replacing the recursive call in Algorithm 2 by a call to
Sequentigh+1ColoringGrec, { K/ }v) (Algorithm 3). We can do this since by Lemma 4
the expected size @ is N/k which in this case meari¢/p = M, implying that

Grec fits on one processor. The resulting algorithm would hepeupersteps, for
some integec > 1; see Lemma 6.

To get a deterministic algorithm with a good worst-case lasbwe choose the other
extreme, namelk = 2, and replace the call to the randomized Algorithm 6, in line
group verticesof Algorithm 2, by a call to Algorithms 8 and 9. This will enablis

to bound the number of edges that go into recursi@enthe bad edges. We need to
distinguish between two types of edgegernalandexternaledges. Internal edges
have both of their endpoints on the same processor whilereadtedges have their
endpoints on different processors.

First we argue that internal edges are handled by the callgorAhm 8, and later
we will argue that external edges are handled by the subseqakto Algorithm 9.
For internal edges, the following two points need to be oleskr

(1) The vertices are grouped into two timeslots of about edegree sum.
(2) Most of the internal edges are good.

To achieve the first goal, Algorithm 8 first calls Algorithm & get rid of vertices
with degree> M /8. The constant 8 is somewhat arbitrary and could be replaced
by any constank’ > 2 depending on the needs of an implementation. Algorithm 8
groups the vertices of internal edges according to (1) ahat§dve intobucketO]
andbucket1] that will form the two timeslots. A bucket is said to hél when the
degree sum of its vertices becomes greater ¥d8.

Proposition 1 Suppose&;M of the edges on processordte external Q < yiM <
M). Then after an application of Algorithm 8 at Iea(%t— %)M of the edges on;P
are good internal edges and each bucket has a degree sum a)ism%ﬂn

Proof: Considering the fact that each vertex is of degree lessthé) the claim
for the degree sum is immediate.

17

Algorithm 8: Deterministically group the vertices on procesBonto k = 2 buck-
ets.
HandleHighDegreeVerticeS({ R, }v,8) (see Algorithm 5);
initialize buckef0] andbucket1] to empty;
foreach vertex vdo
determine the number of edges connectirig buckefO] andbucketl], resp;
insertv in the bucket to which it has the least number of edges;
if this bucket is fulthen
put the remaining vertices in the other bucket;
L return ;

return ;

To see the lower bound on the number of good internal edgesjader the bucket
B that became full. The vertices Bihave a degree sum of at leds}2 and at least
(% —Vi)M of these edges are internal. We claim that at least half cfetihaternal

edges are good.

For the following argument, suppose that an edge is coreidenly when its sec-
ond endpoint is placed into a bucket. We distinguish betvieertypes of internal
edgesEarly edges join vertices both of which have been put into a buckfetre
the bucket was full, and edges for which at least one of th@@nts was placed
thereafter are calleldte edges .

First, observe that until one of the two buckets becomes laath buckets have
more good internal edges than bad internal edges. So, aoleahalf of the early
edges are good. But, notice that all the late edges that havemdpoint irB are
also good. This is the case since the second endpoint of adgteis never placed
in B.

Therefore, overall, there are at led$t —yi)M good internal edges.]

To handle the external edges we add a call to Algorithm 9 rajter the call to
Algorithm 8. This algorithm counts the numhefs[’ of edges between all possible
pairs of buckets on different processors, and broadcassethalues to all proces-
sors. Then a quick iterative algorithm is executed on eaohgssor to ascertain as
to which of the processor’s two buckets represents the fidtsgcond timeslot.

After having decided the order in which the buckets are pgsed on processors
P1,...,P_1, we compute two values for procesﬂnerH the number of external bad
edges if we would keep the numbering of the buckets as thestoheumbering,
and A* the corresponding number if we would interchange them. Déijng on
which value is less, the order of the two buckets of proceBsis kept as-is or
exchanged.

Using the same type of argument as the one above, we get tbwifay remark.

18

Algorithm 9: Determine an ordering on the= 2 buckets on each processor.
foreach processor Pdo
foreach edge(v,w) do inform the processor of about the bucket of;
fors=1...pdo

| forr,r’=0,1dosetm =0;

foreach edge(v,w) do add 1 toml!, wherePs is the processor of andr and
r’ are the buckets of andw;

Broadcast all valuesi! fors=1,...,pto all other processors;
inv[1] = false

for s=2topdo

Al =0; A< =0;

for s <sdo

if —inv[s] then

Al = Al @2 i

A= At g

else

Al = Al i
A=Al

it A* < All theninv[s] = true;
| elseinv]s| = false

Remark 10 Algorithm 9 ensures that overall at Iea%tof the external edges are
good.

