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Abstract

In this paper, we present a theoretical analysis of
the error with three basic Monte Carlo radiosity al-
gorithms, based on continuous collision shooting
random walks, discrete collision shooting random
walks and stochastic Jacobi iterations. We show
that the variance of these three algorithms is in prac-
tice to very good approximation identical, explain-
ing empirical results obtained before. The deriva-
tion in this paper can easily be adapted in order to
calculate the variance of other Monte Carlo render-
ing algorithms, such as stochastic ray tracing and
density estimation as well.

1 Introduction

This paper deals with algorithms for computing the
illumination in a pure diffuse scene. It is well
known that the illumination in such a scene is de-
scribed by a integral equation similar to the render-
ing equation [5]:

B(x) = E(x) + �(x)

Z
S

G(x; y)B(y)dAy (1)

with kernel

G(x; y) =
cos �x cos �y

�r2xy
vis(x; y): (2)

B(x) and E(x) denote the total and self-emitted ra-
diosity at a point x on the surfaces S of the scene.
�(x) is the reflectivity. rxy is the distance between
a pair of surface points x and y. cos �x and cos �y
are the cosines of the angles between the surface
normal at x and y and a line connecting both points.
vis(x; y) is the usual visibility predicate. The algo-
rithms we will compare here compute the average
radiosity Bi on patches i in which the surfaces of

the scene are discretised:

Bi =
1

Ai

Z
Si

B(x)dAx: (3)

The first algorithm we will study is the straightfor-
ward simulation of light particle paths with buck-
eting according to (1) and (3) as proposed by Pat-
tanaik et al. in 1992 [9]. This algorithm will be
referred to below as “continuous collision shooting
random walks”, for reasons explained below.

Traditionally, the integral equation (1) is reduced
to a system of linear equations using Galerkins pro-
jection method with piecewise constant basis func-
tions:

B
0

i = Ei + �i
X
j

FijB
0

j : (4)

The factors Fij are called patch-to-patch form fac-
tors:

Fij =
1

Ai

Z
Si

Z
Sj

G(x; y)dAydAx: (5)

The coefficients B0

i that result after solving the sys-
tem of linear equations (4) are only an approxima-
tion for the average radiosities (3) above. The dif-
ference is that discretisation errors get propagated,
resulting in diffuse reflections of for instance light
leaks. It is possible to construct scenes in which the
difference is visible, but such cases are very rare in
practice. We will denote both the average radiosity
(3) and the radiosity coefficients in (4) by Bi in the
remainder of this text.

The major problem with the system of linear
equations (4) concerns the computation and storage
of the form factors Fij . Not only is the number
of form factors huge (10,000,000,000 for a scene
with 100,000 patches), but the form factor integral
is moreover non-trivial to compute due to potential
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discontinuities (changing visibility) and singulari-
ties (abutting patches). They are however all posi-
tive and their sum

P
j
Fij � 1, so that they form

a probability distribution function. This probability
distribution function can be sampled efficiently by
tracing rays with uniformly chosen origin on i and
cosine distributed directions. Such sampling can be
used in so called discrete random walks, introduced
by Sbert et al. [10], or in stochastic adaptations of
Jacobi’s iterative method for linear systems, as pro-
posed by Neumann et al. [8].

All three strategies mentioned above share the
property that the numerical value of form factors is
never needed, so that explicit form factor computa-
tion and storage is avoided. This leads to more re-
liable radiosity algorithms that require less storage.
Moreover, it turns out the the resulting algorithms
are easier to implement and to use and that they can
be much more rapid than other radiosity algorithms.
An overview with plenty of references can be found
in [2, 1].

In previous work [3], we have performed an em-
pirical comparison of the three algorithms men-
tioned above. Our experiments suggest that the ac-
curacy of the three algorithms is in practice identi-
cal, for a fixed number of shot rays (ray shooting
is the most expensive operation in the algorithms).
An intuitive argument was used to explain this re-
sult. In this paper, we provide a thorough theoret-
ical explication, by calculating the variance of the
underlying Monte Carlo estimators.

Before doing so, we remind the reader that the
basic idea of Monte Carlo methods is to formulate
a quantity to be computed as the expected value
of a random variable. The mean of independent
samples of the random variable yields an estimate
for its expected value and thus for the quantity to
be computed. A random variable is a set of pos-
sible outcomes, say ai, with associated probabil-
ities pi that indicate the chance that the outcome
will show up in a random trial. The outcomes
can form a discrete (countable) or a continuous set.
The expected value of a discrete random variable
Â = (ai; pi); i = 1 : : : n (n is the number of po-
tential outcomes), is defined as

E[Â] =

nX
i=1

aipi: (6)

The variance is the mean square deviation of the

outcomes from the expected value:

V [Â] =
nX
i=1

�
ai �E[Â]

�
2

pi =
nX
i=1

a2i pi �E[Â]2:

(7)

The expected value and variance of a continuous
random variable are obtained by replacing the sums
by an integral over the set of outcomes. It can be
shown that an estimate with N trials will be off by

less than one standard error
q
V [Ŝ]=N 68.3% of

the time. It will be off by less than twice the stan-
dard error 95.4% of the time. The probability that
the estimate is off by less than three times the stan-
dard error is 99.7%. If the variance V [Ŝ] is large,
more samples (larger N ) will be required in order
to obtain estimates which are within a fixed thresh-
old from the true sum with given confidence. An
excellent introduction to Monte Carlo methods can
be found in [6].

