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hAbstra
t The development pro
ess of the Advan
ed En
ryption Stan-dard (AES) was laun
hed in 1997 by the US government through NIST.The De
orrelated Fast Cipher (DFC) was the CNRS proposal for theAES, among 14 other 
andidates in 1998. It was based on the re
entde
orrelation theory, to obtain 
ertain se
urity proofs 
overing linear anddi�erential 
ryptanalysis. DFC re
eived numerous 
omments. In parti
u-lar, Coppersmith dis
overed a weakness in the key s
hedule. We addressthis weakness by a slight modi�
ation on DFC. This paper presents thespe
i�
ations and rationales of DFC version 2, and dis
usses issues raisedduring the AES pro
ess.1 Introdu
tionA major goal in 
ryptography is to prove se
urity statements on en
ryptions
hemes. To this respe
t, it is well-known that the status of se
ret-key 
ryptog-raphy is quite di�erent from that of publi
-key 
ryptography. The de
orrelationtheory was introdu
ed in 1998 (see [20℄ for the original referen
e) as an attempttowards �lling this gap, by providing new ideas to build blo
k 
iphers, togetherwith se
urity proofs 
overing 
ertain (however general) 
lasses of atta
ks. Sin
ethe AES pro
ess was laun
hed by NIST at about the same period, the Fren
hNational Center for S
ienti�
 Resear
h (CNRS) de
ided to start a proje
t aimedat showing that de
orrelation theory was a reasonable proposal for making se-
ure and eÆ
ient blo
k 
iphers. The target platform was 
hosen to be 64-bitmi
ropro
essors, as su
h 
hips are likely to be
ome standard during the lifetimeof the AES. The CNRS proje
t gave birth to the \De
orrelated Fast Cipher"(DFC) [6,7℄.De
orrelation theory (see [20,21,22,23,24,25℄) enables to prove formal resultson the se
urity of 
ryptographi
 primitives under 
ertain hypotheses whi
h webelieve to be realisti
. In parti
ular, it enables to quantify the best advantageto distinguish two families of blo
k 
iphers, for a 
lass of atta
ks with limitedresour
es. For instan
e, one 
an 
onsider any Turing ma
hine restri
ted to agiven number d of ora
le 
alls to the blo
k 
ipher. Most of the existing blo
k
iphers are provably se
ure for the d = 1 
ase. However, none addresses the



d = 2 
ase, ex
ept DFC and other de
orrelation theory{based ones. Interest-ingly, the d = 2 
ase already provides formal se
urity against possible formaliza-tions of di�erential and linear 
ryptanalysis. The Nyberg-Knudsen approa
h [16℄was the only previously known way to a
hieve similar se
urity statements (withMISTY [13,14℄ as a famous example.) The MISTY approa
h however does notprovide mu
h design 
exibility, and the DFC approa
h seems to a
hieve strongerresults as shown in Se
tion 4. Besides, the Nyberg-Knudsen approa
h is indeedan ad ho
 
onstru
tion for providing se
urity against di�erential and linear at-ta
ks but does not 
onsider other general atta
ks with d = 2.Implementing de
orrelated blo
k 
iphers with order d = 2 by using knownte
hniques (like the PEANUT 
onstru
tion [20℄) requires the use of built-inmultipli
ation whi
h leads to non-trivial optimization tri
ks. DFC was submittedto the AES in order to show that su
h 
hallenges 
ould be over
ome. DFCattra
ted many 
omments from the AES 
ommunity, sometimes 
ontroversial.For instan
e, it was 
laimed that DFC was too slow, that its se
urity paradigmbrought nothing new, and that the se
urity margin was too small. In addition,Coppersmith dis
overed a weakness in the key s
hedule by showing the existen
eof a fra
tion of 2�128 of weak keys (using a quite 
omplex algorithm).In this paper, we give the 
omplete spe
i�
ations of DFCv2. This new versionaddresses the key s
hedule problem and allows s
alable modi�
ations of theinternal stru
ture (so that the user 
an 
hoose any \se
urity margin"). We alsotry to respond to the issues raised on the original DFC.2 Spe
i�
ations of DFCv2In this se
tion, we give the 
omplete spe
i�
ations of DFCv2, and emphasizerationales in ea
h subse
tion. A sample test ve
tor for the nominal 
hoi
es ofthe parameters is given in Appendix.2.1 NotationAll quantities are bit strings or integers. When string lengths are divisible byfour, quantities are denoted in hexade
imal. For instan
e, d43x denotes the bit-string 110101000011 and also represents the (de
imal) integer 3395 in arithmeti
operations. We use 
lassi
al bitwise bitstring operations: OR, AND, NOT, XOR.We also use the following arithmeti
 operations over the integers: +,�, mod. Theresult of an arithmeti
 operation is impli
itly 
onverted into a bitstring whoselength will be 
lear from the 
ontext. Finally, we use the bitstring 
on
atenationj and the trun
n fun
tion that extra
ts the n leftmost bits of a bitstring.2.2 High Level OverviewDFCv2 is 
hara
terized by four parameters m, k, r and s 
hosen for se
urity andeÆ
ien
y reasons. In DFCv2(m; k; r; s), m is the message blo
k length, k is thekey length, r is the number of en
ryption rounds, and s is the number of rounds



