
DFCv2Louis Granboulan1, Phong Q. Nguyen1, Fabrie Noilhan2 and Serge Vaudenay31 �Eole Normale Sup�erieure, D�epartement d'Informatique2 Universit�e d'Orsay, Laboratoire de Reherhe en Informatique3 Swiss Federal Institute of Tehnology (EPFL)Louis.Granboulan�ens.fr, Phong.Nguyen�ens.fr, Fabrie.Noilhan�ens.fr,Serge.Vaudenay�epfl.hAbstrat The development proess of the Advaned Enryption Stan-dard (AES) was launhed in 1997 by the US government through NIST.The Deorrelated Fast Cipher (DFC) was the CNRS proposal for theAES, among 14 other andidates in 1998. It was based on the reentdeorrelation theory, to obtain ertain seurity proofs overing linear anddi�erential ryptanalysis. DFC reeived numerous omments. In partiu-lar, Coppersmith disovered a weakness in the key shedule. We addressthis weakness by a slight modi�ation on DFC. This paper presents thespei�ations and rationales of DFC version 2, and disusses issues raisedduring the AES proess.1 IntrodutionA major goal in ryptography is to prove seurity statements on enryptionshemes. To this respet, it is well-known that the status of seret-key ryptog-raphy is quite di�erent from that of publi-key ryptography. The deorrelationtheory was introdued in 1998 (see [20℄ for the original referene) as an attempttowards �lling this gap, by providing new ideas to build blok iphers, togetherwith seurity proofs overing ertain (however general) lasses of attaks. Sinethe AES proess was launhed by NIST at about the same period, the FrenhNational Center for Sienti� Researh (CNRS) deided to start a projet aimedat showing that deorrelation theory was a reasonable proposal for making se-ure and eÆient blok iphers. The target platform was hosen to be 64-bitmiroproessors, as suh hips are likely to beome standard during the lifetimeof the AES. The CNRS projet gave birth to the \Deorrelated Fast Cipher"(DFC) [6,7℄.Deorrelation theory (see [20,21,22,23,24,25℄) enables to prove formal resultson the seurity of ryptographi primitives under ertain hypotheses whih webelieve to be realisti. In partiular, it enables to quantify the best advantageto distinguish two families of blok iphers, for a lass of attaks with limitedresoures. For instane, one an onsider any Turing mahine restrited to agiven number d of orale alls to the blok ipher. Most of the existing blokiphers are provably seure for the d = 1 ase. However, none addresses the



d = 2 ase, exept DFC and other deorrelation theory{based ones. Interest-ingly, the d = 2 ase already provides formal seurity against possible formaliza-tions of di�erential and linear ryptanalysis. The Nyberg-Knudsen approah [16℄was the only previously known way to ahieve similar seurity statements (withMISTY [13,14℄ as a famous example.) The MISTY approah however does notprovide muh design exibility, and the DFC approah seems to ahieve strongerresults as shown in Setion 4. Besides, the Nyberg-Knudsen approah is indeedan ad ho onstrution for providing seurity against di�erential and linear at-taks but does not onsider other general attaks with d = 2.Implementing deorrelated blok iphers with order d = 2 by using knowntehniques (like the PEANUT onstrution [20℄) requires the use of built-inmultipliation whih leads to non-trivial optimization triks. DFC was submittedto the AES in order to show that suh hallenges ould be overome. DFCattrated many omments from the AES ommunity, sometimes ontroversial.For instane, it was laimed that DFC was too slow, that its seurity paradigmbrought nothing new, and that the seurity margin was too small. In addition,Coppersmith disovered a weakness in