Note that the above statement is true for the whole edge wenab necessarily for
the set of edges on each processor.

Proposition 2 Algorithms 8 and 9 run with linear work and communication and
in a constant number of supersteps. The assignment of ttaeékky make is such
that at Ieast%1 of the edges are good.

Proof: For the number of good edges, kgtbe the fraction of external edges of
processoR,. The total amount of good edges can now be bounded from betow b

1(2 P /1 v P M N
é(é“)“”ﬁé(rz)“”:if?:z @

For the complexity claim, observe that because of the lo&hisang done in lindal-
ance loadof Algorithm 2 (see Section 3.2.2.3) all processors holdstmme amount
(up to a constant factoN!’ of edges. D

This implies that the recursion depthﬁlsg% p] (which is greater thafilog, p| of

19

the average case). Moreover, more edges go into recursrerttnan in the average
case and therefore the work and total communication costsligihtly greater than
the costs for the average case, but still witBifM).

6 Conclusion

We have presented a randomized as well as a deterministis€Gaained Multi-
computer coloring algorithm that color the vertices of ag@ahgraphG using at
mostA + 1 colors, wheré) is the maximum degree 6. We showed that on p-
processor CGM model our algorithms require a parallel tirh@d%') and a total
work and overall communication cost 6 |G|). These bounds correspond to the
average case for the randomized version and to the worstfoathe deterministic
variant. To the best of our knowledge, our algorithms arefitiseparallel coloring
algorithms with good speedup for a large variety of architees.

In light of the fact that LA + 1-coloring is P-complete, a CGM I&~+ 1-coloring
algorithm, if found, would be of significant theoretical ionance. Brent's schedul-
ing principle shows that anything that works well on PRAM gl in principle,
also work well on CGM or similar models (although the consdahat are intro-
duced might be too big to be practical). But the converse nwynacessarily be
true. There are P-complete problems (problems where wé eapéct exponential
speedup on PRAM) that have polynomial speedup; see VitteBanons (1986). It
can be envisioned that such problems may as well have effic&M algorithms.

In this regard, our CGM\ + 1-coloring algorithm might be a first step towards a
CGM LFA + 1-coloring algorithm.

We also believe that, in general, designing a parallel #lgoron the CGM model
is of practical relevance. In particular, we believe that ghgorithms presented in
this paper should have efficient and scalable implemems({ice. implementations
that yield good speedup for a wide range\yfp).

Such implementations would also be of interest in otherexdst One example is
the problem of findingnaximal independent setsotice that in our algorithms the
vertices colored by the least color always constitute a makindependent set in
the input graph. In general, consideri@;, the subgraph induced by the color
classes,i+1,..., we see that color classalways forms a maximal independent
set in the grapl®G-;.

20

7 Acknowledgements

We are grateful to the anonymous referees for their helgoiments and pointing
out some errors in an earlier version of this paper.

Isabelle Guérin Lassous and Jens Gustedt would like toadenige that part of
this work was accomplished within the framework of the “tgiion CGM” of the
parallel research cent@entre Charles Hermitten Nancy, France.

References

[Allwright et al., 1995] Allwright, J. R., Bordawekar, R.,dddington, P. D., Dincer, K.,
and Martin, C. L. (1995). A comparison of parallel graph cilg algorithms.
Technical Report Tech. Rep. SCCS-666, Northeast Parallehi#ecture Center,
Syracuse University.

[Chaitin et al., 1981] Chaitin, G., Auslander, M., Chandka, J.Cocke, Hopkins, M., and
P.Markstein (1981). Register allocation via colorifgomputer Language$:47-57.

[Chelbus et al., 1989] Chelbus, B., Diks, K., Rytter, W., &aymacha, T. (1989). Parallel
complexity of lexicographically first problems for treasttured graphs. In Kreczmar,
A. and Mirkowska, G., editordlathematical Foundations fo Computer Science 1989:
Proceedings 14th Symposiuwolume 379 olLNCS pages 185-195. Springer-Verlag.

[Coleman and Moré, 1983] Coleman, T. and Morég, J. (1988)intation of sparse jacobian
matrices and graph coloring problen&AM Journal on Numerical Analysig0(1):187—
209.

