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Abstract

In this paper, we give a fully detailed exposition of computing fundamental groups

of complements of line arrangements using the Moishezon-Teicher technique for com-

puting the braid monodromy of a curve and the Van-Kampen theorem which induces a

presentation of the fundamental group of the complement from the braid monodromy

of the curve. For example, we treated the cases where the arrangement has t multiple

intersection points and the rest are simple intersection points. In this case, the fun-

damental group of the complement is a direct sum of infinite cyclic groups and t free

groups. Hence, the fundamental groups in these cases is “big”. These calculations will

be useful in computing the fundamental group of Hirzebruch covering surfaces.
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1 Introduction

In this paper, we give a fully detailed exposition of calculations of fundamental groups of the
complements of certain configurations of real line arrangements using the Moishezon-Teicher
algorithm (which calculates the braid monodromy of curves), the Van-Kampen theorem
(which induces a finite presentation, in terms of generators and relations, of the fundamental
group of curves’ complements, from its braid monodromy), and some group computations.

In particular, we got:

1. Let L be a real line arrangement which is a union of t subsets of lines each of which
consists of ki+1 lines meeting in a single point, and any two lines belonging to different
subsets meet in a simple point. Then:

π1(C
2 − L, u0) ∼= (

t
⊕

i=1

F
ki) ⊕ Z

t

and

π1(CP
2 − L, u0) ∼= (

t
⊕

i=1

F
ki) ⊕ Z

t−1

2. Let L be a real line arrangement which consists of t subsets of lines each of which
consists of ki + 1 lines meeting in a single point and all the t multiple points lie on the
same line L ∈ L. Then:

π1(C
2 − L, u0) ∼= (

t
⊕

i=1

F
ki) ⊕ Z

and

π1(CP
2 −L, u0) ∼=

t
⊕

i=1

F
ki

3. Generalizations: Let L be a real line arrangement in CP
2 consists of n lines. We choose

the line at infinity such that all the lines are intersected in C
2. Assume that there are

k multiple intersection points p1, · · · , pk with multiplicities m1, · · · , mk respectively.
Assume also that all the multiple intersection points in every equivalence class (of
multiple points) are collinear, i.e. in every equivalence class (of multiple points) there
is a unique line of L which all the multiple points of that class lie on it. Then:

π1(C
2 − L, u0) ∼=

k
⊕

i=1

F
mi−1 ⊕ Z

n−(
∑k

i=1
(mi−1))

and

π1(CP
2 − L, u0) ∼=

k
⊕

i=1

F
mi−1 ⊕ Z

n−1−(
∑k

i=1
(mi−1))

The number of infinite cyclic groups in the affine case is a sum of two numbers: the
number of equivalence classes (see definitions in section 5) and the number of lines
which have only simple intersection points.
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4. Therefore, in all the above cases, the fundamental group is “big”.

We will organize the paper as follows: in section 2, we introduce the needed background
for the techniques which will be used, and we give a detailed description of the Moishezon-
Teicher algorithm for the case of line arrangements and the Van-Kampen theorem.

In section 3, we compute the structure of the fundamental group of the complement of a
line arrangement which consists of t subsets of lines and the multiple points are not collinear.

In section 4, we compute the structure of the fundamental group of the complement of a
line arrangement which consists of t subsets of lines and the multiple points are collinear.

In section 5, we generalize the results of the calculations of sections 3 and 4. In section
6, we discuss the bigness of the groups which have been treated.

2 Preliminaries

2.1 Some background

This topic starts with Zariski, who proved in [Z, p. 317] that:

Proposition (Zariski)
The fundamental group of the complement of n lines in general position is abelian.

Among the modern works on this topic, one can mention [Fa1], [Fa2], [OS], [Sa], [Ra]
and more.

Moishezon and Teicher developed an algorithm for computing fundamental groups of com-
plements of branch curves of generic projection of surfaces of general type (see [MoTe1],[MoTe2]).
This algorithm can be used also for computing fundamental groups of complement of line
arrangements. In this paper we give a detailed exposition of this technique in some configu-
rations of line arrangements.

Simultaneously and independently, by entirely different methods, Fan proved in [Fa1],[Fa2]
the following results for the projective case:

Proposition (Fan)
Let Σ =

⋃

li be a line arrangement in CP
2 and assume that there is a line L of Σ such that

for any singular point S of Σ with multiplicity ≥ 3, we have S ∈ L. Then: π1(CP
2 − Σ) is

isomorphic to a direct product of free groups.

Proposition (Fan)
Let Σ be an arrangement of n lines and S = {a1, · · · , ak} be the set of all singularities of Σ
with multiplicity ≥ 3. Suppose that β(Σ) = 0, where β(Σ) is the first Betti number of the
subgraph of Σ which contains only the higher singularities (i.e. with multiplicity ≥ 3) and
their edges. Then:

π1(CP
2 − Σ) ∼= Z

r ⊕ F
m(a1)−1 ⊕ · · · ⊕ F

m(ak)−1

where r = n+ k − 1 −m(a1) − · · · −m(ak).
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It has to be noted that the assumption β(Σ) = 0 is equivalent to the assumption that Σ
is a union of trees. The r in the last proposition is actually a sum of two combinatorial ingre-
dients: the number of the trees in Σ minus 1 and the number of lines which are intersected
only in simple intersection points.

Oka and Sakamoto proved in [OS] the following theorem, which will be a useful tool in
some of our calculations:

Theorem (Oka-Sakamoto)
Let C1 and C2 be algebraic plane curves in C

2. Assume that the intersection C1∩C2 consists
of distinct d1 · d2 points, where di (i = 1, 2) are the respective degrees of C1 and C2.
Then:

π1(C
2 − (C1 ∪ C2)) ∼= π1(C

2 − C1) ⊕ π1(C
2 − C2)

Our computations on the fundamental groups of complements of line arrangements have
applications to the fundamental groups of complements of branch curves, which is an impor-
tant invariant of surfaces [Te2] (when we degenerate a surface to a union of planes, the branch
curve degenerates to a union of lines). Moreover, the methods of this paper are important
tools in the computations of the fundamental groups of Hirzebruch covering surfaces.

2.2 Definition of g-base

Here, we will present the required definitions and results for the presentation of the algorithm
of Moishezon-Teicher. We follow the presentation of [MoTe1].

In this section, we will define the notion of g-base (good geometric base) for π1(D−K, ∗),
where K is a finite set in a disk D. For this definition, we have to define:

Definition 2.2.1 l(γ)
Let D be a disk. Let wi, i = 1, · · · , n, be small disks in Int(D) such that:

wi ∩ wj = ∅, ∀i 6= j.

Let u ∈ ∂D. Let γ be a simple path connecting u with one of the wi’s, say wi0, which does
not meet any other wj, j 6= i0.
We assign to γ a loop l(γ) (actually an element of π1(D−K, u)) as follows: let c be a simple
loop equal to the (oriented) boundary of a small neighbourhood V of wi0 chosen such that
γ′ = γ − V ∩ γ is a simple path.
Then: l(γ) = γ′ ∪ c ∪ (γ′)−1 (we will not distinguish between l(γ) and its representative in
π1(D −K, u)).

5
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Definition 2.2.2 Bush, g-base (good geometric base)
Let D be a disk, K ⊂ D, #K <∞. Let u ∈ D−K. A set of simple paths {γi} is a bush in
(D,K, u), if ∀i, j, γi ∩ γj = u; ∀i, γi ∩K = one point, and γi are ordered counterclockwise
around u. Let Γi = l(γi) ∈ π1(D −K, u) be a loop around K ∩ γi determined by γi. {Γi} is
called a g-base of π1(D −K, u).
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2.3 Braid group and braid monodromy

Let D be a closed disk in R
2, K ⊂ D a finite set, u ∈ ∂D. In such a case, we can define the

braid group Bn[D,K] (n = #K):

Definition 2.3.1 Braid group - Bn[D,K]
Let B be the group of all diffeomorphisms β of D such that β(K) = K, β|∂D = Id|∂D. Such
diffeomorphism acts naturally on π1(D −K, u). We say that two such diffeomorphisms are
equivalent if they define the same automorphism on π1(D−K, u). The quotient of B by this
equivalence relation is called the braid group Bn[D,K]. An element of Bn[D,K] is called
a braid. A composition of braids is from left to right.

6



Let us now define the concept of a half-twist braid. After fixing an orientation on R
2,

we can define a simple path σ such that [σ] ⊆ (D − ∂D −K) ∪ {a, b}, σ connects a with b

(a, b ∈ K). Choose now a small regular neighbourhood U of σ, and an orientation preserving
diffeomorphism f : R

2 → C (C is taken with the usual “complex” orientation) such that
f(σ) = [−1, 1], f(U) = {z ∈ C | |z| < 2}. Let α(x) be any real smooth monotone function
such that

α(x) =
{

1 x ∈ [0, 3
2
]

0 x ≥ 2

With this function, we define a diffeomorphism h : C → C as follows: for any z = reiϕ ∈ C,
we define: h(z) = rei(ϕ+α(r)π). It is clear that ∀z, |z| ≤ 3

2
, h(z) is a positive rotation on 180◦

and h(z) = Id ∀z, |z| ≥ 2. After these preparations, we can define:

Definition 2.3.2 H(σ) - (positive) half-twist defined by σ

H(σ) is the braid defined by (f−1 · h · f)|D.

We have also another way to look at braids - via motions of K.

Definition 2.3.3 Motion of K’ to K
Let K ′ = {a′1, a

′
2, · · · , a

′
n}, K = {a1, a2, · · · , an}. A motion of K’ to K in D is n continuous

functions mi : [0, 1] → D, i = 1, · · · , n, such that:
(a) ∀i, mi(0) = a′i, mi(1) = ai.
(b) ∀i 6= j, mi(t) 6= mj(t) ∀t ∈ [0, 1].

According to the following proposition, we can define a family of diffeomorphisms induced
from the motion (under the condition that K=K’).

Proposition 2.3.4 Given a motion R, there exists a continuous family of diffeomorphisms
DR,t : D → D, t ∈ [0, 1], such that:
(a) DR,t|∂D = Id|∂D.
(b) ∀t, i, DR,t(a

′
i) = mi(t).

Definition 2.3.5 bR (braid induced from a motion R)
When K=K’, bR is the braid defined by the diffeomorphism DR,1.

We define another important notion:

Definition 2.3.6 Skeleton in (D,K,K ′′)
Let K ′′ ⊂ K,K ′′ = {b1, · · · , bm}. A skeleton in (D,K,K ′′) is represented by a consecutive
sequence of simple paths (p1, · · · , pm−1) in D− ∂D such that each pi connects bi to bi+1. We
say that two such sequences, say (p1, · · · , pm−1), (p̃1, · · · , p̃m−1), represent the same skeleton,
if H(pi) = H(p̃i), i = 1, · · · , m− 1.

7



Before introducing the definition of braid monodromy, we have to make some more con-
structions. From now, we will work in C

2. Let E (resp. D) be a closed disk on x-axis (resp.
y-axis), and let C be a part of an algebraic curve in C

2 located in E×D. Let π1 : E×D → E

and π2 : E × D → D be the canonical projections, and let π = π1|C : C → E. Assume
π is a proper map, and deg π = n. Let N = {x ∈ E | #π−1(x) < n}, and assume
N ∩ ∂E = ∅. Now choose M ∈ ∂E and let K = K(M) = π−1(M). By the assumption that
deg π = n (⇒ #K = n), we can write: K = {a1, a2, · · · , an}. Under these constructions,
from each loop in E −N , we can define a braid in Bn[M ×D,K] in the following way:

(1) Because deg π = n, we can lift any loop in E −N with a base point M to a system of
n paths in (E −N) ×D which start and finish at {a1, a2, · · · , an}.

(2) Project this system into D (by π2), to get n paths in D which start and end at the
image of K in D (under π2). These paths actually form a motion.

(3) Induce a braid from this motion, as we did in definition 2.3.5.

To conclude, we can match a braid to each loop. Therefore, we get a map ϕ : π1(E −
N,M) → Bn[M × D,K], which is also a group homomorphism which is called the braid
monodromy of C with respect to E ×D, π1,M .

