
ATOM3: A Tool for Multi-formalism Modellingand Meta-modellingJuan de Lara1;2 and Hans Vangheluwe21 ETS Inform�atiaUniversidad Aut�onoma de MadridMadrid Spain, fax: +34 91 348 22 35Juan.Lara�ii.uam.es, jlara�s.mgill.a2 Shool of Computer SieneMGill University, Montr�ealQu�ebe, Canada, fax: +1 (514) 398 38 83hv�s.mgill.aAbstrat. This artile introdues the ombined use of multi-formalismmodelling and meta-modelling to failitate omputer assisted modellingof omplex systems. The approah allows one to model di�erent parts ofa system using di�erent formalisms. Models an be automatially on-verted between formalisms thanks to information found in a FormalismTransformation Graph (FTG), proposed by the authors. To aid in theautomati generation of multi-formalism modelling tools, formalisms aremodelled in their own right (at a meta-level) within an appropriate for-malism. The above approah has been implemented in the interativetool ATOM3. This tool is used to desribe formalisms ommonly used inthe simulation of dynamial systems, as well as to generate ustom toolsto proess (reate, edit, transform, simulate, optimize, ... ) models ex-pressed in the orresponding formalism. ATOM3 relies on graph rewritingtehniques and graph grammars to perform the transformations betweenformalisms as well as for other tasks, suh as ode generation or simulatorspei�ation.Keywords:Modelling & Simulation, Meta-Modelling, Multi-FormalismMod-elling, Automati Code Generation, Graph Grammars.1 IntrodutionModelling omplex systems is a diÆult task, as suh systems often have om-ponents and aspets whose struture as well as behaviour annot be desribedin a single formalism. Examples of ommonly used formalisms are Di�erential-Algebrai Equations (DAEs), Bond Graphs, Petri Nets, DEVS, Entity-Relationshipdiagrams (ERDs), and State Charts. Several approahes are possible:{ A single super-formalism may be onstruted whih subsumes all the for-malisms needed in the system desription. This is not possible nor mean-ingful in most ases, although there are some examples of formalisms whih



span several domains (e.g. Bond Graphs for the mehanial, hydrauli andeletrial domains.){ Eah system omponent may be modelled using the most appropriate formal-ism and tool. To invesitate the overall behaviour of the system, o-simulationan be used. In this approah, eah omponent model is simulated with aformalism-spei� simulator. Interation due to omponent oupling is re-solved at the trajetory (simulation data) level. The o-simulation engineorhestrates the ow of input/output data. In this approah, questions aboutthe overall system an only be answered at the level of input/output (statetrajetory) level. It is no longer possible to answer higher-level questionswhih ould be answered within the individual omponents' formalisms. Fur-thermore, there are speed and numerial auray problems for ontinuousformalisms, in partiular if one attempts to support omputationally non-ausal models. The o-simulation approah is meaningful mostly for disrete-event formalisms. It is the basis of the DoD High Level Arhiteture (HLA)[14℄ for simulator interoperability.{ As in o-simulation, eah system omponent may be modelled using the mostappropriate formalism and tool. In multi-formalism modelling and simula-tion however, a single formalism is identi�ed into whih eah of the ompo-nent models may be symbolially transformed [23℄. Obviously, the systemproperties whih we wish to investigate must be invariant under the trans-formations. The formalism to transform to depends on the question to beanswered about the system. The Formalism Transformation Graph (see Fig-ure 1) suggests DEVS [25℄ as a universal ommon modelling formalism forsimulation purposes (generating input/output trajetories).It is easily seen howmulti-formalism modelling subsumes both the super-formalismapproah and the o-simulation approah.Although the model transformation approah is oneptually appealing, thereremains the diÆulty of interonneting a plethora of di�erent tools, eah de-signed for a partiular formalism. Also, it is desirable to have problem-spei�formalisms and tools. The time needed to develop these is usually prohibitive.This is why we introdue meta-modelling whereby the di�erent formalisms them-selves as well as the transformations between them are modelled. This preemptsthe problem of tool inompatibility. Ideally, a meta-modelling environment mustbe able to generate ustomized tools for models in various formalisms providedthe formalisms are desribed at the meta-model level. When these tools relyon a ommon data struture to internally represent the models, transformationbetween formalisms is redued to the transformation of these data struture.In this artile, we present ATOM3, a tool whih implements the ideas pre-sented above. ATOM3 has a meta-modelling layer in whih di�erent formalismsare modelled graphially. From the meta-spei�ation (in the Entity Relationshipformalism), ATOM3 generates a tool to proess models desribed in the spei�edformalism. Models are represented internally using Abstrat Syntax Graphs. Asa onsequene, transformations between formalisms is redued to graph rewrit-ing. Thus, the transformations themselves an be expressed as graph grammar



