
Strongly Typed Flow-Directed Representation Transformations

(Extended Abstract)

Allyn Dimock

Harvard University

Robert Muller

Boston College

Franklyn Turbak

Wellesley College

J. B. Wells∗

Glasgow University

Topic Areas: compilation, lambda calculus, intersection and union types,

typed flow analysis, closure conversion, inlining

Abstract

We present a new framework for transforming data repre-
sentations in a strongly typed intermediate language. Our
method allows both value producers (sources) and value con-
sumers (sinks) to support multiple representations, auto-
matically inserting any required code. Specialized represen-
tations can be easily chosen for particular source/sink pairs.
The framework is based on these techniques:

1. Flow annotated types encode the “flows-from” (source)
and “flows-to” (sink) information of a flow graph.

2. Intersection and union types support (a) encoding pre-
cise flow information, (b) separating flow information
so that transformations can be well typed, (c) automat-
ically reorganizing flow paths to enable multiple repre-
sentations.

As an instance of our framework, we provide a function rep-
resentation transformation that encompasses both closure
conversion and inlining. Our framework is adaptable to data
other than functions.

1 Introduction

Typed intermediate languages [20, 19, 23, 30] support type-
directed transformations while simultaneously increasing
confidence in the correctness of such transformations. In
this paper, we focus on representation transformations, i.e.,
those that arise in data type implementations. We consider
representation transformations that transform all sources
at which values are produced and all sinks at which they
are consumed in a consistent manner. In functional pro-
gramming languages, a particularly important representa-
tion transformation is closure conversion, which implements
a function value as a closure, packaging the function code
with the values of its free variables [17, 5, 23, 28, 18].

∗This author’s work was done at Boston University and was par-
tially supported by NSF grants CCR–9113196 and CCR–9417382 and
EPSRC grant GR/L 36963.

This paper appears in the Proceedings of the 1997 ACM
SIGPLAN Internation Conference on Functional Pro-
gramming (ICFP’97), Amsterdam, The Netherlands,
June 9–11, 1997.

By using multiple representations for a single data type,
a compiler can choose more efficient representations by con-
sidering their uses. For example, selective closure conver-
sion uses two function representation [28]: it can repre-
sent open functions (i.e., functions with free variables) as
code/environment pairs, but in some cases can represent
closed functions simply as code. The latter can be more ef-
ficient because it avoids packing the code into and unpacking
it from a pair with a useless empty environment.

Although beneficial in an optimizing compiler, imple-
menting multiple representations is challenging:

1. Global flow information is required to match up the
sources and sinks that share a representation. Because
there is growing recognition that such flow analyses are
necessary for optimizing higher-order languages [24, 22,
13], this requirement is not too burdensome.

2. To distinguish between multiple representations, it is
necessary to separate data flow paths. The “plumbing”
of the program must be transformed in such a way that
the meaning of the program is preserved.

In this paper, we address the plumbing problem while
using existing flow analysis techniques [6]. We present a
framework for representation transformation that supports
multiple representations within a strongly typed language.
The framework is both type-directed and flow-directed in the
sense that it uses the types of terms and global flow infor-
mation encoded in those types to determine how the terms
are transformed. We illustrate our framework by demon-
strating how multiple function representations can be used
in the same program in a strongly typed manner.

Contributions of this Paper

• We show how flows-from and flows-to annotations on
types can be used to pair up sources and sinks. We then
use this information to make pairwise representation
decisions. Flows-from annotations on types have been
used in previous work [11, 6], but we are the first to
use them in combination with flows-to annotations.

• We solve the plumbing problem for multiple represen-
tations using intersection and union types. We intro-
duce virtual tuples (values of intersection type) into
programs to refine flows-to information, and virtual
variants (values of union type) to refine flows-from in-
formation. A later stage transforms some virtual tuples
and variants to real tuples and variants to provide sep-
arate data flow paths for incompatible representations.

• We present a novel function representation transforma-
tion that subsumes both closure conversion and inlining
as special cases.

– We are the first to perform function transforma-
tions using multiple representations with multiple
interfaces in a strongly typed language. Earlier
approaches to typed closure conversion [10, 18, 19]
have required all function representations to use
the same application protocol. The only flow-
based closure conversion work known to us that
supports multiple application protocols is ex-
pressed in an untyped language [28].

– Our transformation can inline functions along ar-
bitrary flow paths, even open functions.1

This paper is organized as follows. Section 2 gives an
overview of our framework. Section 3 presents the stages of
our framework in more detail. Section 4 discusses related
research. Section 5 discusses future work. Our intermediate
language is defined in the Appendix.

2 Overview

Our representation transformation framework is depicted by
the diagram in figure 1. The framework is a composition
of well-typedness-preserving transformations on typings of
terms in our intermediate language λCIL.2 The Flow Sepa-
ration and Splitting/Tagging stages preserve normal forms
for closed terms at base type. Meaning preservation has
not yet been proved of the Representation Transformation
stage.

The modularity of our framework makes it possible to ex-
periment with different approaches to representation trans-
formations via mix-and-match parts. Our approach can
work with many flow analysis algorithms and also allows
great flexibility in making representation decisions. Given a
flow analysis and a set of representation decisions consistent
with the flow analysis, our algorithm performs the program
transformations that implement the decisions.

Our language λCIL is an explicitly typed lambda calculus
with product, sum, union, intersection and function types.
Function (arrow) types, abstractions, and applications, are
annotated with flow labels approximating the flow of func-
tions from abstractions to applications. The Appendix
formally defines λCIL, but we will informally introduce its
features in the main text as needed.

We introduce the stages of our framework with the fol-

1Because we have not yet explored how to support lightweight
closure conversion (where free variables whose values are available at
the sink do not need to be included in closures) in our framework, the
inlining we support is complementary to rather than a replacement
for classical inlining.

2In λCIL, “C” stands for the Church Project
(http://www.cs.bu.edu/groups/church/) and “IL” stands for
“intermediate language”. The purpose of the Church Project, named
in honor of Alonzo Church, is to investigate the applications of
intersection and union types in the compilation of strongly typed
higher-order languages. λCIL

DLO and λCIL
DLS are subsets of λCIL defined

in Section 3.

lowing example:3

let f int→int = λxint.x ∗ 2
in let gint→int = λyint.y + aint

in ×
(

f @ 5, (if bbool then f else g) @ 7
)

In this term there are two free variables: a and b. The
closed function (λxint.x ∗ 2) flows to two application sites,
the second of which is also a sink for the open function
(λyint.y + aint). It is important that the flow properties
of this simple term are merely examples of more complex
flow patterns that arise in real programs. In order to stress
that our framework can handle arbitrarily complex flow pat-
terns, we will illustrate subsequent examples diagramatically
with the abstractions and applications detached from most
of their surrounding text.

The Flow Analysis stage computes an approximation to
the flow of values between sources and sinks in the input
term and encodes this via flow labels in the output typing.
Figure 2 shows a possible result of flow analysis for the sam-
ple term.

In the diagram, each abstraction site (λl
ψxσ.M) is anno-

tated with a source label l and a set of sink labels ψ ap-
proximating the set of application sites that can consume
λl. Source and sink labels are also used to annotate func-
tion types. If M has type τ in the above term, the type of

the abstraction is σ−{l}−ψ→τ. Each application site (M @
φ
k

N) is
annotated with a sink label k and a set of source labels φ ap-
proximating the set of abstractions that can be consumed at
@k. If N has type σ, then such an abstraction is well-typed
only if M has a type of the form σ−φ−−{k}→τ.4

The Representation Choices stage chooses representa-
tions for the values that flow along each flow path from
source to sink and supplies information about these choices
to later stages. In the case of function values, there are a
wide variety of representations to choose from. For simplic-
ity, we consider only the following representations. An open
function can be represented either as (1) a closure consisting
of a code/environment pair, or (2) an environment, where
the code has been inlined at the application sites that the
function flows to. A closed function can use one of the open
function representations (with a dummy environment), but
it can also be represented as just a code pointer.