2 Continuous collision shooting ran-
dom walks

The random walk algorithm proposed by Pattanaik
et al. [9] proceeds as follows: imaginary parti-
cles are created on light sources with birth density
�(x) = E(x)=�T proportional to self-emitted ra-
diosity. �T denotes the total self-emitted power.
The propagation of these particles throughout the
environment is sampled in a two stages: first, a sur-
vival test is done, in which the probability of sur-
vival �(x) = �(x) is taken equal to the reflectiv-
ity. If the particle survives the test, a ray originat-
ing at x with cosine distributed direction �x w.r.t.
the surface normal at x is shot. The nearest point
y = h(x;�x) along the ray on a surface becomes
the new position of the particle. It can be shown that
the new position y is chosen with transition den-
sity p(x; y) = �(x)G(x; y). If the particle does
not survive, it is absorbed. The absorption prob-
ability is �(x) = 1 � �(x). No survival testing
is performed at the origin (on the light sources) of
the particles. An estimate for the average non-self-
emitted radiosity bk = Bk �Ek on each patch k is
obtained by counting the number Ck of particle vis-
its to the patch. The origin of the particles does not
count (source term estimation suppression). With
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N random walks:

~bk =
�T

N

�k

Ak

Ck � bk: (8)

The resulting random walks are called continu-
ous because they are simulated in a continuous
state space (points x on surfaces S of the scene).
The estimator above is called a collision estima-
tor, because the number of collisions of particles is
counted. Alternatively, one could only count par-
ticles when they are absorbed, or only when they
survive a collision. The algorithm has the physi-
cal interpretation of particles being shot from light
sources, hence the description continuous collision
shooting random walk. In the remainder of this sec-
tion, we will show that the variance V [̂bCRW

k ] of the
corresponding random walk estimator is to good ap-
proximation given by:

V [b̂CRW
k ] �

�k

Ak

�T bk: (9)

We will present a general derivation, which is also
valid for calculating the variance of other global il-
lumination algorithms based on continuous random
walks such as density estimation or stochastic ray
tracing.

Proof: Consider a second kind Fredholm equation

u(x) = e(x) +

Z
S

k(x; y)u(y)dy

with positive and contractive kernel
R
S
k(x; y)dy <

1;8x 2 S. Scalar products

W =

Z
S

w(x)u(x)dx (10)

can then be estimated by means of random walks J =
x0; x1; : : : ; x� as follows: x0 is sampled with birth den-
sity �(x0) with cannot vanish if w(x0) 6= 0. Subsequent
collisions xk; k = 1; : : : ; � are obtained from previous
collision xk�1 with transition density p(xk�1; xk) using
a survival/propagation two-step sampling procedure sim-
ilar to the one outlined above, the survival probabilities
being �(xk�1) and the transition probabilities shall not
vanish when the kernel k(xk�1; xk) doesn’t. The prob-
ability associated with such a random walk is p(J) =
�(x0)p(x0; x1) � � � p(x��1; x� )�(x� ). Associate with
such a random walk a score

s(J) =
w(x0)

�(x0)
e(x0)

+
w(x0)

�(x0)

k(x0; x1)

p(x0; x1)
e(x1) + � � �

+
w(x0)

�(x0)

k(x0; x1)

p(x0; x1)
� � �

k(x��1; x� )

p(x��1; x� )
e(x� ):

The interpretation of this random walk estimator is that of
gathering: the random walks originate at a region of inter-
est (determined by w(x)) and each time they visit a point
x with non-zero source term e(x) 6= 0, a score is con-
tributed. Using straightforward calculation according to
the definition (6), it can be shown that the expected value
of the scores s(J) above for all possible random walks J
is E[s] =W .