models. Although graph grammars [5℄ have been used in very diverse areas suhas graphial editors, ode optimization, omputer arhiteture, et. [7℄, to ourknowledge, they have never been applied to formalism transformations.2 Multi-formalism modelling and the FormalismTransformation GraphComplex systems are haraterized not only by a large number of omponents,but above all by the diversity of these omponents (and the feedbak intera-tion between them). For the analysis and design of suh omplex systems, it isnot suÆient to study the individual omponents in isolation. Properties of thesystem must be assessed by looking at the whole multi-formalism system.In �gure 1, a part of the \formalism spae" is depited in the form of aFormalism Transformation Graph (FTG). The di�erent formalisms are shownas nodes in the graph. The arrows denote a homomorphi relationship \an bemapped onto", using symboli transformations between formalisms. The vertialdashed line is a division between ontinuous and disrete formalisms. The ver-tial, dotted arrows denote the existene of a solver (simulation kernel) apableof simulating a model.
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Fig. 1. Formalism Transformation Graph.3 Meta-ModellingAs stated in the previous setion, one of the harateristis of omplex systemsis the diversity of their omponents. Consequently, it is often desirable to modelthe di�erent omponents using di�erent modelling formalisms. This is ertainly



the ase, when inter-disiplinary teams ollaborate on the development of a sin-gle system. A proven method to ahieve the required exibility for a modellinglanguage that supports many formalisms and modelling paradigms is to modelthe modelling language itself [4℄ [22℄. Suh a model of the modelling language isalled a meta-model. It desribes the possible strutures whih an be expressedin the language. A meta-model an easily be tailored to spei� needs of par-tiular domains. This requires the meta-model modelling formalism to be rihenough to support the onstruts needed to de�ne a modelling language. Takingthe methodology one step further, the meta-modelling formalism itself may bemodelled by means of a meta-meta-model. This meta-meta-model spei�ationaptures the basi elements needed to design a formalism. Table 1 depits thelevels onsidered in our meta-modelling approah. Formalisms suh as the ERDLevel Desription ExampleMeta-Meta-Model Model used to speify modellinglanguages Entity-Relationship Diagrams,UML lass Diagrams, et.Meta-Model Model used to speify simula-tion models Deterministi Finite Automata,Ordinary di�erential equations(ODE), et.Model The desription of an objet ina ertain formalism f 0(x) = � sinx; f(0) = 0 (in theODEs formalism)Table 1. Meta-modelling levels.are often used for meta-modelling. To be able to fully speify modelling for-malisms, the meta-level formalism may have to be extended with the ability toexpress onstraints (limiting the number of meaningful models). For example,when modelling a Determinsiti Finite Automaton (DFA), di�erent transitionsleaving a given state must have di�erent labels. This annot be expressed withinERD's alone. Expressing onstraints is most elegantly done by adding a on-straint language to the meta-modelling formalism. Whereas the meta-modellingformalism frequently uses a graphial notation, onstraints are onisely ex-pressed in textual form. For this purpose, some systems [12℄, inluding ATOM3use the Objet Constraint Language OCL [19℄ used in the UML.Figure 2 depits the struture we propose for a meta-modelling environ-ment. ATOM3 was initialized using a hand-oded Entity-Relationship (ER)meta-meta-model. As the ER formalism an be desribed in an ER model, theenvironment ould be bootstrapped.4 Graph GrammarsIn analogy to string grammars, graph grammars an be used to desribe graphtransformations, or to generate sets of valid graphs. Graph grammars are om-
