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Abstract The problem of road or lane perception is a
crucial enabler for Advanced Driver Assistance Systems
(ADAS). As such, it has been an active field of research
for the last two decades with considerable progress made
in the last few years. The problem was confronted under
various scenarios, with different task definitions, leading
to usage of diverse sensing modalities and approaches.
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In this paper we survey the approaches and the algorith-
mic techniques devised for the various modalities along
the last five years. We present a generic break down of
the problem into its functional building blocks and elab-
orate the wide range of proposed methods within this
scheme. For each functional block, we describe the pos-
sible implementations suggested, and analyze their un-
derlying assumptions. While impressive advancements
were demonstrated at limited scenarios, inspection into
the needs of next generation systems reveals significant
gaps. We identify these gaps and suggest research di-
rections that may bridge them.

Keywords Lane detection · Road detection · Road
segmentation · Advanced driver assistance systems

1 Introduction

Advanced driver assistance systems, which either alert
the driver in dangerous situations or take an active
part in the driving, are gradually being inserted into
vehicles. Such systems are expected to grow more and
more complex towards full autonomy during the next
decade. The main bottleneck in the development of such
systems is the perception problem [1], which has two
elements: road and lane perception, and obstacle (i.e.
vehicles and pedestrian) detection. In this survey we
consider the first.

Road color and texture, road boundaries and lane
markings are the main perceptual cues for human driv-
ing. Semi and fully autonomous vehicles are expected
to share the road with human drivers, and would there-
fore most likely continue to rely on the same perceptual
cues humans do. While there could be, in principle, dif-
ferent infrastructure cuing for human drivers and ve-
hicles (e.g. lane marks for humans and some form of
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vehicle-to-infrastructure communication for vehicles) it
is unrealistic to expect the huge investments required to
construct and maintain such double infrastructure, with
the associated risk in mismatched marking [2]. Road
and lane perception via the traditional cues remains
therefore the most likely path for autonomous driving.

Road and lane understanding includes detecting the
extent of the road, the number and position of lanes,
merging, splitting and ending lanes and roads, in urban,
rural and highway scenarios. Although much progress
has been made in recent years, this type of understand-
ing is beyond the reach of current perceptual systems.
There are several sensing modalities used for road and
lane understanding, including vision (i.e. one video cam-
era), stereo, LIDAR, vehicle dynamics information ob-
tained from car odometry or Inertial Measurement Unit
(IMU) with global positioning information obtained us-
ing Global Positioning System (GPS) and digital maps.
Vision is the most prominent research area in lane and
road detection due to the fact that markings are made
for human vision, while LIDAR and global positioning
are important complements.

This paper provides several insights in this domain.
We present an up-to-date survey of approaches and al-
gorithms for road and lane detection in recent years, up-
dating the survey [3] from 2005. We found that impor-
tant due to the significant progress made since 2005 as
part of the research efforts made for the DARPA Grand
Challenge (2005) and Urban Challenge (2007), and for
commercial driver assistance systems. Unlike [3], we do
not limit the survey to vision-based systems, and in-
clude systems based on all relevant sensing modalities.
We identify a “generic system” architecture and present
each system described in light of this architecture, by
breaking down each system to its functional elements.
We provide a discussion of the scope of the problem and
challenges ahead in relation to present and future driver
assistance systems. Finally, we identify the remaining
gaps both in research and in system-level evaluation,
and suggest research directions for bridging these gaps.

The structure of this survey is as follows: in the
next section we define the scope of the lane and road
detection task and relate it to the automotive indus-
try requirements. In section 3 we provide a comprehen-
sive overview of the different sensing modalities used
for the task. Section 4 presents the functional modules
and techniques used, and section 5 discusses experimen-
tal evaluation methods. Section 6 concludes the survey
with a summary and suggestions for future research di-
rections.

2 Problem scope

The lane detection problem, at least in its basic setting,
does not look like a hard one. In this basic setting, one
has to detect only the host lane, and only for a short
distance ahead. A relatively simple Hough transform
based algorithm, which does not employ any tracking or
image-to-world reasoning solves the problem in roughly
90% of the highway cases [31]. In spite of that, the im-
pression that the problem is easy is misleading, and
building a useful system is a large scale R&D effort.
The main reasons for that are significant gaps in re-
search, high reliability demands and large diversity in
case conditions.

Research gaps: During the next decade, more and
more semi-autonomous features are expected to be added
gradually to vehicles, toward full autonomy. Some of
these features are enlisted in table 1, with a list of rel-
evant publications from the last five years. It can be
easily seen that Lane Departure Warning (LDW), the
most basic of these features, has received the largest
portion of research attention. The lane understanding
level required for this feature is identification of the host
lane alone, and to a distance of several dozens of me-
ters ahead. Significant research effort was also devoted
to full autonomy, mainly due to the DARPA challenges
[25,27–29,21–24,2,20,32]). Complex road and lane un-
derstanding, appearing in the middle rows of table 1
are very little understood.

Since full autonomy is the most complex problem,
including all others as sub-tasks, one may get the im-
pression that the features in the middle rows of the
table are covered by the research on full autonomous
vehicles. This, however, in not true when it comes to
onboard lane and road understanding. The reason is
that the lack of cost constraints, together with the pres-
ence of highly accurate map information in the DARPA
challenges, led to solutions with very limited forms of
onboard road and lane perception.

A typical vehicle in the DARPA challenge carried
multiple LIDARs, Radars, a highly sensitive IMU, and
computing power of a dozen computers [22]. Moreover,
an exact digital map of the road network coupled with
updated aerial imagery was supplied to the competi-
tors [24]. The combination of the detailed map informa-
tion with the exact positioning equipment (GPS+IMU)
enabled localization of the vehicle w.r.t the map in res-
olution of approximately 1 meter [24]. Since the typical
road width, as well as the width of the lanes in the
urban challenge is usually around 4-5 meters [2], such
resolution is nearly enough for the vehicle to navigate
itself blindly - without any onboard perception.
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Feature Description Lane/road understanding demands References

Lane Departure Warning
(LDW)

Issue warnings for near lane de-
parture events

Host lane, short distance (40-50m
ahead)

[4,3,5–16]

Adaptive Cruise Control
(ACC)

Follow the nearest vehicle in
the host lane with safe head-
way distance

Host lane, short distance [17]

Lane keeping Return the car to the lane cen-
ter when un-signaled lane de-
parture occurs

Host lane, short distance, higher relia-
bility than LDW

Lane centering Keep the car in the middle of
the lane at all times

Host lane, medium distance, high relia-
bility, lane split (non linear lane topol-
ogy) identification

[6]

Lane change assist Autonomous lane change on
demand

Multiple lanes, front and rear, large
distance ( 150 meters) ahead

[18,19]

Turn assist Autonomous turn on driver de-
mand or as part of automatic
navigation

Multiple lanes, lane semantics (iden-
tify turning lanes), non-linear lane and
road topology (splits and merges)

Full autonomous driving
for paved roads

Autonomous driving in city
and highway

All of the above plus complex road
topologies such as junctions / round-
abouts / road under construction

[2,20–24]

Full autonomous driving
for cross country driving

Autonomous driving in non-
paved areas

Full rough road understanding but
somewhat easier than paved-road au-
tonomy with respect to lack of lanes,
sparser traffic

[25–30]

Table 1 Current and future expected automotive features, and their lane/road understanding demands. Papers are assigned to table
rows based on their feature of interest, or based on the lane detection task considered if no explicit feature was mentioned.

Under these circumstances, the role of onboard lane
and road perception in the urban challenge is usually
limited to localization validation and minor refinements.
This is often achieved using one-dimensional LIDARs
pointed downwards, used to verify the vehicle’s position
within the lane/road. Five of the six finishing competi-
tors in the challenge did not use the vision modality at
all (the exception is [2]). In the desert challenge, lanes
were not present at all, and road perception was usually
limited to very near range (10−15 meters) as navigation
is based mostly on exact global positioning.

In contrast to the global positioning based solutions
developed for the DARPA challenge, lane and road per-
ception for commercial vehicles has to be conducted
with affordable sensors, which currently include mostly
vision, GPS and certain radar types. These considera-
tions, as well as reliability issues discussed in section 3,
imply that lane and road understanding remain a chal-
lenge that should be solved by onboard sensing, as it
has been treated in most of the literature till now.

Due to the reasons stated above, the research on au-
tonomous driving had very limited contribution to the
problems appearing in the middle rows of table 1, taken
as onboard perception problems. These features, which
are planned to be a major driving force in the auto-
motive industry in the next decade, were very sparsely
covered. The main research challenges are understand-
ing of multiple lanes, farther to the front and to the
rear of the vehicle, and perception of complex non lin-

ear lane and road topologies. Some examples for these
challenges are illustrated in figure 3.

