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PSEUDO LIMITS, BI-ADJOINTS, AND PSEUDO ALGEBRAS:
CATEGORICAL FOUNDATIONS OF CONFORMAL FIELD
THEORY

THOMAS M. FIORE

1. Introduction

The purpose of this paper is to work out the categorical basigor the foundations
of Conformal Field Theory. The de nition of Conformal Field Theory was outlined
in Segal [45] and recently given in[[2Z4] and[125]. Concepts df-category theory,
such as versions of algebra, limit, colimit, and adjunction are necessary for this
de nition.

The structure present on the classC of rigged surfaces is captured by these con-
cepts of 2-category theory. Here aigged surfaceis a real, compact, not necessarily
connected, two dimensional manifold with complex structure and analytically pa-
rameterized boundary components. Isomorphisms of such riged surfaces are holo-
morphic di eomorphisms preserving the boundary parameteizations. These rigged
surfaces and isomorphisms form a groupoid and are part of thetructure present on
C. Concepts of 2-categories enter when we describe the opeians of disjoint union
of two rigged surfaces and gluing of two rigged surfaces algrboundary components
of opposite orientation. One needs a mathematical structue to capture all of these
features. This has been done in[24].

One step in this direction is the notion of algebra over a theoy in the sense
of Lawvere [34]. We need a weakened notion in which relationare replaced by
coherence isos. This weakened notion is called pseudo algebrain this paper.
Coherence diagrams are required in a pseudo algebra, but it a8 noticed in [24]
that Lawvere's notion of a theory allows us to write down all such diagrams easily.
See Sectiorl6 below. A symmetric monoidal category as de neth [39] provides
us with a classical example of a pseudo algebra over the theprof commutative
monoids. Theories, duality, and related topics are discussd further in [, [2], 4],
[35], [36].

Unfortunately, pseudo algebras over a theory are not enougho capture the
structure on C. The reason is that the operation of gluing is indexed by the wari-
able set of pairs of boundary components of opposite orienton. The operation
of disjoint union also has an indexing. We need pseudo algehs over a \theory
indexed over another theory,” which we call a 2-theory. Moreprecisely, the pseudo
algebras we need are pseudo algebras over the 2-theory @dmmutative monoids
with cancellation. See[[24] and Sectioi12 below. The term 2-theory doe®t mean
a theory in 2-categories.

Date : March 1, 2008.


http://arXiv.org/abs/math/0408298v2

2 THOMAS M. FIORE

Nevertheless, 2-categories are relevant. This is becausewant to capture the
behavior of holomorphic families of rigged surfaces in our @scription of the struc-
ture of C. This amounts to saying that Cis a stack of pseudo commutative monoids
with cancellation. To consider this, we must remark that pseudo algebras over a
theory and pseudo algebras over a 2-theory form 2-categose A stack is a con-
travariant pseudo functor from a Grothendieck site into a 2-category which takes
Grothendieck covers into limits of certain type, which are alled bilimits. They are
de ned below, in [29], and [50], while a slightly stronger ndion is called pseudo
limit in [%0]. One needs to understand such notions for the rjorous foundations
of Conformal Field Theory. More elaborate notions, such as malogous kinds of
colimits are also needed in[1Z5].

In this article | introduce the general concepts of weightedbilimits, weighted
bicolimits, and bi-adjoints for pseudo functors between 2eategories in the sense
below and prove statements about their existence in certaircases. There are many
versions of such concepts and many (but not all) of the theorms | give are in the
literature, see [8], [10], [[1B], 18],[1T20]121]122] 1R 7128], [29], [4®], 1417],[1419],150],
and [51]. The circumstances of Conformal Field Theory sugg# a particular choice
of concepts. To a topologist, the most natural and naive chaie of terminology
may be to use the term \lax" to mean \up to coherence isos" with these coherence
isos required to satisfy appropriate coherence diagrams.I$0" seems to be the only
natural concept in the case of pseudo algebras over a theorghere seems to be no
reasonable notion where coherences would not be iso. For threason, the authors of
[24], [25], and [Z5] use the \lax=up to coherence isos" philsophy. This terminology
however turns out to be incorrect from the point of view of category theory (other
ad hoc terminology also appears in[[24][125], and]26]). Inhis paper, | decided to
follow established categorical terminology while giving aprecise translation of the
notions in [Z4], [25], and [Z6]. In the established categocal terminology, what is
called a lax algebra in [24],[[25], and[126] is called pseudo algebrawhat is called
a lax morphism (morphism which commutes with operations up b coherence isos)
in [24], [Z5], and [Z6] is called gpseudo morphism(or just morphism), and what is
called a lax functor in [24], [25], and [26] is called gseudo functor In addition,
the notions which the authors of [24], [25], and[[26] refer tas lax limit, lax colimit,
and lax adjoint are called bilimit , bicolimit, and bi-adjoint in established categorical
terminology. The stronger categorical notions of pseudo knit, pseudo colimit, and
pseudo adjoint are also sometimes relevant.

The term \lax" in standard categorical terminology is reserved for notions \up
to 2-cells which are not necessarily iso". However, such nains will not play a
central role in the present paper, as our motivation here is he same as in[[24][145],
and [Z26], namely Conformal Field Theory and stacks.

| show that every pseudo functor from a 1-category to the 2-caegory of small
categories has both a pseudo limit and a pseudo colimit by catructive proofs.
Furthermore, the 2-category of small categories admits wegjhted pseudo limits and
weighted pseudo colimits. After that | introduce the notion s of a theory, an algebra
over a theory, and a pseudo algebra over a theory. | then go onot show that
any pseudo functor from a 1-category to the 2-category of pselo T-algebras has a
pseudo limit by using the constructions from the proof of thecategory case. After a
proof of the existence of cotensor products in the 2-categgrof pseudoT -algebras,
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| conclude from a theorem of Street that this 2-category admis all weighted pseudo
limits.

| continue the study of weakened structures by turning to bi-adjoints. First |
show that a pseudo functor has a left bi-adjoint if and only if for each object of
the source category we have an appropriate bi-universal aow in analogy to the
standard result in 1-category theory. By means of this desdption | show that for
any morphism of theories : S! T the associated forgetful 2-functor from the
2-category of pseuddr -algebras to the 2-category of pseud&-algebras has a left bi-
adjoint. The formalism developed for bi-adjoints is then adapted to treat bicolimits
of pseudo T-algebras in the same section. Moreover, the universal pragty of
these bicolimits is slightly weaker than the universal property of the pseudo limits.
Similarly, the 2-category of pseudoT -algebras admits bitensor products, and hence
also weighted bicolimits.

Lastly, | construct pseudo limits of pseudo algebras over a 2heory. Again, a
theorem of Street and existence of cotensor products implyhat the 2-category of
pseudo algebras over a 2-theory admits all weighted pseudamits. An example of
a pseudo algebra over a 2-theory comes from the category ofgged surfaces in[[24].

Some of these results may be found in some form in the literate. There are
many di erent ways to weaken 1-categorical concepts. The fthowing study only
sets up the weakened notions needed for utilizing stacks toigorously de ne con-
formal eld theory as in [24]. Results about bilimits can be found in the references
mentioned above. In particular, Gray explicitly describes quasi limits and quasi
colimits of strict 2-functors from an arbitrary small 2-category to the 2-category
Cat of small categories on pages 201 and 219 6f18], although hjsasi limit is de-
ned in terms of quasi adjunction rather than cones. In any case, he does not have
formulas for pseudo limits of pseudofunctors. Street has the most general result in
this context. In [B0], he states that Cat admits all indexed pseudo limits of pseudo
functors and writes down the indexed pseudolimit. His indexed pseudo limit is the
same as the weighted pseudo limit in this paper. Results abduwnotions similar to
the notion of bi-adjoint can be found in [L&], [19], [Z9], and[50]. These similarities
are discussed in the introduction to the section on bi-adjonts. Blackwell, Kelly,
and Power have limit and adjoint results similar to ours for strict 2-functors into
2-categories of strict algebras and pseudo morphisms over 2monad in [9]. In
fact, we prove below that pseudo algebras over a theory are #hstrict algebras for
a 2-monad below.

Any discussion of weakened algebraic structures must invee coherence ques-
tions. Coherence questions were treated by Laplaza, Mac Lan and others as early
as the 70's. Some recent treatments in the context ofi-categories and categori -
cation are [4], [4], and [14].

I thank Igor Kriz for his careful guidance, F. W. Lawvere, Ross Street, Steve
Lack, John Baez, Tibor Beke, Bob Bruner, James McClure, Je Snith, Art Stone,
Martin Hyland, John Power, Michael Johnson, Mark Weber, and Bart Kastermans
for helpful comments.

| follow the usual convention that 2-categories are denotedby capital script
letters A; C,D; X, pseudo functors are denoted by capital lettersF; G, morphisms
are denoted by e;f;g;h, and 2-cells are denoted by Greek letters; ; . The
identity 2-cell on a morphism f is denotedis . Natural transformations and pseudo
natural transformations are also denoted by lowercase Grdeletters. The double
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arrow ) is used to denote 2-cells, natural transformations, and pagdo natural
transformations, which in some cases are all the same thing.
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2. Weighted Pseudo Limits in a 2-Category

In this section | introduce the notion of a weighted pseudo Iimit and related
concepts. The most important examples of 2-categories to k& in mind are the
following.

Example 1. The 2-category of small categories is formed by taking the ofects
(O-cells) to be small categories, the morphisms (1-cells)a be functors, and the
2-cells to be natural transformations. This 2-category is @&noted Cat.

Example 2. A full sub-2-category of the previous example is the 2-categry with
objects groupoids and 1-cells and 2-cells the same as above.

Example 3. An example of a di erent sort is the 2-category with objects topologi-

cal spaces, morphisms continuous maps, and 2-cells homotpplasses of homotopies.
The 2-cells must be homotopy classes of homotopies in ordeotmake the various

compositions associative and unital.

Example 4. Let J be a small 1-category. ThenJ has the the structure of a
2-category if we takeMor ; (i;j ) to be a discrete category for alli;j 2 ObjJ .

These examples show that there are two ways of composing the&lls: vertically
and horizontally. Natural transformations can be composedin two ways. Homo-
topy classes of homotopies can also be composed in two ways.o Elarify which
composition | mean, | follow Borceux's notation. See[[I1] fo a more thorough
discussion.

Denition 2.1. Let Cbe a 2-category. IfA;B 2 ObjCand f;g;h : A! B are
objects of the categoryMor (A;B) with 2-cells :f ) gand :g) h then the

compaosition
i

A—B

in the category Mor (A;B) is called the vertical composition of and . The
composition is denoted

De nition 2.2.  Let Cbe a 2-category andA;B;C 2 ObjC. Let c: Mor(A;B)
Mor (B;C)! Mor(A;C) denote the functor of composition in the 2-categoryC. If
f;g:A! Bandm;n:B! C are objects of the respective categorieMor (A;B)
and Mor(B;C)and :f ) g, :m) n are 2-cells, then the composite 2-cell
c(; ):m f ) n gisis called the horizontal composition of and . Itis a
morphism of the categoryMor (A; C) and is denoted

A

A

A S T e

A /B e
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To de ne the concept of weighted pseudo limit, we need to disass pseudo func-
tors and pseudo natural transformations. A pseudo functor § like a 2-functor
except that it preserves composition and identity only up to iso coherence 2-cells.
A pseudo natural transformation is like a 2-natural transformation except that it is
natural only up to iso coherence 2-cell. These coherence 2lts must satisfy certain
coherences among themselves. We de ne these notions morerefully to x some
notation. | reproduce Borceux's treatment in [L1]. The coheence 2-cells for pseudo
functors and pseudo natural transformations in this paper ae always assumed to
be iso. Recall again that a pseudo functor in this paper is a la functor in [24],[25],
and [Z6] as well as in other previous papers.

De nition 2.3.  Let C, D be 2-categories. Apseudo functorF : C ! D consists of
the following assignments and iso coherence 2-cells:

For every object A 2 ObjC an object FA 2 ObjD

For every pair of objects A;B 2 ObjC a functor F : Morc(A;B) !
Morp (FA;FB)

For every triple of objects A;B;C 2 C a natural isomorphism between
the composed functors

Morc(A;B) Morc(B;C) #&orc(A; C)

F F F

Morp (FA;FB) Morp(FB;FC) ——/Morp (FAFC)

For every object A 2 C a natural isomorphism between the following
composed functors.

LI MEOJS(A; A)

§
ﬂfﬂ F

18
1*T/MorD(FA;FA)

where the functoru: 1! Morc(A;A) from the terminal object 1 in the
category of small categories to the categorMor ¢(A; A) takes the unique
object of 1 to the identity morphism on A.

These coherence 2-cells must satisfy the following coherea diagrams.
For every morphismf : A! B in Cwe require

B IFf

Ff 1en 4% Fl, lrg Ff ———_43(15) Ff
iFt i IFf f; 1g
Ff i:#:"‘:(f 1n) Ff i:#SQB f)

Ff Ff

to commute. Here o means the natural transformation , evaluated at
the unigue object of 1. This is called the unit axiom for the pseudo
functor F.
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For all morphisms f;g;h of Csuch that h g f exists we require that

Fh Fg Ff ——2—=%3h F(g f)

gh IFf

F(h 9 Ff =——="%h g f)

g fh

commutes. This is called thecomposition axiom for the pseudo functor F.

Each of these functors and natural transformations of coure depends on the
objects, so they really need indices, e.g.cas.c ;FaBs; aBc ;Ua;Ura; and 4.
Often | leave the indices o for more convenient notation. Note that the rst
diagram in the de nition says that the pseudo functor preserves composition of

morphisms up to coherence 2-cell because for morphisnﬁsf—/lé It in cwe
have g : F(g) F(f)) F(g f)and isnaturalin f andg. The second diagram
in the de nition says that the pseudo functor preserves idetity up to coherence
2-cellbecausepn :1ga ) F(1a) forall A 2 ObjC

De nition 2.4. Let C—#H -5 # pe pseudo functors. Then thecomposition
G F of pseudo functorsis the composition of the underlying maps of objects
and the composition of the underlying functors on the morphsm categories. The
coherence 2-cells are

For morphisms A—B_% I in Cthe 2-cell fy is the composition

Fng

G( f
BFg Fi)— €k (g 1)
For each objectA 2 ObjC the 2-cell $F is the composition

GF(9) GF(f)=——=

lopp === Blpp ) —== o(h) BF (1a)

Then the assignment €;g) 7! ¢ is natural and ©F and gF satisfy the
coherences to makeésF a pseudo functor.

De nition 2.5. A pseudo natural transformation : F ) G from the pseudo
functor F : C ! D to the pseudo functorG : C ! D consists of the following
assigments:

For eachA 2 ObjCa morphism A : FA! GA in the category D
For all objects A; B 2 ObjC a natural isomorphism between the following
functors.

Mor c(A; B)gMo&@(FA FB)

it
it :

Mor p (GA; GB) ——/Morp (FA;GB)

G

The natural transformations  must satisfy the following coherence diagrams in-
volving and
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For every A 2 ObjC we require

G

A =], AA:iA-'@(lA) A

i 1A

A lra 3, F(la)

to commute. This is called the unit axiom for the pseudo natural transfor-
mation

For all morphisms Af—/lé g

£ in cwe require

Gg Gf 4 oo =Sy ng:i”ﬁt Fg Ff
|

G(g f) a *2 F(g f)

fig A

to commute. This is called the composition axiom for the pseudo natural
transformation

Here should of course also be indexed by the objectd;B etc., but we leave
o these indices for convenience. The coherence required on and is the com-
mutativity of the 2-cells (from  and ) written on the faces of the prism with
edgesFf;Fg;F (g f);Gf;Gg;G(g f)wheref and g are composable morphisms
in the 2-category C. There are several ways to compose these 2-cells, but theyer
related by the interchange law. Here one must sometimes harontally precompose
or postcompose a 2-cell with identity 2-cells in order to hoizontally compose. Note
the diagram for drawn in the de nition says that the assignment of A 71 4 is
natural up to coherence 2-cell because fofr 2 Mor ¢(A; B) we have the diagram

FA —>—JGA
Ft i Gf
FB — /6B

B

in D. The assignmentf 7! ; is naturalin f,i.e. ap is a natural transformation.
Some authors prefer to denote the coherence 2-cells of by ; instead of .
However | follow Borceux's notation in [11] and use the disthguished notation in
order to navigate complicated diagrams with less e ort.
Pseudo natural transformations can also be horizontally ad vertically composed.

For example, if F—— tB—tBare pseudo natural transformations, the vertical

composition has coherence 2-cells =(ig ) (4 i )forf:A!l B
as in the following diagram.
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FA AN/ ¢ Y\ /RN

Ff Gf Hf

/6B - HB

Natural transformations can be seen as morphisms between fictors. In the
context of 2-categories there is a similar notion of a modi @ation between pseudo
natural transformations.

B

De nition 2.6. Let F;G : C ! D be pseudo functors and; :F ) G pseudo
natural transformations. A modi cation is a function which assigns to
everyA 2 ObjCa2-cell o: a) ainDinsuchawaythat ,z (9) (G A)=

(8 F ) ap(f)forall A;B 2 ObjCand all morphismsf;g : A! B and all
2-cells :f ) g Here and denote the natural transformations belonging
to the pseudo natural transformations and respectively, while is an arbitrary
2-cellin C. This means that the following two compositions of 2-cells ae the same.

A Gf
1) FA lGA IGB
A G
FA ea e 6B
A g
ap (9)
FA _ kB 6B
[¢] B
A Gf
) FA lGa IGB
s (1)
Ff / B /
FA FB GB
FA = kB 6B
g B

These two diagrams can be combined to make a cube whose faceavh 2-cells
inscribed in them. In this de nition is not to be confused with the required
coherence 2-cell in the de nition of pseudo functor.

Denition2.7. If F :D!C is a pseudo functor, then apseudo limit of F consists
of an objectW 2 ObjCand a pseudo natural transformation : w ) F from the
constant 2-functor W to the pseudo functor F which is universal in the following
sense: the functor ( ) : Morc(C; W) ! PseudoCongC;F) is an isomorphism of
categories for every objectC 2 ObjC.
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P seudoCon€C; F) denotes here the category with objects taken to be the pseud
natural transformations ¢ ) F and with morphisms taken to be the mod-
i cations. Pseudo colimits can be de ned in terms of PseudoConéF;C) and
( ):Morc(W;C)! PseudoCongF;C) similarly.

Theorem 2.1. Any two pseudo limits of a pseudo functor are isomorphic.

Denition 2.8. If F : D! C is a pseudo functor, then abilimit of F consists of
an object W 2 ObjC and a pseudo natural transformation : w ) F from the

constant 2-functor W to the pseudo functor F which is universal in the following

sense: the functor ( ) : Morc(C; W) ! PseudoCongC;F) is an equivalence of
categories for every objectC 2 ObjC.

Some authors would call this bilimit a conical bilimit, see [[ZD] and[150] for ex-
ample. They discuss the more general notion ofveighted bilimit or indexed bilimit,
which is de ned below. Limits de ned in terms of cones, such & this bilimit, have
constant weight or constant index. For our applications to conformal eld theory,
it is su cient to consider only conical bilimits although | p rove results for more
general weighted bilimits below. The existence of conical itimits is su cient to
speak of stacks. The termlax limit in [24],[25], and [Z6] is synonymous with the
term bilimit de ned above.

Every pseudo limit for a xed pseudo functor is obviously a bilimit of that pseudo
functor. One can ask whether or not bilimits and pseudo limits are the same. The
following trivial example shows that bilimits and pseudo limits are not the same.

Example 5. Let 1 denote the terminal object in the category of small categorgs,
in other words 1 is the category with one object and one morphism, namely the
identity morphism. This category can be viewed as a 2-categy with no nontrivial
2-cells. SupposeC is a 2-category with at least two objects W; W? such that we
have a morphism °: W°! W which is a pseudo isomorphism. This means that
there exists a morphism :W ! WP0%andiso 2-cells °) 1yoand ° ) 1.
Suppose further that %is not monic. This means there exists an objecC 2 ObjC
and distinct morphisms f1;f,: C! WO°suchthat © f;= © f, LetF:1!1C
be the constant functor , i.e. F( ) = W and the identity gets mapped to 1y .
Then PseudoCondC;F) is isomorphic to Morc(C; W). We identify these two
categories. ObviouslyW and the pseudo natural transformation = 1\ (under
the identi cation) form a pseudo limit, while W%and ©form a bilimit. However,
W%and °do not form a pseudo limit because (° ) : Morc(C; W% I Mor¢(C; W)
is not an isomorphism of categories, since® f; = © f, althoughfi 6 f,.

Example 6. There are also examples where a bicolimit exists but not a ps&lo
colimit. This example goes back to [[9]. LetLex denote the 2-category of small
nitely complete categories, left exact functors, and natural transformations. A
functor is called left exact if it preserves all nite limits. An initial object is a
colimit of the empty 2-functor. A pseudo colimit and a 2-colimit of the empty
2-functor are the same thing. The 2-categoryLex does not admit an initial object
because there are always two distinct functorsA ! | wherel is the category with
only two isomorphic objects and no nontrivial morphisms besdes the ismorphism
and its inverse. The two constant functors provide us with two distinct functors
Al | for eachA 2 ObjLex. The empty functor does however admit a bicolimit
becauselLex is the 2-category of strict algebras, pseudo algebra morpbkims, and
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2-cells for some nitary 2-monad on Cat. Blackwell, Kelly, and Power prove in [€]
that such algebra categories admit bicolimits.

Many pseudo algebra categories do not admit pseudo colimitbecause the mor-
phisms are not strict. Another example can be obtained by adating Example 09
on pagelT0B to colimits.

After Example Bl one might wonder whether or not the equivalences of categories
in the de nition of bilimit can be chosen in some natural way. They can in fact
be chosen pseudo naturally as follows. We write it explicity only for the bicolimit,
although a completely analogous statement holds for the biimit.

Remark 2.2. Let C,D be 2-categories. LetF : D ! C be a pseudo functor.
SupposeW 2 ObjCis a bicolimit with universal pseudo cone : F) w. Let ¢

denote the equivalence of categories ): Morc(W;C) ! PseudoCondF;C). Let

G(C) := Morc(W;C) and F(C) := PseudoCongF ;C). Then G and F are strict

2-functors and C 7! ¢ is a 2-natural transformation G) F.

Proof:  This follows from the de nitions. O]

Remark 2.3. Let the notation be the same as in the previous remark. FoC 2
ObjClet ¢ :FC! GC be aright adjoint to ¢ such that the unit ¢ : 1gc )

¢ candcounit"c: ¢ ¢ ) Ilgc are natural isomorphisms. ThenC 7! ¢
is a pseudo natural transformation from F to G and there exist iso modi cations

g and" : ir which satisfy the triangle identities, namelyC 7!

c andC 7! "¢. In the terminology of [50], this means thatF and G are equivalent
in the 2-category Hom|[C; Cat] of pseudo functors, pseudo natural transformations,
and modi cations. The equivalences inHom[C, Cat] are precisely the pseudo natural
transformations whose components are equivalences of cgtwies.

Proof:  Since ¢ is an equivalence of categories, there exists such a functor
¢ Wwith unit and counit as above. For f : A! B in Cde ne the coherence iso
¢ - Gf A ) B Ff tobe the composition of 2-cells in the following diagram.

FA ——JGA

lea

Gf

1rs lcs

FB— /6B
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The middle square commutes because is a 2-natural transformation. One can
see that the assignmentt 7! ; is natural after segmenting the naturality diagram
into three inner squares and using the fact that is a 2-natural transformation as
follows. Letf;g :A! Band :f! ginC

B in i A i B iFf A
legg Gf A t% 5 Gf a=—— g Ff Ao & 3 Ff 1k
i168 ﬂ N ig g G 1,4 g F i, 4 g B,
lee Gg & *3 5 Gg a—— & Fg A & *3 Fg Ira
B lgg | , i g iFrg "A

The left square and the right square commute because of the tarchange law and
the de ning property of identity 2-cells. The middle square commutes because is
a 2-natural transformation. Hence the outermost rectanglecommutes andf 7!
is natural.

SinceF and G are strict 2-functors, verifying the unit axiom for  reduces to
proving that ;_isi . for all C 2 ObjC. That follows from the de nition of ;.
and one of the triangle identities.

Since F and G are strict 2-functors, verifying the composition axiom for

amounts to proving for A f—/é —% /& in Cthat the composition ( 4 iFr)
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(icgg ;) in (B) is the same as gt in (). That follows since the middle parallelo-

gramin @ isi , by the triangle identity. Hence with satis es the composition
axiom and we conclude thatC 7! ¢ is a pseudo natural transformationF ) G.

(3)

(4)

1A

Ff

Gf

lcs

os]

Gy

lac

lea

C
1kc 7 lcc
Fc———I6c

[

Next | prove that A 7! , is a modi cation ig . This entails showing
that (L[] is the same as [2). Letf;g : A! B be morphismsinCand :f ) g
a 2-cell in C. Since is a 2-natural transformation, we see that [2) is g G .
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| proceed by showing that () is g G . Note that ,5(9) = 4 in(@Dis
(is 15ag) (g 1 ,)bytheremarks on page[® about coherence isos for
a vertical composition of pseudo natural transformations. Writing out (101 with
=lg;
= , = ; and including many trivial arrows gives ().

(5)
Gf
GA Lon IGA IGB oo IGB
A G 158
G
GA ———JbA ——leA = leB ——— /&B
i A i A iGg B
GA N eI S 6B °  JkB °  JeB
A A g
(N [N ipg A i
F
GA — IEA —6A —EA  JkB - B
[ A iFg i
GA JEA — leA ——FB Ael:!
A FA g B
g Gy I g
GA = 6B kg /6B
[¢] B B

Using a triangle identity and contracting all the trivial id entities, we see that the
only thing that does not cancelis g G . Hence [1) is the same ad{2) and\ 7! 5
is a modi cation.

One can similarly show that A 7! " is a modi cation. The modi cations and
" satisfy the triangle identities because their constituentarrows do. O

De nition 2.9. A 2-category C admits bilimits if every pseudo functorF :J ! C
from a small 1-categoryJ to Chas a bilimitin C.

In this de nition we are of course viewing the categoryJ as a 2-category with
no nontrivial 2-cells. There are analogous de nitions for kicolimits and pseudo
colimits. If we view the category J as an indexing category, then we can speak
of bilimits of diagrams, i.e. we can view a diagram inC as the image of a pseudo
functor from a source diagramJ to the 2-category C.
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The concept of pseudo limit can be further generalized to wejhted pseudo limit.
For any small 2-categoryC we denote the small categoryHomc(A;B) by C(A;B)
for A;B 2 ObjC.

De nition 2.10.  Let C,D be 2-categories. Let] : D! CatandF :D!C be
pseudo functors. LetHom[D; Cat] denote the 2-category with pseudo functors
D! Cat as objects, pseudo natural transformations as morphisms, rad modi ca-
tions as 2-cells. ThenfJ;Fg, 2 ObjCis called aJ-weighted pseudo limit ofF if
the strict 2-functors C°? ! Cat

C 71 C(C;fJ;Fap)

C 7! Hom[D; Cat](J; Q(C;F ))

are 2-isomorphic. The image :J ) C (fJ;FgsF ) of 1t g, under this 2-
representation is called theunit.

Street refers to this as the J-indexed pseudo limit of Fin [B&0], although now
the term weighted is used instead of indexed. This is similarto Kelly's de ni-
tion in [29], except that his de nition is for strict 2-funct ors J;F and he uses the
full sub-2-category PsdD; Cat] of Hom[D; Cat] in place of Hom[D; Cat]. The 2-
category P sdD; Cat] consists of strict 2-functors, pseudo natural transformaions,
and modi cations.

We recover the usual de nition of pseudo limit wheneverJ is the constant func-
tor which takes everything to the trivial category with one object. A weighted
pseudo limit is said to be conical wheneverJ is the constant functor just men-
tioned. Another special type of weighted limit called cotensor productoccurs when
D is the trivial 2-category with one object and J and F are strict 2-functors. In
this caseJ and F can be identi ed with objects of Cat and C respectively. Tensor
products can be de ned similarly.

De nition 2.11. Let J 2 ObjCat and F 2 ObjC. Then fJ;Fg 2 ObjCis called a
cotensor productof J and F if the strict 2-functors C°° ! Cat

CT7'C(C;fJFg)

C 7! Cat(J; C(C; F))
are 2-naturally isomorphic.

Remark 2.1. (Kelly) We can rephrase the de nition of cotensor product ertirely
in terms of the unit :J ! C (fJ;Fg;F). The object fJ;Fg of Cis a cotensor
product of J and F with unit :J 1 C (fJ;Fg;F) if and only if the functor
C(C;fJ;Fg)! Cat(J; C(C;F)) de ned by composition with

b7! C(b;F)

TNC(;F ) i
forarrowsb: C!f J;Fgand2-cells :b! HBin Cisanisomorphism of categories
for all C 2 ObjC. More speci cally,
(1) For every functor :J ! C (C;F) there is a unique arrowb: C !'f J;Fg
in Csuch that C(b; F) =
(2) For every natural transformation : )  %there is a unique 2-cell
:b) PinCsuchthatC(;F ) i =.
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A useful reformulation of an observation by Street on page 1@ of [50] illustrates
the importance of cotensor products in the context of weighed pseudo limits.

Theorem 2.4. (Street) A 2-category C admits all weighted pseudo limits if and
only if it admits 2-products, cotensor products, and pseudequalizers.

Remark 2.2. (Street) Pseudo equalizers can be constructed from cotensgrod-
ucts and 2-pullbacks, while 2-pullbacks can be constructedrom 2-products and
2-equalizers. Thus it is su cient to require 2-equalizers instead of pseudo equaliz-
ers in the previous theorem.

De nition 2.12.  Let C,D be 2-categories. Let] :D! CatandF :D!C be
pseudo functors. As above, letHom|[D; Cat] denote the 2-category with pseudo
functors D ! Cat as objects, pseudo natural transformations as morphisms, ra

modi cations as 2-cells. ThenfJ;F g, 2 ObjCis called aJ-weighted bilimit of F if

the strict 2-functors C°? ! Cat

CT7'C(C;fJ;Fap)
C 7! Hom[D; Cat](J; C(C;F )
are equivalent in the 2-categoryHom[C°P; Cat], i.e. there is a pseudo natural trans-
formation going from one to the other whose arrow componentgre equivalences of

categories. Theimage :J ) C (fJ;Fgn F ) of 1;5F g, under this birepresentation
is called the unit.

Kelly refers to this in [29] as the J-indexed bilimit of F. The concepts weighted
bicolimit and bitensor product can be de ned similarly. Lat er we will need bitensor
products, so we formulate this precisely and describe it eritely in terms of the unit
like Kelly in [29].

De nition 2.13. Let J 2 ObjCat and F 2 ObjC. ThenJ F 2 ObjCis called a
bitensor productof J and F if the strict 2-functors C°"? | Cat
C7Cl FC)
C 7! Cat(J; C(F; C))
are are equivalent in the 2-categoryHom[C"P; Cat].

Remark 2.3. We can rephrase the de nition of bitensor product entirely in terms of
theunit :J!C (F;J F). The objectJ F of Cis a bitensor product ofJ and F
withunit :J!C (F;J F)ifandonlyifthe functor CJ F;C)! Cat(J; C(F;C))
de ned by

b7! C(F;b)

TNCF; ) i

forarrowsb:J F ! Cand2-cells :b! B in Cis an equivalence of categories
for all C 2 ObjC.

Street points out the dual version of the following theorem a1 page 120 of[[5D].

Theorem 2.5. (Street) A 2-category C admits all weighted bicolimits if and only
if it admits bicoproducts, bitensor products, and bicoequiizers.

Cotensor products, bitensor products, and the theorems abee will be used later
to show that the 2-categories of interest to us admit weightel pseudo limits as well
as weighted bicolimits.



18 THOMAS M. FIORE

3. Weighted Pseudo Colimits in the 2-Category of Small Categori es

In this section | show constructively that the 2-category C of small categories
admits pseudo colimits. A theorem of Street will imply that t his 2-category also
admits weighted pseudo colimits. One of the concepts in the @of is the free
category generated by a directed graph.

De nition 3.1. A directed graph G consists of a setO of objects and a setA of
arrows and two functions S; T : A! O called source and target.

A directed graph is like a category except composition and iéntity arrows are
not necessarily de ned. Any directed graph G whose sets of arrows and objects
are both small generates a free category ofs, which is also called the path cate-
gory of G. Similarly G generates a free groupoid. One can force commutivity of
certain diagrams by putting an equivalence relation on the norphism sets of the
free category or free groupoid and then passing to the quotig category. | use this
construction in the proof below. The S; T in the de nition of directed graph will
also be used to denote the source and target of a morphism in ategory, although
they are di erent concepts.

Theorem 3.1. The 2-categoryC of small categories admits pseudo colimits.

Proof: Let J be a small 1-category andF :J ! C a pseudo functor. Here
we view J as a 2-category which has no nontrivial 2-cells. The categerJ plays
the role of an indexing category. For anyX 2 ObjClet x denote the constant 2-
functor which takes every object ofJ to X, every morphism to 1y , and every 2-cell
to the identity 2-cell ix :1x ) 1x . Then a pseudo cone fromF to X is a pseudo
natural transformation F )  x . Let PseudoCon€F; X ) denote the category with
objects the pseudo cones fronk to X with morphisms the modi cations between
them. The pseudo colimit of F is an objectW 2 C with apseudo cone :F)
which are universal in the sense that ( ) : Morc(W;V) ! PseudoCondF;V) is
an isomorphism of categories for all small categorie¥ .

First | de ne candidates W 2 ObjCand :F ) . Then|show that they are
universal. For eachj 2 ObjJ let A; denote the small categoryFj and let a; denote
the functor Ff between small categories. Sinc& is a pseudo functor, for every
pair f;g of morphisms ofJ such thatg f exists we have a natural transformation
(a 2-cell in the 2-category of small categories)rq : Fg Ff ) F(g- f). | dene
a directed graph with objects O and arrows A as follows. LetO = i2 ObjA; .
There is a well de ned function p: O! ObjJ satisfying p(ObjA;) = fjg because
this union is disjoint, i.e. even if the small categoriesA; and A; are the same,
we distinguish them in the disjeint union by their indices. Let the collection of
arrows be A = ( i23 MorA ;) \fh(x;f);h(x;lf) D (x;f) 2 O MorJd such that
p(x) = Sf gwhere the elements of 23 MorA; have the obvious source and target
while Shi,sy = x and Thy, )y = as (X). Let WO be the free category generated by
this graph. We put the smallest equivalence relation on MorW ° such that

All of the relations in each A; are contained in , i.e. for m;n 2 MorA
MorW 9with Sn= Tm we haven wom n A, m where the composition
on the left is the composition in the free categorywW° and the composition
on the right is the compaosition in the small category A;.
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For all f;g 2 MorJ with Sg = Tf and all x 2 ObjAs; we have
fig (X) wobh@ x):g) wohus)y D 1) and also every identity 1 2 A;
is equivalent to the identity in the free category on the object x .

