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Rule Induction with CN2:Some Recent ImprovementsPeter Clark and Robin BoswellThe Turing Institute, 36 N.Hanover St., Glasgowemail: fpete,robing@turing.ac.uk
AbstractThe CN2 algorithm induces an ordered list of classi�cation rules from examples using entropy as itssearch heuristic. In this short paper, we describe two improvements to this algorithm. Firstly, wepresent the use of the Laplacian error estimate as an alternative evaluation function and secondly,we show how unordered as well as ordered rules can be generated. We experimentally demonstratesigni�cantly improved performances resulting from these changes, thus enhancing the usefulnessof CN2 as an inductive tool. Comparisons with Quinlan's C4.5 are also made.Keywords: learning, rule induction, CN2, Laplace, noise1 IntroductionRule induction from examples has established itself as a basic component of many machine learningsystems, and has been the �rst ML technology to deliver commercially successful applications (eg.the systems GASOIL [Slocombe et al., 1986], BMT [Hayes-Michie, 1990], and in process control[Leech, 1986]). The continuing development of inductive techniques is thus valuable to pursue.CN2 is an algorithm designed to induce `if...then...' rules in domains where there might benoise. The algorithm is described in [Clark and Niblett, 1989] and [Clark and Niblett, 1987], andis summarised in this paper. The original algorithm used entropy as its search heuristic, andwas only able to generate an ordered list of rules. In this paper, we demonstrate how using theLaplacian error estimate as a heuristic signi�cantly improves the algorithm's performance, anddescribe how the algorithm can also be used to generate unordered rules. These improvementsare important as they enhance the accuracy and scope of applicability of the algorithm.

1



2 An Improved Evaluation Function2.1 The Original Entropy FunctionThe CN2 algorithm consists of two main procedures: a search algorithm performing a beam searchfor a good rule (shown in Appendix 2) and a control algorithm for repeatedly executing the search(shown later in Figure 1).During the search procedure, CN2 must evaluate the rules it �nds to decide which is best.One possible metric of rule quality is its accuracy on training data (eg. an option for AQ15[Michalski et al., 1986]). An alternative is entropy, used by ID3 and the original CN2, whichbehaves very similarly to apparent accuracy. Entropy also prefers rules which cover examples ofonly one class.The problem with these metrics is that they tend to select very speci�c rules covering only afew examples, as the likelihood of �nding rules with high accuracy on the training data increasesas the rules become more speci�c. In the extreme case, a maximally speci�c rule will just coverone example and hence have an unbeatable score using the metrics of accuracy (scores 100%accuracy) or entropy (scores 0.00, a perfect score). This is undesirable as rules covering fewexamples are unreliable, especially with noise in the domain. Their accuracy on the training datadoes not adequately re
ect their true predictive accuracy (ie. accuracy on new test data) whichmay appear.2.2 Signi�cance Testing: A Partial SolutionTo avoid selecting highly speci�c rules, CN2 uses a signi�cance test (see [Clark and Niblett, 1989])which ensures that the distribution of examples among classes covered by the rule is signi�cantlydi�erent from that which would occur by chance. In this way, many rules covering only a fewexamples are eliminated, as the signi�cance test deems their apparent high accuracy likely to besimply due to chance.However, while a signi�cance test eliminates rules which are below a certain threshold ofsigni�cance, there is still the problem that rules which just pass the signi�cance test will tend tobe preferred over more general and reliable but less apparently accurate rules. Consider a domainwith two equally likely classes C1 and C2, and consider three rules R1, R2 and R3, where:R1 covers 1000 examples of class C1 and 1 of C2 (we denote this by [1000; 1])R2 covers 5 examples of C1 and 0 of C2 (ie. [5; 0])R3 covers [1; 0])Here, the algorithm should ideally prefer R1 as its accuracy on new test data is likely to be the best{ rules R2 and R3 only cover a few examples and their apparent accuracies of 100% are not fullyre
ective of performance on new test data. However, although a 99% signi�cance test eliminatesR3, R2 will just pass and be selected in preference to R1. Raising the signi�cance level further doesnot solve the problem as a rule R1:5 (say) may exist which again just passes the raised signi�cancethreshold.