the key shedule by showing the existeneof a fration of 2�128 of weak keys (using a quite omplex algorithm).In this paper, we give the omplete spei�ations of DFCv2. This new versionaddresses the key shedule problem and allows salable modi�ations of theinternal struture (so that the user an hoose any \seurity margin"). We alsotry to respond to the issues raised on the original DFC.2 Spei�ations of DFCv2In this setion, we give the omplete spei�ations of DFCv2, and emphasizerationales in eah subsetion. A sample test vetor for the nominal hoies ofthe parameters is given in Appendix.2.1 NotationAll quantities are bit strings or integers. When string lengths are divisible byfour, quantities are denoted in hexadeimal. For instane, d43x denotes the bit-string 110101000011 and also represents the (deimal) integer 3395 in arithmetioperations. We use lassial bitwise bitstring operations: OR, AND, NOT, XOR.We also use the following arithmeti operations over the integers: +,�, mod. Theresult of an arithmeti operation is impliitly onverted into a bitstring whoselength will be lear from the ontext. Finally, we use the bitstring onatenationj and the trunn funtion that extrats the n leftmost bits of a bitstring.2.2 High Level OverviewDFCv2 is haraterized by four parameters m, k, r and s hosen for seurity andeÆieny reasons. In DFCv2(m; k; r; s), m is the message blok length, k is thekey length, r is the number of enryption rounds, and s is the number of rounds



for the subkey generation. We require that m � 32, 0 � k � 2m, rs � 128, mis a multiple of 4, and r is even. The nominal hoie for DFCv2 is m = 128,k 2 f128; 192; 256g, r = 8 and s = 4.The enryption funtion DFCK operates onm-bit message bloks by means ofa seret keyK of arbitrary length k up to 2m bits. The orresponding deryptionfuntion is DFC�1K and operates on m-bit message bloks.The seret key K is �rst turned into an mr-bit \Expanded Key" EK throughan \Expanding Funtion" EF, i.e. EK = EF(K). As explained in Setion 2.5, theEF funtion applies r s-round Feistel shemes (see Feistel [5℄). The enryptionproess itself performs a similar r-round Feistel sheme. Eah round uses the\Round Funtion" RF. This funtion maps a m2 -bit string onto a m2 -bit stringby using one m-bit string parameter. It is de�ned in Setion 2.3.Given a bitstring � of length multiple of m, say m�, we split it into � m-bitstrings � = p1jp2j : : : jp�:From � we de�ne a permutation En� on the set of m-bit strings oming froman �-round Feistel sheme. For any m-bit string PT whih is split into two m2 -bithalves x0 and x1 so that PT = x0jx1. We build a sequene x0; : : : ; x�+1 by theequation xi+1 = RFpi(xi) XOR xi�1 (i = 1; : : : ; �) (1)and we de�ne En�(m) = x�+1jx�.Given an m-bit plaintext blok PT and the mr-bit expanded key EK, theDFCv2K enryption funtion is obtained asDFCv2K = EnEK (2)(that is, an r-round Feistel Cipher).The EF funtion uses an s-round version de�ned with En.If we split EK into r m-bit stringsEK = RK1jRK2j : : : jRKr (3)obviously, we have DFC�1K = EnrevEK whererevEK = RKrjRKr�1j : : : jRK1: (4)2.3 The RF FuntionThe RF funtion (as for \Round Funtion") is fed with one m-bit parameter,whih we view as two m2 -bit parameters: an \a-parameter" and a \b-parameter".It proesses a m2 -bit input x and outputs a m2 -bit string de�ned as follows:RFajb(x) = CP �((a� x+ b) mod p) mod 2m2 � (5)where CP is a permutation over the set of all m2 -bit strings (whih appears inSetion 2.4) and p is the smallest prime integer greater than 2m2 . For instane,if m = 128, we use p = 264 + 13. See the following table for other values.