For the next definitions, let us assume M0,M1 ∈ E − N and T : [0, 1] → E − N be
a path which connects M0 with M1. We know that there exists a continuous family of
diffeomorphisms ψ(t) : M0 ×D → T (t) ×D, ∀t ∈ [0, 1], such that:
(a) ψ(0) = Id|M0×D.
(b) ∀t ∈ [0, 1], ψ(t)(π

−1
1 (M0) ∩ C) = π−1

1 (T (t)) ∩ C.
(c) ∀y ∈ ∂D, ψ(t)(M0, y) = (T (t), y).

In this situation, we can define the Lefschetz diffeomorphism induced by T:

Definition 2.3.7 ψT , Lefschetz diffeomorphism induced by T

ψT = ψ(1) : M0 ×D →̃ M1 ×D

Let s = (x(s), y(s)) ∈ C be a singular point of π (i.e. x(s) ∈ N). LetD′(s) be such a small
disk on y-axis centered at y(s) that (x(s) ×D′(s)) ∩C = s, i.e. there are no other branches
of C which intersect D′(s). Therefore, for any sufficiently small neighbourhood U of x(s) on
the x-axis centered at x(s) such that ∀x ∈ U − x(s), #(x × Int(D′(s))) ∩ C is independent
of x (we call this number the local degree of π at s and denote it by degs π). Let k = degs π

and E ′ be a small closed disk on the x-axis centered at x(s), such that ∀x ∈ E ′ − x(s),
#(x × Int(D′(s))) ∩ C = k. Choose a point a(s) ∈ ∂E ′ and let T : [0, 1] → C be a path in
E −N − Int(E ′) connecting a(s) to a point M ′ ∈ E −N . Let Ka,s = (a(s) ×D′(s)) ∩ C.

Definition 2.3.8 ψ̃T , Lefschetz embedding induced by T
Let ψT be the Lefschetz diffeomorphism as defined above. Let T be as above, a = a(s),
D′ = D′(s). Then:

ψ̃T = ψT |a×D′ : a×D′ →M ′ ×D

8



Remark: Take k liftings of T to C starting at the different points of
Ka,s = (a×D′)∩C. These liftings are real curves in T ×D. We can think of ψ̃T as “pulling”
of a×D′ in T ×D along these real curves.

Definition 2.3.9 LT,s, Lefschetz injection induced by T
Consider ψ̃T : a×D′ → M ′ ×D, Lefschetz embedding induced by T.
Let K(M ′) = (M ′ ×D) ∩ C. We have

ψ̃T (Ka,s) ⊂ K(M ′), (K(M ′) − ψ̃T (Ka,s)) ∩ ψ̃T (Int(D′)) = ∅

Therefore, the following canonical injection is well defined:

LT,s = ψ∨
T : Bk[a×D′, Ka,s] →֒ Bn[M ′ ×D,K]

In order to define the Lefschetz vanishing cycle, we need the following definition:

Definition 2.3.10 Linear frame of a braid group Bn[D,K]
Let K = {a1, a2, · · · , an}. Let {ξ1, ξ2, · · · , ξn−1} be a system of straight line segments in
D−∂D such that each ξi connects ai with ai+1 (and does not intersect any other ξj except of
end points). Let Hi = H(σi). The ordered system of positive half-twists (H1, H2, · · · , Hn−1)
is called a linear frame of Bn[D,K] defined by {ξ1, ξ2, · · · , ξn−1}.

Now, we come to one of the most important definitions:

Definition 2.3.11 L.V.C.(T,H ′), Lefschetz vanishing cycle induced by T

We call L.V.C.(T,H ′) a skeleton < ξ1, · · · , ξk−1 > in (M ′ × D,K, ψ̃T (Ka,s)) correspond-
ing LT,s and a linear frame (H ′) = (H ′

1, · · · , H
′
k−1) of Bk[a × D′, Ka,s], that is LT,s(H

′
i) =

H(ξi), i = 1, · · · , k − 1.

Because of the fact that such a linear frame is unique only when all the points of K are
on a straight line in D ⊂ R

2, L.V.C.(T,H ′) will be well defined if all the points of Ka,s are
on a straight line in a× C. If all the points of Ka,s are real, we will choose the unique linear
frame (H ′

1, · · · , H
′
k−1) determined by an increasing sequence of consecutive real segments on

the real axis of a× C.

2.4 The braid monodromy of a real line arrangement

Definition 2.4.1 Line arrangement in CP
2

A Line arrangement in CP
2 is an algebraic curve in CP

2 which is a union of projective
lines.

If the lines are given by the linear forms l1, l2, · · · , lk, the union of the lines is the reducible
curve defined by

l1l2 · · · lk = 0

We say that the arrangement is real if each line can be defined by an equation with real
coefficients (i.e. each linear form li has real coefficients).

Let C
2 = CP

2 − (projective line) be an affine part of CP
2. Let E (resp. D) be a closed

disk on x-axis (resp. on y-axis) with the center on the real part of x-axis (resp. y-axis). Let
π1 : E ×D → E, π2 : E ×D → D be the canonical projections.

9



Definition 2.4.2 Real line arrangement in a polydisk E ×D

We say that C is a real line arrangement in a polydisk E×D (as above), if there exists
a real line arrangement Ĉ in CP

2, such that:
(a) C = Ĉ ∩ (E ×D).
(b) ∀x ∈ E, π−1

1 (x) ∩ C ⊂ x× Int(D).

Let π = π1|C, n = deg π (=number of lines in C), N = {x ∈ E | #π−1(x) < n}, Kx =
π−1(x). Therefore, for any real x 6∈ N , we have n distinct real points (x, yi(x)), 1 ≤ i ≤ n, in
Kx. We choose a numeration in {y1(x), · · · , yn(x)}, such that y1(x) < y2(x) < · · · < yn(x).

Let D̃ = {z ∈ C | |z − n+1
2
| ≤ n+1

2
}, K̃ = {1, 2, · · · , n} ⊂ D̃ (D̃ is a model which

simplifies the treatment with the theoretic calculations of the braid monodromy). Let H̃ =
(H̃1, H̃2, · · · , H̃n−1) be the linear frame of Bn[D̃, K̃] defined by the sequence of real segments
ξ̃ = ([1, 2], [2, 3], · · · , [n− 1, n]), i.e. H̃j = H([j, j + 1]).

For the set E ′
R

= {x ∈ E − N | x real}, we can construct a set of diffeomorphisms
{βx | x×D→̃D̃} with the following properties:

(a) βx(Kx) = K̃.

(b) βx(x× real part of D) = real part of D̃ (order preserved).

(c) ∀x, x′ ∈ E ′
R
, y ∈ ∂D, βx(x, y) = βx′(x′, y).

(d) On each connected component L̃ of E ′
R
, {βx | x ∈ L̃} is a continuous family of diffeo-

morphisms.

Let ξx = {ξx,1, ξx,2, · · · , ξx,n−1} (x ∈ E ′
R
) be the sequence of real segments [yi(x), yi+1(x)], 1 ≤

i ≤ n−1, in x×D and let Hx = (Hx,1, Hx,2, · · · , Hx,n−1) be the linear frame of Bn[x×D,Kx]
defined by ξx.

Now, we assume that ∀xj ∈ N , there is only one singular point of C over xj .
Let xj ∈ N . Choose x′j = xj + ǫ, ǫ > 0 a very small number. Let Aj be the singular-

ity of C over xj (i.e. x(Aj) = xj), and let Yj be the union of irreducible components of
C containing Aj. In {y1(x

′
j), · · · , yn(x

′
j)}, there is a subsequence with consecutive indices

{ykj
(x′j), ykj+1(x

′
j), · · · , ylj(x

′
j)} which is equal to K ′

x′

j
= Yj ∩ (x′j ×D).

In this situation, we can define the following notions:

Definition 2.4.3 Local L.V.C. of Aj (“Local Lefschetz vanishing cycle of Aj”)
A skeleton in (x′j ×D,Kx′

j
, K ′

x′

j
) represented by the sequence of real segments

[ykj+r−1(x
′
j), ykj+r(x

′
j)], 1 ≤ r ≤ lj − kj

is called a local L.V.C. of Aj.

Definition 2.4.4 (kj, lj), Lefschetz pair of Aj

The smallest and biggest indices kj , lj in the sequence considered above form a pair (kj, lj),
which is called the Lefschetz pair of Aj.

10



Obviously, the local L.V.C. of Aj is uniquely defined by the Lefschetz pair (kj, lj).

Definition 2.4.5 < kj, lj >, skeleton representing local L.V.C. of Aj

Denote by < kj , lj > the skeleton in (D̃, K̃, (kj, kj +1, · · · , lj)) represented by consecutive real
segments connecting points of (kj, kj + 1, · · · , lj).

Lemma 2.4.6 Let γ be a simple path in E −N connecting xj with M(∈ ∂E), [xj , x
′
j ] ⊂ γ.

Let γ′ be the part of γ from x′j to M . Let

ϕ : π1(E −N,M) → Bn[M ×D,KM ]

be the braid monodromy of C w.r.t. E ×D, π1,M . Let Γ be the element represented by l(γ).
Then:

ϕ(Γ) = ∆2 < L.V.C.(γ′, H(< ξx >)) >

(where, intuitively, ∆ < skeleton > is a generalized half-twist which is defined according to
the skeleton, and ∆2 < skeleton > is applying this half-twist twice).

2.5 The algorithm of Moishezon-Teicher

Following lemma 2.4.6, in order to calculate the braid monodromy, we have to find the
appropriate Lefschetz vanishing cycles. This is given by the following theorem [MoTe1]:

Theorem 2.5.1 (Moishezon-Teicher)
Let N = {x1, x2, · · · , xq} with xq < xq−1 < · · · < x2 < x1, M ∈ ∂E ∩ (real axis), with
M > x1, and ǫ > 0 a very small number. Let Tj(1 ≤ j ≤ q) be the path from xj − ǫ to xj + ǫ

along the semicircle below real axis centered at xj.
Let γj be the path from xj to M defined by

γj = [xj , xj−1 − ǫ] · Tj−1 · [xj−1 + ǫ, xj−2 − ǫ] · Tj−2 · · ·T1 · [x1,M ]

(γj = [xj , xj−1 − ǫ] · Tj−1 · (
2

∏

r=j−1

[xr + ǫ, xr−1 − ǫ] · Tr−1) · [x1,M ])

εj-1x    - x j-2x j-1 1 εx +x -1 ε

T1

x 1

Tj-2

j-1 εx    + j-2 εx    - j-2 εx    + Mjx 

Tj-1

γj

Considering l(γj)’s, we get a g-base {δ1, δ2, · · · , δq} in π1(E −N,M).
Assume that for all xj, 1 ≤ j ≤ q, there is only one singular point Aj with x(Aj) = xj.

Let (kj, lj) be the Lefschetz pair of Aj, and < kj, lj > be the skeleton in (D̃, K̃, (kj, kj +
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1, · · · , lj − 1, lj)) representing local L.V.C. of Aj. Let γ′j be the part of γj from x′j = xj + ǫ

to M .
Then:

L.V.C.(γ′j) = β−1
M (< kj, lj > ·

1
∏

m=j−1

∆ < km, lm >)

(where
1

∏

m=j−1

∆ < km, lm >=

∆ < kj−1, lj−1 > ·∆ < kj−2, lj−2 > · · ·∆ < k1, l1 >∈ Bn[D̃, K̃])

and
L.V.C.(γ′1) = β−1

M (< k1, l1 >)

According to this theorem, in order to compute the braid monodromy of a line arrange-
ment, we have to do the following steps:

1. Check that the line arrangement fulfills the assumption that there are no more than
one intersection point with the same x-coordinate (so we can apply the theorem).

2. Find the Lefschetz pairs of all the intersection points.

3. Calculate the Lefschetz vanishing cycle of every intersection point according to the last
theorem (2.5.1).

4. The braid monodromy is the ∆2 of this L.V.C.

2.6 The Van-Kampen theorem

The Van-Kampen theorem induces a finite presentation of the fundamental group of com-
plements of curves by meaning of generators and relations. From this finite presentation, we
will calculate the structure of the group in our cases (the original theorem is in [VK], other
versions can be found at [Mo, pp. 127-130], [MoTe3], [MoTe4, ch. 13], [Te1]. The theorems
presented here are from [MoTe3],[MoTe4] and [Te1]).

Let S be an algebraic curve in C
2 (p = deg S). Let π = π1 : C

2 → C be the canonical
projection on the first coordinate. Let Cx = π−1(x), and now define: Kx = Cx ∩ S (By
assumption degS = p, we know #Kx ≤ p).