In many cases, the representations for each flow path can
be chosen independently.5 However, it is necessary to mod-
ify the flow graph with plumbing coercions that appropri-
ately handle the flow of multiple representations. Multiple
representations produced at a source must be packaged into
a tuple at the source and later projected out. If multiple
representations reach a sink, they must be injected into a
variant earlier so that the sink can perform a case analysis
on the variant tag. The examples will illustrate this.

The Representation Choices stage does not perform any
plumbing coercions or make any representation changes, but

3Variables are explicitly annotated with types, applications are
marked by “@”, and (real) tuples are marked by “×”. For readability,
we omit types on bound variable occurrences when the binding is
visible. We have omitted the flow labels λCIL requires; assume they
are all 0. Also, we use base types (like int and bool) and constants
and familiar operators for these types, even though they are not in
the formal presentation.

4Explicit type coercions are required by λCIL when the flow labels
on function types do not match. We omit these coercions from our
example diagrams for readability.

5In certain closure representations, such as those with linked envi-
ronments, the representation of one abstraction can depend on that
for its enclosing abstractions. We have not yet dealt with the issue of
multiple representations in combination with linked closures.

2

Representation
Choices
(RC)

Flow
Analysis

(FA)

Flow
Separation

(FS)

Splitting/
Tagging

(ST)

Representation
Transformation

(RT)

P0

λCIL

P1

λCIL
DLO

P2

λCIL
DLS

P3

λCIL
DLS

P4

λCIL

ΠR
FS

ΠR
ST R

Figure 1: Program transformation framework.

λ1
{3,4}

xint.x ∗ 2 λ2
{4}

yint.y + aint

2 @
{1}
3 5 (if bbool then 2 else 2) @

{1,2}
4 7

Figure 2: Flow Analysis result.

it provides the required partitioning information to subse-
quent stages that implement the changes.

The first such stage is Flow Separation, which introduces
potential plumbing coercions wherever a function type will
need to be transformed into multiple representation types.
Flow Separation is guided by ΠR

FS, a partitioning of flow
paths according to the transformed representation type cho-
sen for them. Figure 3 shows the result of Flow Separation
on our example in the case where all three flow paths will
be given different representation types.6 The abstraction
occurrence λ1

{3,4} is transformed into a virtual tuple (a value

of intersection type) containing two abstraction occurrences
λ1
{3} and λ1

{4}. Intuitively, a virtual tuple is a compile-time
value of intersection type containing virtual copies of a term
that differ only in their types. All of the values inside a vir-
tual tuple share the same run-time representation, and no
space needs to be allocated for the virtual tuple at run-time.

Similarly, the application occurrence @
{1,2}
4 is transformed

into a virtual case expression that dispatches on the tag of
a virtual variant (a value of union type) to one of two ap-

plication occurrences @
{1}
4 or @

{2}
4 .

The Splitting/Tagging stage reifies some of the virtual
plumbing coercions into real plumbing coercions by chang-
ing some intersections (∧) to products (×) and some unions
(∨) to sums (+). It is guided by ΠR

ST, a partitioning of flow
paths according to the run-time code which will implement
the transformed representation types. Consider figure 3
and suppose that the {1

3} partition is represented by a code
pointer and {1

4,
2
4} is represented by a closure. Then Split-

ting/Tagging would transform
∧

(

λ1
{3}xint.x∗2, λ1

{4}xint.x∗2
)

into ×
(

λ1
{3}xint.x∗2, λ1

{4}xint.x∗2
)

because different code will
be executed at run-time to create the two values. The as-
sociated π∧

i terms would also be transformed to π×
i . Even

though the run-time code constructing the environments for
the two closures would differ, the run-time code invoking
them would the same, so the case∨ would not be trans-
formed to case+.

6Choosing the same representation method (e.g., flat closures) for
different functions of the same type can result in different representa-
tion types. The closure representation and environment representa-
tion expose the types of the function’s free variables, thus leading to
different transformed types even when the pre-transformation types
are the same. These types are only superficially different, because the
closures are invoked in the same way. We combine such superficially
different types using union types. For some function representations
(but not all), existential types can serve a similar purpose [18].

As another example of Splitting/Tagging, suppose that
{1
3,

1
4} are represented by code pointers and {2

4} is represented
by a closure. Then Splitting/Tagging would transform the
instance of case∨ and in∨

i to case+ and in+
i because a run-

time discrimination will be required to choose between @
{1}
4

and @
{2}
4 which must be implemented by different run-time

code. (In this case, Flow Separation would not have needed
to introduce a virtual tuple at λ1

{3,4}.)

Together, Flow Separation and Splitting/Tagging install
the correct plumbing for the final Representation Trans-
formation stage. This stage is controlled by a represen-
tation map R supplied by Representation Choices. The
map R specifies consistent transformations on types, source
subterms producing values, and sink subterms consuming
these values. Figures 4–6 show the output of Representa-
tion Transformation on our sample term for these three sets
of representation choices:

Figure 1
3 rep. 1

4 rep. 2
4 rep.

4 code code/env code/env
5 code code code/env
6 code code env (inlining)

Figures 4, 5, and 6 illustrate, respectively, the splitting of
a value at a source, discrimination on a tagged value at a
sink, and inlining an open function.7 The input abstraction
(λ2

{4}yint.y+aint) has been transformed to an environment con-
taining its free variable, while its code has been inlined at

the application site @
{2}
4 . Because a code pointer represen-

tation can reach site @
{1}
4 , the two incompatible values are

injected into a variant.

3 Transformation Framework

3.1 Preliminary Definitions

We use our typed intermediate language λCIL, which is de-
fined in the Appendix. For this paper, we will add the fol-

7Figures 4, 5, and 6 have been simplified by standard lo-

cal optimizations. The subterm “(π
×
1

h) @
{0}
0

×
(

(π
×
2

h),7
)

” in

the first branch of the case in figure 4 is actually “let xσ1=

h in (π
×
1

x) @
{0}
0

×
(

(π
×
2

x),7
)

”. A similar simplification has been made

for the second case branch in figures 4 and 5. See footnote 8
for an explanation of the flow label 0. In figure 6, the subterm
“7+(π

×
1 h)” in the second case branch is actually “let y×[×[int],int]=

×(h,7) in (π
×
2

y)+(π
×
1

π
×
1

y)”.

3

∧

(

λ1
{3}

xint.x ∗ 2, λ1
{4}

xint.x ∗ 2
)

λ2
{4}

yint.y + aint

(π∧
1 2) @

{1}
3 5

case∨

(

if bbool then (in∨
1 (π∧

2 2))

∨

[

int−{1}−−{4}→int,int−{2}−−{4}→int

]

else (in∨
2 2)

∨

[

int−{1}−−{4}→int,int−{2}−−{4}→int

]

)

bind h as (int −
{1}
−−{4}→ int) ⇒ h @

{1}
4 7,

(int −{2}−−
{4}
→ int) ⇒ h @

{2}
4 7

Figure 3: Flow Separation result.

×
(

(λ1
{3}

xint.x ∗ 2),

×
(

(λ0
{0}x

×[×[],int].(π×
2 x) ∗ 2),×()

)

)

×
(

(λ0
{0}y

×[×[int],int].(π×
2 y) + (π×

1 π×
1 y)),×

(

aint
)

)

(π×
1 2) @

{1}
3 5

case∨
(

if bbool then
(

in∨
1 (π×

2 2)
)∨[σ1,σ2]

else (in∨
2 2)∨[σ1,σ2]

)

bind h as σ1 ⇒ (π×
1 h) @

{0}
0 ×

(

(π×
2 h), 7

)

,

σ2 ⇒ (π×
1 h) @

{0}
0 ×

(

(π×
2 h), 7

)

where σ1 = ×
[

(×[×[], int] −
{0}
−−{0}→ int),×[]

]

and σ2 = ×
[

(×[×[int], int] −
{0}
−−{0}→ int),×[int]

]

Figure 4: Representation Transformation result illustrating splitting.

