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Abstract

We present an efficient and scalable Coarse Grained Multicomputer (CGM) coloring algo-
rithm that colors a graphG with at most∆ + 1 colors where∆ is the maximum degree in
G. This algorithm is given in two variants:randomizedanddeterministic. We show that on
a p-processor CGM model the proposed algorithms require a parallel time of O( |G|

p ) and
a total work and overall communication cost ofO(|G|). These bounds correspond to the
average case for the randomized version and to the worst-case for the deterministic variant.

Key words: graph algorithms, parallel algorithms, graph coloring, Coarse Grained Multi-
computers

1 Introduction

The graph coloring problem deals with the assignment of positive integers (col-
ors) to the vertices of a graph such that adjacent vertices donot get the same color
and the number of colors used is minimized. A wide range of real world problems,
among others, time tabling and scheduling, frequency assignment, register alloca-
tion, and efficient estimation of sparse matrices in optimization, have successfully
been modeled using the graph coloring problem. See Lewandowski (1994), Gamst
(1986), Chaitin et al. (1981), and Coleman and Moré (1983) for some of the works
in each of these applications respectively. Besides modeling real world problems,
graph coloring plays a crucial role in the field of parallel computation. In particular,
when a computational task is modeled using a graph where the vertices represent
the subtasks and the edges correspond to the relationship among them, graph col-
oring is used in dividing the subtasks into independent setsthat can be performed
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concurrently.

The graph coloring problem is known to be NP-complete (see Garey and Johnson
(1979)), making heuristic approaches inevitable in practice. There exist a number
of sequential graph coloring heuristics that are quite effective in coloring graphs en-
countered in practical applications. See Coleman and Moré(1983) for some of the
popular heuristics. However, due to their inherent sequential nature, these heuristics
are difficult to parallelize. In fact, in Greenlaw et al. (1995), coloring the vertices
of a graph in a given order where each vertex is assigned the smallest color that has
not been given to any of its neighbors is shown to be P-complete. Consequently,
parallel graph coloring heuristics of different flavour than the effective sequential
coloring heuristics had to be suggested. One of the important contributions in this
regard is the parallel maximal independent set finding algorithm of Luby (1986)
and the coloring algorithm based on it. Subsequently, Jonesand Plassmann (1993)
improved Luby’s algorithm and in addition usedgraph partitioningas a means to
achieve a distributed memory coloring heuristic based on explicit message-passing.
Unfortunately, Jones and Plassmann did not get any speedup from their experimen-
tal studies. Later, Allwright et al. (1995) performed a comparative study of the
implementations of the Jones-Plassmann algorithm and a fewother variations and
reported that none of the algorithms included in the study yielded any speedup.
The justification for the usage of these parallel coloring heuristics has been the fact
that they made solving large-scale problems, that could nototherwise fit onto the
memory of a sequential machine, possible.

Despite these discouraging experiences, Gebremedhin and Manne (2000) recently
proposed ashared memoryparallel coloring algorithm that yields good speedup.
Their theoretical analysis using the PRAM model shows that the algorithm is ex-
pected to provide an almost linear speedup and experimentalresults conducted on
the Origin 2000 supercomputer using graphs that arise from finite element methods
and eigenvalue computations validate the theoretical analysis.

The purpose of this paper is to make this successful approachfeasible for a larger
variety of architectures by extending it to the Coarse Grained Multicomputer (CGM)
model of parallel computation; see Dehne et al. (1996). The CGM model makes an
abstraction of the interconnection network among the processors of a parallel com-
puter (or network of computers) and captures the efficiency of a parallel algorithm
using only a few parameters. Several experiments show that the CGM model is of
practical relevance: implementations of algorithms formulated in the CGM model
in general turn out to be portable, predictable, and efficient; see Guérin Lassous
et al. (00a) and Guérin Lassous et al. (00b).

In this paper we propose a CGM coloring algorithm that colorsa graphG with at
most∆+1 colors where∆ is the maximum degree inG. The algorithm is given in
two variants: one randomized and the other deterministic. We show that the pro-
posed algorithms require a parallel time ofO( |G|

p ) and a total work and overall
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communication cost ofO(|G|). These bounds correspond to the average case for
the randomized version and to the worst-case for the deterministic variant.

The remainder of this paper is organized as follows. In Section 2 we review the
CGM model of parallel computation and the graph coloring problem. In Section 3
we discuss a good data organization for our CGM algorithms and present the ran-
domized variant of the algorithm along with its various subroutines. In Section 4
we provide an average-case analysis of the randomized algorithm’s time and work
complexity. In Section 5 we show how to derandomize our algorithm to achieve the
same good time and work complexity also in the worst-case. Finally, in Section 6
we give some concluding remarks.

2 Background

2.1 Coarse grained models of parallel computation

In the last decade several efforts have been made to define models of parallel (or
distributed) computation that are more realistic than the classical PRAM models;
see Fortune and Wyllie (1978) or Karp and Ramachandran (1990) for an overview
of PRAM models. In contrast to the PRAM models that suppose that the number of
processorsp is polynomial in the input sizeN, the new models arecoarse grained,
i.e. they assume thatp andN are orders of magnitude apart. Due to this assump-
tion, the coarse grained models map much better on existing architectures where in
general the number of processors is in the order of hundreds and the size of the data
to be handled could be in the order of billions.