m p32 216 + 164 232 + 1596 248 + 21128 264 + 13Following the PEANUT sheme paradigm (see [20℄), the RF funtion imple-ments a deorrelation module. It is basially made from a lassial round funtion(with CP), and from the pairwise deorrelation module x 7! (ax+ b mod p) mod2m2 whih was used in the PEANUT onstrution.From this onstrution, Deorrelation Theory ensures that if we onsiderDFCv2(128; k; 6; s) and if we make the heuristi assumption that EK is randomand uniformly distributed from the random hoie of the seret key, then the bestadvantage for distinguishing this redued and idealized version of DFCv2 froma truly random permutation when limited to two hosen plaintexts is less than2�117 (see [24℄). This property has several onsequenes on the formal seurityof DFCv2 as summarized in Setion 4.2.4 The CP PermutationThe CP permutation (as for \Confusion Permutation") uses a look-up table RT(as for \Round Table") whih takes a 6-bit integer as input and provides a m4 -bitstring output. Its size is thus 2m bytes.Let y = yljyr be the input of CP where yl and yr are two m4 -bit strings. Wede�neCP(y) = ((yr XOR (RT Æ trun6)(yl))j(yl XOR KC)) + KD mod 2m2 (6)where KC is a m4 -bit onstant string, and KD is a m2 -bit onstant string. Thepermutation CP is depited in Fig. 1.The onstants RT(0); : : : ;RT(63), KC and KD will be set in Setion 2.6.The purpose of CP is to implement a permutation over all m2 -bit strings whihbreaks the algebrai struture of the deorrelation module. For this we use amixture of XORs and additions in a way very similar to that of the RC5 blokipher [19℄.The RT tables play an important role by introduing randomness. These tablesare limited to 2m bytes in total (in order to �t to embedded hardware with lowmemory) but with a maximal input size.2.5 Key Sheduling AlgorithmIn order to generate a sequene RK1;RK2; : : : ;RKr from a given key K repre-sented as a bit string of length at most 2m, we use the following algorithm. We�rst pad K with a onstant pattern KS in order to make a 2m-bit \Padded Key"string by PK = trun2m(KjKS): (7)
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Figure1. The CP Permutation.If K is of length m, we an observe that only the �rst m bits of KS are used.We de�ne KS of length 2m in order to allow any key size from 0 to 2m.Then we split PK into two m-bit strings RK0 and IRK0 (as for \InternalRound Key") suh that PK = IRK0jRK0.1 We assume we are given 16 m-bitonstants KAB0; : : : ;KAB15.2 We now de�neIRKj+1 = IRKj XOR �KABRT(j) mod 16 if j < 64KAB(RT(j�64)>>8) mod 16 otherwise (8)for j = 0; 1; : : : ; rs� 1 where RT(j � 64) >> 8 denotes the bitstring RT(j � 64)logially shifted by 8 bits to the right. Basially, we take the four least signi�antbits of RT(j) for j < 64 and some other four bits of RT(j�64) for 64 � j < 128.(Sine we require that rs � 128, j is less than 128.) We notie that IRKj isatually the XOR of IRK0 with some onstant depending on j.Eah sequene of s IRKj values de�nes an sm-bit string IEKi whih servesas the round key sequene of some s-round internal enryption funtion. Morepreisely, we de�ne IEKi = IRKis�s+1j : : : jIRKis�1jIRKis (9)for i = 1; 2; : : : ; r and IEni = EnIEKi (10)for i = 1; 2; : : : ; r as an \Internal Enryption". We now de�ne the RKi sequeneby RKi = IEni(RKi�1) (11)1 The following IRKi sequene replaes the OAPijOBPi and EAPijEBPi sequenesde�ned in DFCv1.2 These onstants replae the KAi and KBi sequenes de�ned in DFCv1.