λ1
{3,4}

xint.x ∗ 2 ×
(

(λ0
{0}y

×[×[int],int].(π×
2 y) + (π×

1 π×
1 y)),×

(

aint
)

)

2 @
{1}
3 5

case+

(

if bbool then
(

in
+
1 2

)+
[

int −
{1}
−−
{4}
→ int, σ2

]

else
(

in
+
2 2

)+
[

int −
{1}
−−
{4}
→ int, σ2

]

)

bind h as (int −
{1}
−−
{4}
→ int) ⇒ h @

{1}
4 7,

σ2 ⇒ (π×
1 h) @

{0}
0 ×

(

(π×
2 h), 7

)

Figure 5: Representation Transformation result illustrating tagging.

λ1
{3,4}

xint.x ∗ 2 ×
(

aint
)

2 @
{1}
3 5

case+

(

if bbool then
(

in
+
1 2

)+
[

int −
{1}
−−{4}→ int,×[int]

]

else
(

in
+
2 2

)+
[

int −
{1}
−−{4}→ int,×[int]

]

)

bind h as (int −
{1}
−−
{4}
→ int) ⇒ h @

{1}
4 7,

×[int] ⇒ 7 + (π×
1 h)

Figure 6: Representation Transformation result illustrating inlining.

4

lowing definitions and requirements.
We require that every flow label only appears on an

arrow at one type. As an example of a type violating
this condition, in the type (int−1−2→int)−1−4→(bool−3−2→bool) the la-
bel 1 corresponds to the two distinct types (int−1−2→int) and
(int−1−2→int)−1−4→(bool−3−2→bool) and the label 2 corresponds to the
two distinct types (int−1−2→int) and (bool−3−2→bool).

Definition 3.1 (Type/Label Consistent). Given some
syntactic entity X, define these sets:

X̌ = { τ | τ E X }

X̌
i = {σ −{0}−−

{0}
→ τ | σ −φ∪{i}−−−ψ → τ ∈ X̌}

X̌i = {σ −
{0}
−−
{0}
→ τ | σ − φ−−−

ψ∪{i}
→ τ ∈ X̌}

Then X is type/label consistent (TLC) if and only if |X̌i|+
|X̌i| ≤ 1 for all i.

Since our framework will use flow labels for transforming
subterms, the labels embedded within a term must be suffi-
ciently distinctly chosen. A term M has a label (at the top
level) if and only if M is an abstraction or an application.
An abstraction (λi

ψxτ .M) has label i (the top, or source label)
and an application (M @

φ
j

N) has label j (the bottom, or sink
label). Given a set of terms M = {M1, . . . , Mn} where the
label of each Mi is li, the set M is distinctly labelled if and
only if li = lj implies i = j. Given a term M , the subterms
of M are the members of the set {N | N E M }. Given a
term M , the subterm occurrences of M are the members
of the set {N (p) | N E M at position p } where N (p) pairs
the subterm N with the position p (an unspecified notion) at
which it occurs in M , so the set has one copy of the subterm
for each position at which it occurs.

Definition 3.2 (Distinctly Labelled). 1. A term M is
distinctly labelled by occurrence (DLO) if and only if the
set of subterm occurrences of M is distinctly labelled.

2. A term M is distinctly labelled by subterm (DLS) if and
only if the set of subterms of M is distinctly labelled.

Definition 3.3 (λCIL
DLO and λCIL

DLS). A judgement “A ⊢ M :
τ” is derivable in the language subset λCIL

DLO (respectively
λCIL

DLS) if and only if A ⊢λCIL M : τ via D and the term M
is DLO (respectively DLS) and the typing D is TLC.

3.2 Algorithm

The overall algorithm F implementing our representation
transformation framework proceeds as follows (see also fig-
ure 1):

F(P0) = let P1 = FA(P0)
in let 〈R, ΠR

FS, ΠR
ST〉 = RC(P1)

in let P2 = FS(P1, Π
R
FS)

in let P3 = ST(P2, Π
R
ST)

in let P4 = RT(P3,R)
in P4

The algorithm F uses sub-algorithms FA, RC, FS, ST, and
RT, which are described in sections 3.3, 3.4, 3.5, 3.6, and 3.7,
respectively.

3.3 Flow Analysis (FA)

In the literature, a flow analysis (sometimes called a clo-
sure analysis) is any of a class of analyses that either relate
abstraction occurrences (function definitions) to application
occurrences (function call sites), or relate abstractions which
may be called to the abstractions from whose bodies they
are called [3, 6, 11, 12, 24]. In our intermediate language
λCIL, as in the work of Heintze [11] and Banerjee [6], flow
information is encoded as annotations on arrow types.

The Flow Analysis (FA) stage takes the input program
P0, performs a flow analysis on P0 and encodes the results of
this analysis in type annotatations on its output P1. Rather
than providing an algorithm to implement this stage, we
merely specify minimum requirements that an algorithm
must satisfy to work with our framework.

Definition 3.4 (Label Erasure). The label erasure of
any syntactic entity X, denoted 〈X〉, is obtained by replac-
ing all labels on types, abstractions, or applications in X by
the label 0.

Definition 3.5 (Flow Analysis Requirements). A
function FA from typed terms in λCIL to typed terms in
λCIL

DLO is a flow analysis suitable for use in our framework if
and only if the following conditions hold. If A ⊢λCIL M : τ
via D and M ′ = FA(M), then there exist A′, τ ′, and D′

such that

1. A′ ⊢λCIL
DLO

M ′ : τ ′ via D′.

2. |M ′| ≡ |M | (meaning preservation).

3. 〈A′〉 = 〈A〉 and 〈τ ′〉 = 〈τ 〉.

There is a flow analysis for λCIL that is as accurate as the
0CFA of Shivers [24]. Due to our deliberately restricted sub-
typing relation, such a flow analysis must introduce virtual
tuples and variants to achieve sufficient accuracy.

3.4 Representation Choices (RC)

The Representation Choices (RC) stage takes as input
a typed program P1 and computes a representation map
R = 〈Rλ,R@,Rvar,R→〉 and partitioning functions ΠR

FS

and ΠR
ST, i.e.,

RC(P1) = 〈R, ΠR
FS, ΠR

ST〉

The map components are used by the Representation Trans-
formation stage to perform transformations on the pro-
gram’s syntax tree. The component Rλ outputs code im-
plementing each occurrence of an abstraction in the source
term, R@ outputs code implementing each occurrence of
an application in the source term, Rvar outputs a function
from variables to code implementing variable lookup, and
R→ maps function types to the types of the corresponding
function implementations.

The partitioning functions ΠR
FS and ΠR

ST are used in the
Flow Separation and Splitting/Tagging stages to prepare for
the Representation Transformation stage. The Flow Sepa-
ration transformation is guided by ΠR

FS in separating types,
abstractions, and applications which either (1) need differ-
ent types or (2) actually need different code. The Split-
ting/Tagging transformation is guided by ΠR

ST in changing
virtual tuples and variants into real tuples and variants to
allow possibility (2).

5

In the following we use these textual abbreviations (i.e., free variables in the expansions are captured):

x = name(bv(φ
ψ

, N)) τ = type(bv(φ
ψ

, N)) xi = name(fvi(
φ
ψ

, N)) τi = type(fvi(
φ
ψ

, N))

n = #fv(φ
ψ

, N) τ ′ = [τ ℄R,N ρ = E→(φ
ψ

, N) ρ′ = ×[ρ, τ ′]

The function “[· ℄ · , · ” is defined in figure 9. The representation map R will be what this figure is defining. The parameter P1 is the
entire program as input to the RC stage.

