
ATOM3: A Tool for Multi-formalism Modellingand Meta-modellingJuan de Lara1;2 and Hans Vangheluwe21 ETS Inform�ati
aUniversidad Aut�onoma de MadridMadrid Spain, fax: +34 91 348 22 35Juan.Lara�ii.uam.es, jlara�
s.m
gill.
a2 S
hool of Computer S
ien
eM
Gill University, Montr�ealQu�ebe
, Canada, fax: +1 (514) 398 38 83hv�
s.m
gill.
aAbstra
t. This arti
le introdu
es the 
ombined use of multi-formalismmodelling and meta-modelling to fa
ilitate 
omputer assisted modellingof 
omplex systems. The approa
h allows one to model di�erent parts ofa system using di�erent formalisms. Models 
an be automati
ally 
on-verted between formalisms thanks to information found in a FormalismTransformation Graph (FTG), proposed by the authors. To aid in theautomati
 generation of multi-formalism modelling tools, formalisms aremodelled in their own right (at a meta-level) within an appropriate for-malism. The above approa
h has been implemented in the intera
tivetool ATOM3. This tool is used to des
ribe formalisms 
ommonly used inthe simulation of dynami
al systems, as well as to generate 
ustom toolsto pro
ess (
reate, edit, transform, simulate, optimize, ... ) models ex-pressed in the 
orresponding formalism. ATOM3 relies on graph rewritingte
hniques and graph grammars to perform the transformations betweenformalisms as well as for other tasks, su
h as 
ode generation or simulatorspe
i�
ation.Keywords:Modelling & Simulation, Meta-Modelling, Multi-FormalismMod-elling, Automati
 Code Generation, Graph Grammars.1 Introdu
tionModelling 
omplex systems is a diÆ
ult task, as su
h systems often have 
om-ponents and aspe
ts whose stru
ture as well as behaviour 
annot be des
ribedin a single formalism. Examples of 
ommonly used formalisms are Di�erential-Algebrai
 Equations (DAEs), Bond Graphs, Petri Nets, DEVS, Entity-Relationshipdiagrams (ERDs), and State Charts. Several approa
hes are possible:{ A single super-formalism may be 
onstru
ted whi
h subsumes all the for-malisms needed in the system des
ription. This is not possible nor mean-ingful in most 
ases, although there are some examples of formalisms whi
h



span several domains (e.g. Bond Graphs for the me
hani
al, hydrauli
 andele
tri
al domains.){ Ea
h system 
omponent may be modelled using the most appropriate formal-ism and tool. To invesitate the overall behaviour of the system, 
o-simulation
an be used. In this approa
h, ea
h 
omponent model is simulated with aformalism-spe
i�
 simulator. Intera
tion due to 
omponent 
oupling is re-solved at the traje
tory (simulation data) level. The 
o-simulation engineor
hestrates the 
ow of input/output data. In this approa
h, questions aboutthe overall system 
an only be answered at the level of input/output (statetraje
tory) level. It is no longer possible to answer higher-level questionswhi
h 
ould be answered within the individual 
omponents' formalisms. Fur-thermore, there are speed and numeri
al a

ura
y problems for 
ontinuousformalisms, in parti
ular if one attempts to support 
omputationally non-
ausal models. The 
o-simulation approa
h is meaningful mostly for dis
rete-event formalisms. It is the basis of the DoD High Level Ar
hite
ture (HLA)[14℄ for simulator interoperability.{ As in 
o-simulation, ea
h system 
omponent may be modelled using the mostappropriate formalism and tool. In multi-formalism modelling and simula-tion however, a single formalism is identi�ed into whi
h ea
h of the 
ompo-nent models may be symboli
ally transformed [23℄. Obviously, the systemproperties whi
h we wish to investigate must be invariant under the trans-formations. The formalism to transform to depends on the question to beanswered about the system. The Formalism Transformation Graph (see Fig-ure 1) suggests DEVS [25℄ as a universal 
ommon modelling formalism forsimulation purposes (generating input/output traje
tories).It is easily seen howmulti-formalism modelling subsumes both the super-formalismapproa
h and the 
o-simulation approa
h.Although the model transformation approa
h is 
on
eptually appealing, thereremains the diÆ
ulty of inter
onne
ting a plethora of di�erent tools, ea
h de-signed for a parti
ular formalism. Also, it is desirable to have problem-spe
i�
formalisms and tools. The time needed to develop these is usually prohibitive.This is why we introdu
e meta-modelling whereby the di�erent formalisms them-selves as well as the transformations between them are modelled. This preemptsthe problem of tool in
ompatibility. Ideally, a meta-modelling environment mustbe able to generate 
ustomized tools for models in various formalisms providedthe formalisms are des
ribed at the meta-model level. When these tools relyon a 
ommon data stru
ture to internally represent the models, transformationbetween formalisms is redu
ed to the transformation of these data stru
ture.In this arti
le, we present ATOM3, a tool whi
h implements the ideas pre-sented above. ATOM3 has a meta-modelling layer in whi
h di�erent formalismsare modelled graphi
ally. From the meta-spe
i�
ation (in the Entity Relationshipformalism), ATOM3 generates a tool to pro
ess models des
ribed in the spe
i�edformalism. Models are represented internally using Abstra
t Syntax Graphs. Asa 
onsequen
e, transformations between formalisms is redu
ed to graph rewrit-ing. Thus, the transformations themselves 
an be expressed as graph grammar