for i = 1; 2; : : : ; r. Finally we de�neEK = EF(K) = RK1jRK2j : : : jRKr: (12)We an start the same proess from IRKrjRKr instead of PK. This enablesto derypt by omputing the reversed sequene RKi \on the y".This new key shedule repairs two drawbaks whih were reported on DFCv1(see [2℄). Namely, due to the pairwise di�erene of the IRKis, the iterations ofthe IEKis are no longer symmetri whih �xes the weak key property reportedby Coppersmith, and the �rst round key RK1 now depends on all key bits. Inaddition, the RKi sequene now looks \more random".2.6 On the De�nition of the ConstantsThe previously de�ned algorithm depends on several onstants:{ 64 onstants RT(0); : : : ;RT(63) of m4 bits (thus forming 16m bits),{ one m2 -bit onstant KD,{ one m4 -bit onstant KC,{ 16 m-bit onstants KAB0; : : : ;KAB15{ one 2m-bit onstant KS.Those onstants must satisfy the following seurity riterion.1. the RT round table has no ollision,2. KD is odd,3. the IRKj are pairwise di�erent for j = 1; : : : ; rs.3We will use some onstants several times. Atually, the RT table, KC and KDwill ontain the other onstants. We thus need 18m bits of random onstants.In order to onvine that this design hides no trap-door, we hoose the on-stants from the hexadeimal expansion of the mathematial e onstante = 1Xn=0 1n! = 2:b7e151628aed2a6abf7158x : : : (13)We use the following sheme in order to de�ne the onstants.Step 1. Let EES (as for \e Expansion String") be the �rst 18m bits of theexpansion of e after the (hexa)deimal point, we de�netrun 674 m(EES) = RT(0)jRT(1)j : : : jRT(63)jKDjKC: (14)3 Note that when this riterion is satis�ed for one key, it is satis�ed for any key.



Here is the EES string for m = 128.b7e15162 8aed2a6a bf715880 9f4f37 62e7160f 38b4da56xa784d904 5190fef 324e7738 926fbe5 f4bf8d8d 831d763xda0680a bb1185eb 4f77b57 57f59584 90fd47d 719bb42x158d9554 f7b46be d554d79 fd5f24d6 613313 839a2ddfx8a9a276b fbfa18 7756284 dab79d4 2b3293d 20e9e5eaxf02a60a 93ed87 4422a52e b238fee e5ab6add 835fd1a0x753d0a8f 78e537d2 b95bb79d 8dae64 21e9f23 b829b52x780bf387 37df8bb3 00d01334 a0d0bd86 45bfa73 a6160ffex39348b bba060f 0ff8e6d 31beb5 eed7f2f0 bb088017x163b60d f45a0eb 1bd289b 06bbfea 21ad08e1 847f3f73x78d56ed 94640d6e f0d3d37b e67008e1 86d1bf27 5b9b241dxeb64749a 47dfdfb9 66323eb 061b6472 bbf8426 144e492xStep 2. We use the following algorithm to enfore the �rst two seurity riteria.1. for i = 0 to 63 do(a) while there exists 0 � j < i suh that RT(j) = RT(i), replae RT(i) byRT(i) + 1 mod 2m4 .2. if KD is even, replae KD by KD + 1.3. hange the EES string aordingly so that Equation (14) holds.Step 3. From this EES string we now de�neEES = KAB0j : : : jKAB15jKS: (15)Note that the third seurity riterion is neessarily satis�ed, otherwise we wouldhave ollisions in RT.At the end of the algorithm, we obtain a onstant EES string depending onthe parameters and whih omes from the expansion of e and all the de�nedonstants. We notie that for m = 128 all riteria are satis�ed when EES isequal to the original expansion string of e (written in hexadeimal as above).For large m, it is highly unusual that we have to hange it (but for KD withprobability 1=2).3 Benhmarks and ImplementationsStraightforward implementations of DFC are quite slow on 32-bit miropro-essors for the nominal hoies of parameters, due to the ritial operationax + b mod 264 + 13. EÆient implementations require non trivial triks. Thatis why the original implementation of DFCv1, whih was bound to NISTs re-quirements (namely, ANSI-C implementation, whih restrits to 32-bit wordsand prohibits the use of the 32-bit times 32-bit ! 64-bit multipliation of mostproessors), was quite slow and atually slower than most other andidates,espeially sine it dealed with endianess as well. The ANSI-C implementation



