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cally, in this paper, we investigate a method for drop-ping the closed world assumption (CWA) in the con-text of SNLP-style (McAllester & Rosenblitt 1991)partial order planning (e.g., (Penberthy & Weld 1992;Weld 1994; Russell & Norvig 1995)). A common ap-proach when dropping the CWA retains much of thestructure of STRIPS-style planners but re-considersthe set of propositions associated with each state ofthe world. Instead of being a complete descriptionof each state, the set of propositions is consideredto be a subset. Thus, with each state we have aset of beliefs that are assumed to be true but incom-plete (e.g., (Peot & Smith 1992; Etzioni et al. 1992;Krebsbach, Olawsky, & Gini 1992; Russell & Norvig1995)).2The above approach for dropping the CWA is e�ec-tive but limited in its expressive power if there is noquanti�cation. For example, you can represent a statewhere the agent knows that directory D has Tex �lesF and G in it, but you cannot represent that no otherTex �les are in directory D. To handle this de�cit,one can always add special encodings, such as the useof Clear(x) in the blocks world to represent when noother blocks are on x. However, use of Clear(x) is de-ceptively simple because, in the blocks world, a blockcan have at most one other block on top. If blocks wereallowed to have up to two blocks on top, we would needmore complex encodings.A more direct approach represents the fact that noother Tex �les are in directory D using a quanti�edproposition. For example, we might write:In(F;D) ^ Tex(F ) ^ In(G;D) ^ Tex(G) ^(8x ::In(x;D) _ :Tex(x) _ x = F _ x = G) (1)Here, In(x; y) is true if and only if (i�) x is currentlyin directory y and Tex(x) is true i� x is a Tex �le.2An excellent formal account of this style of represen-tation as applied to planning with sensing actions can befound in (Scherl & Levesque 1997).



The quanti�ed expression states that every object iseither not in D or is not a Tex �le except possibly Fand G { i.e., the quanti�ed expression does not com-mit to the truth or falsity of :In(F;D) _ :Tex(F )nor to :In(G;D) _ :Tex(G), but it does commit to:In(x;D) _ :Tex(x) for every other x. Using thisrepresentation, one can also represent that the truthof speci�c propositions is unknown. For example,In(F;D) ^ Tex(F ) ^ In(G;D) ^ Tex(G) ^(8x ::In(x;D) _ :Tex(x) _ x = F _ x = G _ x = H)is similar to (1) except that nothing is known aboutH .We introduce what we call  -forms to represent thistype of quanti�ed information. While we have studiedseveral classes of  -forms, in this paper, we examineonly one class that has the following format: � � :Q1(~x; ~c1) _ : : : _ :Qk(~x; ~ck) j:(~x = ~e1) ^ : : : ^ :(~x = ~en) �Here, each Qi is a predicate symbol, ~x is a vector ofvariables, each ~ci is a vector of constants and each ~eiis a vector of constants. We would thus represent thefact that no Tex �les are in directory D except possiblyF and G with:f:In(x;D) _ :Tex(x) j :(x = F ) ^ :(x = G)gWe prefer to consider (possibly in�nite) sets of groundnegated clauses instead of the universally quanti�edsentences from above, although the expressive powersof the two are identical.In our representation, an agent's knowledge of agiven state is a set of propositions, where each propo-sition is either a ground atom or a  -form. We notethat a negated literal is a special case of a  -form.Throughout this paper, when we refer to negated lit-erals, we actually mean such  -forms. We present aPOP algorithm for our representation that is a slightmodi�cation of the simplest POP algorithm found in(Russell & Norvig 1995). As you will see, we only in-troduce operations with polynomial time complexity.We thus argue informally that our algorithm is NP-complete if we bound the number of steps and groundterms.The advantage of  -forms is that they can representuseful information and we can reason e�ciently withthem as quanti�ed expressions . We do not need to ex-pand them to a large set of explicit ground literals as isdone with certain universally quanti�ed preconditionsin UCPOP (Penberthy & Weld 1992). In this paper,our universally quanti�ed  -forms can appear in ini-tial state descriptions, goals and in the preconditionsof actions. They cannot, however, appear in the e�ectsof actions.