We can describe the metrics of apparent accuracy/entropy as having an undesirable `downwardbias', ie. preference for rules low down in the general (top) to speci�c (bottom) search space.Raising the signi�cance threshold causes the level of speci�city at which the search terminates toraise, but does not eliminate the downward bias itself.2.3 The Use of LaplaceIn fact, as reported by other authors (eg. [Niblett, 1987]) an approximate measure does exist tomeasure the expected accuracy directly, namely 1 - the Laplace expected error estimate. Thisexpected accuracy is given by the formula:LaplaceAccuracy = (nc + 1)=(ntot + k) (1)where k is the number of classes in the domainnc is the number of examples in the predicted class c covered by the rulentot is the total number of examples covered by ruleWhen generating a rule list, the predicted class c for a rule is simply the class with the mostcovered examples in it.This formula is a special case of the m-probability-estimate developed by Cestnik [Cestnik, 1990]:mPAccuracy = (nc + po(c) m)=(ntot +m)where uniform prior probabilities po for classes are assumed (ie. po(c) = 1=k) and the tunable pa-rameterm is set to k. The m-probability-estimate is analysed further in [Cestnik and Bratko, 1991].For our example above the Laplace accuracy estimates for predicting the class with the mostcovered examples in are 99.8% for R1, 85.7% for R2 and 66.6% for R3. Thus Laplace avoids theundesirable `downward bias' of entropy, and which signi�cance testing only partly overcame.A �nal check must be included to ensure the expected accuracy is at least better than that ofa default rule predicting the class for all examples.2.4 The New Role of Signi�cance TestingSigni�cance testing can still be included to prune out the most specialised (and hence less fre-quently applicable) rules in the rule list. This reduces the complexity of the rule list, but at aslight cost in predictive accuracy. Interestingly, the behaviour of signi�cance testing with Laplaceis qualitatively di�erent to that with entropy. With entropy, raising the signi�cance thresholdcauses CN2 to select slightly more general rules during induction. With Laplace, general rulestend to be favoured anyway, and signi�cance testing instead alters the point at which CN2 stopssearching for further rules. In other words, with entropy the test a�ects which rules are chosen as`best', but with Laplace acts solely as a termination criterion for the algorithm.



Table 1: Details of Experimental DomainsDomainy Description Number ofExs Atts Classeslymphography disease diagnosis 148 18 4pole-and-cart predict human balancing action from exs 1044 4 2soybean disease diagnosis 307 35 19heart-diseaseC disease diagnosis (data from Cleveland) 303 13 2heart-diseaseH disease diagnosis (data from Hungary) 294 13 2glass predict glass type from chem. content 194 7 9primary-tumour predict tumour type 330 17 15voting-records predict democrat/republican from votes 435 16 2thyroid disease diagnosis 1960 29 3breast-cancer predict if recurrence is likely 286 9 2hepatitis predict if survival likely 157 19 2echocardio predict if survival from heart problem likely 131 7 2y (Sources: Lymph, prim-tumour, breast-cancer from Ljubljana, 1985. Pole-&-cart from Turing Inst.,1990. Remainder from UCI, 1989. See end of paper for details of any data conversions made.)2.5 Experimental Comparison2.5.1 Experimental MethodExperiments were performed to measure the improvement in predictive accuracy using the Laplaceheuristic. As demonstrated by previous authors (eg. [Buntine and Niblett, 1990]), tests on a singledomain are not su�cient to draw reliable conclusions about the relative performance of algorithms.Thus experiments on twelve domains shown in Table 1 were conducted.CN2 using entropy and Laplace were compared. Also, comparisons with Quinlan's C4.5[Quinlan et al., 1987, Quinlan, 1987] were performed. Data was split into 67% for training and33% for testing, and the results averaged over 20 runs. For CN2, a star size of 20 was used andsigni�cance testing was switched o�. (The e�ect of signi�cance testing is examined later). ForC4.5 a single, pruned tree was generated for each run.2.5.2 Results: Comparative AccuraciesTable 2 shows the average accuracies obtained over the above domains. To make an overallcomparison between the algorithms, a paired, two-tailed t-test was used, whose results are alsoshown in this table. From this t-test, it can be seen that using the Laplacian heuristic signi�cantly(>99% signi�cant, from the 2-tail prob.) improves CN2's accuracy, with an average improvementof 6.4%. The comparison between CN2 (Laplace) and C4.5 did not reveal any signi�cant di�erencein accuracy. Additionally, the average size of the rule lists induced by CN2 (Laplace) was smallerthan for CN2 (Entropy). The sizes are tabulated in Appendix 1.



