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Abstract. This article introduces the combined use of multi-formalism
modelling and meta-modelling to facilitate computer assisted modelling
of complex systems. The approach allows one to model different parts of
a system using different formalisms. Models can be automatically con-
verted between formalisms thanks to information found in a Formalism
Transformation Graph (FTG), proposed by the authors. To aid in the
automatic generation of multi-formalism modelling tools, formalisms are
modelled in their own right (at a meta-level) within an appropriate for-
malism. The above approach has been implemented in the interactive
tool ATOM?. This tool is used to describe formalisms commonly used in
the simulation of dynamical systems, as well as to generate custom tools
to process (create, edit, transform, simulate, optimize, ... ) models ex-
pressed in the corresponding formalism. ATOM? relies on graph rewriting
techniques and graph grammars to perform the transformations between
formalisms as well as for other tasks, such as code generation or simulator
specification.

Keywords: Modelling & Simulation, Meta-Modelling, Multi-Formalism Mod-
elling, Automatic Code Generation, Graph Grammars.

1 Introduction

Modelling complex systems is a difficult task, as such systems often have com-
ponents and aspects whose structure as well as behaviour cannot be described
in a single formalism. Examples of commonly used formalisms are Differential-
Algebraic Equations (DAEs), Bond Graphs, Petri Nets, DEVS, Entity-Relationship
diagrams (ERDs), and State Charts. Several approaches are possible:

— A single super-formalism may be constructed which subsumes all the for-
malisms needed in the system description. This is not possible nor mean-
ingful in most cases, although there are some examples of formalisms which



span several domains (e.g. Bond Graphs for the mechanical, hydraulic and
electrical domains.)

— Each system component may be modelled using the most appropriate formal-
ism and tool. To invesitate the overall behaviour of the system, co-simulation
can be used. In this approach, each component model is simulated with a
formalism-specific simulator. Interaction due to component coupling is re-
solved at the trajectory (simulation data) level. The co-simulation engine
orchestrates the flow of input/output data. In this approach, questions about
the overall system can only be answered at the level of input/output (state
trajectory) level. It is no longer possible to answer higher-level questions
which could be answered within the individual components’ formalisms. Fur-
thermore, there are speed and numerical accuracy problems for continuous
formalisms, in particular if one attempts to support computationally non-
causal models. The co-simulation approach is meaningful mostly for discrete-
event formalisms. It is the basis of the DoD High Level Architecture (HLA)
[14] for simulator interoperability.

— As in co-simulation, each system component may be modelled using the most
appropriate formalism and tool. In multi-formalism modelling and simula-
tion however, a single formalism is identified into which each of the compo-
nent models may be symbolically transformed [23]. Obviously, the system
properties which we wish to investigate must be invariant under the trans-
formations. The formalism to transform to depends on the question to be
answered about the system. The Formalism Transformation Graph (see Fig-
ure 1) suggests DEVS [25] as a universal common modelling formalism for
simulation purposes (generating input/output trajectories).

It is easily seen how multi-formalism modelling subsumes both the super-formalism
approach and the co-simulation approach.

Although the model transformation approach is conceptually appealing, there
remains the difficulty of interconnecting a plethora of different tools, each de-
signed for a particular formalism. Also, it is desirable to have problem-specific
formalisms and tools. The time needed to develop these is usually prohibitive.
This is why we introduce meta-modelling whereby the different formalisms them-
selves as well as the transformations between them are modelled. This preempts
the problem of tool incompatibility. Ideally, a meta-modelling environment must
be able to generate customized tools for models in various formalisms provided
the formalisms are described at the meta-model level. When these tools rely
on a common data structure to internally represent the models, transformation
between formalisms is reduced to the transformation of these data structure.

In this article, we present ATOM?®, a tool which implements the ideas pre-
sented above. ATOM? has a meta-modelling layer in which different formalisms
are modelled graphically. From the meta-specification (in the Entity Relationship
formalism), ATOM? generates a tool to process models described in the specified
formalism. Models are represented internally using Abstract Syntax Graphs. As
a consequence, transformations between formalisms is reduced to graph rewrit-
ing. Thus, the transformations themselves can be expressed as graph grammar



models. Although graph grammars [5] have been used in very diverse areas such
as graphical editors, code optimization, computer architecture, etc. [7], to our
knowledge, they have never been applied to formalism transformations.