For all i;j 2 ObjJ and allf 2 Mor; (i;j ) and all morphismsm : x ! vy of

A; we haveh(y;f y wom af (m) WO h(x;f )

For all j 2 ObjJ and all x 2 ObjA; we have (J-F )x h(x,1,) Where
denotes the unique object of the terminal objectl in the category of small

categories and jF is the natural transformation jF evaluated at .

For all h; ) from above we haveh(x;lf) wo Next ) 1, and hyry weo

1
h(X:f ) La; x

De ne W to be the quotient category of the free categoryW° by the equivalence
relation . This is the candidate for the pseudo colimit.

Now | de ne a pseudo natural transformation : F ) w and its coherence
2-cells , i.e. 1 de ne an element of P seudoCongF; W ). For each objectj 2 ObjJ
we need a morphism inC (i.e. a functor) ; : Fj = A; ! W = w(j). Dene

i Aj ! W to be the inclusion functors A; | W. In order for to be a pseudo
natural transformation, this assignment must be natural up to coherence 2-cellj.e.
for all i;j 2 ObjJ we should have a natural isomorphism ;; of the following sort.

Mor; (ij ) ——May.c(Ai; A))

Mor c(W; W) —i/f\/l orc(Ai; W)

Evaluating this diagram at a morphism f :i ! j of J we should have a natural
isomorphism between functors i (f): i) ; a. Inother words, j; (f) should
be a 2-cell in the 2-categoryC of small categories. For eachx 2 ObjA; de ne
i (F)x o i(x)=x! a(x)= j a(x)to be the isomorphismh,; .

Lemma 3.2. The map : F ) w IS a pseudo natural transformation with
coherence 2-cells given by the natural isomorphisms.

Proof: | continue the notation from the comments before the Lemma. Hrst
| show that the assignment ObjA; 3 x 7! i (f)x 2 Morw ( i(X); j af (X)) is
a natural transformation for xed f :i ! j. Tothisend, let m:x! ybe a
morphism in the small category A;. By denition, i (f)x = hey, i (F)y =
Nysy, iM)=m, {(X)=Xx, ; a(Xx)=a(x),and ; a (m)= a (m). Some
similar statements hold for the objecty. The third requirement on the equivalence
relation in W0 gives us the following commutative diagram in the small catgory

W.
hext )

x by (x)
m ar (m)
Y b (y)
(yif )

Using the identities just mentioned, the commutivity of thi s diagram says precisely
that x 7! i (f)x is a natural transformation. Thus i (f): ;) ; & isa
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natural transformation between functors, i.e. a 2-cell in the 2-categoryC of small
categories.

The assignmentf 7! ; (f)for xed i;j is natural because the categoryor ; (i;j )
has no nontrivial morphisms. Thus ;; is a natural transformation between the in-
dicated functors.

Next | verify the composition axiom for pseudo natural transformations which

involves and . The diagram states that must satisfy for all i——#/—% #
in J the coherence axiom i, rg) (i (@ ia) (1w, ()= (g
f) (i1, i ,) as natural transformations. This coherence is satis ed beause
of the second requirement on the relation inW° for eachx 2 ObjA; which states
fig EX; ik (Darx) i (F)x = ik (9 f)x. Notethat (i , g )(X)= k( 1,g(X))=
f.g (X).
gLastIy | verify the unit axiom for pseudo natural transforma tions which involves
and . This coherence requires the commutivity of the following dagram for all
j 2 ObjJ .

i w

= g (45)

i L = 3 FW)

i

Here ; ¥ and jF are the natural transformations associated to the pseudo foc-
tors w and F which make them preserve the identity morphisms 1 up to coher-
ence 2-cell. In fact, ; ™ is trivial. If 1 denotes the terminal object of the category

of small categories, then ; ¥ and jF must satisfy the following diagrams for all
objectsj of J .

1——IMagy Gii)

W
J
w

1——Morc(w;w)

1——IMary (i)

F
J
F

1 ——Morc(Fj;Fj )

Using the fact that ; “ evaluated on the unique object of 1 gives the identity
2-celliyw : 1w ) 1w, the desired coherence diagram simpli es to the following.
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w (1) ag
. i)
b
%
il =——="% F@)
i

Recall that ( jF )x = hyq) in W by the fourth requirement on the equiva-
lence relation in WP By de nition we also have N1y = i (L)x. This implies
( jF )x = hyy = jj (4)x and the simplied diagram commutes because j is

the inclusion functor. Hence the required coherence diagra involving and is
actually satis ed.

Thus :F) w is apseudo natural transformation with the indicated coher
ence 2-cells. O]

Now | must show that the small category W and the pseudo natural transfor-
mation :F )  are universal in the sense that the functor : Morc(W;V) !
PseudoConéF;V) dened by (b= b  for objects bis an isomorphism of cat-
egories for all objectsV of C. More precisely, is de ned for b2 ObjMor ¢(W; V)
andj 2 ObjJ as (b)(j)= b ;. The coherence 2-cells for the pseudo congb)

areip, i (f)forall f :i! jinJ. For morphisms :b) bin MorMor ¢ (W;V)
ldene ():b B° to be the modi cation which takes j 2 ObjJ to
()(g) = i ;. Herei ; denotes as usual the identity 2-cell ; ) ; between

these morphisms ofC. In the following, V is a xed object of the 2-category C of
small categories.

Lemma 3.3. The map :Morc(W;V)! PseudoConégF;V) is a functor.

Proof: Let b 2 ObjMor ¢(W;V) be a functor and i, : b ) b its identity
natural transformation. Then obviously (ip)(j)=1ip i, :b ;) b isthe
identity natural transformation ip , forall j 2 ObjJ andthus (ip) is the identity
modi cation. Hence preserves identities.

To verify that  preserves compositions, let : b) bPand °: 1) ©b™be natural
transformations. Then for eachj 2 ObjJ we have ( ° )(j)=( ° ) i =
(% ) (i, i,) Bytheinterchange law we have (° ) (i, i) =
(% i) C i)D)=009%) NN =009 () where the last
equality follows from the de nition of vertical compositio n of modi cations. Thus

(% )= (9 ()and preserves compositions. Thus is a functor.

O

The purpose of the next few lemmas is to exhibit an inverse fuator  for
Lemma 3.4. There is a functor : PseudoCondF;V)! Morc(W;V).

Proof:  First| dene  for objects. Then | de ne  for morphisms. Finally |
verify that  is a functor.

Let °be an object ofPseudoCongF;V), i.e. °:F) v is a pseudo natural
transformation with coherence 2-cells © up to which ©is natural. To de ne a
functor %= b2 ObjMorc(W;V) | use the universal mapping property of the
quotient category W as follows. De ne an auxiliary functor d : W°! V as the
functor induced by the map of directed graphs below which is o calledd.
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For all i 2 ObjJ and x 2 ObjA; ObjwPOlet dx := X%

Forall i 2 ObjJ , x;y 2 ObjA;, and allg2 Mora, (X;y) Morwo(x;y) let
dg:= g
For all i;j 2 ObjJ,f 2 Mory (i;j), and all x 2 ObjA; Objw°de ne
d(hexy) == if} (F)x: X! J-O ar x and
d(h(x;lf D= G ERt D axt X

| claim that d preserves the equivalence relation placed on the categorw®

Following the order in the de nition of  we have the veri cations

For m;n 2 MorA; MorW ° with Sn = Tm we haved(n wom) =
dn vdm= in vy im= i(n oA, m)=d(n a m)andforal 1, 2 A
we havedl, = X1x) =1 o because {is a functor. But 1 o is also the
same asd applied to the identity on x in the free categoryW®

Since %is a pseudo natural transformation, for all if—ﬂ/M inJ we
have

(o rg) (@@ ia) (i, S(f)= %(g f) (i, i,)asnatural
transformations. Evaluating this at x 2 ObjA; yields

( |(<) fig (X)) j(;)k (9)a 8 (f)x = i(;)k (g9 f)x. This says precisely

d( g (%) woh x)g) woher)) = dlhegg 1)).

For all i;j 2 ObjJ and allf 2 Mor; (i;j ) and all morphismsm : x ! vy of
A; we have to showd(h.sy wom) = d(as (m) woh;)). Writing out d,
we see that this is the same as verifying § (f)y v m=( ? a)m v
o (f)x, which is true because the assignmenk 7! 9 (f) is a natural
transformation from 0 to jo ar .

For all j 2 ObjJ and all x 2 ObjA; we have to showd( jF )x = dh 1)
where denotes the unique object of the terminal object 1 in the catgory
of small categories and jF is the natural transformation jF evaluated at .
Writing out d we see that this is the same as verifying °( [ )x = % (1j)x.
Since Cis a pseudo natural transformation from F to y, the natural
transformation © must satisfy the coherence (o F) o 0= 2@
(i, 1 J_o) i o as natural transformations. Evaluating this coherence at
x 2 ObjAj we get ()« 1 ox = S 1 ox 1 oy, which implies
d( [ )x = dh( 1) by the remarks above.

For all i;j 2 ObjJ, f 2 Mor; (i;j), and all x 2 ObjA; Objw ° we
have d(h(x;lf y woheer)) = ()t § (F) =1 ox = d(1x) and similarly
d(h(x;f ) Wwo h(x;lf )) = d(laf x)-

Thus d : WO! V is a functor that preserves the equivalence relation onw®,
By the universal mapping property of quotient category W of W0 there exists a
unique functor b : W !V which factors d via the projection. Dene ( 9 :=
b 2 ObjMorc(W;V). This is how is dened on the objects of the category
P seudoCongF; V).

Next | de ne on morphisms of the categoryP seudoCondF;V). Let

O be a morphism of PseudoCongF;V), i.e. is a modi cation from the
pseudo natural transformation :F ) y to the pseudo natural transformation
O:F) v. Let and ©respectively denote the natural transformations that
make the pseudo natural transformations and © natural up to cell. | de ne
a morphism () of Morc(W;V) as follows. Note that such a morphism is by
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de nition a natural transformation between functors from t he small categoryW to
the small categoryV. Since is a modi cation, we have a 2-cell ;: ;) Qlinthe
category C for eachi 2 ObjJ . Let b; ¥ denote the respective functors ( ); ( 9:
W ! V. For x 2 ObjA; Objw dene ()« :bx= ix! % = % to be

i(x): ix! %. The following two commutative diagrams show that () is a
natural transformation. For x;y 2 ObjA; and m 2 Mora, (X;y) Morw (x;y) the
diagram

bx ——— /%
im=bm ’m=m
by 4ly/boy
in V commutes because ; : ) iois a natural transformation. For a morphism

f:i! jofJ the diagram
bx — = M,

ij (F)x=Dbhes ) boh(x:f )= ig (f)x

ba (x) W/boaf (x)

commutes because of the coherence in the de nition of modi ation and because
of the de nitions of b;l¥ on hf). One sees this by taking = i in diagrams
(@M and @) in the de nition of modi cation. An inductive arg ument shows that

() is natural for all other arrows in W as well. Hence (): ()) (9isa
morphism of the categoryMor c(W; V).

Lastly | verify that  is a functor, i.e. that preserves the identity modi cations
and the composition of modi cations. Let : be the identity modi cation
belonging to a pseudo natural transformation : F ) v . This means that

i i) i listhe identity natural transformation for the functor ; : A; ! V. For
all i 2 ObjJ and all x 2 ObjA; we have by de nition of that () x: ( )x =

ix ! ix= ()xis i(x): ix! ;x, which is the identity morphism on the
object x of the small categoryV by hypothesis. Hence (): ( )'! ()is
the identity natural transformation and  preserves identity modi cations.

To verify that  preserves compositions, let : and °: © 00
be modications. Then the vertical composition of modi cat ions (which makes
PseudoCondF;V) a category)isdenedas(°® )i:= 2 ;where 0 isthe
vertical composition of the natural transformations ; : ;) Pfand ?: ?2) @

as usual. Then for alli 2 ObjJ and all x 2 ObjA; Objw we have ( © )« =
(2)i0)=C P2 Dx= 00 )= (% Ox=C (9 () x Thus
(%)= (9 () and preserves compositions of modi cations. Hence

is a functor.
]

Lemma 3.5. The composite functor : PseudoCondF;V)! PseudoCongF;V)
is the identity functor.
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Proof:  First | verify this for objects, then on for morphisms. Let °:F)
be a pseudo natural transformation with coherence isomorpisms ° Letb= ( 9.
Then using the de nitions of b in Lemma [34 and the de nition of above we
evaluate ( ( 9) at each objecti of J and compare the resulting functor ( ( 9);
to the functor 2. Formally this is:

For all x 2 ObjA;, we have
((Pix= Bix=(b )x=bx= X
For all x;y 2 ObjA; and all g2 Mor 4, (Xx;y) we have
( ( Mig= (Big=(b i)g=bg= g
Thus ( ( 9) = Ofor all objects © of the category PseudoCongF;V). Hence
is the identity on objects.
Next | verify the lemma for morphisms. Let : % be a morphism of
the category P seudoConéF; V), i.e. is a modi cation from the pseudo natural
transformation : F ) v to the pseudo natural transformation °: F ) V-

Letb= ()= (9:wW'! Vand = (): b) b for more convenient
notation. Then ( ())= ():b K’ is a modication from to ©
by the result on objects. For eachj 2 ObjJ we have the natural transformation
()H)|g) = i, b ) B’ ;. But this natural transformation is precisely
i) j° by the de nition of  via . Thus for all morphisms of the category
P seudoConéF; V) we have ( ()) = . Hence is the identity on morphisms.

[
Lemma 3.6. The composite functor : Morc(W;V) I Morc(W;V) is the

identity functor.

Proof:  First | verify this for objects, then on generators for morphisms. Let
b:W ! V be afunctor andx 2 ObjA; ObjW. Then x= (b )x=
(b {)x = bx. Similarly for a morphism g2 Mora, (x;y) Morw (X;y) we have

(Dg= (b )g=(b i)g= bg For morphisms h; ), the analogous
calculationis  (Bhger) = (b hper) =(in iy (F))x = B i (F)x) = bhy ).
That follows because the coherence 2-cell up to which  is natural is
(i i (F))x = b( i (f)x), then we use the third part of the de nition of as

well as the de nition hysy = ij (f)x. Thus (b) = bfor all objects b of the
category Mor ¢(W; V). Hence is the identity on the objects of the category
Mor c(W; V).

Next | verify the lemma for morphisms. Let : b) b’ be a morphism of
Mor c(W;V), i.e. a natural transformation from some functor b to some functor
. Let = (), = (b,and °= () for more convenient notation. Then
by de nition : =b B® = 0Ois the modication which takes j 2 J
to i,.Letx2 ObjA; Objw. Then () x: ()x= jx! = (9
is j(x)=( i )x s(b)yx! (t° )jx. This is described by the following
diagram.

A| LMy R

[

A R— Y Iy

j p°
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But by de nition of and (b );, we see that j(x) = ,x = x is precisely
x« bx! B% Thus () x= xand ( ()= ()= . Hence is the
identity on the morphisms of the category Mor c(W; V). O

Lemma 3.7. The small categoryW and the pseudo natural transformation : F )

w are universal in the sense that the functor : Morc(W;V) ! PseudoCongF;V)
dened by b = b  for objects bis an isomorphism of categories for all objects/
of C.

Proof:  This follows immediately from the previous four lemmas becaseV was
an arbitrary object of the 2-category C. O
Lemma 3.8. The small categoryW and the pseudo natural transformation

:F) w are apseudo colimit of the pseudo functoF :J ! C .

Proof:  This follows from Lemma[32 and the previous lemma. O

Thus every pseudo functorF : J ! C from a small 1-categoryJ to the 2-
category C of small categories has a pseudo colimit. In other words, th@-category
C of small categories admits pseudo colimits. This completethe proof of Theorem
2. [
Lemma 3.9. The 2-category ofC of small categories admits tensor products.

Proof: Let J and F be small categories. Then)] F := J F is a tensor
product of J and F withunit :J! Cat(F;J F) dened by

(4)(x) = (j;x)

()(F)=(5:f)

(@)x =(9;L)
for j 2 ObjJ;x 2 ObjF;f 2 MorF;g 2 MorJ . Alternatively one can see that
Cat(J F;C) is isomorphic to Cat(J; Cat(F; C)) by the usual adjunction. O

Lemma 3.10. The 2-category C of small categories admits all weighted pseudo
colimits.

Proof:  This 2-category admits pseudo coequalizers by Theorem3.1lt also
admits tensor products by Lemmal3®. It is not di cult to cons truct 2-coproducts
in this 2-category by using disjoint union. Hence, by the dud version of Theorem
24, C admits all weighted pseudo limits. O

Remark 3.11. The 2-category of small groupoids admits weighted pseudolicoits.

Proof:  The proof is the same as in the proof for the 2-category of smhtate-
gories except that one replaces the free category by the fregoupoid. O
Theorem 3.12. The 2-category of small categories and the 2-category of siha
groupoids admit weighted bicolimits.

Proof:  These 2-categories admit weighted pseudo colimits. Every gighted
pseudo colimit is a weighted bicolimit. O
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4. Weighted Pseudo Limits in the 2-Category of Small Categories

Not only does the 2-categoryC of small categories admits pseudo colimits, but
it also admits pseudo limits. In fact | construct them explicitly in the next proof.
The notation remains the same as in the previous section. Thi description is not
new, since the candidateL in the proof below can be found in [GD]. The same
construction works for weighted pseudo limits in this 2-catgory. A theorem from
Street also allows us to conclude thatC admits all weighted pseudo limits.

Theorem 4.1. The 2-categoryC of small categories admits pseudo limits.

Proof: Let J be a small 1-category andF : J | C a pseudo functor,i.e. J
has no nontrivial 2-cells. For any X 2 ObjClet x denote the constant 2-functor
which takes every object ofJ to X, every morphism to 1« , and every 2-cell to
the identity 2-cell ix : 1x ) 1x. Then a pseudo cone fromX to F is a pseudo
natural transformation x ) F. Let PseudoConéX;F ) denote the category with
objects the pseudo cones fronX to F with morphisms the modi cations between
them. A pseudo limit of F is an objectL 2 ObjCwith a pseudo cone : | ) F
which are universal in the sense that ( ) : Morc(V;L)! PseudoCongV;F) is an
isomorphism of categories for all small categorie¥ .

First | de ne candidates L 2 ObjCand : | ) F. Then I show that they
are universal. For eachj 2 ObjJ let A; denote the small categoryFj as in the
proof for the pseudo colimit. Let 1 denote the small category with one object
and no nontrivial morphisms. Then the candidate for the psewo limit is L :=
PseudoConél; F), also called the category of pseudo cones t6 on a point. The

pseudo natural transformation candidate : | ) F is de ned for all objects
1) FofLas j():= i()forall i 2 ObjJ. For morphisms : 0 of
Ldene i():= i(): i()! & )foralli2 ObjJ. Dene the coherence isos

iij

Mor; (i;j ) ——Morc(L;L)

o

Morc(Ai;Aj) %MOrC(L;Aj)

F

belongingto : ) F by j(f) = 4 (f) forall f 2 Mor, (i;j) and all
2 ObjL where ; is the coherence natural isomorphism belongingto : 1) F.
Mor; (iij ) ——/Morc(1:1)

F i

Morc(Ai;Aj) —i”\/l orc(1;A)

Lemma 4.2. The map : | ) F is a pseudo natural transformation with
coherence 2-cells given by.

Proof:  First | show that for each j 2 ObjJ we have a morphism ; : L =

L(G) ! Fj = Aj in the 2-category C. | claim that ; is a morphism, i.e. a
functor. Let1 = : be the identity modi cation of the pseudo cone
1) F.Thismeans ; =i, : ;) j is the identity natural transformation

forall j 2 ObjJ . Then (1 )= ;()= i()=1,(y=1,()and ;j preserves
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identities. Now let ; denote arbitrary modi cations in L such that exists.
Then j( )=( )i()= 5 50)= 50) ()= 30 (). Thus
j L1 Aj isafunctor.

Next | show that ;; as de ned above is a natural transformation for all i;j 2

ObjJ . By inspecting the de nition diagram for ;; above we see that for all
f 2 Mory (i;j ) we should have an element ;; (f) of MorMor ¢(L;A;). To this
end, I claimthat i (f): Ff ;)  is anatural transformation. To see this, let

: 9 pe a modi cation, i.e. a morphism of the categoryL. Then by taking

= it in the de nition of modi cation and evaluating the modi cat ion diagrams
@ and @ at 2 Objlwith = ; = %A =iB =j, = we obtain the
commutivity of the diagram in the category A;

g (6)

Ff(i() ()

FEC () ‘j()

FE(CX0) o o)

5]

where and ° denote the coherence natural transformations belonging tahe
pseudo cones and °respectively. Using the de nitions i (f) := i ()5 ()=
i(),and i():= () we see that this diagram is

FE () —2 ()

Ff Q) i)

Ff i( 0) %/j( O)
i (F) o

which says precisely that 7! ;; (f) is natural for xed morphisms f :i ! | of
J. Thus j; (f): Ff i ) j is a natural transformation. On the other hand,
the assignmentMor; (i;j ) 3 f 7! ; (f) is vacuously natural because the category
Mor; (i;j ) is discrete. Thus j; is a natural transformation for all i;j 2 ObjJ .

The natural isomorphisms satisfy the unit axiom and composition axiom in-
volving and because the individual do. O

Now | must show that the small category L and the pseudo natural transfor-

mation : | ) F are universal in the sense that the functor : Morc(V;L) !
PseudoCongV;F) dened by b = b for objects b is an isomorphism of cate-
gories for all objectsV of C. More precisely, is de ned for b2 ObjMor ¢(V;L) and
j 20bjJ as (b)(j)= ; b The natural transformations for the pseudo cone b
are ij (f) ipforall f:i! jinJ. Formorphisms :b) b’in MorMor c(V;L)
| dene (): b b’ to be the modi cation which takes j 2 ObjJ to
()G4) =i . Herei , denotes as usual the identity 2-cell ; ) ; between

these morphisms ofC. In the following, V is a xed object of the 2-category C of
small categories.

Lemma 4.3. The map :Morc(V;L)! PseudoCongV;F) is a functor.
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Proof:  The proof is analogous to the proof for the of the pseudo colimit. (]

Now | construct a functor : PseudoCongV;F)! Morc(V;L) that is inverse
to . First | dene  for objects, then for morphism. Finally | verify that it is a
functor and inverse to . The key observation in the construction is that we can
get a pseudo cone on a point by evaluating a pseudo cone on anjebt. This is the
essence of the identi cation | make below.

Remark 4.4. L@ ObjP be the su@set of the set
f(ai)i ("f )f 2 i20bjJ Obin f2Mor J MorA Tfj "o Ff (asf) I ars is iso
for all f 2 MorJg consisting of all (a;)i (")t such that

", [ (g)=1q forallj 2 ObjJ

"g (Fg("#))= "g+ fF;g (ast) for all f;g 2 MorJ such thatg f exists.
Then ObjL and ObjP are in bijective correspondence via the ma®bjL ! ObjP; 7!

( i( ))| ( SETE (f) )f-

Proof:  The two conditions express exactly the required coherencdsr a pseudo
cone : 1) F. Anypseudocone : ;) F is completely determined by the
data listed in the image sequence. O

Remark 45. Let =(a)i ("f)f andy%=(ad);i ("?)r be elements ofObjP.
Let Morp (; 9 denote the set of( )i 2 ~,0p , Mora, (ai;a?) such that

Ff (ar) /&
Ff( i) i
Ff () — /&0
f
commutes forallf :i! jinJ. ThenMor_ (; 9 andMorp(; 9 arein bijective
correspondence via the mapMor,_ (; 9! Morp(; 9, 7' ( i())i. Moreover,
the composition in Mor_ (; 9 corresponds to the componentwise composition

in Morp(; 9.

Proof:  The diagram is the result of evaluating the coherence stateih diagrams
(@ and @) in the de nition of modication at . The claim about composition
follows immediately from the de nition of vertical composition of modi cations.
0

Remark 4.6. Under the identi cation above, P is a category and ; is the projec-
tion onto the j-th coordinate.

Proof:  This follows directly from the de nition of  and the identi cation. [J

I will use the identi cation without explanation. Now | de n e a functor ( 9=
b:V ! L for any object ©° of PseudoCongV;F). This will substantiate the
comment that evaluating a pseudo cone on an object gives a psdo cone on a
point.
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Lemma 4.7. Let °: ) F be a pseudo natural transformation with coherence
natural transformations ° For any xed x 2 ObjV we have ( 9(x) := bx) :=
()i (&gt (F)x)s is an element of ObjP = ObjL .

Proof:  Evaluating the coherences for involving and at the object x gives
the coherences in the de nition of P. Thus b(x) 2 ObjP and b(x) is a pseudo cone
1) F, in other words b(x) is a pseudo cone on a point. O

Lemma 4.8. Let °: ) F be a pseudo natural transformation with coher-
ence natural transformations ° Then for any xed h 2 Mory (x;y) we have a
modi cation  ( 9(h) := b(h) := ( h));i : b(x) b(y). This notation means
b(h)i( )= Xh).

Proof:  For notational convenience let := b(x): 1) F and °:= b(y):

0

1) F. Let = Db(h). Then i?j (f)x = 4 (f) and i?j (f)y = 4 (f) and

i()= Xh)forall f:i! jinJ by the identication. The naturality of 3 (f)
says o (f)y Ff( Xh)= 2h) & (f)xforallf:i! jinJ. Rewriting this
identity using ; © and gives i;jo(f) FECi()= () 4 (f). This last
identity says that the composition of natural transformati ons (2-cells)

11— ki —
1 0 Ei Ff Fj
I 0
B
1 Ul IE ]

1(f) P

is the same as the composition

1 i T

E
1(f) //.I. i IE

1(ir) ‘

/ IE;
1 N ; Fj
of natural transformations for all f :i! j in J. The only 2-cells in the category
J are of the formis. Therefore we have veri ed diagrams [1) and [2) for to be
a modi cation. Thus ( 9(h) = b(h) = : %is a modi cation. O

Lemma 4.9. For any pseudo natural transformation °: ) Fthemap ( 9=
b:Vv ! L is a functor.

Proof:  Foreachx 2 ObjV andallj 2 ObjJ we haveb(1y);( ) = jo(lx) =1 Ox
sinc_e jo V ! A,— is_afunctor. Henceb(1,); :_ib(x)_j- Henceb(1y) : b(x) _ b(x) is
the identity modi cation. If h and ™ are morphims inV such that * h exists, then
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bC h()= PC h= PC) Phy=DbC)() blh)()=(b() bh))( )=
(b(*) b(h))j( ). Henceb(" h)= b(") b(h) and b preserves compositions. O

Lemma 4.10. Let : be a morphism of the categoryP seudoCongV;F).
Then (): ()) ()denedbyV3x7'( i(xX))i2Mor.( ()x; ()x)isa
natural transformation. As in Remark f£.5]above, this de nition means ()( x)i( ) :=

i(x).

Proof:  Since : is a modi cation, for each objecti of J there is a
2-cell of C (a natural transformation) ;: ;) ; and these satisfy the coherence
listed in the de nition of modi cation. Evaluating this coh erence in diagrams[(lL)
and @) at x 2 V we see that (i(X)); : ( )x ( )x is a modi cation. Hence
(i(x))i 2Mor( ()x ()x).

| claim that () is natural, i.e. that the diagram

Cyx 0D (g

()g=( i(9)i (Ci(@i= ()

S
C)y Ci(yDi Cy

in L commutes. We only need to verify that the diagram commutes camponentwise,
since the vertical composition of modi cations correspond to the componentwise

composition of these sequences under the identi cation. Buthe diagram obviously
commutes componentwise because; : ) i is a natural transformation. O

Theorem 4.11. The map :PseudoCondV;F)! Morc(V;L) as de ned in the
previous lemmas is a functor.

Proof: Suppose is the identity modi cation for a pseudo cone
v) F.Then ;=i ,: ;) jforallj2ObjJ,sothat ;(x)=(i )x=
1, Thenx 7! (1  (y); is the identity morphism ( )! () in Morc(V;L).
If ; are modications in PseudoCondV;F) such that exists, then for
all x2V wehave () x)=(( ) i (X)i
=0 DX
=( i(x) ()i
=(C )i Cix)i
= OCx)  OCx)
= 0 O x)
Hence ( )= () () and preserves compositions.
[
Now that | have constructed the functor , | prove that it is inverse to
Lemma 4.12. The functor is a left inverse for , i.e. = I mor c(viL)-

Proof:  First | verify the identity on objects. Let b:V ! L be an object of
Morc(V;L). Recall that (b) is the pseudo natural transformation b with the
coherence natural transformations i‘;)j (f)= 4 (f) ipforallf:i! j.Forx2V
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we have )= ( bx

=0 b (Sere (Fx)r

=( i bx)i (Cstre (F) ip)x)s

=(bx)i( )i Cstre (F o))

=(b)i( )i (gpty (F) ) by de nition

= b(x) by the identi cation.

Forg:x! yin V we have M@= ( b

=( i W9
= ()i ( )i
= b(g) by the identi cation.
Thus (b) and b agree as functors.
Next | verify the identity on morphisms. Let :Db) b’ be a natural transfor-
mation. Then for x 2 V we have ()= )x
=, )x)i
=( (X))
=( x5 ()
= 4 by the identi cation.
Thus ( )and agree as natural transformations and = IMor c(viL)-
Another way to see this is to notice that ; is the projection onto the i-th
coordinate. O
Lemma 4.13. The functor is aright inverse for , i.e. = 1 pseudoCone (ViF)-

Proof:  First | verify the identity on objects. Let °: ) F be a pseudo
cone. Forj 2 ObjJ andx 2V we have ( ( 9);(x) =( ( %)
i (9
P (C)i ( gf;Tf (fF)x)s)
= jo(x) because ; is basically projection onto the j -th coordinate under the iden-
ti cation.

Next | verify the identity on morphisms. Let : be a modi cation in
PseudoCongV;F). For j 2 ObjJ andx 2 Vwehave( () ;(x)=(i; () «x
= 3 0x
= 5(C i)
= j(X). Thus ()= and = 1 pseudoCone (V;F)- O
Lemma 4.14. The small categoryL with the pseudo cone : | ) F are a

pseudo limit of the pseudo functor- : J I C .

Proof:  The functor : Morg(V;L) ! PseudoCondV;F) is an isomorphism
of categories by the previous lemmas. Sinc¥ was arbitrary we conclude that L
and are universal. O]

Thus every pseudo functorF : J ! C from a small 1-categoryJ to the 2-
category C of small categories has a pseudo limit. In other words, the Zategory C
of small categories admits pseudo limits. This completes tb proof of TheoremZ1.
[

Lemma 4.15. The 2-categoryC of small categories admits cotensor products.
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Proof: Let J and F be small categories. Therf J;F g:= C(J;F) is a cotensor
product of J and F with unit :J !'C (C(J;F);F) de ned by evaluation. O

Theorem 4.16. The 2-category C of small categories admit all weighted pseudo
limits.

Proof:  This 2-category admits 2-products. It also admits cotensorproducts
and pseudo equalizers by Lemm&Z15 and Theore3.1. Theord®d then implies
that it admits all weighted pseudo limits. O

Remark 4.17. The 2-category of small groupoids admits pseudo limits.

Proof:  The proof is exactly the same as the proof for small categor&® since
L = PseudoCondl;F) is obviously a groupoid when the target of F is the 2-
category of small groupoids. O

Theorem 4.18. The 2-category of small categories and the 2-category of siha
groupoids admits bilimits.

Proof:  They have pseudo limits, hence they also admit bilimits. O

5. Theories and Algebras

The axioms for a group provide an example for the concept of @heory and an
example of a group is analgebra over the theory of groups. In this section we
describe what this means. Hu and Kriz point out in [24] that Lawvere's notion of
a theory [34] is equivalent to another notion of theory. We prove this equivalence.
It is well known that the category of algebras over a theoryT is equivalent to the
category of algebras for some monad. We present a version of this. Next we
generalize the concept of theory in two ways. Firstly, we intoduce theories on a set
of objects. This allows one to describe algebraic structure on more than one set,
such as modules or theories themselves. It also allows one describe the free theory
on a sequence of sets. Secondly, we introduce theories eimécl in groupoids, which
will be useful in the next section. Pseudo algebras over a ttay T are described in
the next section as algebras over a theoryl enriched in groupoids.

A theory can also be described as a nitary monad onSet as put forth in [I].
Theories on more than one object are callednany-sortedin the monad description.
Free nitary monads in the enriched and many-sorted contexts can be found in[30]
and [33]. Seell48] for monads in a general 2-category.

De nition 5.1. A theory is a categoryT with objects 0; 1; 2;::: such that n is the
product of 1 with itself n times in the category T and eachn is equipped with a
limiting cone.

This de nition means for each n 2 ObjT we have chosen morphismgr; : n !

1 fori = 1;:::;n with the universal property: for any object m 2 ObjT and
@orphismswi :m! 1fori=1;:::;n there exists a unique morphism
-2 W :m! nsuch that the diagram
ri
=1 W VVVVV
W wi

m
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T. Note that we do not require the projection pr; : 1! 1 to be the identity,
although it will automatically be an isomorphism. A useful notation is T(n) :=
Mor 1 (n; 1) for n 2 ObjT. Elements of T(n) are called words of arity n.

n, + + ngg be the injective map which takes the domain to thei-th block and
suppose thatw; : n; ! 1 foralli =1;:::k. Then there exists a unique map

|: pri {é_

ni+n,+  +ng

commutes for alli = 1;:::;k where 9: n; + n, + + ng ! nj is the unique

morphism such that
r!'oo—‘pr’ 4!

.02
H Pr
ni+ N2 + + ng
commutes. One should keep in mind thatn; + n, + + ng is the product of

Lemma 5.]Q Let T be a theory. ThenMort(m;n) can be identied with the
set product ?:1 Mor 1 (m; 1) via the map which takesw to the tuple with entries
pri  w;::ii;prn w. We identify w with that tuple. In particular a theory is

determined up to isomorphism by the set3 (0); T(1); T(2);:::.
Proof:  This follows directly from the de nition of product in a cate gory. [

Example 7. Let X be a set. Then theendomorphism theory End(X) has objects
0;1;2;::: and hom setsMorgng (x)(m;n) =Map(X™;X"). Composition is the
usual function composition. Here one readily sees thaf g is the terminal object
and that End(X)(0) = Morgnq (x)(0; 1) can be identi ed with X.

function (w;wg;: i ;wy) = w (wg;:::;wg)is anelementofEnd(X)(ng+  +ng).
This composition is associative. Let 1 := Ix 2 End(X)(1). Then apparently
w (1;:::;1)=wand1l w=w,ie. the composition is also unital.

i.e. thesesubstitution mapsare functorial.
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These substitution maps relate to the composition in two ways. Letf :f1;:::;kg!
fl;:::;°09, w 2 End(X)(k), and w; 2 End(X)(n;) for i = 1;:::;°. Then ws
(wypiinwe) =(w o (Wrg;ii; Wi ))s wheref (1,200 ni0+ Neo+ + ng g!
f1,2;:::;n + ny + + n-g is the function obtained by parsing the sequence
1;2;::0:np+ no + + n- into consecutive blocksBq;:::;B- of lengthsny;:::;n-
respectively and then writing them in order B¢ 1;:::; B . For example, letny =

Lng =2;n3 =3;ng =1;w 2 T(@3),and w; 2 T(n;) fori =1;:::;4 and let
f:f1,2,3g!f 1;2;3;4g be given by

1 2 3 .
3 2 4°

Thenf :f1;2;:::;6g!f 1,2;:::;7gis given by

1 23 4 5 6 _ 12 3 45 6.
Bi1 Bs Bis 4 5 6 2 3 7°
We see that
W (We; Woi Way Wa) (X150t X7) = Wr (We(X1); Wa(X2; X3); Wa(Xa; Xs; Xe); Wa(X7))

W(Ws3(Xa; Xs5; X6); W2(X2; X3); Wa(X7))
=W (Wr1; W 2; W 3)(X4a; X5, X6; X2; X3} X7)

=W (W1 Wr2; Wi 3)(Xg 15 Xg 250005 X g):

In other words we havew; (wg;wo;wsz) = (W (Wr1;Wr2; Wi 3)); . Note that f
depends not only onf, but also on the arity of the words we are composing. The
equality wy  (wg;:is;w) =(w  (wWrq;:i:; Wk )¢ is the rst relationship between
composition and the substitution maps () .