models. Although graph grammars [5℄ have been used in very diverse areas su
has graphi
al editors, 
ode optimization, 
omputer ar
hite
ture, et
. [7℄, to ourknowledge, they have never been applied to formalism transformations.2 Multi-formalism modelling and the FormalismTransformation GraphComplex systems are 
hara
terized not only by a large number of 
omponents,but above all by the diversity of these 
omponents (and the feedba
k intera
-tion between them). For the analysis and design of su
h 
omplex systems, it isnot suÆ
ient to study the individual 
omponents in isolation. Properties of thesystem must be assessed by looking at the whole multi-formalism system.In �gure 1, a part of the \formalism spa
e" is depi
ted in the form of aFormalism Transformation Graph (FTG). The di�erent formalisms are shownas nodes in the graph. The arrows denote a homomorphi
 relationship \
an bemapped onto", using symboli
 transformations between formalisms. The verti
aldashed line is a division between 
ontinuous and dis
rete formalisms. The ver-ti
al, dotted arrows denote the existen
e of a solver (simulation kernel) 
apableof simulating a model.

DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri NetsStatecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Fig. 1. Formalism Transformation Graph.3 Meta-ModellingAs stated in the previous se
tion, one of the 
hara
teristi
s of 
omplex systemsis the diversity of their 
omponents. Consequently, it is often desirable to modelthe di�erent 
omponents using di�erent modelling formalisms. This is 
ertainly



the 
ase, when inter-dis
iplinary teams 
ollaborate on the development of a sin-gle system. A proven method to a
hieve the required 
exibility for a modellinglanguage that supports many formalisms and modelling paradigms is to modelthe modelling language itself [4℄ [22℄. Su
h a model of the modelling language is
alled a meta-model. It des
ribes the possible stru
tures whi
h 
an be expressedin the language. A meta-model 
an easily be tailored to spe
i�
 needs of par-ti
ular domains. This requires the meta-model modelling formalism to be ri
henough to support the 
onstru
ts needed to de�ne a modelling language. Takingthe methodology one step further, the meta-modelling formalism itself may bemodelled by means of a meta-meta-model. This meta-meta-model spe
i�
ation
aptures the basi
 elements needed to design a formalism. Table 1 depi
ts thelevels 
onsidered in our meta-modelling approa
h. Formalisms su
h as the ERDLevel Des
ription ExampleMeta-Meta-Model Model used to spe
ify modellinglanguages Entity-Relationship Diagrams,UML 
lass Diagrams, et
.Meta-Model Model used to spe
ify simula-tion models Deterministi
 Finite Automata,Ordinary di�erential equations(ODE), et
.Model The des
ription of an obje
t ina 
ertain formalism f 0(x) = � sinx; f(0) = 0 (in theODEs formalism)Table 1. Meta-modelling levels.are often used for meta-modelling. To be able to fully spe
ify modelling for-malisms, the meta-level formalism may have to be extended with the ability toexpress 
onstraints (limiting the number of meaningful models). For example,when modelling a Determinsiti
 Finite Automaton (DFA), di�erent transitionsleaving a given state must have di�erent labels. This 
annot be expressed withinERD's alone. Expressing 
onstraints is most elegantly done by adding a 
on-straint language to the meta-modelling formalism. Whereas the meta-modellingformalism frequently uses a graphi
al notation, 
onstraints are 
on
isely ex-pressed in textual form. For this purpose, some systems [12℄, in
luding ATOM3use the Obje
t Constraint Language OCL [19℄ used in the UML.Figure 2 depi
ts the stru
ture we propose for a meta-modelling environ-ment. ATOM3 was initialized using a hand-
oded Entity-Relationship (ER)meta-meta-model. As the ER formalism 
an be des
ribed in an ER model, theenvironment 
ould be bootstrapped.4 Graph GrammarsIn analogy to string grammars, graph grammars 
an be used to des
ribe graphtransformations, or to generate sets of valid graphs. Graph grammars are 
om-



Model
Meta−Model

Processor

Processor
Meta−Model

Meta−Meta
Model

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

MMF

Meta−Model

MF

F

...