Representation Choice Constraints

Any total predicates Rcode? and Renv? may be chosen as long as:

∀ l
k
. ((#fv(l

k
, P1) = 0) or Rcode?(l

k
) or Renv?(l

k
))

∀ l
k
. (not inlinedin?∗(l

k
, l
k
, P1))

inlinedin?(l
k
, l′

k′ , N) ⇐⇒ ∃M, M ′, φ, k. ((M @
{l}∪φ

k
M ′) E body(l′

k′ , N) and not Rcode?(l
k
))

inlinedin?∗(l1
k1

,
ln
kn

, N) ⇐⇒ ∃ l2
k2

, . . . ,
ln−1

kn−1
. (inlinedin?(l1

k1
,
l2
k2

, N) and · · · and inlinedin?(
ln−1

kn−1
,
ln
kn

, N))

Representation Implementation

The functions 〈Rλ,R@,Rvar,R→〉 depend on the value of 〈Rcode?(φ
ψ

),Renv?(φ
ψ
)〉 as follows:

R→(φ
ψ

, σ1, σ2, N) Rλ(φ
ψ

, E, M, N) R@(φ
ψ

, M1, M2, M3, N) Rvar(φ
ψ

, E, N)

〈true, true〉 C→(φ
ψ

, σ1, σ2, N) Cλ(φ
ψ

, E, M, N) C@(M1, M2) Cvar(φ
ψ

, N)

〈true, false〉 σ1 −φ−
ψ
→ σ2 λ

min φ
ψ

xτ ′
.M M1 @φ

minψ
M2 E[xτ 7→ xτ ′

]

〈false, true〉 E→(φ
ψ

, N) Eλ(φ
ψ

, E, N) E@(φ
ψ

, M1, M2, M3, N) Evar(φ
ψ

, N)

〈false, false〉 ×[] ×() let xτ ′
= M2 in M3 {xτ 7→ xτ ′

}

The M3 parameter of R@ will be a function body to inline.
The N parameter of each function will be the entire program P3 as input to the RT stage.

Closure Implementation

C→(φ
ψ

, σ1, σ2, N) = ×
[

(×[ρ, σ1] −
{0}
−−
{0}
→ σ2), ρ

]

Cλ(φ
ψ

, E, M, N) = ×
(

(λ0
{0}

xρ′
.M), Eλ(φ

ψ
, E, N)

)

C@(Mσ
1 , M2) = let yσ = M1 in (π×

1 yσ) @
{0}
0 ×

(

(π×
2 yσ), M2

)

where y is fresh

Cvar(φ
ψ

, N) = Evar(φ
ψ

, N)

Environment Implementation

E→(φ
ψ

, N) = ×
[[τ1℄R,N , . . . , [τn℄R,N

]

Eλ(φ
ψ

, E,N) = ×
(

E(xτ1
1), . . . , E(xτn

n)
)

E@(φ
ψ

, Mσ
1 , M2, M3, N) = let x×[σ,τ ′] = ×(M1, M2) in M3

Evar(φ
ψ

, N) = {xτ 7→ π×
2 xρ′

} ∪ {xi
τi 7→ π×

i π×
1 xρ′

| 1 ≤ i ≤ n}

Flow Partitioning Functions

Each partitioning function maps a flow path to a string identifying a partition.
Strings are concatenated via “:”.

ΠR
FS(l

k
) =

{

Renv?(l
k
) : Rcode?(l

k
) : l if #fv(l

k
, P1) ≥ 1 or not Rcode?(l

k
),

Renv?(l
k
) : true otherwise.

ΠR
ST = 〈ΠR,λ

ST , ΠR,@
ST 〉 where ΠR,λ

ST (l
k
) = Renv?(l

k
) : Rcode?(l

k
)

ΠR,@
ST (l

k
) =

{

Renv?(l
k
) : false : l if not Rcode?(l

k
),

Renv?(l
k
) : true otherwise.

Figure 7: Example representation map with corresponding flow partitions.

6

The algorithm implementing the RC stage will generally
need to to inspect the entire input program in generating the
representation map R and the partitioning functions ΠR

FS

and ΠR
ST. In addition, the components 〈Rλ,R@,Rvar,R→〉

of the representation map itself will need access to global
program information. For this reason, each component will
have an extra parameter which will be supplied with the en-
tire program as an argument in the Representation Trans-
formation stage.

Definition 3.6 (Flow Paths and Bundles). Given
l, k ∈ Label, the pair l

k is a flow path. Given φ, ψ ⊂ Label,
the pair φ

ψ
is a flow bundle. We write l

k ∈ φ
ψ

to denote that
l ∈ φ and k ∈ ψ.

The presence of a flow path l
k in a program indicates that

the Flow Analysis stage has guessed that the source labelled
l might be able to flow to the sink labelled k. A flow bundle
φ
ψ

can be seen as the collection of the flow paths {l
k | l

k ∈ φ
ψ
}.

Definition 3.7. For any term N in DLS (distinctly labelled
by subterm) form, if M ≡ (λl

ψxτ .M ′) E N , k ∈ ψ, and
x1

τ1 , . . . , xn
τn are the free variables of M in order of first

occurrence from left to right, then the following functions
are defined:

bv(l
k, N) = xτ

#fv(l
k, N) = n

fvi(
l
k, N) = xi

τi if 1 ≤ i ≤ n

body(l
k, N) = M ′

name(yσ) = y

type(yσ) = σ

Convention 3.8. Any total function f on flow paths l
k is

automatically extended to a partial function on flow path
bundles φ

ψ as follows:

f
(

φ
ψ

)

=

{

f(min φ
min ψ) if ∀ l

k ∈ φ
ψ. f(min φ

min ψ) = f(l
k),

undefined otherwise.

In figure 7 we give an example implementation of the
RC algorithm. The algorithm specified in figure 7 can pro-
duce a representation map that can perform both closure
conversion and inlining. To choose function representa-
tions, this representation map uses predicates Rcode? and
Renv?, which may be arbitrarily chosen total predicates on
flow paths, except that an abstraction with free variables
must be given some way to carry the values of those free
variables and that inlining loops must be avoided. The
concrete representations of closures and environments for
this example are abstracted in C = 〈Cλ, C@, Cvar, C→〉8 and
E = 〈Eλ, E@, Evar, E→〉9. The representation map R and
partitioning functions ΠR

FS and ΠR
ST given in figure 7 are

specifically designed to work together; if R were altered then
ΠR

FS and ΠR
ST might need to change in a corresponding way.

8Due to our deliberately restricted subtyping rule, this example
uses 0 for flow labels in closures, thus losing flow information in the
output. This problem can be solved by adding flow labels to all data
types.

9This definition is simplified from what will actually work. In order
for a closure referencing a µ-bound variable to be a value in λCIL,
the code storing the µ-bound variable value in the closure must be
thunkified and the corresponding variable-access code in the function
body must force the thunk. This problem seems to represent a flaw in
the formulation of λCIL. Using a λ-graph-based calculus might avoid
this problem. The problem does not occur if µ-bindings are restricted
to the form rec xτ .V and closure-passing style is used.

3.5 Flow Separation (FS)

The Flow Separation (FS) stage takes as input a typed pro-
gram P1 and a flow path partitioning function ΠR

FS (supplied
by Representation Choices to determine which flow paths
can coexist in the same flow path bundles) and returns a
transformed typed program P2. We implement this stage
with the FS algorithm, which applies the transformation in
figure 8 to the input P1 using ΠR

FS for Π in the figure to
obtain the result P2.

10 More precisely, if we let M be an
abbreviation for FS(M, ΠR

FS), then

P2 ≡ FS(P1, Π
R
FS) ≡ P1

Definition 3.9. If Π is a function on flow paths
(source/sink flow label pairs), then a typing D respects Π
if Π(φ

ψ
) is defined for every flow bundle φ

ψ
(source/sink flow

label set pairs) occurring in D (see convention 3.8).

The type transformation τ preserves the structure of all
types except arrow types, which it transforms to unions of
intersections of arrows in a way that respects ΠR

FS. The
term transformation M preserves structure except at ab-
stractions, applications, and coercions. An abstraction oc-
currence is transformed into a virtual variant containing a
virtual tuple whose slots contain different type annotations
of the same abstraction which are suitable for the different
call sites to which the original abstraction flowed. An appli-
cation occurrence is transformed into a virtual case expres-
sion which dispatches on the virtual tags of the abstractions
that could reach the application’s function (left) slot. Each
alternative in the case expression is a virtual copy of the
original application. The transformation of a coerce ex-
pression results in a term that converts a virtual variant of
virtual tuples into another virtual variant of virtual tuples.

The type erasure of an abstraction remains the same,
while the type erasure of an application is β-expanded from
(M @ N) to ((λf .f @ N) @ M), since the type erasure of
a virtual case expression is a β-redex. The transformation
could take advantage of pre-existing β-redexes at the cost of
a more complex specification. The type erasure of a coerce
expression is β-expanded from M to ((λf .f) @ M), again a
result of our formulation of virtual case∨ expressions and
potentially simplifyable in the same way as for applications.