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Fig. 2. Proposed working sheme for a meta-modelling environment.posed of rules, eah mapping a graph on the left-hand side (LHS) to a graph onthe right-hand side (RHS). When a math is found between the LHS of a ruleand a part of an input graph (alled host graph), this subgraph is replaed bythe RHS of the rule. Rules may also have a ondition that must be satis�ed inorder for the rule to be applied, as well as ations to be performed when therule is exeuted. A rewriting system iteratively applies mathing rules in thegrammar to the graph, until no more rules are appliable.The use of a model (in the form of a graph grammar) of graph transfor-mations has some advantages over an impliit representation (embedding thetransformation omputation in a program) [3℄:{ It is an abstrat, delarative, high level representation.{ The theoretial foundations of graph rewriting systems may assist in provingorretness and onvergene properties of the transformation tool.On the other hand, the use of graph grammars is onstrained by eÆieny. Inthe most general ase, subgraph isomorphism testing is NP-omplete. However,the use of small subgraphs on the LHS of graph grammar rules, as well as usingnode labels and edge labels an greatly redue the searh spae.Sine we store simulation models as graphs, it is possible to express thetransformations shown in the FTG as graph grammars at the meta-level.For example, suppose we want to transform Non-deterministi Finite Au-tomata (NFA) into (behaviourally) equivalent DFA. In the latter formalism,the labels of all transitions leaving a state must be di�erent. Models in bothformalisms an be represented as graphs. Figure 3 shows the NFA to DFA trans-formation spei�ation in the form of a graph grammar.In this graph grammar, entities are labeled with numbers. In our ase, enti-ties are both states and transitions. RHS node labels have also a prima, to bedistinguished from LHS ones. If two nodes in a LHS and a RHS have the samenumber, that means that the node must not desappear when the rule is exeuted.If a number appears in a LHS but not in a RHS, that means that the node mustbe removed when applying the rule. If a number appears in a RHS but not in aLHS, that means that the node must be reated if the rule is applied.



For subnode mathing purposes, we should speify the value of the attributesof the nodes in the LHS that will produe a mathing. In the example, all theattributes in LHS nodes have the value of hANY i, that means that any valuewill produe a mathing. It is also needed to speify the value of the attributesone the rule has been applied and the LHS has been replaed by the RHS. Thisis done by speifying attributes in the RHS nodes. If no value is spei�ed, andthe node is not a new node (the label appears in the LHS), by default it willkeep its values. It is also possible to alulate new values for attributes, and weertainly must do this if a new node is generated when replaing the LHS by theRHS. In the example, we speify new values in nodes 5' and 6' of rules 3 and 4.
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5. Fig. 3. A grammar to transform NFA into DFA.In the piture, mathed(i) means the node in the host graph that makes amath with node i in the rule. The graph grammar rules do the following: Ruleone removes unreahable nodes; rule two joins two equal states into one; rulethree eliminates non determinism when there are two transitions with the samelabel departing from the same node, and one goes to a di�erent node while theother goes into the �rst one; rule four is very similar to the previous one, but thenon determinism is between two di�erent nodes; �nally, the last rule removestransitions with the same label departing from and arriving to the same state.A graph rewriting module for formalism transformation takes as inputs agrammar and a model in a soure formalism and outputs a behaviourally equiv-alent model expressed in a target formalism. In some ases, the output and theinput models are expressed in the same formalism, and the appliation of the



graph grammar merely optimizes some aspet the model. A typial example isonstant folding of Algebrai models. In this ase, one of the rules states thatthe sub-graph onsisting of an operator node whose operand nodes are all on-stant must be replaed by a onstant node whose value is the result of applyingthe operation on the onstants. Other uses we make of graph-grammars will beommented in setion 5.4.5 ATOM3ATOM3 is a tool written in Python [21℄ whih uses and implements the oneptspresented above. Its arhiteture is shown in �gure 4, and will be explained inthe following setions.