High reliability demands: In order to be use-
ful, driver assistance systems should reach very low er-
ror rates. For a warning system like LDW, the false
alarm rate should be very low, as high rates irritate
drivers and lead to system rejection. The exact amount
of false alarms acceptable by drivers is still a subject
for research [14,15], and some available systems report
few false alarms per hour [16]. At 15 frames per sec-
ond, 1 false alarm per hour means one error in 54, 000
frames. For closed-loop autonomous driving features,
errors should be even several orders of magnitude lower.
Such low error rates are very hard to achieve in vision-
based applications. Other advanced applications of com-
puter vision, such as Web-based visual search or surveil-
lance are typically much more forgiving in terms of the
required error rates.

Case diversity: The last source of difficulty for a
lane detection system is the rich set of conditions that
has to be taken care of, requiring development of many
different algorithms and sub-systems. The main sources
for condition diversity are:

– Lane and road appearance diversity: Lane marks
are typically 0.1 meter wide with white or yellow
color, but many other variants exist: circular reflec-
tors, cat’s-eyes, lanes with special colors and with
variable width. Lanes are typically 3.05 − 3.66m
wide [33], but exceptions (about 12% in the U.S.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Scenarios diversity which road and lane detection should cope with. Lane and road appearance diversity: (a) different lane
marks, (b) the width of the marks are changed (marked by the red circle), (c) different lane widths (the right lane is extremely wide
due to the marge with another lane). Image clarity issues: (d) saturated image’s upper part at tunnel exit, (e) cast shadow on the road,
(f) road covered with snow. Poor visibility conditions: (g) low visibility due to fog, (h) low visibility due to heavy rain, (i) reflections
on wet road at nighttime.

are frequent. The number of lanes may vary. The
road is usually straight, and curvature is usually
limited (for example the curve radius is at least 80
meters for 50KPH urban roads [34]), but exceptions
exist.

– Image clarity issues: While usually the road is
open and visible, there are some exceptions which
cannot be ignored. Near vehicles can create severe
occlusions. Shadows from nearby trees and build-

ings may create misleading edges and texture on
the road. In some cases, like when the host vehi-
cle comes out of a tunnel there are abrupt changes
of several orders of magnitude in the illumination
level, leading to over exposed image.

– Poor visibility conditions: The system should
operate, or at least identify the condition and lower
its confidence, under rain, fog, haze and night con-
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ditions. Each such condition requires another algo-
rithmic treatment at some processing level.

Figure 1 illustrates some of the challenging scenarios
mentioned above. Reasonable coverage for all these con-
ditions requires developing a complex system with con-
siderable engineering effort. Teams which tried to de-
velop vision-based road understanding systems in a fast
manner often gave up this modality and turned to other
means [22,23]. Most of the above difficulties have to be
faced even when implementing the most basic features
(e.g. LDW).

3 Relevant modalities

As mentioned in the previous section, several different
sensors (’perception modalities’) were found useful for
the task of lane and road perception. In this section we
enlist these modalities and discuss their main charac-
teristics and typical use.

Vision: Vision modality, or more simply put, a cam-
era, is the most frequently used modality for lane and
road perception. Most works either discuss this possi-
ble modality directly or acknowledge it as a viable al-
ternative. In all available literature, front lane and road
detection is considered, so a typical lane detection cam-
era is usually front mounted in the middle of the car.
The required resolution can be derived from maximal
distance d at which the system is expected to identify
a lane mark, by Np = Cd/w where Np is the number of
horizontal pixels, C is the camera Field of View (FOV)
width in radians, and w = 0.1 meter is the lane mark
width. This formula assumes that a lane mark can be
identified when its width is a single pixel, and gives a
requirement of 800 horizontal pixels for lane mark de-
tection at 100 meter distance with a 46 degree camera.

There are two main reasons why vision based imag-
ing has taken a leading role in the task of lane and
road detection: First, visual data is certainly the main
modality in use when human drivers are involved. Lane
marks and road boundaries are designed so that a hu-
man driver will be able to see them in all driving con-
ditions. Since the road and lane marks infrastructure is
most suited to the human visual system, using a cam-
era to get the same visual cues for a computational
equivalent system makes great sense. In fact, it is gen-
erally true that since lane marks have a signature only
in the visual domain, no lane detection system could be
realized without referring to the visual modality. Sec-
ond, following the same reasoning from an “evolution-
ary” viewpoint, it is clear that cameras currently are
the cheapest and most robust modality for automotive
applications. The maturity of consumer-level mass pro-

duced camera modules, coupled with large investment
in machine vision allows for good cost-effective solutions
to be attainable.

The vision modality can be used essentially in all rel-
evant stages of lane and road processing, as we show in
following sections, and much effort is invested into this
modality. Still, one has to stress that the robustness of
state-of-the-art processing algorithms is still far from
satisfactory and much further development is required.
Current vision based algorithm call for the use of many
assumptions on road and lane nature and lack in adap-
tive power compared to the average human driver.

LIDAR: Light Detection And Ranging (LIDAR)
represents another major possible modality for lane and
road detection. As mentioned in the previous section,
it has been used to a large extent by teams participat-
ing in the DARPA urban challenges. Several vendors
provide commercially available LIDARS, and some re-
search institutes are using their own. The major obvious
drawback of the LIDAR modality is the relatively high
cost of such sensors. The current high cost prevents
such sensors from becoming wide-spread commodities
for automotive applications.

The LIDAR, being an active Time Of Flight (TOF)
device, can measure the 3D structure of the vehicle
surrounding. In addition, most LIDARs can report re-
flected intensity as well, providing a substitute to a vi-
sual camera with an advantage of being an active light
source and thus independent of natural light issues.
This specifically helps in coping with shadows and dark-
ness. Since lane marks have only intensity information
and no 3D structure, intensity measurement is required
if the LIDAR is to be used as the only modality [2,35,
36,32,34].

The added 3D information supplied by LIDAR has
been mostly used in the following tasks:

1. Identification of objects obscuring lane marks and
road boundaries by their 3D extension above road
surface [37,2].

2. Estimate ground roughness as a basis for road/off-
road segmentation [2,32,38]. In turn, this segmenta-
tion can lead to road edge detection, off-road cuing,
road seeding, etc. [29,22,37,2]

3. Detect curbs and berms as an edge-of-road marks [37,
38].

In addition, LIDAR can be used to detect host ve-
hicle pitch and road angles (most notably slopes) in
order to improve image to world correspondence (see
section 4.6). The use of 3D data instead of 2D image
allows for greater robustness and success rates: curbs,
berms and road roughness are strong road markers. Ob-
stacles are more easily detected in 3D, as well as road
geometry.
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We use the term LIDAR to indicate a full 3D mea-
surement apparatus. There is, however, a sub class of
one dimensional LIDAR scanners which can produce
range measurement over a line cross-section of the road [3,
22,32,23,24]. Such systems can detect road edges and
some obstacles but typically lack the look-ahead power.

Stereo Imaging: Stereo imaging, the use of two
cameras in order to obtain 3D information, represents
a step between single camera modality and 3D LIDAR.
Stereo imaging is typically much cheaper to implement
than LIDAR and it inflicts smaller footprint on the host
vehicle. On the other hand, stereo imaging generally
cannot reach the same range accuracy and reliability
that a LIDAR can. Unlike LIDAR, successful depth
measurement is texture dependent, with extremely uni-
form surfaces posing a challenge. The range accuracy
is a function of the stereo baseline (the distance be-
tween the two cameras). A larger baseline stereo sys-
tem will provide better range accuracy, but often at the
cost of lower reliability and higher computational cost
(a tougher correspondence problem to solve). Gener-
ally speaking, stereo imaging poses a greater processing
challenge compared to LIDAR system, with increased
probability of errors.

Still, stereo imaging can be used for the same basic
tasks as LIDAR, including obstacle identification, host
to road pitch angle estimation [8], curb detection [8,39]
and 3D road geometry and slope [40,8] estimation.

Geographic Information Systems (GIS), GPS,
and Inertial Measurement Unit (IMU): The use
of prior geographic database together with known host
vehicle position has become an everyday activity. Com-
mercial navigation systems are being used world-wide
to guide human drivers. As described in section 2, this
powerful combination was extensively used in the DARPA
urban challenge to guide autonomous vehicles with lim-
ited onboard sensing feedback [22–24,2]. Taken one step
further, it is conceivable that global positioning with ac-
curate map information will enable world-wide ’blind’
autonomous driving without any onboard lane and road
sensing at all (onboard sensing will still be required for
obstacle detection though). The degree to which such a
vision is realizable depends on accuracy (that is, reso-
lution in meters) and reliability (i.e. failure probability)
of both global positioning and map information.