Let N = {x | #Kx < p}. Choose now u ∈ C, u real, such that x ≪ u, ∀x ∈ N , and
define: Bp = Bp[Cu,Cu ∩ S]. Let ϕu : π1(C − N, u) → Bp be the braid monodromy of S
w.r.t π, u. Also choose u0 ∈ Cu, u0 6∈ S, u0 below real line far enough such that Bp does
not move u0. It is known that the group π1(Cu −S, u0) is free. There exists an epimorphism
π1(Cu − S, u0) → π1(C

2 − S, u0), so a set of generators for π1(Cu − S, u0) determines a set of
generators for π1(C

2 − S, u0).

In this situation, Van-Kampen’s theorem says:

12



Theorem 2.6.1 Van-Kampen’s Theorem - classic version
Let S be an algebraic curve, u, u0, ϕu defined as above. Let {δi} be a g-base of π1(C −N, u).
Let {Γj | 1 ≤ j ≤ p} (p = deg S) be a g-base for π1(Cu − S, u0).
Then, π1(C

2−S, u0) is generated by the images of Γj in π1(C
2−S, u0) and we get a complete

set of relations from those induced from

(ϕu(δi))(Γj) = Γj; ∀i∀j

Here we present also the classic Van-Kampen theorem for the projective case. The
only difference between the affine case and the projective case is that there is one additional
relation in the projective case - the multiplication of all the generators is equal to the identity
of the group.

Theorem 2.6.2 Van-Kampen’s Theorem for projective case - classic version
Let S be an algebraic curve, u, u0, ϕu defined as above. Let {δi} be a g-base of π1(C −N, u).
Let {Γj | 1 ≤ j ≤ p} (p = deg S) be a g-base for π1(Cu − S, u0).
Then, π1(CP

2−S, u0) is generated by the images of Γj in π1(C
2−S, u0) and we get a complete

set of relations from those induced from

(ϕu(δi))(Γj) = Γj; ∀i∀j

with one additional relation:
ΓpΓp−1 · · ·Γ1 = 1

Oka [O] proved the following connection between the fundamental group of the affine
case and the fundamental group of the projective case:

Theorem 2.6.3 (Oka)
Let C be a curve in CP

2 and let L be a general line to C. Then, we have a central extension:

1 → Z → π1(CP
2 − (C ∪ L)) → π1(CP

2 − C) → 1

Due to the fact that L is in a general position to C, we can say:

π1(CP
2 − (C ∪ L)) ∼= π1((CP

2 − L) − C) ∼= π1(C
2 − C)

(by choosing L as the line at infinity). Therefore, we get the following short exact sequence
(see also [OS]):

1 → Z → π1(C
2 − C) → π1(CP

2 − C) → 1

We will show that in the cases which we treat, we get:

π1(C
2 − C) ∼= π1(CP

2 − C) ⊕ Z

and therefore, this short exact sequence splits.

Now we return to the affine case. In order to give a more precise version of Van-Kampen’s
theorem for cuspidal curves, i.e. for curves with only nodes and cusps as singularities, we
need the following two lemmas.
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Lemma 2.6.4 Let V be a half-twist in Bp[D,K], u0 6∈ K.
Then: there exists AV , BV ∈ π1(D −K, u0), such that:
(a) {AV , BV } can be extended to a g-base of π1(D −K, u0).
(b) V (AV ) = BV .

u0 u0

AV

u0

u0 u0

σ

VB

σ

σ σ
1 2

Let S be a cuspidal curve in C
2 (p = deg S). We assume that for every x ∈ N (N as

above), there is only one singular point over it (in C
2). Thus, for every x ∈ N , let x′ be the

singular point over x. Because S is a cuspidal curve, the point x′ is either a branch point, a
node or a cusp.

Lemma 2.6.5 Let {δi} be a g-base for π1(C − N, u). For every δi, there exists Vi and νi,
where Vi is a half-twist and νi is a number such that ϕu(δi) = V νi

i . Moreover, νi = 1, 2, 3 if
c′i (the singular point) = a branch point, a node or a cusp respectively.

We denote:
[A,B] = ABA−1B−1

< A,B >= ABAB−1A−1B−1

Now, we can give the precise version of the Van-Kampen theorem for cuspidal curves:

Theorem 2.6.6 Van-Kampen’s theorem for cuspidal curves
Let S be a cuspidal curve, u, u0, ϕu, AVi

, BVi
defined as above. Let {δi} be a g-base of π1(C−

N, u). Let ϕu(δi) = V νi

i , Vi is a half-twist, νi = 1, 2, 3 (as above).
Let {Γj | 1 ≤ j ≤ p} (p = deg S) be a g-base for π1(Cu − S, u0).

Then: π1(C
2−S, u0) is generated by the images of Γj in π1(C

2−S, u0) and we get a complete
set of relations from those induced from ϕu(δi) = V νi

i , as follows (when AVi
, BVi

are expressed
in terms of {Γj}):
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(a) AVi
= BVi

, when νi = 1.

(b) [AVi
, BVi

] = 1, when νi = 2.

(c) < AVi
, BVi

>= 1, when νi = 3.

What do we get from this theorem? After we calculate the appropriate braid monodromy,
we can get a finite presentation of the desired fundamental group.

Note that it is easy to see that the relation, which is induced from the braid monodromy,
is uniquely determined by the half-twist V , and is independent of the choice of AV , BV .

Now, we will present the version of Van-Kampen’s theorem for an arrangement with a
single multiple point, i.e. an arrangement where all the lines meet in one point (the proof is
easy, and can be found, for example, in [Ga, p. 25]):

Lemma 2.6.7 Van-Kampen’s theorem for a single multiple point
Let l1, · · · , lk be k real lines in CP

2 meeting in a single point p. Let δ be a loop in π1(E−N, u0)

around x(p). Let {Γ1, · · · ,Γk} be a g-base of π1(Cu0
−

k
⋃

i=1

li).

Then, the relations which are induced from this intersection point are:

ΓkΓk−1 · · ·Γ1 = Γ1Γk · · ·Γ3Γ2 = · · · = Γk−1Γk−2 · · ·Γ1Γk

2.7 An application of the Van-Kampen theorem

Here, we will prove a simple proposition, which will help us in the future. We denote
[x, y] = xyx−1y−1 for x, y in a group G.

Proposition 2.7.1 Let p be an intersection point of k real lines lj1, · · · , ljk
in CP

2. Let δ be
a loop in π1(E −N, u0) around x(p).

Let {Γj1, · · · ,Γjk
} be a g-base of π1(Cu0

−
k
⋃

i=1

lji
).

Then: the relations which are induced from this intersection point are:

[Γjk
Γjk−1

· · ·Γj1,Γji
] = 1; 1 ≤ i ≤ k

Proof: By the Van-Kampen version for a multiple point (2.6.7), the following set of relations
is induced from the intersection point p:

Γjk
Γjk−1

· · ·Γj1 = Γjk−1
· · ·Γj1Γjk

= · · · = Γj1Γjk
· · ·Γj2

We will prove now that this set of relations is equivalent to the set of relations in the
formulation of the proposition.

(⇒) Let 1 ≤ i ≤ k. We have to show that

Γjk
Γjk−1

· · ·Γj1Γji
= Γji

Γjk
Γjk−1

· · ·Γj1
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We know (from the first set of relations) that

(∗) Γjk
Γjk−1

· · ·Γj1 = Γji
Γji−1

· · ·Γj1Γjk
· · ·Γji+1

(∗∗) Γjk
Γjk−1

· · ·Γj1 = Γji−1
Γji−2

· · ·Γj1Γjk
· · ·Γji

Now:
(Γjk

Γjk−1
· · ·Γj1)Γji

(∗)
= (Γji

Γji−1
· · ·Γj1Γjk

· · ·Γji+1
)Γji

=

= Γji
(Γji−1

· · ·Γj1Γjk
· · ·Γji+1

Γji
)

(∗∗)
= Γji

(Γjk
Γjk−1

· · ·Γj1)

(⇐) From the first relation we have:

[Γjk
Γjk−1

· · ·Γj1,Γj1] = 1

i.e. Γjk
Γjk−1

· · ·Γj1Γj1 = Γj1Γjk
Γjk−1

· · ·Γj1. Now, multiply it by Γ−1
j1

from the right to get:

(∗ ∗ ∗) Γjk
Γjk−1

· · ·Γj1 = Γj1Γjk
· · ·Γj2

From the second relation we have: (Γjk
Γjk−1

· · ·Γj1)Γj2 = Γj2(Γjk
Γjk−1

· · ·Γj1), but from
(∗ ∗ ∗) we get: (Γj1Γjk

· · ·Γj2)Γj2 = Γj2(Γj1Γjk
· · ·Γj2). Now, multiply it by Γ−1

j2
from the

right to get:
Γj1Γjk

· · ·Γj2 = Γj2Γj1Γjk
· · ·Γj3.

Applying the same argument together with the rest of the commutative relations give us the
requested cyclic relations.

2.8 Outline of the computation of the fundamental group of the
complement of line arrangements

Let us summarize the steps we have to follow in order to compute the fundamental group of
the complement of a given real line arrangement L:

(1) Calculation of the braid monodromy of L:

- Check that the line arrangement fulfills the assumption that there are no more
than one intersection point with the same x-coordinate (so we can apply the
theorem).

- Find the Lefschetz pairs of all the intersection points.

- Calculate the Lefschetz vanishing cycle of every intersection point according to
the Moishezon-Teicher theorem.

(2) Calculation of the relations induced on π1(C
2 − L) from the braid monodromy:

- Choose u as in section 2.6.

- Choose a g-base for π1(Cu − L): {Γ1, · · · ,Γn}.
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- Calculate the AVi
, BVi

from the L.V.C. for every singular point in terms of Γi, i =
1, · · · , n.

- Find the induced relations according to the Van-Kampen theorem.

(3) Computing the structure of π1(C
2 − L) from the relations in (2). This step contains

some group calculations and combinatorics.

3 Arrangements with t non-collinear multiple points

In this section, we are going to calculate the fundamental group of the complement of line
arrangements where there is no line on which there are two multiple points. Thus, we can
divide the arrangement into t subsets of lines where all the lines in each subset intersect at a
single (multiple) point and any two such subsets intersect in simple points only. We define:

Definition 3.0.1 Simple point, multiple point, multiplicity of a point
A simple point in a line arrangement is a point where two lines meet. A multiple point
in a line arrangement is a point where more than two lines meet. The multiplicity of a
point is the number of lines which meet in the point.

Definition 3.0.2 An arrangement with t non-collinear multiple points
An arrangement with t non-collinear multiple points is an arrangement where there
is no line on which there are two multiple points and we can divide it into t subsets of lines
where all the lines in each subset intersect in a single multiple point.

We denote by F
k the free group with k generators.

3.1 The affine case

We calculate the affine case:

Theorem 3.1.1 Let L be a real line arrangement in CP
2 with t non-collinear multiple points.

Let ki + 1 be the multiplicity of the multiple point Pi, 1 ≤ i ≤ t.
Then:

π1(C
2 −L) ∼= (

t
⊕

i=1

F
ki) ⊕ Z

t

Proof: Randell [Ra] showed that the fundamental group of the complement of a real line
arrangement which consists of n lines meet in a single point is F

n−1 ⊕ Z.
We can observe L as a union of t subsets of lines Li, 1 ≤ i ≤ t, where every such subset

Li, 1 ≤ i ≤ t, consists of ki + 1 lines which are passing through the multiple point Pi (there
is no l ∈ Li ∩ Lj, because then l connects Pi and Pj , a contradiction to the assumption).
The degree of each Li is exactly ki +1, because there are ki +1 lines which pass through the
point Pi. Moreover, Li ∩ Lj = (ki + 1)(kj + 1) points, because every line in Li meets every
line in Lj.
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Every Li, 1 ≤ i ≤ t, consists of ki + 1 lines which pass through the multiple point Pi.
This is the configuration of Randell. Therefore:

π1(C
2 −Li) = F

ki ⊕ Z

Now we can use the Oka-Sakamoto theorem (see section 2.1), in order to compute the
fundamental group of the complement of L:

π1(C
2 −L) = π1(C

2 −
t

⋃

i=1

Li)
(O−S)
∼=

t
⊕

i=1

(π1(C
2 −Li)) =

=
t

⊕

i=1

(Fki ⊕ Z) = (
t

⊕

i=1

F
ki) ⊕ Z

t

The Oka-Sakamoto theorem gives us a new inductive approach to prove Zariski’s propo-
sition:

Proposition 3.1.2 (Zariski)
The fundamental group of the complement of n lines in general position is abelian.