Fig. 2. Proposed working s
heme for a meta-modelling environment.posed of rules, ea
h mapping a graph on the left-hand side (LHS) to a graph onthe right-hand side (RHS). When a mat
h is found between the LHS of a ruleand a part of an input graph (
alled host graph), this subgraph is repla
ed bythe RHS of the rule. Rules may also have a 
ondition that must be satis�ed inorder for the rule to be applied, as well as a
tions to be performed when therule is exe
uted. A rewriting system iteratively applies mat
hing rules in thegrammar to the graph, until no more rules are appli
able.The use of a model (in the form of a graph grammar) of graph transfor-mations has some advantages over an impli
it representation (embedding thetransformation 
omputation in a program) [3℄:{ It is an abstra
t, de
larative, high level representation.{ The theoreti
al foundations of graph rewriting systems may assist in proving
orre
tness and 
onvergen
e properties of the transformation tool.On the other hand, the use of graph grammars is 
onstrained by eÆ
ien
y. Inthe most general 
ase, subgraph isomorphism testing is NP-
omplete. However,the use of small subgraphs on the LHS of graph grammar rules, as well as usingnode labels and edge labels 
an greatly redu
e the sear
h spa
e.Sin
e we store simulation models as graphs, it is possible to express thetransformations shown in the FTG as graph grammars at the meta-level.For example, suppose we want to transform Non-deterministi
 Finite Au-tomata (NFA) into (behaviourally) equivalent DFA. In the latter formalism,the labels of all transitions leaving a state must be di�erent. Models in bothformalisms 
an be represented as graphs. Figure 3 shows the NFA to DFA trans-formation spe
i�
ation in the form of a graph grammar.In this graph grammar, entities are labeled with numbers. In our 
ase, enti-ties are both states and transitions. RHS node labels have also a prima, to bedistinguished from LHS ones. If two nodes in a LHS and a RHS have the samenumber, that means that the node must not desappear when the rule is exe
uted.If a number appears in a LHS but not in a RHS, that means that the node mustbe removed when applying the rule. If a number appears in a RHS but not in aLHS, that means that the node must be 
reated if the rule is applied.



For subnode mat
hing purposes, we should spe
ify the value of the attributesof the nodes in the LHS that will produ
e a mat
hing. In the example, all theattributes in LHS nodes have the value of hANY i, that means that any valuewill produ
e a mat
hing. It is also needed to spe
ify the value of the attributeson
e the rule has been applied and the LHS has been repla
ed by the RHS. Thisis done by spe
ifying attributes in the RHS nodes. If no value is spe
i�ed, andthe node is not a new node (the label appears in the LHS), by default it willkeep its values. It is also possible to 
al
ulate new values for attributes, and we
ertainly must do this if a new node is generated when repla
ing the LHS by theRHS. In the example, we spe
ify new values in nodes 5' and 6' of rules 3 and 4.
1

<ANY>

1

<ANY>

2

<ANY>

1’

<ANY>

4

1

<ANY>

2

<ANY>

3

<ANY>

1’ 5’ 3’

1

<ANY>

3

2

<ANY>

5

<ANY>

4

<ANY>

1’
2’

6’

<ANY>

5’

<ANY>

4’

<ANY>

Condition

Action

Condition

Action

2’

1

2

<ANY>

3

Action

Condition

Action

Condition

Condition

<ANY><ANY> <ANY>
1’

2’

1. ::=

::=

<ANY>

<ANY>
::=

3.

2.

Set type of node to initial if matched(1) or matched(3) are initial

4.

<ANY>

<ANY>
::= <ANY>

Set type of node to initial if matched(4) or matched(5) are initial

If matched(1) has no input edges

Remove departing transitions from matched(1)

Copy input and output edges from matched(2) to matched(1’)

<ANY>

Set type of node to terminal if matched(1) or matched(3) are terminal

Set type of node to terminal if matched(4) or matched(5) are terminal

If matched(1).name is equivalent to matched(2).name

name := matched(1).name+’$’+matched(3).name

name := matched(4).name+’$’+matched(5).name

<ANY>

<ANY>

::=

<ANY>

matched(3) into matched(5’)
Copy output edges from nodes matched(1) and

if matched(4).condition == matched(2).condition

matched(5) into matched(6’)
Copy output edges from nodes matched(4) and

if matched(3).condition == matched(2).condition

if matched(3).condition == matched(2).condition

5. Fig. 3. A grammar to transform NFA into DFA.In the pi
ture, mat
hed(i) means the node in the host graph that makes amat
h with node i in the rule. The graph grammar rules do the following: Ruleone removes unrea
hable nodes; rule two joins two equal states into one; rulethree eliminates non determinism when there are two transitions with the samelabel departing from the same node, and one goes to a di�erent node while theother goes into the �rst one; rule four is very similar to the previous one, but thenon determinism is between two di�erent nodes; �nally, the last rule removestransitions with the same label departing from and arriving to the same state.A graph rewriting module for formalism transformation takes as inputs agrammar and a model in a sour
e formalism and outputs a behaviourally equiv-alent model expressed in a target formalism. In some 
ases, the output and theinput models are expressed in the same formalism, and the appli
ation of the



graph grammar merely optimizes some aspe
t the model. A typi
al example is
onstant folding of Algebrai
 models. In this 
ase, one of the rules states thatthe sub-graph 
onsisting of an operator node whose operand nodes are all 
on-stant must be repla
ed by a 
onstant node whose value is the result of applyingthe operation on the 
onstants. Other uses we make of graph-grammars will be
ommented in se
tion 5.4.5 ATOM3ATOM3 is a tool written in Python [21℄ whi
h uses and implements the 
on
eptspresented above. Its ar
hite
ture is shown in �gure 4, and will be explained inthe following se
tions.