Table 2: Percentage Accuracies of AlgorithmsThe table shows percentage accuracies (� denotes their standard deviations). Thegraph schematically re-presents the data as follows: Each line corresponds to a dif-ferent domain, and connects the observed accuracy using one algorithm with another.Thus an upward slope re
ects an improvement in accuracy, and a downward slope aworsening. The average improvement of CN2 (Laplace), and the signi�cance of thisimprovement, is summarised in the second table.Domain AlgorithmCN2 C4.5 Default(Entropy) (Laplace)lymphography 71.5 �6:3 79.6 �5:7 76.4 �6:2 54.2 �6:7pole-and-cart 52.5 �1:9 70.6 �3:1 74.3 �2:0 48.8 �1:0soybean 74.7 �6:7 82.7 �3:9 80.0 �3:6 10.3 �1:5heart-diseaseC 66.3 �8:5 75.4 �3:6 76.4 �4:5 53.1 �3:8heart-diseaseH 73.0 �4:6 75.0 �3:8 78.0 �5:5 64.9 �3:5glass 45.2 �8:1 58.5 �5:0 64.2 �5:1 34.0 �4:4primary-tumour 35.6 �5:2 49.7 �9:8 39.0 �4:0 24.5 �2:8voting-records 93.6 �1:8 94.8 �1:7 95.6 �1:1 61.6 �2:9thyroid 95.6 �0:7 96.3 �0:7 96.4 �0:9 95.4 �0:8breast-cancer 69.0 �3:6 65.1 �5:3 72.1 �3:7 71.3 �2:3hepatitis 71.3 �5:2 77.6 �5:9 79.3 �5:8 78.0 �4:6echocardio 63.9 �5:4 62.3 �5:1 63.6 �5:3 64.4 �4:9Comparison of mean accuracies using paired, two-tailed t-test on the above data:Algorithms Mean Improvement Signi�cance ofCompared: (Mean X - Y) improvementCN2 (Laplace) - CN2 (Entropy) 6.4% 99.3%CN2 (Laplace) - C4.5 -0.5% 30.0%2.5.3 Results: E�ect of PruningIn the original CN2 (ie. using entropy), using a signi�cance test caused the algorithm to select asmaller number of more general rules (possibly with counter-examples against them) in preferenceto a large number of highly speci�c rules. The Laplace heuristic, however, is su�cient on its ownto bias the search towards those general rules with higher predictive accuracy, tending to �nd rulesof highest predictive accuracy (and thus also high signi�cance) �rst. It would thus be expectedthat removing less signi�cant rules using a signi�cance test would have a di�erent e�ect, namelythat CN2 would still select the same rules early on during the search but would terminate earlier.This was indeed observed (see Appendix 1) with the same early rules tending to appear in therule list but with the number of rules decreasing and the overall accuracy also slightly decreasing.



3 Generating Unordered Rules3.1 The Disadvantage of Ordered RulesThe original CN2 algorithm generates rules assembled in a particular order, described as a rule listby Rivest [Rivest, 1987]. During classi�cation of a new example, each rule is tried in order untilone �res. The algorithm then exits, assigning the class which that rule predicted to the example.Rule lists have the nice property of being `logical', in the sense that clashes between rules cannotoccur as only one rule can ever �re. Thus there is no need to include probabilistic machinery forresolving clashes between rules.However, there is also a corresponding problem in understanding the rules, in that the meaningof any single rule is dependent on all the other rules which precede it in the rule list. Consider,for example, a rule list:If feathers = yes then class = birdelse if legs = two then class = humanelse ...The rule \if legs=two then class=human", when considered alone, is not correct as birds alsohave two legs. Thus to understand the rule, all the previous rules in the list must also be takeninto consideration. This problem becomes acute with a large number of rules, making it di�cultfor an expert to understand the true meaning of a rule far down in the list. As induced rules mustgenerally be validated by experts before their use in applications, this is a signi�cant disadvantage.3.2 Generating Unordered Rules Using CN23.2.1 The CN2 (unordered) AlgorithmCN2 consists of a search procedure and a control procedure. Fortunately CN2 can be easilymodi�ed to generate an unordered rule set by changing only the control procedure, leaving thebeam search procedure unchanged (apart from the evaluation function, described below). Theoriginal control procedure for ordered rules is shown in Figure 1, and the control procedure forunordered rules is shown in Figure 2. (The search procedure is shown in Appendix 1).The main modi�cation to the algorithm is to iterate the search for each class in turn, removingonly covered examples of that class when a rule has been found. Unlike for ordered rules, thenegative examples remain because now each rule must independently stand against all negatives.The covered positives must be removed to stop CN2 repeatedly �nding the same rule.To e�ect this rule search for each class in turn, the Laplace heuristic (Equation 1) must beapplied di�erently: with ordered rules the predicted class c is taken simply as the one with themost covered examples in it, but with unordered rules the predicted class is �xed to be the classselected by the revised control procedure.



