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HILBERT’S “VERUNGLUCKTER BEWEIS,” THE FIRST EPSILON
THEOREM, AND CONSISTENCY PROOFS

RICHARD ZACH

Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency
of mathematical systems in a finitary way. This was to be accomplished by showing that
that these systems are conservative over finitistically interpretable and obviously sound
quantifier-free subsystems. One proposed method of giving such proofs is Hilbert’s epsilon-
substitution method. There was, however, a second approach which was not refelected in
the publications of the Hilbert school in the 1920s, and which is a direct precursor of
Hilbert’s first epsilon theorem and a certain “general consistency result.” An analysis
of this so-called “failed proof” lends further support to an interpretation of Hilbert ac-
cording to which he was expressly concerned with conservatitvity proofs, even though his
publications only mention consistency as the main question.

81. Introduction. The aim of Hilbert’s program for consistency proofs in the
1920s is well known: to formalize mathematics, and to give finitistic consistency
proofs of these systems and thus to put mathematics on a “secure foundation.”
What is perhaps less well known is exactly how Hilbert thought this should be
carried out. Over ten years before Gentzen developed sequent calculus formal-
izations of arithmetic and used an elaboration of his cut-elimination procedure
to give a consistency proof of Peano Arithmetic, Hilbert proposed a different
approach: He believed that the principles criticized by intuitionists, the princi-
ple of the excluded middle in its application to infinite totalities and the use of
unbounded existential quantifiers are, at root, the same. This root is the axiom
of choice. In a course on the foundations of mathematics, he remarked that
whereas the use of unbounded quantification results in significant problems for
giving a consistency proof,

the core of the difficulty lies at a different point, to which one usually
only pays attention later: it lies with Zermelo’s aziom of choice ... We
want to extend the axiom of choice. To each proposition with a variable
A(a) we assign an object for which the proposition holds only if is holds
in general. So, a counterexample, if one exists.!

This counterexample is given by the T-operator: 7, A(z) is an object for which
A(xz) is false, if there is one. The dual operator e, A(z), is a witness, i.e., an
object for which A(x) is true, if A(x) is true for anything.? The e-operator is
governed by the transfinite aziom,

Aa) — AezA(x)).
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A finitistic consistency proof of mathematical theorems which allows the elim-
ination of applications of the choice principle (in the form given to it by the
transfinite axiom) would then show that such application is justified after all.
It would also show that unbounded quantification is admissible in mathematics,
since with the help of the transfinite axioms one can define quantifiers by

(Fr)A(z) = A(e,A(z)) and  (Vz)A(z) = A(ex—A(x))

e-terms may be seen as ideal elements whose addition to the theory of finite
propositions reintroduces the powerful methods of infinite mathematics, and
“round out the theory.” To show that their addition is permissible requires a
proof that e-terms can be eliminated from proofs of “real”, finitary, propositions.
This elimination of e-terms from formal proofs in arithmetical theories was to
proceed according to the epsilon-substitution method. Hilbert’s approach here
was to define a finitistic procedure which would produce, given a proof involv-
ing e-terms, a substitution of these terms by actual numbers.? Applying this
substitution to the proof would then result in a purely elementary proof about
numbers which would contain no trace of the transfinite elements of the original
proof. In addition, it is seen finitistically that all initial formulas, and hence
also the end formula, of the resulting proof are true. Since such a proof cannot
possibly have a contradiction as its last line, the consistency of arithmetic would
be established. Hilbert presented his “Ansatz” for finding such substitutions in
Hilbert [1922c]; it was extended by Ackermann [1924] and von Neumann [1927].