for the subkey generation. We require that m � 32, 0 � k � 2m, rs � 128, mis a multiple of 4, and r is even. The nominal 
hoi
e for DFCv2 is m = 128,k 2 f128; 192; 256g, r = 8 and s = 4.The en
ryption fun
tion DFCK operates onm-bit message blo
ks by means ofa se
ret keyK of arbitrary length k up to 2m bits. The 
orresponding de
ryptionfun
tion is DFC�1K and operates on m-bit message blo
ks.The se
ret key K is �rst turned into an mr-bit \Expanded Key" EK throughan \Expanding Fun
tion" EF, i.e. EK = EF(K). As explained in Se
tion 2.5, theEF fun
tion applies r s-round Feistel s
hemes (see Feistel [5℄). The en
ryptionpro
ess itself performs a similar r-round Feistel s
heme. Ea
h round uses the\Round Fun
tion" RF. This fun
tion maps a m2 -bit string onto a m2 -bit stringby using one m-bit string parameter. It is de�ned in Se
tion 2.3.Given a bitstring � of length multiple of m, say m�, we split it into � m-bitstrings � = p1jp2j : : : jp�:From � we de�ne a permutation En
� on the set of m-bit strings 
oming froman �-round Feistel s
heme. For any m-bit string PT whi
h is split into two m2 -bithalves x0 and x1 so that PT = x0jx1. We build a sequen
e x0; : : : ; x�+1 by theequation xi+1 = RFpi(xi) XOR xi�1 (i = 1; : : : ; �) (1)and we de�ne En
�(m) = x�+1jx�.Given an m-bit plaintext blo
k PT and the mr-bit expanded key EK, theDFCv2K en
ryption fun
tion is obtained asDFCv2K = En
EK (2)(that is, an r-round Feistel Cipher).The EF fun
tion uses an s-round version de�ned with En
.If we split EK into r m-bit stringsEK = RK1jRK2j : : : jRKr (3)obviously, we have DFC�1K = En
revEK whererevEK = RKrjRKr�1j : : : jRK1: (4)2.3 The RF Fun
tionThe RF fun
tion (as for \Round Fun
tion") is fed with one m-bit parameter,whi
h we view as two m2 -bit parameters: an \a-parameter" and a \b-parameter".It pro
esses a m2 -bit input x and outputs a m2 -bit string de�ned as follows:RFajb(x) = CP �((a� x+ b) mod p) mod 2m2 � (5)where CP is a permutation over the set of all m2 -bit strings (whi
h appears inSe
tion 2.4) and p is the smallest prime integer greater than 2m2 . For instan
e,if m = 128, we use p = 264 + 13. See the following table for other values.