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Fig. 4. The ATOM3 arhiteture.The main omponent of ATOM3 is the Kernel. This module is responsiblefor loading, saving, reating and manipulating models, as well as for generatingode. By default, a meta-meta-model is loaded when ATOM3 is invoked. Thismeta-meta-model allows to model meta-models (modelling formalisms) using agraphial notation. For the moment, the ER formalism extended with onstraintsis available at the meta-meta-level. When modelling at the meta-meta-level, theentities whih may appear in a model must be spei�ed together with theirattributes. We will refer to this as the semanti information. For example, tode�ne the DFA Formalism, it is neessary to de�ne both States and Transitions.Furthermore, for States we need to add the attribute name and type (initial, ter-



minal or regular). For Transitions, we need to speify the ondition that triggersit. In general, in ATOM3 we have two kinds of attributes: regular and genera-tive. Regular attributes are used to identify harateristis of the urrent entity.Generative attributes are used to generate new attributes at a lower meta-level.The generated attributes may be generative in their own right. Both types ofattributes may ontain data or ode for pre and post onditions. Thus, in ourapproah, we an have an arbitrary number of meta-levels as, starting at onelevel, it is possible to produe a generative attribute at the lower meta-level andso on. The meta-hain ends when a model has no more generative attributes.Attributes an be assoiated with individual model entities as well as with amodel as a whole.Many modelling formalisms support some form of oupled or network models.In this ase, we need to onnet entities and to speify restritions on these on-netions. In our DFA example, States an be onneted to Transitions, althoughthis is not mandatory. Transitions an also be onneted to States, although theremay be States without inoming Transitions. In ATOM3, in priniple, all objetsan be onneted to all objets. Usually, a meta-meta-model is used to spe-ify/generate onstraints on these onnetions. Using an ER meta-meta-model,we an speify ardinality onstraints in the relationships. These relationshipswill generate onstraints on objet onnetion at the lower meta-level.The above de�nitions are used by the Kernel to generate the Abstrat SyntaxGraph nodes. These nodes are Python lasses generated using the informationat the meta-meta-level. The Kernel will generate a lass for eah entity de�nedin the semanti spae and another lass for the Abstrat Syntax Graph. Thislass is responsible for storing the nodes of the graph. As we will see later, it alsostores global onstraints. In the meta-meta-model, it is also possible to speifythe graphial appearane of eah entity of the lower meta-level. This appearaneis, in fat, a speial kind of generative attribute. For example, for the DFA,we an hoose to represent States as irles with the state's name inside theirle, and Transitions as arrows with the ondition on top. That is, we anspeify how some semanti attributes are displayed graphially. We must alsospeify onnetors, that is, plaes where we an link the graphi entities. Forexample, in Transitions we will speify onnetors on both extremes of the arand in States on 4 symmetri points around the irle. Further on, onnetionbetween entities is restrited by the spei�ed semanti onstraints. For example,a Transition must be onneted to two States. The meta-meta-model generates aPython lass for eah graphial entity. Thus, semanti and graphial informationare separated, although, to be able to aess the semanti attributes' values bothtypes of lasses (semanti and graphial) have a link to eah other.In the following, we will explore some of the ATOM3 features in more detail.5.1 Constraints and AtionsIt is possible to speify onstraints in both the semanti and the graphial spae:



{ In the semanti spae, it is not always possible to express restritions bymeans of lass or entity relationship diagrams. For example, in DFA's, wewould like to require unique State names, as well as a unique initial Stateand one or more terminal States. Furthermore, transitions departing fromthe same State must have di�erent labels.