The Flow Separation transformation in figure 8 intro-
duces unneeded singleton virtual variants and virtual tuples,
which could be avoided by a more complex specification. In
the worst case, Flow Separation may be provided with a par-
titioning function that assigns every flow path to a distinct
partition and this would cause an at-least-quadratic expan-
sion in size of the program representation. We expect that
typical partitionings will be coarser-grained functions that
avoid this worst-case expansion.

Theorem 3.10 (Flow Separation Correctness). If

1. A ⊢λCIL
DLO

M : τ .

2. t-nf(M).

3. M ≡ FS(M, Π).

then there exists a D such that

1. A ⊢λCIL
DLS

M : τ via D.

10Figure 8 is simplified to avoid a subtlety of our parallel term
formulation. For correctness, for every coerce, we must pretend there
is a (possibly useless) coerce in each corresponding parallel position
so that the type erasure of parallel subterms is changed compatibly.

7

Flow Separation for Types (non-trivial case only)

The function Π mentioned below is a parameter to the algorithm.

σ −φ−
ψ
→ τ =

∨

φi in φ1,... ,φn

[

∧

ψi,j in ψi,1,... ,ψi,m(i)

[

σ −φi−−
ψi,j

→ τ
]

]

where φ1, . . . , φn partitions φ so that Π(
φi

{k}
) is defined for k ∈ ψ and 1 ≤ i ≤ n,

ψi,1, . . . , ψi,m(i) partitions ψ so that Π(
{l}
ψi,m(i)

) is defined for l ∈ φi and 1 ≤ j ≤ m(i),

(min φi) < (minφi+1) for 1 ≤ i < n,
(min ψi,j) < (min ψi,j+1) for 1 ≤ i ≤ n and 1 ≤ j < m(i),
and each partitioning chooses the largest possible partitions.

Flow Separation for Terms (non-trivial cases only)

(λl
ψ

xσ .Mτ)ρ ≡

(

in∨
1

∧m

j=1

(

λl
ψj

xσ .M
)

)ρ

where ρ =
∨

[

∧m

j=1

[

σ −
{l}
−−
ψj
→ τ

]

]

(Mρ @φ
k

Nσ)τ ≡ (case∨ M bind f in . . . , ρi ⇒ (π∧
1 fρi) @

φi
k

N, . . .)

where f is fresh, 1 ≤ i ≤ n, ρ = ∨n
i=1 [ρi], and ρi =

∧

[

σ −φi−−
{k}
→ τ

]

(coerce (ρ, ρ′) M) ≡

(

case∨ M bind f in

. . . , ρi ⇒

(

in∨
r(i)

∧m′(r(i))

j=1

(

coerce
(

ρi,q(i,j), ρ
′
r(i),j

)

π∧
q(i,j)

fρi

)

)ρ′

, . . .

)

where f is fresh, 1 ≤ i ≤ n,

ρ = ∨n
i=1 [ρi], ρi = ∧

m(i)
j=1 [ρi,j], ρi,j = σ −φi−−

ψi,j
→ τ ,

ρ′ =
∨n′

i=1

[

ρ′i
]

, ρ′i =
∧m′(i)

j=1

[

ρ′i,j

]

, ρ′i,j = σ −
φ′

i−−
ψ′

i,j

→ τ ,

and φi ⊆ φ′
r(i)

and ψi,q(i,j) ⊇ ψ′
r(i),j

for 1 ≤ i ≤ n and 1 ≤ j ≤ m′(i)

All other cases are purely structural, e.g., πP
i

M = πP
i M and xτ = xτ .

Figure 8: Flow Separation transformation.

2. D respects Π.

3. If τ = o, M is closed, M −nf−→r N , and M −nf−→r N ′, then
N ≡ N ′ (meaning preservation).

3.6 Splitting/Tagging (ST)

The Representation Choices stage can (1) specify for an in-
dividual function that it has multiple closure creation (and
variable access) methods for different call sites to which it
can flow, and (2) specify for an individual call site that it
must handle multiple function calling conventions for differ-
ent functions which can flow to it. When this has happened,
the Flow Separation stage will have used the features of
our intermediate language λCIL in creating multiple parallel
versions of the original function or call site which are con-
nected by a virtual tuple ∧(N1, . . . , Nm) or a virtual case∨

expression (case∨ M bind x in σ1 ⇒ N1, . . . , σm ⇒ Nm).
In these terms, the parallel subterms N1, . . . , Nm represent
different type annotations of the same program phrase. If
the type erasures of Ni and Nj for i 6= j are changed in-
compatibly, the result will be ill typed. We make it possible
for this to happen by (1) splitting some function definitions
and having the different versions go to different call sites
and (2) tagging (injecting into sum type) some function def-
initions and having call sites discriminate on the tags. The
Splitting/Tagging (ST) stage does this by changing some
occurrences of “∧” and “∨” into “×” and “+”, respectively.

Definition 3.11 (Parallel). Distinct subterm occurrences
Ni, Nj ⊳ M are parallel, written “Ni ‖ Nj in M”, if and

only if M ≡ Cp[N1, . . . , Nm] for some parallel context Cp
and i, j ∈ {1, . . . , m} and i 6= j.

Definition 3.12. If Π is a function from flow paths to par-
tition identifiers, then for some term M ,

1. The parallel abstractions of M are legal with respect
to Π if whenever (λi

ψ1
x1

σ1 .N1)‖(λ
j
ψ2

x2
σ2 .N2) in M then

Π(i
ψ1

) = Π(j
ψ2

). (The undefined result is not equal to

itself.)

2. The parallel applications of M are legal with respect
to Π if whenever (N1 @

φ1
i

N′
1)‖(N2 @

φ2
j

N′
2) in M then

Π(φ1
i

) = Π(φ2
j

).

Definition 3.13 (Joins). A subterm occurrence J E M
joins distinct subterm occurrences N, N ′

⊳ J when J is
either a virtual tuple ∧(N1, . . . , Nk) or a virtual case∨ ex-
pression

(case∨
M bind x in σ1 ⇒ N1, . . . , σk ⇒ Nk)

and N E Ni and N ′
E Nj where i 6= j.

The Splitting/Tagging (ST) stage takes as input a pro-
gram P2 and a pair of flow path partitionings ΠR

ST =
〈ΠR,λ

ST , ΠR,@
ST 〉 (supplied by Representation Choices to de-

termine which functions and call sites will have compatible
transformations) and returns as output the appropriately
transformed typed program P3. We provide the following
ST algorithm to implement this stage. The ST algorithm
inspects the derivation D which types P2, transforms D into

8

D′ as specified below, and returns as output the transformed
typed program P3 typed via D′, i.e.,

P3 = ST(P2, 〈Π
R,λ
ST , ΠR,@

ST 〉)

In the algorithm below, 〈Πλ, Π@〉 are the parameters which

will be instantiated to 〈ΠR,λ
ST , ΠR,@

ST 〉.

1. For every pair of parallel abstraction occurrences M1 ‖

M2 in P2 that are not legal with respect to Πλ, find
the subterm occurrence J E P2 that joins M1 and M2.
Mark J’s type constructor symbol as either ∧̄ or ∨̄. Do
similarly for every pair of parallel application occur-
rences M ′

1 ‖ M ′
2 in P2 which are not legal with respect

to Π@.

2. Propagate the markings on ∧̄ and ∨̄. When a marked
∧̄ or ∨̄ is matched against an unmarked ∧ or ∨ in D by
the typing rules, add marks to the unmarked symbols.

3. When there is a subterm M E P2 which is a marked
∧,∨-introduction or elimination term and there is a
distinct subterm M ′ such that M ‖ M ′ in P2, find the
subterm J E P2 which joins M and M ′ and mark J .

4. Repeat steps 2 and 3 until they do nothing.

5. Change every marked ∧̄ into × and every marked ∨̄
into +.

This algorithm can sometimes split excessively, but
common-subexpression elimination can compensate.