We do not include sensing nor conditional actionsnor plan execution in this paper due to space limita-tions. However, we will present these extensions in afuture paper. In that work,  -forms can appear inthe e�ects of sensing actions. Our work is similarto the use of locally closed worlds (LCWs) in plan-ning (Golden, Etzioni, & Weld 1994; Etzioni, Golden,& Weld 1997), which we examine later.Our FormalismWe assume that the signature is �nite and the onlyfunction symbols are constants. Also, any two distinctconstants are assumed to denote distinct individualsin all models. Finally, we assume informally that thenumber of constants is fairly large, at least. If thenumber of constants is small, then it is probably easierto use ground negated literals in place of quanti�ed -forms.We base our representation of a changing world onSTRIPS (Fikes & Nilsson 1971), which in turn is basedon the situation calculus (McCarthy & Hayes 1969). Achanging world is thus viewed as a sequence of states,where state transitions occur only as the result of de-liberate action taken by the (single) agent.We use � to represent a substitution and write A�to represent the formula or term that results from in-stantiating A by �. When convenient, we will treatformulas of the form ~A = ~B as substitutions and viceversa. We say that two formulas or terms, A and B,unify i� 9� :A� = B�. We say that A matches onto Bi� 9� :A� = B. We write MGU(A;B) to denote theset of most general uni�ers (MGUs) of A and B andMGU�(A;B) to denote the set of MGUs such thatA� � B�. Moreover, when we write MGU(A;B; V ),we are limiting uni�cation to the variables in the set V .Similarly for MGU�(A;B; V ). Assuming that uni�ca-tion takes constant time (it can be bounded by the sizeof the largest term), computing MGU�(c1; c2), wherec1 and c2 are clauses, takes time O(c2), where c is themaximum number of disjuncts in c1 and c2.Let a proposition be either a ground atom or a  -form. A  -form is a set of negated ground clausesrepresented as follows. � f:Q1(~x; ~c1) _ : : : _ :Qk(~x; ~ck) j :�1 ^ : : : ^ :�ngHere, Qi(~x; ~ci) is any atom that uses all and only thevariables in ~x and all and only the constants in ~c. Each�i is just (~x = ~ei) for some vector of constants ~ei. nis, of course, �nite. We also de�ne the following.� M( ) is the main part of  , :Q1(~x;~c) _ : : : _:Qk(~x;~c).� V( ) denotes the variables of  , ~x, though we usu-ally treat it as a set,2



� �( ) is the formula that describes the exceptions ,:�1 ^ : : : ^ :�n.� Ei( ) is the instantiation of the i-th exception,(M( ))�i. Note that this is always ground.� E( ) is the set of all instantiations of its exceptions,fE1( ); : : : ; En( )g.Note that the cardinality of a  -form can be zero.An unquanti�ed proposition is either an atom or asingleton  -form. A negated literal is a singleton  -form whose clause has exactly one term. Moreover, theinterpretation of a proposition or of a set of proposi-tions is just the conjunction of all sentences it includes.A clause can be considered simply as a set of dis-juncts. For two clauses c1 and c2 we write c1 � c2 i�the set of disjuncts of c1 is a subset of the set of dis-juncts of c2. Therefore, for any two ground clauses c1and c2, c1 j= c2 i� c1 � c2.Given a set of ground clauses C and a single groundclause c1, C j= c1 i� 9c2 2 C:c2 j= c1. For any two setsof ground clauses C1 and C2 we de�ne di�erence:C1 � C2 = fc j c 2 C1 ^ C2 6j= cgand image (the image of C2 in C1):C2 � C1 = fc j c 2 C1 ^ C2 j= cg:C1 �C2 is the subset of C1 that is not entailed by C2while C2 � C1 is the subset of C1 that is entailed byC2. Thus, (C1 � C2) and (C2 � C1) always partitionC1, as depicted in Figure 1. Moreover, we have thefollowing equivalences.1: C1 � C2 = C1 � (C2 � C1) and2: C2 � C1 = C1 � (C1 � C2)The image operation is critical, as we will show, be-cause a single clause may be entailed by several di�er-ent other clauses, and vice versa.Let a world state, W , be a consistent set of atomsand negated literals where the truth value of everyatom A is known. Thus, a world state is complete andhas only de�nite knowledge. Let a state of knowledge(SOK) be a consistent set of propositions that repre-sents the knowledge that our (single) agent has abouta particular world state. Our agent, and thus our plan-ner, never has access to complete world states, but onlyto SOKs. We assume throughout this paper that anagent's SOK is always correct.An action is ground and is represented in a fashionsimilar to STRIPS. However, we do not use the add-list and delete-list format because it would be possibleto write action descriptions that produce inconsistentstates. Instead, each action a has:� a name, N (a),