The epsilon-substitution method and its role in Hilbert’s program are now
relatively well understood. There was, however, a second proposal for proving
consistency, also based on the epsilon calculus, which has escaped historical
attention, and which was never presented in the publications of the Hilbert
school before 1939. In the second volume of Grundlagen der Mathematik Hilbert
and Bernays [1939], Bernays first developed in print a well worked-out theory
of the epsilon calculus as an alternative formulation and extension of predicate
logic, and proved the so-called first and second epsilon theorems. In Section 1.4,
Bernays presented a “general consistency theorem” based on the first epsilon
theorem, which applies, e.g., to elementary geometry and to arithmetic with
an open induction rule. This second approach to consistency proofs via the first
epsilon theorem, however, dates back to the very beginning of Hilbert’s Program.
In a letter from Bernays to Ackermann of October 1929, Bernays refers to this
second approach as Hilbert’s “verungliickter Beweis” (the “failed proof”). This
failed proof never made it into Hilbert’s publications of the early 1920s nor into
his lectures on the subject of 1922 and 1923. A record of the basic idea, a second
“Ansatz,” is, however, available in the form of a six-page note in Bernays’s hand.

The aim of this paper is to present and analyze this second approach to proving
consistency, and to show how Hilbert’s “verungliickter Beweis” precipitated the
proof of the first epsilon theorem by Hilbert and Ackermann a decade later.
Given the role envisaged by Hilbert for the e-calculus and the consistency proofs
based on it, such an analysis will help illuminate not just the genesis of an
important proof-theoretic result (the epsilon theorem), but also Hilbert’s aim and
strategy for providing consistency proofs. In the following section, we will revisit
the first epsilon theorem, and show how it can be used to establish consistency
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results. Following this discussion, I present the suggestion contained in Hilbert’s
second Ansatz, and outline why this approach was not pursued by Hilbert and
his students in the 1920s. A concluding section discusses the relevance of the
result to an understanding of Hilbert’s consistency project.

§2. The first epsilon theorem and the general consistency result.
The epsilon calculus consists in the elementary calculus of free variables plus
the “transfinite axiom,” A(a) — A(egzA(z)). The elementary calculus of free
variables is the quantifier-free fragment of the predicate calculus, i.e., axioms for
propositional logic and identity, with substitution rules for free individual (a, b,

. ) and formula (A, B, ... ) variables and modus ponens.

One of the most basic and fruitful results concerning Hilbert’s e-calculus is
the so-called epsilon theorem. It states that if a formula & containing no e-terms
is derivable in the e-calculus from a set of axioms which also do not contain e-
terms, then € is already derivable from these axioms in the elementary calculus
of free variables (i.e., essentially using propositional logic alone). A relatively
easy consequence of this theorem (or rather, of its proof) is Herbrand’s theorem,
and, in fact, the first published correct proof of Herbrand’s theorem is that given
by Bernays in Grundlagen der Mathematik II [Hilbert and Bernays 1939] based
on the first e-theorem. Leisenring [1969] even formulates the e-theorem in such
a way that the connection to Herbrand’s theorem is obvious:

If E is a prenex formula derivable from a set of prenex formulas I' in
the predicate calculus, then a disjunction B; V ...V B, of substitution
instances of the matrix of E is derivable in the elementary calculus of
free variables from a set I of substitution instances of the matrices of
the formulas in T'.

Even without this important consequence, which was of course not discovered
until after Herbrand’s [1930] thesis, the first e-theorem constitutes an important
contribution to mathematical logic. Without the semantical methods provided
by the completeness theorem for predicate logic, it is not at all clear that the
addition of quantifiers in the guise of e-terms and the axioms governing them is
a conservative extension of the elementary calculus. Keeping in mind the role
of epsilon-terms as “ideal elements” in a proof, the eliminability of which is the
main aim of a consistency proof of any mathematical system formulated with the
aid of the epsilon calculus, the first epsilon theorem is also the main prerequisite
for such a consistency proof.
Bernays stated the first and second epsilon theorem as follows:

These theorems both concern a formalism F', which results from the
predicate calculus by adding to its symbols the e-symbol and also cer-
tain individual [constant], predicate, and function symbols, and to its
axioms the e-formula [the transfinite axiom| and furthermore certain
proper axioms P, ... , Ve which do not contain the e-symbol. For such
a formalism F', the two theorems state the following:
1. If € is a formula derivable in F' which does not contain any bound
variables, and the axioms ‘Bi,..., B¢ also contain no bound vari-
ables, then the formula € can be derived from the axioms B, ... , Pe
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without the use of bound variables at all, i.e., with the elementary
calculus of free variables alone (“first epsilon theorem”).