The introduction ofBulk Synchronous Parallel(BSP) bridging model for parallel
computation by Valiant (1990) marked the beginning of the increasing research in-
terest in coarse grained parallel computation. The BSP model was later modified
along different directions. For example, Culler et al. (1993) suggested the LogP
model as an extension of Valiant’s BSP model in which asynchronous execution
was modeled and a parameter was added to better account for communication over-
head. In an effort to define a parallel computation model thatretains the advantages
of coarse grained models while at the same time is simple to use (involves few
parameters), Dehne et al. (1996) suggested the CGM model.

The CGM model considered in this paper is well suited for the design of algorithms
that are not too dependent on a particular architecture and our basic assumptions of
the model are listed below.

• The model consists ofp processors and all the processors have the same size
M = O(N/p) of memory, whereN is the input size.

• An algorithm on this model proceeds in so-calledsupersteps. A superstep
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consists of one phase of local computation and one phase of interprocessor
communication.

• The communication network between the processors can be arbitrary.

The goal when designing an algorithm in this model is to keep the sum total of the
computational cost per processor, the overall communication cost, and idle time
of each processor withinT/s(p), whereT is the runtime of the best sequential
algorithm on the same input, and thespeedup s(p) is a function that should be as
close top as possible.

To achieve this, it is desirable to keep the number of supersteps of such an algo-
rithm as low as possible, preferably withino(M). The rationale here lies in the fact
that, among others, thelatencyand thebandwidthof an architecture determine the
communication overhead. Latency is the minimal time a message needs tostartup
before any data reaches its destiny and bandwidth is the overall throughput per
time unit of the communication network. In each superstep, aprocessor may need
to do at mostO(p) communications and hence a number of supersteps ofo(M) en-
sures that the total latency is at mostO(Mp) = O(N) and therefore lies within the
complexity bound of the overall computational cost we anticipate for such an algo-
rithm. The bandwidth restriction of a specific platform muststill be observed, and
here the best strategy is to reduce the communication volumeas much as possible.
See Guérin Lassous et al. (00a) for an overview of algorithms, implementations and
experiments on the CGM model.

As a legacy from the PRAM model, it is usually assumed that thenumber of su-
persteps should be polylogarithmic inp. However, the assumption seems to have
no practical justification. In fact, there is no known relationship between the coarse
grained models and the complexity classesNCk and algorithms that simply ensure
number of supersteps that are functions ofp (but not ofN) perform quite well in
practice; see Goudreau et al. (1996).

To be able to organize the supersteps well, it is natural to assume that each processor
can store a vector of sizep for every other processor. Thus the following inequality
is assumed throughout this paper,

p2 < M. (1)

2.2 Graph coloring

A graph coloring is a labeling of the vertices of a graphG = (V,E) with positive
integers, calledcolors, such that adjacent vertices do not obtain the same color.
It can equivalently be viewed as searching for a partition ofthe vertex set of the
graph intoindependent sets. The primary objective of graph coloring is to minimize
the number of colors used. Even though coloring a graph with the fewest number
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of colors is an NP-hard problem, in many applications coloring using a bounded
number of colors, possibly far from the minimum, may suffice.Particularly in many
parallel graph algorithms, a bounded coloring (partition into independent sets) is
needed as a subroutine. For example, graph coloring is used in the development
of a parallel algorithm for computing the eigenvalues of certain matrices by Manne
(1998) and in parallel partial differential equation solvers by Allwright et al. (1995).

One of the simplest and yet quite effective sequential heuristics for graph coloring
is thegreedyalgorithm that visits the vertices of the graph in some orderand in each
visit assigns a vertex the smallest color that has not been used by any of the vertex’s
neighbors. It is easy to see that, for a graphG = (V,E), such a greedy algorithm
always uses at most∆ + 1 colors, where∆ = maxv∈V{degree ofv}. In Greenlaw
et al. (1995), a restricted variant of the greedy algorithm in which the ordering of
the vertices is predefined, and the algorithm is required to respect the given order,
is termed asLexicographically First∆ + 1-coloring (LF∆ + 1-coloring). We refer
to the case where this restriction is absent and where the only requirement is that
the resulting coloring uses at most∆+1 colors, simply as∆+1-coloring.

LF∆ + 1-coloring is known to be P-complete; see Greenlaw et al. (1995). But for
special classes of graphs, someNC algorithms have been developed for it. For ex-
ample, Chelbus et al. (1989) show that fortree structuredgraphs LF∆+1-coloring
is in NC. In the absence of the lexicographically first requirement,a fewNC algo-
rithms for general graphs have been proposed. Luby (1986) has given anNC ∆+1-
coloring algorithm by reducing the coloring problem to the maximal independent
set problem. Moreover, Karchmer and Naor (1988), Karloff (1989), and Hajnal and
Szemerédi (1990) have each presented differentNC algorithms for Brook’s color-
ing (a coloring that uses at most∆ colors for a graph whose chromatic number is
bounded by∆). Earlier, Naor (1987) had established that coloring planar graphs
using five colors is inNC.

However, all of theseNC coloring algorithms are mainly of theoretical interest as
they require polynomial number of processors, whereas, in reality, one has only
a limited number of processors on a given parallel computer.In this regard, Ge-
bremedhin and Manne (2000) have recently shown a practical and effective shared
memory parallel∆+1-coloring algorithm. They show that distributing the vertices
of a graph evenly among the available processors and coloring the vertices on each
processor concurrently, while checking for color compatibility with already col-
ored neighbors, creates very few conflicts. More specifically, the probability that a
pair of adjacent vertices are colored at exactly the same instance of the computa-
tion is quite small. On a somewhat simplified level, the algorithm of Gebremedhin
and Manne works by tackling the list of vertices numbered from 1 ton in a ‘round
robin’ manner. At a given timet, where 1≤ t ≤ r andr = ⌈ n

p⌉, processorPi colors
vertex(i−1) · r + t. The shared memory assumptions ensure thatPi may access the
color information of any vertex at unit cost of time. Adjacent vertices that are in
fact handled at exactly the same time are the only causes for concern as they may
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result in conflicts. Gebremedhin and Manne show that the number of such conflicts
is small on expectation, and that conflicts can easily be resolveda posteriori. Their
resulting algorithm colors a general graphG= (V,E) with ∆+1 colors in expected
timeO(|G|/p), when the number of processorsp is such thatp≤ |V|/

√

2|E|.