Theorem 3.14 (Splitting/Tagging Correctness). If

1. A ⊢λCIL
DLS

M : τ via D.

2. t-nf(M).

3. The typing D respects Πλ and Π@.

4. M ′ ≡ ST(M, 〈Πλ, Π@〉).

then there exist A′, τ ′, and D′ such that

1. A′ ⊢λCIL
DLS

M ′ : τ ′ via D′.

2. The parallel abstractions of M ′ are legal with respect
to Πλ and the parallel applications of M ′ are legal with
respect to Π@.

3. For any Π′, if D respects Π′ then D′ respects Π′.

4. If τ does not mention ∧ or ∨, then τ = τ ′.

5. If τ = o, M is closed, M −nf−→r N , and M ′ −nf−→r N ′, then
N ≡ N ′ (meaning preservation).

3.7 Representation Transformation (RT)

The Representation Transformation (RT) stage takes as in-
put a typed program P3 and a representation map R and
then traverses the syntax tree of P3 transforming abstrac-
tions, applications, variable occurrences and function types
as specified by R to produce the resulting typed program
P4. We implement this stage with the RT algorithm defined
in figure 9. More precisely,

P4 = RT(P3,R) = [P3℄R,Estart,P3

where Estart is the function such that Estart(x
τ) = x[τ℄R,P3 .

Note that this implementation of the RT algorithm works
with the example implementation of the RC algorithm in
figure 7. A substantially different implementation of RC
might require corresponding changes to RT.

The transformation on types proceeds structurally ex-
cept for function types. Because the types of free variables
of an abstraction are exposed in the transformed type of
the transformed abstraction, some transformed types can
be infinite. These types will always have a finite represen-
tation. An implementation of the RT algorithm is required
to detect when this happens and tie off the recursion by in-
serting a µ-binding. The transformation on terms is defined
on the structure of terms. In the application case, [· ℄R,·,·

provides to R@ not only the transformations of the appli-
cation’s syntactic components, but sometimes also provides
the transformation of a function body to inline in place of
the operator. To avoid non-termination, the output of the
RC algorithm must avoid specifying inlining loops.

Theorem 3.15 (Well-Definedness of RC and RT). If

1. A ⊢λCIL
DLO

M : τ

2. 〈R, ΠR
FS, ΠR

ST〉 = RC(M) (using RC from figure 7).

3. A′ ⊢λCIL
DLS

M ′ : τ ′ where M ′ ≡ ST(FS(M, ΠR
FS), ΠR

ST).

then [A′℄R,M′ ⊢λCIL [M ′℄R,Estart,M′ : [τ ′℄R,M′ .

We have not yet proved that applying the RT algorithm
preserves the meaning of the program.

4 Related Work

General research into the use of intersection types which
has influenced us includes the work of Van Bakel [27] and
Jim [14, 15]. Relevant research on both intersection and
union types includes the work by Pierce [21], Aiken, Wim-
mers, and Lakshman [3], Trifonov, Smith, and Eifrig [26, 9],
and Barbanera, Dezani-Ciancaglini, and de’Liguoro [7]. Of
the above, only Pierce considers intersection and union types
in an explicitly typed language. Even that is somewhat dis-
tant from our work because Pierce includes a general sub-
typing relation on intersection and union types which we
deliberately avoid.

Flow-types were first named by Heintze in [11], and are
also used by Banerjee in [6]. We differ from the above by
including sink labels as well as source labels.

Our closure conversion is most closely related to Wand
and Steckler’s work on selective and lightweight closure con-
version [28]. They give a 0CFA-based algorithm in the
untyped setting and prove its correctness. Their algorithm
can avoid closure creation when all the functions flowing to
a particular call site are closed. In addition, the lightweight
optimization uses an escape analysis to determine when the
value of a free variable is available at the call site. Their
algorithm restricts a function to a single representation and
requires all functions flowing to a particular application site
to observe the same application protocol.

Hannan [10] describes the annotations on types to per-
form the optimizations of [28] in a typed system. He speci-
fies a conversion, but does not supply an algorithm. He does
not handle multiple representations for a single function or
mixed calling conventions at a single call site.

Minamide, Morrisett and Harper present an algorithm
for typed closure conversion [18, 19]. They use purely lo-
cal transformations to perform closure conversion. Their

9

Representation Transformation for Types (non-trivial case only)[σ −φ−
ψ
→ τ ℄R,N = R→(φ

ψ
, [σ℄R,N , [τ ℄R,N , N)

All other cases are purely structural, e.g., [Q[τ1, . . . , τn]℄R,N = Q
[[τ1℄R,N , . . . , [τn℄R,N

]

.
Representation Transformation for Terms (non-trivial cases only)[xτ ℄R,E,N ≡ E(xτ)[λl

ψ
xσ.M℄R,E,N ≡ Rλ(

{l}
ψ

, E, [M℄
R,Rvar(

{l}
ψ

,E,N),N
, N)[M1 @φ

k
M2℄R,E,N ≡ R@(φ

{k}
, [M1℄R,E,N , [M2℄R,E,N , M3, N)

where M3 =







[body(φ

{k}
, N)℄

R,Rvar(
φ

{k}
,E,N),N

if not Rcode?(φ
k
),

c otherwise.[rec xτ .M℄R,E,N ≡ rec x[τ℄R,N .[M℄
R,E[xτ 7→x

[τ℄R,N],N[let xτ = M1 in M2℄R,E,N ≡ let x[τ℄R,N = [M1℄R,E,N in [M2℄
R,E[xτ 7→x

[τ℄R,N],N[caseS M bind x in . . . , τi ⇒ Mi, . . .℄R,E,N ≡ caseS [M℄R,E,N bind x in . . . , [τi℄R,N ⇒ [Mi℄R,Ei,N , . . .

where Ei = E[xτi 7→ x[τi℄R,N]

All other cases are purely structural.

Figure 9: Representation Transformation.

framework supports multiple closure representations but it
is restricted in that all representations share the same inter-
face.

There are many studies of closure conversion which fo-
cus on the data structures used for variable lookup and the
tradeoffs between sharing and time to lookup the value of a
variable [17, 25, 4, 23]. Our framework abstracts out data
structure representation issues.

Jagannathan and Wright discuss flow-directed inlining
in an untyped system [13]. Their paper examines heuris-
tics for selecting application sites for inlining. They do not
discuss inlining open terms. Plevyak and Chien have ex-
perimented with flow directed inlining in an object oriented
language [22].

5 Future Work

Although this paper focuses on the transformation of func-
tion representations, our framework can be extended to
transformations on other data types. These extensions in-
volve adding flow labels to all value producing and consum-
ing forms. We expect to handle specialized tuple, variant,
and inductive datatype representations.

We are implementing our framework and will experiment
with various flow analysis algorithms and representation de-
cision heuristics.

We will refine the example representation transforma-
tion to include analysis enabling lightweight closure conver-
sion [28]. This allows variables available at the call site to
be omitted from the environment of the closure. This will
also improve inlining.

In this paper we have presented a simple algorithm for
the Splitting/Tagging transformation. We plan to develop
and implement a more efficient algorithm.

An important practical issue in compiling with types is
controlling the size of the intermediate representations. Our
current language, following the style of [16], duplicates terms
when it duplicates types. Our language is convenient for
specifying our framework, but for implementation a consid-
erable size savings can be obtained by using a typed calculus
with intersection and union types in the style of [29].

Finally, we plan to study the interaction of our current
approach with separate compilation.

6 Acknowledgements

We would like to thank Mitch Wand, Will Clinger, Paul
Steckler and several anonymous reviewers for their helpful
comments and suggestions. We would also like to thank our
fellow Church Project members for their support and en-
couragement, especially Assaf Kfoury and Glenn Holloway.

References

[1] ACM. Conf. Rec. 21st Ann. ACM Symp. Princ. of Prog.
Langs., 1994.

[2] ACM. Conf. Rec. POPL ’96: 23rd ACM Symp. Princ. of
Prog. Langs., 1996.

[3] Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman.
Soft typing with conditional types. In POPL ’94 [1], pages 163–
173.