required 3600 lok yles per enryption (without key setup) on a Pentium Pro.This should be ompared with the 392 lok yles on the same proessor usingassembly language and proessor spei� triks. Further implementation triks(whih were summarized by Noilhan [15℄) and lever use of spei� arhiteturesof miroproessors have shown that DFC was among the fastest AES andidates,and notably the fastest one on ALPHA 64-bit miroproessors (310 lok ylesper enryption without the key setup, on an ALPHA 21164a in assembly ode4).DFCv2 does not introdue important implementation di�erenes from DFCv1for the nominal hoie of the parameters. More preisely, only the key shedulehas hanged, and even the omplexity of the key setup has not hanged (itroughly takes four basi enryptions).4 Seurity Analysis4.1 Provable Seurity ResultsWe state the seurity results in terms of the new parameters (m; k; r; s).Ideal key shedule. We reall that the seurity results onsist, �rstly of theoretialresults for an ideal extension of DFCv2 in whih the RKi sequene is assumed tobe uniformly distributed (we will all DFCv2�(m; r) this ideal algorithm whihdoes not depend on k or s), seondly of some pratial results on the real DFCv2algorithm in whih we have to make a heuristi assumption stated below.Theorem 1 ([24℄). The best advantage of an attak limited to two adaptivelyhosen plaintexts for distinguishing DFCv2�(m; r) from a uniformly distributedrandom permutation is bounded byBestAdvCl2a (DFCv2�(m; r); C�) � 12 �3�� p2m2 �2 � 1�+ 82m2 �b r3 (16)where p is the smallest prime number greater than 2m2 .If we let p = 2m2 (1 + Æ), the previous upper bound an be approximated by12 �6Æ + 23�m2 )�b r3 : (17)This shows that the best advantage is negligible against 2�m if r � 9 when theattak is limited to two hosen plaintexts (i.e. in the d = 2 ase). For m = 128,we have Æ = 13:2�64 and we get bak the bound of DFCv1BestAdvCl2a (DFCv2�(128; r); C�) � 122�57:5b r3 (18)4 Implementation due to Robert Harley, see [8℄. See also [1,15℄.



From the deorrelation theory we know that the seurity against any attaklimited to two hosen plaintexts implies the seurity against some reasonableformalization of di�erential and linear ryptanalysis (see [20℄). Namely, the av-erage omplexity of di�erential ryptanalysis (over the distribution of the keys)needs at least to be within the order of 1=4BestAdv, as for the linear rypt-analysis (from an asymptoti bound). In this ontext, for instane, di�erentialryptanalysis an be formalized into:1. pik a di�erential harateristi (a; b)2. query an input pair of di�erene a until the orresponding output pair hasa di�erene of bIt is well-known that this formalization is the ore of regular di�erential rypt-analysis [3℄. For instane, 2R attaks apply suh a proedure on r � 2 rounds.Sine we an laim that the di�erential ryptanalysis ore against DFCv2�(128; 6)has a omplexity of 2115, we an thus laim that DFCv2�(128; 8) is seure againsta 2R di�erential ryptanalysis up to a omplexity of 2115.Similarly, the average omplexity of any known plaintext oming from aniterated attak of order one (i.e. an iterated attak in whih eah iteration ex-trats one bit of information from one known plaintext/iphertext pair) needsto be at least within the order of 1=2pBestAdv (see [22℄).More preisely, we reall the following result:Theorem 2 ([20,22℄). For any di�erential distinguisher of omplexity n againstDFCv2�(m; r), the advantage AdvD is suh thatAdvD � nBestAdv + n2m � 1 (19)where BestAdv is bounded by Equation (16). Similarly, for any linear distin-guisher we have limn!+1 AdvLn 13 � 9:3�4BestAdv + 12m � 1� 13 : (20)For any known plaintext iterated distinguisher of order 1 we haveAdvI � 3��922�m + 3BestAdv�n2� 13 + nBestAdv: (21)Real key shedule. Sine DFCv2 has a new key sheduling algorithm, we needto transform the seurity results on DFCv2� to DFCv2. Let D(m; k; r; s) bethe distribution of (RK1; : : : ;RKr) spanned by the key sheduling algorithm ofDFCv2(m; k; r; s) when K is a uniformly distributed k-bit key, and we let D�denote the uniform distribution over rm-bit sequenes. DFCv2� relies on the D�distribution, but DFCv2 uses the D distribution.Let Ht(m; k; r; s) be the best advantage of a Turing mahine limited to tsteps for distinguishing D(m; k; r; s) from D� from a single sample (i.e. an rm-bit string). (Ht is a heuristi funtion. We need to assume that for a reasonablet, Ht is small.)