2. If & is a formula derivable in F' which does not contain the e-symbol,
then it can be derived from the axioms By, ... , B¢ without the use
of the e-symbol, i.e., with the predicate calculus alone (“second
epsilon theorem”).*

The predicate calculus is formulated with a substitution rule for free individual
and formula variables; the elementary calculus of free variables is the quantifier-
free fragment of the predicate calculus (i.e., without quantifier axioms or rules) or
equivalently, the epsilon calculus without transfinite axioms and without defining
axioms for the quantifiers.

A proof that the e-calculus is conservative over the elementary calculus of
free variables in the way specified by the first epsilon theorem constitutes a
proof of consistency of the e-calculus and of mathematical theories which can be
formulated in such a way that the first e-theorem applies (i.e., the axioms are
quantifier- and e-free).

The proof of the conservativity of the e-calculus takes the same form as other
“direct” consistency proofs given by Hilbert and his students in the 1920s (e.g.,
Ackermann [1924]). Suppose F proved a contradiction. We may assume the
contradiction is a variable-free formula (in arithmetic, e.g., 0 # 0). By the first
epsilon-theorem, there would be such a proof already in the elementary calculus
of free variables, but this can be easily shown to be consistent.

Bernays’s “general consistency result” consists in extending the consistency
proof for the pure e-calculus to certain axiomatic theories for which the first
e-theorem also applies. Let us first outline the the consistency proof for a very
basic arithmetical theory. This theory results from the elementary calculus of
free variables by adding the constant 0 and successor (41) and predecessor (4)
functions. The additional axioms are:

0#x+1
r=06(x+1)

To prove that the resulting axiom system is consistent, assume there were a proof
of 0 # 0. First, by copying parts of the derivation as necessary, we can assume
that every formula in the proof is used as the premise of an inference at most
once. Hilbert and Bernays call this “resolution into proof threads.” The resulting
proof is in tree form; a branch of this tree (beginning with an axiom and ending
in the end-formula) is a proof thread. Next, we can substitute numbers for the
free variables in the proof (“elimination of free variables”). Bernays describes
this as follows:

We follow each proof thread, starting at the end formula, until we reach
two successive formulas 2(, B where the first results from the second by
substitution. We record the substitution also in the formula B, so that
we get instead of B a repetition of the formula 2.

If 9B is an initial formula [axiom], then the substitution has been trans-
ferred to the initial formula. Otherwise, 8 was obtained by substitution
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into a formula € or by repetition, or as conclusion of an inference

¢ C—B
N /S
B.

In the first case, we in turn replace € by 2, so that the substitutions
leading from € to B and from B to A are recorded simultaneously. (In
the case of repetition, only one substitution is recorded.)

In the case of the inference schema [modus ponens], we record the
substitution leading from B to 2 in the formulas € and € — ‘B; this
changes the formula € if and only if it contains the variables being sub-
stituted for in the transition from B to 2. In any case, the original
inference schema with conclusion ‘B is replaced by an inference schema

¢ -
N S
2

We can proceed in this way until we reach an initial formula in each
thread. When the procedure comes to its end, each substitution has
been replaced by a repetition, each inference schema by another infer-
ence schema, and certain substitutions have been applied to the initial
formulas.’

Remaining free variables can now be replaced by 0 (for individual variables) and
0 = 0 (for formula variables). We would thus obtain a proof of 0 # 0 without
free variables.

If we now reduce the variable-free terms in the resulting proofs to standard
numerals by successively replacing §(0) by 0 and §(t + 1) by t, we get a proof
where each initial formula is either an instance of a tautology, of an identity
axiom, or, if the original formula was one of the axioms for +1 and §, a formula
of the form of either

0#n+1

n=n

(where n is either 0 or of the form 0+ --- 4 1).