2 Multi-formalism modelling and the Formalism
Transformation Graph

Complex systems are characterized not only by a large number of components,
but above all by the diversity of these components (and the feedback interac-
tion between them). For the analysis and design of such complex systems, it is
not sufficient to study the individual components in isolation. Properties of the
system must be assessed by looking at the whole multi-formalism system.

In figure 1, a part of the “formalism space” is depicted in the form of a
Formalism Transformation Graph (FTG). The different formalisms are shown
as nodes in the graph. The arrows denote a homomorphic relationship “can be
mapped onto”, using symbolic transformations between formalisms. The vertical
dashed line is a division between continuous and discrete formalisms. The ver-
tical, dotted arrows denote the existence of a solver (simulation kernel) capable

of simulating a model.
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Fig. 1. Formalism Transformation Graph.

3 Meta-Modelling

As stated in the previous section, one of the characteristics of complex systems
is the diversity of their components. Consequently, it is often desirable to model
the different components using different modelling formalisms. This is certainly



the case, when inter-disciplinary teams collaborate on the development of a sin-
gle system. A proven method to achieve the required flexibility for a modelling
language that supports many formalisms and modelling paradigms is to model
the modelling language itself [4] [22]. Such a model of the modelling language is
called a meta-model. Tt describes the possible structures which can be expressed
in the language. A meta-model can easily be tailored to specific needs of par-
ticular domains. This requires the meta-model modelling formalism to be rich
enough to support the constructs needed to define a modelling language. Taking
the methodology one step further, the meta-modelling formalism itself may be
modelled by means of a meta-meta-model. This meta-meta-model specification
captures the basic elements needed to design a formalism. Table 1 depicts the
levels considered in our meta-modelling approach. Formalisms such as the ERD

Level Description Example

Meta-Meta- Model used to specify modelling Entity-Relationship  Diagrams,

Model languages UML class Diagrams, etc.

Meta-Model Model used to specify simula- Deterministic Finite Automata,
tion models Ordinary differential equations

(ODE), etc.

Model The description of an object in f'(z) = —sinz, f(0) = 0 (in the

a certain formalism ODEs formalism)

Table 1. Meta-modelling levels.

are often used for meta-modelling. To be able to fully specify modelling for-
malisms, the meta-level formalism may have to be extended with the ability to
express constraints (limiting the number of meaningful models). For example,
when modelling a Determinsitic Finite Automaton (DFA), different transitions
leaving a given state must have different labels. This cannot be expressed within
ERD'’s alone. Expressing constraints is most elegantly done by adding a con-
straint language to the meta-modelling formalism. Whereas the meta-modelling
formalism frequently uses a graphical notation, constraints are concisely ex-
pressed in textual form. For this purpose, some systems [12], including ATOM?
use the Object Constraint Language OCL [19] used in the UML.

Figure 2 depicts the structure we propose for a meta-modelling environ-
ment. ATOM? was initialized using a hand-coded Entity-Relationship (ER)
meta-meta-model. As the ER formalism can be described in an ER model, the
environment could be bootstrapped.

4 Graph Grammars

In analogy to string grammars, graph grammars can be used to describe graph
transformations, or to generate sets of valid graphs. Graph grammars are com-
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Fig. 2. Proposed working scheme for a meta-modelling environment.

posed of rules, each mapping a graph on the left-hand side (LHS) to a graph on
the right-hand side (RHS). When a match is found between the LHS of a rule
and a part of an input graph (called host graph), this subgraph is replaced by
the RHS of the rule. Rules may also have a condition that must be satisfied in
order for the rule to be applied, as well as actions to be performed when the
rule is executed. A rewriting system iteratively applies matching rules in the
grammar to the graph, until no more rules are applicable.

The use of a model (in the form of a graph grammar) of graph transfor-
mations has some advantages over an implicit representation (embedding the
transformation computation in a program) [3]:

— It is an abstract, declarative, high level representation.
— The theoretical foundations of graph rewriting systems may assist in proving
correctness and convergence properties of the transformation tool.

On the other hand, the use of graph grammars is constrained by efficiency. In
the most general case, subgraph isomorphism testing is NP-complete. However,
the use of small subgraphs on the LHS of graph grammar rules, as well as using
node labels and edge labels can greatly reduce the search space.