� a set of propositions called the preconditions , P(a)(which may include general  -forms), and� a set of literals called the assert list , A(a) (i.e., all -forms here must be singleton negated literals).The precondition identi�es the conditions necessary forexecuting the action. The assert list, also called thee�ects of the action, identi�es all and only the propo-sitions that change as a result of the action.It is possible to execute an action a in a world stateW i� W j= P(a). If executed from world state W , thestate that results is:W 0 = (W �A(a)�) [A(a):Here, we de�ne S� be the closure of S. For either anatom A or a negated literal :A, the closure is the setfA;:Ag. For a set of propositions, the closure is theunion of the closures of its members. We �rst removethe closure of the assert list so that we can add theassert list back without conict.However, our agent will only have SOKs. Thus, itwill only execute an action a i� its SOK about thecurrent state is S and S j= P(a). The agent's SOKabout the state that results is:S0 = (S �A(a)�) [ A(a)For an example, we characterize the actiona = mv(fig; =img; =tex), which moves the �lefig from directory =img into =tex. We usePS(x) to represent that �le x is in postscript for-mat. Let P(a) = fIn(fig; =img)g which statesthat fig must be in =img. Also, let A(a) =f:In(fig; =img); In(fig; =tex)g: We begin with anSOK:S = 8<: In(a:tex; =tex); In(fig; =img); PS(a:ps);f:In(x; =img) j :(x = fig)g;f:In(x; =tex) _ :PS(x) j :(x = a:ps)g 9=;a = mv(fig; =img; =tex) is executable, and the result-ing SOK is:S0 = 8>><>>: In(fig; =tex); In(a:tex; =tex); PS(a:ps);f:In(x; =img)g;f:In(x; =tex) _ :PS(x) j:(x = a:ps) ^ :(x = fig)g 9>>=>>;Note that S contained :In(fig; =tex)_:PS(fig) andthat we added In(fig; =tex) when determining S0. Ifour update rule retained :In(fig; =tex)_:PS(fig) inS0, then in S0 we could perform resolution and concludethat :PS(fig). However, this would be wrong becausewe have no information on fig being a postscript �le ornot. Instead, our update rule deletes any clause that isentailed by :In(fig; =tex), and so S0 does not contain:In(fig; =tex) _ :PS(fig).3



S S � T T � SFigure 1: S � T and T � S partition S.While preconditions can use arbitrary  -forms, theassert list can only use literals. The reasons for thislimitation is that we are only interested in simple3 ac-tions (for now), and that each action must identifyexactly those propositions that change due to the ac-tion. This precision is needed so that we can accuratelycompute the state that results from the action. Thus,removing an object from a briefcase, or copying a �le,are actions that �t into our model while the action ofremoving all �les from a directory do not.4There is, however, one notable exception. We allowquanti�ed  -forms in the START action, whose assertlist holds the initial SOK for a planning problem, whichwe assume is consistent. Thus, in this paper, the initialSOK is the only place where  -forms can be introducedinto a problem.5For this initial SOK, we compute all possible reso-lutions and add them back to the SOK. The numberof such resolutions is limited by the number of atomsin the SOK. Thus, the initial SOK is saturated in thesense that any atom entailed by the SOK is explicitlyin the SOK and for any negated clause entailed, thereis a sub-clause in the SOK. As it turns out, all SOKsafter the initial SOK are consistent and similarly sat-urated thanks to our update rule above.3By simple we mean an action that has causal (Etzioniet al. 1992) e�ects only and makes only a �nite number ofchanges to the state. We also assume it is deterministic.All e�ects of a simple action can therefore be described bya �nite set of literals, without universal quanti�cation inthe e�ects.4For actions like rm�, we cannot use  -forms to describethe e�ects because we require knowing precisely whichpropositions changed.  -forms could be used with rm�to describe the state of a�airs that results (i.e., all �les indirectory are removed), but this use is not helpful becauseit would not identify precisely which �les were removed.5In future work, we will show how to use  -forms todescribe the results of sensing.