Proof: It is known that for a line L:

π1(C
2 − L) ∼= Z

Due to the general position of the lines in the arrangement, we can use the Oka-Sakamoto
theorem (see section 2.1) inductively in the following way:

π1(C
2 −L) = π1(C

2 −
n
⋃

i=1

li)
(O−S)
∼=

n
⊕

i=1

(π1(C
2 − li)) ∼=

n
⊕

i=1

Z ∼= Z
n

And Z
n is an abelian group (see [O] too).

3.2 The projective case

Now, we will investigate the projective case.

Theorem 3.2.1 Let L be a real line arrangement in CP
2 with t non-collinear multiple points.

Let ki + 1 be the multiplicity of the multiple point Pi, 1 ≤ i ≤ t.
Then:

π1(CP
2 −L) ∼= (

t
⊕

i=1

F
ki) ⊕ Z

t−1

Proof: First, we will prove this theorem for t = 1, i.e. if L is a real line arrangement in CP
2

which consists of k + 1 lines meeting in one point P , then π1(CP
2 −L) ∼= F

k.
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Let {Γ1, · · · ,Γk+1} be a g-base of π1(Cu − L) (see section 2.8). In this line arrangement,
we have only one singular point - P . Therefore, according to lemma 2.6.7 and proposition
2.7.1, this singular point induced the following set of relations:

[Γk+1Γk · · ·Γ1,Γi] = 1, i = 1, · · · , k + 1

Hence, the fundamental group of its affine complement has the following presentation:

π1(C
2 − L) = < Γ1, · · · ,Γk+1 | [Γk+1Γk · · ·Γ1,Γi] = 1, i = 1, · · · , k + 1 >

We will compute now another presentation for this group.
Let us modify the set of generators g = {Γ1, · · · ,Γk+1} by replacing the generator Γ1 by

the generator
Γ′ = Γk+1Γk · · ·Γ1

Then, we have to check that after the modifications we get an equivalent set of generators,
and we have to calculate the new set of relations.

Claim 3.2.2 After replacing Γ1 by Γ′ (which was defined above) in g, we again get a set of
generators. We denote this set of generators by g̃.

Proof: we have to show that Γ1 ∈< g̃ >. But this is obvious, because:

Γ1 = Γ−1
2 Γ−1

3 · · ·Γ−1
k+1Γ

′

The next step is the calculation of the new set of relations for g̃.

Claim 3.2.3 The set of relations:

{[Γ′,Γ] = 1 | ∀Γ ∈ g̃}

is a complete set of relations for g̃.

Proof: We have to show that

(∗) {[Γ′,Γ] = 1 | ∀Γ ∈ g̃}

is an equivalent set of relations to

(∗∗) {[Γk+1Γk · · ·Γ1,Γi] = 1 | 1 ≤ i ≤ k + 1}

under the assignment: Γ′ = Γk+1 · · ·Γ1.
Let us assume (∗). All the relations are equal except the first one. We have to show that:

[Γk+1 · · ·Γ1,Γ1] = 1
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But:

Γ′Γ1 = Γ′(Γ−1
2 · · ·Γ−1

k+1Γ
′)

(∗) + ab=ba⇒ab−1=b−1a
= (Γ−1

2 · · ·Γ−1
k+1Γ

′)Γ′ = Γ1Γ
′

Now, if we assume (∗∗), all the relations in (∗) are equal except of Γ′Γ′ = Γ′Γ′ which is
trivial.

Hence we got the following presentation for the fundamental group of the affine comple-
ment of L:

π1(C
2 − L) =< Γ′,Γ2, · · · ,Γk+1 | [Γi,Γ

′] = 1, 2 ≤ i ≤ k + 1 >

Now, when we are going to the projective case, we add one additional relation, according
to theorem 2.6.2:

Γk+1 · · ·Γ1 = 1

In terms of the new generator Γ′, this relation gets the following form:

Γ′ = 1

Therefore, we can copmute the structure of the fundamental group in the projective case
with t = 1:
π1(CP

2 − L) =< Γ′,Γ2, · · · ,Γk+1 | [Γi,Γ
′] = 1, 2 ≤ i ≤ k + 1; Γ′ = 1 > ∼=

∼= < Γ2, · · · ,Γk+1 > ⊕ < Γ′ | Γ′ = 1 >∼= F
k.

Now we continue to the general case (t > 1). For simplicity of the proof, we will prove it
for two multiple points and the proof for t multiple points uses exactly the same arguments.

From the last theorem, we get for a line arrangement L with two multiple points:

π1(C
2 − L) ∼= F

k1 ⊕ F
k2 ⊕ Z

2

Let l1, · · · , lk1+1 be k1+1 lines which pass through P1 and let lk1+2, · · · , lk1+k2+2 be k2+1 lines
which pass through P2. We choose {Γ1, · · · ,Γk1+k2+2}, a g-base of π1(Cu − L) (see section
2.8) where Γi corresponds to the line li.

Similarly to the first part of the proof, we can write the following presentation for π1(C
2−

L):
Generators: g = {Γ1, · · · ,Γk1

,Γ′,Γk1+2, · · · ,Γk1+k2+1,Γ
′′}.

Relations: R = {ΓiΓj = ΓjΓi, 1 ≤ i ≤ k1, k1 + 2 ≤ j ≤ k1 + k2 + 1;
[Γ′,Γ] = 1, ∀Γ ∈ g; [Γ′′,Γ] = 1, ∀Γ ∈ g}, where:

Γ′ = Γk1+1 · · ·Γ1; Γ′′ = Γk1+k2+2 · · ·Γk1+2

Now, when we are going to the projective case, we add one additional relation, according
to theorem 2.6.2:

Γk1+k2+2 · · ·Γ1 = 1

In terms of the new generators Γ′,Γ′′, this relation gets the following form:

Γ′′Γ′ = 1
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Now, we can finish to compute the structure the fundamental group in the projective
case:
π1(CP

2 − L) =< g | R,Γ′′Γ′ = 1 > ∼=
∼= < Γ1, · · · ,Γk1

> ⊕ < Γk1+2, · · · ,Γk1+k2+1 > ⊕ < Γ′,Γ′′ | Γ′′Γ′ = 1 >∼= F
k1 ⊕ F

k2 ⊕ Z.

As a consequence of the last theorem, we get:

Corollary 3.2.4
π1(C

2 − L) ∼= π1(CP
2 − L) ⊕ Z

Therefore, the short exact sequence which was proved by Oka (theorem 2.6.3):

1 → Z → π1(C
2 − L) → π1(CP

2 − L) → 1

splits.

4 Arrangements with t collinear multiple points

In this section, we are going to calculate the fundamental group of the complement of line
arrangements which consist of t subsets of lines where all the lines in each subset intersect
at a single (multiple) point, all the t multiple intersection points lie on a single line which
belongs to all the subsets and any two subsets of lines intersect in that line and in simple
points out of that line. We define:

Definition 4.0.5 An arrangement with t collinear multiple points
An arrangement with t collinear multiple points is a line arrangement which contains
a line where all the t multiple points lie on it.

4.1 The affine case

Theorem 4.1.1 Let L be a real line arrangement in CP
2 with t collinear multiple points

P1, · · · , Pt with multiplicities k1 + 1, · · · , kt + 1, respectively. Then:

π1(C
2 − L) ∼=

t
⊕

i=1

F
ki ⊕ Z

It has to be noted that this theorem has a similar result to what we have got in the
previous section in the non-collinear case. In both cases, the multiple points induced the
free groups. The difference between the cases is that the connected line of the collinear case
degenerates all the infinite cyclic groups of the non-collinear case into one infinite cyclic
group.

Let L be the line on which all the multiple points lie. We choose {Γ1, · · · ,Γn} (n = #{l ∈
L}), a g-base of π1(Cu0

−L) (see section 2.8), where Γi corresponds to the line li in L. The
proof of the theorem is based on the following two lemmas:
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Lemma 4.1.2 In the situation of the theorem, let Li be the subset of lines meet in Pi apart
from L. Then: [Γi,Γj] = 1 where li ∈ Li, lj ∈ Lj and 1 ≤ i < j ≤ t.

Lemma 4.1.3 Let Li∪L = {lp1
, · · · , lpki+1

} be the ki +1 lines that meet in the multiple point
Pi. Then, the relations that are induced from this multiple point are:

[Γpki+1
· · ·Γp1

,Γpj
] = 1, 1 ≤ j ≤ ki + 1

The proof of lemma 4.1.2 is in section 4.2. The proof of lemma 4.1.3 is in section 4.3.
The proof of the theorem (4.1.1) is in section 4.4.

4.2 Proof of lemma 4.1.2

For simplicity, we prove the lemma only for two multiple points, and the proof for t multiple
points uses exactly the same arguments.

We will split the proof of this lemma into two cases: with the restriction that all the simple
intersection points are to the right of the multiple points, and without this restriction. This
restriction simplifies the proof significantly, and help to understand the proof of the general
case.

4.2.1 First case - with the restriction

In this case, all the simple points are to the right of the multiple points.

Let N = {x ∈ C | (x, y) is an intersection point}, and let u0 ∈ R such that x≪ u0 for all
x ∈ N . Let Cu0

= {(u0, y) | y ∈ C}. We numerate the lines according to their intersection
with Cu0

. By a proper choosing of the line in infinity and homotopic movements of the lines,
we can assume that the line arrangement has the following property: for 1 ≤ i < j ≤ k1,

x(li ∩ lt) < x(lj ∩ ls), k1 + 1 ≤ t, s ≤ k1 + k2

Therefore, we get the following line arrangement:

k1

k k+1 2

k k+1 2

1

k1

+1

+1
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Let g = {Γ1, · · · ,Γk1+k2+1} be a g-base of π1(Cu0
− L). By abuse of notations, let us

denote the images of Γi in π1(C
2 − L) by the same notation.

Now, we prove this lemma using the braid monodromy techniques (2.5.1) and the Van-
Kampen theorem (2.6.6). First, let us calculate the skeletons representing the L.V.C.s of
the braid monodromy.

According to this line arrangement, we have the following set of Lefschetz pairs:

j λxj

1 (k1, k1 + 1)
2 (k1 + 1, k1 + 2)
3 (k1 + 2, k1 + 3)
...

...
k2 (k1 + k2 − 1, k1 + k2)

k2 + 1 (k1 − 1, k1)
k2 + 2 (k1, k1 + 1)

...
...

2k2 (k1 + k2 − 2, k1 + k2 − 1)
...

...
(k1 − 1)k2 + 1 (1, 2)
(k1 − 1)k2 + 2 (2, 3)

...
...

k1k2 (k2, k2 + 1)
k1k2 + 1 (k2 + 1, k1 + k2 + 1)
k1k2 + 2 (1, k2 + 1)

Let {δi | 1 ≤ i ≤ k1k2 + 2} be a g-base for π1(C
X −N, u0) (where C

X is the x-axis). Let
ϕ be the braid monodromy of L w.r.t. π1, u0.

Now, using the table of Lefschetz pairs, we can calculate the skeletons representing the
L.V.C.s for the braids ϕ(δi) (according to Moishezon-Teicher’s algorithm (2.5.1)). Here, we
will calculate the L.V.C.s of the two general cases.

Skeleton representing the L.V.C. of ϕ(δlk2+1), 0 ≤ l ≤ k1 − 1: The Lefschetz pair is
(k1 − l, k1 − l + 1). So the skeleton representing the local L.V.C. is:

k1+ k21 2 3 k1-lk1-l-1 k1-l+1 k1-l+2 k1+ k +12

According to the algorithm, we have to apply on the skeleton the composition of the following
l sequences of braids:

∆ < k1 + k2 − l, k1 + k2 − l + 1 > ∆ < k1 + k2 − l − 1, k1 + k2 − l > · · ·

∆ < k1 − l + 2, k1 − l + 3 > ∆ < k1 − l + 1, k1 − l + 2 >
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∆ < k1 + k2 − l + 1, k1 + k2 − l + 2 > ∆ < k1 + k2 − l, k1 + k2 − l + 1 > · · ·

∆ < k1 − l + 3, k1 − l + 4 > ∆ < k1 − l + 2, k1 − l + 3 >

...