m p32 216 + 164 232 + 1596 248 + 21128 264 + 13Following the PEANUT s
heme paradigm (see [20℄), the RF fun
tion imple-ments a de
orrelation module. It is basi
ally made from a 
lassi
al round fun
tion(with CP), and from the pairwise de
orrelation module x 7! (ax+ b mod p) mod2m2 whi
h was used in the PEANUT 
onstru
tion.From this 
onstru
tion, De
orrelation Theory ensures that if we 
onsiderDFCv2(128; k; 6; s) and if we make the heuristi
 assumption that EK is randomand uniformly distributed from the random 
hoi
e of the se
ret key, then the bestadvantage for distinguishing this redu
ed and idealized version of DFCv2 froma truly random permutation when limited to two 
hosen plaintexts is less than2�117 (see [24℄). This property has several 
onsequen
es on the formal se
urityof DFCv2 as summarized in Se
tion 4.2.4 The CP PermutationThe CP permutation (as for \Confusion Permutation") uses a look-up table RT(as for \Round Table") whi
h takes a 6-bit integer as input and provides a m4 -bitstring output. Its size is thus 2m bytes.Let y = yljyr be the input of CP where yl and yr are two m4 -bit strings. Wede�neCP(y) = ((yr XOR (RT Æ trun
6)(yl))j(yl XOR KC)) + KD mod 2m2 (6)where KC is a m4 -bit 
onstant string, and KD is a m2 -bit 
onstant string. Thepermutation CP is depi
ted in Fig. 1.The 
onstants RT(0); : : : ;RT(63), KC and KD will be set in Se
tion 2.6.The purpose of CP is to implement a permutation over all m2 -bit strings whi
hbreaks the algebrai
 stru
ture of the de
orrelation module. For this we use amixture of XORs and additions in a way very similar to that of the RC5 blo
k
ipher [19℄.The RT tables play an important role by introdu
ing randomness. These tablesare limited to 2m bytes in total (in order to �t to embedded hardware with lowmemory) but with a maximal input size.2.5 Key S
heduling AlgorithmIn order to generate a sequen
e RK1;RK2; : : : ;RKr from a given key K repre-sented as a bit string of length at most 2m, we use the following algorithm. We�rst pad K with a 
onstant pattern KS in order to make a 2m-bit \Padded Key"string by PK = trun
2m(KjKS): (7)
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Figure1. The CP Permutation.If K is of length m, we 
an observe that only the �rst m bits of KS are used.We de�ne KS of length 2m in order to allow any key size from 0 to 2m.Then we split PK into two m-bit strings RK0 and IRK0 (as for \InternalRound Key") su
h that PK = IRK0jRK0.1 We assume we are given 16 m-bit
onstants KAB0; : : : ;KAB15.2 We now de�neIRKj+1 = IRKj XOR �KABRT(j) mod 16 if j < 64KAB(RT(j�64)>>8) mod 16 otherwise (8)for j = 0; 1; : : : ; rs� 1 where RT(j � 64) >> 8 denotes the bitstring RT(j � 64)logi
ally shifted by 8 bits to the right. Basi
ally, we take the four least signi�
antbits of RT(j) for j < 64 and some other four bits of RT(j�64) for 64 � j < 128.(Sin
e we require that rs � 128, j is less than 128.) We noti
e that IRKj isa
tually the XOR of IRK0 with some 
onstant depending on j.Ea
h sequen
e of s IRKj values de�nes an sm-bit string IEKi whi
h servesas the round key sequen
e of some s-round internal en
ryption fun
tion. Morepre
isely, we de�ne IEKi = IRKis�s+1j : : : jIRKis�1jIRKis (9)for i = 1; 2; : : : ; r and IEn
i = En
IEKi (10)for i = 1; 2; : : : ; r as an \Internal En
ryption". We now de�ne the RKi sequen
eby RKi = IEn
i(RKi�1) (11)1 The following IRKi sequen
e repla
es the OAPijOBPi and EAPijEBPi sequen
esde�ned in DFCv1.2 These 
onstants repla
e the KAi and KBi sequen
es de�ned in DFCv1.