However, in a distributed memory setting, the most common case in our target
model CGM, one has to be more careful about access to data located on other
processors.

3 A CGM ∆+1-coloring algorithm

We start this section by a discussion on how we intend to distribute the input graph
among the available processors for our CGM∆+1-coloring algorithms. Then, the
randomized variant of our algorithm is presented in a top-down fashion, starting
with an overview and filling the details as the presentation proceeds.

3.1 Data distribution

In general a good data organization is crucial for the efficiency of a distributed
memory parallel algorithm. For our CGM-coloring algorithmin particular, the in-
put graphG = (V,E) is organized in the following manner.

• Each processorPi (1 ≤ i ≤ p) is responsible for a subsetUi of the vertices
(V =

⋃p
i=1Ui). With a slight abuse of notation, the processor hosting a vertex

v is denoted byPv.
• Each edgee= {v,w} ∈ E is represented as arcs(v,w) stored atPv, and(w,v)

stored atPw.
• For each arc(v,w) processorPv stores the identity ofPw and thus the location

of the arc(w,v). This is to avoid a logarithmic blow-up due to searching for
Pw.

• The arcs are sorted lexicographically and stored as a linkedlist per vertex.

In this data distribution, we require that the degree of eachvertex be less thanD =
⌈N

p⌉, whereN = |E|. Vertices with degree greater thanD are treated in a separate
preprocessing step.

If the input of the algorithm is not of the desired form, it canbe efficiently trans-
formed into one by carrying out the following steps.

• Generate two arcs for each edge as described above,
• Radix sort (see Guérin Lassous et al. (00a) for a CGM radix sort) the list of

arcs such that each processor receives the arc(v,w) if it is responsible for
vertexw,
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Algorithm 1: ∆+1-coloring on a CGM withp processors
Input : Base graphG=(V,E), the subgraphH induced by vertices of degree greater

thanD = ⌈N/p⌉, the listsFv of forbidden colors of verticesv∈V.

Output : A valid coloring ofG = (V,E) with at most∆+1 colors.

initial phase Sequential∆+1Coloring(H,{Fv}v) (see Algorithm 3);
main phase ParallelRecursive∆+1Coloring(G,{Fv}v) (see Algorithm 2);

• Let every processor note its identity on these sibling arcs,
• Radix sort the list of arcs such that every processor receives its proper arcs

(arcs(v,w) if it is responsible for vertexv).

3.2 The algorithm

As the time complexity of sequential∆ + 1-coloring is linear in the size of the
graph |G|, our aim is to design a parallel algorithm in CGM withO(

|G|
p ) work

per processor andO(|G|) overall communication cost. In an overview, our CGM
coloring algorithm consists of two phases, aninitial and a mainrecursivephase;
see Algorithm 1.

In the initial phase, the subgraph induced by the vertices with degree greater than
⌈N

p⌉ is colored sequentially on one of the processors. Clearly, there are at mostp
such vertices since otherwise we would have more thanN edges in total. Thus the
subgraph induced by these vertices has at mostp2 edges. Sincep2 is assumed to
be less thanM, the induced subgraph fits on a single processor (sayP1) and a call
to Algorithm 3 colors it sequentially. Algorithm 3 is also used in another situation
than coloring such vertices. We defer the discussion on the details of Algorithm 3
to Section 3.2.1 where the situation that calls for its second use is presented.

The main part of Algorithm 1 is the call to Algorithm 2 which recursively colors
any graphG such that the maximum degree∆ ≤ M. The basic idea of the algorithm
is based on placing the vertices residing on each processor into differenttimeslots.
The assignment of timeslots to the vertices gives rise to twocategories of edges. The
first category consists of edges which connect vertices having the same timeslot.
We call these edgesbadand all other edgesgood. Figure 1 shows an example of a
graph distributed on 6 processors and 4 timeslots in which the bad edges are shown
in bold.

In a nutshell, Algorithm 2 proceeds timeslot by timeslot where in each timeslot the
graph defined by the bad edges and the vertices incident on them is identified and
the algorithm is called recursively with the identified graph as input while the rest
of the input graph is colored concurrently.

In Algorithm 2, while partitioning the vertices intok timeslots, where 1< k ≤ p,
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Fig. 1. Graph on 72 vertices distributed onto 6 processors and 4 timeslots.

we would like achieve as even a distribution as possible. Thecall to Algorithm 6
in line group verticesdoes this by using the degree of each vertex as a criterion.
This randomized algorithm is presented in Section 3.2.2.2 where the issue of load
balancing is briefly discussed. Prior to calling Algorithm 6, vertices with ‘high de-
grees’ that would otherwise result in an uneven load balanceare treated separately;
see linehigh degree. The algorithm for treating high degree vertices, Algorithm 5,
is presented in Section 3.2.2.1.