The second way the composition and the substitution maps redte occurs in the

f1;:::;n%g are functions fori = 1;:::;k, then w  ((W1)g, ;55 (Wk)g,) = (W
(Wil Wi)) g+ +g Wheregr+  + g if1 2,000 n+ +ngg! f 1,209+

+ nlg s the function obtained by placing gi;:::; g next to each other from left
to right.

Example 8. Let X be a category. Then theendomorphism theory End(X) has
objects  1;2;::: and it has hom setsMor gng (x ) (M; n) = Functors (X ™; X "). One

can proceed as in the previous example and de ne substitutefunctors (substituted

words). Note that End(X ) can be made into a 2-category by taking the 2-cells to
be natural transformations, although we leave out the 2-cdk for now. In most

applications we will only be concerned with the 1-categoryEnd(X).

Example 9. Let X be an object of a category with nite products. Then we can get
a theory End(X) by taking the hom sets to be Mor gng (x ) (m;n) = Mor (X™; X").

We can abstract the essential properties oEnd(X) in the previous examples to
get the following lemma for arbitrary theories.

substitution. These maps have the following properties.
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(1) The 's are associative, i.e.

(w; (whwdioonwh ) (wwgs oo wa )i (wiwh; oo wg))) s the
same as
C(wywhs o wh)wd; oo wi swas o wd s wh i wk))

(2) The 's are unital, i.e. there exists an elementl 2 T(1) called the unit
such that (w;1;:::;1)=w= (1;w) for all w2 T(k). Moreover, such an
element is unique.

(3) The 's are equivariant in the sense that

wheref :f1;2;:::;n1+ ngo + +ngeg!f 1;2,0:0n+ N+ + n-g
is the function that moves entire blocks according td as mentioned in the
example above. Herd depends also on the particular .

(4) The 's are equivariant in the sense that

(W; (W1)gs it (Wi)ge) = (Wi Wil Wi)g,+  +g fOr all functions g :
fl,:::;nig ! f 1;:::;ni°gwheregl+ + ok fl20i N+ + ngg!
f1,2;:::;n9 + + n?g is the function obtained by placingg;:::;g next

to each other from left to right.
(5) The substitution is functorial, i.e. for functions

f1;:::;kgf—/f/1;:::;‘g g 'Vl;:::;mg the composition

T(k)-LH )= # (m) is the same as

T(k)-2""# (m) and for all k the identity mapid : f1;::::kg ' f 1;::::kg
induces the identity map T (k)—2*/ (k).

Proof:  First | de ne the substitution. Let f :f1;:::;kg!f 1;:::;°gbe a
function. Then there exists a unique morphismf © such that the diagram

oo @

foé pri

commutes for alli =1;:::;k. For w2 T(k) dene w; := w fC% Thus the map
T(k)O—f/‘lL(‘) is de ned by precomposition with f©.

Next | de ne the composition : T(k) T(ny) T(nk)! T(np+ np+

+ng). Let w2 T(k);w; 2 T(n;) fori =1;:::;k. Dene (w;wg;:::;wg) =
w  (wy;:::;wg) where the composition is the composition of the categoryT and
(ws;:::;wg) is the unique morphism such that

| pri Ul
(W1isw k) | wi) |

ni+n,+  +ng
commutes as de ned above.

(1) I claim that is associative.
(w; (Whwioonwi ) (Wwssoonwd,)o (wWwhsonwk ) =
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I
=
g
z
S
g

W (Wi wE) ((w i wg ) (Wt w L))

= (w  (whinwk) o (wiriiowa o wh i wk ) by associativity of
composition in the category and by properties of products

= ((wywhiinwR)wl i wd wdiinw,
I claimthat isunital. Let1:1! 1 be the projection morphism of the
object 1 in the category T, which is not necessarily the identity morphism
of the object 1. Then (1;:::;1) : k! Kk is the identity morphism of the

object k because 1 =1 (pry* pri) = pr1 (pr,! pri) = pri in the

diagram
oo b @

To show (1;w)= w we consider the diagram

bo 4
(W) .o.. w 1
n
where 1 : f1;:::;ng ! f 1;:::;ng is the identity. Then w, = w and
(w)=pr; b w. Thus (L;w)=1 (w)=pr; (pr;> w)= w.
The uniqueness follows from 1= (1;19 =1°.

Ngq + 06 Nfk (Wi ) ¢

pri

\OO (Wfi ) fi

n1+ +n‘—n1+ + n
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commute foralli =1;:::;k. Hence by the universal property of the product
k we havef © (wq;:::;w ) =(wpg;::;wie ) O Using this we see that
(W wgiow)=w £ (wgiisw)
=w (wrgsiinwe) O
= (W Wit Wk )s

(4) Let g : fL::i;mg ! f 1;:::;nPg be functions fori = 1;:::;k. Then
(Wi (Wa)g,5 o0 (Wi)g ) = W (Wi g% gP)
=w  (wgiinwe)  (9950ing))
=w (wninw) (Gt F o)’
= (W;W5 il Wi)gy+  +ge

(5) Let f1;::::kg——H1;::::"g—2H1:::::mg be functions. Then f ° and
g° make the two small subdiagrams in

‘@o&}%o

0 =~
= Pri

‘OO Pr gfi
go
m—m
commute for all i = 1;:::;k. Thus the outer diagram commutes andg

f)°= 9 g°by the universal property of the product. We conclude (s )g =
w f% g°=w (g f)°=wy¢. Theidentity 1 : k! k makes

oo—be

"

Prida (i)
k
commute for all i = 1;:::;k whereid : f1;:::;kg ! f 1;:::;kg is the
identity function. Hence (id)°=1, andwig = w (id)°= w 1, = w for all
w 2 T(k).
We have veri ed all of the axioms. O

There is another description of a theory which can be formuléed by using the
category .

De nition 5.2. Let be the category with objects ; = 0;1;2;::: wherek =
f1;:::;kg. The morphismsk ! ° are just maps of sets. In particular O is the
initial object since the only map ;! Kk is the empty function. There are no maps
k'!; fork 1. The object 1 is the terminal object. Let +: ! denote
the usual functor obtained by adding the sets and placing map side by side.

Remark 5.1. Let T be a theory. Then by the previous lemmaT de nes a functor
from to Setsby k 7! T(k) and f 7! ()s. Morover, this functor comes with maps

:T(k) T(ny) T(nk) ! T(ny+ + nk) which satisfy 1. through 5.
The compositions , unit 1, and substitution are sometimes called theoperations
of theories The relations in 1. through 5. are sometimes called therelations of
theories.
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Lemma 5.3. Let T be a functor from to Sets equipped with maps : T (k)
T(n1) T(nk)! T(ni+ + ng) and an elementl 2 T (1) which satisfy (1)
through (5) whereT(f ) =: () ¢+ for functions f : k! °. Then T determines a theory
with Mor (n;1)= T(n) forall n 0.

Proof:  De ne the underlying categgjy of the theory to formally have objects
0;1;2::: and morphismsMor (m;n) := ?:1 Mor (m; 1). In particular Mor (m;0)
@Iy has one element. We denote a tuple of wordsvy;:::;w, 2 Mor(m;1) by

inzl wi. For k;> Olet -« :f1;:::;°kg ! f 1;:::;kg be the function such that
s (i + jk) =i fori = 1;:::;k, in other words - wraps the domain around
@e codomain " times. Now de ne the composition of ;:1 wi 2 Mor(k;") with

movi 2 gor(‘;m) toQbe
Qm X — m CNpgL e H g H H
iz1 Vi i-a Wi = oy (viswgriin;we) . . This composition is associative
because is associative and equivariant.

for dierent n 0. From the Cont%ﬁ(t it will always be clear which sequence of
morphisms isdneant. | claim that i”:l pri 2 Mor(n;n) is the identity on the
@bjectn. ket o Wic2 Mor (n;m). Then

m n ! —_ m P, r e

i@. Wi i=1 pri = i=1 (Wi,prl,---,prn) nin
— m A PR
=iz Wirleiiinid,) o,
= Qi”ll( (WisL;:05 )8+ +1,) 4 DY equivariance

Qim:l (Wi;L;::151) 0 (fa+ +f,) Dy functoriality of T

m

= "2; W by unitality of and (f1+  +fn)=1¢1..n g and also functoriality
EJT. Now(t?r the oth@' side let *[_, w; 2 Mor(m;n). Then
i’énpri Lowi = L (priswaiii;wg) o by de nition

= Qi1 (Lf,; w110, Wp) ., DY de nition

= Qinzl( (Liwi)¢,) .n by equivariance

= inzl (Wi) ., by unitality of and functoriality of T

= Qi”:l w; since nm fi = 1f1.;m g- This can be seen by observing thatf; :

1 2 n m
i Im+1 (i 1I)m+2 ::: (i 1)m+m

and by using the de nition of ,m . Thus Qin:1 pri 2 Mor(n;n) is the identity on
the object n.

Thus far we have shown that we have a category with objects {;2;::: and
morphisms Mor (m;n). | claim that n is the product of n copies of 1 in this
@tegory with projections pry;:::;prn : n! 1 introduced above. First note for

. & 2 Mor (m;n) we have
Pri iy Wi = (PriiWiiinWa)

(Lf,; w110, Wp) ., DY de nition
(;wi) ... f, by equivariance and functoriality
Wi by nm  fi =1f1:m g @and functoriality.
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Now suppose we are given morphisme/;:::;wy 2 Mor (m; 1). Then
pri
oe—4%-
Qn =
j=1 Wi w,
m
commutes for alli = 1;:::;n by the remark just made. If Q{Ll Vi 2 Mor(m;n) is

!
!
h
=

8)mmutes Br alli =1;:::;n, then by the remark v; = pr; an=1 v; = w; and hence
?:l vj = ?:l w; and the factorizing map is unique. Hencen is the product of
n copies of 1.
We conclude that the functor T with the maps  satisfying the axioms (1)

through (5) determines a theory with the indicated hom sets. O

Theorem 5.4. A theory T is determined by either of the following equivalent col-
lections of data:

(1) A category T with objects 0;1;2;::: such thatn is the categorical product
of 1 with itself n times and eachn is equipped with a choice of projections

(2) Afunctor T: ! Setsequipped with maps : T(k) T(ny) T(ng)!
T(ni+ +ny) and aunit12 T(1) which satisfy (1) through (5) of Lemma
B2

Proof: In each description Mor+(n; 1) is the same. By the universality of
products this determines the rest of the theory. The two pro@sses of LemmagEH.2
and 3 are inver§5: to one another by further inspection, preided one identi es
Mort(m;n) with ~_, T(m). O

Denition 5.3. Let Sand T be theories. In the categorical description ofS and T
a morphism of theories : S! T is a functor from the category S to the category
T such that ( ns)= nt and ( pri) = pr; for all projections.

One easily sees that the theories form a category and we havesaitable forgetful
functor.

Theorem 5.5. The forgetful functor from the category of theories tan o Sets
given byT 7! (T(0); T(1);:::) has a left adjoint called the free theory functor.

Proof:  Later we will construct the free theory on a sequence of sets
(T(0); T(1);::2). O

To make later proofs easier, we need the following lemma.

Lemma 5.6. Let : S! T be a morphism of theories.
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(1) Letf :f1;:::;kg ! f 1;:::;°g be a function. As usual,f%: ! k denotes
the unigue morphism in any theory such that

oo @

o
f pr i

commutes. Then ( 9= fC

(we)=( wx. Q Q
(3) Let wi;iii;wy 2 Mors(m;1). Then (~1, wj) =~ ().
(4) Letw; 2 Mors(ni;1) fori=1;:::;k. Then

(wyiinwi) = (0w (W)
Proof:

(1) The diagram
oo —tbe

0
(1 Pr i

the universal property of the product.
(2) This follows from (1) and the de nition w; = w {0
(3) The properties of imply that the diagram

commutes for alli = 1;:::;n. Then ( i=1 w;) = j”:1 (w;) by the
universal property of the product.

(4) By (2) we have (( wi),)= ( wi),. Hence, the properties of imply that
the diagram

by the universal property of the product.
[

Just as a theory has a categorical description and a functoal description, a
morphism of theories also has a second description. We worlotvards the second
description in the following two lemmas.

Lemma 5.7. Let : S! T be a morphism of theories, i.e. a functor such that
( ns) = nt and ( pri) = pr; for all projections. Then these data determine a
natural transformation S) T also denoted by such that
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(k) (n1) ( nk)
S(k)  S(n1) S(ni) - "I (k) T(n) T(ne)
S T
S+ +ny) s Mg+ + ny)
commutes and (1)(1 s) = 11, where S;T : ) Sets are the functors in the

functorial description of the theories S and T.
Proof: Let ( m): Mors(m;1)! Mort(m;1) denote the map obtained from

the functor , ie. ( m)(w):= ( w)for w2 S(m). Thenforf :m! nin and
w 2 S(m), we have (w;)= ( w); by the previous lemma. Hence

s(m) —_fr (m)

S(f) T(f)

8(n) — /()

commutes andm 7! ( m) is natural.

(ni+ + ) Swwginw) = (wo (W wy))
=(w) ((wi)iin (W)
= TCw); (wa)iis ((wi))
= TCCkW); (na)(wa)iizs (nid(wi):

Hence the natural transformation m 7! ( m) preserves the 's.

Let 1s 2 S(1) and 1t 2 T(1) be the units in the respective theories. Then
(1)@ s) =17 because the functor preserves identities of the categoris.

Thus : S) T is a natural transformation which preserves the compositios
and the units. O]

Lemma 58. Let S;T : | Sets be theories. Let : S ) T be a natural
transformation preserving the 's and their units as in the proof of the previous
lemma. Then these data determine a functolS! T also denoted , where S and
T are the categories in the categorical description of the tleies S;T: ! Sets.
Moreover, the functor : S! T satises ( ns) = ny and ( pri) = pr; for all
projections.

‘ L (o)

forall ~;_; wj 2 Mors(k;"). Then for 1. Vi 2 Mors(';m) we have

Proof: Dene ( ng)= ny forall ng 2 ObjS and ( Qj‘:l w;) =
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I
—~
L)

,
N—r
)

<
N—r
—~~

~
p—
—~~
S
N
—~~

x
N
~—~
N—r
N
‘75’

Y
( )v) ( k)(w;)

Hence preserves compositions.
| claim that preserves projections. Let f; : fig ! f 1;:::;ng be the map
fi(1)=i. Then (1s)t, = pr; and
(pri)=( n)((s),)

= ( n)(1s)s, by naturality

=(1 1), since preserves the unit

= pri:
Hence preserves projections.

| claim that preserves identities. Recall that Q?:l pri :n! nis the identity
on the object n of the category S. Then

A4
( pri) = ( pr;) by de nition
j=1 j=1
= pr; because preserves projections.
j=1
Thus preserves identites and is a functor S! T. O]

Combining these two lemmas gives us the two descriptions of anorphism of
theories in the following theorem.

Theorem 5.9. Let S and T be theories. Then a morphismS ! T of theories is
given by either of the following equivalent collections ofata:

(1) A functor : S ! T such that ( ng) = nt for all ng 2 ObjS and
( pri) = pr; for all projections

(2) A natural transformation : S) T of the functorsS;T: ! Setswhich
preserves the 's and the units.

Proof:  The processes of the previous two lemmas are \inverse" to ehcother
by inspection. O

Theorem 5.10. The category of theories with objects and morphisms as in (1pf
Theorems[5.4 and[®D is equivalent to the category with objecand morphisms as
in (2) of Theorems b4 and[29.
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The concept of analgebrais closely related to the concept of theories. Roughly
speaking, an algebra over a theory is a category together wht a rule that assigns
an n-ary operation on X to every word of the theory of arity n in such way that
compositions, substitutions, and identity 1 are preserved

De nition 5.4.  Let X be a category andT a theory. Then X is a T -algebraif it is
equipped with a morphism of theoriesT ! End(X), where End(X) is the theory
in Example B. We also sayX is an algebra over the theoryT .

Notice that if X is a set viewed as a discrete category, this is the usual de tibn
of an algebra over a theory. For example, a group is an algebraver the theory of
groups as follows.

Example 10. Let T be the theory of groups,i.e. there are morphismse2 T(0); 2

T(1), and 2 T(2) which satisfy the usual group axioms. The theoryT is the

largest theory containing suche; ; . A set X is a group if there is a morphism of
theoriesT ! End(X). This means we have realizations ok; ; and on X.

De nition 5.5. Let X and Y be T-algebras. Then a functorH : X ! Y isa
morphism of T -algebrasif

T(n) JEnd (X )(n)

H
End(Y)(n) ﬁ/ﬁ unctors (X X;Y)

commutes for all n.

Example 11. Let T be the theory of groups and letX and Y be groups. Then
asetmapH : X ! Y is a morphism of T-algebras if and only if it is a group
homomorphism.

Let T be any theory. It is well known that T-algebras are algebras for a monad
C, which depends onT. See for example[T39] or[]43]. | now present a version of
this in preparation for the 2-monad whose strict algebras ae pseudoT -algebras.
Let Catg denote the 1-category of small categories. LeT be a theory. De ne a
functor C : Catg! Catg as follows, For a small categoryX , set

(1 o(T(n) ObjX™)

ObjCX =
where we mod out by the smallest equivalence relation satigfng (ws ; X1;:::;Xn)
(W;Xs1;:::;Xm ) for all m 2 Ng, w 2 T(m), and maps f = fl;:::;mg!

f1,:::;ng = n. To de ne the morphisms of CX we note that | (T(n) X")
is a category if we interpret T(n) as a discrete category for eacin. Consider the
directed graph with objects[ObjCX and arrows from [a] to [b] given by the union

Mor(, o xn(@%H)

overalla® aandk’ b. Nexttake the free category on this directed graph and
mod out by the relations of | (T(n) X") and the relations

This quotient category is CX . One de nesC on functors X ! Y analogously. Then
C:Catg! Catp is a functor because each step in the construction is functaal.
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Next de ne a natural transformation " leat, ) C by x(x) :=[1;x] for

X 2 ObjX and x(g) := [i1;0] for a morphism g in X. Also de ne a natural
transformation :C2?) C by

x (w; vh X3y ) v xd o) L VR xS o xS D) =

These assignments make x : C?X | CX into a well de ned functor because of
the equivariances of . These natural transformations commute appropriately to
make C into a monad on the categoryCatg.

Theorem 5.11. The category of C-algebras is equivalent to the category of -
algebras.

Proof: Let G and G; denote the categories ofC-algebras and T -algebras
respectively. We construct a functor : G ! C . Let (X; ) be a T-algebra.
Then , : T(n) ! Functors(X";X) is a sequence of maps that is natural in
n, preserves identity 12 T(1), and preserves compositions . This sequence of
maps comgletely describes the algebraic structure. Leh® denote the element of

Functors( , o(T(n) Xm");X) that corresponds to the sequence under the bijec-
tion

(6) Functors([ (T(n) X");X)$ Y Functors (T (n); X X"):
n 0 n 0

Then
h(ws ;X151 Xn) = hOW; X¢ 150005 Xem )
h%iw, 301 :00500) = h%iwiGrasiii;Gm )

because

T(m) —=— /Functors(X™; X)
Or Or
T(n) ———Functors (X ": X)

S
commutes. Henceh®: ~ ~ (T(n) XM")! X induces a functorh : CX ! X,
namely

WiX1; 00 Xm] 7 m (W)(X13 200 Xm)
liw: g 50m] 70 m(w)(Yesiiiym)  m(W)(G1s::050m)
= m(W)(G:::00m)
forg :xi! yi. Thenh:CX ! X makesX into a C-algebra because the diagrams
c2x —Jex X o—lEx
' " G|
CX Ik X
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commute.
Dene ((X;)):=( X;h). Fora morphismf : (X; ) ! (Y;) of T-algebras,
let (f): X ! Y be the same functor asf on the underlying categories. Then

CX Mk

commutes. Then : G !C ¢ is obviously a functor.

An\inverse"to can easily be constructed using the bijection[[b). For examfe,
let (é(; h) be a C-algebra. Thenh : CX | X corresponds uniquely to a functor
ho: ~ o(T(n) XM)! X which satis es

and h° corresponds uniquely to some sequence, natural in n which preserves 1
and
The equivalence of Theoren2.I0 yields the desired result. O

The concept of theory can be generalized to handle algebra&tructures on more
than one set, such as modules.

De nition 5.6. A theory on a set of objects], also called amany-sorted theory,
is a category T whose objects are nite sequencesj{"*;:::;jp ") with j1;:::;jp 2
Jp 1,andmg;::ii;mp 2 Mo such that (jf”;:::;j,')“p) is a product of copies of
j 2 J where eachj appears =i Mr times. Each sequence is equipped with a
limiting cone. Objects are equal to their reduced form, e.g.(j ™;jMm2) = (jM1* M2),
We also abbreviate () = j.

Example 12. An ordinary theory is a theory on one object, i.e. on the setf 1g.
We previously usedn to denote 1" in the new notation.

Example 13. Let X; and X, be categories. Then theendomorphism theory
End(X; :j 2 J) on X1 and X is an example of a theory on the set] = f1;2g.
The morphisms are

Functors (X7 Xj":p;XL‘ll XQ:)
forj,;ks 2f1;2gand m;;ns 2 No. One easily sees that 4and 2 as wel as (®;2%
and (2°; 1°) are tgrminal objects and that (] Mt:i:jp®) is a product of ro=1 Mr

copies of 1 and rjr=2 Mr copies of 2 equipped with the usual projections. Note
also that there is bijective correspondence.

Y

r:kr=1 s:kg=2
In other words, the theory is determined by the sets
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wherejq;:::;jp 2f1;2gand my;:::;my 2 Ng such that j, 6 j,41 foralll r
p 1.
Note also that for ny;:::;nq 2 No and Ky;:::;Kkg 2 J and maps
X
f: m; ! N,
rijr=1 r:ky=1
X X
g: mg ! Ng
Sijs=2 s:ks=2

in we have substitution maps

For example, letw 2 End(X; :j 2 J)1(12;2%;1%; 2?) and

123 1234
111 95 1 2 2 1

where (k7*;k32) = (11;22) so that
f:3! 1, g:4! 2
Then wg 2 End(X;j :j 2 J)1(1%;2?) is de ned by

f =

1.y2. o2 = 1T ooyl o2 .2 oyl .2 .2
Wrg (XT3 XT3 X3) 1= W(X¢ 13 Xf 25 Xg1: Xg2; Xi 33 Xga: Xga)

— 1.1.y2.y2.y1.,2.2y.
= W(XT;X1;XT5 X5, X1 X5 X1):

There also two compositions ; and ,. For example

1 End(X) 1) 23)1(1%2%)  End(X; :j 23)1(n1) End(X; :j 2 J3)1(n2)

End(X; :j 2 J3)2(n3) End(Xj :j 2J3)2(ng) ! End(X; :j 2 3)1(n1 N2 N3 ny)
and

2 tEnd(Xj 1] 23)2(2%1Y)  End(Xj :j 2 3)2(n1) End(X; :j 2 J)2(ny)

End(X; :j 2 J)2(n3) End(X; :j 2J)1(nsg) ! End(Xj :j 2 J)2(n1 n2 n3 ny)

e.g. (22) (2319 =(@11%2512).
There are also units k 2 End(X; :j 2 J)1(1) and 1, 2 End(Xj :j 2 J)2(2).
The compositions are associative, unital, and equivariant The substitution is
also functorial. This example easily extends to arbitrary J.

Denition 5.7. Let ; denote the category whose objects are nite sequences

to their reduced form, e.g. (™*;j™2) = (j™M*M2), We also abbreviate (1) = j.

The morphisms are
- . | Y X X
Mor ,((j1'%dp) (ki kge)) = Mor ( me; ns)

where denotes the category in De nition £2]
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In this de nition the hom sets are assumed to be disjoint.
Several of the results on theories carry over to these gendized theories on a
set of objects.

Theorem 5.12. A theory T on a set of objects] is equivalent to a collection of
functors fT; : ;! Setsjj 2 Jg equipped with compositions

PTG Thu(nd) Ti.(nk,)
Ti,(n3) T1,(n2,)
Ty, (n}) Ti,(g)! Ti(i nm, nf ni, nf nQ)
for eachj 2 J and (j'l‘l;:::;j'ﬁ");n%;:::;nﬁp 2 Obj ; and equipped with units

1 2 T;(j) for eachj 2 J which satisfy analogues of (1) through (5) in Lemm4&R.
Elements of T (n) are called words.

Proof:  SetT;(n):= Mort(n;j) and proceed like in the case of a theory on
the setf 1g. O

Example 14. The theory R of theoriesis a theory on the setNg. There are three
types of generating morphisms.
Foreachk 1andngi;:::;nx Othereisamorphism :(k;ng;:::;ng)!
(ny + + ng) called composition
For eachf : m ! nin there is a morphism () : (m) ! (n) called
substitution
There is a morphism 1: () ! (11) called the unit.

The substitution and unit are not to be confused with the subditution and units

with which every theory on a set of objects is equipped. Thesenorphisms must
satisfy the relations of theories in LemmalRR, namely assdativity, equivariances,
unitality, and functoriality.

Next one can speak of morphisms of theories on the sét as well as algebras for
theories on the setJ just as in the caseJ = f1g.

De nition 5.8. A morphism of theories on a setJ is a functor : S! T such

Theorem 5.13. The analogue of Theoreni21I0 holds for theories on a set of @gjs
J.

De nition 5.9. Let T be a theory on the setJ and fX;jj 2 Jg a collection of
categories. Thenf X g; form an algebra overT or a T -algebraif they are equipped
with @ morphism : T ! End(X; :j 2 J) of theories onJ.

Example 15. Let R denote the theory of theories. LetT be a theory. Then
fT(j)jj 2 Nog form an R-algebra. In other words, a theory is an algebra for the
theory of theories. A morphism of theories is nothing more ttan a morphism of
algebras over the theory of theories.

One can use the theoryR of theories to construct a monadC on the category
n oSets whose algebras are the usual theories. In factCT is the sequence of
sets underlying the free theory on T. This free theory is essential to several of the
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proofs in this paper. Let T = (T(n)), o be an object Oan oSetsand J := No.
Then the free theoryon T is de ned by

m2obj , Rn(mM)  T(j1) ™ T@p) ™
3

CT(n) =

One can generalize the notion of theory in yet another diredbn. Instead of
considering arbitrary sets J, one can consider theories which are also 2-categories
in which every 2-cell is iso. These will be used to describe psdo algebras in a
compact way. See[[43] for a more general concept of enrichedwvere theory.

De nition 5.10. A theory enriched in groupoidsis a 2-categoryT with iso 2-cells
and with objects 0;1;2;::: such that n is the 2-product of 1 with itself n times in
the 2-categoryT and eachn is equipped with a limiting 2-cone.

This de nition means for each n 2 ObjT we have chosen morphisms = pr; :
n! 1fori=21;:::;n with the universal property that

is an isomorphism for allm 2 ObjT, whereF : f1;:::;ng ! T is the 2-functor
which is constant 1. It is tempting to call such a theory a 2-theory, but we reserve
that name for something else. As before, we use the notati@ (n) for the category
Mor 1 (n; 1). Using the universal property, we can construct = and (:::) for the 2-
cells. For any objectm 2 ObjT, morphism@in;vi : rrb|n 1, and 2chlls W) v

fori =1;:::;n there exists a unique 2-cell” |_; j: ";_; wj ) 1-”:1 v; such that
_ y
Tor; =i
j=1
foralli =1;:::n. For any k 2 Ng, any morphismsw;;v; : nj ! 1, and any 2-cells
itwi) v fori=1;:::;k thereis a unique 2-cell (1;:::; k) :(wi;iii;wk))
(v1;:::1;vk) such that

i (15t W)= ),

Example 16. Let X be a category. Then the endomorphism theory End(X)
enriched in groupoids has objects Q1;2;:::, morphisms ObjMor gng (x)(m;n) =
Functors (X™; X ") and 2-cells the natural isomorphisms.

Most of the work on theories carries over to the enriched corgxt with minor
additions for the 2-cells. The statements of the relevant tteorems are as follows.
The term map is simply replaced byfunctor.

Lemmab5.14. Let T be atheory enric@ed in groupoids. Then the categoryior + (m; n)
. . . n .
is isomorphic to the product category j=1 Mory (m; 1).

Lemma 5.15. Let T be a theory enriched in groupoids. Then for alk;ny;:::;ng 2
f0;1;:::gthereisafunctor :T(k) T (n1) T (ng)!T (np+  +ny) called
composition and for every functionf : f1;:::;kg ! f 1;:::; g there is a functor

T(k)o—f/f(‘) called substitution. These functors satisfy the enriched rmalogues
of (1) through (5) in Lemma
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Proof: Dene (w;wg;:::;wg) (= w  (wq;:::;wg) as before. Additionally,
dene (; 1;:::; k)= ( 1;:::; k) for 2-cells. Dene ws := w f9%as before
and ; = ito whereiso:f9) f0is the identity 2-cell of the morphism f%in T
and :w) visa 2-cell. The rest of proof is similar to Lemmaa.R. O

Lemma 5.16. Let T be a 2-functor from to Cat equipped with functors

:T(k) T (ny) T (NnK)!'T (n1+ + ng) and an object1 2 T (1) which
satisfy (1) through (5) of Lemmalad whereT (f) =: () ¢ for functions f : k! °
Then T determines a theory withMor (n;1)= T(n) forall n 0.

Proof: O

Theorem 5.17. A theory T enriched in groupoids is determined by either of the
following equivalent collections of data:
(1) A 2-category T with objects0; 1;2;::: such thatn is the 2-categorical prod-
uct of 1 with itself n times and eachn is equipped with a limiting 2-cone
(2) A 2-functor T : ! Cat equipped with functors : T(k) T (nj)
TN !'T (ng+ + ng) and a unit 1 2 T (1) which satisfy (1) through
(5) of Lemma B2

Proof: In each description Mort (n; 1) is the same. By the universality of
2-products this determines the rest of the theory. O

De nition 5.11. Let S and T be theories enriched over groupoids. In the 2-
categorical description of S and T a morphism of theories enriched over groupoids

S I'T is a 2-functor from the 2-category S to the 2-category T such that
( ns)= nt and ( pr;) = pr; for all projections.

The analogue for LemmaLb incorporates the 2-cells below.

Lemma 5.18. Let : S!T be a morphism of theories enriched over groupoids.
(1) Letf :f1;:::;kg ! f 1;:::;°g be a function. As usual,f%: ! k denotes
the uniqgue morphism in any theory such that

oo b @

o
f pr i

commutes. Then ( 9= fC

(wi)=( w.
(3) Letywj;v; 2 Mors(m;1) and j~ W ) vpfor j = 1;::5;n. Then
(bjn=1 Wi):%jnzl (w;) and ( an=1 )= jn:1 )

(wriioowe) =00 wa);siss (w))and (1300 W)=00C 15000 k).
Theorem 5.19. Let S and T be theories enriched over groupoids. Then a mor-
phism S ! T of theories enriched over groupoids is given by either of thisllowing
equivalent collections of data:

(1) A 2-functor : S ! T such that ( ng) = ny for all ng 2 ObjS and
( pri) = pr; for all projections
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(2) A 2-natural transformation : S )T of the 2-functors S;T : ! Cat
which preserves the 's and the units.

Theorem 5.20. The 2-category of theories enriched over groupoids with obgts and
morphisms as in (1) of Theorems[5.If and 219 is 2-equivalento the 2-category
with objects and morphisms as in (2) of Theorem§ 517 anf219

We can now de ne algebras over theories enriched in groupoglin analogy to
algebras over theories.

De nition 5.12. Let X be a category andT a theory enriched over groupoids.
Then X is a T -algebraif it is equipped with a morphism of theories T ! End(X)
enriched over groupoids. We also sayX is an algebra over the theoryT .

Our main example, pseudoT -algebras, will be given in the next section as strict
T -algebras, whereT is obtained from the free theory onT.

6. Pseudo T-Algebras

In this section we introduce the 2-category of pseudorl -algebras for a theory
T. A pseudo algebran this paper is the same thing as alax algebrain [24], [25],
and [26]. We construct from T a theory T enriched over groupoids and show that
a pseudo algebra ovefT is the same thing as an algebra ovel. Theorem [68
says that the 2-category of pseuddr -algebras is 2-equivalent to the 2-category of
strict C-algebras with pseudo morphisms for the 2-monadC de ned below. This 2-
category obtained from a 2-monadC admits pseudo limits by a result of Blackwell,
Kelly, and Power. Hence the 2-category of pseudd -algebras admits pseudo limits.
In the next section we give a concrete construction of the pagdo limit. For more
on pseudo algebras over 2-monads s€e[23].1[32], ahd [33].

De nition 6.1. Let T be a theory. Let X be a category. X is a pseudoT-
algebraor a pseudo algebra ovefl if for every n 2 N thereisa map , : T(n)!
Functors (X "; X)) (sometimes called thestructure map) which is equipped with the
following coherence isomorphisms and coherence diagrametveen them. | write
simply forall . The coherence isomorphisms are indexed by the operations o
theories and are as follows:

morphism Cuywomw . & ( (Wiwg;iinwg)) ) (Cw); (wa)szons (wi)).
This means that composition is preserved by up to natural isomorphism.

(2) There is a natural isomorphism| : (1) ) 1x where 1 is the identity word
and 1x is the identity functor X ! X. This means that the action of the
identity word is trivial up to a natural isomorphism.

(3) For every word w 2 T(m) and function f : f1;:::;mg!f 1;:::;ng there
is a natural isomorphism sy : (wf) ) ( w); where the substituted
functor ( w); : X" ! X is dened in Example B. In other words the
equivariance is preserved by up to natural isomorphism.