[Culler et al., 1993] Culler, D., Karp, R., Patterson, D.h&ga A., Schauser, K., Santos,
E., Subramonian, R., and von Eicken, T. (1993). LogP: TowardRealistic Model of
Parallel Computation. IfProceeding of 4-th ACM SIGPLAN Symp. on Principles and
Practises of Parallel Programmingages 1-12.

[Dehne et al., 1996] Dehne, F., Fabri, A., and Rau-Chaplin(1896). Scalable parallel
computational geometry for coarse grained multicomputénéernational Journal on
Computational Geomety(3):379—-400.

[Fortune and Wyllie, 1978] Fortune, S. and Wyllie, J. (1978parallelism in Random
Access Machines. Ih0-th ACM Symposium on Theory of Computipages 114-118.

[Gamst, 1986] Gamst, A. (1986). Some lower bounds for a daggquency assignment
problems.|EEE transactions of Vehicular Technolod3b(1):8-14.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979XComputers and
Intractability. W.H. Freeman, New York.

21

[Gebremedhin and Manne, 2000] Gebremedhin, A. H. and MaRn€000). Scalable
parallel graph coloring algorithmsConcurrency: Practice and Experienc#2:1131—
1146.

[Goudreau et al., 1996] Goudreau, M., Lang, K., Rao, S.,,Sughnd Tsantilas, T. (1996).
Towards efficiency and portability: Programming with theB8odel. In8th Annual
ACM symposium on Parallel Algorithms and ArchitecturesN&B6), pages 1-12.

[Greenlaw et al., 1995] Greenlaw, R., Hoover, H., and Rux&o,L. (1995). Limits to
Parallel Computation: P-Completeness Theo@xford University Press, 200 Madison
Anv., New York, New York 19916.

[Guérin Lassous et al., 00a] Guérin Lassous, |., Gustddt,and Morvan, M. (00a).
Feasability, portability, predictability and efficiendyour ambitious goals for the design
and implementation of parallel coarse grained graph algms. Technical report,
INRIA.

[Guérin Lassous et al., 00b] Guérin Lassous, ., Gustddt,and Morvan, M. (00b).
Handling graphs according to a coarse grained approacheriixpnts with MPI and
PVM. In Dongarra, J., Kacsuk, P., and Podhorszki, N., egliBecent Advances in
Parallel Virtual Machine and Message Passing Interfach,Etiropean PVM/MPI Users’
Group Meetingvolume 1908 of.NCS pages 72—79. Springer Verlag.

[Hajnal and Szemerédi, 1990] Hajnal, P. and Szemeréed{1#20). Brooks coloring in
parallel. SIAM journal on Discrete Mathematic3(1):74—80.

[Jones and Plassmann, 1993] Jones, M. T. and Plassmann(1@98). A parallel graph
coloring heuristic.SIAM journal of scientific computind.4(3):654—669.

[Karchmer and Naor, 1988] Karchmer, M. and Naor, J. (1988jash parallel algorithm to
color a graph with D colorsJournal of Algorithms9(1):83-91.

[Karloff, 1989] Karloff, H. J. (1989). An NC algorithm for Biok’s theorem.Theoretical
Computer Scien¢é8(1):89—-103.

[Karp and Ramachandran, 1990] Karp, R. and Ramachandran(1980). Parallel
algorithms for shared-memory machinesHandbook of Theoretical Computer Science
Volume A: Algorithms and Complexityages 869—-942. Elsevier.

[Lewandowski, 1994] Lewandowski, G. (1994). Practical Implementations and
Applications Of Graph ColoringPhD thesis, University of Wisconsin-Madison.

[Luby, 1986] Luby, M. (1986). A simple parallel algorithmrfthe maximal independent
set problem.SIAM journal on computingl5(4):1036—1053.

[Manne, 1998] Manne, F. (1998). A parallel algorithm for quuting the extremal
eigenvalues of very large sparse matrices (extended absthaproceedings of Para98
volume 1541, pages 332—-336. Lecture Notes in Computer Szi&pringer.

[Naor, 1987] Naor, J. (1987). A fast parallel coloring of mdat graphs with five colors.
Information Processing Letter@5(1):51-53.

22

[Valiant, 1990] Valiant, L. G. (1990). A bridging model foramllel computation.
Communications of the ACN33(8):103-111.

[Vitter and Simons, 1986] Vitter, J. S. and Simons, R. A. @P8 New classes for
parallel complexity: A study of unification and other contpleroblems for P.IEEE
Transactions on Computer€-35(5):403-418.

23