Since we store simulation models as graphs, it is possible to express the
transformations shown in the FTG as graph grammars at the meta-level.

For example, suppose we want to transform Non-deterministic Finite Au-
tomata (NFA) into (behaviourally) equivalent DFA. In the latter formalism,
the labels of all transitions leaving a state must be different. Models in both
formalisms can be represented as graphs. Figure 3 shows the NFA to DFA trans-
formation specification in the form of a graph grammar.

In this graph grammar, entities are labeled with numbers. In our case, enti-
ties are both states and transitions. RHS node labels have also a prima, to be
distinguished from LHS ones. If two nodes in a LHS and a RHS have the same
number, that means that the node must not desappear when the rule is executed.
If a number appears in a LHS but not in a RHS, that means that the node must
be removed when applying the rule. If a number appears in a RHS but not in a
LHS, that means that the node must be created if the rule is applied.



For subnode matching purposes, we should specify the value of the attributes
of the nodes in the LHS that will produce a matching. In the example, all the
attributes in LHS nodes have the value of (ANY'), that means that any value
will produce a matching. It is also needed to specify the value of the attributes
once the rule has been applied and the LHS has been replaced by the RHS. This
is done by specifying attributes in the RHS nodes. If no value is specified, and
the node is not a new node (the label appears in the LHS), by default it will
keep its values. It is also possible to calculate new values for attributes, and we
certainly must do this if a new node is generated when replacing the LHS by the
RHS. In the example, we specify new values in nodes 5" and 6’ of rules 3 and 4.

1. @ o If matched(1) has no input edges

Remove departing transitions from matched(1)

If matched(1).name is equivalent to matched(2).name
Ar,uon

Copy input and output euges from matched(2) to matched(1')
Condmon

|| malched(4) condition == matched(2).condition

Copy output edges from nodes matched(1) and

matched(3) into matched(5')

Set type of node to terminal if matched(1) or matched(3) are terminal
Set type of node to initial if matched(1) or matched(3) are initial

@
@
Condition
4. ZaNy> ®

= s if matched(3).condition == matched(2).condition
\\_'7

name := matched(1).name+'$"+matched(3).name }

Copy output edges from nodes matched(4) and
<ANY> matched(5) into matched(6)

name := matched(4).name+'$+matched(5).name }

Set type of node to terminal if matched(4) or matched(s) are terminal
Set type of node to initial if matched(4) or matched(s) are initial

o

"9 g

@ = @ if matched(3).condition == matched(2).condition
N
<ANY>

Fig. 3. A grammar to transform NFA into DFA.

In the picture, matched(i) means the node in the host graph that makes a
match with node 7 in the rule. The graph grammar rules do the following: Rule
one removes unreachable nodes; rule two joins two equal states into one; rule
three eliminates non determinism when there are two transitions with the same
label departing from the same node, and one goes to a different node while the
other goes into the first one; rule four is very similar to the previous one, but the
non determinism is between two different nodes; finally, the last rule removes
transitions with the same label departing from and arriving to the same state.

A graph rewriting module for formalism transformation takes as inputs a
grammar and a model in a source formalism and outputs a behaviourally equiv-
alent model expressed in a target formalism. In some cases, the output and the
input models are expressed in the same formalism, and the application of the



graph grammar merely optimizes some aspect the model. A typical example is
constant folding of Algebraic models. In this case, one of the rules states that
the sub-graph consisting of an operator node whose operand nodes are all con-
stant must be replaced by a constant node whose value is the result of applying
the operation on the constants. Other uses we make of graph-grammars will be
commented in section 5.4.

5 ATOM?3

ATOM? is a tool written in Python [21] which uses and implements the concepts
presented above. Its architecture is shown in figure 4, and will be explained in
the following sections.