Figure 1: The CN2 Ordered Rules Algorithm.procedure CN2ordered(examples; classes):let rulelist = []repeatcall FindBestCondition(examples) to �nd bestcondif bestcond is not nullthen let class be the most common class of exs. covered by bestcond& add rule `if bestcond then predict class' to end of rulelist& remove from examples all examples covered by bestconduntil bestcond is nullreturn rulelistFigure 2: The CN2 Unordered Rules Algorithm.procedure CN2unordered(allexamples; classes):let ruleset = fgfor each class in classes:generate rules by CN2ForOneClass(allexamples,class)add rules to rulesetreturn ruleset.procedure CN2ForOneClass(examples,class):let rules = fgrepeatcall FindBestCondition(examples; class) to �nd bestcondif bestcond is not nullthen add the rule `if bestcond then predict class' to rules& remove from examples all exs in class covered by bestconduntil bestcond is nullreturn rules3.3 Applying Unordered RulesWith an unordered rule list, all rules are tried and those which �red collected. If a clash occurs(ie. more than one class predicted), some probabilistic method is needed to resolve clashes. Themethod used here is to tag each rule with the distribution of covered examples among classes, andthen to sum these distributions to �nd the most probable class should a clash occur. For example,consider the three rules:if legs=two and feathers=yes then class=bird, covers [13,0].if size=large and flies=no then class=elephant, covers [2,10].if beak=yes then class=bird, covers [20,0].Here the two classes are [bird; elephant], [13; 0] denoting that the rule covers 13 (training)examples of bird and 0 of elephant. Given a new example of a large, beaked, two-legged,



Table 3: Percentage Accuracies of Algorithms(See Table 2 for explanation of graph and tables)Domain AlgorithmCN2 (Laplace) C4.5 Defaultunordered orderedlymphography 81.7 �4:3 79.6 �5:7 76.4 �6:2 54.2 �6:7pole-and-cart 72.0 �2:9 70.6 �3:1 74.3 �2:0 48.8 �1:0soybean 81.6 �3:8 82.7 �3:9 80.0 �3:6 10.3 �1:5heart-diseaseC 76.7 �3:9 75.4 �3:6 76.4 �4:5 53.1 �3:8heart-diseaseH 78.8 �4:1 75.0 �3:8 78.0 �5:5 64.9 �3:5glass 65.5 �5:6 58.5 �5:0 64.2 �5:1 34.0 �4:4primary-tumour 45.8 �3:6 49.7 �9:8 39.0 �4:0 24.5 �2:8voting-records 94.8 �1:8 94.8 �1:7 95.6 �1:1 61.6 �2:9thyroid 96.6 �0:9 96.3 �0:7 96.4 �0:9 95.4 �0:8breast-cancer 73.0 �4:5 65.1 �5:3 72.1 �3:7 71.3 �2:3hepatitis 80.1 �5:7 77.6 �5:9 79.3 �5:8 78.0 �4:6echocardio 66.6 �7:3 62.3 �5:1 63.6 �5:3 64.4 �4:9Comparison of mean accuracies using paired, two-tailed t-test on the above data:Algorithms Mean Improvement Signi�cance ofCompared: (Mean X - Y) improvementCN2 (unordered) - CN2 (ordered) 2.0% 95.0%CN2 (unordered) - C4.5 1.5% 94.0%feathered, non-
ying thing, all three rules �re. The clash is resolved by summing the coveredexamples (sum is [35; 10]) and then predicting the most common class in the sum (bird).3.4 Comparative Performance3.4.1 Experimental MethodThe same experimental method as performed for the earlier experiments on ordered rules (Sec-tion 2.5.1) was followed in order to compare the performances of ordered and unordered rule sets.Additionally, a comparison with C4.5 was again made.3.4.2 Results: Comparative AccuraciesThe results are shown in Table 3. Surprisingly, the CN2 (unordered) algorithm had an even higheraccuracy than that of CN2 (ordered), with a small (2%) but signi�cant (at the 95% level) higheraverage accuracy. The comparison also showed a slight (1.5%) but again signi�cant (at the 94%level) improvement over C4.5.One possible explanation for this high performance is that, with unordered rules, several rules