The coherence diagrams are as follows. The commutivity of tase diagrams means
that they commute when evaluated on every tuple of objects ofX of appropriate
length. Coherence diagrams are indexed by the relations ofeories.
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(1) The action of T on X via is associative up to the natural isomorphisms
above. For example, foru;v;w 2 T(1)

C W (vu))=( ( (wv);u) Al R (w;v); ()

H (Cwy 5P uy)

((w); ( (v;U)))ﬁJ'Q(W); (Cvy; cu))= ((Cw); (v); (w)

Cw; (v )

must commute whereig means the identity natural transformation F ! F
for a functor F.

(2) The natural isomorphism for the identity word commutes with the natural
isomorphism for the composition, i.e. for every n 2 N and every word
w2 T(n)

( (w;1;:::;1) (w)

yshisl )

must commute where % is the identity functor on X.

(3) The natural isomorphism for the identity word commutes with the natural
isomorphism for the composition also in the sense that for esry word
w 2 T(n) the diagram

( GwW) ———— (W

() 5 (wy) ﬁ-qlx; (w))

C1;w

must commute.

f:fl,2::;ni1+ Ngo + +ngg!f 1,200+ g+ + n-g be
the function that moves entire blocks according tof . Then equivariance is
preserved in the sense that the diagram

S (w;w FLEEW g );f

(Sw;f ;i( W) I W~))

etg :fl:::;mg! :2:1;n% be functions and let
5 L fl f 1 ,O be f i dl
g+ o fL2iinn+ 4+ nmg!f L2:in?+ + nlgbe the
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Then equivariance is preserved in the sense that the diagram

S (ww pimw )@t + gy

(¢ wyiSwyigg S wygy )

must commute.
(6) The substitution is associative up to the natural isomorphisms above,i.e.

the following diagram to commute.

(W)= (W 1) =t +Bw)g ¢

( wi)g (SW:”Q-'@ W)t )g

S(wy )ig

Here (swy )g is the natural transformation which is de ned for objects

tion sw.g is the identity.

Remark 6.1. One can compactly describe the concept of a pseudo algebra fmdlows.
A category X is a pseudoT -algebra if it is equipped with a pseudo morphism of
theories : T ! End(X). The assignment is pseudo in the sense that the
requirements of Lemmal[&y are only satis ed up to coherencesos, namely the
assignment preserves up to c, preserves the identity up |, and is natural up to s
as in the diagrams below and these coherence isos satisfy @shnce diagrams.

@)
(K (n)  (n)

T T(n) T(n) —/End(X)(K) Eng(X)(n1) End (X )(ni)
T End (X )
T(ni+  +ny) S ENdOX)(na+ +nk)
@
X
e 1) ; 1

x:x
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®3)
T(m) — " —JEng (X )(m)

=
i
d
o

T(f) End (X )(f)

0
de

T(n) T”End(x )(n)

Remark 6.2. It is possible to describe the general form of these cohereadiagrams.
In general, a relation = 0 0Ointhe theory of theories and a tuplew of words
gives rise to a coherence diagram

(0 qw) =D 43 owy))

( (w)) A w)

(C (W) =—==="3 (W)

%" o(w))

" (w))

where" ;" o;" ,and" o are the coherence isos associated to the morphisms
. @ . Orespectively in the theory of theories and (w) denotes the tuple of words
obtained by applying to each of the constituents of w. Note that " ;" o;" , and

o are tuples of the 2-cellsc; I;s and identity 2-cells. In the de nition of pseudo
algebra above, the morphisms; ©are tuples of generating morphisms in all cases
except in (4). In (4) the Cis the result of applying a substitution morphism in the
theory of theories to . This substitution morphism can be written in terms of f
appropriately. In this case we have" o(W) = Cy:w,:mw ¢ -

De nition 6.2. Let X and Y be pseudoT -algebras andH : X ! Y a functor
between the underlying categories. Denote the structure mps of X andY by and
respectively. Forall n2 Nandallw2 T(n)let  :H (w)) (w) (H;:::;H)
be a natural isomorphism. ThenH is a pseudo morphism of pseudd -algebras
with coherence 2-cells , (or just morphism of pseudoT -algebrasfor short) if the
following coherence diagrams of natural isomorphisms areasis ed.

w i(( w)in (wy))
W ) (w) (H;iH) (Cwa)sizs (wa))
Pcw) Cwpit wy)

(w ((woyiinw)) (Hioos H)1

Yoy
Cww

must commute.
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(2) The diagram

H @ 2L43 1,

(1) Hﬁ*ﬁ H

1

must commute.

i H sw;f

H o (w) B(w)

must commute.

Example 17. Let T be the theory of commutative monoids and letFiniteSets
be the category of nite sets. Dene A B = A f 1g[ B f 2g for nite
sets A and B. De ne coproduct similarly for morphisms of nite sets. Then

: FiniteSets  FiniteSets ! FiniteSets is a functor which makesFiniteSets
into a pseudo T -algebra,i.e. a pseudo commutative monoid More generally, any
symmetric monoidal category is a pseudd -algebra.

Example 18. Let T be the theory of commutative semi-rings. Then the category
of nite dimensional complex vector spaces is a pseudd -algebra whose structure
is given by direct sum and tensor product. We also say this cagory is apseudo
commutative semi-ring.

De nition 6.3.  Let X;Y ,and Z be pseudoT -algebrasandG : X ! Y;H:Y ! Z
morphisms of pseudoT -algebras with coherence 2-cells& and ! respectively.
Then the composition H G is the composition of the underlying functors . It
has the coherence 2-cells{{ © = (! iGu=c)) (v $):H G (w))

Z respectively.

Lemma 6.1. The composition of morphisms of pseudd -algebras is a morphism
of pseudoT -algebras.

Proof: Immediate. O

De nition 6.4. Let X and Y be pseudoT -algebras andG;H : X ! Y morphisms
of pseudoT -algebras. Denote the action of the theoryT on X and Y by and
respectively. A natural transformation :G) H between the underlying functors
is a 2-cell in the 2-category of pseuddr -algebrasif for all n 2 N and all w2 T(n)

G (w) L B (w)
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commutes. The vertical and horizontal compositions of the 2cells are just the
vertical and horizontal composition of the underlying natural transformations.

Lemma 6.2. The small pseudoT -algebras with morphisms and 2-cells de ned
above form a 2-category.

Proof:  The axioms can be veri ed directly. O

As mentioned in the last section, a pseudoT -algebra is the same thing as a
strict T-algebra. This was observed in[[26]. One can see this as folls. Let T°
denote the free theory on the sequence of sets underlyin§. Recall that T° was
described in terms of the setsTYn) for n 0 and the compositions, wbstitutions,
and identities. From this description, the hom sets areMor to(m; n) = j”:1 TYm).
There is a map of theoriesT®! T which gives the theory structure onT. Let the
underlying 1-category of the 2-categoryT be T® For v;w 2 T (n) = Mort (n; 1) we
de ne a unique iso 2-cell betweerv and w if v and w map to the same element of
T(n) under the map of theoriesT®! T. Otherwise there is no 2-cell betweerv and
w. With these de nitions, the only 2-cell between w and w is the identity and the
vertical composition of 2-cells is uniquely de n96 ThusT (n) is a category. Next
de ne Mort (m;n) to be the product category 1-”:1 T(m) for all m;n 2 ObjT.
From this it follows that there is a unique iso 2-cell betweenv;w 2 Mort (m;n)
if they map to the same element ofMort(m;n) and otherwise there is no 2-cell.
This uniquely de nes the horizontal composition of 2-cellsand T is a 2-category.
From the de nitions it also follows easily that n is the 2-product of n copies of 1 in
T. HenceT is a theory enriched in groupoids. In[Z6]T is denoted (T h(T); G(T)).

We introduce the notation c;|; s for some of these 2-cells, which breaks the usual
convention of labeling 2-cells by lowercase greek letterd.et

denote the unique 2-cell forw 2 T(k);w; 2 T(n;);i =1;:::;k. The on the right
is a generator of the theory of theories while the on the left is the composition in
the theory T. The mapid,,+ +n, isthe identity of the object ny+  + ny in the
category . Let

(0 D=1 )
where (()ig,;1) 2 R1(1) T(1)and (1; )2 R1(1°% T(2)° Let
Swi (Qidn ;W) =" r;w)

denote the unique 2-cell forw 2 T(m)andf : m! nin . We call these 2-cells
as well as identity 2-cells theelementary 2-cells. By the following inductive proof,
every other 2-cell in T can be obtained from these ones and their inverses.

Lemma 6.3. Let be a word in the theory of theories, i.e. 2 R,(m) for some
n2 Ny, m= (j{”l;:::;j?"), andm:=my+ + my,. Then the 2-cell

in T can be expressed as a vertical composition

S s 1 1

where each ; is the result of applying a morphism inR to a tuple of elementary
2-cells.
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Proof: Let = ; 1 Where q;:::; ; are tuples of generating morphisms
in the theory R of theories such thati is minimal. We induct on i. If i =1, then
is a generating morphism forR and the 2-cell

must be one ofc;I; ors. Now leti 1 and suppose the Lemma holds for all words
that can be expressed withi terms or less. Suppose 2 R,(m) has an expression
with i + 1 terms but not does not have an expression with fewer terms. Then
= (1;::1; ) where is a generating morphism for the theory of theories

and i;:::; k are some words in the theory of theories, each withiq;:::;ix  i.
Then the 2-cells

"1:(0i; 1(vaii)=—=135v1;:1)

"2 Qi 2(1)=—1%;:1)

can be obtained from elementary 2-cells in the prescribed maer by the induction
hypothesis. Hereid is generically used to denote any identity morphism in . Then

Oid,s (visiinivm)) =———=(0id,; (137755 K)(V1;:::Vm))
(;oalwayizn)s 200)0 (i vm) G Corny)veiisivm))
("1 k)
G Cowgin)Cain)iiin (ks it vm)) ( Ca3:iny K)iVayiiiivm)
(;V 1507 Vm)

is also a composition of the prescribed type, where is an elementary 2-cell. [

Lemma 6.4. Let and be words in the theory of theories. Suppose that there is
a 2-cell

in T. Then this 2-cell is a vertical composition of 2-cells obtaied from elementary
2-cells and their inverses by applying morphisms in the thep of theories.

Proof:  From the previous Lemma we have 2-cells

Oias (visii5Vm) == (0ia; (W1;:::5Wm,))

of the prescribed type. One obtains the desired result by inerting the 2-cell on the
left. O]
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Theorem 6.5. There is a bijection between the set of small pseudb-algebras and
the set of smallT -algebras.

Proof:  Let (X; ) be a small pseudo T-algebra. De ne a morphism : T !
End(X) of theories enriched over groupoids by the following sequee of functors
:T(n) ! End(X)(n). For notational convenience, the subscriptn is usually
Iefto below. For ( ;w 1;:::;w) 2T (n) de ne

(swaiinw) = ((wy);in (w)):

—~~
Y
s
<
Z
i
Y
s

—~
~
1

( Sw;f ) . Sw;f

where the symbols on the right denote the coherence naturalsomorphisms from
the pseudoT -algebra structure.
If is a word in the theory of theories and";:::; "k are elementary 2-cells, then

This is well de ned, because if ("1;:::;"k) = ("1;:::5; ") with "1;:::;"¢ elemen-
tary, then =
Consider the 2-cell

Oidy; (V25 Vm) =13V 1;::1;Vm)
for some 2 R,(m). By the above lemma, the word can be expressed in the

form o 1 Where each | is obtained from a tuple of elementary 2-cells by
applying a morphism in R. De ne

(s 1)=( ) ( 1)
where each ( ;) is de ned as in the previous paragraph. To see that this is wé
de ned, suppose ¢ 1= 00 9 where each » iS obtained from a
tuple of elementary 2-cells by applymg a morphism |nR Such a sequence gives
rise to an expression = % ? where 9;:::; % are tuples of generating
morphisms. Let = ¢ 1 be the expression that gave rise to ¢ 1.

It su ces to consider the case

_ _ 0o o0
= 4 3 2 1= 4 3 2 1
with 35 = ¢ Jbecause &% ? can be obtained from ¢ 1 by

a nite number of applications of the relations in the theory of theories. Then we
have the following diagram, whose vertical columns are ( 4 3 2 1) and
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( o« 3 § 1) respectively.
(a2 3 2 wW)y=—(a4 3 5 1w)
W3 2 1(w) a3 % 1(w)

(8 2 1w

a( 3 2 1(w)

a3 2 a(w)) 4("3C 3 1(wy)
4 3( 2 1(w) o 30 5 1wy

o 3("2( 1(w)) 4 3030 1(w))
4 3 2( 1(w) a3 %0 1wy

a3 2("1(w) a5 2("a(w)

4 3 2 1(w s 3 9 1(w

Here "; denotes the tuple of elementary 2-cells needed to bring; past . The
inner square commutes because of the coherence diagrams. €'top and bottom
squares commute becauses 2= 3 9. Hence

(4« 3 2 1= 4 3 32 1)

and is well de ned on any 2-cell of the form

(Oias (viiiisivm,) == 0ia; (W1;:1:;Wm,))
on which is already de ned. De ne
( =) ()*h
To see that this is well de ned, suppose
s 1V 1 V) =— "B W 1511 W)

is another expression where each, is obtained by applying a morphism ofR to a
tuple of elementary 2-cells or their inverses. Then

( )=0C s 1)
( )=C s 1) ()
()  H=C s 1)
( H=( s 1)

and is well de ned on 2-cells.
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By construction , : T(n)! End(X)(n)is afunctor and it preserves ; ()4; and
(1; )=1. Hence X is aT -algebra with structure map given by . This procedure
7! denes amap

PseudoT-Algebras! T -Algebras
Now | de ne a map
T-Algebras! PseudoT-Algebras
Let (X; ) be a T-algebra. Then de ne natural isomorphisms

Swi = ( Swy )
where the symbolsc; ;s on the right are 2-cells inT. Also de ne
n(W) = n(Qid, ;W)
for w 2 T(n). Then the coherence diagrams are satis ed because, : T(n) !
End(X)(n) is a functor for every n and preserves ; ()q; and 1.

One can easily check that the two procedures are inverse to @manother and that
they de ne a bijection. O

Next we can de ne a 2-monadC : Cat ! Cat like on page[4B. De ne a 2-functor

be S
((n oT(n) XM)

CX =

for any small category X . One can similarly de ne 2-natural transformations
lcaa) Cand :C2?2) C.

Theorem 6.6. Let G- denote the 2-category of small strictC-algebras, pseudo
morphisms, and 2-cells. LetG; denote the 2-category of small pseud® -algebras.
Then G and G are 2-equivalent.

Proof:  The small C-algebras are precisely the smalll -algebras by a proof
similar to Theorem BEI1. But by the previous theorem, the sméd T -algebras are
precisely the pseudoT -algebras. To see that the morphisms of the 2-categorie&:
and G; are the same, one must compare the coherence isos of the morgis. They
are related by

C — T ... T .
(w oasmwg) (x) — Wyt Wk)(x)'
In diagram (1) of De nition @ZXhe right vertical compositi on can be replaced by
the appropriate component of € by the composition coherence diagram for coher-
ence isos of pseudo morphisms dE-algebras. Then (1) commutes by naturality
of €. In (2) of De nition €Z]1the right vertical equality can be r eplaced by the
appropriate component of © by the unit coherence diagram for coherence isos of
pseudo morphisms ofC-algebras. Then (2) commutes by the naturality of €. Di-
agram (3) commutes by the naturality of €. The 2-cells of the 2-categorie€: and
Cr are also the same.

Power's Theorem 5.3 in [43] states that the 2-category of sict C-algebras,
pseudo morphisms and 2-cells is bi-equivalent to the 2-cagry of strict T -algebras,
pseudo morphisms, and 2-cells wher& is a theory enriched in categories andC is
the corresponding 2-monad in his construction. Power's therem di ers from the
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above Theorem[&®b in several regards. Theoreln 8.6 above usstsict C-algebras
to describe pseudoT -algebras, whereT is a usual theory. Theorem[&5 also has a
2-equivalence rather than a biequivalence.

Finally, the 2-equivalence of TheorenT®.20 yields the desid 2-equivalence. [

A reformulation of Theorem 2.6 of [9] in our language is the flowing.

Theorem 6.7. Let C be a 2-monad. Then the 2-category of small stric€-algebras,
pseudo morphisms, and 2-cells of pseudo morphisms admitsistly weighted pseudo
limits of strict 2-functors.

We conclude the following completeness theorem from the redt of Blackwell,
Kelly, and Power.

Theorem 6.8. Let T be a theory. Then the 2-category of pseudd-algebras admits
strictly weighted pseudo limits of strict 2-functors.

Proof: A 2-equivalence of 2-categories preserves weighted pseutimits be-
cause it admits a left 2-adjoint. Then the result follows from the previous two
theorems. O]

7. Weighted Pseudo Limits in the 2-Category of Pseudo T-Algebras

In this section we prove that for any xed theory T the 2-category of pseudor -
algebras introduced in the previous section has pseudo lirts. The proof in section
A of pseudo limits in the 2-category of small categories is nd ed below to t
the pseudo algebra case. Le€ denote the 2-category of pseudd -algebras in this
section. The existence of cotensor products i€ allows us to conclude thatC admits
all weighted pseudo limits from a theorem of Street. This resilt is more general
than Theorem[&8 because it allows the functors to be lax. Theroof in this section
for pseudo limits is also constructive, whereas Theorei 8.8 not.

Theorem 7.1. The 2-categoryC of small pseudoT -algebras has pseudo limits.

Proof: Let J be a small 1-category andF : J ! C a pseudo functor. Let
1 denote the terminal object of the 2-category of small categoes as before. Let
U denote the forgetful 2-functor from the 2-category C of pseudo T-algebras to
the 2-category of small categories. The candidate for the pmudo limit of F is
L := PseudoCondl;U F) as before. Note that these are pseudo cones into the
2-category of small categories, not into the 2-category of geudoT -algebras. De ne
L ) F as before. | must show thatL has the structure of a pseudor -algebra,
that is a pseudo natural transformation to F, and that L and are universal.
These proofs will draw on the analogous results for the psewdlimit of U F.

Lemma 7.2. The small categoryL has the structure of a pseudd -algebra.

Proof:  We rst make the identi cation of the categories P and L as in Remarks

B4 andZ3. Let =(a)i (") 2 0ObjL and (;)i 2 MorL for1 ° n and
w 2 T(n). Denote the action of the theory T on Fi = A; by ; for all i 2 ObjJ .
Dene a = i(w)(a';::;;a')yand "t = 1 (W)("Fintl) Bi(adesiial):
Ff(asf)! arf aswellas = j(w)( il;:::; M. Then the action of T onlL is

must be veri ed that these outputs belong to L.
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I claim that (&);i ("t)r 2 ObjL. I prove this by verifying the coherences in
Remarks[Z4 andZFb for a xed wordw 2 T(2). To avoid cumbersome notation, |
write + for the action of the word w in any pseudoT -algebra. The veri cation for
a general word is the same. | abbreviate !! as ™ for any morphism H of pseudo
T-algebras. The only word appearing in the following diagrans isw, so there is no

ambiguity. Let g := fg and j = [. First | show that for all j 2 ObjJ the
diagram.
™) % G IF1(a)
1, EEE;LI"
g

commutes whereg; = af + af and "y, = (" +"]) FU(al;a}) as de ned above.
After writing this diagram out we get

1 2
1, a2 i (a+a) JEA (al & a2
al + a F1 @l + @)
LFj (ail;ajz):l alva? F1j (ajl;ajz)
1 2
1 2 i (aj )+ i (aj) . 1 . 2
&ty ltll(aj)"'FlJ(aj)
1&‘11”12 ij +"§,-
al + a? /B + a1.2
i i 1. . i
ai +ai

where the top horizontal arrow is j (a;) and the right vertical composition is
"1, by de nition. The top square commutes because ; : 1r; ) F1j is a 2-cell
in the 2-category C. The bottom square commutes because + is a functor and

y i (ajf) = 1a1? for © = 1;2. Hence [@) commmutes. Next | show that for all

i— #—9 KinJ the diagram

(8) Fg Ff(a) = %JE@ f)a)
Fg("t) "g

Fo(a) ——7b
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commutes where"s = "1 + "? etc. After writing out this diagram we get

1, .2
fg (aj+a7)

Fg Ff(ale a?) k(g t)al+a?)

Fo Ff (al:a2)
(R |

Fg( ' (ajia}) P D (atial)

Fo(Ff (a}) + Ff(a?)) —Fg Fi(a)+ Fg Ff(@)—F(g f)a)+ F(g f)ad)

FO (Ff (al);Ff (a?)) to (@) g (af)

Fg('f+"?) Fo("H)+ Fg('?) R K

Fo(al + af) ——————/Fg(a}) + Fg(a?)

/Bt 4+ g2
a
Fg (ail;aiz) k k

n1+u

an

where the outermost square is[{B). The upper left triangle conmutes by the de ni-
tion of composition of pseudoT -algebras. The upper right quadrilateral commutes
because r.,g : Fg Ff ) F(g f)isa2-cellinthe 2-category of pseudd -algebras.
The lower left square commutes because®™® : Fg(+) ) Fg+ Fg is a natural
transformation. The bottom right square commutes because +is a functor and
"y (FO("{) = "g¢ g (a) for = 1;2. Thus all four inner diagrams com-
mute and @) commutes. Thus both coherences in Remark4l4 arsatis ed and
1+ 2=(a); (") is an object ofL.
I claim that ( )i +( 2)=( i)i is a morphism ofL where (1)i : (al)i ("})s !

()i (Prand (2)i: (@) (B! () (A are morphisms inL. In other
words | must show that

9) Ff(a) /&
Ff (i) i

Ff () —/h
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commutes for all morphismsf :i! j in J, wherea = al! + a? etc. If we write
out the diagram we get

nl g

FI (atia?) A
Ff(al + a?) ————JEf (al) + Ff (a?) &'+ 2
Fi( 1+ 2) Fi( I+ FECD) i

FE (0 + ) — TR () + FE ) —— I+ f

FT(bl;b?)

where the outermost square is[[P). The square on the left comuotes because F' :
Ff(+) ) Ff+Ff isanatural transformation. The right square commutes becase
the diagram

Ff(a{)géi
Ff ( ;)‘ ‘ i
Ff (o) Iy

commutes for® = 1;2 and because + is a functor. Hence {); +( 2)=( ;)i is a
morphism of L. Thus (w):L L! L.

The map ( w) preserves compositions and identities because the indigual com-
ponents do. Thus (w):L L ! L isa functor. The same argument works for
words in T(n) for all n 2 N. Thus de nes an action of the theory T on the small
categoryL.

We de ne the coherence isos for to be those maps which have tk coherence
isos of ; in the i-th component. One can prove that they are morphisms of the
categoryL, i.e. satisfy the diagram in Remark[Z3, by using the coherence dgrams
of with the respective coherence iso as well as the naturality fothe individual
components. The coherence isos for are natural because theare natural in each
component. The coherence isos for satisfy the coherence dgrams because the
individual components do. Thus L is a pseudoT -algebra with the action of the
theory T given by .

f

U
Lemma 7.3. Themap : | ) F is a pseudo natural transformation with the
coherence 2-cells determined by.

Proof: It is clear from the work on the small category case that is a pseudo
natural transformation when we forget all the pseudoT -algebra structures. There-

fore it suces to show that ; : L ! Fj is a morphism of pseudoT -algebras for
allj 2 ObjJ andthat i (f): Ff ;) ; is a 2-cellin the 2-category of pseudo
T-algebras for all morphismsf :i! jinJ.
Letj 2 ObjJ. Then ; : L ! Fj is a functor. We abbreviate the action of
w2 T(2) by + as above. Then for = (a)i (";)r 2 ObjL for * =1;2 we have
[ = (@ra () V@G )0 ava = (D (),

The same calculation works for words inT (n) for all n 2 N. We conclude that
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commutes with the action of T. If we take w =1, iy then ; isa morphism
of pseudoT -algebras for allj 2 J .
Letf :i! j beamorphism ofL. To show that ; (f) is a 2-cell, we must show
that the diagram
(10)
i (F) 1w +
Ff i (w) § (w

i Ff i Ff +3 RSN

(W) ' )= L C () g (1) 1w i)
commutes for all wordsw. Recalling that ; (f) := i (f) and evaluating the

diagram on ( %; 2)where =(a)i (";)f 2 ObjL for * =1;2 gives

Cien 7 @an

Ff (al + a?) B+ a?

Ff (ail;aiz) 1aj1+ aj2

Ff (al)+ Ff (a?) B+ a2

n2

w1
P

which obviously commutes. Hence j; (f) is a 2-cell in the 2-category of pseudo
T-algebras for allf :i! j and is a pseudo natural transformation.

O

Now | must show that the pseudoT-algebralL and the pseudo natural transfor-
mation : | ) F are universal in the sense that the functor : Morc(V;L) !
P seudoCongV; F) as de ned in the small category case is an isomorphism of cat
egories for all objectsV of C. In the following, V is a xed object of the 2-category
C of pseudoT -algebras.

Lemma 7.4. The map :Morc(V;L)! PseudoConéV;F) is a functor.

Proof:  The proof is analogous to the proof for the of the pseudo colimit
of small categories in Lemma313. The only dierence is that lere we have to
verify that i (f) iy is a 2-cell of the 2-categoryC of pseudoT -algebras for any
morphism b : V ! L as in the comments just before Lemmd3]3. But that is
immediate becausdy, is obviously a 2-cell and the horizontal composition of 2-cks
is again a 2-cell. O

Now | construct a functor : PseudoCongV;F)) Morc(V;L) that is inverse
to . Firstl dene for objects, then for morphisms. Finally | verify that it is a
functor and inverse to . The next two lemmas de ne a morphism ( 9:V ! L
in Cfor any object ©of PseudoCongV;F).

Lemma 7.5. Let °: ) F be a pseudo natural transformation with coher-
ence 2-cells °© For any xed x 2 ObjV we have ( 9(x) := b(x) := ( Ax));
( &1r (F)x)r is an element of ObjL .

Proof:  This follows from LemmalZ1 by forgetting the pseudoT -algebra struc-
tures. Thus ( 9(x) 2 ObjL. O
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Lemma 7.6. Let °: ) F be a pseudo natural transformation with coherence
2-cells ° Then for any xed h 2 Mory (x;y) we have a modi cation ( 9(h) :=
b(h) :=( %h))i :b(x)  b(y). This notation means b(h);( ):= h).

Proof:  This is exactly the same as the proof of Lemm#&Z18 because thespudo
T-algebra structure on L makes no additional requirements on the morphisms of
the small categoryL. O

Lemma 7.7. For any pseudo natural transformation °: ) Fthemap ( 9=
b:V ! L as dened above is a morphism of pseud® -algebras.

Proof: By Lemmald the mapb:V ! L is a functor between the underlying
small categories. | de ne a natural transformation & for w 2 T(2) and abbreviate

the action by +. Dene B(x1;X2) = P(Xx1;X2) = ( 1(X1;X2))i : b(Xg + X2) !
b(x1) + b(xz) for all x1;x>, 2 ObjV. | claim that P(x1;x») is a morphism of L.
Let 3 (f) denote the 2-cell associated to ®: ) F forf :i! jinJ. Since

S () Ff 9 Pisa2-cell, we know that

S (F)xa+xs

Ff X1+ Xp) IT0(x1 + x2)

0 0
Flo T (x1ix2) I (x15X2)

IFo(x1) + D(x2)

Ff 9x{)+ Ff  9x
(x1) i(x2) i (F)xg+ i (F)xy

commutes. Rewriting the left vertical arrow and the bottom arrow gives

8 (F)xgvxs

Ff( x1+ X2)) P01+ x2)

0 0
Ff  i(X1x2) I (x15x2)

FE(x)+ Xx2) o)+ Px2)

Cip (Dt i (i) 71 2xa)s dx2))

which states precisely that P(x1;x2) = ( io(xl;x2))i sbh(xy + x2) ! b(xp) + b(x2)
is a morphism in L by RemarkZ3. The map " is natural because each component
is natural. Hence P® is a natural transformation. If we de ne & analogously for
arbitrary words w of the theory T, then the coherences of De nition[61 are satis ed
because they are satis ed componentwise. Hence( 9 = b:V ! L is a morphism

of pseudoT -algebras. [

Lemma 7.8. Let : be a morphism of the categoryP seudoCongV;F).
Then (): ()) ()denedbyV 3x7! ( i(X)i2Mor.( ()x; ()x)is
a 2-cell in the 2-category of pseudd -algebras. As in Lemma[4.Ip, this de nition
means ()( X)i( )= i(x).
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Proof:  The map () is a natural transformation by Lemma 4[T0] For all

i 2 ObjJ we have morphisms ;; ;:V ! Fiand2-cells ;: ;) ;. Hence
i(X1+ x2) Gz xe) I (x1 + x2)
F(x1:x2) i (x1:X2)
) ) /I . )
)+ i) = Fitw)+ i)

commutes. Since these are the components for( )(x); ( )(x), and ()( x), we
see that

( )(x1+ x2) ) () (xa + x2)
) (x1ix2) ) (x13x2)
() + ()x2) o O+ ()xe)

commutes. Similar diagrams hold for arbitrary words w in the theory T. Thus
() is a 2-cell. [

Theorem 7.9. The map : PseudoCondV;F)! Morc(V;L) as de ned in the
previous lemmas is an inverse functor to .

Proof: This follows from the calculations of Theorem[ZTIl and LemmalZ12
and[£13. ]

Lemma 7.10. The pseudoT -algebraL with the pseudo cone : | ) F is the
pseudo limit of the pseudo functor- : J ! C .

Proof:  The functor : Morg(V;L) ! PseudoCondV;F) is an isomorphism
of categories by the previous lemmas. Sinc& was an arbitrary object of C we
conclude that L and are universal. O]

Thus every pseudo functorF : J ! C from a small 1-categoryJ to the 2-
category C of pseudoT-algebras has a pseudo limit. HenceC has pseudo limits.
This completes the proof of TheorenZ11.

[

Theorem 7.11. The 2-category of pseuddrl -algebras admits bilimits.

Proof: It admits pseudo limits and therefore admits bilimits. O

Lemma 7.12. The 2-categoryC of pseudoT -algebras admits cotensor products.

Proof: Let J 2 ObjCat and let F be a pseudoT-algebra. LetU : C ! Cat
be the forgetful functor. De ne P := (UF)’, which is the 1-category of 1-functors
J ! UF. I claimthat P has the structure of a pseudor -algebra. Let , : T(n)!
Functors(F"; F) denote the structure maps forF. De ne

P:T(n)! Functors(P";P) by
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example, de ne
she o P(w))  P(w) forf :m?! nonpgiii;py 2 ObjP as the 1-natural
transformation

ence diagrams are satis ed because they are satis ed pointise. Hence,P has the
structure of a pseudoT -algebra.
| claim that P is a cotensor product ofJ and F. We use RemarkZ]l. De ne a

functor :J!C (P;F) by

(1)) = p()

MHe)= 0)

(9)(p) := p(9)
for j an object of J, p a a functor from J to UF, a natural transformation, and g
a morphism ofJ. Let :J!C (C;F) be a functor. De ne a morphismb:C! P
of pseudoT -algebras by

b(c)(j) = ()(0)
b(c)(f) = (f)(c)
b(m)(j) = ()(m)
for c2 ObjC, j 2 ObjJ,f 2 Mord, and m 2 MorC. Then bis strict and it is the
unique morphism C ! P such that C(b; F) = . A similar argument can be
made for 2-cells. ThusP is a cotensor product ofJ and F with unit . O

Theorem 7.13. The 2-categoryC of pseudoT -algebras admits all weighted pseudo
limits.

Proof: By Theorem[Z1 it admits pseudo limits, and hence it admits pgudo
equalizers. The 2-categoryC obviously admits products. By LemmalZ T2 it admits
cotensor products. Hence by TheoreniZ14 it admits all weighed pseudo limits. []

8. Bi-universal Arrows and Bi-adjoints

After studying bilimits and bicolimits, we turn our attenti on to another type of
weakened structure calledbi-adjoints. The concept of an adjunction from 1-category
theory consists of two functors and a natural bijection between appropriate hom
sets. Mac Lane lists several equivalent ways of describingnaadjunction in [B9] on
pages 79-86. One of these ways involves a universal arrow feach object of the
source category. To weaken these concepts, we replace thenfitors by pseudo func-
tors, the natural bijection of hom sets by a pseudo natural egiivalence of categories,
and the universal arrow by a bi-universal arrow. The main god in this section is
to prove that a bi-adjunction can be described via pseudo natral equivalences or
via bi-universal arrows. This is the meaning of TheorenT81l2and Theorem[B.T3.

A close result in the literature can be found in Gray's work [18]. His concept of
transcendental quasi-adjunctionbetween two 2-functors on page 177 is similar to
the concept of bi-adjunction between two pseudo functors esept that the functors
in a bi-adjoint are allowed to be pseudo. Gray remarks on page 180-181 that a
transcendental quasi-adjunction gives rise to a certain uiversal mapping property.
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The analogous concept for bi-adjoints is a bi-universal arow and the appropriate
theorem is TheorenT8IP. On page 184 Gray remarks that underestain hypothesis,
the universal mapping property gives rise to a quasi-adjunton. The biadjoint
version of this is Theorem[BIB in which the starting functor G is allowed to be a
pseudo functor.

Kelly phrases a similar result in [Z9] on page 316 in terms of tmomorphisms
of bicategories and birepresentations. His notion of bi-apint is the same as in
this paper, except that | am considering only pseudo functos between 2-categories
rather than homomorphisms between bicategories. Kelly's mtement is equivalent
to B3 after an application of Yoneda's Lemma for bicategoies. Yoneda's Lemma
for bicategories can be found in[[50].

Street makes an observation on page 121 ii[50] similar to Tlwem[BI3: if each
object has a left bilifting then a left bi-adjoint exists. Th e unit for a left bi-lifting
is the bi-universal arrow of Theorem[BIB.

MacDonald and Stone also have weakened notion of adjunctiom [37] called soft
adjunction. In that article they consider strict 2-functors and natura | adjunctions
between hom sets. They prove theorems about the universaltconcepts that arise
in such a context.

| follow Mac Lane's presentation of adjoints except | accounfor the 2-cells. The
notation in this study is analogous to the notation in Mac Lane's book. Recall the
de nition of a universal arrow and its uniqueness.

Denition 8.1. Let S:D ! C be a functor between 1-categories and 2 ObjC.
Then an objectr 2 ObjD and a morphismu 2 Mor ¢ (c; Sr) are a universal arrow
from cto S if for every d 2 ObjD and everyf 2 Mor ¢ (c; Sd) there exists a unique
morphism f ©2 Morp (r;d) such that Sf°® u = f. Pictorially this means for every
d and everyf as above, there exists a uniquéd ° making

c—Iky r
éSfo f°
c——/kd d

commute. This is equivalent to saying the assignment °7! Sf° u,
Morp (r;d) ! Morc(c;Sd is a bijection of hom sets for every xedd 2 ObjD.

Lemma 8.1. Letu:c! Srandu®:c! Sr°be universal arrows from the object
c to the functor S. Then there exists a unique morphismf©: r | 0 such that
Sf9 u= u® Moreover, the morphismf%:r ! rCis an isomorphism.