Entailment and  -di�erenceWe now present both theory and methods for deter-mining entailment and set di�erence for sets of proposi-tions that may include  -forms. Essentially, we trans-late these tests into operations of uni�cation, instantia-tion, identity, and simple set operations. The methodspresented here via theorems are readily translated intoalgorithms. Due to space limits, we do not presentproofs in this paper.EntailmentEverywhere in this section A;A1; : : : ; An denote atomsand  ;  1; : : : ;  n denote  -forms. Also, C and E de-note maximum number of disjuncts and exceptions ina  -form respectively, L is the maximum number of -forms in a SOK, and N is the maximum number ofliterals in any action's assert list.Let a simple  -form be one that has no exceptions{ i.e., E( ) = ; (and thus, �( ) = true).Theorem 1 Let  ;  1; : : : ;  n be simple  -forms.f 1; : : : ;  ng j=  i�9i : (1 � i � n) ^ ( i j=  ):Thus, if we ignore exceptions, then to show that a setof  -forms entails  , we need �nd only one element ofthe set that entails  . This turns out to be a criticalfactor in keeping  -form reasoning tractable as thereis no need to examine combinations of  -forms whendetermining entailment.Theorem 2 Let  and  0 be simple  -forms wherevariables are renamed as needed so there is novariable overlap between  and  0.  0 j= i� 9� : (M( 0)� � M( )) or, equivalently,MGU�(M( 0);M( );V( 0)) 6= ;.Thus, to test whether a simple  -form entails another,we simply test whether there is a subset-match betweenthe main part of the former and the main part of thelatter. The time complexity for this test is O(C2).To determine whether or not f 1; : : : ;  ng j=  ingeneral,we �rst �nd a  i whose main part entails the4



main part of  . However, the exceptions of  i weakens i. Therefore, we must also account for every clause in not implied by  i, i.e.  � i which is exactly the set(E( i)� )� ( i� ) (see Theorem 7). The followingtwo theorems describe the procedure for calculatingthis set, and Theorem 5 de�nes necessary and su�cientconditions for  -form entailment.Theorem 3 For an arbitrary �nite set of groundclauses fc1; : : : ; cngfc1; : : : ; cng�  = fM( )� j� 2 
g � E( )where 
 = Snj=1MGU�(cj ;M( )), and is a set of sizeO(nC).Thus, computing fc1; : : : ; cng�  takes timeO(nC(C +E)).6Theorem 4 For an arbitrary �nite set of groundclauses fc1; : : : ; cng(fc1; : : : ; cng�  p)� (( � fc1; : : : ; cng)�  p) =fcp j cp 2 (fc1; : : : ; cng�  p) ^8� 2MGU�(M( ); cp):[M( )� 2 E( ) _M( )� 2 fc1; : : : ; cng ]gis a set of size O(nC).Theorem 5 f 1; : : : ;  n j=  g i�9i:(1 � i � n) ^ (fM( i)g j= fM( )g) ^8c 2 ( �  i):9k:(1 � k � n) ^  k j= cDi�erence Operation Among  -formsOur planner encounters only two special cases of  2 � 1: (1) when  1 is a singleton ground clause and,(2) when the main part of  1 entails the main partof  2.When  1 is a singleton ground clause and  1 doesnot entail any clause in  2, then  2� 1 =  2. Other-wise, ( 1� 2) become new exceptions in the di�erence.Theorem 6 Let  1 be a singleton ground clause . If( 1 �  2) = ; then  2 �  1 =  2. Otherwise, 2 �  1 = fM( 2) j �( 2) ^ :�1 : : : ^ :�k gwhere f�igki=1 =MGU�( 1;M( 2)).We know that the above f�igki=1 6= ; when ( 1� 2) 6=;. The time complexity of this calculation is the sameas of computing (fcg�  2), namely, O(C(C+E)).When fM( 1)g j= fM( 2)g, the only residualsfrom  2 �  1 are the clauses in (E( 1) �  2) that arenot implied by any clause of  1.Theorem 7 Let fM( 1)g j= fM( 2)g. Then 2 �  1 = (E( 1)�  2)� ( 1 �  2)6In comparison to LCW work (Golden, Etzioni, & Weld1994; Etzioni, Golden, & Weld 1997) our E term roughlycorresponds to M - the number of all ground literals in theirmain database.