Now consider the following scores of random walks
with fixed origin x0 = z:

sz(Jjx0=z) = e(z) +
k(z; x1)

p(z; x1)

�

�
e(x1) +

k(x1; x2)

p(x1; x2)
(e(x2) + � � � )

�
:

By construction, the expected value of these scores is
E[sz] = u(z) (take w(x) = �(x) = Æ(x � z) with
Æ(x�z) Diracs delta function). We can thus re-write (10)
like

E[s] =

Z
S

�(x)
w(x)

�(x)
E[sx]dx = E[E[

w

�
sx]]:

An easy to prove and well-known property of such multi-
variate random variables states that then:

V [s] = V [E[
w

�
sx]] +E[V [

w

�
sx]]

leading to:

V [s] =

Z
S

w2(x)

�(x)

�
V [sx] + u2(x)

�
dx�W 2:

On the other hand, a random walk originating at x0 =
z is either directly absorbed, with probability �(x0),
or propagated to a different point x1 with probability
p(x0; x1). In the former case, the score is e(x0), in
the latter case, the expected score with the first two col-

lisions x0 and x1 fixed, is e(x0) +
k(x0;x1)
p(x0;x1)

E[sx1 ].
By explicitly introducing a death state �, with properties
k(x;�) = k(�; x) = 0, p(x;�) = �(x), p(�; x) =
0, p(�;�) = 1, the expected value E[sx0 ] can again be
written as an expected value, over all x1 and � of the ex-
pected value of a second random variable related with the
score of random walks originating at x1 [7]:

E[sx0 ] =

Z
S[�

p(x0; x1)

�
e(x0) +

k(x0; x1)

p(x0; x1)
E[sx1 ]

�
dx1:

The same relation E[X] = E[E[Y ]] =) V [X] =
V [E[Y ]] + E[V [Y ]] then yields:

v(x) = �(x) +

Z
S

k2(x; y)

p(x; y)
v(y)dy (11)

v(x) = V [sx] + u2(x) (12)

�(x) = e(x) [e(x) + 2(u(x) � e(x))] : (13)

Now consider Greens function G�(x; z) for the equation
(11):

G�(x; z) = Æ(z � x) +
k2(x; z)

p(x; z)

+

Z
S

k2(x; y1)

p(x; y1)

k2(y1; z)

p(y1; z)
dy1 + � � �
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The functions v(x) can then be written as

v(x) =

Z
S

G�(x; z)�(z)dz

and the variance of the random walk estimator for W be-
comes:

V [s] =

Z
S

�(z)

Z
S

G�(x0; z)
w2(x0)

�(x0)
dx0dz �W 2

(14)

With source term estimation suppression, the scores s(J)
are modified to reflect suppression of absorption at the ori-
gin by multiplying with the survival probability, and the
fact that no counting happens at the origin:

~s(J) =
w(x0)

�(x0)
�(x0)

k(x0; x1)

p(x0; x1)

�

�
e(x1) +

k(x1; x2)

p(x1; x2)
(e(x2) + � � � )

�
:

The expected value is

~W =

Z
S

w(x) (u(x) � e(x)) dx:

Using the same reasoning as before, the variance can be
shown to be

V [~s] =

Z
S

w2(x0)

�(x0)
�(x0)

Z
S

k2(x0; x1)

p(x0; x1)
v(x1)dx1dx0

� ~W 2:

SinceZ
S

k2(x0; x1)

p(x0; x1)
G�(x1; z)dx1 = G�(x0; z)� Æ(z � x0);

the variance V [~s] can also be written as

V [~s] =

Z
S

�(z)

Z
S

(G�(x0; z)� Æ(z � x0))

w2(x0)

�(x0)
�(x0)dx0dz � ~W 2: (15)

In the important special case that the transition density
p(x; y) = k(x; y) corresponds to the kernel, G�(x; z) =
G(x; z) is Greens function for the integral equation to be
solved itself. According to its definition,

u(x) =

Z
S

G(x; z)e(z)dz: (16)

In the case of radiosity, the kernel k(x; y) =
�(x)G(x; y). It can be shown easily that Greens function
then also fulfills

G(x; z)�(z) = G(z; x)�(x): (17)

The relations (16) and (17) will be helpful in order to get
rid of Greens function in the resulting variance expression.

The random walk estimator discussed so far in the
proof is a gathering random walk estimator. A shooting

random walk estimator however corresponds with a gath-
ering random walk estimator for an adjoint integral equa-
tion. First, it is clear that the average radiosity (3) is a
scalar product like (10):

Bk =

Z
S

V (x)B(x)dAx

with V (x) = �k(x)=Ak , �k(x) being the characteristic
function of patch k (�k(x) = 1 if x 2 Sk and 0 other-
wise). Such scalar products can also be obtained as

Bk =

Z
S

I(x)E(x)dAx

where I(x) is the solution of the adjoint radiosity integral
equation

I(x) = V (x) +

Z
S

I(y)�(y)G(y; x)dAy:

Or alternatively:

Bk =

Z
S

I(x)�(x)
E(x)

�(x)
dAx

I(x)�(x) = V (x)�(x) +

Z
S

�(x)G(x; y)I(y)�(y)dAy :

Filling in k(x; y) = p(x; y) = �(x)G(x; y), �(x) =
�(x), �(x) = E(x)=�T , w(x) = E(x)=�(x), e(x) =
V (x)�(x), u(x) = I(x)�(x), and using (17) and (16)
to get rid of Greens function, equation (15) immediately
leads to the result:

V [̂bCRW
k ] = �T

Z
S

f�(z) [V (z) + 2 (I(z)� V (z))]

V (z)b(z)g dAz �

�Z
S

V (z)b(z)dAz

�2

: (18)

Filling in V (z) = �k(z)=Ak and considering that I(z)�
V (z)� V (z) and Akbk � �T , then yields (9).