Proof:  There exist unique morphismsf °and g° such that the following diagram
commutes.

c——Jky r

(SO o
u® : :
Cgéro r.o

 sg° g
c——Ihkr r
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The middle vertical column could be replaced byS1, to make the outermost rec-
tangle commutative. Hence by the uniqueness we havg® f°=1,. Similarly one
shows thatf® g°=1,0.. Hencef %is an isomorphism andSf°® u= uC ]

Before weakening the concept of universal arrow, | prove a siple lemma that
will make it easier to visualize a bi-universal arrow.
Lemma 8.2. Let X Dr:/A be adjoint functors with unit : 1x ) and counit

: ) 1a. Suppose that both the unit and the counit are natural isomgrhisms.
Let : (x)! abe a morphisminA and x 2 ObjX;a 2 ObjA. Then there exists

a unique morphism %:x !  (a) such that
X x) ——&
° (9
: : /
(a) (@) —F—

commutes. Moreover, Cis iso if and only if s iso.

Proof:  The existence and uniqueness claims follow becaus€a) is a universal
arrow from to a. If Cisiso,then ( Qisisoandsois = (a) ( 9 because
(a) is iso by hypothesis. It only remains to show that Cis iso if is iso. Suppose
is iso. Then ( 9 is iso from the commutivity of the diagram because (a) and
are iso. By the naturality of we have

X R (X)
0 (9

S—
@ —— (@

commutes. Then Cis iso because (x); ( (a)); and ( ( 9) are iso. O

To weaken the concept of universal arrow in the context of 2-ategories, we
replace the bijection of sets above by an equivalence of theparopriate morphism
categories.

De nition 8.2. Let S: D! C be a pseudo functor between 2-categories and
C 2 ObjC. Then an objectR 2 ObjD and a morphismu 2 Mor ¢(C; SR) are a bi-
universal arrow from C to S if for every D 2 ObjD the functor : Morp(R;D)!
Morc(C;SD)denedby f°7! Sf® uand 7! S i, is an equivalence of categories.

We suppressed the dependence ofon D in the notation of the de nition. This
de nition implies that has a right adjoint  such that the counit : )
Imor c(c;sp ) and unit are natural isomorphisms. Pictorially the de niti on implies
that for every object D 2 ObjD and every morphismf : C! SD in Cthere exists
an f ®and a natural universal 2-cell (f) which is iso (an arrow of the counit) as in
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the following diagram.

C 4/5R R
H ESf ° f°
C 4/SD D
The assignment :f 7! f%is functorial and : ) Imor c(c:sp) is a natural

transformation. This diagram is not equivalent to the de ni tion because it does not
express the naturality of the 2-cells, nor does it include tke natural isomorphism
(the unit) from the the identity functor on Morp (R;D) to . The universality
of the 2-cell (f) from the functor to the object f means pictorially that the
arrow f %is unique up to 2-cell in the following way. If f°: R ! D is an arrow in D
and is a (not necessarily iso) 2-cell as in

then there exists a unique 2-cell °: ) f%whose image factors via the
universal arrow (f), i.e. %is such that

fo SfO u
fo SfO u

(f)

commutes. We also know that is iso if and only if is iso as in Lemmd3.R. Note
that these diagrams are dual to De nition Bl although it is the same concept of
universal arrow.

One can ask if the equivalences of categories in the de nitio of bi-universal
arrow can be chosen in some natural way as in Remark=d.3. Theyaao in fact as
the following theorem shows.

Theorem 8.3. Letu: C! SR be a bi-universal arrow from C to the pseudo
functor S as in Denition 2] Let p : Morp(R;D) ! Morc(C;SD) be the
functor dened by f07! Sf® uand 7!'S i,. Then D 7! p is a pseudo
natural transformation Morp(R; ) ) Morc(C;S ). For D 2 ObjD let p :
Morc(C;SD) ! Morp(R;D) be a right adjoint to p such that the unit p :
IMorp(RD)) D p and the counit"p : p D ) IMorc(c;sp) are natural
isomorphisms. ThenD 7! p is a pseudo natural transformation andD 7! p and
D 7! "p are iso modi cations imor , (r: ) and imor c(c;s ) Which
satisfy the triangle identities.

Proof: Let F;G : D! Cat be the pseudo functors de ned by F(D) =
Morp(R;D) and G(D) = Morc(C;SD). Then F is a strict 2-functor. One can
prove that :F ) G is a pseudo natural transformation by de ning the coherence
2-cell in terms of S and then using the unit and composition axioms forS to
prove the unit and composition axioms for . After doing that, we are in the setup
of Lemmal&3, from which everything else follows. O
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In analogy to the uniqueness statement for universal arrowswe have a unique-
ness statement for bi-universal arrows. It requires the cooept of pseudo isomor-
phism in a 2-category.

De nition 8.3.  Let D be a 2-category andf : R ! R%a morphism in D. Then
f is a pseudo isomorphismif there exists a morphismg : R°! R and iso 2-cells
g f) 1lgandg f ) 1ro. A pseudo isomorphism is also called arquivalence

Lemma 8.4. LetS:D!C be apseudo functor. Letu; : C! SRy andu,:C
SR, be bi-universal arrows fromC to S. Then there exists a pseudo isomorphism
g°:Ry! Ry in D and an iso 2-cell as in [T1).

(11) C4/SR1 R,
c:%st2 R,

Morever, if g°and are a morphism and an iso 2-cell that also |l in the diagram,
then g° and g° are isomorphic via the unique 2-cell °: g°! ¢°such that 1(uy)
(S % )=

Proof: The bi-universality of u; and u, guarantees the existence of arrows
f % g% and h® and iso 2-cells 1(u,); »(ui); and 1(ui) to Il in the following dia-
grams.

(12) C 4/SR1 R,
H 1(U1) éSfo éfo

C 4ISR1 R:]_

(13) C 4/@?1 R1
| o

C |4/5R2 R,

. ESh" h°

QéRl R:

ujp

The arrow 1g, also lIs in the diagram

(14) c = .“/SRl R,
1
R .““
it Sty =
IER, R,

with an iso 2-cell. Diagram (I3) combined appropriately with ( goho) ! gives an
iso 2-cellh® g°) fOby the comments after the de nition of bi-universal arrow.
Similarly, diagram ([ gives an iso 2-cell k, ) f °for the same reason. Combining
these two iso 2-cells appropriately gives an iso 2-ceh® ¢°) 1g,. By a similar
argument one obtains an iso 2-celg® h®) 1g,. Thus g°: R; ! R, is a pseudo
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isomorphism. The iso 2-cell betweerg® and ¢° is also guaranteed by the comments
after the de nition of bi-universal arrow in §2Z1 O

After these preparations involving bi-universal arrows, we can now introduce the
main concept of this section.

De nition 8.4. Let X and A be 2-categories. Abi-adjunction HF;G; i : X * A
consists of the following data

Pseudo functors
F
x o=l

between 2-categories

For all X 2 ObjX and all A 2 ObjA an equivalence of categories x.a :
Mora (FX;A) I Morx (X;GA) assigned in such a way to make into
a pseudo natural transformation in each variable between tle following
pseudo functors of two variables.

P71 Inor A Mor /€ at

X% A w8 Jkor x Mor e at

In this situation, F is called aleft bi-adjoint for G and G is called aright bi-adjoint
for F.

X A

Recall again that a bi-adjoint is called alax adjoint in [24], [25], [26]. The
degree of uniqueness of a left bi-adjoint (if a left bi-adjont exists), will be dealt
with at the end of this section. One can ask whether or not an agbint functor

xA - Morx (X;GA)! Mora(FX;A)to xa can be chosen in a natural way.
This is similar to the question answered in RemarKZZB for biclimits. To show that
right adjoints can be chosen in a pseudo natural way, | need th following lemma.

Lemma 85. Let F;G : A! Cat be pseudo functors and= a strict 2-functor.
Suppose we have a pseudo natural transformation: F ) G such that 5 : FA'!
GA is an equivalence of categories for alA 2 ObjA. For each A 2 ObjA, let

A - GA! FA be aright adjoint to A such that the unit o : 1ga ) A A
and counit "a @ A A ) lega are natural isomorphisms. ThenA 7! 4 is a
pseudo natural transformationG) F and A 7! A respectivelyA 7! "o de ne iso
modi cations  :ig respectively " : ig. Furthermore, and"
satisfy the triangle identities.

Proof:  For all A 2 ObjA there exists such a right adjoint A because 4 is an
equivalence of categories.

To show that A 7! A is a pseudo natural transformation, we need to de ne the
coherence 2-cell ? for each morphismf of A, show that it is natural, it satis es
the unit axiom, and that it satis es the composition axiom.

For a morphismf : Al BinAlet  :Gf ) g Ff denotethe coherence
2-cell belonging to the pseudo natural transformation . Dene { : Ff A)
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g Gf to be the composition of the 2-cells in the following diagram

(15) GA ——— kA
1GA 1FA
G A

Gf Ff

GBUO—FB

lcs lre

GB %‘38

| claim that the assignment f 7! ? is natural in f. To see this, letf,g : A! B
be morphisms inA and :f ) ga2-cellinA. Then ?is the composition of top
row of 2-cells in the following diagram and g is the bottom composition.

B IFf 1, g ¢ 0, ig ict "a
kg Ff Aa=—*3% s Ff Ao—%} Gf Ao A=—*% Gf 1ga
ilFB i i A i g 8 F i A i g G i A A i g G i1<3A
ks Fg & *3 5 Fg a=—*}% Gg A a=—*3} Gg loa
B IFg | , i gt i g ileg "A

The left square and the right square commute because of the farchange law and
the de ning property of identity 2-cells. The middle square commutes because
f 7! : is natural by the de nition of pseudo natural. Hence the outermost
rectangle commutes andf 7! 2 is natural.

| claim that O satis es the unit axiom for pseudo natural transformations. Since

F is strict, proving the coherence diagram reduces to provinghat fA =i, £.
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Using the de nition of © above and the unit axiom for we see that ?, is the
composition of 2-cells in diagram [Ib).

(16) GA ——JEnA

1GA 1FA

GA %#A

But the composition of 2-cells in {I8) is the same as the compsition of 2-cells in
(@3 by the interchange law.

(17) GA ——JEnA

lea 1ra

>0

Gla lea Fla=1Fa

lea 1ra

GA 4A/4:A

By one of the triangle identities we see that the right three gjuares of [IT) collapse
toi , and therefore (IB) is the same as , £ .Hence { =i, £ andthe
unit axiom is satis ed.

| claim that © satis es the composition axiom for pseudo natural transfoma-

. f . . . . .
tions. Let A— B % & pe morphisms in A. Since F is a strict 2-functor,
proving the composition coherence reduces to proving that
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gr=(0i ¢ ) (g ier) (irg ). Following the same approach as for the

o . 0
unit axiom, we write out ;' in (IL8).

(18) GA —2—JEA

1A

lGC lFC

GC 40/4%:

Using the composition axiom for and writing the 2-cells more compactly we see
that the composition of 2-cells in diagram [I8) is the same asn diagram ([I9).

(19) GA —2—JEA

Gf {B{{{{ Irs

©
w
L
w

G(g f) & lcs

Gg C {{{ lrc

GC ———GC %‘30
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The middle parallelogram involving g and "g is the same as , by the triangle
identity. Hence @A) is (i . ) (g ier) (irg ) and we conclude that
gr=(i ¢ &) (¢ iet) (irg ) asrequired by the composition axiom.

Thus far we have shown thatA 7! 4 is a pseudo natural transformationG ) F.
Next | show that A 7! 5 de nes a modi cation ig

Let f;g : A! B be morphisms in the 2-categoryA and :f) ga2-cell I
claim that the compositions in diagrams () and (@) are the sane, i.e. that isa
modi cation. Our diagrams will of course have F = G, =i, = , and the
coherence iso belonging tag is trivial while the coherence iso for the composite
pseudo natural transformation is(i s ) (2 i ,)bytheremarkson paged®
about coherence isos for a vertical composition of pseudo ha&ral transformations.
Then we see that the composition[2) is g F . | proceed by reducing [1) to
s F . The composition in diagram () is explicitly (E0), where | left o the
vertical equal signs.

f
(20) FA i ka2 kg

FA—ean —1EA —IFB

Fg
| :
A g
FA — IGA 5 leB —2JEB
: |-
FA—/FB /e —FB
[¢] B B

Writing out the de nition g in (E0) and including some identities gives [Z1).

FA Ff FB
(21) FA ! IEA kg 2 kg
] e
FA —2 /CAM#A /ke —/FB
FA /bB kB
FA = B —IEB

After cancelling ¢ with 1 and using one of the triangle identities we see that
&) is the same as g F . Thus we conclude that () is the same as[2) and that
A 7! A is a modi cation.

One can similarly show that A 7! ", is a modi cation.

The modi cations and" satisfy the triangle identities because the individual
2-cells o and "a do. O]
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Now | use this lemma to prove how the right adjoints x.a : Morx (X; GA) !
Mora(FX;A) to x.a can be chosen in a pseudo natural way in the following
theorem.

Theorem 8.6. Let HF;G; i : X * A be a bi-adjunction. For all X 2 ObjX

and all A 2 ObjA let xa : Morx (X;GA) ! Mora(FX;A) be a right adjoint

to x,a such that the unit xa : Ivor,(Fxa ) ) XA x.A and the counit
"XA L OXA x:A ) Imor x (x;ca ) @re natural isomorphisms. Then the assignment
(X;A) 7' x.a Is pseudo natural in each variable. Moreover, the assignmés
(XA) 7 xa and (X;A) 7! "x.o comprise modi cations in each variable of the
form  limora(r ;) and" : iMor x (G )

Proof: | prove the pseudo naturality and modi cation in the second variable.
The rst variable is similar. Let F respectively G be the pseudo functorA! Cat
obtained by holding X xed in the rst respectively second row in De nition 8[Z]
See the proof of Lemmd 81 for a precise description ¢f and G. The pseudo
functor F is actually a strict 2-functor because it is the composition of strict 2-
functors. If we drop the notation X in all occurences, we see that we are precisely
in the setup of Lemmal8%. This proves the theorem for the secul variable. To
prove it for the rst variable one only needs to prove an analgue of Lemma8.b for
F pseudo andG strict. O

Next | prove a series of lemmas needed to prove Theoreris 8l12cET3.

Lemma8.7. Let X and A be 2-categories. LetF;G; i : X * A be a bi-adjunction
andlet x := xrx (1px): X! GFX. Then x :X ! G(FX) is a bi-universal
arrow from X to G.

Proof:  The assignment X;A) 7! x.a is pseudo natural in each variable by
assumption. Let denote the coherence 2-cells forx. . From the de nition of
pseudo natural transformation x. we obtain for f °2 Mor 4 (F X; D ) the following
diagram in Cat.

Chasing %k x along this diagram gives a diagram in the 2-categoryX .

X . IG(FX)
exp  (FOQLex 0
Gf
X /Gb

xo (19

The map Mora(FX;D) 3 97! exp (f9(1gx ) is natural. This fact combined
with the diagram in X above says that we have a natural isomorphism from the
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functor Mora (FX;D) 3 971 Gf® y 2 Mory (X;GD) to the functor f° 7!
xp (f9. From the de nition of bi-adjunction, x.p is an equivalence of categories.
Hencef °7! Gf° « is naturally isomorphic to an equivalence of categories ands
therefore itself an equivalence of categorieMora (FX;D)! Morx (X;GD). We
conclude that x is a bi-universal arrow. O

Lemma 8.8. Let X and A be 2-categories. LetF;G; i : X * A be a bi-adjunction
andlet x = xgx (Irx): X ! GFX. Then the assignmentX 7! x is a pseudo
natural transformation 1x ) GF.

Proof: Letf : X%l X be a morphism ofX. Let respectively °denote the
coherence 2-cells for the pseudo natural transformation x o. respectively  gx .
I must show that we have a 2-cell

X 0X40/bl:x 0
f GFf
X ——IGFx

in X which is natural in f and satis es the coherences involving and . Since
is pseudo natural in each variable we have the diagram

Ff
00" Mora(FX:FX)

X OFx O

Mor x (X % GFX 9 W/Morx (X% GFX) 90— Morx (X; GF X )
in Cat. By chasing Ix o and 1-x from the upper corners of this diagram to the
center and then down we see that they both get mapped to xorx (Ff). Chasing
the identities in the opposite directions and evaluating the natural transformations
at the identities yields a diagram of 2-cells inX.

Fx 0px (FF)(Lex 0) < >[<’;>< o(f )X ex )

(GFf)  xo +3 opx (Ff) K x f

These 2-cells are invertible by hypothesis. Let gox (f) denote the composition
from left to right obtained by inverting the second 2-cell. ~xox is natural in f

because the constituents are natural inf. The coherence 2-cells ~satisfy the
coherences with and from GF also because the individual constituents do.
Hence

XO;O/ Fxo

~x ox (f)
GFf

X ———I6Fx
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is natural in f and satis es the required coherences, s¥ 7! x is a pseudo natural
transformation. O]

Thus we have seen that given a bi-adjunction we get a pseudo natural trans-
formation whose arrows are bi-universal arrows. Now we consider the ngerse
of this statement.

F
Lemma 8.9. Let X and A be 2-categories. LetX Dn:/A be pseudo functors
G

between 2-categories. Let : 1x ) GF be a pseudo natural transformation such
that each arrow x : X ! G(FX) is a bi-universal arrow from X to G. De ne
xa (f) = Gf x foreachf : FX I Aand xa():= G i , for each
:f ) fO Then xa : Mora(FX;A) ! Morx(X;GA) is an equivalence of
categories for all X 2 ObjX and all A 2 ObjA.

Proof:  The functor x.a is an equivalence sincex is a bi-universal arrow. []

F
Lemma 8.10. Let X and A be 2-categories. LetX Dr:/A be pseudo functors
G

between 2-categories. Let : 1x ) GF be a pseudo natural transformation such
that each x : X ! G(FX) is a bi-universal arrow from X to G. Let x., be
de ned as in Lemmal83 above. Then for xedA 2 ObjA the assignmentObjX°P 3

X 7' x.a denoted .5 is pseudo natural.

Proof: Let A 2 ObjA be a xed object throughout this proof. Let F : X°P |
Cat denote the pseudo functor obtained by holdingA xed in the top row in
the de nition of bi-adjunction. This means F(X) = Mora(FX;A), F(f°%) =
(Ff) ,and for :f°%) (f9° in X the natural transformation F( ): (Ff) )
(Ff9 ish7!i, F . Note that the morphisms of X °° are formally the opposites
of morphisms of X, but the 2-cells of X°P are precisely the same as the 2-cells
in X. The vertical composition is the same in both X°° and X, although the
horizontal compositions are switched. The pseudo functoiF is the composition of

. . f .
a pseudo functor and a strict functor. For morphisms X K% HinXxX we

have .o :h7!in f, andfor X 2 ObjX* we have § :h7!i, [ by

the rules for composition of pseudo functors. Then gop too - F(FP) F(g))
F(f® g%®) and § :1:x ) F(1x). Let G denote the strict 2-functor obtained
by holding A xed in the bottom row in the de nition of bi-adjunction. Thi s means
G(X) = Morx (X;GA), G(f°*) = f ,and for :f°% ) (f9° in X the natural
transformation G( ) : G(f °°) ) G((f 9°P) is the natural transformation h 7! ij,
The 2-functor G is the composition of two strict 2-functors and is thereforestrict.
In order to prove that .5 is a pseudo natural transformation fromF to G one
must display coherence 2-cells® up to which  .s is natural and prove that they
satisfy the coherences involving and . Now | describe this °and later prove the
coherences. Let ~denote the coherence 2-cells which make : 1x ) GF pseudo
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natural, i.e. forall f : X ! Y in X we have

X# F X

~y (f)
GFf

Yy —IGFY
in X. Dene a natural isomorphism 2%, = 0, (f®): G(f?) v ) xa

F(f°) by h7!( FGf;h i) (ieh (v (f)) 1) for h2 Mora(FY;A) as in the
following diagram.

X ———JGFX == GRK
v (f)
GFf
Y 4YICFY Frn G(h Ff)
Gh

The map . (f °P) is a natural transformation because &, is natural in h. The
assignmentf °P 7! $;X (f °P) is also natural for a similar reason.

| claim that © satis es the unit axiom for pseudo natural transformations. |
must show that the diagram of 2-cells inCat

(22) XA lgx xa =———=0G(1x) xa
0
1>°(p
xa  lex - = A F(lx)
'xa X

commutes for all X 2 ObjX. Evaluating this diagram on a morphismh:FX | A
of A gives the diagram of 2-cells

(23) Gh x =——Gh x =———=0Gh x Ix
ioh (wxx (Ix)) *
Gh GFlx x
Figm | x
G(h 1ex) «x Gh F(ix)) «x

Glin % )iy
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in X. Since :1x ) GF is a pseudo natural transformation from the strict 2-

functor to the composition G F of pseudo functors, its unit axiom for ~simpli es
to the following commutative diagram.

(G(% ) & )i
lerx  x . = “—GF1x

~xx (1x)

x  Ix

Hence (wx (1x)) 1 =(G( &) &« ) i, as 2-cells. Note also that 3F =
(G(%) €. ) by the de nition of composition of pseudo functors. Using this,
we see that diagram [ZB) becomes the outermost rectangle ofié following diagram.

Gh 1GFX @h 1&'[: 1X X
fon 1y Elx n 1
G(h 1ex) S Fix) «

G(in % )iy

The upper left vertex of this diagram is the upper right vertex of diagram 3) and
the composition of the top arrow and right vertical arrow of t his diagram is the
right vertical arrow of diagram (£3). The top triangle of thi s diagram commutes by
de nition. The left triangle commutes by the unit axiom of th e pseudo functorG
applied to the morphismh : FX ! A of A. The right quadrilateral commutes by
the naturality of ©, and becauseG(in & )= ien G( % ). The morphism
and the 2-celli , justtag along. Hence the outermost rectangle commutes andid-
gram ([Z3) commutes. This implies that diagram {Z2) commutes We conclude that
Osatis es the unit axiom required for .4 to be a pseudo natural transformation.
| claim that © satis es the composition axiom required for .4 to be a pseudo

natural transformation. We must prove that for all morphism s X f—’%M
op op
of X, i.e. for all morphisms 79" K"K of X P the diagram of 2-cells inCat

(24)
G(f) G(g™) za

BEP)  va F(EP)—"*%a F(fP) F(g™)

G(f%® g%®) za A F(fP g®)
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commutes. More precisely the diagram of 2-cells irCat
(25)

fg  za——"H3 . (Fg) ——="2+3, (Ff) (Fg)

9 f)  za *3a  (F(g 1))

0
fOp gop

; F
I xa gop if op

must commute. | evaluate this diagram on a morphismh : FZ ! A of A, llin
the diagram with more vertices, and cut the result down the middle column to get
the left respectively right half below.

O%p (h) it
(26) Gh ; ggf i _1(§ih08Fg) y f

|GFg (XY (fy *

Gh GFg GFf

G .

ieh (~vz (9) i ich  Freg 1 x
o Gh G(Fg Ff) «x

ioh G( i) iy

Gh f *éh GF(g f
z 9 ion (—xz (9 1) ° (@ 1) x

G(h Fg) YM fop (h Fg) _Ié(h g Ff) «
Fth ii” ltltlt
ich Fgy (xv (F) ' &. i”“ ]tltltltlt

tt
G(h fgo) CFf l)t('tltltlt

(27)

6 )
Fgh leFf I x ‘i‘i‘ tt
ii““ i an ltltltﬂ
Gh GFg GFf X G(hoé:g Ff) x Glin f5) iy
jifit!
e i””“ipg Fth
Gh G(Fg Ff) x (1

ion G( fy) iy

Gh GF(g f) « Sh F(g ) «x

¢ i
F(g f)h X
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These are diagrams of 2-cells itX. Subdiagram (I) commutes by the composition

axiom applied to the morphisms X f—"?L’i for the pseudo natural trans-
formation :1x ) GF with its coherence 2-cells ~ Subdiagram (II) commutes by
the composition axiom applied to the morphismsFf; Fg; h for the pseudo functor
G with its coherence 2-cells ©. The fth arrow which is an equality symbol was
only drawn for convenience. Subdiagram (Ill) commutes by the naturality of ©.
All other subdiagrams commute by de nition or by the interch ange law. There-
fore the outermost rectangle commutes when we put the two hales together. This
outermost rectangle is diagram [Zb) evaluated on the morptsmh : FZ ! A of A.
Hence [Z5) and [Z#) commute. We conclude that © satis es the composition axiom
required for .5 to be a pseudo natural transformation.

Since .4 with coherence 2-cells © satis es the unit axiom and composition
axiom for pseudo natural transformations we conclude that .5 is a pseudo natural
transformation for xed A 2 ObjA.

[

F
Lemma 8.11. Let X and A be 2-categories. LetX Dr:/A be pseudo functors
G

between 2-categories. Let : 1x ) GF be a pseudo natural transformation such
that each x : X ! G(FX) is a bi-universal arrow from X to G. Let xa
be de ned as in LemmalB® above. Then for xedX 2 ObjX the assignment
ObjA3 A 7! xa denoted x. is pseudo natural.

Proof: Let X be a xed object of the 2-category X throughout the proof. |
introduce new pseudo functorsF and G di erent from those in the previous proof.
Let F : A! Cat be the strict 2-functor obtained by xing X in the top row in
the de nition of bi-adjunction. This means F(A) = Mora(FX;A), F(f) = f
and for :f ) f9%we haveF( ) is the natural transformation h 7! ih. The
2-functor F is strict because it is the composition of two strict 2-functors. Similarly
let G: A! Cat be the pseudo functor obtained by xing X in the bottom row of
the de nition of bi-adjunction. This means G(A) = Morx (X;GA), G(f) =(Gf) ,
andfor :f) f%we haveG( ) is the natural transformation h 7! G( ) in. The
pseudo functorG is pseudo because it is the composition of a pseudo functor dra
strict functor. The de nition of composition of pseudo functors then says that the
coherence 2-cells fo6 are f‘?g :h7! f‘?g inh for morphismsf; g of A suchthatg f
existsand § :h7! § iy for A2 ObjA. These are natural transformations,i.e.
2-cells inCat, such that £, : G(g) G(f)) G(g f)and § :1g)) G(la)
They are natural in f and g and they satisfy the required coherences for a pseudo
functor.

| must show that x. is a pseudo natural transformation fromF to G. In other
words | must display coherence 2-cells up to which . is natural and satisfy the
coherence diagrams involving and from F and G. For morphismsk : A1 A°
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of A dene aao(k):e7! S;k i , to Ilin the diagram

Mora (FX;A) — = IMorx (X;GA)

AA o(k
k (Gk)

Mora (FX;A9) ——/Mora (X;GA 9

xA 0

whose vertices are- (A); G(A); G(A9, and F (A9 read clockwise. The map a.a o(k)
is a natural transformation (2-cell in Cat) between the indicated functors because
S is natural in e. The assignmentMora (A;A9) 3 k 7! aao(k) is a natural
transformation ( xa) G) ( xao ) F because Sk is natural in k. Hence this
family  of natural transformations provides us with a candidate forthe coherence

2-cells to make x. into a pseudo natural transformation.
| claim that  satis es the unit axiom for pseudo natural transformations. This
entails proving that the diagram of 2-cells in Cat

i G

! (S
X;A &ﬁ)& X:A %@(JwA) X:A

1a

XA 1FA XA F (1A )

commutes for all A 2 ObjA. Evaluating this diagram on a morphisme: FX ! A
of A results in the diagram of 2-cells

X

in X which commutes because of the unit axiom for the pseudo funor G. Hence
satis es the unit axiom for pseudo natural transformations.
I claimthat satis es the composition axiom for pseudo natural transfomations.

This entails proving that for all morphisms Af—/lé 9% I in A the diagram of
2-cells inCat

3
G(g f) xa *3c F(g f)

S
fig XA
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commutes. Evaluating this diagram on a morphisme : FX ! A of A results in
the diagram of 2-cells

. s G ;

Gg Gf Ge %"@g G(f e « %@(g f e x
f?g iGe ix H

G(g f) G(e) «x S Sy f e «x

eg f
in X, which commutes by the composition axiom for the pseudo funor G applied

to FX - JA—" #B_9 k. Hence satises the composition axiom for pseudo
natural transformations.

We conclude that x. is a pseudo natural transformation from F to G with
coherence 2-cells de ned by . O

Now we can nally state and prove the two main theorems of this section.

i DDF://
Theorem 8.12. Let X and A be 2-categories. Let X A be pseudo func-
G

tors. Then F is a left bi-adjoint for G if and only if there exists a pseudo natural
transformation :1x ) GF such that x : X ! G(FX) is a bi-universal arrow
for all X 2 ObjX.

Proof:  This follows immediately from the previous lemmas. O

Theorem 8.13. Let X and A be 2-categories. LetX o A pea pseudo functor.
Then there exists a left bi-adjoint for G if and only if for every object X 2 ObjX
there exists an objectR 2 ObjA and a bi-universal arrow x : X ! G(R) from X
to G.

Proof: By Lemmal8, the existence of a left bi-adjoint implies the aistence of
such a bi-universal arrow. Now we prove the other direction.Suppose we have such
a bi-universal arrow for eachX 2 ObjX. Dene FX := R. The object R 2 ObjA
of course depends oiX . For X 2 ObjX and A 2 ObjA let x.a :Mora(FX;A)!
Morx (X; GA) denote the functor 7! Gf® y and 7' G i ,. Let xa
Morx (X;GA) ! Mora (FX;A) denote a right adjoint equivalence, which exists
because x is a bi-universal arrow. Let xa : xa xA ) Imor 4 (x;ca ) denote
a counit for these adjoint functors. All of this implies that for any morphism
f :X ! GA there exists a morphismf °:= y.A (f) and a 2-cell x.a (f) as in the
diagram.

x ———J6(FX) FX
‘ XA(f) Gf ©° £0

f

Moreover, this 2-cell x.a (f) is a universal arrow from the functor x.a xA tO
the object f because all of the arrows of the counit of an adjunction are uiversal.
This means that for any other morphism f%: FX | A and 2-cell as in the
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diagram
X ———JIG(FX) FX
H Gf° f0
X ——6A

there exists a unique 2-cell °: f9) f %such that the following diagram commutes.

fO GF0 y ——=13
fO Gf0 x =——="13

xa ()

If isiso, this 2-cell °: %) fO%is also iso by the comments after De nition [B2.
The uniqueness and iso property of ° will be integral to de ning the coherence
isomorphisms and proving the coherence diagrams below.

After setting up this notation, | de ne a left bi-adjoint can didate F for G. We
already haveF de ned for objects X 2 ObjX above. For any morphismh : X ! 'Y
in X dene Fh := xgy (y h). For morphisms h;h%: X ! Y and any 2-cell

:h) h%n X dene F = gy (i, ). Then the assignment is obviously
a functor on any xed hom set because of the interchange law ath because x.ry
preserves identity 2-cells and compositions of 2-cells. Tde ne the coherence 2-cells

>F< I now use the uniqueness described above. Note th& 1x = xrx ( x 1x)
satis es the diagram

X : —JGFx FX
X | GF 1x Flx
x B IGE X FX

X

where xrx ( x 1x)is universal. The arrow 1gx satis es

X X __.“-i/be FX
(Fx ) '“””
1x ”””ﬁ Glex 1ex
i
x B IGF X FX

since G is a pseudo functor. Let )F( : 1rx ) F1x be the unique 2-cell whose
xFx image factors (&, ) 1 i ..

(& ) *iy

(28) 1rx Glex  x —X - X _+3 1y

xFx  (x 1x)
It exists by the universality of xrx ( x 1x). The 2-cell ; t1gx ) Flx isiso

because (gx ) * i, isiso. Todene f; for X " K9 HBinx | similarly
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use the uniqueness. Note thatt(g f)= xrz ( z g f) satises the diagram

x ———JGFX FX
. N :
Y wee (396 GF@@D) F@n
z A - brz Fz

where the 2-cell xrz ( z g f)isuniversal. The arrowFg Ff satises

f X;FY__:_(-:-':. f) éGFf i

y
Y—JGFY (e ) ' |S(FoFl)  FY |Fg Fi

S leFg
9 vrz (2 @) Fg:

7Y gz GFz Fz

z

since G is a pseudo functor. Let ffg :Fg Ff ) F(g f) be the unique 2-cell
whose x.rz image factors the composition of the 2-cells in[[29) as follws.

(30) Fg Ff G(Fg Ff) x =——3 g f
xfz (z 9f)

The top horizontal 2-cell in the previous diagram is the compsition of the 2-cells
in (E9). The 2-cell ffg :Fg Ff ) F(g f)isiso because the composition of
2-cells in (29) is iso. Thus | have completely de ned a left biadjoint candidate F
for G. Now | must show that the 2-cells do what they should in order br F to be
a pseudo functor.

| claim that F is natural in its two variables. | must show for morphisms

X H_9 B inX and2-cells :fi) foand :g@) g inin X that

E

(31) For Ffy=—"g f))
FOF H F( )
Fg, Ffy=—="8(q f)

f2:92

commutes.
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Toward this end, consider diagrams [3P) and [3B).

(32) G(Fo1 Ff1) «x = B og fy
G( fg,) 1 x H
G(F(a f1) x =—= (e 0 1) +3 o fi
GF( )iy ‘i z
GF(g f2) «x B oo f

xFz (z G2 f2)

(33) G(Fo1 Ffi1) «x = B oa f
G(F F )iy ‘i z
G(Fg2 Ffz) «x - 3 og f
G( fr0,) 1 x H
G(F(g2 f2) «x B og f

xFz (z G2 f2)

The top horizontal 2-cell ; in both diagrams is the composition of the 2-cells in
diagram ([29) with f; g replaced byf 1; g; respectively. The bottom horizontal 2-cell
in each diagramis x.kz ( z 92 f2). The center horizontal 2-cell ; in (B3) is the
composition of the 2-cells in [Z®) with f; g replaced byf,; g, respectively. The top
rectangle in (32) commutes because it is the analogue dE{B®r f 1; g:. The bottom
rectangle in (32) commutes because of the naturality of x.rz | xFz XFZ )
Imor « (x:cFz ). Hence the outer rectangle of [32) commutes. The top rectarig of
B3) commutes because of the naturality of (¢) *; xry ;and vz by comparing
with the 2-cells of (Z9). The bottom rectangle of {33) commuies because it is the
analogue of [3D) forf,; g.. Hence the outer rectangle of [3B) commutes. From[{32)

and @3) we conclude thatbothF( ) f ., and f,.,. (F F )have xrz
images which |l in the right diagram of (4).
(34)
(i , ) 1 +
Fgl Ffl G(Fgl Ffl) X —/—/—— % 92 f2
F(z f2) GF(g f2) «x 3 g f

xFz (z 92 f2)

Since xrz (z @2 f2)is universal, we conclude that

F( ) fi= f,q. (F F )andthus F is naturalin its two variables.
I claimthat F and F satisfy the unit axiom for pseudo functors. LetX 2 ObjX

and letf : X ! Y be a morphism ofX. | must show that { . =(igr & ) %

By de nition, 1Fx ¢ Is the unique 2-cellFf F1x ) F(f 1x) such that the
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composition of 2-cells

G(Ff F1
(35) X — % Igpx 2PN ey
i X G( 1Fx ;f)

X ———I6FX ————IGFY
G GF (f 1x)

xey (v f 1x)

X /&( IGFY

f 1x Y

is the same as the composition of 2-cells

G(Ff Fix)
(36) X ——IGFx - IGFY
‘i
GFf
X ——J6Fx 2 JBFX I6rY

oxex (x 1x)

X — Mk — I6Fx l6FY

G 1
X ‘( Fiy #f )

iGFf

GFf

i1y Doxry (v f)

X Ik Iy IGFY

1x f Y

where universal 2-cells are drawn with dotted double arrowdor clarity. |1 show that
(ier & ) 'is a2-cell with this de ning property for T .