Current commercial GPS receivers typically achieve
accuracy of 5− 10 meters [41], which can be improved
to 1 meter using accurate IMU integration [24,22]. Pos-
sible sources for map information are high resolution
aerial (or spaceborne) images or GPS measurements
collected on the ground [24], converted to digital maps
and Digital Elevation Models (DEM). The resolution
obtainable from aerial imagery can be 0.25 meter and

higher [22], so lane marks can be clearly seen in such
images. Hence the accuracy gap to ’blind’ driving is
mainly due to the global positioning accuracy.

The more severe obstacle to reliance on global po-
sitioning is reliability. GPS success depends on connec-
tion with enough satellites, which may be lost due to a
variety of reasons. GPS loss-of-contact epoches can par-
tially be tolerated using IMU integration, and the pos-
sible reliability of this combination is a current research
topic [42,43]. Most questionable is whether highly accu-
rate digital map information can be obtained and kept
updated for large scale terrains in a reliable manner.
The bottom line is that commercial road/lane under-
standing based on exact global positioning cannot be
ruled out, but it is not the common assumption in most
of the literature, and in this survey. Instead, global po-
sitioning prior should be considered as an important
complementary information.

Vehicle dynamics: We refer by vehicle dynamics
to the proprioceptive vehicle perception of its speed,
yaw rate, and acceleration. These are typically mea-
sured with internal sensors like wheel speed or stirring
angle, and reported in the internal vehicle communica-
tion bus. This information is often used in the temporal
integration module [3,4,9] to enable better tracking of
lane/road models and lower level features. The accu-
racy of these measurements is limited, and sometimes
an IMU is used for these purposes instead [2].

Radar: Radar modality, while useful for other tasks,
lack the resolving power to observe lane marking or even
delicate 3D structures. The relevance of RADAR sen-
sors is twofold [44,45]:

1. Detect obstacles (i.e. other vehicles) that obscure
the lane marking and road boundaries.

2. Discriminate between road and off-road regions based
on their large reflectivity difference1.

Both properties form only a limited subset of the ca-
pabilities a LIDAR has, although with different related
cost and other technical parameters.

Obvious benefits can be gained from the combina-
tion of more than one modality. The different modali-
ties can complement the weaknesses of each other and
provide higher overall system reliability. Fusion of data
from multiple modalities can also provide a way to es-
timate confidence level by comparing reports of differ-
ent modalities, an important task at the system level.
Another consideration is that certain modalities may
be available anyway on the vehicle, due to some other
task that requires them, so they can be utilized with

1 A road surface behaves like a mirror with respect to RADAR
radiation and thus reflect back very little radiation. Off road sur-
face tend to be more rough and have higher RADAR reflectivity.
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very low cost. GPS and Radar are the most prominent
examples.

4 Modules and techniques

In this section we break down the road and lane de-
tection task into functional modules, and enumerate
the possible approaches suggested to the implementa-
tion of each module. The functional system decompo-
sition is presented at section 4.1, including enumera-
tion of the constituent modules in a full generic system
and their interconnections. The following subsections
present approaches to the implementation of the vari-
ous modules: image cleaning (section 4.2), feature ex-
traction (4.3), road/lane model fitting (4.4), temporal
integration (4.5), and image to world correspondence
(4.6). We end this section with some notes regarding
system integration from the modules in section 4.7.

4.1 Module decomposition

Inspection of the lane and road detection literature re-
veals that most of the suggested systems share the main
functional modules, though these modules are of course
implemented differently in different systems. Based on
the commonalities between the algorithms we extracted
a ’generic system’ for road and lane detection, whose
functional decomposition is presented in figure 2. The
system is generic, as none of the systems in the litera-
ture has all the modules appearing. However, almost all
the algorithms we encountered can be mapped to sub-
systems of this system, with the most mature systems
having nearly all of the modules. Like the flow diagram
presented in [3], we use this generic system as a skele-
ton enabling comparison between different algorithms
according to their functional parts.

The main modules we identify, plotted as boxes in
figure 2 are:

– Image cleaning: There are several operations which
can be applied to the image before feature extrac-
tion to reduce clutter and enhance features of inter-
est. Obstacles (mostly vehicles) regions can be iden-
tified and removed. Shadows can be significantly
weakened using a preprocessing transformation ap-
plied to the entire image. Over and under exposure
cases can be accounted for by image normalization
or by actively controlling the camera exposure. Fi-
nally, based on the image to world correspondence,
the image area considered can be truncated by re-
moving the region above the horizon or otherwise
limiting the region of interest.

– Feature extraction: Low level features are ex-
tracted from the image to support lane and road de-
tection. For road detection, these typically include
color and texture statistics allowing road segmenta-
tion, road patch classification or curb detection. For
lane detection, evidence for lane marks is collected.

– Road/lane model fitting: A road and lane hy-
pothesis is formed by fitting a road/lane model to
the evidence gathered.

– Temporal integration: The road and lane hypoth-
esis is reconciled with road/lane hypotheses from
the previous frame and with global positioning in-
formation, if available. The new road/lane hypoth-
esis is accepted if the difference between the new
and previous frame can be explained based on the
vehicle dynamics.

– Image to world correspondence: This module
provide services of translation between image and
ground coordinates, using assumptions about the
ground structure and camera parameters. This trans-
lation is most required by the temporal integration
module, but there are cases in which it is used by
all other modules. For example, it may be used to
allow features based on consecutive frames substrac-
tion [46], or to fit the road model in an inverse per-
spective image [12].

The main information flow in the system is the bot-
tom up path, indicated by the thick arrows in figure 2.
However, feedback connections also exist, in which higher
level modules guide earlier modules toward better fea-
ture extraction or model fitting. Feedback interaction is
most common, but not limited to, consecutive stages.
Interaction between model fitting and feature extrac-
tion is possible in many ways. For example in [25,26,
47] the vanishing point is computed based on texture
features voting, and then lines passing through it are
scanned to score possible road edge candidates. In [2]
lane candidates are first found using simple filters, and
at candidate locations second order derivatives are com-
puted for further pruning. In [6] a lane model is esti-
mated one image row after the other, starting from the
bottom of the image. The lane model gathered from
early rows guides the feature extraction at higher ones.
Many similar examples exist.

Tight interaction between the temporal integration
module and the road model enforcement is also sug-
gested in several papers. For example, in [20] the previ-
ously found lane model is transformed into a lane model
in the new image, and only the additional possible lane
continuations are considered. In [5] the previous lane
model constrains the lane directions considered in a
Hough transform. Feedback from feature extraction to
image cleaning is always applied when vision-based ob-
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Fig. 2 A generic system - functional decomposition.

stacle detection is used [5]. In addition to tight feed-
back loops between consecutive stages, the temporal
integration module can guide feature extraction is sev-
eral ways. In [46] the homomorphy between previous
and current frames is used to extract low level features
based on image differences, and to give higher weight
to image regions which were earlier identified as road.
In several cases, model lines detected at the previous
image define a region of interest in which feature are
searched in the new image [4,20]. In [3] line directions
in the previously detected model limit the set of ori-
ented filters applied to the image.

An implementation for any of these modules re-
lies on a set of assumptions regarding the camera, the
road and the vehicle dynamics. These assumptions may
be explicit, for example in the road and lane model
used, or implicit in the choice of algorithmic approach
and details. In our description of the possible modules
implementation we will cluster algorithmic approaches
according to the assumptions they use, and highlight
these assumptions. Such clear presentation of the as-
sumptions allows better understanding of the expected
failure modes of certain techniques, and of the comple-
mentary value of possible technique combinations.

4.2 Image cleaning

The first functional module in the generic pipeline is im-
age cleaning. Here, our objective is to remove clutter,
misleading imaging artifacts and irrelevant image parts.
The remaining cleaned image parts will serve as the in-
put data from which features will later be extracted.
In general, methods that fall under this module’s scope

can be categorized into two families: handling illumi-
nation related effects for enhanced image quality, and
pruning parts of the image that are suspected as irrel-
evant for the confronted estimation task.

One aspect of handling illumination related effects is
adapting the dynamic range of the capturing device. A
robust road or lane detection system should be capable
of coping with different illumination conditions, varying
from sunny midday to night time artificial illumination.
These changes, although being very large, are also char-
acterized by being very slow and gradual. An abrupt
illumination change might also be confronted when en-
tering or exiting a tunnel, or while driving below a
bridge that casts its shadows on the hosting road. Most
systems do not develop their own mechanism for adap-
tive dynamic range and base their robustness on stan-
dard camera capabilities such as automatic iris or gain
control, available in many commercial cameras. The ad-
justments of camera iris or gain are typically performed
gradually, which improves the stability of these mecha-
nisms on one hand, but deteriorates their performance
in the presence of abrupt illumination changes on the
other hand. In [48] four images with different exposures
are simultaneously captured. An adaptive mechanism
controls the exact exposure of each of the images, and
their fusion yields a very high dynamic range image
that can also handle abrupt illumination changes and
maintains high quality image under various scenarios.