∆ < k1 + k2 − 1, k1 + k2 > ∆ < k1 + k2 − 2, k1 + k2 − 1 > · · ·∆ < k1, k1 + 1 >

In every sequence, only the last braid of the sequence affects the skeleton (because the
region of the others has no intersection with the region of the skeleton). Therefore, we get
the following skeleton:

k1-l k1-l+2

k1-l+1

<k1-l+2, k1-l+3>

1 2 3 k1-lk1-l-1 k1-l+1 k1-l+2 k1-1k1-2

1 2 3 k1-l-1 k1-l+1 k1-1k1-2

1 2 3 k1-l-1 k1-l+1 k1-l+2 k1-1k1-2

1 2 3 k1-lk1-l-1 k1-l+2 k1-1k1-2

k1

k1

k1

k1

k1+1

+1k1

k1+1

k1+1

k1-l

<k1-l+1, k1-l+2>

k1><k1-1,

k1+1>1,

k1+ k +12

k1+ k +12

k1+ k +12

k1+ k +12

k1+ k2

k1+ k2

k1+ k2

k1+ k2

k1-1><k1-2,

<k∆

∆

∆

∆∆

Skeleton representing the L.V.C. of ϕ(δlk2+i), 0 ≤ l ≤ k1 − 1, 2 ≤ i ≤ k2: The
Lefschetz pair is (k1 − l + i− 1, k1 − l + i). So the skeleton representing local L.V.C. is:

k1+ k21 2 3 1k -l+i-2 1k -l+i-1 1k -l+i 1k -l+i+1 k1+ k  +12

According to the algorithm, we have to apply on the skeleton the composition of the following
l + 1 sequences of braids:

∆ < k1 − l + i− 2, k1 − l + i− 1 > ∆ < k1 − l + i− 3, k1 − l + i− 2 > · · ·

∆ < k1 − l + 1, k1 − l + 2 > ∆ < k1 − l, k1 − l + 1 >

∆ < k1 + k2 − l, k1 + k2 − l + 1 > ∆ < k1 + k2 − l − 1, k1 + k2 − l > · · ·

∆ < k1 − l + 2, k1 − l + 3 > ∆ < k1 − l + 1, k1 − l + 2 >

∆ < k1 + k2 − l + 1, k1 + k2 − l + 2 > ∆ < k1 + k2 − l, k1 + k2 − l + 1 > · · ·

∆ < k1 − l + 3, k1 − l + 4 > ∆ < k1 − l + 2, k1 − l + 3 >

...

∆ < k1 + k2 − 1, k1 + k2 > ∆ < k1 + k2 − 2, k1 + k2 − 1 > · · ·∆ < k1, k1 + 1 >

The first sequence causes the following effect to the skeleton:
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k1+ k2

k1+ k2

k1+ k2

k1+ k2

k1+ 2

k1+ k  +12

k1+ k  +12

k1+ k  +12

k  +1

-l+2,1 -l+3>1k<k∆

1 1k -l+i-2 1k -l+i-1 1k -l+i 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i-1 1k -l+i 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

<k -l+i-2,1 -l+i-1>1k

<k -l+i-3,1 -l+i-2>1k

<k -l,1 -l+1>1k

<k -l+1,1 -l+2>1k

1k -l+i-1 1k -l+i

1k -l+i-1 1k -l+i

∆

∆

∆

∆

Only the last part of the second sequence affects the skeleton as follows:

k1+ k2

k1+ k2

k1+ k2

k1+ k2

1 1k -l+i-2 1k -l+i-1 1k -l+i 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i-1 1k -l+i 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

1 1k -l+i-2 1k -l+i+11k -l 1k -l+1 1k -l+21k -l-1

<k -l+i-1,1

<k -l+2,1

1k -l+i-1 1k -l+i

1k -l+i-1 1k -l+i

<k -l+i,1 -l+i+1>1k

-l+2>1k-l+1,<k1

-l+3>1k

-l+i>1k

∆

∆

∆

∆

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

-l+3,1 -l+4>1k<k∆

In the other l− 1 sequences of braids, only the second part of the sequence affects, i.e. only
the braids whose region intersects the region of the skeleton. Therefore, we get the following
skeleton representing the L.V.C.:

1
k +i-1

1
k +i

1
k +i-1

1
k +i

1
k +i-1

1
k +i

1
k +i-1

1
k +i

k1+ k2

k1+ k2

k1+ k2

k1+ k2

1

1

1

1 1
k -l+i+1

1
k -l+i-1

1
k -l+i

1
k -l+i+1

1
k -l+i-1

1
k -l+i

1
k -l

1
k -l+1

1
k -l

1
k -l+1

1
k -l+2

1
k -l

1
k -l+1

1
k -l+2

1
k -l

1
k -l+1

1
k -l+2

1
k -l+2

1
k -l+3

1
k -l+3

1
k -l+3

1
k -l+3

1
k -l+i+2

1
k -l+i+2

3rd sequence

4th sequence

(l+1)-th sequence

l-th sequence

1
k +2

1
k +1

1
k

1
k -1

1
k -1

1
k

1
k +1

1
k +2

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

(l-1)-th sequence
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After we have calculated the skeletons representing L.V.C.s for the braid monodromy,
we can calculate the relations that they induced. As we have introduced in the previous
section, according to Van-Kampen theorem (2.6.6), every L.V.C. induces a relation. Now,
we will calculate the general relations which are induced from the general L.V.C.s .

The relation which is induced from ϕ(δlk2+1), 0 ≤ l ≤ k1 − 1:

k1-l+1

k1-l+1
k1-l k1+1

1 2 3 k1-lk1-l-1 k1-l+2 k1-1k1-2 k1 k1+1

1 2 3 k1-l-1 k1-l+2 k1-1k1-2 k1

k1+ k2

k1+ k2

k1+ k +12

k1+ k +12

Therefore, the relation is:
Γk1−lΓk1+1 = Γk1+1Γk1−l

The relation which is induced from ϕ(δlk2+i), 0 ≤ l ≤ k1 − 1, 2 ≤ i ≤ k2:

1
k -l

k1+ k2

k1+ k2

1 1
k +i-2

1
k +i-1 k +i+1

11
k -l+1

1
k -l+2

1
k -l+3

1
k +2

1
k +1

1
k

1
k -1

1
k +i

1 1
k +i-2

1
k +i-1

1
k +i k +i+1

11
k -l

1
k -l+1

1
k -l+2

1
k -l+3

1
k +2

1
k +1

1
k

1
k -1

k1+ k  +12

k1+ k  +12

Therefore, the relation is:

Γk1−lΓ
−1
k1+1 · · ·Γ

−1
k1+i−1Γk1+iΓk1+i−1 · · ·Γk1+1 =

Γ−1
k1+1 · · ·Γ

−1
k1+i−1Γk1+iΓk1+i−1 · · ·Γk1+1Γk1−l

26



Therefore, we got the following set of relations:
for all 0 ≤ l ≤ k1 − 1, 1 ≤ i ≤ k2,

Γk1−lΓ
−1
k1+1 · · ·Γ

−1
k1+i−1Γk1+iΓk1+i−1 · · ·Γk1+1 =

Γ−1
k1+1 · · ·Γ

−1
k1+i−1Γk1+iΓk1+i−1 · · ·Γk1+1Γk1−l

Now, it is easy to see that this set of relations is equivalent to the following set of relations
(see [Ga]):

ΓiΓj = ΓjΓi; 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ k1 + k2

and this finished the proof of the first case of the first lemma (4.1.2).

4.2.2 Second case - without the restriction

Let N = {x ∈ C | (x, y) is an intersection point}, and let u0 ∈ R such that x ≪ u0 for all
x ∈ N . Let Cu0

= {(u0, y) | y ∈ C}. We numerate the lines according to their intersection
with Cu0

. We organized this line arrangement in such a way that the following property
holds:
for 1 ≤ i < j ≤ l and k1 + l + 1 ≤ i < j ≤ k1 + k2,

x(Li ∩ Lt) < x(Lj ∩ Ls), l + 1 ≤ s, t ≤ k1 + l

It is easy to see that this is the general case, i.e. every line arrangement is homotopic to this
situation by rotations and a proper choosing of the line at infinity.

Therefore, we get the following line arrangement:

k1+k2 2 l+1

l+2

1l+1+k

l+2+k1 +1

1

27



Let g = {Γ1, · · · ,Γk1+k2+1} be a g-base of π1(Cu0
− L). By abuse of notations, let us

denote the images of Γi in π1(C
2 − L) by the same notation.

Now, we prove this lemma using the braid monodromy techniques (2.5.1) and the Van-
Kampen theorem (2.6.6). First, let us calculate the skeletons representing the L.V.C.s of
the braid monodromy.

According to this line arrangement, we have the following set of Lefschetz pairs:

j λxj

1 (l + 1, l + 2)
2 (l + 2, l + 3)
...

...
k1 (k1 + l, k1 + l + 1)

k1 + 1 (l, l + 1)
k1 + 2 (l + 1, l + 2)

...
...

2k1 (k1 + l − 1, k1 + l)
...

...
(l − 1)k1 + 1 (2, 3)
(l − 1)k1 + 2 (3, 4)

...
...

lk1 (k1 + 1, k1 + 2)
lk1 + 1 (1, k1 + 1)
lk1 + 2 (k1 + 1, k1 + k2 + 1)

(lk1 + 2) + 1 (k1, k1 + 1)
(lk1 + 2) + 2 (k1 − 1, k1)

...
...

(lk1 + 2) + k1 (1, 2)
(lk1 + 2) + k1 + 1 (k1 + 1, k1 + 2)
(lk1 + 2) + k1 + 2 (k1, k1 + 1)

...
...

(lk1 + 2) + 2k1 (2, 3)
...

...
(lk1 + 2) + (k2 − l − 1)k1 + 1 (k1 + k2 − l − 1, k1 + k2 − l)
(lk1 + 2) + (k2 − l − 1)k1 + 2 (k1 + k2 − l − 2, k1 + k2 − l − 1)

...
...

(lk1 + 2) + (k2 − l)k1 [= k1k2 + 2] (k2 − l, k2 − l + 1)

Let {δi | 1 ≤ i ≤ k1k2 + 2} be a g-base for π1(C
X −N, u0) (where C

X is the x-axis). Let
ϕ be the braid monodromy of L w.r.t. π1, u0.

Now, using the table of the Lefschetz pairs, we can calculate the skeletons representing
L.V.C.s for the braids ϕ(δi) (according to the Moishezon-Teicher algorithm (2.5.1)).
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Until singular point number lk1 we have almost the same configuration as in the first
case of the lemma, hence the general skeleton, which represents the L.V.C., which we have
found there is identical (but its center is shifted one point left) to the general skeleton in
this case of the lemma until point number lk1. Therefore:

Skeleton representing the L.V.C. of ϕ(δik1+1), 0 ≤ i ≤ l − 1:

1 2 3 l ll k1+ k  +1l

l

-1-i+3

-i+2

2l -i

l

+2

+1l -i+1

Skeleton representing the L.V.C. of ϕ(δik1+j), 0 ≤ i ≤ l − 1, 2 ≤ j ≤ k1:

1 +j-1 +j ll -i+2 -i+3 -i+4 lll +j+1l l+3+2-i+1 l l l l k1+ k  +12
+1

We skip the calculations of the braid monodromy of the two multiple points (which will
be done in the proof of the next lemma (4.1.3)), and we continue with the rest of the simple
points and we pass directly to the general case:

Skeleton representing the L.V.C. of ϕ(δ(lk1+2)+ik1+1), 0 ≤ i ≤ (k2 − l − 1): The
Lefschetz pair is

(k1 + i, k1 + i+ 1),

therefore the skeleton representing the local L.V.C. is:

1 2 3 k +i+11 k +i+21k +i-11 k1+i k1+ k  +12k1+ k2

We have to apply on this skeleton the following sequences of braids:

∆ < i, i+ 1 > ∆ < i+ 1, i+ 2 > · · ·∆ < k1 + i− 1, k1 + i >

...

∆ < 1, 2 > ∆ < 2, 3 > · · ·∆ < k1, k1 + 1 >

∆ < k1 + 1, k1 + k2 + 1 > ∆ < 1, k1 + 1 >

∆ < k1 + 1, k1 + 2 > ∆ < k1, k1 + 1 > · · ·∆ < 2, 3 >

...