Call an equation of the form n = n “true” and one of the form n = m,
where n and m are not identical, “false.” This can be extended to propositional
combinations of equations in the obvious way. We observe that the resulting
proof has all true initial formulas, and since modus ponens obviously preserves
truth, all other formulas are also true. Since 0 # 0 is false, there can be no proof
of 0 #£0.

This proof was already presented by Hilbert in his courses on the foundations
of mathematics of 1921/22 and 1922/23, and was extended there to axioms for
primitive recursive functions. Ackermann then extended it further to include
second-order primitive recursive functions.® The challenge was to extend it to
the case where e-terms and the transfinite axiom are also present, leading to
Hilbert’s e-substitution method. There, the aim was to find substitutions not
just for the free variables, but also for the e-terms, ultimately also resulting
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in a proof without free or bound variables and with true initial formulas. An
alternative method is this: Instead of treating e-terms together with other terms
of the system, eliminate them first. We introduce a step at the beginning of the
proof which reduces a proof in the e-calculus to one in the elementary calculus of
free variables as in the first e-theorem. Thus, with the first e-theorem in hand,
Bernays can formulate the following “general consistency theorem”:

Let F be a formalism which results from the predicate calculus by adding
certain individual, predicate, and function symbols. Suppose there is a
method for determining the truth value of variable-free atomic formulas
uniquely. Suppose furthermore that the axioms do not contain bound
variables [i.e., no quantifiers and no e-terms] and are verifiable [i.e., every
substitution instance is true]. Then the formalism is consistent in the
strong sense that every derivable variable-free formula is a true formula.”

Suppose 2 is variable-free and derivable in F'. If a formalism F' satisfies the
conditions, then the first e-theorem yields a proof of 2 already in the elementary
calculus of free variables. The procedures above (resolution into proof threads,
elimination of free variables) yields a proof of 2( from substitution instances of the
axioms of F'. Since the axioms of F' are verifiable, these substitution instances are
true, and again, modus ponens preserves truth. So % is true. The requirement
that the truth-value of variable-free atomic formulas is decidable ensures that
this is a finitistic proof: It can be finitistically verified that any given proof in
fact has true initial formulas (and hence, a true end formula).

83. Hilbert’s Verungliickter Beweis. The “general consistency result” is
first formulated in print in Hilbert and Bernays [1939], but Hilbert had something
like this in mind already in the early/mid 1920s. When working on Grundlagen
der Mathematik in the late 1920s, Bernays revisits the idea, which had been
abandoned in favour of the e-substitution method. In correspondence with Ack-
ermann in 1929 (discussed below), Hilbert refers to “Hilbert’s second consistency
proof for the e-axiom, the so-called “failed proof’,” and suggests ways in which
the difficulties originally encountered could be fixed. Surprisingly, this “failed
proof,” a precursor of the first e-theorem, is not to be found in the otherwise
highly interesting elaborations of lecture courses on logic and proof theory given
by Hilbert (and Bernays) between 1917 and 1923. The only evidence that the
e-theorem predates Bernays’s proof of it in Hilbert and Bernays [1939] are the
letter from Bernays to Ackermann from 1929, and a sketch of the simplest case
of the theorem.

The sketch in question is a six-page manuscript in Bernays’s hand which can
be found bound with the lecture notes to Hilbert’s course Elemente und Prinzip-
ienfragen der Mathematik [Elements and Principle of Mathematics], taught in
the Summer Semester 1910 in Géttingen.® Although it bears a note by Hilbert
“Insertion in WS [Winter Semester] 1920”7, the notation used in the sketch sug-
gests that it was written after sometime in 1923, and in any event after 1922,
when the £ notation was first introduced. It bears the title “Consistency proof
for the logical axiom of choice Ab — Ae,Aa, in the simplest case.”
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In the sketch we find a proof of the first e-theorem for the case where the
substitution instances of the transfinite axiom used in the proof, i.e., the so-
called critical formulas

At) — A(e,A(x))

are such that 2(z) contains no &’s, and furthermore the identity axioms are not
used at all. The proof goes as follows. Suppose

A(ts) — A(eaA(2))