Another illumination effect that should not be over-
looked is lens flare, caused by direct sunlight in the
camera field of view. In [2], date, time and geographi-
cal coordinates are used for the computation of a solar
ephemeris. Maintaining full camera calibration, then,



9

allows deducing the sun location on the image plane
and rejecting straight bright lines pointing at that di-
rection.

Cast shadows on road surface are major source of
clutter due to the intensity edges they produce. In or-
der to circumvent this illumination effect some works [5,
30,49] perform a variety of color-space transformations
to HSL, LAB, YCbCr and others. Then, by combining
different color channels illumination invariant images
are obtained, where illuminated and shadowed areas of
the same surface obtain similar intensity. It should be
noted that these techniques are all based on the as-
sumption that hue information still exists at shadowed
parts of the surface, implying that there is enough am-
bient light in the scene. Additionally, they assume that
the hue is not biased by the environmental illumina-
tion or that this bias can be calibrated and thus com-
pensated. In [30] four illumination invariant images are
proposed. Two of them are obtained by combining dif-
ferent color channels, while the other two are texture
based. Edge maps were extracted from the former two
images and the edge density was utilized to produce
a shadow-free image. It is claimed that these images
are invariant to wet vs. dry surface appearance. Such
texture images are not hue based and thus do not rely
on the aforementioned assumptions. They do, however,
require that enough texture will be present on road sur-
face. Another possibility to diminish the cast shadows
effect is at the feature extraction stage, rather than at
the image cleaning module. In [3] only edges that align
with the presumed road boundaries directions were ex-
tracted, hence, most shadows related clutter is filtered.

The second category of image cleaning techniques
includes different methods for pruning image parts that
are suspected to contain irrelevant or misleading infor-
mation for the road/lane estimation task. Obstacles,
like cars and pedestrians, are major sources for out-
lying data and different approaches were followed for
their detection and removal. In [46] the 2D motion of
image points was tracked and structure-from-motion
technique was applied to infer if such motion comply
with ground plane motion or with off-ground obstacles.
Similar steps are followed in [5]. However, the tracking
was performed on color-based segmented blobs. Such a
technique was also tested by [23] and was found unre-
liable due to high false positive rate. In [37,2] 3D data
was directly obtained from a LIDAR sensor, enabling
simple off-ground points detection and rejection.

Another method to reject irrelevant image parts is
by defining Regions Of Interest (ROI) on the image
plane. Only these regions will be processed at the fea-
ture extraction phase. In its most simplified form, [47]
defines the lower half of the image as an ROI. In some

works like [2,12,27], the connection between the 3D
world and the 2D image is estimated using different
techniques that are elaborated in section 4.6. Such a
connection can be translated into efficient ROI defin-
ing rules. In [12,27] the ROI was defined based on the
computed depths. Similarly to [47], the upper part of
the image is truncated. Here, however, the ROI’s upper
border line is adaptively determined, keeping only im-
age rows that correspond to the desired distance range.
In the special case of setting this distance bound to in-
finity, the computed horizon may also serve for upper
image pruning [2].

Most road or lane estimation systems maintain some
sort of tracking mechanism as discussed in section 4.5.
Knowing the detected location of the road or lane bound-
aries at previous frames and predicting the image move-
ments in the present frame enables the definition of
ROIs at image regions where these boundaries are ex-
pected to be found [35,6]. In [6] this approach is taken
one step further: the lane boundaries are iteratively es-
timated using gradually increasing part of the image -
from bottom to top. The ROIs for the first image seg-
ment (the lowest one) are determined using the track-
ing mechanism. Then, after each iteration, the most
updated estimate of boundaries location is utilized for
defining an updated ROI for the next image part to
be processed. It should be noted that beside assuming
that the tracking algorithm is capable of modeling the
motion between consecutive frames, these approaches
also assume that the lastly detected boundaries are not
erroneous. In case of a momentarily failure, recovery
becomes rather challenging.

4.3 Bottom up feature extraction

Once relevant image parts are determined, various fea-
tures can be extracted. These features should contain
the required information for the road or lane model fit-
ting procedure that will follow. Throughout this paper
the two tasks – road and lane estimation – are pre-
sented under a unified framework. Indeed, for most of
the functional modules the distinction between the two
tasks may be considered to be negligible. Here on the
other hand, in the feature extraction module, totaly
different features are sought for each of the estimation
tasks. This difference stems from the different physical
instruments being used for marking the boundaries of
roads and lanes. Beside the confronted task, the choice
of features tightly depends on the set of assumptions
that we are willing to take. This section elaborates the
features that were used for each of the estimation tasks
and some observations are drawn regarding their un-
derlying assumptions.
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Lane boundaries features In general, lane bound-
aries are marked by different types of lane marks. In
[3] the appearance variety of these lane marks is elab-
orated. Their shape may alter, from continuous lines
through dashed lines and even circular reflectors may
be encountered on some roads. Lane marks color is also
subject to change, e.g. white, yellow, orange, and cyan
colors are all in use at different locations. Beside having
various appearances, another challenge stems from the
perspective effect which causes difficulties when trying
to detect such narrow objects at distance.

Lane marks can be detected either based on their
shape or color. The least restrictive assumption about
the lane marks is that they have different appearance
compared to the road. Such assumption leads to a whole
family of gradient-based features and their variants.
Simple gradients were computed in [50,7,51], either from
the original image or from a smoothed version of it.
Steerable filters were used by [3] which enable measur-
ing the directional response at any direction by convo-
lution with only three kernels. This property was uti-
lized for the extraction of edges at presumed directions.
According to feedbacks from the tracking mechanism
the rough location and direction of the lane boundaries
was predicted and high steerable filters responses were
sought at these regions and directions. This type of fil-
ters is also capable of supplying the maximal and mini-
mal responses with respect to examined directions. This
property can be utilized for circular reflectors detection:
due to their characteristic isotropic response they tend
to produce very small gap between the minimal and
maximal responses.

In [4,6,2] the narrow shape of lane marks together
with the assumption of having brighter intensity than
their surrounding motivated the authors to search for
low-high-low intensity pattern along image rows. Box
filter was applied to the image in [6,2], while [4] con-
volved the image with a step filter and then searched
for couples of adjacent responses with opposite signs.
The raw responses of the aforementioned filters either
serves directly as the extracted features (e.g. [50]) or, in
some cases (e.g. [4,51]), go through a thresholding step
that yields a binary edge map. In [51] the threshold was
chosen adaptively according to the local average bright-
ness in the image. In [20,11] a binary map was produced
through a different technique. The reliability of the fea-
tures was improved by dividing the image into 8 × 8
pixel blocks and classifying each of them as lane marks
or not. Class determination was based on the conjunc-
tion of three criterions: first, the gap between the max-
imal and minimal intensity value should exceed some
predefined threshold. Second, the distance between the
the two largest histogram bins was examined. These two

criterions verify that the block contains both road and
lane mark pixels. Last, the expected elongate shape of
the lane marks is enforced by rotating the block in vari-
ous angles and examine the ratio var(x)/var(y). At first
glance, this technique appears different from its box fil-
ters counterparts. However, it should be noted that the
same set of assumptions underlies all these techniques,
namely, brightness change and narrow shape of lane
marks.

Whether we use gradient filters or box filters, the
scale of the kernel should be determined. Due to the
perspective distortion no single scale is suitable for the
entire image. In some works (e.g. [2,21]) the scale of the
kernel was adjusted for each row of the image according
to the expected lane mark width, supported by the pre-
dicted depth at that row. A more commonly practiced
technique [28,3,20,9,10,51,19] circumvents the need for
varying kernels by first warping the image in a manner
that compensates the perspective effect. In this inverse
perspective image, sometimes referred to as “bird’s-eye
view”, the lane marks width is equal at all distances.
At the same time, the width of the lane and road be-
comes constant as well, a very advantageous property
that facilitates model fitting (see section 4.4). More-
over, in case that several sensors are available, such an
orthographic image may serve as a convenient common
ground for the fusion of their input images [20]. Inverse
perspective warping requires the system to be aware of
the geometrical connection between the 2D image and
the 3D ground plane. Methods to obtain and maintain
this connection along the drive are elaborated in section
4.6. In addition, this transformation is associated with
some computational cost and a slight loss of resolution.