∆ < k1 + l, k1 + l + 1 > ∆ < k1 + l − 1, k1 + l > · · ·∆ < l + 1, l + 2 >

In the first i − 1 sequences, only the last braid in each sequence affects the skeleton, hence
we get:
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1 2 3 k +i-11 k +i+11k1+ik +11k1 k +21

1 2 3 k +i-11 k +i+11k1+ik +11k1 k +21

1 2 3 k +i+11k +11k1 k +21

1 2 3 k +i-11 k +i+11k1+ik +11k1 k +21

<k+i-1,1 k1+i>

<k+i-2,1 k1+i-1>

+2><k+1,1 k1

+1>k1,1

k +i-11 k1+i

<k∆

∆

∆

∆

k1+ k  +12

k1+ k  +12

+3><k+2,1 k1∆

k1+ k  +12

k1+ k  +12

Next, the action of the braids ∆ < k1 + 1, k1 + k2 + 1 > and ∆ < 1, k1 + 1 > is as follows:

1 2 3 k1

1 2 3 k1

1 2 3 k1

<k +1,k +k  +1>

<1,k +1>∆

∆

1

k +i+11 k +i+21k1+i

k +i+11 k +i+21k1+i

k +i+11 k +i+21k1+i +k -i+1k1 2

+k -i+1k1 2

+k -i+1k1 2

k1 2+k -i

k1 2+k -i

k1 2+k -ik +21

k +21

k +21

k +11

k +11

k +11

k1+ 2

k1+ k  +12

k1+ k  +12

k  +1

1 1 2

Then, the l sequences of braids move the leftest side of the skeleton l points right:

1

1

1

1

2nd sequence

l-th sequence

1st sequence

(l-1)-th sequence

k1 2+k -i

+k -i+1k1 2

k +l+21k1+lk +21 k +31

k1 2+k -i

+k -i+1k1 2

k +l+21k1+lk +21 k +31

k1 2+k -i

+k -i+1k1 2

k +l+21k1+lk  +11 k +21 k +31

k1 2+k -i

+k -i+1k1 2

k +l+21k1+lk  +11 k +21 k +31l+2

l+1

l+1

l+2 +l+1k1

k +l+11

k +l+11

k +l+11

k  +11

k  +11

l+1

l+1 l+2

l+23

3

3

3

2

2

2

2

(l-2)-th sequence

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

Skeleton representing the L.V.C. of ϕ(δ(lk1+2)+ik1+j); 0 ≤ i ≤ k2 − l − 1,
2 ≤ j ≤ k1: The Lefschetz pair is

(k1 + i− j + 1, k1 + i− j + 2)

therefore the skeleton representing the local L.V.C. is:
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k +i-j1

1 2 3 k +i-j+21k1+i-j+1 k +i-j+31 k1+ k  +12k1+ k2

We have to apply on this skeleton the following sequences of braids:

∆ < k1 + i− j + 2, k1 + i− j + 3 > ∆ < k1 + i− j + 3, k1 + i− j + 4 > · · ·

∆ < k1 + i− 1, k1 + i > ∆ < k1 + i, k1 + i+ 1 >

∆ < i, i+ 1 > ∆ < i+ 1, i+ 2 > · · ·∆ < k1 + i− 1, k1 + i >

...

∆ < 1, 2 > ∆ < 2, 3 > · · ·∆ < k1, k1 + 1 >

∆ < k1 + 1, k1 + k2 + 1 > ∆ < 1, k1 + 1 >

∆ < k1 + 1, k1 + 2 > ∆ < k1, k1 + 1 > · · ·∆ < 2, 3 >

...

∆ < k1 + l, k1 + l + 1 > ∆ < k1 + l − 1, k1 + l > · · ·∆ < l + 1, l + 2 >

The first sequence acts as follows:

1

1

1

1

<k k +i-j+3>1+i-j+2,1

<k k +i-j+4>1+i-j+3,1

1+i,

<k1+i-1, k +i>1

k +i+1>1<k∆

∆

∆

∆

k +i-j+21k1+i-j+1 k +i-j+31 k +i-11 k1+i

k +i-11

k +i-11

k +i-j+21 k +i-j+31 k +i-11 k1+i

k1+i-j+1 k1+i

k +i-j+21 k +i-j+31

k1+i

k1+i-j+1 k +i-j+31

k +i-j+21

k +i+11k1+i-j+1

+i+1k 1

k +i+11

k +i+11

k1+ k2

k1+ k2

k1+ k2

k1+ k2

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

<k1+i-2, k +i-1>1∆

k +i-j1

k +i-j1

k +i-j1

k +i-j1

The second sequence moves the left side of the skeleton one point left (the first part of the
sequence does not affect the skeleton):
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1

1

1

1

<k k +i-j+2>1+i-j+1,1

<k1+i-1, k +i>1

<k1+i-2, k +i-1>1

+i-j,1 k +i-j+1>1<k∆

∆

∆

∆

k +i-j+21k +i-j1 k +i-j+31 k +i-11 k1+i

k +i-11

k +i-11

k +i-j+21 k +i-j+31 k +i-11 k1+i

k1+i-j+1 k1+i

k +i-j+21 k +i-j+31

k1+i

k +i-j+31

k +i-j+21

k +i+1k1+i-j+1

k1+i-j+1

k +i-j1

k1+i-j+1 k +i+11

1

k +i-j1

k +i-j1

k +i+11

k +i+11

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k2

k1+ k2

k1+ k2

k1+ k2

<k1+i-3, k +i-2>1∆

Each of the next i− 1 sequences moves the left side of the skeleton another step left, so we
get the following:

1

1

1

1

k
1
-j+2

k +i-j-1
1

k1+1k
1

k +2
1

k +2
1

k
1
+1k

1

k
1

k
1
+1 k +2

1

k +2
1

k
1
+1k

1

k1+i-j

k
1
+i-j

k
1
+i-j

k
1
+i

k +i+1
1

k
1
+i k +i+1

1

k1+i k +i+1
1

k
1
+i

k +i+1
1

k +i-1
1

k +i-1
1

k +i-1
1

k +i-1
1

k +i-2
1

k +i-2
1

k +i-2
1

k
1
+i-j

k +i-2
1

4th sequence

3rd sequence

(i+1)-th sequence

i-th sequence

k +i-j-1
1

k +i-j-1
1

k +i-j-1
1

k
1
+ k

2

k
1
+ k

2

k
1
+ k

2

k
1
+ k

2

k
1
+ k  +1

2

k
1
+ k  +1

2

k
1
+ k  +1

2

k
1
+ k  +1

2

(i-1)-th sequence

k -j+1
1

k
1
-j+2

k -j+1
1

-j+1k
1

k
1
-j+2k -j+1

1

k
1
-j+2

Next, the action of the braids ∆ < k1 + 1, k1 + k2 + 1 > and ∆ < 1, k1 + 1 > is as follows:

j+21 k1+1k1 k +21 k1+i k +i+11

j+21 k1-j+2 k1+1k1 k +21 k1+i k +i+11

j+21 k1-j+2 k1+1k1 k +21 k1+i k +i+11

<1,k  +1>

1 1

1

2

j+1

j+1

j+1

<k +1,k +k  +1>∆

∆

k -j+11

k -j+11

k1+ k2-i+1

k1+ k2-i+1

k1+ k2-i+1

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1-j+2k -j+11

Then, the l sequences of braids move the leftest side of the skeleton l points right:
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j+21 j+l+1 k1+2 k +31 k +l+21

k1+ k2-i+1

j+21 j+l+1 k1+2 k +31 k +l+21

k1+ k2-i+1

j+21 j+l+1 k1+2 k +31 k1+l+1 k +l+21

k1+ k2-i+1

j+21 j+l+1 k1+2 k +31 k1+l+1 k +l+21

k1+ k2-i+1

1st sequence

2nd sequence

l-th sequence

(l-1)-th sequence k1+l+1

j+1

j+1

j+1

j+1

j+l

j+l

j+l

j+l k  +11

k  +11

k  +11

k  +11

k1+l+1

(l-2)-th sequence

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

After we have calculated the skeletons representing L.V.C.s for the braid monodromy,
we can calculate the relations that they induced. As we have introduced in the previous
section, according to Van-Kampen’s theorem (2.6.6), every L.V.C. induces a relation. Now,
we will calculate the general relations which are induced from the general L.V.C.s .

The relation which is induced from ϕ(δik1+1), 0 ≤ i ≤ l − 1:

1

1

l l

l

-1-i+3

-i+2l -i+1 l+2

l l

l

-i+3

-i+2

k1+ k  +12

k1+ k  +12

k1+ k2

k1+ k2

-i+1l

-1 l+1l +2l

l+1l

Therefore, the relation is:
Γl−i+1Γl+2 = Γl+2Γl−i+1

The relation which is induced from ϕ(δik1+j), 0 ≤ i ≤ l − 1, 2 ≤ j ≤ k1:

33



1
+j-1-i+2 -i+3 -i+4 ll l+3+2l l l l

1
+j-1 ll -i+2 -i+3 -i+4 lll +j+1l+3+2-i+1 l l l l

l+j+1
k1+ k2

k1+ k2

k1+ k  +12

k1+ k  +12

l-i+1

l +1

+1 +jl

+jl

Therefore, the relation is:

Γl−i+1Γ
−1
l+2 · · ·Γ

−1
l+jΓl+j+1Γl+j · · ·Γl+2 = Γ−1

l+2 · · ·Γ
−1
l+jΓl+j+1Γl+j · · ·Γl+2Γl−i+1

The relation which is induced from ϕ(δ(lk1+2)+ik1+1), 0 ≤ i ≤ (k2 − l − 1):

1

1

k1 2+k -ik +l+21k1+lk1 k +21 k +31l+2

+k -i+1k1 2

k1 2+k -i

+k -i+1k1 2

k +l+21k1+lk1l+2 k +21 k +31+1

+1

k +l+11

k +l+11 k1+ k2

k1+ k2

k1+ k  +12

k1+ k  +12

Therefore, the relation is:

Γk1+l+1 · · ·Γl+3Γl+2Γ
−1
l+3 · · ·Γ

−1
k1+l+1Γk1+k2−i+1 =

Γk1+k2−i+1Γk1+l+1 · · ·Γl+3Γl+2Γ
−1
l+3 · · ·Γ

−1
k1+l+1

The relation which is induced from ϕ(δ(lk1+2)+ik1+j), 0 ≤ i ≤ (k2 − l − 1),
2 ≤ j ≤ k1:
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1

1

k1+2k1 k +31 k1+l+1 k +l+21j+l+1

k1+ k2-i+1

j+l+1 k1+2k1 k +31 k1+l+1 k +l+21

k1+ k2-i+1

+1

+1 k1+ k2

k1+ k2

k1+ k  +12

k1+ k  +12

Therefore, the relation is:

Γk1+l+1 · · ·Γl+j+2Γl+j+1Γ
−1
l+j+2 · · ·Γ

−1
k1+l+1Γk1+k2−i+1 =

Γk1+k2−i+1Γk1+l+1 · · ·Γl+j+2Γl+j+1Γ
−1
l+j+2 · · ·Γ

−1
k1+l+1

Therefore, we got the following two sets of relations:
for all 0 ≤ i ≤ l − 1, 1 ≤ j ≤ k1:

Γl−i+1Γ
−1
l+2 · · ·Γ

−1
l+jΓl+j+1Γl+j · · ·Γl+2 =

Γ−1
l+2 · · ·Γ

−1
l+jΓl+j+1Γl+j · · ·Γl+2Γl−i+1

and for all 0 ≤ i ≤ k2 − l − 1, 1 ≤ j ≤ k1:

Γk1+l+1 · · ·Γl+j+2Γl+j+1Γ
−1
l+j+2 · · ·Γ

−1
k1+l+1Γk1+k2−i+1 =

Γk1+k2−i+1Γk1+l+1 · · ·Γl+j+2Γl+j+1Γ
−1
l+j+2 · · ·Γ

−1
k1+l+1

Now, it is easy to see that these two sets of relations are equivalent to the following two
sets of relations:

ΓiΓj = ΓjΓi; 2 ≤ i ≤ l + 1, l + 2 ≤ j ≤ l + k1 + 1

and
ΓiΓj = ΓjΓi; l + 2 ≤ i ≤ l + k1 + 1, l + k1 + 2 ≤ j ≤ k1 + k2 + 1

and this finished the proof of the second case of the first lemma (4.1.2).