may contribute to the classi�cation of one example thus reducing e�ects of noise and an occasionalpoorly performing rule. Spreading of the classi�cation decision over several rules has been termedusing `multiple knowledge' [Gams et al., 1991] and algorithms speci�cally designed to generate`extra' rules have been designed elsewhere (eg. [Gams, 1989, Cestnik and Bratko, 1988]). Cestnikand Bratko report this technique resulted in signi�cantly improved accuracies, and it seems likely asimilar phenomenon is occurring here. The possible presence of extra classi�cational information inthe unordered rules, compared with the ordered rules and C4.5's trees, is supported by examinationof the rule set sizes. Unordered rule sets were about twice the size of ordered rule lists, and aboutfour times the size of C4.5 trees, as tabulated in Appendix 1. Pruning the unordered rule setsby signi�cance testing using a signi�cance threshold of 99.5% reduced them to a size similar toC4.5's trees, but also slightly reduced the accuracy to one no longer signi�cantly di�erent fromthat of C4.5.3.4.3 E�ect of PruningAs for ordered rules, applying a signi�cance test reduced the number of rules found by the algo-rithm while also slightly reducing the predictive accuracy (see Appendix 1).3.4.4 Worse-than-Default DomainsAn interesting �nding, worthy of brief comment, was that CN2 (ordered), in the breast-cancer andechocardio domains, induced rules performing signi�cantly (ie. outside the bounds of one standarderror) worse than the default rule (con�rmed by repeating the experiments over 250 runs). Thesimple explanation for this is that, in these cases, CN2 was still slightly over�tting the rules to thedata. To understand how induced rules can actually do worse than the default rule, consider theworst case of over�tting where a ruleset/decision tree is grown so every rule/leaf covers only onetraining example. Given 70% of examples are in class c1 and 30% in class c2, and the classes arecompletely independent of the attributes (ie. 100% noise), the over�tted rules/tree will be correctwith probability 0.7 for rules predicting c1 and 0.3 for c2. With 70% of the examples in c1 and30% c2, the overall probability correct will thus be 0:7 � 0:7 + 0:3 � 0:3 = 0:58, worse than thedefault accuracy of 0.7. The over�tting observed in our experiments re
ects behaviour betweenthese two extremes, and suggests the pruning of ordered rules could still be slightly improved.4 ConclusionIn this paper we have described two important extensions to the CN2 algorithm. Most importantly,we has shown how the algorithm can be extended to generate unordered as well as ordered rules,thus contributing to the comprehensibility of the induced rule set. Secondly, we have described adi�erent evaluation function for CN2, and experimentally demonstrated a signi�cantly improved