Another approach for lane marks detection assumes
that their brightness or color is known. LIDAR reflectance
measurements were thresholded in [35]. In [10] the last
three images were averaged and adaptive thresholding
mechanism was applied. The averaging step has mer-
its since dashed lane marks appear more continuous in
the obtained image. In [5,21] the color distribution of
lane marks was learned in and off-line stage. Next, im-
age pixels were classified according to the likelihood of
belonging to a lane mark. The resulting features of all
aforementioned procedures are sets of segmented blobs
(with high enough intensity or color probability). It
is very likely, however, that some portion of the im-
age possesses similar colors even though it is a lane
mark. Hence, the set of extracted blobs is prone to con-
tain some clutter and these algorithms are usually aug-
mented with an additional filtering step. In [5], for ex-
ample, these blobs were filtered primarily according to
their size and shape. Then, for those blobs that could
not be obviously classified as lane marks or as clutter,



11

spatial location was tracked along few frames and the
detected motion was compared to the ground plane mo-
tion, thus verifying that this blob lays on the ground. In
[21] the response to a box filter was measured and uti-
lized for improving the color based segmentation. Here,
however, instead of using this filter as a second step
for clutter rejection the response image was fused with
the color likelihood image into a unified score image
that served as the final output of the feature extraction
module.

Road boundaries features. Unlike lanes, roads
are not always bounded by man made markings. De-
pending on the type of road and environment, differ-
ent cues will suggest the location of the road bound-
aries. Few examples may include curbs, usually found
at urban environments, barriers which bound highway
roads, and even dirt roads which have no marking at
all and only color or textural change between road and
off-road areas can indicate the boundaries. Due to this
cues variety, no single feature is appropriate for all sce-
narios and different features were chosen for different
systems according to the expected environments they
should handle or according to the set of assumptions
they may take.

In [37,2,36,32,39,8,46] it was assumed that there
exists an elevation gap between the road and its sur-
rounding. Such a cue leads to features that examine
the three dimensional structure of the observed scene.
In [39,8] stereoscopic vision tools were used for the ex-
traction of the scene structure. Next, surfaces with sim-
ilar normal directions were clustered and curbs were de-
tected. In [37,2,36,32] 3D data were directly collected
by integrating a LIDAR sensor in the system. Here, the
surface “roughness” (i.e. the elevation variance) is usu-
ally computed and serves as feature for segmenting the
road. In [37], as an example, up to 5mm tolerance was
defined for roughness-based segmentation mechanism.
In [2] virtual rays were sent from the vehicle in various
directions and the first roughness increase along each
ray was detected and marked as road boundary. Such
a method makes use of another assumption (very com-
monly taken) about the vehicle being currently located
on the road.

While using the same assumption regarding the ele-
vation differences, the authors of [46] have suggested an
elegant method which circumvents the need for dense
reconstruction of 3D scene points. Instead, estimates
of the road plane position and the vehicle motion are
maintained. This allows them to compute a homographic
projection that warps the current frame to its preceding
frame. However, since this homography was computed
according to the road plane, only pixels residing on that
plane are expected to match when comparing the pre-

vious image to the warped version of the current one.
By examining the sum of absolute deviations between
the two images road segmentation was accomplished.

A different approach for extracting road features is
based on appearance rather than 3D structure. In this
type of features it is assumed that the road has uniform
appearance which is different from its surrounding. A
region growing algorithm was implemented in [49]. The
colored image was first converted into an illumination
invariant intensity image. Then, seven seed points were
placed at the bottom of the image, were road is as-
sumed to be observed, and regions were grown. Similar
assumption regarding the image bottom was taken in
[3]. Here, a window was defined in the bottom of the
image, were road presence is assumed. This “safe win-
dow” was then cropped and served as a template that
was matched to further distal road parts.

Unlike [49] where intensity homogeneity was required
and unlike [3] where the assumption about appearance
constancy included the spatial distribution of the col-
ors, in [29,30] the spatial aspect was dropped and only
the color distribution of the road was utilized. His-
tograms were chosen in [30] for the distribution repre-
sentation. Image colors were first transformed into sev-
eral illumination invariant color channels. Then, a safe
window was defined at the image bottom and its pixels
were accumulated in histograms according to their spe-
cial channels intensities. Finally, the rest of the image
was segmented according to the computed intensities
likelihood and a majority voting between the channels’
segmentation output. A Gaussian Mixture Model was
adopted in [29] for the description of road color dis-
tribution. Based on a safe window the parameters of
this model were estimated. Next, color likelihoods were
computed for image pixels and integrated in a Bayesian
network framework. In this network every pixel was rep-
resented by a node and edges were defined according to
pixels adjacency. Hidden variables were also added to
the network’s nodes to account for possible shadow ef-
fects in the corresponding pixel. The Bayesian network
framework enabled the integration and correct balance
between these and additional factors such as bound-
aries continuity and correct segmentation structure –
i.e., it was enforced that each row is segmented into
three parts: off-road, on-road, and then off-road again.

Textural features were examined by [25,26,28]. While
the exact texture varies according to the material of
the road, the footprints made by wheels of preceding
vehicles add a strong directional component to the tex-
ture. Due to perspective effect the textural directions
are not expected to be constant across the image of
the road, nevertheless, under a straight road assump-
tion they will all point to a common vanishing point. In
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[25,26] Gabor filters were utilized for the detection of
the texture’s dominant direction on each image point.
Then, vanishing point was estimated through a voting
scheme. Finally, the road was segmented by searching
for the two most extrinsic rays that pass though the
vanishing point and have high enough directional sup-
port. Similar scheme was implemented in [28] with dif-
ferent choice of textural features. Several alternatives
were examined and it was found that Walsh-Hadamard
features reduce computational overhead dramatically
while keeping system accuracy almost unharmed.

The appearance approach for road segmentation can
be strengthen: not only that the road has uniform ap-
pearance which is different from its surrounding but
this appearance is known a-priori. This leads to classi-
fication based algorithms such as those found in [28,12,
5]. Preceding the aforementioned vanishing-point vot-
ing mechanism of [28], the extracted textural features
were fed into an Adaboost classifier that was trained
at preprocessing stage for road surface detection. In [5]
typical colors of roads were learned a-priori and served
as loose rules for road segmentation. Similar to [3] tem-
plate matching algorithm was also implemented in [12].
Here, however, the template was not cropped from the
bottom of the image, but rather a set of predefined road
templates were used while seeking the image for match-
ing parts.

4.4 Road and lane model fitting

The road and lane detection is usually guided in a top-
down manner by fitting a geometric model to the visual
features extracted in a particular frame. Similar model
fitting methods are used for both roads and lanes which
are modeled as a 2D path with left and right bound-
aries either in the original headway view or in a vir-
tual bird’s-eye view created using the inverse perspec-
tive transformation.

The main goal of this stage is to extract a com-
pact high level representation of the path, which can
be used for decision making. In the process, the noisy
bottom-up path detection is improved by assuming a
smooth path model with constraints on its width and
curvature. This path representation is often further re-
fined by matching to previous frames in the tempo-
ral integration stage(see section 4.5). A path is usu-
ally represented by either its boundary points or by
its centerline and lateral extent at each centerline loca-
tion, which uniquely defines the boundaries. Transform-
ing the frame to bird-eye view simplifies the geometric
model since the boundaries of the path become similar
in curvature and the path’s width is roughly constant.
The models can be divided into parametric (e.g. lines

[25,26,47,12,28,10]), semi-parametric (e.g. splines and
poly-lines [52,50,2,53]) or non-parametric (e.g. contin-
uous, but not necessarily smooth boundaries [27,29]).
In most cases model parameter fitting has to cope with
noisy boundary points extracted from the image, in the
form of missing data and a large relative amount of
outliers. Random Sampling Consensus (RANSAC) [54]
is commonly used for model fitting for all model types
[51,2,53,10,20,7] thanks to its ability to detect outliers
and fit a model to the inliers only.

For most methods the input data to the geomet-
ric model fitting module is a set of points extracted
from the boundaries of the lane or the road. More in-
formation, however, may be computed in a bottom up
manner to guide the model fitting. In [53] points are
grouped into lines. In [2] additional boundary direction
information is added to each boundary point by com-
puting a hessian filter. In [2,8,9] the distance transform
is applied to the extracted boundary to obtain a smooth
scoring for each pixel representing its distance from the
closest boundary point. With such a representation it
is straightforward to efficiently obtain a fitting score
for a hypothesized curve model. Finally, in [2] the cen-
terline model is fitted to a combined probability map
computed from LIDAR and camera evidence.

Parametric models. The simplest geometric mod-
els used for the path boundaries are straight lines [25,
26,28,12,47,10] which are a good approximation for the
short range and as the most common case in highway
scenarios. Curved roads were modeled in a bird’s eye-
view using parabolic curves in [3,2] and using generic
circumference arcs in [51,19]. To handle the more gen-
eral curved paths observed in the projective headway
view [6,7] use parabolic curves and [4] use hyperbolic
polynomial curves, although semi-parametric models such
as splines are recently more commonly used for this pur-
pose.