for i = 1; 2; : : : ; r. Finally we de�neEK = EF(K) = RK1jRK2j : : : jRKr: (12)We 
an start the same pro
ess from IRKrjRKr instead of PK. This enablesto de
rypt by 
omputing the reversed sequen
e RKi \on the 
y".This new key s
hedule repairs two drawba
ks whi
h were reported on DFCv1(see [2℄). Namely, due to the pairwise di�eren
e of the IRKis, the iterations ofthe IEKis are no longer symmetri
 whi
h �xes the weak key property reportedby Coppersmith, and the �rst round key RK1 now depends on all key bits. Inaddition, the RKi sequen
e now looks \more random".2.6 On the De�nition of the ConstantsThe previously de�ned algorithm depends on several 
onstants:{ 64 
onstants RT(0); : : : ;RT(63) of m4 bits (thus forming 16m bits),{ one m2 -bit 
onstant KD,{ one m4 -bit 
onstant KC,{ 16 m-bit 
onstants KAB0; : : : ;KAB15{ one 2m-bit 
onstant KS.Those 
onstants must satisfy the following se
urity 
riterion.1. the RT round table has no 
ollision,2. KD is odd,3. the IRKj are pairwise di�erent for j = 1; : : : ; rs.3We will use some 
onstants several times. A
tually, the RT table, KC and KDwill 
ontain the other 
onstants. We thus need 18m bits of random 
onstants.In order to 
onvin
e that this design hides no trap-door, we 
hoose the 
on-stants from the hexade
imal expansion of the mathemati
al e 
onstante = 1Xn=0 1n! = 2:b7e151628aed2a6abf7158x : : : (13)We use the following s
heme in order to de�ne the 
onstants.Step 1. Let EES (as for \e Expansion String") be the �rst 18m bits of theexpansion of e after the (hexa)de
imal point, we de�netrun
 674 m(EES) = RT(0)jRT(1)j : : : jRT(63)jKDjKC: (14)3 Note that when this 
riterion is satis�ed for one key, it is satis�ed for any key.



Here is the EES string for m = 128.b7e15162 8aed2a6a bf715880 9
f4f3
7 62e7160f 38b4da56xa784d904 5190
fef 324e7738 926
fbe5 f4bf8d8d 8
31d763xda06
80a bb1185eb 4f7
7b57 57f59584 90
fd47d 7
19bb42x158d9554 f7b46b
e d55
4d79 fd5f24d6 613
31
3 839a2ddfx8a9a276b 
fbfa1
8 77
56284 dab79
d4 
2b3293d 20e9e5eaxf02a
60a 

93ed87 4422a52e 
b238fee e5ab6add 835fd1a0x753d0a8f 78e537d2 b95bb79d 8d
ae
64 2
1e9f23 b829b5
2x780bf387 37df8bb3 00d01334 a0d0bd86 45
bfa73 a6160ffex393
48
b bb
a060f 0ff8e
6d 31beb5

 eed7f2f0 bb088017x163b
60d f45a0e
b 1b
d289b 06
bbfea 21ad08e1 847f3f73x78d56
ed 94640d6e f0d3d37b e67008e1 86d1bf27 5b9b241dxeb64749a 47dfdfb9 6632
3eb 061b6472 bbf84
26 144e49
2xStep 2. We use the following algorithm to enfor
e the �rst two se
urity 
riteria.1. for i = 0 to 63 do(a) while there exists 0 � j < i su
h that RT(j) = RT(i), repla
e RT(i) byRT(i) + 1 mod 2m4 .2. if KD is even, repla
e KD by KD + 1.3. 
hange the EES string a

ordingly so that Equation (14) holds.Step 3. From this EES string we now de�neEES = KAB0j : : : jKAB15jKS: (15)Note that the third se
urity 
riterion is ne
essarily satis�ed, otherwise we wouldhave 
ollisions in RT.At the end of the algorithm, we obtain a 
onstant EES string depending onthe parameters and whi
h 
omes from the expansion of e and all the de�ned
onstants. We noti
e that for m = 128 all 
riteria are satis�ed when EES isequal to the original expansion string of e (written in hexade
imal as above).For large m, it is highly unusual that we have to 
hange it (but for KD withprobability 1=2).3 Ben
hmarks and ImplementationsStraightforward implementations of DFC are quite slow on 32-bit mi
ropro-
essors for the nominal 
hoi
es of parameters, due to the 
riti
al operationax + b mod 264 + 13. EÆ
ient implementations require non trivial tri
ks. Thatis why the original implementation of DFCv1, whi
h was bound to NISTs re-quirements (namely, ANSI-C implementation, whi
h restri
ts to 32-bit wordsand prohibits the use of the 32-bit times 32-bit ! 64-bit multipli
ation of mostpro
essors), was quite slow and a
tually slower than most other 
andidates,espe
ially sin
e it dealed with endianess as well. The ANSI-C implementation