Notice that an attempt to concurrently color vertices incident on a bad edge may
result in an inconsistent coloring (conflict). In a similar situation, Gebremedhin
and Manne, in their shared memory formulation, tentativelyallow such conflicts
and resolve eventual conflicts in a later sequential phase. The success of their ap-
proach lies in the fact that the expected size of the edges in conflict is relatively
small. In our case, we deal with the potential conflictsa priori. We first identify
the subgraphs that could result in conflict and then color these subgraphs in paral-
lel recursively until their union is small enough to fit onto the memory of a single
processor. See linesidentify conflicts and recurse in Algorithm 2. Note that, in
general, some processors may receive more vertices than others. We must ensure
that these recursive calls do not produce a blow-up in computation and commu-
nication. In order to ensure that the subgraph that goes intorecursion is evenly
distributed among the processors, a call to Algorithm 7 is made at linebalance
load. Algorithm 7 is discussed in Section 3.2.2.3.

In the recursive calls one must handle the restrictions thatare imposed by pre-
viously colored vertices. We extend the problem specification and assume that a
vertexv also has a listFv of forbidden colors that initially is empty. An important
issue for the complexity bounds is that a forbidden color is added toFv only when
the knowledge about it arrives onPv. The listFv as a whole will only be touched
once, namely whenv is finally colored.

Observe also that the recursive calls in linerecurse need not be synchronized. In
other words, it is not necessary (nor desired) that the processors start recursion
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Algorithm 2: Parallel Recursive∆+1-coloring
Input : SubgraphG′ = (V ′,E′) of a base graphG = (V,E) with M′ edges per pro-

cessor such that∆G′ ≤ M′, M the initial input size per processor, listsFv of
forbidden colors for the vertices.

Output : A valid coloring ofG′ with at most∆G +1 colors.

base case if (|G′| < N
kp2 ) then Sequential∆+1Coloring(G′,{Fv}v) (see Algorithm 3);

else
high degree HandleHighDegreeVertices(G′,{Fv}v,2k) (see Algorithm 5);

group vertices foreachPi do
Let Ui,t for t = 1, . . . ,k be result of the call
GroupVerticesIntoTimeslots(V′,k), (see Algorithm 6);
For each vertexv denote the index of its timeslot bytv;
foreach arc (v,w) do collect the timeslottv in a send buffer forPw;
Send out the tuples (w,tv);
Receive the timeslots from the other processors;

for t = 1 to k do
foreach processor Pi do

identify conflicts Consider all arcse= (v,w) with v∈Ui,t andtv = tw = t;
Name this setSi and consider the verticesVSi that have such an arc;

balance load Grec =Balance
(

⋃p
i=1VSi ,

⋃p
i=1Si

)

(see Algorithm 7);
recurse ParallelRecursive∆+1Coloring(Grec,{Fv}v);

foreach processor Pi do
color vertex foreachuncolored vertex v with tv = t do Colorv with least legal color;

send messages foreacharc (v,w) with v∈Ui, tv = t and tw > t do Collect the color of
v in a send buffer forPw;
Send out the tuples (w,color ofv);

receive messages Receive the colors from the other processors;
foreach received tuples (w, color of v)do add color ofv to Fw;

at exactly the same moment in time. During recursion, when the calls reach the
communication phase of the algorithm, they will automatically be synchronized in
waiting for data from each other.

Clearly, the subgraph defined by the good edges and their incident vertices can be
colored concurrently by the available processors. In particular, each processor is
responsible for coloring its set of vertices as shown in linecolor vertex of Algo-
rithm 2. In determining the least available color to a vertex, each processor main-
tains a Boolean vectorBcolors. This vector is indexed with the colors and initial-
ized with all values set to “true”. Then when processing a vertex v, the entries of
Bcolorscorresponding tov’s list of forbidden colors are set to “false”. After that,
the first item inBcolorsthat still is true is looked for and chosen as the color ofv.
Then, the vector is reset by assigning all its modified valuesthe value “true” again
for future use.
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Algorithm 3: Sequential∆+1Coloring
Input : M the initial input size per processor, subgraphG′ = (V ′,E′) of a base graph

G = (V,E) with |E′| ≤ M and listsFv of forbidden colors for the vertices.

find allowed foreach processor Pi do
LetU ′

i = Ui ∩V ′ be the vertices ofG′ that are stored onPi;
For eachv∈U ′

i let d(v) be the degree ofv in G′;
Av = ComputeAllowedColors(v,d(v),{Fv}v) (see Algorithm 4);

CommunicateE′ and all listsAv to P1;
color sequentially for processor P1 do

Collect the graphG′ together with the listsAv;
Color each vertex inG′ with least available color;
Send the resulting colors back to the corresponding processors;

communicate foreach processor Pi do
Inform all neighbors ofU ′

i of the colors that have been assigned;
Receive the colors from the other processors and update the listsFv accordingly;

Algorithm 4: Compute Allowed Colors
Input : v together with its actual degreed(v) and its (unordered) listFv of forbidden

colors; A Boolean vectorcolorswith all values set totrue.
Output : a sorted listAv of the leastd(v)+1 allowed colors forv

foreach c∈ Fv do Setcolors[c] = f alse;
for (c = 1; |Av| < d(v); ++c) do if colors[c] then Av = Av +c;
foreach c∈ Fv do Setcolors[c] = true;

After a processor has colored a vertex, it communicates the color information to
processors hosting a neighbor. In each timeslot the messages to the other processors
are grouped together, seesend messagesandreceive messages. This way at most
p−1 messages are sent per processor per timeslot.