Altn) — A(e2A(x))

are all the critical formulas involving 2 in a proof of ®B. First, replace every
formula § occurring in the proof by the conditional 2((t;) — §, and every appli-
cation of modus ponens by the (derivable) inference
Aty) — & Alty) — (6 = %)
ﬁ(tl) — %
Every formula resulting thus from a substitution instance § of an axiom (other
than the critical formula for t;) is then derivable by

53— @m)—3)

A(t1) — F

The formula corresponding to the e-axiom involving t; is derived using

_ Aty) — (Alt) — Ale,2A(x))
@A(t) — (Ats) — A(e.A())) — (At) — (A(t1) — A(eA(x)))
Aty) — (A(t) — A(e.A(z))
The premises of this inference are propositional axioms. Thus we obtain a proof
of ﬁ(tl) — B with only the critical formulas for to, ..., t,.

Next, replace every formula in the original proof by the conditional 2(t;) — F,
and also replace £,2(a) everywhere by t;. The initial formulas of the resulting
derivation (except those resulting from critical formulas) are again derivable as
before. The formulas corresponding to the critical formulas are all of the form

A(t1) — (A(t) — At1))

which are propositional axioms. We therefore now have a proof of 2(t;) — B
without critical formulas. Putting the two proofs together and applying the law
of excluded middle, we have found a proof of B using only critical formulas for
ta, ..., t,. By induction on n, there is a proof of B using no critical formulas
at all. In the resulting proof, we can replace £,2(z) everywhere by 0.°

In a letter to Ackermann dated October 16, 1929, Bernays discusses this proof
and suggests ways of extending the result to overcome problems that apparently
had led Hilbert to abandon the idea in favour of consistency proofs using the
g-substitution method. The letter begins with a review of the problems the
original idea suffered from:
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While working on the Grundlagenbuch, I found myself motivated to re-
think Hilbert’s second consistency proof for the e-axiom, the so-called
“failed” proof, and it now seems to me that it can be fixed after all.
Since I know that it is very easy to overlook something in the area
of proofs like this, I would like to submit my considerations to you for
verification.
The stumbling blocks for the completion of the proof were threefold:
1. It could happen that due to the replacements needed for the treat-
ment of one critical formula, a different critical formula lost its char-
acteristic form without, however, thus resulting in a derivable for-
mula.
2. Incorporating the second identity axiom, which can be replaced by
the axiom

(@) a="b— (e,A(x,a) = e, A(z,b))

in its application to the e-function [footnote: except in the harmless
application consisting in the substitution of an e-functional for an
individual variable in the identity axiom]—only €,2((x) are involved
here, where x is an individual variable—caused problems.

3. Sometimes a new e-functional appeared after successful elimination
of an e-functional, so that overall no reduction was achieved.'®

The difficulties listed by Bernays arise already for the e-theorem in the general
case; dealing with number theory, i.e., the induction axiom, in the way outlined
requires even further extensions of the method. Bernays acknowledges this in
the letter, writing, “With the addition of complete induction the method is no
longer, i.e., at least not immediately, applicable. For that, your [Ackermann’s]
method of total substitution [i.e., a solving e-substitution] would be the simplest
way.” However, even if an extension to arithmetic is not immediately available,
it seems that Bernays considered the “second proof” valuable and interesting
enough to fix. To summarize, there are two difficulties: The first is that the
possibilities in which e-terms can be nested in one another and in which cross-
binding of variables can occur give rise to difficulties in their elimination. On
the one hand, we replace €,2(x) by t; in the second step. If e-terms other than
ez, but which contain £,2(z), say, €,B(y, e,2x) are also present, we would
obtain from a critical formula

B(s,e.U(x)) — BleyB(y, c.U(w)), €2 A())
a formula
B(s, t1) — B(e,B(y, 1), t1)

which is a critical formula for a new e-term (this is Bernays’s point(3)). On
the other hand, the formula 2(z) might contain another e-expression, e.g.,
gyB(z,y), in which case the corresponding e-term would be of the form ¢ =
exU(x,e4B(z,y)). A critical formula corresponding to such a term is:

A(s, ey B(s,y)) — AleaA(2, 4 B(2,9)), £y B(e.A(2, £, B(2,9)), 9)), e,
RA(s,eyB(s,y)) — Ale,e,B(e,y))
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If, in this formula the e-term £,%(s, y) is replaced by some other term t, we get

A(s,t) — A, Ww, £yB(z,y)), ey B(e:A(z, e,B(x, y)),y)), Le.,
A(s, t) — Ale,e,B(e,y))

which is no longer an instance of the e-axiom. This is Bernays’s point (1).