required 3600 
lo
k 
y
les per en
ryption (without key setup) on a Pentium Pro.This should be 
ompared with the 392 
lo
k 
y
les on the same pro
essor usingassembly language and pro
essor spe
i�
 tri
ks. Further implementation tri
ks(whi
h were summarized by Noilhan [15℄) and 
lever use of spe
i�
 ar
hite
turesof mi
ropro
essors have shown that DFC was among the fastest AES 
andidates,and notably the fastest one on ALPHA 64-bit mi
ropro
essors (310 
lo
k 
y
lesper en
ryption without the key setup, on an ALPHA 21164a in assembly 
ode4).DFCv2 does not introdu
e important implementation di�eren
es from DFCv1for the nominal 
hoi
e of the parameters. More pre
isely, only the key s
hedulehas 
hanged, and even the 
omplexity of the key setup has not 
hanged (itroughly takes four basi
 en
ryptions).4 Se
urity Analysis4.1 Provable Se
urity ResultsWe state the se
urity results in terms of the new parameters (m; k; r; s).Ideal key s
hedule. We re
all that the se
urity results 
onsist, �rstly of theoreti
alresults for an ideal extension of DFCv2 in whi
h the RKi sequen
e is assumed tobe uniformly distributed (we will 
all DFCv2�(m; r) this ideal algorithm whi
hdoes not depend on k or s), se
ondly of some pra
ti
al results on the real DFCv2algorithm in whi
h we have to make a heuristi
 assumption stated below.Theorem 1 ([24℄). The best advantage of an atta
k limited to two adaptively
hosen plaintexts for distinguishing DFCv2�(m; r) from a uniformly distributedrandom permutation is bounded byBestAdvCl2a (DFCv2�(m; r); C�) � 12 �3�� p2m2 �2 � 1�+ 82m2 �b r3
 (16)where p is the smallest prime number greater than 2m2 .If we let p = 2m2 (1 + Æ), the previous upper bound 
an be approximated by12 �6Æ + 23�m2 )�b r3
 : (17)This shows that the best advantage is negligible against 2�m if r � 9 when theatta
k is limited to two 
hosen plaintexts (i.e. in the d = 2 
ase). For m = 128,we have Æ = 13:2�64 and we get ba
k the bound of DFCv1BestAdvCl2a (DFCv2�(128; r); C�) � 122�57:5b r3
 (18)4 Implementation due to Robert Harley, see [8℄. See also [1,15℄.