Module
Graph Rewriting

Module
Graph Rewriting

− Apply

− Load
− Save

Formalism)
(Graph−Grammar

Model−2

− Apply

− Load
− Save

Formalism)
(Graph−Grammar

Model−1

(Formalism−1)
Model−3

Constraint Manager

Abstract Syntax
Graph Model

Graphical

U
se

r 
In

te
rf

ac
e

Code Generator

User Input
− Create Entities
− Delete Entities
− Verify Conditions (Global, Local)

ASG
nodes

Graphical
ASG nodes

Syntax Actions
Formalism−1 (Meta−Layer)

− Load

Constraint Manager

Abstract Syntax
Graph Model

Graphical

U
se

r 
In

te
rf

ac
e

Code Generator

User Input
− Create Entities
− Delete Entities
− Verify Conditions (Global, Local)

ASG
nodes

Graphical
ASG nodes

Syntax Actions

− Load

ATOM3 Kernel

ATOM3 Kernel

...

M
et

a 
Le

ve
l

M
et

a−
M

et
a 

Le
ve

l

− Generate

Formalism−MF1 (Meta2−Layer)

...

− Save
− Load

− Save
− Load

...(Meta−)Model−1
(Formalism−MF1)

Fig. 4. The ATOM3 ar
hite
ture.The main 
omponent of ATOM3 is the Kernel. This module is responsiblefor loading, saving, 
reating and manipulating models, as well as for generating
ode. By default, a meta-meta-model is loaded when ATOM3 is invoked. Thismeta-meta-model allows to model meta-models (modelling formalisms) using agraphi
al notation. For the moment, the ER formalism extended with 
onstraintsis available at the meta-meta-level. When modelling at the meta-meta-level, theentities whi
h may appear in a model must be spe
i�ed together with theirattributes. We will refer to this as the semanti
 information. For example, tode�ne the DFA Formalism, it is ne
essary to de�ne both States and Transitions.Furthermore, for States we need to add the attribute name and type (initial, ter-



minal or regular). For Transitions, we need to spe
ify the 
ondition that triggersit. In general, in ATOM3 we have two kinds of attributes: regular and genera-tive. Regular attributes are used to identify 
hara
teristi
s of the 
urrent entity.Generative attributes are used to generate new attributes at a lower meta-level.The generated attributes may be generative in their own right. Both types ofattributes may 
ontain data or 
ode for pre and post 
onditions. Thus, in ourapproa
h, we 
an have an arbitrary number of meta-levels as, starting at onelevel, it is possible to produ
e a generative attribute at the lower meta-level andso on. The meta-
hain ends when a model has no more generative attributes.Attributes 
an be asso
iated with individual model entities as well as with amodel as a whole.Many modelling formalisms support some form of 
oupled or network models.In this 
ase, we need to 
onne
t entities and to spe
ify restri
tions on these 
on-ne
tions. In our DFA example, States 
an be 
onne
ted to Transitions, althoughthis is not mandatory. Transitions 
an also be 
onne
ted to States, although theremay be States without in
oming Transitions. In ATOM3, in prin
iple, all obje
ts
an be 
onne
ted to all obje
ts. Usually, a meta-meta-model is used to spe
-ify/generate 
onstraints on these 
onne
tions. Using an ER meta-meta-model,we 
an spe
ify 
ardinality 
onstraints in the relationships. These relationshipswill generate 
onstraints on obje
t 
onne
tion at the lower meta-level.The above de�nitions are used by the Kernel to generate the Abstra
t SyntaxGraph nodes. These nodes are Python 
lasses generated using the informationat the meta-meta-level. The Kernel will generate a 
lass for ea
h entity de�nedin the semanti
 spa
e and another 
lass for the Abstra
t Syntax Graph. This
lass is responsible for storing the nodes of the graph. As we will see later, it alsostores global 
onstraints. In the meta-meta-model, it is also possible to spe
ifythe graphi
al appearan
e of ea
h entity of the lower meta-level. This appearan
eis, in fa
t, a spe
ial kind of generative attribute. For example, for the DFA,we 
an 
hoose to represent States as 
ir
les with the state's name inside the
ir
le, and Transitions as arrows with the 
ondition on top. That is, we 
anspe
ify how some semanti
 attributes are displayed graphi
ally. We must alsospe
ify 
onne
tors, that is, pla
es where we 
an link the graphi
 entities. Forexample, in Transitions we will spe
ify 
onne
tors on both extremes of the ar
and in States on 4 symmetri
 points around the 
ir
le. Further on, 
onne
tionbetween entities is restri
ted by the spe
i�ed semanti
 
onstraints. For example,a Transition must be 
onne
ted to two States. The meta-meta-model generates aPython 
lass for ea
h graphi
al entity. Thus, semanti
 and graphi
al informationare separated, although, to be able to a

ess the semanti
 attributes' values bothtypes of 
lasses (semanti
 and graphi
al) have a link to ea
h other.In the following, we will explore some of the ATOM3 features in more detail.5.1 Constraints and A
tionsIt is possible to spe
ify 
onstraints in both the semanti
 and the graphi
al spa
e:



{ In the semanti
 spa
e, it is not always possible to express restri
tions bymeans of 
lass or entity relationship diagrams. For example, in DFA's, wewould like to require unique State names, as well as a unique initial Stateand one or more terminal States. Furthermore, transitions departing fromthe same State must have di�erent labels.{ In the graphi
al spa
e, it is often desirable to have the entities' graphi
alrepresentation 
hange depending on semanti
 or graphi
al events or 
ondi-tions. For example, we would like the representation of States to be di�erentdepending on the States' type (initial, regular or terminal).Constraints 
an be lo
al or global. Lo
al 
onstraints are spe
i�ed on single entitiesand only involve lo
al attribute values. In global 
onstraints, information aboutall the entities in a model may be used. In our example, the semanti
 
onstraintsmentioned before must be spe
i�ed as global, whereas the graphi
al 
onstraint islo
al, as it only involves attributes spe
i�
 to the entity (the type of the State).When de
laring semanti
 
onstraints, it is ne
essary to spe
ify whi
h eventwill trigger the evaluation of the 
onstraint, and whether evaluation must takepla
e after (post-
ondition) or before (pre-
ondition) the event. The events withwhi
h these 
onstraints 
an asso
iated 
an be semanti
, su
h as saving a model,
onne
ting, 
reating or deleting two entities, et
., or purely graphi
al, su
h asmoving or sele
ting an entity, et
. If a pre-
ondition for an event fails, the eventis not exe
uted. If a post-
ondition for an event fails, the event is undone. Bothsemanti
 and graphi
al 
onstraints 
an be pla
ed on any kind of event (semanti
or graphi
al). Semanti
 
onstraints 
an be spe
i�ed as Python fun
tions, or asOCL expressions. In the latter 
ase, they must be translated into Python. Lo
al
onstraints are in
orporated in semanti
 and graphi
al 
lasses, global 
onstraintsare in
orporated in the Abstra
t Syntax Graph 
lass. In both 
ases, 
onstraintsare en
oded as 
lass methods.When modelling in the ER formalism, the relationships de�ned between en-tities in the semanti
 spa
e 
reate 
onstraints: the types of 
onne
ted entitiesmust be 
he
ked as well as the 
ardinality of the relationships. The latter 
on-straint may however not be satis�ed during the whole modelling pro
ess. Forexample, if we spe
ify that a 
ertain entity must be 
onne
ted to exa
tly twoentities of another type, at some point in the modelling pro
ess the entity 
an be
onne
ted to zero, one, two or more entities. If it is 
onne
ted to zero or one, anerror will be raised only when the model is saved, whereas if it is 
onne
ted tothree or more entities the error 
an be raised immediatelly. It is envisioned thatthis evolution of the formalism during the modelling life-
y
le will eventually bespe
i�ed using a variable-stru
ture meta-model (su
h as a DFA with ER states).A
tions are similar to Constraints, but unlike 
onstraints, a
tions have side-e�e
ts. A
tions are 
urrently spe
i�ed using Python only.Graphi
al 
onstraints and a
tions are very similar to the semanti
 ones, butthey a
t on graphi
al attributes.



5.2 TypesIn ATOM3, attributes de�ned on entities must have a type. All types inherit froman abstra
t 
lass named ATOM3Type and must provide methods to: display agraphi
al widget to edit the entity's value, 
he
k the value's validity, 
lone itself,make itself persistent, et
.As stated before, ATOM3 has two kinds of basi
 types: regular (su
h asintegers, 
oats, strings, lists of some types, enumerate types, et
) and generative(used to generate an attribute, 
onstraint or graphi
al attribute at the lowermeta-level). There are four types of generative attributes:1. ATOM3Attribute: are used to 
reate attributes at the lower meta-level.2. ATOM3Constraint: are used to 
reate a 
onstraint at the lower meta-level.The 
ode 
an be expressed in Python or OCL, and the 
onstraint must beasso
iated to some (semanti
 or graphi
al) event(s), and must be spe
i�edwether it must be evaluated after or just before the event takes pla
e.3. ATOM3Appearan
e: asso
iate a graphi
al appearan
e with the entity at thelower meta-level. Models (as opposed to entities) 
an also have an asso
iatedgraphi
al appearan
e. This is useful for hierar
hi
al modelling, as modelsmay be inserted inside other models as i
ons.4. ATOM3Cardinality: are used to generate 
ardinality 
onstraints on the num-ber of elements 
onne
ted, at the lower meta-level.It is also possible to spe
ify 
omposite types. These are de�ned by 
onstru
t-ing a type graph [2℄. The Meta-model for this graph has been built using ATOM3and then in
orporated into the Kernel. The 
omponents of this graph 
an be ba-si
 or 
omposite types and 
an be 
ombined using the produ
t and union typeoperators. Types may be re
ursively de�ned, meaning that one of the operandsof a produ
t or union operator 
an be an an
estor node.In�nite re
ursive loops are dete
ted using a global 
onstraint in the typemeta-model. The graph des
ribing the type is 
ompiled into Python 
ode usinga graph grammar (also de�ned using ATOM3).5.3 Code generationIf a model 
ontains generative attributes, ATOM3 is able to generate a tool topro
ess models de�ned by the meta-information. \Pro
essing" means 
onstru
t-ing models and verifying that su
h models are valid, although further pro
essinga
tions 
an be spe
i�ed by means of graph grammars. These generated tools alsouse the Kernel and are 
omposed of:{ The Python 
lasses 
orrespoding to the entities de�ned in the semanti
 spa
e.These 
lasses hold semanti
 information about the attributes, and lo
al 
on-straints (both de�ned by means of generative attributes in an higher meta-level).{ A Python 
lass used to 
onstru
t the Abstra
t Syntax Graph. It holds theglobal 
onstraints and a di
tionary used to store a list of the nodes in the