As follows from Theorem 4,  2 �  1 is a �nite set ofsingleton ground clauses , i.e. set of  -forms, and thetime complexity for computing  2� 1 is O(EC2(E+C)).Combining the complexity measures for the abovecomputation with the result of Theorem 5, we concludethat  -form entailment in a SOK takes O(EC2L(C +E)) in the worst case. Assuming all propositions inSOK are stored in a hash table, time complexity of thestate update rule is O(NLC2(C +E)).POP Algorithm with  -formsOur algorithm for partial order planning (POP) with -forms is a modi�cation of the standard POP al-gorithm presented in (Russell & Norvig 1995). Weassume that the reader is already familiar with SNLP-style planning (McAllester & Rosenblitt 1991), and willrely upon the tests that are de�ned in the previous sec-tion.Figure 2 shows the modi�ed POP algorithm writ-ten for a non-deterministic machine. We made a fewchanges to the standard algorithm so that it easily gen-eralizes to handling  -forms. First, our links have bothsource and target conditions, which may di�er { a linkin standard POP has only one condition since the con-ditions on the source and target steps must be iden-tical. Second, in step 2, we pick a step whose e�ecte j= c { in standard POP, we pick a step whose e�ectis exactly the same as c.The remaining modi�cations a�ect steps 2 and 6,which we now explain. In both cases, we recognizethat a link between two  -forms is actually a multitudeof links between the clauses of one and the clauses ofthe other. Thus, in the two modi�cations below, wesometimes split  -forms and/or links as needed.Modi�cations to Step 2: Pick a GoalIn step 2, we nondeterministically seek every step Ssthat has an e�ect e where e j= c. It should be clearthat when c is an atom, then e must be an atom, andwhen c is a  -form, then so must e. In the latter case,however, we also seek steps where e does not entail cbut where e nearly entails c, i.e. the main part of eentails the main part of c. In such cases, we performgoal splitting .If we have two  -forms,  c and  e, where both arenot single clauses and where fM( e)g j= fM( c)g,then \most" of  c is entailed by  e. The only \left-overs" are the clauses of  c that are not entailed byany clause of  e. These clauses are a subset of thoseclauses implied by exceptions of  e. In fact, this set of\leftovers" is precisely  c� e as de�ned in Theorem 7.The result of this di�erence is a set of singleton ground5



Algorithm. POP (<S;O;L>, open)1. If open is empty, return <S;O;L>2. Pick a goal < c; Sc > from open and remove it fromopen. choose an existing step Ss from S, or a newstep Ss, that has an e�ect e where e j= c or e nearlyentails c (if nearly entails, then Split Goal (e,c), goto4 ) . If no such step exists then fail.3. Add link Ss e;c! Sc to L.4. Add Ss � Sc to O.5. if Ss is a new step:� Add START� Ss and Ss �FINISH to L.� For each p in P(Ss) (the preconditions of Ss), add< p; Ss > to open.6. For every step St that threatens a link Ss e;c! Sc non-deterministically choose either:� Demotion: Add St � Ss to O.� Promotion: Add Sc � St to O.� Split Link(e,c).7. If O is inconsistent then fail.8. Recursively call POP with updated <S;O;L> andopen.Triple < S;O;L > denotes a partial plan; S is a setof steps , which are (ground) actions, initially containsonly START and FINISH; O is a set of ordering con-straints of the form Si � Sj , where Si and Sj are stepsin S, initially contains START�FINISH; L is a set of(causal) links of form Si e;p! Sj , where p is a precondi-tion of Sj , e is an e�ect of Si (i.e., e is in the assertlist of Si), and e j= p. We call Si and e the sourcestep and proposition, and Sj and p the target stepand proposition.L is initially empty. open is the list ofopen preconditions and initially contains preconditionsof the FINISH step.Figure 2: Modi�ed POP algorithm

Split Goal( e;  c ): Perform when:�  e;  c are  -forms and�  e nearly entails  c { i.e., M( e) j= M( c) but e 6j=  c.1. Partition  c into  1c =  e �  c and ( c �  e).2. Add Ss  e; 1c! Sc to L.3. For each ground clause c 2 ( c � e), add < c; Sc >to open.4. \Clean up" by modifying previous links a�ected bysplitting. Figure 3: Split Goal
Split Link( e;  c ):Perform when e�ect A on St threat-ens Ss  e; c! Sc { i.e. (f:Ag�  e)�  c 6= ;.1. Add Ss � St and St � Sc to O.2. Partition  e into f:Ag�  e and  1e =  e � f:Ag.3. Partition  c into (f:Ag�  e)�  c and  1c =  c �(f:Ag�  e).4. Remove original link Ss  e; c! Sc from L.5. Add Ss  1e ; 1c! Sc to L.6. For each ground clause c 2 ((f:Ag�  e)�  c), add< c; Sc > to open.7. \Clean up" by modifying previous links a�ected bysplitting. Figure 4: Split Link6