3.2.1 The base case

The base case of the recursion is handled by a call to Algorithm 3 (seebase casein
Algorithm 2). Note that the sizes of the listsFv of forbidden colors that the vertices
might have collected during higher levels of recursion may actually be too large and
their union might not fit on a single processor. To handle thissituation properly, we
proceed in three steps as shown in Algorithm 3. Notice that Algorithm 3 is the same
routine called in the initial phase of Algorithm 1.

In the stepfind allowed, for each vertexv ∈ V ′ a short list ofallowedcolorsAv

is computed. Observe that a vertexv can always be colored using one color from
the set{1,2, . . . ,d(v)+ 1}, whered(v) is the degree ofv. Hence a list ofd(v)+
1 allowed colors suffices to take all restrictions of forbidden colors into account.
Using a similar technique as described incolor vertex of Algorithm 2, we can
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Algorithm 5: Handle High Degree Vertices
Input : SubgraphG′ = (V ′,E′) of a base graphG = (V,E) with M′ edges per pro-

cessor such that∆G′ ≤ M′, listsFv of forbidden colors for the vertices and a
parameterq.

foreach processor Pi do
find all v ∈ Ui with degree higher thanM′/q (Note: all degrees are less than
N/p);
send the names and the degrees of these vertices toP1;

for processor P1 do
Receive lists of high degree vertices;
Group these vertices intok′ ≤ q timeslotsW1, ...,Wk′ of at mostp vertices each
and of a degree sum of at most 2N/p for each timeslot;
Communicate the timeslots to the other processors;

foreach processor Pi do
Receive the timeslots for the high degree vertices inUi ;
Communicate these values to all the neighbors of these vertices;
Receive the corresponding information from the other processors;
ComputeEt,i for t = 1, . . . ,k′ where one endpoint is inWt ∪Ui ;

for t = 1 to k′ do
Let Et =

⋃

1≤i≤pEt,i and denote byGt = (Wt ,Et) the induced subgraph of high
degree vertices of timeslott;
Sequential∆+1Coloring(Gt,{Fv}v) (see Algoritm 3);

obtain a sorted listAv of allowed colors forv in time proportional to|Fv|+ d(v).
This is done by the call to Algorithm 4 in linefind allowed. Then in the step
color sequentially, the vertices of the input graph are colored sequentially using
their computed lists of allowed colors. In the final stepcommunicate, the color
information of the vertices is communicated.

3.2.2 Load balancing

In this section we address the issue of load balancing. In Algorithm 2, three matters
that potentially result in an uneven load balance are (i) high variation in the degrees
of the vertices, (ii) high variation in the sum of the degreesin the timeslots, and
(iii) the recursive calls on the subgraphs that go into recursion. The following three
paragraphs are concerned with these points.

3.2.2.1 Handling high degree vertices Whereas for the shared memory algo-
rithm differences in degrees of the vertices that are colored in parallel just causes
a slight asynchrony in the execution of the algorithm, in a CGM setting it might
result in a severe load imbalance and even in memory overflow of a processor.
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Line group vertices of Algorithm 2 groups the vertices intok ≤ p timeslots of
about equal degree sum. If the variation in the degrees of thevertices is too large,
such a grouping would not be even. For example, if we have one vertex of very
large degree, it would always dominate the degree sum of its time slot thereby
creating imbalance. So, we have to make sure that the degree of each vertex is
fairly small, namely smaller than⌈M′/q⌉ whereq is a parameter of Algorithm 5.
Observe that the notion of ‘small’ degree depends on the input sizeM′ and thus
may change during the course of the algorithm. This is why we need to have the
line high degreein every recursive call and not only at the top level call. Note that
q is a multiple ofk, the number of timeslots of Algorithm 2.

Thus, the high degree vertices that we indeed have to treat ineach recursive call
are those verticesv with ⌈M′/q⌉ < deg(v) ≤ M′. Such vertices are handled using
Algorithm 5, which essentially divides the set of high degree vertices intok′ ≤ q
timeslots and colors each of the subgraphs induced by these timeslots sequentially.

3.2.2.2 Grouping vertices into timeslots Algorithm 6 partitions the vertices
into k timeslots. It does so by first dividing the set of vertices into groups of sizek
and then distributing the vertices of each group into the distinct timeslots. Observe
that no communication is required during the course of this algorithm.

The partition obtained with this algorithm is relatively balanced.

Lemma 1 On each processor P, the difference of the degree sums of the vertices
in any two timeslots is at most the maximum degree over all vertices that P holds.

Proof: Since the vertices are considered in descending order of their degrees, the
difference in degree sums between two timeslots is maximized when one of the
timeslots always receives the vertex with the highest degree in the group and the
other the smallest. In groupi, the vertex of highest degree isvik+1 and the one of
smallest degree isv(i+1)k. Thus we can estimate the difference as follows:

⌈ s
k⌉−1

∑
i=0

deg(vik+1)−
⌈ s

k⌉−1

∑
i=0

deg(v(i+1)k) ≤
⌈ s

k⌉−1

∑
i=0

deg(vik+1)−
⌈ s

k⌉−2

∑
i=0

deg(v(i+1)k+1)

which is in turn bounded bydeg(v1), wherev1 has the maximum degree over all
vertices thatP holds.