The second main difficulty is dealing with equality axioms, for again, the
replacement of an e-term £, (z, a) by t might transform an instance of an quality
axiom into

a="b—t=¢e,Az,b)

which no longer is an instance of an axiom. (This is Bernays’s point (2)).

Bernays’s proposed solution is rather involved and not carried out in general,
but it seems to have prompted Ackermann to apply some methods from his own
[1924] and von Neumann’s [1927] e-substitution proofs. Specifically, the final
version of the first e-theorem presented by Hilbert and Bernays [1939], where
the solution of the difficulties is credited to Ackermann, use double induction
on the rank and degree of e-expressions to deal with the first difficulty, and von
Neumann’s notion of e-types to deal with the equality axiom.

84. The relevance of Hilbert’s “failed proof”. As I have argued in
Zach [2002], a complete understanding of Hilbert’s philosophy of mathemat-
ics requires an analysis of what I have called “the practice of finitism.” Hilbert
was, unfortunately, not always as clear as one would like in the exposition of
his ideas about the finitist standpoint and of his project of consistency proofs.
Only by analyzing the approaches by which he and his students attempted to
carry out the consistency program can we hope to get a complete picture of the
principles and reasoning patterns he accepted as finitist, and about his views on
the nature of logic and axiomatics. The e-substitution method, of course, was
considered the most promising avenue in the quest for a consistency proof. The
perhaps surprising historical details outlined above, showing that an alternative
approach was, to a certain degree, pursued in parallel to the more well-known
substitution method, adds significantly to the understanding we have of Hilbert’s
approach to logic and proof theory.

The “general consistency result” provides another example of how a consis-
tency proof should be carried out, according to Hilbert. Its particular interest lies
in its general nature. Bernays’s schematic formulation of the result underlines
and makes explicit the conditions an axiomatic system should meet in order to be
amenable to a consistency proof of the required form; it stresses once again the
requirement of verifiability and decidability of atomic formulas. It also provides
another piece of evidence that when Hilbert spoke of consistency proof (in his
publications) he really was interested in certain conservativity results (conserva-
tivity of the “ideal” over the “real” parts of mathematics). Such an interpretation
is not uncommon among those writing on Hilbert’s program,!! but not explicit
to a comparable degree in Hilbert’s own publications. He only speaks of con-
sistency, not of conservativity. However, not only did the consistency proofs in
his school establish conservativity, but they were clearly specifically intended to.
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This indicates that a reading of Hilbert’s program as aiming for conservativity
is not just a reconstruction, but reflects Hilbert’s own intentions.

In addition to the light these results shed on the conceptual framework of
Hilbert’s program, the genesis of the e-calculus is of independent and genuine
importance. Interest in the historical development of Hilbert’s program has
seen a marked increase in the last decade or so, and naturally the e-calculus
takes center stage in the development of logic in Hilbert’s school. Independently
of Hilbert studies, renewed interest in the theory and applications of the e-
calculus'? warrant a closer look at the foundations and origins of the epsilon
calculus—the “failed proof” is a rather important piece of the puzzle.

NOTES

'Hilbert and Bernays [1923a, 30-31]. In accordance with the notation in Hilbert and Bernays
[1934], [1939], we use the following notation: a, b, ... stand for free variables, whereas , y, . ..
are bound variables. A, B, ... are formula variables. 2, B, ... , indicate actual formulas—not
formula variables—and n, 3, denote numerical terms. For uniformity, we the notation in some
quotations has been adjusted.