graph, 
lassi�ed by type. This is useful as operations, su
h as 
onstraintevaluation 
an be performed using the visitor pattern [10℄, and the graph
an hen
e be traversed more eÆ
iently.{ Several Python 
lasses to des
ribe the graphi
al appearan
e. These 
lasses
an have referen
es to semanti
 attributes, and may also have informationabout graphi
al 
onstraints.{ Several Python methods stored in a single �le. These methods are addeddynami
ally to the Kernel 
lass. These methods 
reate buttons and menusthat allow the 
reation of new entities, their editing, 
onne
tion, deletion,et
.Models are Python fun
tions that 
ontain the exe
utable statements to in-stantiate the appropriate semanti
 
lasses, Abstra
t Syntax Graph 
lass andgraphi
al 
lasses. In fa
t, when these statements are exe
uted, the result is iden-ti
al to the 
ase where the model is 
onstru
ted intera
tively by means of thegraphi
al editor. Thus, if one 
hanges models by hand, making them violatesome 
onstraint, the Kernel will dete
t this and rea
t a

ordingly.Currently we have implemented the ER formalism at the meta-meta-level.Basi
ally, there are two types of entities: Entities and Relationships. Entitiesare 
omposed of a name (the keyword), a list of ATOM3Attribute, a list ofATOM3Constraint and an attribute of type ATOM3Appearan
e. Relationships,in addition to the above, have a list of ATOM3Cardinality whi
h is �lled bymeans of Post-A
tions when an Entity is 
onne
ted to the Relationship. By meansof pre and post 
onditions, it is ensured that Entities 
an only be 
onne
ted toRelationships, that the names of Entities and Relationships are unique, et
. Withthis meta-meta-model it is possible to de�ne other meta-meta-models, su
h as
lass diagrams as inheritan
e relationships between 
lasses 
an be implementedwith pre and post a
tions. Note how su
h an implementation allows for theimplementation of various inheritan
e semanti
s. Furthermore, target 
ode 
anbe generated in languages (su
h as C) whi
h do not support inheritan
e.Figure 5 shows an example of the ER meta-meta-model in a
tion to des
ribethe DFA Formalism (left side in the pi
ture). This information is used to auto-mati
ally generate a tool to pro
ess DFA models (right side in the pi
ture). Onboth sides, a dialog box to edit entities is shown. On the right side, the entitythat is being edited is a DFA State, that has a name (string) and a type (enu-merate type). On the left side, the appearan
e attribute of an Entity is beingedited.5.4 Formalism TransformationOn
e a model is loaded, it is possible to transform it into an equivalent modelexpressed in another formalism provided the transformations between formalismhas been de�ned. Be
ause the models are expressed internally as graphs, thetransformation between formalism 
an be spe
i�ed as graph grammars [5℄.In ATOM3, Graph Grammar rules 
an be modelled as Entities 
omposed ofa LHS and a RHS , 
onditions that must hold for the rule to be appli
able and



Fig. 5. An example: Generating a tool to pro
ess Deterministi
 Finite Automata.some a
tions to be performed when embedding the RHS in the graph. LHS andRHS are indeed meta-models, and may be of di�erent kinds. In �gure 3, LHS'sare expressed in the NFA formalism, whereas RHS's are expressed in the DFAformalism. For other 
ases, we 
an have a mixture of formalisms in both LHS'sand RHS's. For this purpose, we allow to open several meta-models at a time. Thegraph rewriting module uses an improvement of the algorithm des
ribed in [5℄, inwhi
h we allow non-
onne
ted graphs be part of LHS in rules. It is also possibleto de�ne a sequen
e of graph-grammars that have to be applied to the model.This is useful, for example to 
ouple grammars to 
onvert a model into anotherformalism, and then apply an optimizing grammar. Control the exe
ution ofthe rules (stopping after ea
h rule exe
ution or 
ontinuous exe
ution) is alsopossible.Figure 6 shows a moment in the edition of the LHS of rule 4 of the graphgrammar of �gure 3. It 
an be noted that the dialogs to edit the entites havesome more �elds when these entities are inside a graph grammar rule, namely,the node label and the widgets to set the attribute value to hANY i. RHS nodeshave extra widgets to 
opy attribute values from LHS nodes, and to spe
ify theirvalue by means of Python fun
tions.Besides formalism transformations, we use graph-grammars for other pur-poses:{ Code generation: We use a graph-grammar to generate Python 
ode forATOM3 
omposite types.{ Simulation: It is possible to des
ribe the operational semanti
s of models bymeans of graph-grammars, in parti
ular, we have des
ribed a simulator forblo
k diagrams in this way.{ Optimization of models: For example, we have de�ned a graph-grammarto simplify Stru
ture Charts diagrams (SC's). We usually use this transfor-mation 
oupled with a graph-grammar to transform Data Flow Diagrams(DFD's) into SC's.