ASG

Model-1 Graphical
(Graph-Grammar| |{_nodes nodes J| | (Meta-)Model-1
— Formalism) _ (Formalism-MF1)
[5) “Toad Syntax Actions
O>) _ Save Formalism-MF1gMeta2-Layer) - Load
— - Apply - Load * - Save
o]
S
g Graph Rewriting || Abstract Syntax || Graphical §
(|B Module Graph Model E User Input
= A A E @——— - Create Entities
(] ] Vv 5 - Delete Entities
= Code Generator Constraint Manager 2 - Verify Conditions (Global, Local)
l ATOMS Kernel
Y - Generate
(Graph-Grammar | | (_nodes nodes Model-3
Formalism) (Formalism-1)
~Toad Syntax Actions
_ Save Formalism-1gMeta-Layer) - Load
- Apply ~ Load * - Save
©
q>, Graph Rewriting || Abstract Syntax || Graphical §
; Module Graph Model 5 User Input
) A A M| E |{@=——— - Create Entities
(] v v 5 - Delete Entities
= Code Generator Constraint Manager g - Verify Conditions (Global, Local)
I ATOMS Kernel

Fig. 4. The ATOM? architecture.

The main component of ATOM? is the Kernel. This module is responsible
for loading, saving, creating and manipulating models, as well as for generating
code. By default, a meta-meta-model is loaded when ATOM? is invoked. This
meta-meta-model allows to model meta-models (modelling formalisms) using a
graphical notation. For the moment, the ER formalism extended with constraints
is available at the meta-meta-level. When modelling at the meta-meta-level, the
entities which may appear in a model must be specified together with their
attributes. We will refer to this as the semantic information. For example, to
define the DFA Formalism, it is necessary to define both States and Transitions.
Furthermore, for States we need to add the attribute name and type (initial, ter-



minal or regular). For Transitions, we need to specify the condition that triggers
it.

In general, in ATOM? we have two kinds of attributes: regular and genera-
tive. Regular attributes are used to identify characteristics of the current entity.
Generative attributes are used to generate new attributes at a lower meta-level.
The generated attributes may be generative in their own right. Both types of
attributes may contain data or code for pre and post conditions. Thus, in our
approach, we can have an arbitrary number of meta-levels as, starting at one
level, it is possible to produce a generative attribute at the lower meta-level and
so on. The meta-chain ends when a model has no more generative attributes.
Attributes can be associated with individual model entities as well as with a
model as a whole.

Many modelling formalisms support some form of coupled or network models.
In this case, we need to connect entities and to specify restrictions on these con-
nections. In our DFA example, States can be connected to Transitions, although
this is not mandatory. Transitions can also be connected to States, although there
may be States without incoming Transitions. In ATOM?, in principle, all objects
can be connected to all objects. Usually, a meta-meta-model is used to spec-
ify /generate constraints on these connections. Using an ER meta-meta-model,
we can specify cardinality constraints in the relationships. These relationships
will generate constraints on object connection at the lower meta-level.

The above definitions are used by the Kernel to generate the Abstract Syntax
Graph nodes. These nodes are Python classes generated using the information
at the meta-meta-level. The Kernel will generate a class for each entity defined
in the semantic space and another class for the Abstract Syntax Graph. This
class is responsible for storing the nodes of the graph. As we will see later, it also
stores global constraints. In the meta-meta-model, it is also possible to specify
the graphical appearance of each entity of the lower meta-level. This appearance
is, in fact, a special kind of generative attribute. For example, for the DFA,
we can choose to represent States as circles with the state’s name inside the
circle, and Transitions as arrows with the condition on top. That is, we can
specify how some semantic attributes are displayed graphically. We must also
specify connectors, that is, places where we can link the graphic entities. For
example, in Transitions we will specify connectors on both extremes of the arc
and in States on 4 symmetric points around the circle. Further on, connection
between entities is restricted by the specified semantic constraints. For example,
a Transition must be connected to two States. The meta-meta-model generates a
Python class for each graphical entity. Thus, semantic and graphical information
are separated, although, to be able to access the semantic attributes’ values both
types of classes (semantic and graphical) have a link to each other.

In the following, we will explore some of the ATOM? features in more detail.

5.1 Constraints and Actions

It is possible to specify constraints in both the semantic and the graphical space:



— In the semantic space, it is not always possible to express restrictions by
means of class or entity relationship diagrams. For example, in DFA’s; we
would like to require unique State names, as well as a unique initial State
and one or more terminal States. Furthermore, transitions departing from
the same State must have different labels.

— In the graphical space, it is often desirable to have the entities’ graphical
representation change depending on semantic or graphical events or condi-
tions. For example, we would like the representation of States to be different
depending on the States’ type (initial, regular or terminal).

Constraints can be local or global. Local constraints are specified on single entities
and only involve local attribute values. In global constraints, information about
all the entities in a model may be used. In our example, the semantic constraints
mentioned before must be specified as global, whereas the graphical constraint is
local, as it only involves attributes specific to the entity (the type of the State).