[4] Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[5] Andrew W. Appel and Trevor Jim. Continuation-passing,
closure-passing style. In Conf. Rec. 16th Ann. ACM Symp.
Princ. of Prog. Langs., pages 293–302, 1989.

[6] Anindya Banerjee. A modular, polyvariant, and type-based clo-
sure analysis. In Proc. 1997 Int’l Conf. Functional Program-
ming. ACM Press, 1997.

[7] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo
de’Liguoro. Intersection and union types: Syntax and seman-
tics. Inform. & Comput., 119:202–230, 1995.

[8] H[enrik] P[ieter] Barendregt. Lambda calculi with types. In
S[amson] Abramsky, Dov M. Gabbay, and T[homas] S. E.
Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, chapter 2, pages 117–309. Oxford University Press,
1992.

[9] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type in-
ference for recursively constrained types and its application to
OOP. In Proc. 1995 Mathematical Foundations of Program-
ming Semantics Conf., volume 1 of Electronic Notes in Theo-
retical Computer Science. Elsevier, 1995.

10

[10] John Hannan. Type systems for closure conversion. In Work-
shop on Types for Program Analysis, pages 48–62, 1995. The
TPA ’95 proceedings are DAIMI PB-493.

[11] Nevin Heintze. Control-flow analysis and type systems. In Proc.
2nd Int’l Static Analysis Symp., volume 983 of LNCS, pages
189–206, 1995.

[12] Suresh Jagannathan and Stephen Weeks. A unified treatment
of flow analysis in higher-order languages. In Conf. Rec. 22nd
Ann. ACM Symp. Princ. of Prog. Langs., pages 393–407.
ACM, 1995.

[13] Suresh Jagannathan and Andrew Wright. Flow-directed inlin-
ing. In Proc. ACM SIGPLAN ’96 Conf. Prog. Lang. Design
& Impl., pages 193–205, 1996.

[14] Trevor Jim. Rank 2 type systems and recursive definitions.
Technical Report MIT/LCS/TM-531, Massachusetts Institute
of Technology, November 1995.

[15] Trevor Jim. What are principal typings and what are they good
for? In POPL ’96 [2].

[16] A. J. Kfoury and J. B. Wells. New notions of reduction and non-
semantic proofs of β-strong normalization in typed λ-calculi. In
Proc. 10th Ann. IEEE Symp. Logic in Computer Sci., pages
311–321, 1995.

[17] David Kranz, Richard Kelsey, Jonathan A. Rees, Paul Hudak,
James Philbin, and Norman I. Adams. Orbit: An optimizing
compiler for Scheme. In Proc. SIGPLAN ’86 Symp. Compiler
Construction, pages 219–233, 1986.

[18] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed
closure conversion. In POPL ’96 [2].

[19] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie
Mellon University, 1995.

[20] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Par-
tain, and Phil Wadler. The Glasgow Haskell compiler: A tech-
nical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conf., 1993.

[21] Benjamin C. Pierce. Programming with intersection types,
union types, and polymorphism. Technical Report CMU-CS-
91-106, Carnegie Mellon University, February 1991.

[22] John Plevyak and Andrew A. Chien. Iterative flow analysis.
Submitted, July 1995.

[23] Zhong Shao. Compiling Standard ML for Efficient Execution
on Modern Machines. PhD thesis, Princeton University, 1994.

[24] Olin Shivers. Control Flow Analysis of Higher Order Lan-
guages. PhD thesis, Carnegie Mellon University, 1991.

[25] Guy Steele. Rabbit: A compiler for Scheme. Technical Report
MIT/AI-TR-474, Massachusetts Institute of Technology, 1978.

[26] Valery Trifonov and Scott Smith. Subtyping constrained types.
In Proc. 3rd Int’l Static Analysis Symp., pages 349–365, 1996.

[27] Steffen J. van Bakel. Intersection Type Disciplines in Lambda
Calculus and Applicative Term Rewriting Systems. PhD the-
sis, Catholic University of Nijmegen, 1993.

[28] Mitchell Wand and Paul Steckler. Selective and lightweight clo-
sure conversion. In POPL ’94 [1], pages 435–445.

[29] J. B. Wells. Intersection types revisited in the Church style.
Manuscript, June 1996.

[30] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Tur-
bak. A typed intermediate language for flow-directed compi-
lation. In Proc. 7th Int’l Joint Conf. Theory & Practice of
Software Development, pages 757–771, 1997. Superseded by
[31].

[31] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Tur-
bak. A calculus with polymorphic and polyvariant flow types.
J. Funct. Programming, 200X. To appear. Supersedes [30].

Appendix: λCIL

This appendix presents the essential definitions for and the-
orems about λCIL. For a more thorough explanation and a
discussion of design decisions, see [30], an extended version
of which is available from http://www.cs.bu.edu/groups/
church/reports/.

The statement X ⊳ Y means that the syntactic entity
X occurs properly within the syntactic entity Y ; X E Y has
the same meaning except X and Y may be the same.

A simple notion of reduction (n.o.r.) R is a pair
(ÃR,CR) of a redex/contractum relation ÃR and a set of
reduction contexts CR. The statement M ÃR N means
M is an R-redex and N is the R-contractum of M . For
a simple n.o.r., M −→R N means M is transformed into
N by contracting R-redexes in positions in M specified by
an R-reduction context , i.e., there are a context C ∈ CR

with k holes and terms Mi and Ni for i ∈ {1, . . . , k} such
that M ≡ C[M1, . . . , Mk] and N ≡ C[N1, . . . , Nk] and
Mi ÃR Ni for i ∈ {1, . . . , k}. A composite n.o.r. R is
a rule composing reduction steps of simple n.o.r.’s; in this
case M −→R N means M and N are related by the rule.
Writing “−։R” denotes the transitive and reflexive closure
of “−→R”. A term M is in normal form with respect to
R, written R-nf(M), when there is no term N such that

M −→R N . The statement M −nf−→R N means M −։R N
and R-nf(N).

Figure 10 shows the syntax and semantics of the untyped
language λCIL

ut .

Theorem A.1 (Confluence of Untyped Reduction).

If M̂ −։ut N̂1 and M̂ −։ut N̂2, then there exists M̂ ′ such

that N̂1 −։ut M̂ ′ and N̂2 −։ut M̂ ′.

Figure 11 shows the syntax of our explicitly typed lan-
guage λCIL.

Convention A.2 (Bound Variable Names). For con-
venience, we assume by α-conversion that parallel (cf. defini-
tion 3.11) variable bindings use the same variable name.

Our definition of type equality on recursive types is stan-
dard [8]. We do not distinguish between equal recursive
types in any context, so we have no rules for folding or un-
folding recursive types. We assume free type variables do
not occur (i.e., every type variable will be bound by µ) in
typing derivations and terms.

Figure 12 gives the typing rules of λCIL. If A is a type
environment, then A, x:τ denotes A extended to map x to
type τ . The domain of definition of A is DomDef(A). A
triple A ⊢ M : τ is a judgement. A derivation D is a se-
quence of judgements, each obtained from the previous ones
by one of the typing rules. We write “A ⊢λCIL M : τ via
D” to mean D is valid in λCIL and D ends with A ⊢ M : τ .
In this case, D is a typing for M and M is well typed. The
statement A ⊢λCIL M : τ means there exists some D such
that A ⊢λCIL M : τ via D. For any subset λCIL

X of λCIL, the
statement A ⊢λCIL

X
M : τ means A ⊢ M : τ is derivable in

that subset. The notation Mτ asserts that M is well typed
and has type τ .

Theorem A.3 (Uniqueness of Typings). For
M ∈ Term, there is at most one type environment
A and type τ such that DomDef(A) = FV(M) and
A ⊢λCIL M : τ .

The call-by-value reduction rules for our typed language
λCIL are in figure 13. We assume terms are always kept in
t-normal form.