Since © is natural we can rewrite the rst horizontal 2-cell composition in (86)
as the composition of the rst three 2-cells in the equal diagam (B1).

(37) X ———J6Fx S Fh) IGFy
i e ) 1)
X ——lgpx S ) IGFY
i G Fy £t ) D
X —* lgpx S Sl IGFY
iy G(irr ) G( % )
x ——Ierx —2 JeEx — L JGFY
e (x 1) o1
X — > Ik —J6FX ——J6FY
i1y foxry (v f)
X 7% Ik IGFY

1x f Y
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By the unit axiom for G, the de nition of &, and the interchange law we see that
the second horizontal composition in [3¥) is

(Ser) b i =ierr  Bx

=iert (xFx (x 1x) (G( %k ) i)t

=(G(irr) G(% ) ' i4) (ierr  xrx (x L)t

Substituting this in (§7) for ( £ ) * i, we see that the second horizontal
composition in ) cancels with the third and the fourth, leaving only

M G(Ff F1
(38) X ——IGFX wCFY ;
i G(f )

X ;bFX W@FY

xey (v f 1x)

e /
X —— —IGFY

We see that the 2-cell compositions of[[35)[(36),[[37), andiZd) are all equal. Hence
the 2-cell compositions [3b) and [3B) are equal and by univesality of the 2-cell

xky (v f Ix)wehave [ ( =(igr % ) '. The other half of the unit axiom
can be veri ed similarly. We conclude that F and © satisfy the unit axiom for
pseudo functors.

| claim that F satis es the composition axiom for pseudo functors. Let
W ! /f( S K- # pe morphisms ofX | must show that
= §tn (rn fg) (§n irt) % Bydenition ( f o) *is the unique

2 ceIIF(h g f)) F(h g) Ff such that the composition of 2-cells

(39) v 4W/b|:w — GFW ——— GFW

9 ( Ef;F th g) ! G(( fn g) D) GF (h g f)

Y ____:;.'ff:" GF (h g) G(F(h g) Ff)

z ——JGFz GFZ GFZ

is the same as the universal 2-cell xz ( z h g f). For clarity | continue to
draw the universal 2-cells as dotted double arrows. | provehat replacing ( fF;h o) !

n@Dby (§en G(en fy) (G i) D) stillgives xez (z h g ).
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After that we conclude

th g = gtn  (rn f5)  (§n irr) ' by the universality of the 2-cell
xrz ( z h g f). To this end, | claim that the composition

(40) Y 4W/b|:w — GFW ——— GFW

G 1
¢} ( Ff;F  (h g))

“ GF (h g) G(F(h g) Ff) GF(h g f)

z ———JGFz GFZ GFZ

isthe same as xrz ( z h g f),where the rightmost 2-cell is G(( 5f;h (iEn
fo) (& irt) B 1. 1 do this by transforming (40) to a diagram know to be
xFz (z h g f). The naturality of © guarantees that

G
FiFh  F

G(Fh Fg) GFf _1S(Fh Fg Ff)

G( gn) icrs G( &y irr)

GF(h g GFf =——="(F(h ¢) Ff)

FfF (h g)
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commutes. Using this commutivity to substitute for ( Ef;,: (h g)) 1in (E0) and
cancellingG( &y, irt) * G( § Iirr)gives

(41)
w—"JGFw WFW GFW GFW
.-_-_-_-::.'.__._-.':" GFf \Mt GFf
X::::f:""
X #bFX —— GEX
9 .___-_'.'-"I::I.. ( Sf;Fh Fg) !
._.____._-:-'-"' GF (h g) G(Fh Fg) G(Fh Fg Ff) GF(h gt)

Y o G §n)

h .II:._.__._-_-_'..

7z ———JGFz GFZ GFZ =———GFZ
where the right 2-cell is G((irn ~ fg) * ( §n) ). We have also implicitly

used the fact that G preserves the vertical composition of 2-cells. By the de niion

of g;h, the lower left two rectangles of [Z1) can be rewritten to givwe the equal
composition {@2).

f _.._-:::::::::::::::;Ff 'f GFf
| "::::::::::::::::::.. i ( FGf;Fh Fg) 1
Y X;\(/FY ( Sgiph ) 1G(Fh ) | GF(hgf)
h _..;:::::::::::::::::_--' GFh

- GFZ GFZ =———=GFZ
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Recall that the composition axiom for the pseudo functor G guarantees the com-
mutivity of the following diagram.

i G

GFh GFg GFf ——_"™ 48Fh G(Fg Ff)

G R G

FgFh  IGFf Fg FfFh

G(Fh Fg) GFf =———=="G(Fh Fg Ff)
FfiFh  Fg

Using this composition axiom for the pseudo functorG we can replace the middle
two columns of 2-cells in [42) to get the equal composition[{d).
(43)

w ——GFw GFW GFW ———GFW

f 7GRt

G 1
FfiFg )

X:::-'-':"
X ———JGFX (

G(Fg Ff)
9 ___._-.'_'_-_'-"'" GFg (Sg FfiFh ) !

X::-"'" G(Fh Fg Ff) GF (h g f)

Y 4Y/¢FY :‘MFY
h _._-_-::::.__._--"'" GFh \Mh GFh
X::.'-"'"

z——I6Fz GFZ GFZ =———=GFZ

In (E3) the right 2-cell is again G((irn  f3) * § tn) 1) asin @) and @2).

By the de nition of fF;g we can rewrite the upper left three rectangles of [4B) to
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obtain (BZ), which has G((irn ) * § tn) 1) as its right 2-cell.
(44)
w ———I6Fw GFW GFW GFW
f _.;::::-'-""
..-_'_'_':_'_'_'__ GF (g f) G(Fg Ff)
X _._-.'-"".'.. G( fg)
g .._._.._'_'-I'I:I.. ( Eg Ff;Fh ) !
G(Fh Fg Ff) GF (h g f)
Y %@FY 77‘MFY
h " Grh \Mh GFh
X::::-'-"'"
z—I6Fz GFZ GFZ GFZ
The naturality of € implies that the diagram
G
GFh G(Fg Ff)=——"2—+8(Fh Fg Ff)
Glirn) G( ) Glirn )

GFh G(F(g f)) ———

F (g f):Fh

S(Fh F(g f))

commutes. Using its commutivity, we can rewrite {@4) by comhning its middle two

columns of 2-cells withG((ign

(45)

f

w LE_FW

Y — I6Fy

Y

GF (g f)

GFh

G 1
( F (g f);Fh)

GFW

G(Fh F(g f))

G gn) M)

GFZz

GFW

GFZ

fg) 1) from the last column to get (B5)

GF (h g f)
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But by the de nition of gFf;h , the composition of 2-cells in [4®) is precisely
xrFz (z h g f). Since the compositions of 2-cells in the diagrams[{40)
through (E5) are all equal, we conclude that the compositionof 2-cells in [40) is
xFz (z h g f). We conclude that f, = gFf;h (ien ffg) ( gF;h ipf) t
by the universality of xrz ( z h g f). Therefore F satis es the composition
axiom for pseudo functors.

In summary, | have constructed a pseudo functorF : X ' A with coherence 2-
cells F and F and I have shown that they satisfy the unit axiom and composition
axiom for pseudo functors.

Next | have to show that F is a left bi-adjoint using the previous theorem. By
hypothesis we already have a morphismy : X ! GFX forall X 2 ObjX. I claim
that the assignment X 7! x is a pseudo natural transformation from 1z to GF.
| need to de ne the 2-cells up to which is natural. For a morphismf : X ! Y of
X dene t := xpy (y f). Then the diagram

X — 2 J6EX

f

f GFf

Yy ——J6FyY

illustrates the source and target of the 2-cell. The mapf 7! ¢ is natural because
x:Fy IS @ natural transformation. More precisely let :f;) f, be a 2-cell inX
and letfy;f,: X ! Y be morphisms inX. Then

Fy (v f1)
(46) xry ( xey (v f1)) 2o 3 1,
xfy (xey (i y ) ‘i Y
xFy ( xpy (v f2)) 3 1,

xry (v f2)

commutes by the naturality of x.py . By the de nitions of F, ¢,,and ¢, diagram
() is the same as the diagram

(47) GFf,; L +3 0,

GFfz X +% f2

f2

GF i

x 1

Y

which saysf 7! : is natural. The map f 7! ; satises the unit axiom for
pseudo natural transformations because of[{48) and the de ition of ©F for the
composite pseudo functorGF. The map f 7! ; satis es the composition axiom
for pseudo natural transformations because oflf30){A9), ad the de nition of ©F
for the composite pseudo functorGF. Hence : 1x ) GF is a pseudo natural
transformation with coherence 2-cells .

By the previous theorem, the constructed pseudo functorF is a left bi-adjoint
because : 1x ) GF is a pseudo natural transformation such that x : X !
G(FX) is a bi-universal arrow for all X 2 ObjX. O

We can summarize the previous two theorems in way similar to Mic Lane's
theorem on page 83 of([39] as follows.
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Theorem 8.14. A bi-adjunction hF;G; i : X * A can be described up to 2-cell
by either of the following data:

(1) Pseudo functors

X og—Ih

G

and a pseudo natural transformation : 1x ) GF such that each x :
X 1 GFX is a bi-universal arrow from X to G. Then x.a is de ned by
xa (F)=Gf  x.

(2) A pseudo functorG : A ! X , for each X 2 ObjX an objectR 2 A
depending onX, and for each X 2 ObjX a bi-universal arrow x : X !
GR from X to G. Then the pseudo functorF satis es FX = R on objects
and there is a natural iso 2-cellGFh x ) % h for morphismsh: X !
X0

Proof:  Uniqueness will be proven below. O

Similar things can be formulated for bicounits. From 1-category theory we know
that any two left adjoints to a functor are naturally isomorp hic. A similar statement
can be made for left bi-adjoints, although one needs the compt of pseudo natural
pseudo isomorphism

De nition 8.5. Let F;F%: X I A be pseudo functors. Then a pseudo natural
transformation :F ) FZOis called apseudo natural pseudo isomorphisnor pseudo
natural equivalenceif there exists a pseudo natural transformation °: F°) F and

there exist iso modi cations 0 1roand © 1.

Theorem 8.15. Let F;F%: X I A be left bi-adjoints for a pseudo functorG :
A!X . Then there exists a pseudo natural pseudo isomorphism:F ) F?°

Proof: For X 2 ObjX,let x :X ! GFX and % :X ! GF% be the bi-
universal arrows obtained from the bi-adjunctions as in thetheorems above. Then
by Lemmal[832 there exists a pseudo isomorphismy : FX ! F% and a pseudo
inverse % :F ! FX aswellas2-cells § x) 1gx and x %) 1rox.
It can be shown that the assignmentsX ! x and X !  $ are pseudo natural
and the 2-cells determine modi cations ° 1 and 0 1.

For example, | construct the coherence 2-cell up to which is natural. For
f 2 Morx (X;Y ) we have the following two diagrams.

(48) X ———IGFX FX
f M GEf Ft
Y =———J6FY FY

v groy FoY
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(49) X ——IGFx FX
x S Jgpox FOX
X
f o GF % F O
y IRy Foy
Y

But they can also be lled in as

(50) X ——J6Fx FX
T e e
X {4“/@0\( %
Y

where the dashed 2-cell is universal. The universality give us iso 2-cells ¢ and ?
as in

0
whose images factor (via the universal 2-cell) the 2-cells in[[2B)and #9) precom-
posed with the appropriate ( ©) !'s. Dene ; = ¢ :=( ) ' ?. Thisis the
coherence 2-cell up to which will be natural.

A sketch of the naturality of f 7! ¢ goes as follows. Let :f;) f, be a 2-cell
betweenf;f, : X I Y. Then we must show that the outer rectangle of

0

vy Ffi1
FOoiy H(ig ) Hin

f2
commutes. One does this by showing that the individual innersquares commute by
applying and using the universality and the fact that is a natural isomorphism.
It also involves the naturality of the C's.

One can also show that satis es the composition and unit axiom, although it
is lengthy. Lastly one must verify that the 2-cell assignmerns at the start actually
give modi cations ° 1 and 0 1.

Thus, any two left bi-adjoints are pseudo naturally pseudo somorphic. O

There is a relationship between bi(co)limits and bi-adjoirts, just like for (co)limits
and adjoints.

Remark 8.16. Let C be a 2-category with bicolimits and let] be a 1-category.
Let C' be the category with objects pseudo functord ! C , morphisms pseudo
natural transformations, and 2-cells the modi cations. This is a 2-category. Let

C!C "’ be the constant 2-functor. Thenlaxcolim : C* 1 C is a left bi-adjoint
for  and the arrows of the bi-unit constructed in TheoremBIP arethe universal



98 THOMAS M. FIORE

pseudo cones. Similarlylaxlim : C’ ! C is aright bi-adjoint for  and the arrows
of the bicounit are the universal pseudo cones.

9. Forgetful 2-Functors For Pseudo Algebras

Next | show that forgetful 2-functors for pseudo algebras hae left bi-adjoints.
Let us consider the strict case as an example of what we do belo Let S be
the theory of abelian groups and letT by the theory of rings. Then we have an
inclusion S'! T. Let X be a discreteT-algebra,i.e. X is a set and we have a
morphism of theoriesT ! End(X). Then X can be made into anS-algebra by
the composite map of theoriesS ! T ! End(X). This precomposition with the
inclusion arrow forgets the ring structure on the setX and results in the underlying
abelian group. This precomposition with the inclusion de nes the forgetful functor
from the category of rings to the category of abelian groups.It has a left adjoint
which is the appropriate free functor. Similarly, for any morphism of theories
S! T we have a forgetful 2-functor from pseudoT -algebras to pseudcS-algebras
for which a left bi-adjoint exists. Blackwell, Kelly, and Power have shown that left
bi-adjoints exist for the analogous 2-functor on 2-categoies of strict algebras over a
2-monad with pseudo morphisms in[[9]. Lack has given su ciert conditions in [BZ]
under which the inclusion of strict algebras over a 2-monadnto pseudo algebras
over the same 2-monad admits a left adjoint whose unit has coponents that are
equivalences. In such cases, every pseudo algebra over then®nad is equivalent
to a strict algebra over the 2-monad.

Denition 9.1. Let :S! T be a morphism of theories and letX be a pseudo
T-algebra with action : T ! End(X). Let UX be the pseudoS-algebra which

has X as its underlying category andS structure mapsdenedby ( (w)): X"!

X for w 2 S(n). Dening U analogously for morphisms and 2-cells of the 2-
category of pseudoT-algebras gives a strict 2-functorU from the 2-category of

pseudo T -algebras to the 2-category of pseudd-algebras called theforgetful 2-

functor associated to .

To show that the forgetful 2-functor associated to has a left bi-adjoint, we
need to nd a bi-universal arrow of the following type: given a pseudoS-algebra
X there should exist a pseudorl -algebraR and a bi-universal arrow x : X ! UR
in the category of pseudoS-algebras. In the next de nition | de ne this R.

Denition 9.2. Let :S! T be a morphism of theories. LetX be a pseudoS-
algebrawith action : S! End(X). Let T°denote the free theory on the sequence
of setsT(0); T(1);::: underlying the theory T. The category Alg® is the category
whose objects are smallT “algebras and morphisms are morphisms of stricfl %
algebras. Let ObjGraph® be the collection of small directed graphs whose object
sets are discreteT %algebras. Let MorGraph © be morphisms of directed graphs
such that the object component of each morphism is a map of digete algebras.
Then Graph®is a category. The forgetful functor V : Alg®! Graph® has a by
Freyd's Adjoint Functor Theorem. We denote this left adjoint by VO It is like
taking the free category on a directed graph, except the redting category is also a
T2algebra. The objects of the underlying directed graph ofv % and the objects of
the directed graph Y are the same. the LetObjRgo be the (discrete) freeT %-algebra
on the discrete categoryObjX and let MorR go be the collection of the following
arrows:
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w (wl;:::;wn)(Al;""AQ1 ). Herew (wl;::"wn) is the composrtron in
the original theory T. Thetarget w(wi (AL AL D wa (AL AR )
is the result of composing in the free theory and applyrng it o the A's in
the free algebra.

(2) For every A 2 ObjRgo there is an arrowl : Id(A) ! A and an arrow
N 12Al 1d(A). Hereld is the unit of the original theory T.

(3) For every Word w 2 T(m), for every function f fl,:::;mg!f 1;:::;ng,

Swi (A1;::1;An): Wf(Al;::“A ) W(Ar1 i Amm )

(4) For every Word w 2 S(n) and objects Ap;:::; A, of X there is an arrow
wALG AR T (WAt AR (W)(AL i An)
and an arrow
w HAL AN D (WAL AR D (W)(AL T AR).
(5) Include also all elements ofMorX .
Then Rgo is an object of Graph® Now we apply V°to Rgo and we get a category
ROwhich is a T%algebra. The objects ofRge and R? are the same.
Let K be the smallest congruence with the following properties:

(1) All of the relations necessary to make the coherence ares (including )
into natural transformations belong to K. For example, if A;B 2 ObjR°
andf : A! B is a morphism of R%then the relation 1o f = 1d(f) Ig
belongs toK ..

(2) All of the relations necessary to make the coherence arwes (including )
into isos are inK . For example, for everyA 2 ObjR%the relationsia |, 1=
1pn and 1, ! 1o =14 areink.

(3) All of the relations listed in the de nition of pseudo alg ebra above belong
to K, where the objects range over the objects oR®.

(4) The original composition relations in the category X belong to K .

(5) The coherence diagrams necessary to make the inclusiory : X ! UR into
a morphism of pseudoS-algebras are inK . Note that these coherences will
involve the arrows |, (A1;: 5 AR) 0 ( WAL AR L (W)(Ag; i An)
for w 2 S(n) and objects Ay;:::;An 2 ObjX.

(6) If the relations f; = gi;:::;f, = gy are in K and w 2 TYn), then the
relation w(fq1;:::;fn) = w(gy;:::0) is also inK..

Next mod out R by the congruenceK to obtain the quotient category R called
the free pseudoT -algebra on the pseudds-algebra X associated to . We do not
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use a capital greek letter to denote theT action on R. Rather we write the words
directly.

In all of the following lemmas in this section we use the notaion just introduced
in De nition €Z]

Lemma 9.1. In the notation of the previous de nition, the free pseudoT -algebra
R on the pseudoS-algebraX associated to is a pseudoT -algebra.

Proof:  First we note that R is a (strict) T%algebra. The functor from the word
w 2 TYn) induces a functor on the quotient by relation 6. and the composition
and identities in T° are preserved. The action has the coherence isos required @f
pseudoT -algebra because of the arrows we threw in. The coherence seatisfy the
required coherence diagrams because of relations 1. and 2.ekteR is a pseudo
T -algebra. O]

Lemma 9.2. The inclusion functor denoted x : X ! UR is a morphism of
pseudoS-algebras.

Proof: The inclusion is a functor because of relation 4. It is a morplsm
of pseudo S-algebras because for allw 2 S(n) the natural transformation , :
x (w)) (W) x;:::; x) satis es the required coherences by the relations in
1. and 5. O

Lemma 9.3. For every pseudoT -algebraD and every morphismH : X ! UD of
pseudoS-algebras, there exists a morphisnH®: R! D of pseudoT -algebras such
that

x —UR R
H éUHO §H°
x —p D

commutes.

Proof: Let denote the action of T on D. As above, denotes the action
of S on X and we suppress the capital greek letter when denoting the aion of T
on R. Note that D is a strict T° algebra and we can therefore apply the forgetful
2-functor V : Alg®! Graph®to it. We also use to denote the action of T%on D.
To construct the morphism HY | de ne a morphism HJ : Rgo ! VD in Graph®,
which induces a morphismH?: R%!' D of Alg°by the de nition of the left adjoint
to V. Then I show that HY preserves the congruenc& and therefore induces a
functor H®: R ! D. Lastly | show that H®is a morphism of pseudoT -algebras
such that the desired diagram commutes.

| now dene a morphism HJ : Rgo ! VD in Graph® Dening HJA =
HA for A 2 ObjX induces a mapH§ : ObjRgo ! ObjD of discrete T° al-
gebras. Forf 2 MorX dene HY := Hf. For every w 2 S(n) and objects

map the other coherence arrows 1. through 3. to the analogousnes inMorD with
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Ho applied to sources and targets. Thus we have de ned a morphia HJ : Rgo !
VD in Graph®.

The morphism HJ : Rgo ! VD in Graph®induces a morphismH? : R°! D
of Alg® by the de nition of the left adjoint to V. | claim that H? preserves the
congruenceK . It su ces to check the relations 1. through 6. | verify them i n order
of the list above.

(1) These are satis ed because the analogous arrows f@ and H are natural
transformations and H{ maps coherence arrows to coherence arrows.

(2) These are satis ed because the analogous arrows f@ and H are isos and
H? maps coherence arrows to coherence arrows.

(3) The target category D is a pseudoT -algebra so these are satis ed.

(4) The functor H preserves the relations of the categoryX and H? is de ned
in terms of H, which implies that these are satis ed.

(5) These are satis ed because !! satis es the coherences antH)( )= .

(6) This is by induction. The base case is showing 1. through 5as was just

done. Suppose the relation$; = g;;:::;f, = g, areinK and Hffi = H{’gi
forall i =1;:::;n. That is our induction hypothesis. Then
HOw(fq;::fn) = ( W) (HX(F1);:::; HY(f ) since HY is a morphism of
T%algebras

= ( w)(H%y;:::;H%,) by induction hypothesis

SinceH ¢ satis es the relations, we conclude thatH?: R°! D induces a functor
HO:R! D suchthatH?= H® QwhereQ :R°! R s the projection functor onto
the quotient category. The functor H°: R ! D is a morphism of strict T%algebras

= ( W)(H®%;;:::;H%,) since HY and H % agree on objects.

We also have

HOw(f1;:::5f0)) = HYw(fr;::::f0))

= ( W)Y(H¥ ;i HIE )

= ( W(H%q;:::;H%,), where HY is actually applied to representatives of

w(fq i fn), f1;::00f,. HenceH%is a morphism of strict T%algebras and also

a morphism of pseudoT -algebras, sinceT(n)  TYn) although this inclusion is
not necessarily a map of theories. According to these two deonstrations, the
coherence 2-cells for the morphisnt © of pseudoT -algebras are just identities.

| claim that
x ——UR R
H §UH° §H°
X T’UD D

commutes. Itis su cient to check this for the underlying fun ctors and the coherence
2-cells. The underlying functor of H %is the same as the underlying functor ofU H®
Let A 2 ObjX. Then UH® y(A) = UHYA) = H%A = HA. Similarly, for
f 2 MorX we haveUH? x (f) = UHYf) = H% = Hf . Hence the diagram
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commutes. The coherence 2-cells also commute becaudé( ,,) = " and because
the coherence 2-cells oH ° are identities. O]

Lemma 9.4. The inclusion morphism x : X ! UR is a bi-universal arrow from
X to the forgetful 2-functor.

Proof: Let D be a pseudoT -algebra. Let Mor s(X; UD ) denote the category
of morphisms of pseudoS-algebras fromX to UD. Let Mort(R;D) denote the
category of morphisms of pseudd -algebras fromR to D. Let :Mort(R;D)!
Mors(X;UD) be the functor de ned by H°7! UH® x and 7' U i ,. Dene
afunctor :Morg(X;UD)! Mort(R;D) as follows. ForH 2 ObjMor s(X;UD)
let H = H°whereH%: R! D is the morphism of pseudoT algebras constructed
in the previous lemma.

If H;J 2 ObjMors(X;UD)and :H ) J is a 2-cell in the 2-category of
pseudoS-algebras, dene ( )= ©9:H%) J%inductively as follows. If A 2 ObjX
then

%A= A :HA = HA! JA =JA. If w2 TYn) and Cis already de ned

following inductive proof shows that °: H?) JCis a natural transformation. For

f 2 MorX the naturality of ©is guaranteed by the naturality of : H ) J.
The naturality of  © for the coherence isos thrown into the categoryR during its
construction follows becauseH ® and J° take coherence isos oR to analogous ones
in D and the coherences isos iD are natural. That concludes the base case for
the induction. Now suppose Cis natural for morphisms f; 2 Morg(A;;B;) for
i=1;:::;nandw 2 TYn). Then

HW(AL; 5 AR) M[J‘\N(Al;:::;An)

W (B1;:5B n

commutes becausav commutes with everything in the diagram by de nition and
because we apply the functor (w) to each of the individual naturality diagrams for
fi:A;! Byandi=1;:::;n. Hence Cis natural for any morphism in R by this in-

Hence ( )= Cis a 2-cell in the 2-category of pseudd -algebras.

It is routine to check inductively that the assignment : Morg(X;UD) !
Mor 1 (R; D) preserves identities and compositions and is thus a functo

| claim that is a right adjoint for . By the previous lemma (H)y=H
for all H 2 ObjMors(X;UD). One easily sees that ()= foral 2
MorMor s(X;UD). Hence the counit : ) 1vor s(xup ) is the identity
natural transformation, which is of course a natural isomomphism. Next | de ne
aunit : Iyor;(rp) ) . For J92 Mor7(R;D) let HO := (J9. Re-
call that HO is strict, i.e. H' is trivial, while J° may not be strict. | dene a
2-cell (J9:J3°1 HO= (39 in the category of pseudoT -algebras induc-
tively. For A 2 ObjX  ObjR set (J9(A) := 1;0a. Supposew 2 Tqn) and



CATEGORICAL FOUNDATIONS OF CFT 103

(wW)( (39AL; 5 (I9AL) (Al; i Ag ) An inductive proof, similar to the
one above but also using the naturahty of ', shows that (J9 is a natural trans-
formation and commutes with ?° and "’ appropriately, i.e. (39:J°) Hlisa
2-cell. It is also iso by induction. The assignmentJ®7! (39 is natural by an in-
ductive argument that uses the diagram in the de nition of 2-cell in the 2-category
of pseudoT-algebras. Hence : lyor ;(rp) ) is a natural isomorphism. If
one can show that and satisfy the triangular identities, then one can conclude
that is a right adjoint for

| claim that the unit  and the counit satisfy the triangular identities. First |
show that

is the identity natural transformation i : ) . Let H 2 ObjMors(X;UD).
Then

(i ) ( i)H)= (wu) w bydenition
= 4 since 4 is trivial.

But 4 = (H)isthetrivial 2-cell H ) H becauseH is a strict morphism
of pseudoT -algebras,i.e. ' is trivial. Hence @I) isi : ) . Next | show
that

(52) _ ' 43 __ 1 43

is the identity natural transformation i : ) . Let J°2 ObjMort(R;D). Then

( go) since ;o is trivial

( i) (i Y39 = 30 ( 30) by de nition
= 50 i, by denition.

But o i, is the trivial 2-cell (J% = J° x ! J9  because jo(A) =
(J9(A) =1 ;0a forall A2 ObjX and x : X ! R is the inclusion functor. Hence
(&2) is the identity natural transformation i : ) . Thus the unit and counit

satisfy the triangular identities and  is a right adjoint for . Moreover, is an
equivalence because the unit and counit are natural isomotgisms. We conclude
that x : X ! UR is a bi-universal arrow from X to the 2-functor U. O

Remark 9.1. Although it is not necessary, we can construct the factorisng 2-cell
Oas follows. LetH : X ! UD be a morphism of pseudoS-algebras. Then
(H) = HO satis es

X 4/(”? R
H EUHO §H°
X %UD D

and (H) is the identity 2-cell. SupposeH®: R ! D is another morphism of
pseudoT -algebras and is a 2-cell as follows.

X _____i___MJ(R) R

P

b R
X m JD D

UH® HO
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Dene a 2-cell °: H?) HCas follows. ForA 2 ObjX R, A := A. If

w(A1; 5 AR) = (W) PAgiii; %An)  H°(Aq;:::;An). By induction Ois
a natural transformation. It also commutes with H° and H° appropriately by
construction. Hence °is a 2-cell in the 2-category of pseuddl -algebras. By
construction we see that

::0 0
H URT x =%

commutes. Such a 2-cell ° is unique by the requirement that &3) commutes
and by the commutivity with H° and H° required of 2-cellsHO) HC More
precisely, the commutivity of (B3) says that °A = A for all A 2 ObjX and the
appropriate commutivity with H® and H° species what ©° does to objects of
the form w(A1;:::;A,) for Ag;:::; A, 2 ObjR. If s iso, then so is © by the
construction and the fact that "’ is iso.

Theorem 9.5. The bi-universal arrows x : X ! UFX de ne a strict 2-natural
transformation :1x ) U F, where X is the 2-category of pseud&-algebras.

Proof:  Recall that the counits for the bi-universal arrows x are all trivial as
indicated on page[IOP in Lemmd9M. In the proof of Theoreri 83 on pageJb the
bi-universal arrows x : X | UFX are made into a pseudo natural transformation
bydening ¢ = xpy (y f)forf :X ! Y. We see that ; is trivial because

x:py is trivial. Hence s strictly 2-natural. O

Theorem 9.6. Let S and T be theories and :S! T a morphism of theories.
Then the forgetful 2-functor U associated to from the 2-category of small pseudo
T -algebras to the 2-category of small pseudd-algebras has a left bi-adjoint denoted
F. Moreover, this pseudo functorF is actually a strict 2-functor.

Proof:  For every pseudoS-algebraX there exists a pseuddr -algebraR and a
bi-universal arrow x : X ! UR by the Lemmal[@4. This guarantees the existence
of a left bi-adjoint by Theorem B13.

We can prove that F is strict by inspecting its coherence isos constructed in tie
general theory of TheorenBIB. LetX be the 2-category of pseudds-algebras,A
be the 2-category of pseudar -algebras, and letG ;= U : A! X be the forgetful
2-functor. For any pseudo S-algebra X 2 ObjX, we dene FX to be the free
pseudo T -algebra R on the pseudo S-algebra X associated to the morphism of
theories : S ! T. The co-unit for the bi-universal x : X ! UR is the
identity as was seen in Lemmd@H. The pseudo functot = G is actually a strict
2-functor, so © and © are identity natural transformations. After inspecting
diagram (Z8) on page[8b, we see that™ must be trivial because (&, ) ! i
and xex (x 1x)= ( x 1x) aretrivial. Hence F preserves identites.

Similarly, each of the 2-cells in diagram [ZP) on pag€&d7 is tvial, and therefore
their composition is trivial. After inspecting diagram (80J) on pagel8Y, we see that

ffg must also be trivial because both the horizontal top and bottom arrows are
trivial. Therefore F preserves compositions.

X
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SinceF preserves compositions and identities, it is a strict 2-fuictor. O

Theorem[@B can be sharpened. LeA denote the 2-category of pseudd -algebras
and let X denote the 2-category of pseudds-algebras. Then the equivalence of
categoriesMora (FX;A) ! Morx (X;UA) implicit in Theorem @Elis strictly 2-
natural in each variable. However, it can be shown that a left2-adjoint does not
exist in specic cases. The equivalence in the other directn Morx (X; UA) !
Mora (FX;A) in Theorem is not strictly 2-natural in each variable. In fact,
there is an example where there does not exist an equivalenddor x (X; UA) !
Mor a (FX; A) which is strictly 2-natural in each variable, even after replacing F
by another bi-adjoint F% Counterexamples will be given after presenting Theorem
B4, which is a sharper version of Theoreri 916.

Theorem 9.7. Let S and T be theories. LetU : A ! X be the forgetful 2-
functor associated to a morphismS ! T of theories. Let F denote the left bi-
adjoint to U introduced in Theorem [@8. Then the equivalence of categogs x.a :
Mora(FX;A)! Morx (X;UA) from Theorem &8 de ned by xa (f):= Uf x

is strictly 2-natural in each variable.

Proof:  The universal arrow x : X ! UFX is the inclusion morphism. The
functor x.a :Mora(FX;A)! Morx (X;UA)isdened by xa (f):= Uf %
asin Lemmal8®. The functor x.» is an equivalence of categories for ak 2 ObjX
and all A 2 ObjA because x is a bi-universal arrow. The coherence isos® for the
pseudo naturality of .5 are de ned on pagel3D in terms of some trivial 2-cells,

G, and ~ where ~is the coherence iso for . But © is trivial for G = U because
U is a strict 2-functor. The coherence iso ~is also trivial because is a strict
2-natural transformation. Hence Cis also trivial and . is strictly 2-natural, i.e.

is 2-natural in the rst variable.

The coherence isos for x. are de ned on page[8# for morphismsk : A! A°
by aao(k):e7! & i ,.ButG= Uisastrictfunctorand © is trival, hence
is also trivial. Therefore x. s strictly 2-natural, i.e. is 2-natural in the second
variable. We conclude that X; A 7! x.a is strictly 2-natural in each variable. [

Before proving that Theorem[@8 cannot be further improved o a left 2-adjoint,
we need a theorem which states that one can change a morphisnf pseudo T-
algebras in a speci ¢ way and still have a morphism of pseudd -algebras.

Theorem 9.8. Let X;Y be pseudoT-algebras andH : X ! Y a morphism of
pseudoT-algebras. Suppose thallg(x) 2 ObjY and o(x) : Jo(x) ! H(X) is an
isomorphism for eachx 2 ObjX . Then there exists a morphismJ : X | Y of
pseudoT -algebras whose object function iSy and there exists an iso 2-cell :J !
H of pseudoT -algebras such that (x) = o(x) for all x 2 ObjX . Moreover, such
J and are unique.

Proof:  For x 2 ObjX de ne J(x) := Jo(x)and (Xx):= o(x). Fora morphism
fixy! xpof X dene J(f):= (x2) * H(f) (x1). One easily sees that] is
a functor and is natural transformation from J to the functor underlying H.

Forw2 T(n)let ! :H (w)) (H;:::;H) denote the coherence iso-
morphism for H, where denotes the action of the theory T on X and denotes
the action of the theory T on Y. De ne a natural isomorphism 3, :J (w))
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I (w) L 3 (w)
" "
(W) @) = "8 w) (MM
In other words  j, == i(w ( Yoy b H i (w)- This is a natural

transformation because it consists of horizontal and verttal compositions of natural
transformations.

| claim that ), satis es the coherence diagrams required to makd a morphism
of pseudoT -algebras. One can prove the commutivity of anyJ coherence diagram
from the commutivity of the analogous H coherence diagram by using the following
procedure. First one draws the commutativeH coherence diagram and then one
circumscribes it with the analogousJ coherence diagram. Next one draws the
obvios isomorphisms between respectivd and H vertices. All of the resulting
inner diagrams commute because of the interchange law, bease of the de nition
of 3, or because of the diagram forH. We present the substitution diagram to

iJ sw;f

( W)t

The top and bottom squares commute because of the intercharglaw. The left
and right squares commute because of the de nitions of, and 3,. The innermost
square commutes becausk is a morphism of pseudoT -algebras. Hence the outer
rectangle commutes andJ satis es the substitution coherence diagram.