From Lemma 1 and from the fact that we do not have high degree vertices, it follows
that the sum of the degrees of the vertices in any timeslot is betweenM′

2k and 3M′

2k .
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Algorithm 6: Group Vertices Randomly into Timeslots
Input : V ′ the set of vertices,k
foreach processor Pi do

Radix sort its vertices according to their descending degrees;
Let v1, . . . ,vs be this order of the vertices;
for i = 0, . . . ,⌈ s

k⌉−1 do
Let j1, . . . , jk be a random permutation of the values 1, . . . ,k;
Assignvik+1, . . . ,v(i+1)k to timeslotsj1, . . . , jk respectively;

3.2.2.3 Balancing during recursion In Algorithm 2, unless proper attention is
paid, the edges of the subgraph that goes into recursion may not be evenly dis-
tributed among the processors. To address this, we suggest an algorithm that en-
sures thatGrec, the graph that goes into recursion in Algorithm 2, is evenlydis-
tributed among the processors. See Algorithm 7.

Algorithm 7: Balance
Input : GraphG′ = (V ′,E′), such that eachv∈V ′ hasdegG′(v) ≤ |E′|/p.

Output : A redistribution ofV ′ andE′ on the processors such that each processor
handles no more thanM′ = 2|E′|/p edges.

Initialize a distributed arrayDegindexed byV ′ that holds the degrees of all vertices;
Do a prefix sum onDegand store this sum in a similar arrayPre;
foreach processor Pi do

foreachv∈V ′∩Ui do
Let j ∈ {1, ..., p} be such thatjM ′ ≤ Pre[v] < ( j +1)M′;
Sendv and its adjacent edges to processorPj ;

foreach processor Pi do
receive the corresponding vertices and edges

Obviously Algorithm 7 runs in time proportional to the inputsize on each processor
and has a constant number of supersteps.

4 Average case analysis

In this section we provide an average case analysis of Algorithm 2. In Section 5
we show how to replace the randomized algorithm, Algorithm 6, by a deterministic
one.

All the lemmas in this section refer to Algorithm 2 unless stated otherwise.

Lemma 2 For any edge{v,w}, the probability that tv = tw is at most1k .
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Proof: Consider Algorithm 6. We distinguish between two cases. Thefirst is the
case wherev andw reside on different processors. In this case, the choices for the
timeslots ofv andw are clearly independent, implying that the probability that w is
in the same timeslot asv is 1

k .

The same argument applies for the case wherev andw reside on the same processor
but are not processed in the same group. Whenever they are in the same group,
they are never placed into the same timeslot. Therefore,theoverall probability is
bounded by1

k .

Lemma 3 The expected sum total of the number of edges of all subgraphsgoing

into recursion inrecurse is at most|E
′|

k .

Proof: The expected total number of edges going into recursion is equal to the ex-
pected total number of bad edges. The latter is in turn equal to ∑e∈E′ prob(e is bad),

which by Lemma 2 can be bounded by|E′|
k .

Lemma 4 The expected overall size of the subgraphs at the ith recursion level is
at most N/ki , with at most M/ki per processor.

Proof: Notice that the choices of timeslots between two successiverecursion levels
may not be independent. However, the dependency that may occur actually reduces
the number of bad edges even more. This can be seen from a similar argument as
that of Lemma 2: vertices that are in the same group of the degree sequence in
Algorithm 6 are forced to be separated into two different timeslots. For all others,
the choices are again independent.

Thus, the total number of edges going into recursion can be immediately bounded
byN/ki . The fact that it is also balanced across the processors is due to Algorithm 7.

Lemma 5 The expected sum total of the sizes of all the subgraphs handled by any
processor during Algorithm 2 (including all recursions) isO(M).

Proof: By Lemma 4, the expected sum of the sizes of these graphs is bounded by

∞

∑
i=0

k−iM =
k

k−1
M ≤ 2M, (2)

for all k≥ 2. Thus, the total expected size in all the steps per processor is O(M).

Lemma 6 For any1< k≤ p, the expected number of supersteps is at most quadratic
in p.
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Proof: The expected recursion depth of our algorithm is the minimumvalued such
thatN/kd ≤ M = N/p, which implieskd ≥ p, i.e. d = ⌈logk p⌉. The total number
of supersteps in each call (including the supersteps in Algorithm 5) isc·k, for some
constantc≥ 1. The constantc captures the following supersteps:

• some to handle high degree vertices,
• one to propagate the chosen timeslots,
• some to balance the edges inside each timeslot,
• one to propagate the colors for each timeslot.

Thus, the total number of supersteps on recursion leveli is c · ki and the expected
number of supersteps is bounded as follows

⌈logk p⌉

∑
i=1

c·ki ≤ c·klogk p+1 = c·k · p. (3)

Lemma 7 The expected overall work involved inbase case is O(M).

Proof: Algorithm 3 on inputG′ = (V ′,E′) and lists of forbidden colorsFv has
overall work and communication cost proportional to|G′| and the size of the lists
Fv.

There arek⌈logk p⌉ expected calls to Algorithm 3 in Algorithm 2; thereforeP1 is
expected to handlek⌈logk p⌉ N

kp2 edges andk⌈logk p⌉ N
kp2 ≤ k1+logk p N

kp2 ≤ kp N
kp2 = M.

This implies an expected work and communication cost ofO(M) for base case.

Lemma 8 The expected overall work per processor involved inhigh degree is
O(M).

Proof: In Algorithm 2, in the first call to Algorithm 5 (M′ = M), every processor
holds at mostq = 2k high degree vertices (i.e verticesv of degreedegv(G) such
that N

pq < degv(G) ≤ N
p ). Otherwise, it would hold more than(M/q) ·q= M edges.

So, overall, there are at mostp ·q such vertices for the first level of recursion. Pro-
cessorP1 distributes theseO(p2) vertices ontok′ timeslots such that each timeslot
has a degree sum of at most 2N/p = 2M. Thus, each timeslot induces a graph
of expected size 2M/k′. Subsequently, sequential∆ + 1-coloring is called for the
subgraph induced by each timeslot, for total workO(M) = O(M′).