Theorem 3. If for some lass Clt;n of distinguishers limited to a omplexityof t and n orale alls, the advantage for distinguishing DFCv2�(m; r) froma random permutation is limited to BestAdv, then the advantage for distin-guishing DFCv2(m; k; r; s) from a random permutation in lass Cl is limitedto Ht+O(n)(m; k; r; s) +BestAdv where the O(n) orresponds to the ost of sim-ulating DFCv2 on n orale alls.Therefore, assuming that the omplexity of a pratial attak already inludesan overestimated ost for simulating the orale alls (in pratie, using an oraleosts more than simulating it), then all seurity results on DFCv2� extend toDFCv2 with an advantage o�set of Ht.For pratial t, m � 128, k � 128, s � 4 and r � 128s , we onjeture thatHt(m; k; r; s) is negligible.4.2 Best AttaksSo far, the best reported attak is Knudsen's impossible di�erential attak [9℄against DFCv2 redued to six rounds. It requires 270 hosen plaintexts and aomplexity of 2126 enryptions (see [10℄). This attak an be ompared to a 1Rattak that uses a di�erential harateristi on 5 rounds (for whih the omplex-ity lower bound indiated by Theorem 2 is of order 257 hosen plaintexts).Harvey reently reported5 an attak against four rounds whih uses the non-injetive properties of the round funtions.Another quite strong laim of inseurity is due to Rijmen and Knudsen [10℄.Basially, they study a key-dependent one-round di�erential harateristi fora modi�ed version of DFC and dedue some inseurity laims. One problem isthat they use a di�erene whih is not de�ned by the XOR operation but by themod 2m2 di�erene at the input and by the mod p di�erene at the output. Thismakes it hard to pile up suh kinds of harateristis.For instane, Rijmen and Knudsen notied that if we replae all XORs in theround funtion by regular additions, every single input di�erene leads to about800 possible output di�erenes, one of it with probability 2�7 (with m = 128).These mod 2m2 output di�erenes translate into XOR output di�erenes withina probability related to their Hamming weight (beause of arry bits). We anthus estimate that the real DFC round funtion will lead to no key-dependentdi�erential probabilities greater than 2�23. Therefore, we believe the Rijmen-Knudsen observation does not imply any inseurity statement for DFCv2.5 The DFC ControversyThe submission of DFCv1 to AES led to a ontroversy whih was oriented to-wards three arguments whih are addressed in the following subsetions.5 at the Rump Session of Fast Software Enryption 2000.