clauses { i.e., unquanti�ed  -forms. Thus, goal split-ting is the act of taking such a  c and  e and splitting c into a set of  -forms, 	 = f g [ ( c �  e), where =  e �  c =  c� ( c� e). Here,  is just  c afterwe add more exceptions to it as de�ned by Theorem6. Then, we remove  c from step Sc and replace itwith the equivalent set of  -forms in 	. Next, we adda link from  e to  , namely Ss  e; ! Sc. We add thenew  -forms to open. In this way, we have split  cinto a quanti�ed  -form,  , which is linked from  e,plus a set of singleton ground clause  -forms, namely c �  e, that still need links. Finally, we \clean up"by splitting any previously existing links from  e or to c, and continue this \clean up" until no further linksare a�ected.Example 1. See Figure 5.Example 2. Let  e = f:P (x; y) j :(xy = ab) ^:(xy = aa)g;  c = f:P (z; b) _ :P (a; z)g. ThenfM( e)g j= fM( c)g. E( e)�  c = f:P (a; b) _:P (a; a);:P (b; b) _ :P (a; b)g. The second clause inthis set is entailed by  e's clause :P (b; b), and there-fore  c �  e = f:P (a; b) _ :P (a; a)g. Thus after thegoal splitting  c is set to f:P (z; b) _ :P (a; z) j :(z =a)g, causal link Ss  e; c! Sc is created, and a new sub-goal f:P (a; b) _ :P (a; a)g is added to Sc and open.Note that goal splitting is an equivalence-preservingtransformation.Modi�cations to Step 6: Handle ThreatsFor a step to be a threat, its e�ect must remove asupporting proposition for the precondition from theSOK. Thus,  -forms can only be threatened by atoms,and vice versa.We add link splitting to the arsenal of threat resolu-tion techniques. Link splitting applies when an atomthreatens a causal link that supports a quanti�ed  -form.An atom A that is an e�ect for step Ss is a threatto a causal link Se  e; c! Sc i� it removes a clause of e that supports some clause(s) in  c. In particular,the clauses of  c that may lose support from  e as theresult of the threat, A, are exactly � (f:Ag�  e)�  c;and therefore A is a threat, i�  6= ;. Note that  isempty if f:Ag�  e = ;.Here, (f:Ag �  e) are those clauses that will be\lost" from  e due to e�ect A of Ss, and (f:Ag � e) �  c are those clauses in  c that are entailed bythose \lost" supports.Thus, we remove the link Se  e; c! Sc and replace itby the link Se  1e ; 1c! Sc where  1e =  e � f:Ag and

 1c =  c � (f:Ag�  e). Next, we add the clauses in back to the open list.Finally, we \clean up" by previously existing linksthat are a�ected.Example 3. See Figure 6.Example 4. Let l be the link Ss  e; c! Sc de�ned inExample 2. E�ect A1 = P (c; d) is clearly not a threatto l, because ((f:A1g�  e)�  c) = ;.Let's check if A2 = P (c; b) is a threat to l. ((f:A2g� e) �  c) = f:P (c; b) _ :P (a; c)g, so A2 is a threat.Notice, however, that the last caluse is also implied by e's clause :P (a; c).We �rst separate from the original goal the clausesthat may lose support due to the threat, and also sepa-rate supporting them propositions that the threat \re-moves" from the source. Thus, both the goal and thesource are partitioned into sets consisting of a quan-ti�ed  -form and a set of ground clauses. We par-tition  e into  1e =  e � f:Ag and a set of ground -forms f:Ag�  e. We also partition  c into  1c = c�(f:Ag�  e) and (f:Ag�  e)�  c. According tothe Theorem 6, the new goal  1c is just the original  cwith a few added exceptions. The same is true about 1e and  e. The remainder, (f:Ag�  e)�  c, is theset of all clauses that are entailed by the clauses thatwe've taken out of  e, i.e. f:Ag�  e.We now have  1e j=  1c , but A is not a threat tothe link Ss  1e ; 1c! Sc, since f:Ag �  1e = ;. We re-place the original link with Ss  1e ; 1c! Sc. However, wemust �nd new links to support the remaining clauses -((f:Ag�  e)�  c).Example 5. Consider again the link and the threatA2 from Example 4. As the result of link splitting,the original link is replaced with Ss  1e ; 1c! Sc, where 1e = f:P (x; y) j :(xy = ab) ^ :(xy = aa) ^ :(xy =cb)g;  1c = f:P (z; b) _ :P (a; z) j :(z = a) ^ :(z = c)g.A new goal,< f:P (c; b)_:P (a; c)g; Sc > is also postedto the open, and Ss contains :P (c; d) as a separatee�ec. Notice, that the new goal cannot be supportedby :P (c; d), because of the threat from A2, but canstill be supported by  1c , which contains :P (a; c).Applying link splitting we have replaced the originallink with a new one, which is not threatened and whichsupports all clauses of original goal  c except for a�nite number of ground clauses which we post to theopen.Note that a situation in which a non-singleton  -form threatens a causal link supporting an atom goalis not possible, simply because non-singleton  -forme�ects appear only in the START step, and every otherstep in the plan is ordered after START. Singleton  -forms, however, are handled by the original POP algo-7