11

Untyped Syntax

x, y, z ∈ Variable

c ∈ Constant

Ĉ ∈ UntContext ::= 2 | c | x | rec x.Ĉ | λx.Ĉ | Ĉ1 @ Ĉ2

| ×
(

Ĉ1, . . . , Ĉn

)

| π×
i Ĉ

| in
+
i Ĉ | case+ Ĉ bind x in Ĉ1, . . . , Ĉn

M̂, N̂ ∈ UntTerm = { Ĉ | 2 5 Ĉ }

V̂ ∈ UntValue ::= c | λx.M̂ | ×
(

V̂1, . . . , V̂n

)

| in
+
i V̂

Untyped Reduction

(λx.M̂) @ V̂ Ãut M̂ [x:=V̂]

π×
i ×

(

V̂1, . . . , V̂n

)

Ãut V̂i if 1 ≤ i ≤ n

case+ (in+
i V̂) bind x in M̂1, . . . , M̂n Ãut (λx.M̂i) @ V̂ if 1 ≤ i ≤ n

rec x.M̂ Ãut M̂ [x:=(rec x.M̂)]

Reduction contexts: Cut = { Ĉ | Ĉ ∈ UntContext and Ĉ has exactly one hole }

Figure 10: Untyped language λCIL
ut .

Theorem A.4 (Subject Reduction). If M −→r N and
A ⊢λCIL M : τ , then A ⊢λCIL N : τ .

Theorem A.5 (Typed/Untyped Reduction Correspondence).
If A ⊢λCIL M : τ , then

1. If M −→r N , then |M | −→ut |N |.

2. If |M | −→ut N̂ , then there exists a term N where

M −→r N and |N | ≡ N̂ .

Theorem A.6 (Confluence of Typed Reduction).
If M −։r N1 and M −։r N2, then there exist M ′

1

and M ′
2 such that |M ′

1| ≡ |M ′
2| and N1 −։r M ′

1 and
N2 −։r M ′

2.

12

Syntax Shared between Types and Terms

Q ::= P | S S ::= ∨ | + P ::= ∧ | × l, k ∈ Label = N ∅ 6= φ, ψ ⊂ Label

Types

α ∈ TypeVariable

ρ, σ, τ ::= o | υ1 −φ−
ψ
→ υ2 | Q[υ1, . . . , υn] | µα.τ

υ ::= α | τ

Type Equality

σ = τ iff U(σ) and U(τ), the infinite unfoldings of σ and τ , are identical

Type-Annotated Contexts

C ∈ Context ::= 2 | c | xτ | rec xτ .C | λl
ψ

xτ .C | C1 @φ
k

C2

| P (C1, . . . , Cn) | πP
i C | coerce (σ, τ) C | let xτ = C1 in C2

|
(

inS
i C

)τ
| caseS C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn

Type Erasure (a partial function)

|2| ≡ 2 |c| ≡ c

|xτ | ≡ x |rec xτ .C| ≡ rec x.|C|
∣

∣

∣
λl

ψ
xτ .C

∣

∣

∣
≡ λx.|C|

∣

∣

∣
C1 @φ

k
C2

∣

∣

∣
≡ |C1| @ |C2|

|×(C1, . . . , Cn)| ≡ ×(|C1| , . . . , |Cn|) |coerce (σ, τ) C| ≡ |C|
∣

∣

∣
π×

i C
∣

∣

∣
≡ π×

i |C|
∣

∣π∧
i C

∣

∣ ≡ |C|
∣

∣

∣

(

in
+
i C

)τ ∣

∣

∣
≡ in

+
i |C|

∣

∣(in∨
i C)τ

∣

∣ ≡ |C|

|let xτ = C1 in C2| ≡ (λx.|C1|) @ |C2|
∣

∣case+ C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn

∣

∣ ≡ case+ |C| bind x in |C1| , . . . , |Cn|

|case∨ C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn| ≡







(λx.|C1|) @ |C| if |C1| ≡ · · · ≡ |Cn|,

undefined otherwise.

|∧(C1, . . . , Cn)| ≡







|C1| if |C1| ≡ · · · ≡ |Cn|,

undefined otherwise.

Type-Annotated Terms, Values, Parallel Contexts

M, N ∈ Term = {C | the type erasure |C| ∈ UntTerm }

V ∈ Value = {C | the type erasure |C| ∈ UntValue }

Cp ∈ ParallelContext = {C | the type erasure |C| has exactly one hole }

Syntactic Sugar for Examples

bool = +[×[],×[]] true ≡
(

in+
1 ×()

)bool
false ≡

(

in+
2 ×()

)bool

(if M1 then M2 else M3) ≡ case+ M1 bind x in ×[] ⇒ M2,×[] ⇒ M3 where x is fresh

Figure 11: Syntax of explicitly typed language λCIL.

13

(const)
A ⊢ c : o

(var)
A, x:τ ⊢ xτ : τ

(→ elim)
A ⊢ M : σ −φ−−

{k}
→ τ ; A ⊢ N : σ

A ⊢ M @φ
k

N : τ
(→ intro)

A, x:σ ⊢ M : τ

A ⊢ λl
ψxσ .M : σ −

{l}
−−
ψ
→ τ

(× intro)
∀n

i=1. A ⊢ Mi : τi

A ⊢ ×(M1, . . . , Mn) : ×[τ1, . . . , τn]
(coerce)

A ⊢ M : σ; σ ≤ τ

A ⊢ coerce (σ, τ) M : τ

(∧ intro)
∀n

i=1. A ⊢ Mi : τi; |M1|≡· · ·≡|Mn|

A ⊢ ∧(M1, . . . , Mn) : ∧[τ1, . . . , τn]
(rec)

A, x:τ ⊢ M : τ

A ⊢ rec xτ .M : τ

(×,∧ elim)
A ⊢ M : P [τ1, . . . , τn]; 1 ≤ i ≤ n

A ⊢ πP
i M : τi

(arrow-≤)

φ ⊆ φ′; ψ′ ⊆ ψ

σ −φ−
ψ
→ τ ≤ σ −φ

′

−
ψ′→ τ

(+,∨ intro)

A ⊢ M : τi; 1 ≤ i ≤ n

A ⊢
(

inS
i M

)S[τ1,...,τn]
: S[τ1, . . . , τn]

(let)
A, x:σ ⊢ N : τ ; A ⊢ M : σ

A ⊢ let xσ = M in N : τ

(+ elim)
A ⊢ M : +[τ1, . . . , τn]; ∀n

i=1. A, x:τi ⊢ Mi : τ

A ⊢ case+ M bind x in τ1 ⇒ M1, . . . , τn ⇒ Mn : τ

(∨ elim)
A ⊢ M : ∨[τ1, . . . , τn]; ∀n

i=1. A, x:τi ⊢ Mi : τ ; |M1| ≡ · · · ≡ |Mn|

A ⊢ case∨ M bind x in τ1 ⇒ M1, . . . , τn ⇒ Mn : τ

Figure 12: Typing rules of explicitly typed language λCIL.

Main Notion of Reduction for Type-Annotated Terms

M −→r N iff ∃M ′, N ′. (M −nf−→t M ′ −→c N ′ −nf−→t N)

Computation Reduction

let xτ = V in M Ãc M [x:=V]

π×
i ×(V1, . . . , Vn) Ãc Vi if 1 ≤ i ≤ n

case+
(

in+
i V

)τ
bind x in τ1 ⇒ M1, . . . , τn ⇒ Mn Ãc let xτi = V in Mi if 1 ≤ i ≤ n

rec xτ .M Ãc M [x:=(rec xτ .M)]

Reduction contexts: Cc = ParallelContext

Type-Annotation-Simplification Reduction

(λl
ψ

xτ .N) @φ
k

M Ãt let xτ = M in N

π∧
i ∧(M1, . . . , Mn) Ãt Mi if 1 ≤ i ≤ n

case∨ (in∨
i N)τ

bind x in τ1 ⇒ M1, . . . , τn ⇒ Mn Ãt let xτi = N in Mi if 1 ≤ i ≤ n

(coerce (σ, τ) (λl
ψ

xρ.M)) @φ
k

N Ãt let xρ = N in M

coerce (σ1, τ) coerce (ρ, σ2) M Ãt coerce (ρ, τ) M

Reduction contexts: Ct = {C | C ∈ Context and C has exactly one hole }

Figure 13: Reduction rules of explicitly typed language λCIL.

14