4.3 Proof of lemma 4.1.3

As in the first lemma, we prove this lemma only for two multiple points, and the proof for t
multiple points uses exactly the same arguments.

We will prove it directly in the general case. By homotopic rotations and movements and
a proper choosing of the line at infinity, we can get the following line arrangement from any
line arrangement with two multiple points:
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k1+k2 2 l+1

l+2

1l+1+k

l+2+k1 +1

1

In the first lemma (4.1.2), we already wrote down the set of Lefschetz pairs of this line
arrangement. In order to calculate the induced relations of the multiple points, we have to
compute their braid monodromy according to the Moishezon-Teicher algorithm (2.5.1) and
then we have to use the Van-Kampen theorem (2.6.6) to get their induced relations.

Skeleton representing the L.V.C. of ϕ(δlk1+1): The Lefschetz pair is

(1, k1 + 1),

then the skeleton representing the local L.V.C. is:

1 2 3 k -1 k k +2k +11 1 11 k1+ k  +12k1+ k2

According to the algorithm, we have to apply on the skeleton the following sequence of
braids:

∆ < k1 + 1, k1 + 2 > ∆ < k1, k1 + 1 > · · ·∆ < 2, 3 >
...

∆ < k1 + l, k1 + l + 1 > ∆ < k1 + l − 1, k1 + l > · · ·∆ < l + 1, l + 2 >

The first sequence acts as follows:

1 2

1 2

1 2

1 2

<k1

<2,3>

<3,4>

, k1+1>

+2><k1 1+1, k∆

∆

∆

∆

k +21k1

k +21k1

k +21k1

k +21k1

k +31

k +31

k +31

k +31k +11

k +11

k +11

k +11

<4,5>∆

4

4

4

4

3

3

3

3

k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12
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Each of the next l − 1 sequences moves the right side of the skeleton one step right, so
we get the following:

l-th sequence

(l-1)-th sequence

3rd sequence

2nd sequence

1 2

1 2

1 2

1 2

4

4

4

4

3

3

3

3 l+1 l+2

l+1 l+2

l+1 l+2

l+1 l+2

k +21

k +21

k +21

k +21

k +31

k +31

k +31

k +31

k +l+11k1 +l

k +l+11k1 +l

k +l+11k1 +l

k +l+11k1 +l k1+ k  +12

k1+ k  +12

k1+ k  +12

k1+ k  +12

(l-2)-th sequence

Skeleton representing the L.V.C. of ϕ(δlk1+2): The Lefschetz pair is

(k1 + 1, k1 + k2 + 1),

therefore the skeleton representing the local L.V.C. is:

1 2 3 k -1 k k +2k +11 1 11 k1+ k  +12k1+ k2

According to the algorithm, we have to apply on the skeleton the following sequence of
braids:

∆ < 1, k1 + 1 >

∆ < k1 + 1, k1 + 2 > ∆ < k1, k1 + 1 > · · ·∆ < 2, 3 >

...

∆ < k1 + l, k1 + l + 1 > ∆ < k1 + l − 1, k1 + l > · · ·∆ < l + 1, l + 2 >

The effect of the braid ∆ < 1, k1 + 1 > is:

1 2 3 k -1 k k +2k +11 1 11 k1+ k  +12k1+ k2

1 2 3 k -1 k k +2k +11 1 11 k1+ k  +12k1+ k2

∆ <1, k  +1>1

The first sequence acts as follows:
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∆ <3,4>

1 2 3 k k k +3k +21 1 11 k1+ k  +12k1+ k2

1 2 3 k k k +3k +21 1 11 k1+ k  +12k1+ k2

1 2 3 k k k +3k +21 1 11 k1+ k  +12k1+ k2

1 2 3 k k k +3k +21 1 11 k1+ k  +12k1+ k2

∆

+1

+1

+1

+1

<2,3>

∆ <k , k  +1>11

∆ <k  +1, k  +2>1 1

∆ <4,5>

Each of the next l − 1 sequences moves the left side of the skeleton one step left, so we
get the following:

1 2 3

1 2 3

1 2 3

1 2 3

l

l

l

l l+1

l+1

l+1

l+1 k +4k +31 1

k +4k +31 1

k +4k +31 1

k +4k +31 1

k1+ k  +12k1+ k2

k1+ k  +12k1+ k2

k1+ k  +12k1+ k2

k1+ k  +12k1+ k2

k +l+2k +l+11 1

k +l+2k +l+11 1

k +l+2k +l+11 1

k +l+2k +l+11 1

2nd sequence

3rd sequence

l-th sequence

(l-1)-th sequence

(l-2)-th sequence

After we have calculated the skeletons representing L.V.C.s for the braid monodromy,
we can calculate the relations which they induced.

The relations which are induced from ϕ(δlk1+1):

1 2 43 k +21 k +31k +11 k1+ k  +12l+1 l+2 l+3 k +l+21k +l+11k1 +l

2 43 k1+ k  +12l+1 k +l+21

u

k +21 k +31k +11l+2 l+3 k +l+11k1 +l1
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Therefore, according to lemma 2.6.7, the relations are:

Γk1+l+1Γk1+l · · ·Γl+2Γ1 = Γk1+l · · ·Γl+2Γ1Γk1+l+1 = · · · = Γ1Γk1+l+1 · · ·Γl+2

The relations which are induced from ϕ(δlk1+2):

1 2 3 l l+1 k +4k +31 1 k1+ k  +12k1+ k2k +l+2k +l+11 1

k +4k +31 1 k +l+11

u

k1+ k  +12k1+ k2k +l+211 2 3 l l+1

Therefore, according to lemma 2.6.7, the relations are:

Γk1+k2+1Γk1+k2
· · ·Γk1+l+2(Γk1+l+1 · · ·Γl+2Γl+1Γ

−1
l+2 · · ·Γ

−1
k1+l+1)Γl · · ·Γ1 =

Γk1+k2
· · ·Γk1+l+2(Γk1+l+1 · · ·Γl+2Γl+1Γ

−1
l+2 · · ·Γ

−1
k1+l+1)Γl · · ·Γ1Γk1+k2+1 = · · · =

Γ1Γk1+k2+1Γk1+k2
· · ·Γk1+l+2(Γk1+l+1 · · ·Γl+2Γl+1Γ

−1
l+2 · · ·Γ

−1
k1+l+1)Γl · · ·Γ2

Now, according to the first lemma (4.1.2), second case, Γl+1 commutes with all Γj, l+2 ≤
j ≤ k1 + l + 1, therefore:

Γk1+l+1 · · ·Γl+2Γl+1Γ
−1
l+2 · · ·Γ

−1
k1+l+1 = Γl+1.

Hence, the last set of relations comes to the following simplified form:

Γk1+k2+1Γk1+k2
· · ·Γk1+l+2Γl+1Γl · · ·Γ1 = Γk1+k2

· · ·Γk1+l+2Γl+1Γl · · ·Γ1Γk1+k2+1 =

= · · · = Γ1Γk1+k2+1Γk1+k2
· · ·Γk1+l+2Γl+1Γl · · ·Γ2

According to the proof of proposition 2.7.1, these two sets of relations (of the two multiple
points) are equivalent to the following two sets, respectively:

[Γk1+l+1Γk1+l · · ·Γl+2Γ1,Γi] = 1, ∀i ∈ {1, l + 2, · · · , k1 + l + 1}

[Γk1+k2+1Γk1+k2
· · ·Γk1+l+2Γl+1Γl · · ·Γ1,Γi] = 1, ∀i ∈ {1, · · · , l+ 1, k1 + l+ 2, · · · , k1 + k2 + 1}

And the second lemma (4.1.3) is proved.
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4.4 Proof of theorem 4.1.1

For simplicity, we prove the theorem only for two multiple points, and the proof for t multiple
points uses exactly the same arguments.

Till now, we got the following set of generators:

g = {Γ1,Γ2, · · · ,Γk1+k2+1}

and the following sets of relations:

(1) ΓiΓj = ΓjΓi; 2 ≤ i ≤ l + 1, l + 2 ≤ j ≤ k1 + l + 1

(2) ΓiΓj = ΓjΓi; l + 2 ≤ i ≤ k1 + l + 1, k1 + l + 2 ≤ j ≤ k1 + k2 + 1

(3) [Γk1+l+1Γk1+l · · ·Γl+2Γ1,Γi] = 1, ∀i ∈ {1, l + 2, · · · , k1 + l + 1}

(4) [Γk1+k2+1Γk1+k2
· · ·Γk1+l+2Γl+1Γl · · ·Γ1,Γi] = 1,

∀i ∈ {1, · · · , l + 1, k1 + l + 2, · · · , k1 + k2 + 1}

We have to show that this finitely presented group is isomorphic to

F
k1 ⊕ F

k2 ⊕ Z

Let us modify the set of generators by replacing the generator Γ1 by the generator

Γ′ = Γk1+k2+1Γk1+k2
· · ·Γk1+1Γk1

· · ·Γ2Γ1

Now, we have to check that after the modifications we get an equivalent set of generators,
and then we have to calculate the new set of relations.

Claim 4.4.1 After replacing Γ1 by Γ′ (which was defined above) in g, we again get a set of
generators. We denote this set of generators by g̃.

Proof: We have to show that Γ1 ∈< g̃ >. But this is obvious, because:

Γ1 = Γ−1
2 Γ−1

3 · · ·Γ−1
k1+k2+1Γ

′

The next step is the calculation of the new set of relations for g̃. The sets (1) and (2)
of the old sets of relations have not been changed (because these generators in the relations
have not been replaced). We have to deal with the sets (3) and (4).

Claim 4.4.2 [Γ′,Γ] = 1, ∀Γ ∈ g̃.
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Proof: Obviously, Γ′Γ′ = Γ′Γ′. We will split the rest of the proof into two cases:
(a) Γ ∈ {Γ2, · · · ,Γl+1,Γk1+l+2, · · · ,Γk1+k2+1}:

Γ′Γ
Def
= Γk1+k2+1 · · ·Γk1+l+2Γk1+l+1 · · ·Γl+2Γl+1 · · ·Γ1Γ

(2)
=

Γk1+l+1 · · ·Γl+2Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ1Γ
(4)
=

Γk1+l+1 · · ·Γl+2ΓΓk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ1
(1)(2)
=

ΓΓk1+l+1 · · ·Γl+2Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ1
(2)+Def

= ΓΓ′

(b) Γ ∈ {Γl+2, · · · ,Γk1+l+1}:

Γ′Γ
Def
= Γk1+k2+1 · · ·Γk1+l+2Γk1+l+1 · · ·Γl+2Γl+1 · · ·Γ1Γ

(1)
=

Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2Γk1+l+1 · · ·Γl+2Γ1Γ
(3)
=

Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2ΓΓk1+l+1 · · ·Γl+2Γ1
(1)+(2)

=

ΓΓk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2Γk1+l+1 · · ·Γl+2Γ1
(1)+Def

= ΓΓ′

Now, we can claim:

Claim 4.4.3 The following set is a complete set of relations for g̃ (we denote it by R′):

(1’) ΓiΓj = ΓjΓi; 2 ≤ i ≤ l + 1, l + 2 ≤ j ≤ k1 + l + 1

(2’) ΓiΓj = ΓjΓi; l + 2 ≤ i ≤ k1 + l + 1, k1 + l + 2 ≤ j ≤ k1 + k2 + 1

(3’) [Γ′,Γ] = 1; ∀Γ ∈ g̃.