When declaring semantic constraints, it is necessary to specify which event
will trigger the evaluation of the constraint, and whether evaluation must take
place after (post-condition) or before (pre-condition) the event. The events with
which these constraints can associated can be semantic, such as saving a model,
connecting, creating or deleting two entities, etc., or purely graphical, such as
moving or selecting an entity, etc. If a pre-condition for an event fails, the event
is not executed. If a post-condition for an event fails, the event is undone. Both
semantic and graphical constraints can be placed on any kind of event (semantic
or graphical). Semantic constraints can be specified as Python functions, or as
OCL expressions. In the latter case, they must be translated into Python. Local
constraints are incorporated in semantic and graphical classes, global constraints
are incorporated in the Abstract Syntax Graph class. In both cases, constraints
are encoded as class methods.

When modelling in the ER formalism, the relationships defined between en-
tities in the semantic space create constraints: the types of connected entities
must be checked as well as the cardinality of the relationships. The latter con-
straint may however not be satisfied during the whole modelling process. For
example, if we specify that a certain entity must be connected to exactly two
entities of another type, at some point in the modelling process the entity can be
connected to zero, one, two or more entities. If it is connected to zero or one, an
error will be raised only when the model is saved, whereas if it is connected to
three or more entities the error can be raised immediatelly. It is envisioned that
this evolution of the formalism during the modelling life-cycle will eventually be
specified using a variable-structure meta-model (such as a DFA with ER states).

Actions are similar to Constraints, but unlike constraints, actions have side-
effects. Actions are currently specified using Python only.

Graphical constraints and actions are very similar to the semantic ones, but
they act on graphical attributes.



5.2 Types

In ATOM?, attributes defined on entities must have a type. All types inherit from
an abstract class named ATOMS3Type and must provide methods to: display a
graphical widget to edit the entity’s value, check the value’s validity, clone itself,
make itself persistent, etc.

As stated before, ATOM? has two kinds of basic types: regular (such as
integers, floats, strings, lists of some types, enumerate types, etc) and generative
(used to generate an attribute, constraint or graphical attribute at the lower
meta-level). There are four types of generative attributes:

1. ATOMS3Attribute: are used to create attributes at the lower meta-level.

2. ATOMS3Constraint: are used to create a constraint at the lower meta-level.
The code can be expressed in Python or OCL, and the constraint must be
associated to some (semantic or graphical) event(s), and must be specified
wether it must be evaluated after or just before the event takes place.

3. ATOMS3Appearance: associate a graphical appearance with the entity at the
lower meta-level. Models (as opposed to entities) can also have an associated
graphical appearance. This is useful for hierarchical modelling, as models
may be inserted inside other models as icons.

4. ATOMS3Cardinality: are used to generate cardinality constraints on the num-
ber of elements connected, at the lower meta-level.

It is also possible to specify composite types. These are defined by construct-
ing a type graph [2]. The Meta-model for this graph has been built using ATOM?
and then incorporated into the Kernel. The components of this graph can be ba-
sic or composite types and can be combined using the product and union type
operators. Types may be recursively defined, meaning that one of the operands
of a product or union operator can be an ancestor node.

Infinite recursive loops are detected using a global constraint in the type
meta-model. The graph describing the type is compiled into Python code using
a graph grammar (also defined using ATOM?).

5.3 Code generation

If a model contains generative attributes, ATOM? is able to generate a tool to
process models defined by the meta-information. “Processing” means construct-
ing models and verifying that such models are valid, although further processing
actions can be specified by means of graph grammars. These generated tools also
use the Kernel and are composed of:

— The Python classes correspoding to the entities defined in the semantic space.
These classes hold semantic information about the attributes, and local con-
straints (both defined by means of generative attributes in an higher meta-
level).

— A Python class used to construct the Abstract Syntax Graph. It holds the
global constraints and a dictionary used to store a list of the nodes in the



graph, classified by type. This is useful as operations, such as constraint
evaluation can be performed using the visitor pattern [10], and the graph
can hence be traversed more efficiently.

— Several Python classes to describe the graphical appearance. These classes
can have references to semantic attributes, and may also have information
about graphical constraints.