From the de
orrelation theory we know that the se
urity against any atta
klimited to two 
hosen plaintexts implies the se
urity against some reasonableformalization of di�erential and linear 
ryptanalysis (see [20℄). Namely, the av-erage 
omplexity of di�erential 
ryptanalysis (over the distribution of the keys)needs at least to be within the order of 1=4BestAdv, as for the linear 
rypt-analysis (from an asymptoti
 bound). In this 
ontext, for instan
e, di�erential
ryptanalysis 
an be formalized into:1. pi
k a di�erential 
hara
teristi
 (a; b)2. query an input pair of di�eren
e a until the 
orresponding output pair hasa di�eren
e of bIt is well-known that this formalization is the 
ore of regular di�erential 
rypt-analysis [3℄. For instan
e, 2R atta
ks apply su
h a pro
edure on r � 2 rounds.Sin
e we 
an 
laim that the di�erential 
ryptanalysis 
ore against DFCv2�(128; 6)has a 
omplexity of 2115, we 
an thus 
laim that DFCv2�(128; 8) is se
ure againsta 2R di�erential 
ryptanalysis up to a 
omplexity of 2115.Similarly, the average 
omplexity of any known plaintext 
oming from aniterated atta
k of order one (i.e. an iterated atta
k in whi
h ea
h iteration ex-tra
ts one bit of information from one known plaintext/
iphertext pair) needsto be at least within the order of 1=2pBestAdv (see [22℄).More pre
isely, we re
all the following result:Theorem 2 ([20,22℄). For any di�erential distinguisher of 
omplexity n againstDFCv2�(m; r), the advantage AdvD is su
h thatAdvD � nBestAdv + n2m � 1 (19)where BestAdv is bounded by Equation (16). Similarly, for any linear distin-guisher we have limn!+1 AdvLn 13 � 9:3�4BestAdv + 12m � 1� 13 : (20)For any known plaintext iterated distinguisher of order 1 we haveAdvI � 3��922�m + 3BestAdv�n2� 13 + nBestAdv: (21)Real key s
hedule. Sin
e DFCv2 has a new key s
heduling algorithm, we needto transform the se
urity results on DFCv2� to DFCv2. Let D(m; k; r; s) bethe distribution of (RK1; : : : ;RKr) spanned by the key s
heduling algorithm ofDFCv2(m; k; r; s) when K is a uniformly distributed k-bit key, and we let D�denote the uniform distribution over rm-bit sequen
es. DFCv2� relies on the D�distribution, but DFCv2 uses the D distribution.Let Ht(m; k; r; s) be the best advantage of a Turing ma
hine limited to tsteps for distinguishing D(m; k; r; s) from D� from a single sample (i.e. an rm-bit string). (Ht is a heuristi
 fun
tion. We need to assume that for a reasonablet, Ht is small.)



Theorem 3. If for some 
lass Clt;n of distinguishers limited to a 
omplexityof t and n ora
le 
alls, the advantage for distinguishing DFCv2�(m; r) froma random permutation is limited to BestAdv, then the advantage for distin-guishing DFCv2(m; k; r; s) from a random permutation in 
lass Cl is limitedto Ht+O(n)(m; k; r; s) +BestAdv where the O(n) 
orresponds to the 
ost of sim-ulating DFCv2 on n ora
le 
alls.Therefore, assuming that the 
omplexity of a pra
ti
al atta
k already in
ludesan overestimated 
ost for simulating the ora
le 
alls (in pra
ti
e, using an ora
le
osts more than simulating it), then all se
urity results on DFCv2� extend toDFCv2 with an advantage o�set of Ht.For pra
ti
al t, m � 128, k � 128, s � 4 and r � 128s , we 
onje
ture thatHt(m; k; r; s) is negligible.4.2 Best Atta
ksSo far, the best reported atta
k is Knudsen's impossible di�erential atta
k [9℄against DFCv2 redu
ed to six rounds. It requires 270 
hosen plaintexts and a
omplexity of 2126 en
ryptions (see [10℄). This atta
k 
an be 
ompared to a 1Ratta
k that uses a di�erential 
hara
teristi
 on 5 rounds (for whi
h the 
omplex-ity lower bound indi
ated by Theorem 2 is of order 257 
hosen plaintexts).Harvey re
ently reported5 an atta
k against four rounds whi
h uses the non-inje
tive properties of the round fun
tions.Another quite strong 
laim of inse
urity is due to Rijmen and Knudsen [10℄.Basi
ally, they study a key-dependent one-round di�erential 
hara
teristi
 fora modi�ed version of DFC and dedu
e some inse
urity 
laims. One problem isthat they use a di�eren
e whi
h is not de�ned by the XOR operation but by themod 2m2 di�eren
e at the input and by the mod p di�eren
e at the output. Thismakes it hard to pile up su
h kinds of 
hara
teristi
s.For instan
e, Rijmen and Knudsen noti
ed that if we repla
e all XORs in theround fun
tion by regular additions, every single input di�eren
e leads to about800 possible output di�eren
es, one of it with probability 2�7 (with m = 128).These mod 2m2 output di�eren
es translate into XOR output di�eren
es withina probability related to their Hamming weight (be
ause of 
arry bits). We 
anthus estimate that the real DFC round fun
tion will lead to no key-dependentdi�erential probabilities greater than 2�23. Therefore, we believe the Rijmen-Knudsen observation does not imply any inse
urity statement for DFCv2.5 The DFC ControversyThe submission of DFCv1 to AES led to a 
ontroversy whi
h was oriented to-wards three arguments whi
h are addressed in the following subse
tions.5 at the Rump Session of Fast Software En
ryption 2000.