{ In the graphial spae, it is often desirable to have the entities' graphialrepresentation hange depending on semanti or graphial events or ondi-tions. For example, we would like the representation of States to be di�erentdepending on the States' type (initial, regular or terminal).Constraints an be loal or global. Loal onstraints are spei�ed on single entitiesand only involve loal attribute values. In global onstraints, information aboutall the entities in a model may be used. In our example, the semanti onstraintsmentioned before must be spei�ed as global, whereas the graphial onstraint isloal, as it only involves attributes spei� to the entity (the type of the State).When delaring semanti onstraints, it is neessary to speify whih eventwill trigger the evaluation of the onstraint, and whether evaluation must takeplae after (post-ondition) or before (pre-ondition) the event. The events withwhih these onstraints an assoiated an be semanti, suh as saving a model,onneting, reating or deleting two entities, et., or purely graphial, suh asmoving or seleting an entity, et. If a pre-ondition for an event fails, the eventis not exeuted. If a post-ondition for an event fails, the event is undone. Bothsemanti and graphial onstraints an be plaed on any kind of event (semantior graphial). Semanti onstraints an be spei�ed as Python funtions, or asOCL expressions. In the latter ase, they must be translated into Python. Loalonstraints are inorporated in semanti and graphial lasses, global onstraintsare inorporated in the Abstrat Syntax Graph lass. In both ases, onstraintsare enoded as lass methods.When modelling in the ER formalism, the relationships de�ned between en-tities in the semanti spae reate onstraints: the types of onneted entitiesmust be heked as well as the ardinality of the relationships. The latter on-straint may however not be satis�ed during the whole modelling proess. Forexample, if we speify that a ertain entity must be onneted to exatly twoentities of another type, at some point in the modelling proess the entity an beonneted to zero, one, two or more entities. If it is onneted to zero or one, anerror will be raised only when the model is saved, whereas if it is onneted tothree or more entities the error an be raised immediatelly. It is envisioned thatthis evolution of the formalism during the modelling life-yle will eventually bespei�ed using a variable-struture meta-model (suh as a DFA with ER states).Ations are similar to Constraints, but unlike onstraints, ations have side-e�ets. Ations are urrently spei�ed using Python only.Graphial onstraints and ations are very similar to the semanti ones, butthey at on graphial attributes.



5.2 TypesIn ATOM3, attributes de�ned on entities must have a type. All types inherit froman abstrat lass named ATOM3Type and must provide methods to: display agraphial widget to edit the entity's value, hek the value's validity, lone itself,make itself persistent, et.As stated before, ATOM3 has two kinds of basi types: regular (suh asintegers, oats, strings, lists of some types, enumerate types, et) and generative(used to generate an attribute, onstraint or graphial attribute at the lowermeta-level). There are four types of generative attributes:1. ATOM3Attribute: are used to reate attributes at the lower meta-level.2. ATOM3Constraint: are used to reate a onstraint at the lower meta-level.The ode an be expressed in Python or OCL, and the onstraint must beassoiated to some (semanti or graphial) event(s), and must be spei�edwether it must be evaluated after or just before the event takes plae.3. ATOM3Appearane: assoiate a graphial appearane with the entity at thelower meta-level. Models (as opposed to entities) an also have an assoiatedgraphial appearane. This is useful for hierarhial modelling, as modelsmay be inserted inside other models as ions.4. ATOM3Cardinality: are used to generate ardinality onstraints on the num-ber of elements onneted, at the lower meta-level.It is also possible to speify omposite types. These are de�ned by onstrut-ing a type graph [2℄. The Meta-model for this graph has been built using ATOM3and then inorporated into the Kernel. The omponents of this graph an be ba-si or omposite types and an be ombined using the produt and union typeoperators. Types may be reursively de�ned, meaning that one of the operandsof a produt or union operator an be an anestor node.In�nite reursive loops are deteted using a global onstraint in the typemeta-model. The graph desribing the type is ompiled into Python ode usinga graph grammar (also de�ned using ATOM3).5.3 Code generationIf a model ontains generative attributes, ATOM3 is able to generate a tool toproess models de�ned by the meta-information. \Proessing" means onstrut-ing models and verifying that suh models are valid, although further proessingations an be spei�ed by means of graph grammars. These generated tools alsouse the Kernel and are omposed of:{ The Python lasses orrespoding to the entities de�ned in the semanti spae.These lasses hold semanti information about the attributes, and loal on-straints (both de�ned by means of generative attributes in an higher meta-level).{ A Python lass used to onstrut the Abstrat Syntax Graph. It holds theglobal onstraints and a ditionary used to store a list of the nodes in the