Proof: We have to show that {(1),(2),(3),(4)} is equivalent to {(1’),(2’),(3’)} (with respect
to the required replacements). In the previous claim, we proved that {(1),(2),(3),(4)} ⇒
{(1’),(2’),(3’)}. We have to prove the opposite direction. Assume the set of relations
{(1’),(2’),(3’)}, and prove the relations {(1),(2),(3),(4)}:
(1) and (2): this is the same as (1’) and (2’), respectively.
(3): We have to prove that

[Γk1+l+1Γk1+l · · ·Γl+2Γ1,Γi] = 1, ∀i ∈ {1, l + 2, · · · , k1 + l + 1}

From (3’) we know that [Γ′,Γi] = 1. Therefore, we have:

Γk1+k2+1Γk1+k2
· · ·Γ1Γi = ΓiΓk1+k2+1Γk1+k2

· · ·Γ1
(1′)
⇒

Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2Γk1+l+1 · · ·Γl+2Γi =

= ΓiΓk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2Γk1+l+1 · · ·Γl+2
(1′)+(2′)+(l+2≤i≤k1+l+1)

=⇒
Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2Γk1+l+1 · · ·Γl+2Γi =

= Γk1+k2+1 · · ·Γk1+l+2Γl+1 · · ·Γ2ΓiΓk1+l+1 · · ·Γl+2

Γ−1

2
···Γ−1

l+1
Γ−1

k1+l+2
···Γ−1

k1+k2+1
·

=⇒
[Γk1+l+1Γk1+l · · ·Γl+2Γ1,Γi] = 1, ∀i ∈ {1, l + 2, · · · , k1 + l + 1}

Now, it remains to prove that:

[Γk1+l+1Γk1+l · · ·Γl+2Γ1,Γ1] = 1

Γk1+l+1 · · ·Γl+2Γ1Γ1 =

Γk1+l+1 · · ·Γl+2Γ1(Γ
−1
l+2 · · ·Γ

−1
k1+l+1Γk1+l+1 · · ·Γl+2)Γ1

(3) + ab=ba⇒ab−1=b−1a
=
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(Γ−1
l+2 · · ·Γ

−1
k1+l+1)Γk1+l+1 · · ·Γl+2Γ1(Γk1+l+1 · · ·Γl+2)Γ1 = Γ1Γk1+l+1 · · ·Γl+2Γ1

(4) Same arguments as (3).

We return to the proof of the theorem. Using the above claim, we can find the structure
of the calculated group:

G = 〈g|R〉 ∼= 〈g̃|R′〉 = 〈Γ2, · · · ,Γk1+k2+1,Γ
′ | R′〉 ∼=

∼= 〈Γ′〉 ⊕ 〈Γ2, · · · ,Γk1+k2+1 | R′〉 ∼=
∼= 〈Γ′〉 ⊕ 〈Γ2, · · · ,Γl+1,Γk1+l+2, · · · ,Γk1+k2+1〉 ⊕ 〈Γl+2, · · · ,Γk1+l+1〉 ∼=
∼= Z ⊕ F

k2 ⊕ F
k1

Hence, we finished the proof of theorem 4.1.1.

4.5 The projective case

Now, we will investigate the projective case.

Theorem 4.5.1 Let L be a real line arrangement in CP
2 where all the t multiple points are

on the same line L ∈ L. Let ki + 1 be the multiplicity of the multiple point Pi, 1 ≤ i ≤ t.
Then:

π1(CP
2 − L) ∼=

t
⊕

i=1

F
ki

Proof: For simplicity, we will prove it for two multiple points and the proof for t multiple
points uses exactly the same arguments.

From the last theorem, we get:

π1(C
2 − L) ∼= F

k1 ⊕ F
k2 ⊕ Z

According to claim 4.4.3, we get the following presentation for this group:
Generators: g = {Γ′,Γ2, · · · ,Γk1+k2+1}.
Relations: R = {ΓiΓj = ΓjΓi, 2 ≤ i ≤ l + 1, l + 2 ≤ j ≤ k1 + l + 1;
ΓiΓj = ΓjΓi, l + 2 ≤ i ≤ k1 + l + 1, k1 + l + 2 ≤ j ≤ k1 + k2 + 1; [Γ′,Γ] = 1, ∀Γ ∈ g}
where Γ′ = Γk1+k2+1 · · ·Γ1 .

Now, when we are going to the projective case, we add one additional relation, according
to theorem 2.6.2:

Γk1+k2+1 · · ·Γ1 = 1

In terms of Γ′, this relation gets the following form:

Γ′ = 1

Now,

π1(CP
2 − L) = 〈g | R,Γ′ = 1〉 ∼=

〈Γ′ | Γ′ = 1〉 ⊕ 〈Γ2, · · · ,Γl+1,Γk1+l+2, · · · ,Γk1+k2+1〉 ⊕ 〈Γl+2, · · · ,Γk1+l+1〉 ∼=
∼= F

k2 ⊕ F
k1

As a consequence of the last theorem, we get:
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Corollary 4.5.2
π1(C

2 − L) ∼= π1(CP
2 − L) ⊕ Z

Therefore, the short exact sequence which was proved by Oka (theorem 2.6.3):

1 → Z → π1(C
2 − L) → π1(CP

2 − L) → 1

splits.

5 Arrangements with more than one equivalence class

5.1 The definition of the equivalence relation

The above results can be generalized more. Let us define the following relation on the set of
multiple intersection points:

Definition 5.1.1 Let p1, p2 be two multiple intersection points. We say that p1 ∼ p2 if p1

is connected to p2 by a “path” which its vertices are multiple intersection points.

Claim 5.1.2 ∼ is an equivalence relation on the set of multiple intersection points.

Proof: Reflexive: each point is connected to itself by the empty path.
Symmetry: if p1 is connected to p2 by a path P , p2 is connected to p1 by P−1 - the opposite
path of P (which is also a path of multiple points).
Transitive: if p1 is connected to p2 by P , and p2 is connected to p3 by Q, p1 is connected
to p3 by P ·Q, which is the concatenation of P and Q and therefore it is a path of multiple
points, because p2 itself is a multiple point too.

This equivalence relation induces equivalence classes on the set of multiple intersection
points. We also want to show that this equivalence relation induces a partition on the lines
of the arrangement:

Claim 5.1.3 Let C1 = {p1, · · · , pk} be the multiple points of one equivalence class and C2 =
{q1, · · · , ql} be the multiple points of another equivalence class. Let Li be the set of lines
which pass through one of the multiple points in Ci.
Then: L1 ∩ L2 = ∅.

Proof: Assume, on the contrary, that there exists a line L, such that L ∈ L1∩L2. Therefore,
L ∈ L1 and L ∈ L2. From the definitions of L1 and L2, there exist points p ∈ C1 and q ∈ C2

such that L passes through p and q. Therefore, p ∼ q, and hence C1 = C2, a contradiction
to the assumption that C1 and C2 are distinct equivalence classes.
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5.2 The affine case

Now, we can claim the following:

Theorem 5.2.1 Let L be a real line arrangement in CP
2 consists of n lines. We choose the

line at infinity such that all the lines are intersected in C
2. Assume that there are k multiple

intersection points p1, · · · , pk with multiplicities m1, · · · , mk respectively. Assume also that all
the multiple intersection points in every equivalence class are collinear, i.e. every equivalence
class contains a unique line which connects all the multiple points of that class. Then:

π1(C
2 − L, u0) ∼=

k
⊕

i=1

F
mi−1 ⊕ Z

n−(
∑k

i=1
(mi−1))

The number of infinite cyclic groups is a sum of two numbers: the number of equivalence
classes and the number of lines which have only simple intersection points.

Proof: Let Ci, 1 ≤ i ≤ t be the different equivalence classes of multiple points. According to
the last claim, we define Li to be the lines which pass through points in Ci. Let l1, · · · , lr
be lines which are not in any Li (which means that they do not pass through any multiple
point, or equivalently, they intersect all the other lines at simple points only).

In every Li, we have a line Li which connects all the multiple points in Ci. Therefore,
according to theorem 4.1.1, we have:

π1(C
2 − Li) = (

ni
⊕

j=1

F
mPi,j

−1) ⊕ Z

where ni = #Ci and mPi,j
is the multiplicity of the j-th point in Ci, 1 ≤ j ≤ ni.

For li, we know:
π1(C

2 − li) = Z

Now, we use the Oka-Sakamoto theorem (see section 2.1) to get:

π1(C
2 − L) = π1(C

2 − (
t

⋃

i=1

Li ∪
r

⋃

i=1

li)) ∼=

∼= (
t

⊕

i=1

π1(C
2 −Li)) ⊕ (

r
⊕

i=1

π1(C
2 − li)) ∼=

∼= (
t

⊕

i=1

(
ni

⊕

j=1

F
mPi,j

−1) ⊕ Z) ⊕ (
r

⊕

i=1

Z) ∼= (
t

⊕

i=1

ni
⊕

j=1

F
mPi,j

−1) ⊕ Z
t+r

It remains to show that this group is equal to the group mentioned in the formulation of
the theorem. First, in the double sum, every multiple point appears exactly once, because
it appears in only one equivalence class. Therefore:

(
t

⊕

i=1

ni
⊕

j=1

F
mPi,j

−1) =
k

⊕

i=1

F
mi−1

44



Now we have to show that:

t+ r = n− (
k

∑

i=1

(mi − 1))

Let oi be the number of lines in Li. We know that

(
t

∑

i=1

oi) + r = n

It is easy to see that:

oi = (
ni
∑

j=1

(mPi,j
− 1)) + 1,

because there is a unique line which connects all the multiple points in every equivalence
class.

When we combine the last two equations, we get:

t
∑

i=1

ni
∑

j=1

(mPi,j
− 1) + t+ r = n

As before, due to the fact that every multiple point appears exactly in one equivalence class,
we get:

t
∑

i=1

ni
∑

j=1

(mPi,j
− 1) =

k
∑

i=1

(mi − 1)

and therefore, we get:

t+ r = n− (
k

∑

i=1

(mi − 1))

5.3 The projective case

Now, we will investigate the projective case.

Theorem 5.3.1 Let L be a real line arrangement in CP
2 consists of n lines. We choose the

line at infinity such that all the lines are intersected in C
2. Assume that there are k multiple

intersection points p1, · · · , pk with multiplicities m1, · · · , mk respectively. Assume also that all
the multiple intersection points in every equivalence class are collinear, i.e. every equivalence
class contains a unique line which connects all the multiple points of that class. Then:

π1(CP
2 −L, u0) ∼=

k
⊕

i=1

F
mi−1 ⊕ Z

n−1−(
∑k

i=1
(mi−1))

The number of infinite cyclic groups is a sum of two numbers: the number of equivalence
classes minus 1 and the number of lines which have only simple intersection points.
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Proof: This is the projective analogue of theorem 5.2.1. We induce it using the same tech-
niques as we induced theorem 3.2.1 from theorem 3.1.1.

As a consequence of the last theorem, we get:

Corollary 5.3.2
π1(C

2 − L) ∼= π1(CP
2 − L) ⊕ Z

Therefore, the short exact sequence which was proved by Oka (theorem 2.6.3):

1 → Z → π1(C
2 − L) → π1(CP

2 − L) → 1

splits.

Remark: Simultaneously and independently, Fan [Fa2] got similar results (see section 2.1),
with entirely different methods, in even more general case, when there is no equivalence class
which has a cycle of multiple points in it.

6 Results concerning the bigness of the fundamental

group

Definition 6.1.1 A group G is called big if F
2 ⊂ G.

As a result from the general theorems (5.2.1,5.3.1), we can say the following:

Corollary 6.1.2 Let L be a real line arrangement in CP
2 consisting of n lines which satisfies

the conditions of theorem 5.2.1. Then, the fundamental groups of its complement, π1(C
2 −

L, u0) and π1(CP
2 − L, u0), are big.

Proof: According to theorem 5.2.1, the fundamental group of its affine complement is of the
form:

π1(C
2 − L, u0) ∼=

k
⊕

i=1

F
mi−1 ⊕ Z

n−(
∑k

i=1
(mi−1))

Now, mi ≥ 3 in every multiple point, and hence F
2 is contained in this group. Therefore,

the fundamental group of its affine complement is big. The proof for the projective case is
the same.

In fact, this result has been recently proven [DOZ] for any arrangement which has at
least one multiple intersection point:

Theorem 6.1.3 (Dethloff, Orevkov, Zaidenberg)
Let L be a real line arrangement in CP

2 consisting of n lines. We choose the line at infinity
such that all the lines are intersected in C

2. Assume that there exists in L at least one
multiple intersection point.
Then, π1(CP

2 − L, u0) is big.
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Remark: It seems that this phenomena is not happen for branch curves of surfaces, unlike
previous expectations which followed earlier results of Zariski and Moishezon. Most funda-
mental groups of complements of branch curves are “almost solvable”, i.e. they contain a
solvable subgroup of finite index and they are not “big” (see [Te2]).

Acknowledgments. We thank Prof. Leonid Makar-Limanov for suggestions which led to the
crucial part of the proof of proposition 2.7.1.
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