The other diagrams can be veri ed using the same procedure. fie only subtlety
in this procedure occurs in the right hand vertical composiion of the composition
axiom. We reproduce the right hand part of the diagram obtained by following the
procedure mentioned above.
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L s B (Cwi Cwn)

L

FCw) i wn:::::.(i.iw“))'ii!i” ‘
Coriild

i

H (W) (( Wl);:::(wn)) d/i(( wq)in (wn))

(w) (

(W) (HiH) (Cwal s Cwe)) =B (52:59) (Cwadioiss (wa)

&.

The upper right quadrilateral results from the diagram de ning ), by horizon-
tally composing with i¢( w,)::: ( w,) - Then the upper right square commutes by
iterated use of the interchange law.

The bottom right quadrilateral results from the de ning dia grams of \JNl; G 3Vn
by taking their product, horizontally composing with i w,):: ¢ wa)) = (F( wa)s o200 wa))s
and nally reversing one of the arrows. The commutivity then follows from the in-
terchange law.

The other parts of the diagram are easily seen to commute, andve conclude
that J satis es the composition coherence.

The commutivity of all of these coherence diagrams impliestiat J is a morphism
of pseudoT -algebras. We conclude that is a 2-cell in the 2-category of pseudo
T-algebras by looking at its de ning diagram.

Supposel®: X | Y is a morphism of pseudoT -algebras and °:J%) His a
2-cell in the 2-category of pseudoT -algebras such that for allx 2 ObjX we have
JYx) = Jo(x) and 9x) = o(x). Then for a morphism f : x; ! X, in X the
diagram

(x1)
Jo(x1) —H (x1)
Jo(f) H(f)

Jo(x1) ﬁﬂ (X2)
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commutes. Hencel(f)= (x2) * H(f) (x1) = J(f). For aword w2 T(n),
the diagram

3° (w) (W)
30 H
(W) Q%53 =—="8w) (H:H)
y Ui
commutes. Hence 3,/ =iy, ( L 1) M i(w) = w- We conclude
J%=J as morphisms of pseudd -algebras. O

Lemma 9.9. The functor x.a :Morx (X;UA)! Mora(FX;A) in Theorem [Z8
is not strictly 2-natural in each variable.

Proof: Suppose is strictly 2-natural. Then for any morphism of pseudo
T-algebrasd : FX ! FX the following diagram must commute.

(54) Mora (FX;FX )90 Mory (X;UFX)
J (Ud)

Mora (FX;FX )90 — Morx (X;UFX)
X;FX

According to pagelIOl, the output x.rx (H) is always a strict morphism of pseudo
T-algebras for all morphismsH : X ! UFX of pseudo S-algebras. Leta 2
ObjFX . Let w be the trivial word in the theory T. Then w( xkx ( x)(&)) is
isomorphic to (but not equal to) xkx ( x)(@) via a coherence isomorphism. By
Theorem[@38 we can construct from this data a morphismJ : FX | FX of pseudo
T-algebras such thatJ(W( xrx ( x)(@)) = xex ( x)(&) and J is the identity
on all other objects. Chasing x along diagram (&4) from the top right corner,
we see that xgx (UJ x)=J xrx ( x)andJ x:Fx ( x) must be strict
because x.rx (UJ x)is. But J x:Fx ( x) is not strict because it does not
commute with the action of w by the construction of J. O

In fact, we present an example where there is no pseudo natur&ransformation

as in Lemmal[@® that is strictly 2-natural in the second variable, even after
replacing F by another left bi-adjoint to U. The reason is that our morphisms are
not required to strictly commute with the action of the theor ies.

Example 19. Let S be the trivial theory and let T be the theory of commutative
monoids. LetX be the 2-category of pseud@-algebras and letA be the 2-category
of pseudoT-algebras. LetU : A! X  be the forgetful 2-functor associated to the
trivial map of theories S! T. Then there does not exist a left bi-adjoint F°: X !

A which admits equivalences of categoriesﬁ;A :Mory (X;UA)! Mora(F%;A)

that are strictly 2-natural in the second variable.

Proof:  First we prove that our constructed left bi-adjoint F : X ' A does not
admit equivalences Q;A that are strictly 2-natural in the second variable. Suppose
foreachX 2 ObjX there exist equivalences Q;A :Morx (X;UA)! Mora(FX;A)
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that are strictly natural in A, the second variable. Let §., be a functor such that
%A %a and 3. %a are naturally isomorphic to the respective identities.
Let X be the pseudoS-algebra with only one object and no nontrivial mor-
phisms. Let A be the category of nite sets with a choice of disjoint union. This
makesA into a pseudoT -algebra.
| claim that there exists a morphism H : X ! UA of pseudoS-algebras such

that Q;A (H)( ) 6 ;. Suppose not. Then for every morphismH : X | UA, we

the equivalence, every morphismK : FX | A of pseudoT -algebras is isomorphic
to %a % (K). This implies that K must also be constant;. But this is a
contradition, since there are nontrivial morphisms FX ! A. Thus there exists a
morphismH : X | UA of pseudoS-algebras such that Q;A H)( )6 ;.

I claim that there exists an object x 2 ObjFX such that )O(;A (H)(x) 8 H().
Let n 2 N be large enough that

nj %a (MO)N>HO:
This is possible becausg Q;A (H)( )j& 0 from above. Letx = +( +( + ))
where there aren copies of . Then j Q;A (H)(X)j = n | Q;A (H)( )j because
)O(;A (H) is a morphism of pseudoT -algebras and isomorphisms inPA are bijections
of sets. Thus {., (H)(X) 8 H( ).

Let Jo( .4 (H)(x)) be any set of the same cardinality as %., (H)(x) but not
equalto .4 (H)(X). Let o %4 (H)(X)) i Jo( %a (H)(X) ! 3.4 (H)(X) be a
bijection. Let Jo(a) = a for all a 2 ObjA such thata & %, (H)(x). Then by
Theorem[@B there exists a morphisml) : A! A of pseudoT—éIgebras which is the
identity except on the object Q;A (H)(x). In particular J(H( )) = H( ) because
H()8 2, (H)(x) from above.

The 2-néturality in the second variable implies that

0
(55) Mora(FX;A)Q0 ™ Mory (X;UA)
J (UJ)

Mora(FX;A) 00— Mory (X;UA)

XA
H)= %A (UJ H). But UJ H = H becausel (H( )) =
):

commutes,i.e. J %
A %A (H). Evaluating this on x gives

A (
H( ). Henced %, (H
I( ga (R = Fa (H)(X)
which contradicts
I( %a (H)(X) 6 Fa (H)(X):

Thus there cannot exist such a Q;A Morx (X;UA)! Mora(FX;A) and the
reason is that we allow morphisms which do not strictly commue with the action
of the theory.

Let FO: X I A be any left bi-adjoint for U : A'! X . Suppose it admits
equivalences of categoriesQ;A :Mory (X;UA) ! Mora (FO;A) that are strictly
2-natural in the second variable. SinceF and F° are left bi-adjoints for U, there
exists for eachX a pseudo isomorphismFX ! FX?© by the bi-universal arrow
argument in Lemma 84 and Theorem[BIb. This pseudo isomorpbm induces
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an equivalence of categorieMora (FOX;A) ! Mora (FX;A) which is strictly
2-natural in A. Composing this with Q;A gives an equivalence of categories
Morx (X;UA) ! Mora (FX;A) which is strictly 2-natural in A, the second vari-
able. But it was shown above that such a 2-natural equivalene cannot exist. Hence
we have arrived at a contradiction and we conclude thatF ° does not admit equiv-
alences 3, :Morx (X;UA) ! Mora(FO;A) that are strictly 2-natural in the
second variable. O

We can build on the previous example to show that there does roexist a left
2-adjoint to the forgetful 2-functor in that situation.

Example 20. Let S be the trivial theory and let T be the theory of commutative
monoids. LetX be the 2-category of pseud-algebras and letA be the 2-category
of pseudoT-algebras. LetU : A! X  be the forgetful 2-functor associated to the
trivial map of theories S'! T. Then there does not exist a left 2-adjoint to U,
i.e. there does not exist a 2-functorF%: X | A which admits isomorphisms of
categories xa : Mora(F%;A) ! Moryx (X;UA) that are strictly 2-natural in
each variable.

Proof: Suppose such a existed. Let x.a := X;}\ . Then . Iis strictly
2-natural in the second variable A and is an equivalence of categories. But this is
impossible by the previous example. O

10. Weighted Bicolimits of Pseudo T-algebras

In this section | show that the 2-category of pseudoT -algebras has weighted
bicolimits. The proof builds on the free pseudoT -algebra construction as well
as the construction of strong colimits in the 2-category of snall categories. The
present construction does not capture pseudo colimits beasse of the equivalence
of categories inherent in the construction of the free pseud T -algebra. This equiv-
alence comes from the fact that the morphisms of pseudd -algebras are pseudo
morphisms of pseudoT -algebras rather than strict ones. After proving that this
2-category admits bitensor products, we conclude that it agnits all weighted bicol-
imits.

Theorem 10.1. The 2-categoryC of small pseudoT -algebras admits bicolimits.

Proof: Let J be a small 1-category andF :J ! C a pseudo functor. In the
following construction | use notation similar to the construction of the bi-universal
arrow in the section on forgetful 2-functors.

First | de ne candidates W 2 ObjCand :F) w . Let T%denote the free
theory on the sequence of setd (0); T(1);::: underlying the theory T. Let Alg°
be the category of smallT “algebras. LetGraph® be the category of small directed
graphs whose object sets are discret&® algebras. Then there is a forgetful functor
Alg®! Graph®and it has a left adjoint V° by Freyd's adjoint functor theorem.

Let ObjRgo be the free (discrete) T? algebra on the set § 20bj J ObjFj . Let
MorR go be the collection of the following arrows:

(1) For every n 2 N, for all words w 2 T(n) wyp 2 T(My);:::;wn 2 T(mp),
and for all objects Alcin AL AZ A2 ':::;Al;:::;A”mn 2 ObjRgo
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.....

is the result of composing in the free theory and applying it © the A's in
the free algebra.

(2) For every A 2 ObjRgo there is an arrowl : Id(A) ! A and an arrow
N 12 A1 1d(A). Hereld is the unit of the original theory T.

(3) For every word w 2 T(m), for every function f : f1;:::;mg!f 1;:::;ng,

Swit (A An) s wr (At Ar) D W(As 1500 Afm )

w; f
word ws is the substituted word in the original theory T. The target
W(Af1;:::; Amm ) is the result of substituting in w in the free theory and

(4) For every word w 2 T(n), j 2 ObjJ, and objectsAy;:::;A, of Fj there

j is the action of T on the pseudoT -algebraFj .

(5) Include all elements of i23 MorFj in MorR go.
(6) For every morphismf :i! j ofJ and everyx 2 ObjFi we include arrows
h(xs )y and h(X;lf ) as in the proof of Theorem[31.

With these arrows, Rgo is an object of Graph®. Now we apply the functor V°to
the directed graph Rgo to get a category R® which is a T algebra.

Let K be the smallest congruence on the categorR® with the following proper-
ties:

(1) All of the relations necessary to make the coherence arws (including )
into natural transformations belong to K. For example, if A;B 2 ObjR°
andf : A! B is a morphism of R%then the relation 1o f = 1d(f) Ig
belongs toK .

(2) All of the relations necessary to make the coherence arws (including )
into isos are inK . For example, for everyA 2 ObjRCthe relations | IAl =
1n and1,t 1o =14 areink.

(3) All of the relations listed in the de nition of pseudo alg ebra above belong
to K, where the objects range over the objects oR°.

(4) The original composition relations in each of the categoies Fj belong to
K for all j 2 ObjJ .

(5) The coherence diagrams necessary to make the inclusion : Fj ! RCinto
a morphism of pseudoT -algebras belong toK . Note that these coherences

Next we mod R% out by K and we get a pseuddT -algebraR =: W 2 ObjC.
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| de ne a pseudo natural transformation :F )  as follows. Forj 2 ObjJ ,
dene ; :Fj ! W to be the inclusion functor. The functor ; is a morphism
of pseudoT -algebras because of the relations we modded out by. De ne;; (f )x :

ix) ! as(x) by i (f)x := hsy asin the proof of Theorem off3l. Then
X7 i (f)xisaz2-cell )  a inthe 2-category of pseudor -algebras because
of the relations we modded out by and because of the work in the@roof of Theorem
B1. By an argument similar to Lemma[32 we conclude that : F ! w is a
pseudo natural transformation. The candidate for the bicoimit of F is W 2 ObjC
with the pseudo cone : F ! w . This concludes the de nition of the candidate
for the bicolimit of F.

Let V 2 ObjC. De ne the functor : Morc(W;V) ! PseudoConéF;V) by
b7!' b  as before. We need to see that is an equivalence of categories.

Lemma 10.2. There is a functor : PseudoCondF;V)! Morc(W;V).

Proof:  First | de ne on objects. Let °: F) v be a pseudo natural
transformation. From °we get a map of sets
a

ObjFj I ObjVv
j20bjJ
which induces a map
d: ObjRgo! ObjVv

of discrete T% algebras. De ne d on arrows of Rgo as follows:

dg:= Pgforall g2 MorFj and all j 2 ObjJ

dhery = i?j (f)x and dh(x;lf) = ( i?j (f)x) *forf :i! jinJ and

X 2 ObjFi

d takes a cooherence agrow iRgo to the analogous coherence iso iV

d( w):= « where / is the coherence iso of the morphism j° ‘Fj! Vv

0

of pseudoT -algebras, and similarlyd(( w) *):=( ) .
This de nes a morphism d : Rgo ! V of the category Graph® where part of
the structure of the T%algebra V is forgotten. The adjoint Graph®! Alg° to
the forgetful functor gives us a morphismR®! V, which we also denote byd.
Furthermore, d : R®! V preserves the relations we want to impose. Hence
induces a mapb : R ! V on the quotient and d is a morphism of pseudoT -
algebras. Note that the coherence isos df are trivial. This is how we dene  on
objects: ( 9:= b

Let ; 92 ObjPseudoCondF;V)and : %be a morphism ofP seudoConéF; V).

Thendeneaz2-cell (): ()) (9by ()x:= ;j(x)forx 2 ObjFj and
continue the de nition inductively by

() W(X1;:5X n) = ( W)( () RRRRE () Xn);

where is the action of T on V. Another inductive argument shows that this
assignment preserves compositions and identities. O

Lemma 10.3. The composite functor : PseudoConéF;V)! PseudoCongF;V)
is the identity functor.

Proof:  This is similar to LemmaBH. The only di erence here is that one must
prove that the coherence iso's for the morphism j° :Fj ! V of pseudoT -algebras
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are the same as the coherence iso's for ( ( 9);. But this is true because the

coherence iso's of ( 9 are trivial. O
Lemma 10.4. The composite functor :Morc(W;V) ! Morc(W;V) is nat-
urally isomorphic to the identity functor.

Proof: I construct a natural isomorphism  : Iyor c(w:v ) ) . Let b2
ObjMor ¢(W;V). We dene , =1 inductively. For all j 2 ObjJ and all x 2
ObjFj  ObjwW we have (b)(x) = b(x). De ne

x b(x) ! (B)(x)
to be the identity for such x. Forw 2 T(n)and X1;:::;Xn 2 i 20bj 3 ObjFj de ne

W(X105X n) - \?v(xl; Lo ;Xn):
Now let X1;:::;Xn 2 ObjW and w 2 T(n). Suppose ,;:::; x, are already
de ned. Then de ne
W(X1305X n) - B(w(X1;::0;Xn)) ! (B)(W(X1;:::5%n))
to be the composition
b(w(x1;:::;Xn))
B (X1:m5X n)

(w)( (B0 (B)xn):

Then the assignmentx 7! , is a 2-cell in the category of pseudor -algebras
because it is natural and commutes with the coherence isos &fand (b) by an
inductive argument (recall the coherence isos of (b) are trivial). An inductive
argument also shows thatb 7! is natural. O

Lemma 10.5. The functor :Morc(W;V)! PseudoConégF;V) de ned by b7!
b is an equivalence of categories.

Proof:  This follows immediately from the previous two lemmas. O

Lemma 10.6. The objectW 2 ObjC and the pseudo cone : F )  comprise
a bicolimit of F.

Proof:  This follows immediately from the previous lemma. O

This completes the proof that the 2-category of small pseudd -algebras admits
bicolimits. O]

Lemma 10.7. The 2-categoryC of pseudoT -algebras admits bitensor products.

Proof: Let J be a category andF a pseudoT -algebra. First de ne an object
Rgo of Graph®. Let ObjRgo be the free discreteT “algebra on the setObjJ  ObjF,
where TCis the free theory onT. Let MorR go be the collection of the following
arrows.
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w (wl;:::;wn)(Al;""AQ1 ). Herew (wl;::"wn) is the composmon in
the original theory T. Thetarget w(wi (AL AL D wa (AL AR )
is the result of composing in the free theory and applymg it 0 the A's in
the free algebra.

(2) For every A 2 ObjRgo there is an arrowl : Id(A) ! A and an arrow
N 1-Al 1d(A). Hereld is the unit of the original theory T.

(3) For every Word w 2 T(m), for every function f fl,:::;mg!f 1;:::;ng,

Swi (A1;::1;An) Wf(Al;::“A ) W(Ar1 5 Amm )

(4) For every word w 2 T(n), j 2 ObjJ, and objectsx1;:::; Xy of F there is

an arrow
W Gix i Gxa)) t G (w5 xn)) o w((ixa);::0; (i x o)) and
an amow (W) 1 w((ix 1) Gixn) |G (W)(Xai:iixa)), where

is the structure map of the pseudo T-algebraF.
(5) Include all elements ofMord  MorF in MorR go.

With these arrows, Rgo is an object ofGraph®. Now we apply the freeT %algebra
functor to the directed graph Rgo to get a category R® which is a T? algebra. Let
K be the smallest congruence on the categorR® with the following properties:

(1) All of the relations necessary to make the coherence arkes (including Wl ))
into natural transformations belong to K. For example, if A;B 2 ObjR°
andf : Al B is a morphism of RCthen the relation I, f = ld(f) Iz
belongs toK . .

(2) All of the relations necessary to make the coherence arres (including wd ))
into isos are inK . For example, for everyA 2 ObjR°the relations|a |,
1an and1,t 1o =14 areink.

(3) All of the relations listed in the de nition of pseudo alg ebra above belong
to K, where the objects range over the objects oR®.

(4) The original composition relations in the categoryJ F belong toK.

(5) For eachj 2 J, the coherence diagrams necessary to make the inclusion
F! RO x 7! (jx) into a morphism of pseudo T-algebras belong toK .

Note that these coherences will involve the arrows " ((xa);inGixn)):

U: Cw)(xasisxa)) bow((ixa)szas (5 X))
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(6) Forany g:j1! j2inJ andxsi;:::;Xn in F we include the relation
. (g’l w Xl;ZZZ;X n ) .
(2 ( WY(X152:55%n)) ———— "Nz (W) (xei:xn)
WO (X15X n) w32 (x5x n)
w((j1iXa);:: 5 (115 %n) Hu((i 23 %a)5 25 (23 %n)):

w((g:x1)::5 (9:Xn))

Next we mod R%out by K and we get a pseudd -algebraJ F 2 ObjC. | de ne
afunctor :J!C (F;J F)by
()00 = (§ix)
() =(@;:f)
( (@x =(9:L)
forj 2 ObjJ;x 2 ObjF;f 2 MorF; andg?2 MorJ. Then (j):F! J Fisa
morphism of pseudoT -algebras with coherence isos () and (9): (j1)! (j2)
is a 2-cell in the 2-category of pseuddr -algebras because of the relations. The

relations also imply that is a functor.
| claim that induces an equivalence

CJ F,c)—Kat(J; OF; C))
b7! C(F;b)
7IC(F; ) i

of categories. De ne a functor : Cat(J; C(F;C)) ! C (J F;C) as follows. For a
functor :J!C (F;C), we have a map of sets

ObjJ ObjF ! ObjC
x) 7 ()x)

which induces a mapObjRgo ! ObjC of discrete T %algebras satsifying
O)Gx) = (1))
OXw(Gsxa)s i Gnxa)) = CW)C Ga)(xa)si (n)(Xn))
for (j;x);(j1;X1);:::;(n;Xn) 23  F. Dene () onarrows of Rgo by
( )(C\N;Wl;:::;wn(A%;:::;Anmn)) = Gy ( (A ( AR))
()T =1 (Haa
()(swit (Az;iiiAn)) = swir ( ()(A);::55 (O )(An))
()g:f)= @(20(F)  @x.= @x, ((F)
for AK;A;A; 2 ObjRgo, f :m ! n,g:j1! joinJandf :x;! Xx,inF. We
de ne ( ) similarly for cW;\l,V1 ..... Wn;IAl;s 1. Then ( ):Rgo! Cisamorphism

..... w;f
of Graph® which induces a morphismR®! C in Alg® It preserves the relations

and therefore induces a morphism ( ):J F ! C of pseudoT-algebras on the
quotient. This is actually a strict morphism of pseudo T-algebras. For a natural
transformation : ! O%deneaz2-cell (): ()) ( 9 inductively by

O gx) =0
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for (j;x) 2 ObjJ  ObjF and
() W(ALA 3) = C(W)( () INEREEE () An)

whenever () a,;:::; () a, are already de ned. From these de nitions we can
conclude that is a functor and =1car (3 c(ricy - For example,
C  ONHx=C ) (G

= ()Gix)

= (1))
and also .

(( ) ix=0 O 1)k
= 0 oo
=(
I construct a natural isomorphism @ 1¢y ey ) . Letb:J F! C

be a morphism of pseudoT -algebras. We dene , =: inductively. For all

(j;x) 2 ObjJ  ObjF we have
OGix) = (AFb)  )(ix)

=(AFb  )()x)

=(b ()X

= b(j;x):
De ne

() - DAIx) ! (B)(j;x)
to be the identity for such (j;x). For w2 T(n) and (j1;X1);:::;(jn;Xn) 2 ObjJ
ObjF de ne
W) (o) = w(((23X2)525 (s Xn)):

For A1;:::;An 2 ObjRgo = Objd F andw 2 T(n), de ne

W(A1nA 1) - OOW(AL 5 AR)) ! (D(W(A1;:::5AR))

b(W(A1;:::;An))
b (A1EA 0)
( W)(bAL;:::;bA,)
‘( W) A AR)
( w)( (DAL; (B)AR):
Then the assignmentx 7! , is a 2-cell in the category of pseudor -algebras
because it is natural and commutes with the coherence isos &fand (b) by an

inductive argument (recall the coherence isos of (b) are trivial). An inductive
argument also shows thatb 7! is natural.
By Remark [Z3, this implies that J F is a bitensor product of J and F. O

Theorem 10.8. The 2-category C of pseudoT -algebras admits all weighted bicol-
imits.
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Proof:  The 2-category C admits bicoproducts and bicoequalizers by Theorem
[IO3. It admits bitensor products by the previous lemma. Hemre by TheoremZb
it admits all weighted bicolimits. O

11. Stacks

In this section we introduce the language of stacks in analogto sheaves, since
stacks generalize sheaves. A stack is a contravariant pseadunctor from a
Grothendieck topology to a 2-category which takes Grothendeck covers to bilimits
in the sense described below. The target 2-category is reqid to admit bilimits.
We have shown that the 2-category of pseudo algebras over a&ory admits bilimits,
so we can speak of stacks of pseudo algebras. Some refererfoestacks are [12],
[I5], @], [40], and[52].

Denition 11.1. A basis for a Grothendieck topologyon a categoryB with pull-
backs is a function K which assigns to each objecB of B a collection of families
of morphims with codomain B such that
(1) If g: B9 B is an isomorphism, thenfgg 2 K (B)
(2) If fg :B;j ! Bji 2 1g2 K(B), then for any morphismg: D ! B the
family of pullbacks of the g alonggf 2:B; g D! Dji2lgisin K(D)
(3) If fgi :B; ! Bji 21g2 K(B) and ffij . Dij ! Bijj 2Jig2 K(Bi) for all
i, then the composite familyfg f; :Bj ! Bji 2 1;j 2 Jigisin K(B).

The second axiom is called thestability axiom because it says thatK is stable
under pullbacks. The third axiom is called the transitivity axiom . Often one refers
to the basis as well as the categonB as a Grothendieck topology. We follow this
convention. Some authors call a Grothendieck topology a Grthendieck site. The
elements ofK (B) are called Grothendieck covers

De nition 11.2. Let B be a Grothendieck topology andC a concrete category.
Then a C-sheafon B is a contravariant functor G : B! C which takes Grothendieck
covers to limits, i.e. for any object B of B and for any Grothendieck coverfg; :
Bi! Bji 2 1g2 K (B) the following diagram is an equalizer

G(B) L/Pim G(BI) —/z—:‘PI,] 21 G(B' B B])

where e(a) = fG(g)agizi and pi(facgezar)i = G( j)a and po(fackz)i =
G( {)a. Here {; # are the morphisms in the pullback diagrams.

B 5B — B,

2
ij

B —/B

See|[3B] for a thorough discussion of Grothendieck topologé and sheaves. The
diagram above is an equalizer if and only if it isexact Usually one speaks of a
C-sheaf as a sheaf of objects &. For example, if Cis the category of sets, then we
speak of a sheaf of sets. Next we speak of stacks of categorae® then generalize
to stacks of objects with algebraic structure.

Let Cat denote the 2-category of small categories. Suppoge is a Grothendieck
topology. Let G: B! Cat be a contravariant pseudo functor. LetB be an object
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of Bandfg :Bj! Bji 21g2K(B) a Grothendieck cover. Consider the diagram

Q p p12
(56) | i pz /pi;j 21 G(Bi B Bj) —ps /Euk 21 G(Bi 8B B BXK)

i21
P23

where the arrows are de ned as

pr(facg)i = G( )a
p2(faxg)ij = G( §)ay

prz(fam m)ix = G( i )aj

pis(fam gm )ik = G( i a

pas(fam gm )ik = G( fi )aw

Here 12; &2, & arethe morphisms in the triple ber product as in the followi ng
commutative diagram from [5Z]. HereBjx is the bered product Bi g B; &
Bk. The other bered products are denoted similarly. The unlabelled arrows are
0i; g ; Ok from the Grothendieck cover.

Bijk iJZE—IBjk

w7 il

| ]l"'
By — ‘ /B } fk
i 1 Bik : By

ik {

S

i e

Every face in this diagram is a pullback square. The objecBjx is the limit of the
diagram obtained from this one by deletingBjx and the arrows emanating from
it.

Diagram (B8) can be interpreted as the image of a pseudo funot F : J ! Cat
as follows. LetJ be the free 1-category on the directed graph

f1
(57) X f://;w{ —f 13 /ﬁ

fos
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modded out by the relations below.

X — Ltk X — 2tk
fa fi12 fa fis
Y T’k Y ?/k
x
fa fos3
Y —7

De ne a pseudo functor F : J ! Cat which takes diagram [&1) to the diagram
(B8) and takes identity morphisms to identity morphisms. The pseudo functorF
is de ned on all possible composites of nontrivial morphisns as:

F(fiz fo(fag)ik =G(§ i)

F(fiz fa)(fag)ik = G( & §f)a

F(fas fo)(fag)ik = G( & )4
The identity coherence isos F for F are equalities becausd= takes identity mor-
phisms to identity morphisms. The coherence isos " for composites of non-identity
morphisms are de ned as tuples of the composition coherencisos for G. For ex-
ample, the coherence iso fFl;flzfa\g\ F(fe) F(f)fag ! F(fix fofag is
de ned as

f Gﬁf - raigi - fO( ic) G( Pagi 'f G(§  i¥)aigi

The coherence isos T for composites involving one or more identity morphisms are
de ned to be equalities. For example, the coherence iso

I i.fag F(f1) F(x)fag! F(f1 Ix)fag

is equality. The coherence diagram in the pseudo functor uniaxiom for F is
satis ed because of this de nition. The coherence diagramm the pseudo functor
composition axiom for F is satis ed because of the diagrams for ¢ and also
because of this de nition. The coherence isos are also natat becauseJ has no
nontrivial 2-cells. Thus F : J | Cat is a pseudo functor whose image is diagram
(B8). By a bilimit of diagram (88) we mean a bilimit of this functor F.

In the context of stacks there is a canonical candidate for tle bilimit of F, namely
G(B). The candidate for the universal pseudo cone °: c@)) F isdenedon
objects as follows. v
2 :G(B)!  G(B)

I
%@ = fG(@)ag

y:G(B)!  G(Bi sBj
i5j
Y@= fG(g )ag
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Y
2:6(B)! G(Bi 8 Bj 8 Bk)
ik

2@ :=1G(g § if)agi
The coherenceisos? : Ff %)  g@)(f) & for the pseudo cone °and non-

identity morphisms f in J are de ned in terms of ©. For example, forf; : X | Y
we have

c@) — R @)

le)= o()(f1) F(f1)=p2

0
f1

G(B) 40/;2”' G(Bi B Bj)

denedby P a:= f G"l 089 fG( i) G(g)ag; 'f G(g {)ag; forall objects
a of G(B). For the identity morphisms 1x ;1y; and 1; ofJ wedene ? ; ? and
fz to be equalities. The coherence diagram for the unit axiom opseudo natural
transformations is satis ed because of this de nition. The composition axiom for
9 and nontrivial morphisms is satis ed because of the composion axiom for ©
and because ¢®) is an equality. The composition axiom for °whenever one or
more of the morphisms is trivial follows trivially. Thus ©: c)) F isapseudo
natural transformation with coherence isos °. After these preliminary remarks, we
can nally de ne stack of categories.

De nition 11.3.  Let Cat denote the 2-category of small categories. Suppod® is
a Grothendieck topology. A stack of categoriesis a contravariant pseudo functor
G : B! Cat which takes Grothendieck covers to bilimits, i.e. for any object B of
B and any Grothendieck coverfg :Bij ! Bji 2 1g2 K (B) the diagram

Q P1 L
21 G(BI) — /Pm ,, G(Bi & Bj) _pls_l,ﬂ;k ,iG(Bi 5B 5B
P23

hasG(B) as a bilimit with universal pseudo cone °: c)) F asdened above.

One common way to de ne a stack is via descent objects as i [15[14], [40], or
52].

De nition 11.4. Let B be a Grothendieck topology andG : B ! Cat a con-
travariant pseudo functor. Suppose thatfB; ! Bg; is a Grothendieck gpver. Then
an object with descent data orf B; | Bg; consists of an objectfajg 2 ~,,, G(B))
and isomorphisms j : G( ?)a ! G( {)a in G(B; s Bj) which satisfy the
cocycle condition

G( i) k=G 4) i G(&K)

in G(Bi g Bj & Bk) up to the coherence isos of the pseudo functoG.QSee below.
A morphism of descent objectd ;g : fajg ! f a%; is a morphismin ~,,, G(B)
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such that the diagram
G( )y —I6( Ha
G(§)

G( §)a ——I6( {)a?

G(i)i

commutes in G(Bi g Bj). These objects and morphisms form thecategory of
descent data on the covefB; ! Bg; . This category is denotedG(fB; ! Bg;).
There is a functor G(B) ! G(fB; ! Bg) dened by a 7! f G(g))ag, whereg; :
Bi ! B are the morphisms from the Grothendieck cover. The j belonging to the
image ofa under this functor are j :=( Gjl o g sz o &

The cocycle condition can be stated explicitly as the requiement that the fol-
lowing diagram commutes.

G( 2)6( 2)a — ) B B)6( hya —F Bk %)

ijk k ijk k

o B (2 a
G( &k k) G( k) G(§)a
%E;izkak G( ik ) i
G( ) G( })a G(#) G( Da
G( i ) « g
G(¥) G(haw — 6(} Bla——G(} Ra

13,01 &
ijk ' ik

This diagram is another reason why we require our pseudo furtors to have coher-

ence arrows that are iso: if were not invertible, the cocycle condition cannot be
stated.

De nition 11.5.  Let Cat denote the 2-category of small categories. Suppod® is
a Grothendieck topology. A Giraud stack of categories is a contravariant pseudo

1This is not standard terminology. We have only introduced it ~ to show that the two de nitions
are equivalent.
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functor G : B! Cat such that for any object B of B and any Grothendieck cover
fBi! Bg of B, thefunctor G(B) ! G(fB;! Bg)is an equivalence of categories.

Theorem 11.1. LetG: B! Cat be a pseudo functor from a Grothendieck topology
to the 2-category of small categories. TherG is a stack if and only if it is a Giraud
stack.

Proof:

From Section[@ we know that the categoryL := PseudoCong1l;F) is a pseudo
limit of F. It is described as a subcategory of an appropriate productn Remarks
Z4 and[X3® in such a way that the pseudo cone : | ) F consists of projections
as in Remark[Z5®.

| claim that the category L of pseudo cones is equivalent to the categorg(f B; !
Bgi) of descent data by a functorH : L ! G(fB; ! Bgj). Recall from Remark
4 that each object ofL corresponds to a tuple

fag f a0 f ajgu f "o
yith objects faig in = G(Bi), fajg; in ~y G(Bi s Bj); and faj gy in
i G(Bi B Bj & Bk) as well as morphisms”; indexed by morphismsf of

J appropriately. For example, s, : F(f1)fagi ! f a; g; These morphisms satisfy
two axioms listed in the Remark. Each morphism ofL corresponds to a tuple

figi f 50 f ik

of morphisms in the product categories above and this tuple esmmutes with the
morphisms "¢ appropriately. De ne

H(faig f ajg; f awgk f "rogr):=fag

Hf g T 505 T ikgik)="Fig:
The descent data forf a;g; are de ned as the components of j g; = ("r,) 1 "t

Morphisms of L map to morphisms of G(fB;j ! Bg;) because the outer diagram of

f gy

/t a g mf—z F(fa)fag

(58) F(fo)faig

F(fof igi f i gy F(f2)f igi

w0

w0
F(f1)f aly % F (f2)f al;

f 0o
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commutes by RemarZ®. To see that the ; satisfy the cocycle condition, consider
the diagram below.

(59)
ik ) i

G( )6 fiax a U g 2ya( by — T (L B)a

Rag® G( &)

G( j2k Ijk )ak G( ijk )aik G( I? Ijk )aJ
L2 8
ik

G( ﬁ( Ijk )ak ( )ai

113.zak G( 2

ik ik ijk ij

( Ijk ( )al

G( i) « B

G( 1 12 3) G( L)a QQ—G( uk 3 ) ——— G( “1 uk 2 )a

We want to show that the outer rectangle commutes. The small tiangles commute
by de nition of . Next one draws another vertexajx inside the rectangle but
outside the triangles. Then one draws the arrowgif-k for all non-identity morphisms
F of the categoryJ with target Z. All of these arrows terminate at ajx . Each
of the resulting subdiagrams commutes because of the relaths in J or because
of the second axiom on the morphisms'; in Remark £4 . Note that we are
using the notation "¢ = f"fjk ik . The outer rectangle commute because all of the
subdiagrams commute and everything is iso. Hence the; 's satisfy the cocycle
condition and H mapsL into G(fB; ! Bgi). These assignments obviously de ne
a functor H.