By induction we see that in theith level of recursion, if a vertexv is of high degree,
its degreedegv(Grec) has to beM′

q < degv(Grec) ≤ M′. Using the same argument as
the one above, it can be shown that the total work to handle these vertices isO(M′).

From Lemma 5, the total expected work in all the steps per processor isO(M).
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Lemma 9 The expected overall work per processor involved ingroup vertices is
O(M).

Proof: Observe that the radix sort can be done inO(M′), since the sort keys are
less thanM′. The random permutations can easily be computed locally in linear
time.

Again, Lemma 5 proves the claim.

Theorem 1 For any1 < k ≤ p, the expected work, communication, and idle time
per processor of Algorithm 2 is within O(M). In particular, the expected total run-
time per processor is O(M).

Proof: From Lemma 6 we see that the expected number of supersteps isO(p2);
hence by inequality (1) the expected communication overhead generated in all the
supersteps isO(M).

We proceed by showing that the work and communication that a processor has to
perform in Algorithm 2 is a function of the number of edges on that processor, i.e.
M. Inserting a new forbidden color into an unsorted listFv can be done in constant
time. Since an edge contributes an item to the list of forbidden colors of one of its
incident vertices at most once, the size of such a list is bounded by the degree of the
vertex. Thus, the total size of these lists on any of the processors will never exceed
the input sizeM′ (recall that vertices of degree greater thanN

p have been handled in
the preprocessing step).

As discussed in Section 3.2, a Boolean vectorBcolors is used in determining the
color to be assigned to a vertex. In the absence of high degreevertices no listFv will
be longer thanM

′

q and hence the size ofBcolorsneed not exceedM
′

q +1. Even when
this restriction is relaxed, as shown in Section 3.2.2.1, weneed at mostp colors for
vertices of degree greater thanN/p and need not add more than∆′+1 colors, where
∆′ is the maximum degree among the remaining vertices (∆′ ≤ M′). Overall, this
means that we have at mostp+M′+1 colors and hence the vectorBcolorsstill fits
on a single processor. So,Bcolorscan be initialized in a preprocessing step in time
O(M′).

After that, coloring any vertexv can be done in time proportional to the size of
Av, which is bounded by the degree ofv. Thus, the overall time spent per proces-
sor in coloring vertices isO(M′). By Lemma 5, the expected total time (including
recursions) per processor isO(M).

Lemmas 7, 8, and 9 show that the contributions ofbase case, high degree, and
recurse in Algorithm 2 are withinO(M) per processor, proving the claim on the
total amount of work per processor.

As for processor idle time, observe that the bottleneck in all the algorithms as pre-
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sented is the sequential processing of parts of the graphs byprocessor 1. Since the
total run time (of Algorithm 3) on processor 1 is expected to be O(M), the same
expected bound holds for the idle time of the other processors.

5 An add-on to achieve a good worst-case behavior

So far, for a possible implementation of our algorithm, we have some degree of
freedom in choosing the number of timeslotsk. If our goal is just to get results
based onexpectedvalues as shown in Section 4, we can avoid recursion by choos-
ing k = p and by replacing the recursive call in Algorithm 2 by a call to
Sequential∆+1Coloring(Grec,{Fv}v) (Algorithm 3). We can do this since by Lemma 4
the expected size ofGrec is N/k which in this case meansN/p = M, implying that
Grec fits on one processor. The resulting algorithm would havecp supersteps, for
some integerc > 1; see Lemma 6.

To get a deterministic algorithm with a good worst-case bound we choose the other
extreme, namelyk = 2, and replace the call to the randomized Algorithm 6, in line
group verticesof Algorithm 2, by a call to Algorithms 8 and 9. This will enable us
to bound the number of edges that go into recursion,i.e. the bad edges. We need to
distinguish between two types of edges:internalandexternaledges. Internal edges
have both of their endpoints on the same processor while external edges have their
endpoints on different processors.

First we argue that internal edges are handled by the call to Algorithm 8, and later
we will argue that external edges are handled by the subsequent call to Algorithm 9.
For internal edges, the following two points need to be observed.

(1) The vertices are grouped into two timeslots of about equal degree sum.
(2) Most of the internal edges are good.

To achieve the first goal, Algorithm 8 first calls Algorithm 5 to get rid of vertices
with degree≥ M/8. The constant 8 is somewhat arbitrary and could be replaced
by any constantk′ > 2 depending on the needs of an implementation. Algorithm 8
groups the vertices of internal edges according to (1) and (2) above intobucket[0]
andbucket[1] that will form the two timeslots. A bucket is said to befull when the
degree sum of its vertices becomes greater thanM/2.

Proposition 1 SupposeγiM of the edges on processor Pi are external (0≤ γiM ≤
M). Then after an application of Algorithm 8 at least(1

4 −
γi
2 )M of the edges on Pi

are good internal edges and each bucket has a degree sum of at most 5M
8 .

Proof: Considering the fact that each vertex is of degree less thanM/8, the claim
for the degree sum is immediate.
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Algorithm 8: Deterministically group the vertices on processorPi into k = 2 buck-
ets.
HandleHighDegreeVertices(G,{Fv}v,8) (see Algorithm 5);
initialize bucket[0] andbucket[1] to empty;
foreach vertex vdo

determine the number of edges connectingv to bucket[0] andbucket[1], resp;
insertv in the bucket to which it has the least number of edges;
if this bucket is fullthen

put the remaining vertices in the other bucket;
return ;

return ;

To see the lower bound on the number of good internal edges, consider the bucket
B that became full. The vertices inB have a degree sum of at leastM/2 and at least
(1

2 − γi)M of these edges are internal. We claim that at least half of these internal
edges are good.