Various methods are used to fit the parametric model
to the path boundary evidence. Both [19,3] use least
squares optimization. [51,10,2] use RANSAC together
with a least squares optimization to improve robust-
ness to outliers. In [2] this method is used to fit to
centerline evidence and an additional step is taken: the
final inlier set is divided into connected components,
where a point is connected to all points in a 1-meter
ball around it in ground distance and the largest com-
ponent is taken as the inlier set to which parabolic
model is fitted. This prevents parabola fitting across
multiple centerlines, by requiring that an entire identi-
fied centerline is connected. [4] use the weighted least
squares algorithm [55] derived from the M-estimators
theory to obtain robust curve estimations. In [7] the
curvature and orientation of the boundaries are found
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using a generalized hough transform while the position
of each boundary is fitted to the image using a genetic
algorithm.

Additional fitting methods are specialized to linear
model matching. The Hough transform [56] is used in
[19,10]. In the direct view the vanishing point can be
used as an anchor to both linear boundaries assum-
ing a constant path width. First the vanishing point
is detected using either the hough transform [47], or
by direct voting of oriented edglets [25,26]. Among the
lines passing through the vanishing point, the two with
the best support are chosen as the boundaries. In the
bird’s-eye view, further assuming that the car is paral-
lel to the road (and therefore that the lines are parallel
to the y-axis) a simple integration over the y axis can
be used to detect the position of the lanes in the x-axis
[28]. To loosen the assumption regarding car and lane
parallelism, [12] tries several rotations of the bird’s-eye
view and uses the sharpness of the y-integration result
to also detect the angle of the road ahead.

Semi-parametric models. The advantage of semi-
parametric models is that they do not assume a spe-
cific global geometry of the path. On the down side
fitting the model must be carefully carried out to pre-
vent over-fitting and unrealistic path curvature. In [11,
5] the headway image is split to horizontal strips and
a constrained Hough transform is used to find the best
linear fit to each lane mark in each slice, resulting in a
piece-wise linear model. In [11] a similar model is fitted
over time in bird’s-eye view by fitting a linear model to
the short range at each time step.

Splines are smooth piecewise polynomial functions,
and they are widely used in representing curves. Dif-
ferent spline models with different properties were used
to model the lane boundaries/centerline. [53] use Cubic
Splines because the curve includes the control points,
[52] use B-Splines and [50] use Active Contours (Snakes)
since they enable energy based optimization. [2] use a
Cubic Hermit Spline which ensures that the extracted
tangents at lane points are continuous between pairs
of control points. In all spline models the curve is pa-
rameterized by a set of control points either on (e.g.
[53]) or near (e.g. [52]) the curve. The advantage of
splines vs. parametric models (e.g. parabolas) is that a
small change in the parameters is correlated to a small
change in the curve, facilitating the use of tracked con-
trol points from the previous frame for model initializa-
tion in the current frame.

In lane detection there are usually many lane mark-
ing detections that can be control point candidates,
and choosing among them is a delicate issue. The num-
ber of points affects the curve complexity, they should
be evenly distributed along the curve to prevent high

curvatures, more confident features should be preferred
and finally the fitted spline should have good support
from the remaining features. In [53] a RANSAC ap-
proach is used to generate a set of 100 hypothesis splines:
first the lane features are grouped into lines, then 2, 3
or 4 control points are heuristically chosen from 1, 2
or 3 line ends. The points are chosen to be as equally
spaced as possible. The number of control points are
randomly selected per hypothesis. The hypotheses are
evaluated based on their lane-marking support plus a
penalty score for high curvature changes at points with
no lane-marking evidence between them. In [2] the al-
gorithm first selects 100 seed features at close range
(in bird-eye view) since they are usually less noisy. A
“greedy” search is then used to find each one of the
the next points by evaluating the resulting spline. At
each step only points distanced around 50 pixels from
the previous point are considered to generate evenly
spaced control points.

Non-parametric models. Less common are non-
parametric line models, demanding only that the line
is continuous but not necessary differentiable. In [27]
an Ant Colony Optimization (ACO) is used to com-
bine global information of a conjectured vanishing point
location with local road boundaries evidence near the
image bottom to find the road boundaries in the rest
of the image in which the boundaries are less evident.
In [29] a learned Hierarchical Bayesian network model
is used. Each image row is segmented into three seg-
ments of road/non road/road using two threshold, in
a way that softly enforce continuity between consecu-
tive rows. In [9] an original lane model is used which
matches individual left and right boundary points in
the bird’s-eye view. The model is fitted using a parti-
cle filter approach, progressing along the Y axis from
the bottom of the image upwards (that is, the Y axis is
treated as a time axis).

Lateral model. Different assumptions are made by
existing methods on the lateral extend of the road/lane.
The strongest assumption is that the lane width is known
(between 3−3.5 meters). Notice that under this strong
assumption the left and right lane lines are fully cou-
pled, so the number of parameters to be estimated for
a lane is cut by half compared to independent estima-
tion of the lines. In [2] a known lane width is assumed
and used in a probabilistic centerline detection frame-
work. A slightly weaker assumption is that the real
world width of the road/lane is roughly constant (but
not necessarily 3 meter or any other known quantity).
This assumption is true in most scenarios, and yet it is
strong enough to cut the number of parameters in ap-
proximately half (one more parameter of the lane width
has to be estimated). Left and right lane detection are
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constrained in such a manner in [6,4]. Methods using
the vanishing point as an anchor [25,26,47] assume con-
stant lane width too. In [3,12,20] a road/lane section
model is used for guiding boundary detection, which
also implicitly assume constant road and lane width.

Notice however that even when detecting a single
road/lane, the imaged width can slightly be increasing
or decreasing due to the pitch movement of the vehicle,
presence of up/down-hills and/or changing lane/road
width. To compensate for slight changes in lane width
[53] incorporate a linear width change assumption (in a
single image) within their Bayesian model. In [9] an
even weaker assumption of continuous lane width is
used.

Model complexity. As always when fitting a model
to noisy and partial data there is a tradeoff between
over-constrained models which do not cover all existing
geometries and under-constrained ones which tend to
over-fit noisy features. [53] generate splines with differ-
ent numbers of control points, corresponding to models
with different complexity levels, which are scored both
by rewarding lane marking support and by penalizing
for curve direction changes without lane marking sup-
port. in [19] digital map+GPS is used to distinguish
curved vs. linear road regions, applying the more com-
plex curved model only when needed.

In general, the lane and road modeling problem is
characterized by a ’long tail’ of exceptions, which can-
not by neglected due to the high reliability demands.
In such circumstances, Choosing the model family a-
priory is sub-optimal, and on-line model selection can
have considerable advantages. On line model selection
should be done trying different models, and scoring
them by weighting the model complexity with its fitting
score. Formal approaches in which such considerations
can be done are Bayesian model inference[57], Mini-
mum Description Length (MDL)[58], or Structural risk
minimization(SRM)[59].

Beyond the single lane/road model. The vast
majority of the methods assume line lane/road topol-
ogy which does not include merging, splitting and end-
ing lanes or roads. The exceptions are [53] (lanes) and
[2] (roads,lanes) which are designed to deal with non-
linear road and lane topologies. In [19] lanes adjacent to
the host lane are detected by extrapolating to the side
of the host lane with its detected width. In [18] a solu-
tion is proposed to the lane assignment problem: given
the number of lanes (from a digital map source+GPS)
identify in which lane the vehicle is.

4.5 Temporal integration

Integrating knowledge from previous frames has three
goals: improving the accuracy of a correct detection,
reducing the required computation and correcting er-
roneous detections. Detection accuracy is improved by
predicting the detection and smoothing the result over
time. Computation is reduced by supplying a good ini-
tialization of the model parameters and constraining
the searched parameter space, as well as limiting the
image regions from which features are extracted[4]. Cor-
recting erroneous detections can be achieved by com-
paring the current detection to previous ones, and re-
jecting the less likely one in case of large discrepancy [2].

Temporal integration can be done by 2D lane/road
model tracking in headway view. For example, in [50]
an inertial energy propagated from the previous frame
serves as a tracking mechanism for the 2D active con-
tours (snakes) lane model. However, the more common
solution is to track the lane/road model in real world
coordinates. The lane model is transformed from im-
age to real world coordinates, typically using an in-
verse perspective transformation. Estimation of the ve-
hicle dynamics in the real world is used to predict the
position of the previously detected lane in the current
frame. Such vehicle motion estimation can be obtained
in several ways: using visual input to match consecutive
frames and compute an ego-motion model[46], using car
odometry (speed and yaw rate) [9] and most accurately
by combining GPS and IMU information [22,23,2]. The
transformed expected lane is then combined with lane
evidence from the current frame to find the best es-
timate for current lane/road model parameters. Most
methods use either The Kalman Filter [4,3,10,53] or
Particle Filtering [8,22,53,9] for this task.