The functor H is faithful. Suppose

HE g f oo f ocgi)=HE M f Do X gi):
Then f g = f %;. From this we concludef j g; = f i?gij by diagram @&8). A
similar diagram with objects f ajx g and faIJk g in the center and arrows"¢,, ; ",
and"{ ;"?  pointing inward shows that f j gk = f J) ik ik -

The functor H is also full. Let f jgi be a morphism in the category of descent
data. Suppose further that its source and target lie in the image ofH. Then the
outer diagram of diagram (&8) commutes and we de nef j g; to be the unique
arrow that makes diagram (&8) commute. It exists because thehorizontal arrows
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are iso. One can also de néf j gjk Similarly, although one needs to use diagram
(E3) several times and the naturality of © to show that the necessary diagrams in
Remark[Z3 commute.

The functor H is also surjective on objects. Supposéa.g is an object with
descent data . Dene a; := G( 1)a; and ajk = G( & K ,Jk 3)a;. Dene "El :
G( i)a! a; tobe the identity and "fz = . Let "f13 "Gk i a !t a
also be the identity. Any " indexed by an identity morphlsm is also trivial. Consider
diagram ([&9) with the additional vertex aj« and the additional "'s mentioned just
after diagram (BY). Requiring the inner diagrams to commuteuniquely de nes the
other "'s which we did not de ne yet. The commutivity of these smaller diagrams
guarantees that the tuple

faigi f a;0; f akgik f "ror
we have just de ned is an object of L. This object obviously maps underH to
fa g with the correct descent data.
We conclude H is an equivalence because it is faithfully full and essentidy
surjective. Hence the categoryL of pseudo cones is equivalent to the category
G(fB;j! Bgi) of descent data.

There is also a functor G(B) ! L de ned similarly to the functor G(B) !
G(fB;j ! Bg) that makes the diagrams

G(fBi [ B9)

G(B) o(B) ——F

commute. SupposeG is a Giraud stack. Then the left vertical arrow is an equiv-
alence. Hence the functorG(B) ! L is an equivalence and ° makesG(B) into a
bilimit of F becauselL is a bilimit of F with pseudo limiting cone . HenceG is a
stack.

SupposeG is a stack. Then °makesG(B) into a bilimit of F. Then the functor
G(B) ! L is an equivalence becausé is also a bilimit and the right diagram
commutes. Hence the functorG(B) ! G(fB; ! Bg;) is also an equivalence ands
is a Giraud stack.

This completes the proof that the two de nitions of stack are equivalent.

U

Next we de ne stacks of objects in a 2-category which admits Bimits, such as
the 2-category of pseudo algebras over a theory.

De nition 11.6.  Let Cbe a 2-category whose objects have underlying categories.
SupposeB is a Grothendieck topology andC admits bilimits. A stack of objects of
Cis a contravariant pseudo functor G : B! C which takes Grothendieck covers to
bilimits, i.e. for any object B of B and any Grothendieck coverfg : B; ! Bji 2
g 2 K(B) the diagram

Q Plz
1 G(B)) /P,MG(B. 5 Bj) s ;F,kaG(Bi 5B & By
P23
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hasG(B) as a bilimit with universal pseudo cone ©: c)) F asdened above.

For example, a stack of pseudo algebras over a theofl is a contravariant pseudo
functor from a Grothendieck topology into the 2-category ofpseudoT -algebas which
takes Grothendieck covers to bilimits in the above sense.

12. 2-Theories, Algebras, and Weighted Pseudo Limits

The algebraic structure of the category of rigged surfacesan be described as
a pseudo algebra over a certain 2-theory (seé_[24]125], arjd€], where however
the term lax algebra over a 2-theoryis used for what we call apseudo algebra over
a 2-theory). In this section we review the relevant terminology and prove results
about limits. Before giving the de nition of a 2-theory, we m otivate it with an
example in the following subsection.

12.1. The 2-Theory End(X) Fibered over the Theory End(l). Let | be a
category andk a positive integer. SupposeX : 1K1 Cat is a strict 2-functor from
the category | ¥ to the 2-category Cat of small categories. Herd ¥ is interpreted as
a 2-category where theHom sets are discrete categories. We will now describe the
2-theory End(X) bered over the theory End(l), which is a contravariant functor
End(l)! Cat satisfying certain properties.

Recall that the theory End(l) is the category with objects 0 =fg ;1=1;2 =
12;3 = ::: and morphismsMor gnq y(m;n) = Functors(1™;1"). Herefg denotes
the terminal object in the category of small categories. As ith any theory, the the-
ory End(l') can be completely described by the set&nd(l)(n) := Morgnq 1)(n; 1)
and a list of axioms. See the section on theories o [24] for thls.

From the theory End (1) we can obtain another category denoted=nd (I )%, which

also turns out to be a theory. It has objects 0 =fg fg ;1 =1

;2 =12 12;3 = ::: (k copies in each product) and it has morphisms
Mor gng (1)« (M; ) := MoOrgpqg (1)(M;n) K. For example, v 2 Mor gng (1) (M; 1) is

a functor v : (I™)* I 1k that is a k-tuple of functors I™ ! |. For n 2 N and

1 i nletpr*: (™%t 1¥ be the morphismpr; ¥ 2 Morgng (1)« (n; 1) whosek

components are each the projection functompr; : I" ! | onto the i-th coordinate.

One can easily check thatn 2 ObjEnd(I)¥ is the product in End(1)* of n copies
of 1 with projection morphisms pr; Kevrts pr, . Hence Eréi(l YK is itself a theory

n

and Mor gpq (1)« (M; n) is in bijective correspondence with = ;_, Mor gpq (1)« (mM; 1).

We identify these two sets via the L@U&ﬂ bijection. In other words, for k-tuples
..... . n H H

Wi; i1 Wn 2 MOrgpg 1y« (mM; 1) we let =1 Wi denote the unique morphismm! n

of End(1)¥ such that

k
pr;
oo—4-
Q, o =
p=1 Wi —::-WI
m
. . . . Q
commutes for alli =1;:::;n.2 Using this convention, we havew = 1-”:1 pr; Kow
for w2 Morgng (1)« (m; n).
2This notation di ers from [241dn [24[ffe notation (w1 ;:::;wp) is used instead of the product.

I reserve (wy;:::; Wp ) for something else. The reason for my choice will become cle ar later.
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SinceEnd(l)¥ is a theory, it has a substitution and a composition with unit which
satisfy certain axioms described in[[24] and the section onheories in this paper. If
f:fl:::;pg!f 1;:::;qgis afunction andw 2 End(1)X(p) = Mor g e (p;1) =
Mor gng (1y(p; 1) K, then the substituted word w; is obtained by substituting by
f in each of the words in the k-components ofw. The composition is also done
componentwise. The unit 1 ¥ : | I | is k copies of the
unit 1 : 1 ! 1 in the theory End(l). These explicit descriptions of substitution,
composition, and unit follow from the de nitions of the proj ections in the theory
End(l) by the work in the section on theories.

We follow the convention introduced earlier to de ne a morphism (w1;:::;wp).

that

pr, X 4
( ) nmnnnn
W1liiW ) @
nnnrqwl) i
mp+ mo + + mp

by doing an analogous process in each of thie components.

The strict 2-functor X : 1| Cat gives rise to a contravariant functor End(X ) :
End(l) ! Cat as follows. Form 2 ObjEnd(l) the (@tegoryénd(x )(m) has ob-
jectsObjENd(X)(m) = | gMoOrgng oy« (m;n). For ~F_ vi; ©L w; 2 8bjEnd%()(m)

q

wherevy;:::;VpWi; il Wq 2 MOr gng (1)« (M; 1) we de ne Mor gng (x )(m) ( ip:l Vi, iz W)
to be the collection of natural transformations
(60) X vy d7 X vp d") X wg d" X wg d"

whered™ : I™ I (I™)k is the diagonal functor. Note that X v; d™

X vp d"and X wp; d" X wgq d™ arefunctors|™ ! Cat. The
composition of morphisms in End(X)(m) is the vertical composition of natural
transformations. With these de nitions, End(X)(m) is a category. We must still
de ne the contravariant functor End(X) on morphisms and verify that it preserves
identities and compositions. For any morphismu :1 | |™ of the theory End(l),
deneu :(1)%! (1™ to be the functor which is u in each of thek components.
Notethatu ¥ d =d™ u:l ! (I™¥k. The fungtor End(Xu) : End(X)(m) !
End(X)(") is de ned on objects by End(X)(u)( ~ P, vi):= ", vi u Xandon
morphisms in (B0) by End(X)(u)( ) := iw where denotes the horizon-
tal composition of natural transformations and i, : u) u is the trivial natural
transformation. This makes sense because

(X vy d" X vp d") u=X vy d" u X v, d" u
=X v, uX d X v, u® d
and

iv:X vy ukd X vpukd) X wuXkd X wgukd
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really is a morphism

Y Y Y
End(X)(u)( vi)= vi u k1 wi u K= End(X)(u)(  w):
i=1 i=1 i=1 i=1
Ifu:l ! 1™ is the identity functor 1™ ! 1™ then End(X)(u): End(X)(m)!
End(X )(m) is also the identity functor becausev; u kK = v; fori=1;:::;p and
Wi uX=wfori=1;:::;gandalso i, = . If |I—~Hm_ 4§ are
morphisms in End(l), then u,* u,*=(u; u;) ¥ and

( dy,) du = (v, fu)= fup uss
which together imply that
End(X)(uz up)= End(X)(u1) End(X)(uy):

Thus End(X) : End(l) ! Cat preserves identities and compositions and is a
contravariant functor.

The category End(X )(m) also has certain products,(\yhich will be a feature of a
general 2-theory. Forvy;:::;vp 2 MOr gy« (M; 1) and ip:l Vi 2 MOr gpq (1)« (M; p)
ObjEnd (X )(m) de ne projections pr; : ip=1 vi! vjforj=1;:::;pto be the pro-
jection natural transformations

X vy d" X vp d") X v d™:

Then Q ip=1 v; is obviously the product of vy; :::; v, in the category End (X )(m) with
these projections. This explains the choice of notation. Tlis product property will
also be required of a general 2-theory. We record for later wshow these products
allow us to de ne morphisms © for every function : f1;:::;pg ! f 1;:::;00.

f1;:::;pg!f 1;:::;0g there exists a unique morphism © such that
Q pr-
(61) 1 4 —
0 Pro)
Ly Wi
commutes for all” = 1;:::;p. The arrows of the natural transformation °: X w;
dm X wg d") X w d" X W d™ have the appropriate

projections as their components.

The 2-theory End(X) has several operations on it which any general 2-theory
will also have, once we de ne the notion of 2-theory. To make he description of
these operations easier, we follow the notation introducedy P. Hu and I. Kriz in
[24]. For objectswy;:::;Wq;W 2 MOrgpg )« (mM; 1)  ObjENnd(X)(m) we set

Y]
End(X )(w;wy;::15Wq) i= MOrgng (xym)( Wis W):
i=1
The operations of P. Hu and I. Kriz are collated in the following theorem.

Theorem 12.1. The contravariant functor End(X) : End(l) ! Cat has the fol-
lowing operations.

(1) For eachw 2 TK(m) there exists a unitl, 2 End(X )(w;w).
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(2) For all w;w;i;wj 2 Morgpq (1)« (m; 1) there is a function

(4) Let wywy;::iiWq 2 MOrgng (1)« (m; 1). For any function f : f1;:::;mg!

(5) For ui 2 End(l)(kj);i =1;:::;m; and v; := k(Wi;ulk':'Z'Umk) and
vi= Kwiug 5 ugk) there is a function

This function is called End(l)-substitution. Here ¥ means to use the
composition of the theory End(l) in each of thek components, which coin-

Hom set in the categoryEnd(X )(ky +  + kp).
Proof:

(1) Theunitl, : X w d™) X w d™ isthe identity natural transformation
idomQX w d") X w dn.

2 Let Tl w! wand ;: jp‘:l wj ! w fori =1;:::;9be mor-
phisms. Let - :f1:::;pg!f L::i;pp+ p2 + + pgg be the injective
@nctia\ which takes the domain to the “-th block. We take the product

iqzl ]-i:l wij to be

Y4 P
Wij = W11 Wg2 Wip, W21 Wop, Wa1 Wap, -
i=1j=1
Then there exists a unique morphism (1;:::; ¢) such that
Qq pr. *
i:b\eg SS%
..... SSSS
(1 oq) =
: S ().
Qq Qpi
izt j=1 Wi
commutes for all” =1;:::;g. This means that

(15000 q) i X wyg d7 X Wgp, d™) X wg d™ X wy d7 X wg d”
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is the natural transformation whichis - onX w d™ X wypo d7.
De ne

(3 = (it g
where the composition is in the categoryEnd (X )(m).

(3) Let wq;:i:;wy ZQMorEnd“)b(m;l) and :fl;:::;pg ! f 1;:::;09 be a
function. Let °: ~L, wi !~ w;y be the morphism de ned in diagram
(61). Then de ne End(X)-functoriality
End(X)(W;w qy;::05W () ! End(X)(w;wa;iiiwg) by 7! 0

(4) A function f :f1;:::;mg!f 1;:::; ginduces a morphismf%: ! min
End(l) which in turn gives rise to a morphism (f9 K : (1)1 (1™)% in
End(1)X. Thenw; = w (f9 ¥ by de nition and the functor End(X)(f9 :
End(X)(m) ! End(X)(’) gives us a map of Hom sets

(5) Let ;:fl::i;kig!f 1;:::;ki+ka+  + kymg be the injective map which
takes the domain to the i-th block. Let (u, Keoons u,) denote the unique
morphism in End(1)* such that

pr; ¥

: (Ui)ik
ki+ kao+  + kn

commutes. Then we know from the general theory of theories tht

Kw;ug %5 u®) = wo(ug 50 u k) where the composition\ " is the
composition in the categoryEnd(l)*. Then End(X )(u, Keonns Un)(w) = v
and the functor End(X)(ulk; 215 ugX) gives us the desired map of Hom
sets.

[
These operations onEnd (X ) satisfy certain axioms.

Theorem 12.2. The operations on the contravariant functor End(X) : End(l) !
Cat satisfy the following relations.

(1) End(X)-composition is associative, i.e.

(5 Ch T ) CF Tons Ann (9§ 1)) isthe same
as ( (5 B Oy ninofy Do Annn B ).
(2) End(X)-composition is unital, i.e. for 2 End(X)(w;wq;:::;wg) we have

(slwsiinilew) = = (Aws ).
(3) End(X)-functoriality is functorial, i.e.

for functions f1;:::; pg—/I"'l; i qg—/lfl; ::1;rg the composition
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(4)

(®)

(6)

()
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and for the identity id : f1;:::;9g!f 1;:::;qg the map

09 End(X)(wW;wy;iiiwg) ! End(X)(w;wg; i wg) is the identity.
The End(X )-compositions are equivariant with respect to
End(X)-functoriality in the sense that if :fl1;:::;pg!f 1;:::;q9is a
function, 2 End(X )(W;w (1y;:::;W (p)), and

where (f1,2;::5py+ +ppa!f L2::5;p+ + pggis the func-
tion obtained by parsing the sequencé; 2;:::;p1+  + pqg into consecutive

The End(X)-compositions are equivariant with respect to
End(X)-functoriality in the sense that if 2 End(X )(w;wx;:::;Wg),

© 2 End(X)(Weiwe gy i W poy), and cf1npg !t f o1 pg
are functions for * =1;:::;q then

is the same as

End(X)(w;wl;:::;wq)Og’—f/If;'nd(X)(wg f5(Wi)gfiiits(Wo)g f)

and for the identity id : f1;:::ng!f 1;:::;ng the map
Oia t End(X)(w;wq;:ii;wg) ! End(X)(w;wy; i wg) is the identity.

End(l)-substitution is associative.
Let w;wy;:iiiWq 2 MOrgng ()« (m; 1), ti 2 End(l)(ki) for i =1;:::;
and s; 2 End(l)(k;) for 1 i m and 1 j ki. Let v :=
Wity %519 ve = Kwest Kt ),

—  Kfyoe Kig Keeuns ie Kevliig Kevuns Kevnn. k
u (Visyy '5k12 "k"'slkl’iﬂ’ . 15315 k--’3m1’ ; ’Smkmk'
uoo= o K(vsS sy, »iIiSpG i Sa1 it Sa Il Sm1r Sy, ) for T o=
1;:::;9. Then the composition
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wherer; = K(t; *;55, 55 ) = gna ) (tiisinsiziisk) K for
i =1;:::;m. Note that
u= Kw o R Nss s )i Mt s isasi sk, ).
(8) End(l)-substitution is unital.
For the unit 12 End(1)(1) of the theory End(l) and
W, Wy;iilWg 2 MOr gqqg (1)« (M; 1) the function
(L;::5:1) CEnd(X)(w;wyg;iinswg) ! End(X)(w;wy; i wg)
is the identity.
(9) End(X)-composition is End(l )-equivariant.
If f:fl:::;mg!f 1;:::; gis afunction, w;wi;wij 2 Morgng 1y« (m; 1),
2 End(X)(w;w1;:iiWg), j 2 End(X)(wj;wjz;:iwjp, ) forj =1;5::05q,

and morphism 2 End(X)(W;W (3);:::;W (p)) we have( ) =( ¢) .
(11) End(X)-functoriality and End(l )-substitution commute.
The diagram

End(X)(V;V (1);::5V () T/End(x YVivas Vo)

commutes.

(12) End(l)-functoriality and End(l)-substitution commute, in the sense that
if fi @ fl:ikg P f 1;:::;k% are functions and u; 2 End(l)(k;) for
i=1;::5;mand w;wg; i wg 2 End(1)*(m), then

(ua)ry i ,
End(X)(Viy+  +ms(VD)f+ +fmaiiii(Vdfys +fn)
commutes. Note that
Kwi (ua)e S5 (um)e ) = Kwiugs i um ) ey,
= Vs fp -

(23) End(l)-functoriality and End(l)-substitution commute, in the sense that
if f :fl::;;mg!f 1;:::;°gis a function and u; 2 End(l)(k;) for i =

.....
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commutes, wherev = K(w;usq;::7; Ui ) and = K(wg ;ug;:ii;ue)
etc.
(14) End(l)-substitution and End(l )-composition commute.

(uisiisum) (s sy @)= (5 15t )
12.2. 2-Theories and Algebras over 2-Theories. A general 2-theory has all of

the properties described in the example above. P. Hu and I. Kiz introduce the
notion of a 2-theory in [24] as follows.

De nition 12.1. A 2-theory ( ;T) bered over the theory T is a natural number
k, atheory T, and a contravariant functor : T ! Cat from the category T to the
2-categoryCat of small categories such that

Obj( m)= | Homy«(m;n)forall m2 N, where Tk is the theory with
the same objects asT, but with Hom« (m;n) = Homt (m; n)X
If wy;:::i;wy 2 Homy« (m; 1), then the word in Hom+« (m; n) with which
the n-tuple is identi ed is the product in ( m) of wy;:::;wy
For w 2 Homt(m;n) the functor ( w) : (n) ! (m)is ( w)(v) =
v w K on objectsv 2 Homy« (n;j).
For objects wy;:::;wnh;w 2 Morq«(m; 1) Obj ( m) we set
¥
(wywa;iinwn) = Mor ¢ my(C wi;w):

i=1

The second condition explains the choice of notationQ L, wi. Given a 2-theory
such as this, it has operations and relaions as in Theorem 12. Vice-a-versa,
given sets (W;Wy;:::;Wp) = Mor ( my( inzl w; ; W) with operations and relations
as in Theorem 12.1 we get a 2-theory. We refer to these operatns and relations
as the operations and relations of a 2-theory. Recall that a peudo algebral over
the theory T is a category such that for every wordw 2 T(n) we have a functor
(w):l I 1 I. Moreover, for every operation of the theory T (identity,
composition, substitution) we have a coherence iso and fonery relation among the
operations we have a coherence diagram. A pseudo (T)-algebra can be de ned
analogously.

De nition 12.2. Let( ;T) be a 2-theory. A pseudo( ;T)-algebraconsists of the
following data:

a small pseudoT -algebral with action : T(n)! Functors(l";1)
a strict 2-functor X : 1% 1 Cat
setmaps : (w;wg;iiinwn) ! End(X)(( w); ( wa);iin (wy)), where
( w) means to apply to each component of w to make | ¥ into the product
pseudo algebra ok copies ofl .
a coherence iso for each operation of a 2-theory.
The only requirement on these data is that the coherence isosatisfy the coherence
diagrams which come from the relations of a 2-theory.

A morphism of pseudo ( ;T)-algebras is similar to a morphism of pseudorT -
algebras.
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De nition 12.3. Let X;Y : 1% 1 Cat be pseudo ( ;T)-algebras overl . Then

a morphism H : X ! Y is a strict natural transformation H : X ) Y with
coherence iso modi cations indexed by elements 2 ( w;wi;:::;wy), where
W;Wi1;::i:; Wy 2 Obj ( m).
X (w) dm X (wp) dn—= 2 43 () dm
H i wyq) iam H i wpy fagm H i wy igm
Y (wy) dm Y (wy) d"————N (w) d"

v ()

The coherence iso modi cation s also required to commute with all coherence
iso modi cations of the pseudo algebra structure.

The 2-category of pseudo ( ; T)-algebras overl ¥ must also have 2-cells.

De nition 12.4. Let G;H : X ! Y be morphisms as above. Then a 2-cell
:G) H is a modication which commutes with the coherence iso modications
G and " appropriately.

Theorem 12.3. The pseudo( ;T)-algebras overl ¥ form a 2-category.

Proof:  Routine. O

12.3. The Algebraic Structure of Rigged Surfaces. The purpose of this sub-
section is to introduce the categoryC of rigged surfaces as an example of a pseudo
algebra over a 2-theory bered over a theory and to describets stack structure.
This approach is introduced in [24] by P. Hu and I. Kriz. In their terminology,
a smooth, compact, not necessarily connected, 2-dimensiah manifold x with a
complex structure is called arigged surfaceif each boundary componentk comes
equipped with a parametrization di eomorphism f, : S |k which is analytic
with respect to the complex structure on x, i.e. the di eomorphism fy extends
to a holomorphic map when we go into local coordinates. A boudary component
k is called inbound or outbound depending on the orientation of its parametriza-
tion fy with respect to the orientation on k induced by the complex structure.
The convention is to call the identity parametrization of th e boundary of the unit
disk inbound. A morphism of rigged surfaces is a smooth map which presersehe
complex structure and boundary parametrizatons.

The structure of the category C of rigged surfaces has the following features,
which were studied in [24]. For nite sets a and b, let ObjX 5., denote the set of
rigged surfacesx equipped with a bijection between the inbound boundary compm-
nents ofx and a as well as a bijection between the outbound boundary compongs
of x and b. For x;y 2 X, let Mory,, (x;y) be the morphisms of rigged surfaces
which preserve the bijections witha and b. For nite sets a;b; c;and d we can take
the disjoint union of any two rigged surfacesx 2 ObjX 5., andy 2 ObjX ¢.q and the
result is an element ofObjX ; ¢, 4. One can apply this process to morphisms
as well, and we get a functor : Xap Xeqd ! Xa c;b\ 4 called disjoint union.
Note that this functor is indexed by the nite sets a;b;c;and d. For nite sets
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a;b;and c we also have agluing functor ? : X, ¢p ¢! Xap Which identi es cer-
tain inbound boundary components with certain outbound boundary components
according to the bijections with a candb c as well as the parametrizations of
the relevant boundary components in the manner prescribed v f (z)  f 4z) for
all z 2 St. This gluing functor is also indexed by the nite sets a;b;and c. These
disjoint union and gluing functors along with their coherences give the category of
rigged surfaces the structure of apseudo algebra over the 2-theory of commutive
monoids with cancellation
We de ne the 2-theory ( ; T) of commutative monoids with cancellation as fol-

lows. Let T be the theory of commutative monoids and let +:2! l1and0:0! 1
be the usual words in the theory of commutative monoids. Letk = 2. The 2-theory

is generated by three words: addition +, unit 0, and cancell ation ?. These are
described in terms of a general algebr&x over ( ;T) as follows. Note that + and
0 have two meanings.

+: Xab Xecd! Xatcprd
02 Xo:0
?  Xarcpre! Xap

These generating words must satisfy the following axioms.
(1) The word + is commutative.

xa;b xc;d +—/k

a+cb+d

Xc;d Xa;b +—/b(b+ d;a+c
(2) The word + is associative

+ lx 'f
€] (
(X ab Xc;d) Xe;f b(a+ c;b+d Xe;f

Xap  (Xca  Xef) X (a+ o+ ex(br dy+ f
Iiap +
Xa;b X+ e;d+f f/kaﬂ c+e);b+(d+f)

(3) The word + has unit 02 Xg.9.

Xap f /K aso ib+0

pra J

Xa;b
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(4) The word ? is transitive.
X (at+c)+ d;(btc)+ d ;/b( a+cbtc
?

Xas( e+ d);b+( c+ d) %/'X ab

(5) The word ? distributes over the word +.

+
Xa+ cbtc Xe;f 45((‘% c)+ e;(btc)+ f

? Ix gy X(a+ e)+ c;(b+f)+c

?

Xa;b Xe;f %é( a+ eb+f

The category of rigged surfaces forms a pseudo algebra ovehi$ 2-theory of
commutative monoids with cancellation. The pseudo algebrastructure is given by
assigning a xed choice of to + and by assigning gluing of manifolds to 2.

In [24] and [25] the algebraic structure of holomorphic famiies of rigged surfaces
is captured by a stack of pseudo algebras over the 2-theory @ommutative monoids
with cancellation, which is also called a stack of lax commuative monoids with
cancellation (SLCMC). | describe this stack now. LetB be the category of nite
dimensional complex manifolds with morphisms holomorphicmaps. A collection
fBi! Bg of (open) holomorphic embeddings are a cover if their imagesoverB.
This makes B into a Grothendieck topology. For any nite dimensional complex
manifold B let |1 denote the category of covering spaces d with nite bers.
The category | B is a pseudo commutative monoid. Lets and t be objects of
B. Dene Xst as the category of holomorphic families of rigged surfacesver B
with inbound boundary components labelled by the covering pace s of B and
outbound boundary components labelled by the covering spaet of B. Such a
holomorphic family x is by de nition a family of rigged surfaces parameterized by
B and a holomorphic mapq:y! B transverse to every point, wherey denotes
the family of closed 2-dimensional manifolds obtained fromx by sewing disks onto
the boundary components of the rigged surfaces ot according to the boundary
parameterizations. The holomorphic mapqis an extension of the parametrization of
X. To say that the inbound boundary components ofx are labelled by the covering
spaces means that for eachb2 B the rigged surfacexy, which is the ber of gjx over
b, is equipped with a bijection between its inbound boundary @mponents and the
ber of s over b. The explanation for the covering spacet labelling the outbound
boundary components is similar. With these de nitions as wdl as disjoint union
and gluing, the functor X8 : (1B)2 1 Cat is a pseudo algebra over the 2-theory of
commutative monoids with cancellation.

Let Cdenote the 2-category of pseudo algebras over the 2-theory oommutative
monoids with cancellation. This 2-category admits bilimits and a simpler case
of this is proved in the next subsection. De ne a contravariant pseudo functor
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G:B!C by taking a nite dimensional manifold to the pseudo algebra X B over
the 2-theory of pseudo commutative monoids with cancellatbn with underlying
pseudo commutative monoidl . Then G takes Grothendieck covers to bilimits
because it does so on the underlying categories comprisindné pseudo algebras.
HenceG is a stack. It is in this sense that the categoryC of rigged surfaces forms
a stack.

12.4. Weighted Pseudo Limits of Pseudo ( ;T)-algebras. The 2-category of
pseudo ( ;T)-algebras admits all weighted pseudo limits, just like the 2-category
of pseudoT-algebras. In the following theorem we prove this for pseudd ;T)-
algebras with xed underlying pseudo T-algebral*. The proof can be modied
to the general case of pseudo (; T)-algebras with di erent underlying pseudo T-
algebras by taking the pseudo limit of the underlying pseudoT -algebras as well.

Theorem 12.4. Let J be a l-category andC the 2-category of pseudd ;T)-
algebras overl X, Let F : J | C be a pseudo functor. ThenF has a pseudo limit
(X; )in C, where : x ) F is a universal pseudo cone.

Proof: Let and be the 2-cells inC which make F into a pseudo functor.
They satisfy the usual coherences. For each 2 ObjJ, let XJ : ¥ I Cat be
the strict 2-functor belonging to the pseudo ( ; T)-algebraFj. Then for each xed
objecti 2 Objl ¥ and each objectj 2 J we have a categoryX!. For each morphism
f:j! minJd,themapFf : X1) X™is a strict 2-natural transformation which
gives us a functor Ef); : X! I X™ for eachi 2 Objl k. Thus for xed i we have
a pseudo functorF; : J ! Catdenedby j 7! X! andf 7! (Ff);. The coherence
isos of F; are the coherence iso modi cations ofF evaluated ati.

Let X; := PseudoCondl;F;), where 1 is the terminal object in the category of
small categories. Then it is known from Section 4 thatX; is the pseudo limit of F;
in Cat. Proceeding analogously on morphisms of%, we obtain a strict 2-functor
X 1% Catdenedby i 7! X;. More precisely, ifh @iy ! iz is a morphism of| K
and 2 ObjXi,, then Xn( )(j):= X} ( (j)) for j 2 ObjJ .

A more conceptual way to view the construction of the strict 2-functor X : 1% !
Cat is the following. Fori 2 I%, let F; : J | Cat be the pseudo functor from
above. For a morphismh :i; ! i, in I'f, let Fn : Fi, ) Fi, be the pseudo
natural transformation given by Fn(j) := X/. The pseudo natural transformation
Fn is actually strictly 2-natural because Ff : X ) X™ is a strict 2-natural
transformation for eachf :j! minJ. Thusi 7! F; and h 7! F,, de ne a strict
functor 1X ! Functors(J ;Cat). Now recall that PseudoConél; ) is a covariant
functor from Functors(J ; Cat) to Cat. The composition

P seudoCone (1; )/,,k

|k ¥ unctors (J ; Cat) Cat

isX : 1K1 Cat.

| claim that this 2-functor X : 1K | Cat has the structure of a pseudo ( ;T)-
algebra. The argument is like Lemma 7.2, although the cohemces need some care.
First | de ne maps So(wiwyinwn) b End(X)((C w); (wa);iin (wh)),

de ne a natural transformation

()X (w) d7 X (wp) d") X (w) d"
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\componentwise,” where d™ : 1™ | (I™)k js the diagonal functor. Let |

X1 1K1 Cat into a pseudo ( ;T)-algebra for eachj 2 ObjJ. Leti 2 I™.
We de ne a functor

CONi 2 X (Cwy) dm X (way dm(iy ! X (wy dm (i)

and show that i 7! ( ( ))i is natural. Recall that objects of X ( .y gm(i) =
PseudoCongl;F .y gm(i)) can be identi ed with a subset of

Y | Y Tf :
f(a) (") 2 Obj X .y am (i) MorX .y am iyl

j20bjJ f 2Mor J
"t D(Ff)(w) anqy(@st)! ars isisoforallf 2 MorJdg
by Remark 4.4. A similar statement holds for morphisms accoding to 4.5. Let

=(a);  ("f)f 20bjX (wy amgy and (;)j 2 MorX () gngy fort T on.
De ne
a = ( (Ni@s:ah)
and
"= (NIt (P iage i ad):
Note that
(FO)iags;oia%)  (FF) (wey amay( st ( ))iagssiii;al) !

and

By an argument similar to the proof of Lemma 7.2, these imagesre actually in
X ( w) dm(iy- Next note that i 7! ( ( )); is natural becausei 7! ( ;( )); is natural
forall j 2 ObjJ,i.e. i 7! ( ( )); is natural in each \coordinate" and is therefore
natural. Hence we have constructed set maps

We de ne the coherence iso modi cations for to be those modi cations which
have the coherence iso modi cations for ; in the j-th coordinate. For example, we
de ne the identity modi cation Iy : 1 ) (1w) by

lw((@); (")) = (1 (@)

fori 2 1™ and (g); ("t)f 2 X(w) dmn()- The arrow Iw((g); (")) is an
arrow in the category X ( wy gm (i) by an argument like the proof of Lemma 7.2.
Similarly, one can show that these assignments are modi cdbns and that the
coherence diagrams are satis ed because everything is dowemponentwise. Hence
X 11 Cat has the structure of a pseudo ( ; T)-algebra.

Next we need a universal pseudo cone : x ) F,where x :J!C isthe
constant functor which takes everything to X. De ne a natural transformation j :
X ) XI by letting i (i): Xi) X/ be the projection. The natural transformation
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j commutes with the ( ;T) action, and so ; is a morphism of pseudo ( ;T)-
algebras by taking the coherence iso modi cations to be trival. The assignment
j 7' ; is pseudo natural with coherence 2-cellj, (f) : Ff i ) m foreach
f:j! minJ asinthe 1-theory case. A similar argument to the 1-theory cae
shows that m (f) is a 2-cell in C. Hence, we have a pseudo natural transformation
x ) F. One can prove the universality of by applying the argument in
the lemmas leading up to Theorem 7.9 toX; ! X/ for each xed i 2 Objl X and
then passing to functors1k | Cat. One must of course take the coherence isos
into consideration.
We conclude that (X; ) is a pseudo limit of the pseudo functorF : J 'C . [

Theorem 12.5. The 2-category of pseudd ;T)-algebras overl ¥ admits pseudo
limits.

Proof:  This follows immediately from the previous theorem. O

Lemma 12.6. The 2-category C of pseudo( ;T)-algebras admits cotensor prod-
ucts.

Proof: Let J 2 ObjCat and let F : X | Cat be a pseudo ( ;T)-algebra.
De ne a strict 2-functor P : 1% 1 Cat by P; := (F;)’, which is the 1-category of 1-
functors J ! F;. | claim that P has the structure of a pseudo ( ; T)-algebra. This
structure is obtained by doing the operations pointwise. L& : ( W;Wwz;:::; W) !

for functors 1 J ! X (wyamg With 1~ n. Coherence isos can also
be de ned in this manner. Then the coherence diagrams commu because they
commute pointwise. HenceP is a pseudo ( ; T)-algebra.

A proof similar to the proof of Lemma 7.12 shows thatP is the cotensor product
of J and F. One must apply the argument for F in Lemma 7.12 to eachF; for
i 2 Objl k. O

Theorem 12.7. The 2-category C of pseudo( ;T)-algebras admits all weighted
pseudo limits.

Proof: By Theorem 12.5 it admits pseudo limits, and hence it admits meudo
equalizers. The 2-categoryC obviously admits products. By Lemma 12.6 it admits
cotensor products. Hence by Theorem 2.4 it admits all weighed pseudo limits. [J
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