Fig. 6. Editing LHS of rule 4 of the graph grammar in �gure 36 Related workA similar approa
h is ViewPoint Oriented Software Development [9℄. Some ofthe 
on
epts introdu
ed by the authors have a 
lear 
ounterpart in our aproa
h(for example, ViewPoint templates have an equivalen
e with meta-models, et
).They also introdu
e the relationships between ViewPoints, whi
h in our 
asehave an equivalen
e with 
oupling of models and graph transformations.Although this approa
h has some 
hara
teristi
s that our approa
h la
ks(su
h as the work plan axioms), our use of graph transformations allows to ex-press model's behaviour and formalism's semanti
s. These graph transformationsallow us to transform models between formalisms, optimize models, or des
ribebasi
 simulators. Another advantage of our approa
h, is that we 
onsider Meta-levels, in this way we don't need di�erent tools to pro
ess di�erent formalisms(ViewPoints), as we 
an model them at the meta-level.Other approa
hes taken to inter
onne
ting formalism are Category Theory[8℄, in whi
h formalisms are 
ast as 
ategories and their relationships as fun
tors.See also [24℄ and [18℄ for other approa
hes.There are other visual meta-modelling tools, among them DOME [4℄, Multi-graph [22℄, MetaEdit+ [16℄ or KOGGE [6℄. Some of them allow to express formal-ism' semanti
s by means of some kind of textual language (for example, KOGGEuses something similar to Modula-2). Our approa
h is quite di�erent, be
ausewe express su
h semanti
s by means of graph grammars. We think that graph-



grammars is a natural and general way to manipulate graphs, rather than usinga purely textual language. Some of the rationale for using graph-grammars in ourapproa
h was show in se
tion 4. Also, none of the tools 
onsider the possibilityto \translate" models between di�erent formalisms.On the other hand, there are some systems and languages for graph-grammarmanipulations, su
h as PROGRES [20℄, GRACE [11℄, AGG [1℄, et
., althoughall of them la
k of a Meta-Modelling layer.Our approa
h is original in the sense that we take the advantages of Meta-Modelling (to avoid expli
it programming of 
ustomized tools) and graph trans-formation systems (to express model's behaviour and formalism transformation).The main 
ontribution is thus in the �eld of multi-paradigm modelling [23℄ aswe have a general means to transform models between di�erent formalisms.7 Con
lusions and future workIn this arti
le, we have presented a new approa
h for modelling 
omplex systems.Our approa
h is based on Meta-Modelling and Multi-Formalism modelling, andis implemented in ATOM3. This 
ode-generating tool, developed in Python, re-lies on graph grammars and meta-modelling te
hniques and supports hierar
hi
almodelling.The advantages of using su
h an automated tool for generating 
ustomizedmodel-pro
essing tools are 
lear: instead of building the whole appli
ation froms
rat
h, it is only ne
essary to spe
ify {in a graphi
al manner{ the kinds of mod-els we will deal with. The pro
essing of su
h models 
an be expressed by meansof graph grammars, at the meta-level. Our approa
h is also highly appli
ableif we want to work with a slight variation of some formalism, where we onlyhave to spe
ify the meta-model for the new formalism and a tranformation intoa \known" formalism (one that already has a simulator available, for example).We then obtain a tool to model in the new formalism, and are able to 
onvertmodels in this formalism into the other for further pro
essing. Not only we de-s
ribe formalisms 
ommonly used in the simulation of dynami
al systems, but wehave also des
ribed formalisms su
h as DFD's and SC's used for the des
riptionof software.A side e�e
t of our 
ode-generating approa
h is that some parts of the toolhave been built using 
ode generated by itself (bootstrapped): one of the �rstimplemented features of ATOM3 was the 
apability to generate 
ode, and extrafeatures were added using 
ode thus generated. An example of this is the dialogto spe
ify 
omposite types: the meta-model for this graph has been spe
i�edwith ATOM3, and subsequently Python 
ode was automati
ally generated.The way of spe
ifying 
omposite types is very 
exible, as types are treated asmodels, and stored as graphs. This means graph grammars 
an be 
onstru
ted tospe
ify operations on types, su
h as dis
overing in�nite re
ursion loops in theirde�nition, determining if two types are 
ompatible, performing 
ast operations,et
.