5.1 SpeedDFCv1 was 
laimed to be among the slowest of the 15 AES 
andidates, and oneof the worst for low-
ost smart 
ard implementations.A fair performan
e 
omparison is a really hard task, as was shown by theAES 
onferen
es [18, se
tion 4℄. Timings have been 
olle
ted by Granboulan [8℄and Lipmaa [12℄, and DFC is without any doubt among the 8 fastest 
andidatesin software : Crypton, DFC, E2, Mars, RC6, Rijndael, Serpent and Two�sh. It iseven the fastest 
andidate on ar
hite
ture that have fast multipli
ation (Alphaand TurboSpar
). When 
ompared to the �ve �nalists, DFC 
an be 
onsideredas a
hieving the same performan
es as Mars on 
urrent ar
hite
tures (but beingtwi
e as fast on future ar
hite
tures like Itanium). The dependen
e of DFC onmultipli
ation 
an be 
ompared to the dependen
e of RC6 on data dependentrotations.In addition, it was shown in [17℄ that DFC was reasonably implementableon very simple embedded mi
ropro
essors (su
h as Motorola 6805 for smart
ards). DFC does not take as mu
h room on low-
ost smart 
ards as Mars, andshould have similar performan
es. On high-end smart 
ards (StrongARM) DFCis probably the fastest of all AES 
andidates.In 
on
lusion, DFC performan
es are not the best, but they 
ompare verywell to Mars, whi
h is one of the �nalists.5.2 Provable Se
urityThe provable se
urity results were subje
t to 
ontroversy. We believe this wasdue to misunderstanding and we would like to 
larify the situation.After the DES was proposed, several other blo
k 
iphers showed up withoutany formal se
urity argument. The se
urity was essentially empiri
al: a blo
k
ipher was se
ure until someone 
ame up with an atta
k. Although this approa
hproved very fruitful for promoting resear
h on the analysis of blo
k 
iphers, these
urity provided is now debatable sin
e the analysis time of all world expertsis rather limited. Besides, we note that there were 15 
andidates to analyze inless than one year, while DES weaknesses were dis
overed only after 10 years ofpubli
 exposure.Another tremendous amount of regular blo
k 
iphers use regular \se
urity
laims", whi
h essentially 
onsists of heuristi
 arguments (like the argumenton Ht we used above for DFCv2). Typi
ally, people argue that we 
annot getgood di�erential 
hara
teristi
s by regular a
tive S-box 
ounting arguments. Thisparadigm was inherited by the work of Biham and Shamir [3℄ and Coppersmith'sanalysis of DES [4℄.In 1992, Lai and Massey [11℄ proposed the formal notion of \Markov 
ipher"whi
h 
hara
terizes 
iphers for whi
h di�erentials 
an ni
ely be piled up. Forthese 
iphers we 
an formally prove the heuristi
 se
urity arguments againstdi�erential 
ryptanalysis on average over the key spa
e.Another more formal approa
h on whi
h seldom blo
k 
iphers are based(in
luding MISTY [13,14℄) is inherited by Nyberg-Knudsen Theorem [16℄. It




onsists of using ad ho
 
onstru
tions with heavy non-linear 
onstraints on S-boxes and dedu
ing that the blo
k 
ipher has no good di�erential property onaverage on the key distribution. These results are however limited to di�erential(and linear) atta
ks.Our paradigm obtains similar results to the previous approa
h in a moregeneral setting for basi
ally no 
ost. It further provides more freedom in the
onstru
tion of the blo
k 
ipher. Thus, we believe it is a better alternative whi
hfollows the 
onstru
tion trends.One obje
tion by Rijmen and Knudsen [10℄ argued that sin
e there exist inse-
ure algorithms for whi
h similar se
urity 
laims hold, su
h 
laims are worthless.Indeed, the aÆne 
ipher x 7! K1x + K2 has a perfe
t pairwise de
orrelation,whi
h means that Theorem 2 holds with BestAdv= 0, and in parti
ular, nodi�erential distinguisher gets a relevant advantage. (The di�erential is 
hosenbefore the atta
k itself in this model, so it is independent on the key.) This
omes from the fa
t that we 
an \only" say that the probability of any di�eren-tial is low on average over the key spa
e. Previous formal approa
hes su�er fromthe same drawba
ks. A
tually, the Markov 
ipher approa
h is quite similar, andthe Nyberg-Knudsen approa
h has the same result. As 
ompared to the Nyberg-Knudsen approa
h, the present one holds for regular 
iphers (not only to adho
 