p1 = f:In(x;D) _ :Tex(x) j x 6= F ^ x 6= Ggp2 = f:In(G;D) _ :Tex(G)g-
S1 e = f:In(x;D) j x 6= F ^ x 6= Gg
S1

S2
S2

p = f:In(x;D) _ :Tex(x) j x 6= Fg

After splitting p into p1 = e� p and p2 = p� e, e j= p1 and we link e to p1.
Before splitting p, e 6j= p, but nearly.

e = f:In(x;D) j x 6= F ^ x 6= Gg
Figure 5: Splitting a goal in order to add a linkrithm, and so we do not need any changes in case thethreatened link supports an atom goal.This algorithm, which we believe (but have notshown) to be sound and complete when the domainof objects is in�nite, can be extended to handle condi-tional e�ects and work with non-ground actions.Comparison with LCWsAs mentioned above, there are numerous works onSTRIPS-style planning without the closed world as-sumption. To our knowledge, however, only the LCWwork (Golden, Etzioni, & Weld 1994; Etzioni, Golden,& Weld 1997) deals with the type of quanti�ed infor-mation that is similar to our  -forms. The plannerpresented in these papers handles sensing actions andinformation loss, which we do not address here.An LCW sentence represents local closed world in-formation. LCW(�) means that for all ground sub-stitutions �, the agent knows the truth value of ��.Syntax of � sentences is limited to the conjunctionof positive literals (which corresponds exactly to thedisjunction of negative literals in simple  -forms) andcannot express statements with exceptions, like \weknow sizes of all �les, except a:tex and a:ps", whichcan be expressed with a  -form.Because of this de�ciency, the changes in the worldstate cannot be accurately reected in the agent'sknowledge database consisting of ground literals andLCW sentences, and as a result some information getsdiscarded. The LCW reasoning in itself is incomplete

even without sensing and information loss. The querymechanism is also incomplete - it cannot deduce allground facts that are implied by the agent's database.The language of  -forms doesn't have any of theseproblems and thus is more adequate in representing in-complete knowledge. It allows us to express statementswith exceptions, while keeping the reasoning completeand tractable. Time complexity measures of the stateupdate rule and  -form entailment, for example, com-pare favorably to those of LCW language.The  -forms presented in this paper have a limita-tion that every disjunct in a  -form must use all thesame variables, and thus there's a \gap" between theexpressive power of simple  -forms and LCW sentenceswhich have no such restriction on their conjuncts. Forexample, the constraint f:PS(x) _ :In(x; y)g cannotbe represented with a  -form used in the presentedlanguage, because its �rst disjunct uses only one of thetwo quanti�ed variables, but it can be encoded as anLCW sentence. However, if we drop that requirementand also allow for non-ground exceptions, the  -formlanguage becomes strictly more expressive than LCW,while retaining completeness and tractability of rea-soning.Finally,  -forms can be used e�ciently to describethe e�ects of sensing actions.Conclusions and Future WorkWe have presented a method for SNLP-style partialorder planning (POP) that does not make the closed8
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p = � :In(x;D) _ :Tex(x) jx 6= F ^ x 6= G �e = � :In(x;D) jx 6= F ^ x 6= G �

t = In(H;D)Before: t threatens link from e to p.

S1
S3 t = In(H;D)Finally: Threatened link and threat are discarded.
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Next: Threatened portion of link is split o�.
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Figure 6: Splitting a link to handle a threat9
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