A weak point in the mostly used tracking methods
is the naive inverse perspective transformation, assum-
ing stable camera calibration and flat zero-level ground
surface. Vehicle vibrations and changing ground slopes
inject noise and abrupt changes into the time series,
posing some difficulty for tracking methods with strong
smoothness assumptions (e.g. Kalman Filter).

In [53] a Gaussian model for the car motion is used
to sample 50 motions, each predicts a position of the
lane marks in the current frame, and used in a parti-
cle filtering approach. Tracking a lane mark described
by a spline as in [53] poses the following problem: each
of the control points is moved by the motion model,
some ending up behind the vehicle and outside the im-
age plane (in bird-eye’s view), requiring rearrangement
of the control points. In [9] each lane is described by
equally spaced (left-right) pairs of lane boundary points
which are tracked in a single frame along the lane us-
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ing particle filtering. In the next frame these points are
tracked using car odometry and the particle filtering
process is used to efficiently find only the pairs of points
on the newly revealed part of the lane.

Other models are also used for tracking multiple hy-
potheses, tracking dense representations of the lanes
or tracking low-level features. In [53] lateral and tem-
poral coherence jointly guide a probabilistic model for
grouping the two lane boundaries, in which the tempo-
ral reasoning is based on Dynamic Bayesian Networks
(DBN) [60] and used to score hypothesis generated in
the previous frame. In [2] a dense centerline probability
map is updated from the previous frame, and knowl-
edge learned on road regions is propagated to the cur-
rent frame. In [3,12] a road section template is adapted
online in each new frame. In [46] the found road region
is projected from the previous frame to the current one
using estimated ego-motion to guide road region detec-
tion in the current frame. [30] uses temporal filtering
for rejecting non-stable segments of clear road path.

4.6 Image to world correspondence

Knowing the geometrical connection between the two
dimensional image and the three dimensional environ-
ment requires the estimation of the camera position and
orientation with respect to the ground surface. Such a
piece of information may come in useful at all stages of
the road or lane estimation task. At the image clean-
ing stage, for instance, it enables rejection of the image
part above the horizon [2]. Producing an inverse per-
spective image is also enabled due to the understanding
of camera and world connection. Here, the homography
which connect the image plane with the ground plane
is estimated and defines the warping transformation.
Such a perspective-free view is very beneficial both for
feature extraction and for model fitting as described
in sections 4.3 and 4.4 respectively. Finally, the image
to world correspondence enables tracking of the vehi-
cle state in the 3D world rather than just tracking the
road/lane appearance in the image, thus allowing inte-
gration of other real world measurements coming from
different sources.

Different techniques were used in order to obtain the
correspondence between video frames and the 3D world.
In the most restrictive form, it was assumed by [2] that
this connection is kept constant along the drive and
thus it was calibrated beforehand. This strong assump-
tion, however, was found by the authors as problematic
in scenarios where the ground slop changes suddenly.

In [4,51] only the pitch of the camera with respect
to the ground plane was estimated. In [51] the road’s
vanishing point was detected and its image height was

used for the computation of the sought pitch angle. In
[4], the pitch angle was concatenated to the 3D model
parameters vector. Then, the connection between this
vector and the 2D lane boundaries location and direc-
tion was learnt. As a result, the pitch angle was esti-
mated together with the rest of the model parameters
given the 2D measurement of the examined frame.

Usually, the inverse perspective image is only an
outcome of this image to world connection. Neverthe-
less, in [28] both camera pitch and yaw angles were
estimated using this special view. Each hypothesis for
this couple of angles leads to a different warped image
and a couple that produces bird’s-eye view with two
distinctive peaks was sought.

Structure from motion techniques are also a possi-
bility for obtaining the camera pose with respect to the
ground plane. In [46] Harris corners were tracked across
the video frames, from which the essential matrix was
computed using a robust variant of the eight points al-
gorithm. This essential matrix encapsulates the camera
ego-motion. Then, triangulation method was applied to
the tracked features and a plane was robustly fitted to
their 3D reconstruction. It should be noted that such
a technique assume the presence of enough distinctive
and easy to track feature points on the road surface.

Most of the aforementioned techniques make use
of a planar world assumption. In [40] this assumption
was dropped and the 3D profile of the road was recon-
structed from a disparity image produced from a stereo
vision system.

4.7 System level integration

As seen in previous sections, there are several algorith-
mic methods for each processing step in the road and
lane detection system. Often, different methods rely
on different assumptions and sometimes on different
modalities. Some works use multiple algorithms and
modalities in the same processing step to achieve en-
hanced robustness [2,4,28,19,22,21,23,24], and in gen-
eral such fusion of multiple information sources seems
to be critical to achieve reasonable system level perfor-
mance.

Different algorithms for the same task can be com-
bined by running all of them in parallel and weighing
their results (model averaging), or by choosing which
one to apply in given circumstances (model selection).
From a decision theoretic point of view, running all
the algorithms and weighing their response is the best
policy (as long as each of the algorithms has non zero
probability to be correct in its assumptions) [61]. In [4]
two different algorithms for lane fitting are employed,
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and only if they agree (within some tolerance) the lane
found is used. Otherwise low confidence is reported.
In [2] two different lane fitting algorithms, as well as
a third LIDAR based algorithm are all combined in a
single probability map. Different modalities, mostly LI-
DAR with global positioning (GPS+IMU+map) were
successfully combined in many urban challenge papers [2,
32,21–24]. However, running several algorithms is typ-
ically computationally costly.

An alternative to running all algorithms is to ap-
ply them serially, that is: use the second when the first
fails and reports low confidence. This is most reason-
able when the next algorithm uses weaker assumptions
than the previous one which failed. For example, in [28]
an algorithm for road classification assuming a-priory
known road characteristics is used as a default. When it
reports low confidence, the system switches to a second
road segmentation algorithm, which only assumes that
the road region is different from its surroundings. In [19]
lane model selection is done based on GPS and map in-
formation: the global positioning information dictates
the choice between fitting a straight or curved lane
model.

Another issue of critical importance for robust sys-
tem is the reporting of confidence intervals, both by its
algorithmic constituents and by the system as a whole.
This is true both for open-loop warning systems and
for closed-loop autonomous systems. With warning sys-
tems, a warning is issued when an event is detected with
high confidence. However, when confidence is low the
system will typically only report its low confidence and
take no further action [4,28]. The key point here is “do
no harm”: while obviously undesirable, low confidence
can be tolerated if identified correctly and the driver is
made aware of that.

In closed-loop autonomous driving systems, the sys-
tem has greater responsibility and low confidence is
harder to tolerate. Still, even in such system, identified
low confidence is better than an error. Typically, con-
fidence is computed based on some model fitting score,
and low confidence of an algorithm indicates that its as-
sumptions do not hold currently. Hence when low con-
fidence is reported, the system can switch to another
algorithm [28] or give smaller weight to its voting if it
runs in parallel to other algorithms. In a similar fashion,
when single frame road or lane detection fails and re-
ports low confidence, the system can use road and lane
models tracked from earlier time frames. In [2] the sys-
tem reported low confidence lane information 1 meter
in front of the host vehicle for 35% of its driving time.
Nevertheless, it was able to keep staying on track by
tracking high confidence measurements from previous
frames.

5 Evaluation

The ability to benchmark and evaluate algorithms is
necessary in order to compare performance of different
techniques, asses system’s maturity and identify their
weak spots. However, this issue is highly problematic in
the lane and road detection literature, due to the lack of
accepted test protocols, performance metrics and public
data sets. Many papers report their results only quali-
tatively [4,50,46,5,7,9,53,11,12]. Some of these papers
report hours of successful driving [12,4,7], but with-
out ground truth information for these experiments no
quantification of the result is possible. In addition, al-
most no two papers use exactly the same metric, and
comparison is nearly impossible [10] (see [28] for an ex-
ception).

Many papers focus on a specific sub task of the
lane/road detection system and measure their success
with metrics specific for the relevant aspect. In [26], for
example, a technique for the estimation of vanishing
point is suggested and performance is measured using
the mean square error of the vanishing point estimation.
In [28] the same task is judged by the angle between
the lines connecting the host vehicle to the real and es-
timated vanishing points. A mean angle of 1.7 degrees
is reported. In [18] a lane assignment problem is dis-
cussed, where the task is to classify the host lane into
one of four existing lanes. Performance is measured us-
ing a confusion matrix, with error rates lower than 10%
at all conditions.

Papers handling road segmentation sometimes judge
their success by counting per-pixel binary classification
(road vs. non-road) errors. Per-pixel ROC curves are
drawn in [27,28], and the percentage of correct pixels
(97.8%) is reported in [30]. The work presented in [62]
suggests a method for fitting a parametric lane model,
and its performance is judged by the mean square error
of the parameters estimated. The interesting aspect in
this work is in the way ground truth of the parametric
model was achieved: the experiments were carried using
computer graphics simulated road images.