graph, lassi�ed by type. This is useful as operations, suh as onstraintevaluation an be performed using the visitor pattern [10℄, and the graphan hene be traversed more eÆiently.{ Several Python lasses to desribe the graphial appearane. These lassesan have referenes to semanti attributes, and may also have informationabout graphial onstraints.{ Several Python methods stored in a single �le. These methods are addeddynamially to the Kernel lass. These methods reate buttons and menusthat allow the reation of new entities, their editing, onnetion, deletion,et.Models are Python funtions that ontain the exeutable statements to in-stantiate the appropriate semanti lasses, Abstrat Syntax Graph lass andgraphial lasses. In fat, when these statements are exeuted, the result is iden-tial to the ase where the model is onstruted interatively by means of thegraphial editor. Thus, if one hanges models by hand, making them violatesome onstraint, the Kernel will detet this and reat aordingly.Currently we have implemented the ER formalism at the meta-meta-level.Basially, there are two types of entities: Entities and Relationships. Entitiesare omposed of a name (the keyword), a list of ATOM3Attribute, a list ofATOM3Constraint and an attribute of type ATOM3Appearane. Relationships,in addition to the above, have a list of ATOM3Cardinality whih is �lled bymeans of Post-Ations when an Entity is onneted to the Relationship. By meansof pre and post onditions, it is ensured that Entities an only be onneted toRelationships, that the names of Entities and Relationships are unique, et. Withthis meta-meta-model it is possible to de�ne other meta-meta-models, suh aslass diagrams as inheritane relationships between lasses an be implementedwith pre and post ations. Note how suh an implementation allows for theimplementation of various inheritane semantis. Furthermore, target ode anbe generated in languages (suh as C) whih do not support inheritane.Figure 5 shows an example of the ER meta-meta-model in ation to desribethe DFA Formalism (left side in the piture). This information is used to auto-matially generate a tool to proess DFA models (right side in the piture). Onboth sides, a dialog box to edit entities is shown. On the right side, the entitythat is being edited is a DFA State, that has a name (string) and a type (enu-merate type). On the left side, the appearane attribute of an Entity is beingedited.5.4 Formalism TransformationOne a model is loaded, it is possible to transform it into an equivalent modelexpressed in another formalism provided the transformations between formalismhas been de�ned. Beause the models are expressed internally as graphs, thetransformation between formalism an be spei�ed as graph grammars [5℄.In ATOM3, Graph Grammar rules an be modelled as Entities omposed ofa LHS and a RHS , onditions that must hold for the rule to be appliable and



Fig. 5. An example: Generating a tool to proess Deterministi Finite Automata.some ations to be performed when embedding the RHS in the graph. LHS andRHS are indeed meta-models, and may be of di�erent kinds. In �gure 3, LHS'sare expressed in the NFA formalism, whereas RHS's are expressed in the DFAformalism. For other ases, we an have a mixture of formalisms in both LHS'sand RHS's. For this purpose, we allow to open several meta-models at a time. Thegraph rewriting module uses an improvement of the algorithm desribed in [5℄, inwhih we allow non-onneted graphs be part of LHS in rules. It is also possibleto de�ne a sequene of graph-grammars that have to be applied to the model.This is useful, for example to ouple grammars to onvert a model into anotherformalism, and then apply an optimizing grammar. Control the exeution ofthe rules (stopping after eah rule exeution or ontinuous exeution) is alsopossible.Figure 6 shows a moment in the edition of the LHS of rule 4 of the graphgrammar of �gure 3. It an be noted that the dialogs to edit the entites havesome more �elds when these entities are inside a graph grammar rule, namely,the node label and the widgets to set the attribute value to hANY i. RHS nodeshave extra widgets to opy attribute values from LHS nodes, and to speify theirvalue by means of Python funtions.Besides formalism transformations, we use graph-grammars for other pur-poses:{ Code generation: We use a graph-grammar to generate Python ode forATOM3 omposite types.{ Simulation: It is possible to desribe the operational semantis of models bymeans of graph-grammars, in partiular, we have desribed a simulator forblok diagrams in this way.{ Optimization of models: For example, we have de�ned a graph-grammarto simplify Struture Charts diagrams (SC's). We usually use this transfor-mation oupled with a graph-grammar to transform Data Flow Diagrams(DFD's) into SC's.