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Appendix 1: E�ect of Pruning on CN2(See Table 2 for explanation of tables)Accuracy:CN2 (Entropy) CN2 (Laplace) C4.5Domain # (Ordered rules) Ordered Rules Unordered RulesSig. Threshold ! 0% 99.5% 0% 99.5% 0% 99.5%lymphography 71.5 �6:3 68.4 �8:6 79.6 �5:7 74.4 �5:9 81.7 �4:3 76.5 �5:3 76.4 �6:2pole-and-cart 52.5 �1:9 52.2 �1:7 70.6 �3:1 67.9 �3:3 72.0 �2:9 63.0 �3:2 74.3 �2:0soybean 74.7 �6:7 54.2 �6:5 82.7 �3:9 57.5 �4:6 81.6 �3:8 76.1 �4:4 80.0 �3:6heart-diseaseC 66.3 �8:5 67.1 �9:2 75.4 �3:6 76.1 �4:4 76.7 �3:9 76.6 �3:7 76.4 �4:5heart-diseaseH 73.0 �4:6 81.6 �3:4 75.0 �3:8 74.9 �4:7 78.8 �4:1 77.8 �3:9 78.0 �5:5glass 45.2 �8:1 44.4 �7:7 58.5 �5:0 56.9 �7:7 65.5 �5:6 61.6 �8:3 64.2 �5:1primary-tumour 35.6 �5:2 33.0 �3:5 49.7 �9:8 38.7 �5:3 45.8 �3:6 41.4 �5:8 39.0 �4:0voting-records 93.6 �1:8 94.0 �1:8 94.8 �1:7 92.8 �1:8 94.8 �1:8 93.3 �2:1 95.6 �1:1thyroid 95.6 �0:7 95.6 �0:9 96.3 �0:7 96.3 �0:5 96.6 �0:9 96.1 �1:2 96.4 �0:9breast-cancer 69.0 �3:6 68.7 �4:3 65.1 �5:3 64.2 �7:6 73.0 �4:5 70.8 �3:5 72.1 �3:7hepatitis 71.3 �5:2 77.5 �5:6 77.6 �5:9 78.1 �5:9 80.1 �5:7 80.8 �4:5 79.3 �5:8echocardio 63.9 �5:4 67.5 �5:6 62.3 �5:1 63.2 �7:7 66.6 �7:3 69.4 �6:8 63.6 �5:3Average 67.7 67.0 74.0 70.1 76.1 73.6 74.6Rule list/rule set/decision tree size:(Number of nodes inc. leaves in tree, or total number of att. tests in rule list/set)CN2 (Entropy) CN2 (Laplace) C4.5Domain # (Ordered rules) Ordered Rules Unordered RulesSig. Thr. ! 0% 99.5% 0% 99.5% 0% 99.5%lymph 24.6 �4:4 5.1 �1:1 21.1 �3:8 8.2 �2:4 40.4 �4:6 13.5 �2:3 16.4 �6:3pole-&-cart 16.8 �6:8 3.5 �2:8 133.6 �6:3 80.3 �15:3 255.8 �8:3 46.5 �8:2 90.2 �10:2soybean 213.2 �38:8 21.6 �1:7 55.8 �7:4 31.3 �2:7 113.9 �9:7 83.5 �6:3 65.9 �8:4heart-disC 60.0 �10:3 9.1 �2:7 35.1 �2:5 28.4 �3:2 68.6 �5:4 22.8 �4:1 22.7 �4:6heart-disH 37.0 �7:7 6.1 �2:6 40.9 �4:0 26.1 �5:4 83.4 �7:5 20.7 �4:5 7.2 �3:7glass 79.0 �9:4 4.7 �2:3 32.8 �3:0 17.2 �3:0 49.8 �3:6 30.8 �3:5 30.9 �5:8p-tumour 313.9 �24:7 5.4 �2:1 85.2 �9:6 23.0 �5:2 351.0 �23:4 131.4 �9:3 55.9 �13:1voting 11.8 �3:4 8.1 �2:0 41.6 �8:2 15.8 �5:2 64.8 �12:1 19.9 �3:1 7.7 �3:4thyroid 1.3 �0:8 1.1 �0:5 48.4 �5:8 37.2 �7:1 95.6 �9:9 30.6 �4:5 15.5 �7:4b-cancer 27.9 �6:0 3.8 �1:5 53.7 �5:4 25.8 �7:4 100.5 �6:7 18.0 �5:6 13.0 �7:0hepatitis 18.2 �4:9 2.2 �1:2 24.0 �5:5 12.6 �3:0 43.4 �6:7 12.6 �2:3 6.4 �2:6echocardio 16.5 �5:0 1.9 �0:9 26.4 �4:0 13.3 �4:4 48.6 �3:6 13.1 �2:1 9.2 �4:7Average 68.4 6.1 49.9 26.6 109.7 37.0 28.4



Appendix 2: The CN2 Rule Search Algorithmprocedure FindBestCondition(examples[,class]a):let mgc = the most general condition (`true')let star initially contain only the mgc (ie. = f mgc g)let bestcond = nullwhile star is not emptylet newstar = fgbfor each condition cond in star:for each possible attribute test not already tested on in condlet cond0 = a specialisation of cond, formed by adding testas an extra conjunct to cond (ie. cond0 = `cond & test')if cond0 is better than bestcond& cond0 is statistically signi�cantthen let bestcond = cond0.add cond0 to newstarif size of newstar > maxstar (a user-de�ned constant)then remove the worst condition in newstar.let star = newstarreturn bestcondaclass is only required for generating unordered rulesbIn the published version of this paper, this let condition was mistakenly placedoutside the while loop, but this mistake has been corrected here in the electronicversion. Thanks to Radu Greab for pointing this out.
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