One of the most obvious uses of modelling (although not the only one) issimulation. For that purpose, we des
ribe the dynami
 semanti
s of the modelsby means of graph grammars.In the future, we should also explore the possibility of en
oding all the 
ode-generation ability of ATOM3 (see se
tion 5.3) into graph grammar rules.Currently, the repla
ement of the basi
 internal data stru
ture for represent-ing models (graphs) by the more expressive HiGraphs [13℄ is under 
onsideration.HiGraphs are more suitable to express and visualize hierar
hies (blobs 
an beinside one or more blobs), they add the 
on
ept of orthogonality, and blobs 
anbe 
onne
ted by means of hyperedges.We also intend to extend the tool to allow 
ollaborative modelling. For thispurpose, we are working on putting the APIs for 
onstru
ting graphi
al interfa
esin Java (Swing) and Python (Tkinter) at the same level. These developments,together with the possibility to use Python on top of the Java Virtual Ma
hine(e.g., by means of Jython [15℄), will allow us to make our tool in applet forma

essible through a web browser. This possibility as well as the need to ex
hangeand re-use (meta-. . . ) models raises the issue of formats for model ex
hange. Aviable 
andidate format is XML.Finally, ATOM3 is being used to build small proje
ts in a Modelling andSimulation 
ourse at the S
hool of Computer S
ien
e at M
Gill University.Referen
es1. AGG Home page: http://tfs.
s.tu-berlin.de/agg/2. Aho, A.V., Sethi, R., Ullman, J.D. 1986. Compilers, prin
iples, te
hniques andtools. Chapter 6, Type Che
king. Addison-Wesley.3. Blonstein, D., Fahmy, H., Grbave
, A.. 1996. Issues in the Pra
ti
al Use of GraphRewriting. Le
ture Notes in Computer S
ien
e, Vol. 1073, Springer-Verla, pp.38-55.4. DOME guide. http://www.ht
.honeywell.
om/dome/, Honeywell Te
hnology Cen-ter. Honeywell, 1999, version 5.2.15. Dorr, H. 1995. EÆ
ient Graph Rewriting and its implementation. Le
ture Notes inComputer S
ien
e, 922. Springer.6. J. Ebert, R. Sttenba
h, I. Uhe Meta-CASE in Pra
ti
e: a Case for KOGGE InA. Olive, J. A. Pastor: Advan
ed Information Systems Engineering, Pro
eedingsof the 9th International Conferen
e, CAiSE'97, Bar
elona, Catalonia, Spain, June16-20, 1997 LNCS 1250, S. 203-216, Berlin, 1997. See KOGGE home page at:http://www.uni-koblenz.de/ ist/kogge.en.html7. Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) 1991. Graph Grammars andtheir appli
ation to Computer S
ien
e: 4th International Workshop, Bremen, Ger-many, Mar
h 5-9, 1990, Pro
eedings. Le
ture Notes in Computer S
ien
e, Vol. 532,Springer.8. Fiadeiro, J.L., Maibaum, T. 1995. Inter
onne
ting Formalisms: Supporting Modu-larity, Reuse and In
rementality Pro
.3rd Symposium on the Fundations of Soft-ware Engineering, G.E.Kaiser(ed). pp.: 72-80, ACM Press.9. Finkelstein, A., Kramer, J., Goedi
kie, M. ViewPoint Oriented Software Develop-ment Pro
, of the Third Int. Workshop on Software Engineering and its Appli
a-tions, Tolouse, De
ember 1990.



10. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Elementsof Reusable Obje
t-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.11. GRACE Home page: http://www.informatik.uni-bremen.de/theorie/GRACEland/GRACEland.html12. Gray J., Bapty T., Neema S. 2000. Aspe
tifying Constraints in Model-IntegratedComputing, OOPSLA 2000: Workshop on Advan
ed Separation of Con
erns, Min-neapolis, MN, O
tober, 2000.13. Harel, D. On visual formalisms. Communi
ations of the ACM, 31(5):514{530, May1988.14. HLA Home page: http://hla.dmso.mil15. Jython Home Page: http://www.jython.org16. MetaCase Home Page: http://www.MetaCase.
om/17. Mosterman, P. and Vangheluwe, H.. Computer automated multi paradigm modelingin 
ontrol system design. In Andras Varga, editor, IEEE International Symposiumon Computer-Aided Control System Design, pages 65{70. IEEE Computer So
ietyPress, September 2000. An
horage, Alaska.18. Niskier, C., Maibaum, T., S
hwabe, D. 1989 A pluralisti
 Knowledge Based Ap-proa
h to Software Spe
i�
ation 2nd European Software Engineering Conferen
e,LNCS 387, Springer Verlag 1989, pp.:411-42319. OMG Home Page: http://www.omg.org20. PROGRES home page: http://www-i3.informatik.rwth-aa
hen.de/resear
h/proje
ts/progres/main.html21. Python home page: http://www.python.org22. Sztipanovits, J., et al. 1995. "MULTIGRAPH: An ar
hite
ture for model-integrated
omputing". In ICECCS'95, pp. 361-368, Ft. Lauderdale, Florida, Nov. 1995.23. Vangheluwe, H. DEVS as a 
ommon denominator for multi-formalism hybridsystems modelling. In Andras Varga, editor, IEEE International Symposium onComputer-Aided Control System Design, pages 129{134. IEEE Computer So
ietyPress, September 2000. An
horage, Alaska.24. Zave, P., Ja
kson, M. 1993. Conjun
tion as Composition ACM Transa
tions onSoftware Engineering and Methodology 2(4), 1993, 371-411.25. Zeigler, B., Praehofer, H. and Kim, T.G. Theory of Modelling and Simulation:Integrating Dis
rete Event and Continuous Complex Dynami
 Systems. A
ademi
Press, se
ond edition, 2000.