Fig. 6. Editing LHS of rule 4 of the graph grammar in �gure 36 Related workA similar approah is ViewPoint Oriented Software Development [9℄. Some ofthe onepts introdued by the authors have a lear ounterpart in our aproah(for example, ViewPoint templates have an equivalene with meta-models, et).They also introdue the relationships between ViewPoints, whih in our asehave an equivalene with oupling of models and graph transformations.Although this approah has some harateristis that our approah laks(suh as the work plan axioms), our use of graph transformations allows to ex-press model's behaviour and formalism's semantis. These graph transformationsallow us to transform models between formalisms, optimize models, or desribebasi simulators. Another advantage of our approah, is that we onsider Meta-levels, in this way we don't need di�erent tools to proess di�erent formalisms(ViewPoints), as we an model them at the meta-level.Other approahes taken to interonneting formalism are Category Theory[8℄, in whih formalisms are ast as ategories and their relationships as funtors.See also [24℄ and [18℄ for other approahes.There are other visual meta-modelling tools, among them DOME [4℄, Multi-graph [22℄, MetaEdit+ [16℄ or KOGGE [6℄. Some of them allow to express formal-ism' semantis by means of some kind of textual language (for example, KOGGEuses something similar to Modula-2). Our approah is quite di�erent, beausewe express suh semantis by means of graph grammars. We think that graph-



grammars is a natural and general way to manipulate graphs, rather than usinga purely textual language. Some of the rationale for using graph-grammars in ourapproah was show in setion 4. Also, none of the tools onsider the possibilityto \translate" models between di�erent formalisms.On the other hand, there are some systems and languages for graph-grammarmanipulations, suh as PROGRES [20℄, GRACE [11℄, AGG [1℄, et., althoughall of them lak of a Meta-Modelling layer.Our approah is original in the sense that we take the advantages of Meta-Modelling (to avoid expliit programming of ustomized tools) and graph trans-formation systems (to express model's behaviour and formalism transformation).The main ontribution is thus in the �eld of multi-paradigm modelling [23℄ aswe have a general means to transform models between di�erent formalisms.7 Conlusions and future workIn this artile, we have presented a new approah for modelling omplex systems.Our approah is based on Meta-Modelling and Multi-Formalism modelling, andis implemented in ATOM3. This ode-generating tool, developed in Python, re-lies on graph grammars and meta-modelling tehniques and supports hierarhialmodelling.The advantages of using suh an automated tool for generating ustomizedmodel-proessing tools are lear: instead of building the whole appliation fromsrath, it is only neessary to speify {in a graphial manner{ the kinds of mod-els we will deal with. The proessing of suh models an be expressed by meansof graph grammars, at the meta-level. Our approah is also highly appliableif we want to work with a slight variation of some formalism, where we onlyhave to speify the meta-model for the new formalism and a tranformation intoa \known" formalism (one that already has a simulator available, for example).We then obtain a tool to model in the new formalism, and are able to onvertmodels in this formalism into the other for further proessing. Not only we de-sribe formalisms ommonly used in the simulation of dynamial systems, but wehave also desribed formalisms suh as DFD's and SC's used for the desriptionof software.A side e�et of our ode-generating approah is that some parts of the toolhave been built using ode generated by itself (bootstrapped): one of the �rstimplemented features of ATOM3 was the apability to generate ode, and extrafeatures were added using ode thus generated. An example of this is the dialogto speify omposite types: the meta-model for this graph has been spei�edwith ATOM3, and subsequently Python ode was automatially generated.The way of speifying omposite types is very exible, as types are treated asmodels, and stored as graphs. This means graph grammars an be onstruted tospeify operations on types, suh as disovering in�nite reursion loops in theirde�nition, determining if two types are ompatible, performing ast operations,et.
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