onstru
tions). Therefore we 
laim that DFCv2 bene�ts from the all regularheuristi
 se
urity arguments and the present formal se
urity proof (whi
h is notthe 
ase of the aÆne 
ipher, nor of any other regular 
ipher). This suggests thatDFC has its raison d'être.5.3 Se
urity MarginAnother 
riti
ism against DFC was its low \se
urity margin". The DFC phi-losophy 
onsisted of not overestimating the minimal number of se
ure roundsand 
ommitting to the formal results obtained by de
orrelation theory. We a
tu-ally believe that for 
onstru
tion reasons, the se
urity in
reases faster with thenumber of rounds than for other designs. We 
hose r = 8 as a 
hallenge to the
ryptographi
 
ommunity. Users who would not like to 
ommit on su
h a bet
an however freely use a higher number of rounds in the present DFCv2 version(for instan
e, r = 12 as re
ommended by Biham).6 Con
lusionWe have presented an updated version of DFC in whi
h we 
hanged the keys
hedule and introdu
ed s
alable parameters. These modi�
ations left the se
u-rity results un
hanged (ex
ept the weak key atta
k whi
h has been �xed).Despite of the 
ontroversy during the AES pro
ess, we have shown thatDFCv2 is one of the fastest blo
k 
iphers (on 64-bit mi
ropro
essors whi
h havean optimized multiplier for m = 128) and bene�ts from some formal se
urityresults in addition to regular heuristi
 arguments.



Although this �rst generation of de
orrelated 
iphers may still be improvedby the resear
h 
ommunity, we hope this paradigm will be useful to developfuture 
ryptographi
 algorithms.A
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torA test ve
tor for the nominal 
hoi
e of parameters (m = 128, k 2 f128; 192; 256g,r = 8 and s = 4) is in
luded below.We have 
hosen to use KS as key and 0x as plaintext. We re
all the value ofKS: 86d1bf27 5b9b241d eb64749a 47dfdfb9x6632
3eb 061b6472 bbf84
26 144e49
2xThe key s
hedule tests all KAB entries but KAB1 and KAB12 (whi
h are notused with this 
hoi
e of parameters). It results in the following subkeys:round subkeys1 05
5bd24 aa6ba7df 0846
b21 e1ab0d
7x2 63b67a97 142061
e 
034fd75 ea2
d3d9x3 abf20d20 9b963b4
 f04efdd6 2a6
459dx4 27215d71 2b28
6
b e2f472eb 288d47e8x5 02aae49f 
af2ddf3 60405b1d d0d269a7x6 2a516
d
 6270af2b f3db8f26 
26ea9ebx7 94d3b898 

b
a828 4f6af189 39230738x8 6
9d3
7e d7059b

 7a3d4288 f232b634xThe iterated en
ryptions of plaintext 0x tests all entries in the RT table forj = 64. j DFCv2jKS0 00000000 00000000 00000000 00000000x1 1ba5af95 aba096ed 5b6
9750 2fe7efa2x2 0f36105
 1302d52a e47d6d42 dfaaf5
7x3 bb58f671 54
59d52 fefb03a8 74
138
5x4 a

4
f76 6505
09f 5ffe10d5 b021d66
x8 62395

6 ba7bf158 f78b5897 04a1db59x16 387
4222 
61f5e69 7946e251 eb40031ax32 4ab38d66 16247
2a efbe6
de 4d302a86x64 ee043b7d a8610
46 3e282198 
93887b4x