While the above mentioned papers present evalua-
tion of specific subtasks, it is very hard to relate the
reported performance to the performance of a whole
system. In contrast, there are papers presenting a full
system with quantitative performance evaluation [2,3,
28,10,6]. In this group, some papers [2,3] report mainly
detection accuracy statistics, while others report prob-
ability of successful detection, where success is defined
by a fixed threshold on the estimation accuracy [28,10,
6]. While the latter approach is more complicated (suc-
cess probability is only defined for a given accuracy,
and hence it depends on some hidden parameters), it is
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the most relevant to estimation of the system reliabil-
ity. The reason is that when accuracy reaches a certain
level (the level allowing correct system performance),
its statistics are not important anymore. The impor-
tant quantity is the percentage of cases in which this
accuracy is not achieved.

Specifically, in [2] statistics of lane centerline esti-
mation are reported. Mean accuracy of 57 − 70 cm is
reported for distance 1− 50 meters from the vehicle re-
spectively, in complicated urban conditions. In [3] much
better results are reported for highway roads (mean er-
ror of 8.2 cm with standard deviation of 13.1 cm). How-
ever, the results are not directly comparable due to dif-
ferences in the data set used and the details of error
estimation. The latter paper [3] contains also a good
discussion of possible performance measurements, in-
cluding the error in estimation of lateral velocity, which
is mostly relevant to the LDW feature.

An impressive system-level evaluation of road de-
tection is presented in [28]. Successful road boundary
detection is defined as having accuracy better than 30
cm for the boundary 6 meters ahead of the host vehicle
(which is actually measured in image coordinates as dis-
tance of less then 18 pixels at a certain image row). The
system is reporting availability (i.e. having high confi-
dence) at 92− 100% of the time, with error probability
of 0.005 − 0.02 in various conditions (error probability
is measured only in the high confidence intervals). In [6,
10] similar scores are reported for the task of lane de-
tection. A success probability of 0.99 is reported in [6]
for accuracy in distance 15 meters from the vehicle. In-
terestingly, the reported night performance (0.994) is
higher than day performance -0.988 (similar phenom-
ena is reported in [3] when night and noon performance
are compared). In [10] success probabilities of 98−99%
are reported for lane detection on highways, dropping
to 86% in city driving.

Part of the difficulty in quantitative evaluation is
in obtaining ground truth for the data. Human anno-
tation is used for small-medium data sets [26,10]. Al-
ternatively, additional equipment on the test vehicle
can be used to collect ground truth. In [2] map data
and global positioning information are used to provide
rough ground truth, which is refined by human correc-
tions. The test vehicle used in [3] uses specific cameras
looking down on the vehicle’s sides to collect ground
truth lane information.

DARPA’s 2005 Grand Challenge [25,27–29] and 2007
Urban Challenge [2,32,21–24,20] were major test-beds
for limited autonomous driving systems. However, this
proof of concept is very limited due to reasons men-
tioned in section 2: participants of the 2005 challenge
did not have to cope with lane issues at all, and most

of the groups in the 2007 challenge used very limited
on-board perception and relied on exact map informa-
tion instead. With some exceptions [2,28], most of the
papers describing the participating vehicles do not pro-
vide quantitative system-level performance data for on-
board perception.

As can be seen from this non-exhaustive summary,
the variety of metrics and data sets used makes it very
hard to draw conclusion regarding algorithm quality or
whole systems maturity level. Two encouraging excep-
tions are the papers [10,2], who published their data
on the web. An accepted public benchmark with well
defined evaluation protocols can have a large positive
impact in current circumstances. Such a benchmark
should contain a large set of video streams with ground
truth, preferably augmented with additional sensors such
as LIDAR and GPS+GIS. Similar to the data base pre-
sented in [63], such a database should also be annotated
with meta variables stating the scenario type, accord-
ing to the cases discussed in section 2. Finally, we point
out that such an annotated database will also be use-
ful for machine learning training, hence contributing to
algorithm development.

6 Concluding remarks

Considerable progress in road understanding has been
made in the last years, with two powerful engines push-
ing forward: Lane Departure Warning (LDW) systems
which are turning into commercial products, and the
DARPA challenges for fully autonomous driving. This
focused the research attention in the two extreme poles
of the road and lane understanding problem: the most
simple problem of LDW (single lane, short distance),
and the hardest problems (fully autonomous driving in
desert and urban environments). This in turn led to
the development of several very different approaches
to road understanding. LDW systems were developed
into complex vision-based systems with some high level
reasoning, allowing some reliability to different condi-
tions. The fully autonomous dominant solution (with
some exceptions [2,20]) was to give up on-board full
road perception, and rely instead on integration of very
accurate global positioning information, obtained from
GPS and IMU, with high resolution maps and aerial
images. On board perception in these systems is usu-
ally limited to Lidar-based verification of the fine posi-
tioning information. For the cross country autonomous
driving the solutions focused on demarcation of very
near road structure, often 10-15 meters in front of the
vehicle using simple and robust road models.

This research distribution has left a large gap in
middle-complexity road understanding issues: percep-
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tion of multiple lanes and non linear topologies of lane
and road. The research conducted towards full auton-
omy does not give answers to these middle complexity
problems. Instead, since the full autonomous problems
are very hard, ad-hoc solutions are developed which
bypass the need for comprehensive onboard perception
(in the Urban Challenge case), or focus on very lim-
ited problem aspects (near road segmentation for the
desert challenges). However, the less-researched middle
complexity lane and road understanding are the most
required capabilities for further advance in commercial
active safety features.

The challenges for research in the near decade are
mainly of two types: extend the scope of road under-
standing, and increase its reliability. The first challenge
is to extend current road and lane detection abilities
into new domains. As can be seen from table 1, fea-
tures of the next generation require understanding of
multiple lanes, far ahead and in the back of the host ve-
hicle, as well as identification of lane and road splits and
merges. Some examples of these challenging conditions
are shown in figure 3. This challenge requires the de-
velopment of new road scene representations, which are
rich enough to describe multiple lanes with non linear
topology, and yet can be reliably extracted and tracked
from a video stream.

The reliability challenge is harder than the first, at
least for systems based primarily on vision. The relia-
bility of current systems, which is enough for warning
systems, may not be enough for closed-loop features, re-
quiring error rates which are often orders of magnitude
lower. While relatively simple algorithms with simple
assumptions may work in a large majority of the cases,
a complete system with high reliability must include a
mixture of algorithms relying on different assumptions
and information sources. The algorithms should operate
in parallel and get weighed, or alternatively be applied
serially, with complex algorithms activated only when
assumptions of simpler ones failed. Moreover, the sys-
tem should be able to explicitly infer failure cases of
algorithms’ assumptions, in order to weight them ap-
propriately (when all algorithms are ran), or switch be-
tween them in the serial case.

Due to the high reliability demands, building a vi-
sion based system, even for the simplest applications,
is a big development effort. Many functional blocks are
required for a stable system, and many different con-
ditions and assumptions have to be identified and han-
dled. In addition a large validation effort is required,
as many of the failure cases are rare and hard to pre-
dict. The high system complexity and the large devel-
opment effort required to build reliable systems signifi-
cantly constrain research and development in road un-

derstanding. What can we do to enable better progress
under these conditions? Several lines of action may be
fruitful:

– Use modalities other then vision when pos-
sible: It has been demonstrated several times that
problems which are hard for a pure vision-based sys-
tem are much easier with other modalities. Road
segmentation is much easier with Lidar. When ac-
curate and updated area maps are available, global
positioning with GPS and IMU provides enormous
simplification for the on-board lane sensing. It might
be possible to use publicly available data as Google
satellite images or StreetView for this purpose.

– Adopt machine learning techniques: In some
machine vision tasks, as well as other applicative
domains (e.g. mail filtering or speech recognition),
Machine Learning (ML) techniques enabled achiev-
ing more accurate results with less engineering ef-
fort. Lane and road understanding may be a con-
venient domain for ML techniques as unsupervised
data in large quantities can be gathered almost for
free, and large quantities of supervised data can be
gathered with some effort by driving with additional
sensors (Lidar, GPS, IMU and maps) [3,2]. Machine
learning techniques are already used for road clas-
sification in some cases [28,5], but larger functional
blocks can also be addressed. One example in this
direction is presented in [29], in which road segmen-
tation is cast as parameter learning in a hierarchical
Bayesian network. The method described was used
in the winning vehicle of the DARPA 2005 chal-
lenge. In may be fruitful to approach more complex
problems of multiple lane detection using similar
structured output ML techniques.

– A Public benchmark: A big challenge of current
research is the inability to compare performance of
different methods due to the lack of public anno-
tated benchmarks. Putting forward a large public
video benchmark may reduce evaluation costs and
enable cross-publication comparisons. Similar data
sets increased progress rate in other domains such
as pedestrian detection [64] or object class recogni-
tion [65].
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