5.1 SpeedDFCv1 was laimed to be among the slowest of the 15 AES andidates, and oneof the worst for low-ost smart ard implementations.A fair performane omparison is a really hard task, as was shown by theAES onferenes [18, setion 4℄. Timings have been olleted by Granboulan [8℄and Lipmaa [12℄, and DFC is without any doubt among the 8 fastest andidatesin software : Crypton, DFC, E2, Mars, RC6, Rijndael, Serpent and Two�sh. It iseven the fastest andidate on arhiteture that have fast multipliation (Alphaand TurboSpar). When ompared to the �ve �nalists, DFC an be onsideredas ahieving the same performanes as Mars on urrent arhitetures (but beingtwie as fast on future arhitetures like Itanium). The dependene of DFC onmultipliation an be ompared to the dependene of RC6 on data dependentrotations.In addition, it was shown in [17℄ that DFC was reasonably implementableon very simple embedded miroproessors (suh as Motorola 6805 for smartards). DFC does not take as muh room on low-ost smart ards as Mars, andshould have similar performanes. On high-end smart ards (StrongARM) DFCis probably the fastest of all AES andidates.In onlusion, DFC performanes are not the best, but they ompare verywell to Mars, whih is one of the �nalists.5.2 Provable SeurityThe provable seurity results were subjet to ontroversy. We believe this wasdue to misunderstanding and we would like to larify the situation.After the DES was proposed, several other blok iphers showed up withoutany formal seurity argument. The seurity was essentially empirial: a blokipher was seure until someone ame up with an attak. Although this approahproved very fruitful for promoting researh on the analysis of blok iphers, theseurity provided is now debatable sine the analysis time of all world expertsis rather limited. Besides, we note that there were 15 andidates to analyze inless than one year, while DES weaknesses were disovered only after 10 years ofpubli exposure.Another tremendous amount of regular blok iphers use regular \seuritylaims", whih essentially onsists of heuristi arguments (like the argumenton Ht we used above for DFCv2). Typially, people argue that we annot getgood di�erential harateristis by regular ative S-box ounting arguments. Thisparadigm was inherited by the work of Biham and Shamir [3℄ and Coppersmith'sanalysis of DES [4℄.In 1992, Lai and Massey [11℄ proposed the formal notion of \Markov ipher"whih haraterizes iphers for whih di�erentials an niely be piled up. Forthese iphers we an formally prove the heuristi seurity arguments againstdi�erential ryptanalysis on average over the key spae.Another more formal approah on whih seldom blok iphers are based(inluding MISTY [13,14℄) is inherited by Nyberg-Knudsen Theorem [16℄. It



onsists of using ad ho onstrutions with heavy non-linear onstraints on S-boxes and deduing that the blok ipher has no good di�erential property onaverage on the key distribution. These results are however limited to di�erential(and linear) attaks.Our paradigm obtains similar results to the previous approah in a moregeneral setting for basially no ost. It further provides more freedom in theonstrution of the blok ipher. Thus, we believe it is a better alternative whihfollows the onstrution trends.One objetion by Rijmen and Knudsen [10℄ argued that sine there exist inse-ure algorithms for whih similar seurity laims hold, suh laims are worthless.Indeed, the aÆne ipher x 7! K1x + K2 has a perfet pairwise deorrelation,whih means that Theorem 2 holds with BestAdv= 0, and in partiular, nodi�erential distinguisher gets a relevant advantage. (The di�erential is hosenbefore the attak itself in this model, so it is independent on the key.) Thisomes from the fat that we an \only" say that the probability of any di�eren-tial is low on average over the key spae. Previous formal approahes su�er fromthe same drawbaks. Atually, the Markov ipher approah is quite similar, andthe Nyberg-Knudsen approah has the same result. As ompared to the Nyberg-Knudsen approah, the present one holds for regular iphers (not only to adho onstrutions). Therefore we laim that DFCv2 bene�ts from the all regularheuristi seurity arguments and the present formal seurity proof (whih is notthe ase of the aÆne ipher, nor of any other regular ipher). This suggests thatDFC has its raison d'être.5.3 Seurity MarginAnother ritiism against DFC was its low \seurity margin". The DFC phi-losophy onsisted of not overestimating the minimal number of seure roundsand ommitting to the formal results obtained by deorrelation theory. We atu-ally believe that for onstrution reasons, the seurity inreases faster with thenumber of rounds than for other designs. We hose r = 8 as a hallenge to theryptographi ommunity. Users who would not like to ommit on suh a betan however freely use a higher number of rounds in the present DFCv2 version(for instane, r = 12 as reommended by Biham).6 ConlusionWe have presented an updated version of DFC in whih we hanged the keyshedule and introdued salable parameters. These modi�ations left the seu-rity results unhanged (exept the weak key attak whih has been �xed).Despite of the ontroversy during the AES proess, we have shown thatDFCv2 is one of the fastest blok iphers (on 64-bit miroproessors whih havean optimized multiplier for m = 128) and bene�ts from some formal seurityresults in addition to regular heuristi arguments.
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