— Several Python methods stored in a single file. These methods are added
dynamically to the Kernel class. These methods create buttons and menus
that allow the creation of new entities, their editing, connection, deletion,
etc.

Models are Python functions that contain the executable statements to in-
stantiate the appropriate semantic classes, Abstract Syntax Graph class and
graphical classes. In fact, when these statements are executed, the result is iden-
tical to the case where the model is constructed interactively by means of the
graphical editor. Thus, if one changes models by hand, making them violate
some constraint, the Kernel will detect this and react accordingly.

Currently we have implemented the ER formalism at the meta-meta-level.
Basically, there are two types of entities: Entities and Relationships. Entities
are composed of a name (the keyword), a list of ATOMS3Attribute, a list of
ATOMSEConstraint and an attribute of type ATOMS3Appearance. Relationships,
in addition to the above, have a list of ATOMS&Cardinality which is filled by
means of Post-Actions when an Entityis connected to the Relationship. By means
of pre and post conditions, it is ensured that Entities can only be connected to
Relationships, that the names of Entities and Relationships are unique, etc. With
this meta-meta-model it is possible to define other meta-meta-models, such as
class diagrams as inheritance relationships between classes can be implemented
with pre and post actions. Note how such an implementation allows for the
implementation of various inheritance semantics. Furthermore, target code can
be generated in languages (such as C) which do not support inheritance.

Figure 5 shows an example of the ER meta-meta-model in action to describe
the DFA Formalism (left side in the picture). This information is used to auto-
matically generate a tool to process DFA models (right side in the picture). On
both sides, a dialog box to edit entities is shown. On the right side, the entity
that is being edited is a DFA State, that has a name (string) and a type (enu-
merate type). On the left side, the appearance attribute of an Entity is being
edited.

5.4 Formalism Transformation

Once a model is loaded, it is possible to transform it into an equivalent model
expressed in another formalism provided the transformations between formalism
has been defined. Because the models are expressed internally as graphs, the
transformation between formalism can be specified as graph grammars [5].

In ATOM?, Graph Grammar rules can be modelled as Entities composed of
a LHS and a RHS | conditions that must hold for the rule to be applicable and
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Fig. 5. An example: Generating a tool to process Deterministic Finite Automata.

some actions to be performed when embedding the RHS in the graph. LHS and
RHS are indeed meta-models, and may be of different kinds. In figure 3, LHS’s
are expressed in the NFA formalism, whereas RHS’s are expressed in the DFA
formalism. For other cases, we can have a mixture of formalisms in both LHS’s
and RHS’s. For this purpose, we allow to open several meta-models at a time. The
graph rewriting module uses an improvement of the algorithm described in [5], in
which we allow non-connected graphs be part of LHS in rules. It is also possible
to define a sequence of graph-grammars that have to be applied to the model.
This is useful, for example to couple grammars to convert a model into another
formalism, and then apply an optimizing grammar. Control the execution of
the rules (stopping after each rule execution or continuous execution) is also
possible.

Figure 6 shows a moment in the edition of the LHS of rule 4 of the graph
grammar of figure 3. It can be noted that the dialogs to edit the entites have
some more fields when these entities are inside a graph grammar rule, namely,
the node label and the widgets to set the attribute value to (ANY). RHS nodes
have extra widgets to copy attribute values from LHS nodes, and to specify their
value by means of Python functions.

Besides formalism transformations, we use graph-grammars for other pur-
poses:

— Code generation: We use a graph-grammar to generate Python code for
ATOM? composite types.

— Simulation: It is possible to describe the operational semantics of models by
means of graph-grammars, in particular, we have described a simulator for
block diagrams in this way.

— Optimization of models: For example, we have defined a graph-grammar
to simplify Structure Charts diagrams (SC’s). We usually use this transfor-
mation coupled with a graph-grammar to transform Data Flow Diagrams
(DFD’s) into SC’s.
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Fig. 6. Editing LHS of rule 4 of the graph grammar in figure 3

6 Related work

A similar approach is ViewPoint Oriented Software Development [9]. Some of
the concepts introduced by the authors have a clear counterpart in our aproach
(for example, ViewPoint templates have an equivalence with meta-models, etc).
They also introduce the relationships between ViewPoints, which in our case
have an equivalence with coupling of models and graph transformations.