For the following argument, suppose that an edge is considered only when its sec-
ond endpoint is placed into a bucket. We distinguish betweentwo types of internal
edges.Early edges join vertices both of which have been put into a bucket before
the bucket was full, and edges for which at least one of the endpoints was placed
thereafter are calledlateedges .

First, observe that until one of the two buckets becomes full, both buckets have
more good internal edges than bad internal edges. So, at least one half of the early
edges are good. But, notice that all the late edges that have one endpoint inB are
also good. This is the case since the second endpoint of a lateedge is never placed
in B.

Therefore, overall, there are at least1
2(1

2 − γi)M good internal edges.

To handle the external edges we add a call to Algorithm 9 rightafter the call to
Algorithm 8. This algorithm counts the numbermrr ′

is of edges between all possible
pairs of buckets on different processors, and broadcasts these values to all proces-
sors. Then a quick iterative algorithm is executed on each processor to ascertain as
to which of the processor’s two buckets represents the first and second timeslot.

After having decided the order in which the buckets are processed on processors
P1, . . . ,Pi−1, we compute two values for processorPi : A|| the number of external bad
edges if we would keep the numbering of the buckets as the timeslot numbering,
andA× the corresponding number if we would interchange them. Depending on
which value is less, the order of the two buckets of processorPi is kept as-is or
exchanged.

Using the same type of argument as the one above, we get the following remark.
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Algorithm 9: Determine an ordering on thek = 2 buckets on each processor.
foreach processor Pi do

foreachedge(v,w) do inform the processor ofw about the bucket ofv;
for s= 1. . . p do

for r, r ′ = 0,1 do setmrr ′
is = 0;

foreach edge(v,w) do add 1 tomrr ′
is , wherePs is the processor ofw andr and

r ′ are the buckets ofv andw;
Broadcast all valuesmrr ′

is for s= 1, . . . , p to all other processors;
inv[1] = f alse;
for s= 2 to p do

A|| = 0; A× = 0;
for s′ < s do

if ¬inv[s′] then
A|| = A||+m00

ss′ +m11
ss′ ;

A× = A× +m01
ss′ +m10

ss′

else
A|| = A||+m01

ss′ +m10
ss′ ;

A× = A× +m00
ss′ +m11

ss′

if A× < A|| then inv[s] = true;
elseinv[s] = f alse;

Remark 10 Algorithm 9 ensures that overall at least1
2 of the external edges are

good.

Note that the above statement is true for the whole edge set, but not necessarily for
the set of edges on each processor.

Proposition 2 Algorithms 8 and 9 run with linear work and communication and
in a constant number of supersteps. The assignment of timeslots they make is such
that at least14 of the edges are good.

Proof: For the number of good edges, letγi be the fraction of external edges of
processorPi . The total amount of good edges can now be bounded from below by

1
2

(

p

∑
i=1

γi

)

M +
p

∑
i=1

(

1
4
−

γi

2

)

M =
p

∑
i=1

M
4

=
pM
4

=
N
4

. (4)

For the complexity claim, observe that because of the load balancing done in linebal-
ance loadof Algorithm 2 (see Section 3.2.2.3) all processors hold thesame amount
(up to a constant factor)M′ of edges.

This implies that the recursion depth is⌈log4
3

p⌉ (which is greater than⌈log2 p⌉ of
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the average case). Moreover, more edges go into recursion here than in the average
case and therefore the work and total communication costs are slightly greater than
the costs for the average case, but still withinO(M).

6 Conclusion

We have presented a randomized as well as a deterministic Coarse Grained Multi-
computer coloring algorithm that color the vertices of a general graphG using at
most∆ +1 colors, where∆ is the maximum degree inG. We showed that on ap-
processor CGM model our algorithms require a parallel time of O( |G|

p ) and a total
work and overall communication cost ofO(|G|). These bounds correspond to the
average case for the randomized version and to the worst-case for the deterministic
variant. To the best of our knowledge, our algorithms are thefirst parallel coloring
algorithms with good speedup for a large variety of architectures.

In light of the fact that LF∆ +1-coloring is P-complete, a CGM LF∆ +1-coloring
algorithm, if found, would be of significant theoretical importance. Brent’s schedul-
ing principle shows that anything that works well on PRAM should, in principle,
also work well on CGM or similar models (although the constants that are intro-
duced might be too big to be practical). But the converse may not necessarily be
true. There are P-complete problems (problems where we can’t expect exponential
speedup on PRAM) that have polynomial speedup; see Vitter and Simons (1986). It
can be envisioned that such problems may as well have efficient CGM algorithms.
In this regard, our CGM∆ + 1-coloring algorithm might be a first step towards a
CGM LF∆+1-coloring algorithm.

We also believe that, in general, designing a parallel algorithm on the CGM model
is of practical relevance. In particular, we believe that the algorithms presented in
this paper should have efficient and scalable implementations (i.e. implementations
that yield good speedup for a wide range ofN/p).

Such implementations would also be of interest in other contexts. One example is
the problem of findingmaximal independent sets. Notice that in our algorithms the
vertices colored by the least color always constitute a maximal independent set in
the input graph. In general, consideringG≥i , the subgraph induced by the color
classesi, i + 1, . . ., we see that color classi always forms a maximal independent
set in the graphG≥i .
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