2The T-operator was mentioned in Hilbert [1922c] and formally introduced, together with
the transfinite axiom, in Hilbert [1923]. The change to the dual e-operator was carried out in
a course given in Winter 1922/23 Hilbert and Bernays [1923a], [1923b].

3The basic idea was presented in Hilbert [1923] and in the course mentioned Hilbert and
Bernays [1923a], [1923b], for discussion, see Zach [2002]. Roughly, the idea is this: first replace
every e-term by 0. The instances of the transfinite axiom for an e-term €,2(z) in the proof
then become formulas of the form 2A(n) — 2((0). If this formula is false, 2(n) is true. In the
next iteration of the procedure, replace ez2(z) by n. The difficulty is to extend this idea to
the case where more than one e-term, and in particular, nested e-terms occur in the proof.

4Hilbert and Bernays [1939, 18].

5Hilbert and Bernays [1934], p. 225.

SHilbert [1922a], [1922b], Hilbert and Bernays [1923a], [1923b], Ackermann [1924]; for dis-
cussion see Zach [2002].

"Hilbert and Bernays [1939], p. 36.

8Bibliothek, Mathematisches Institut, Universitit Gottingen, 16.206t14.

9This is essentially the same proof as the one presented as the “Hilbertsche Ansatz” by
Hilbert and Bernays [1939, 21]. The only difference is that instead of using induction on n,
Bernays constructs one derivation of A4(t;) A ... A A(t,) — § and n derivations of A(t;) — ,
and then applies n-fold case distinction.

10 «An]ssslich der Arbeit fiir das Grundlagenbuch sah ich mich dazu angetrieben, den zweiten
Hilbertschen Wf.-Beweis fiir das e-Axiom, den sogenannten , verungliickten“ Beweis, nochmals
zu iiberlegen, und es scheint mir jetzt, dass dieser sich doch richtig stellen lésst.

Da ich weiss, dass man sich im Gebiete dieser Beweise dusserst leicht versieht, so mochte ich
Thnen meine Uberlegung zur Priifung vorlegen.

Die bisherigen Hindernisse fiir die Durchfithrung des Beweises bestanden in dreierlei:

1. Es konnte vorkommen, dass durch die Ersetzungen, die bei der Behandlung einer kritischen
Formel auszufithren waren, eine andere kritische Formel ihre characteristische Gestalt
verlor, ohne doch in eine beweisbare Formel iiberzugehen.

2. Die Beriicksichtigung des zweiten Gleichheits-Axioms, das ja in seiner Anwendung auf
die e-Funktion [Footnote: abgesehen von der harmlosen Anwendung, bestehend in d.

Einsetzung eines e-Funktionals fiir eine Grundvariable im Gleichheits-Axiom.] — es
handelt sich hier immer nur um e,2(z), wobei x eine Grundvariable ist—durch das
Axiom

(G) a="b— (e2A(z,a) = ez Az, b))

vertreten werden kann, machte Schwierigkeiten.
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3. Es kam vor, dass nach gelungener Ausschaltung eines e-Funktionals ein anderes e-
Funktional hinzurat, sodass im ganzen keine Reduktion nachweisbar war.”

Bernays to Ackermann, October 16, 1929. Manuscript, 13 pages. In the possession of Hans
Richard Ackermann. See also Ackermann [1983].

M Kreisel [1960], for instance, stresses Hilbert’s aim of not just proving consistency, but of
proving conservativity by removing transfinite, “ideal” elements from proofs of “real” propo-
sitions. Smorynski [1977] suggests that Hilbert’s motivation for proving consistency is the aim
of establishing conservativity, since consistency establishes conservativity for IT;-sentences. It
is doubtful, however, that Hilbert was aware of this consequence. He was expressly interested
in conservativity (for quantifier free sentences), because it implies consistency. Conservativ-
ity is also emphasized by those giving an instrumentalist reading of Hilbert’s project, e.g.,
Detlefsen [1986] and Sieg [1990].

12For an overwiew, see Avigad and Zach [2002].
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