Although this approach has some characteristics that our approach lacks
(such as the work plan axioms), our use of graph transformations allows to ex-
press model’s behaviour and formalism’s semantics. These graph transformations
allow us to transform models between formalisms, optimize models, or describe
basic simulators. Another advantage of our approach, is that we consider Meta-
levels, in this way we don’t need different tools to process different formalisms
(ViewPoints), as we can model them at the meta-level.

Other approaches taken to interconnecting formalism are Category Theory
[8], in which formalisms are cast as categories and their relationships as functors.
See also [24] and [18] for other approaches.

There are other visual meta-modelling tools, among them DOME [4], Multi-
graph [22], MetaEdit+ [16] or KOGGE [6]. Some of them allow to express formal-
ism’ semantics by means of some kind of textual language (for example, KOGGE
uses something similar to Modula-2). Our approach is quite different, because
we express such semantics by means of graph grammars. We think that graph-



grammars is a natural and general way to manipulate graphs, rather than using
a purely textual language. Some of the rationale for using graph-grammars in our
approach was show in section 4. Also, none of the tools consider the possibility
to “translate” models between different formalisms.

On the other hand, there are some systems and languages for graph-grammar
manipulations, such as PROGRES [20], GRACE [11], AGG [1], etc., although
all of them lack of a Meta-Modelling layer.

Our approach is original in the sense that we take the advantages of Meta-
Modelling (to avoid explicit programming of customized tools) and graph trans-
formation systems (to express model’s behaviour and formalism transformation).
The main contribution is thus in the field of multi-paradigm modelling [23] as
we have a general means to transform models between different formalisms.

7 Conclusions and future work

In this article, we have presented a new approach for modelling complex systems.
Our approach is based on Meta-Modelling and Multi-Formalism modelling, and
is implemented in ATOM?3. This code-generating tool, developed in Python, re-
lies on graph grammars and meta-modelling techniques and supports hierarchical
modelling.

The advantages of using such an automated tool for generating customized
model-processing tools are clear: instead of building the whole application from
scratch, it is only necessary to specify —in a graphical manner— the kinds of mod-
els we will deal with. The processing of such models can be expressed by means
of graph grammars, at the meta-level. Our approach is also highly applicable
if we want to work with a slight variation of some formalism, where we only
have to specify the meta-model for the new formalism and a tranformation into
a “known” formalism (one that already has a simulator available, for example).
We then obtain a tool to model in the new formalism, and are able to convert
models in this formalism into the other for further processing. Not only we de-
scribe formalisms commonly used in the simulation of dynamical systems, but we
have also described formalisms such as DFD’s and SC’s used for the description
of software.

A side effect of our code-generating approach is that some parts of the tool
have been built using code generated by itself (bootstrapped): one of the first
implemented features of ATOM? was the capability to generate code, and extra
features were added using code thus generated. An example of this is the dialog
to specify composite types: the meta-model for this graph has been specified
with ATOM?, and subsequently Python code was automatically generated.

The way of specifying composite types is very flexible, as types are treated as
models, and stored as graphs. This means graph grammars can be constructed to
specify operations on types, such as discovering infinite recursion loops in their
definition, determining if two types are compatible, performing cast operations,
etc.



One of the most obvious uses of modelling (although not the only one) is
simulation. For that purpose, we describe the dynamic semantics of the models
by means of graph grammars.

In the future, we should also explore the possibility of encoding all the code-
generation ability of ATOM? (see section 5.3) into graph grammar rules.

Currently, the replacement of the basic internal data structure for represent-
ing models (graphs) by the more expressive HiGraphs [13] is under consideration.
HiGraphs are more suitable to express and visualize hierarchies (blobs can be
inside one or more blobs), they add the concept of orthogonality, and blobs can
be connected by means of hyperedges.

We also intend to extend the tool to allow collaborative modelling. For this
purpose, we are working on putting the APIs for constructing graphical interfaces
in Java (Swing) and Python (Tkinter) at the same level. These developments,
together with the possibility to use Python on top of the Java Virtual Machine
(e.g., by means of Jython [15]), will allow us to make our tool in applet form
accessible through a web browser. This possibility as well as the need to exchange
and re-use (meta-...) models raises the issue of formats for model exchange. A
viable candidate format is XML.

Finally, ATOM? is being used to build small projects in a Modelling and
Simulation course at the School of Computer Science at McGill University.
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