The variance of other Monte Carlo rendering al-
gorithms exploiting random walks with brdf times
cosine transition sampling fulfills the same rela-
tion. The difference between algorithms such as
light path tracing and density estimation, the photon
map, random walk algorithms for higher order ap-
proximations, and instant-radiosity like final gath-
ering algorithms is mainly in the definition of the
direct potential term V (z) [1].

3 Discrete collision shooting random
walks

Just like a continuous random walk can be used
in order to solve a second kind Fredholm integral
equation with contractive kernel, a discrete random
walk can be used in order to solve a system of lin-
ear equations with contractive matrix. The states
visited by the random walk now correspond with
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components of the solution, the patches i of the
scene, rather than surface points x. Sbert et al. [10]
has proposed the following algorithm for comput-
ing the power Pk = AkBk emitted by a patch i.
Random walks are generated by sampling their ori-
gin j0 corresponding to a light source patch, with
birth density �i = �i=�T , �i = AiEi the self-
emitted power. Next, transitions are sampled by a
two-step procedure similar to continuous random
walks: first, a survival test is performed with sur-
vival probability �i = �i equal to the reflectivity.
If the random walk survives, a transition is sampled
to a patch j with probability corresponding to the
form factor Fij . The combined transition density
is pij = �iFij . Sampling transitions according to
the form factor is done by choosing a uniform ran-
dom ray origin x on the source patch i, and a cosine
distributed direction �x w.r.t. the surface normal
at x. It can be shown easily that the patch contain-
ing the first hit point of this ray with the surfaces
in the scene is selected with probability equal to the
form factor. Basically by counting the number of
visits also here, an estimate for the non-self-emitted
radiosity on each patch is obtained:

�k
�T

N
Ck � Akbk:

The difference between the continuous and discrete
random walk algorithms is very small in practice: in
the discrete random walk algorithm, a particle hit-
ting a patch i is reflected from a uniform random
other location x on the patch i, whereas in the con-
tinuous random walk algorithm, it is reflected from
the point of incidence.

The variance of this discrete random walk es-
timator has been calculated before by Sbert et al.
[10], or can be derived using the same reasoning as
in the previous section (as in [2]). The result is:

V [b̂DRW
k ] =

�k
Ak

�T (1 + 2�k)bk � b2k (19)

�
�k
Ak

�T bk (20)

In this equation, �k is the recurrent potential at k:
consider k the only source of potential: Vi = Æki.
Then �k = Ik � Vk. In practice, �k � 1
and Akbk � �T . These approximations lead to
(20), which is identical as for a continuous collision
shooting random walk (9).

4 Stochastic Jacobi iterations

Consider the power system of equations, obtained
by multiplying both sides of (4) with the patch area
Ai:

Pi = �i +
X

j

PjFji�i:

The basic idea of the Jacobi iterative method for
solving this linear system is to construct a sequence
of approximations P

(k)
i for Pi, eventually leading

to the right solution. A convenient starting guess is
to take P

(0)
i = �i. A subsequent approximation

P (k+1) is then obtained from a previous approxi-
mation P (k) by filling P (k) into the right hand side
of the equations above. Each resulting iteration can
also be described as a double sum, by introducing
Kroneckers delta function Æli = 1 if l = i and 0 if
l 6= i:

P
(k+1)
i = �i +

X

j;l

P
(k)
j Fjl�lÆli: (21)

These double sums can be estimated using Monte
Carlo as follows [8, 2]:

1. Select terms (j; l) (pairs of patches) as fol-
lows: first select a patch j with probability
pj proportional to P

(k)
j . Next select a patch

l conditional on j with probability pljj = Fjl

equal to the form factor. The latter can be done
easily again by tracing a ray with uniform ran-
dom chosen origin on j and cosine distributed
direction. The combined probability of sam-
pling the pair (j; l) is

pjl =
P
(k)
j

P
(k)
T

Fjl with: P
(k)
T =
X

j

P
(k)
j ;

2. The score associated with each sampled term
is

~P
(k+1)
i =

P
(k)
j Fjl�lÆli

pjl
= �lP

(k)
T Æli

Using N rays, a new power estimate P (k+1)
i is ob-

tained simultaneously on all patches i by basically
counting the fraction Ni=N of the rays that lands
on i.

Unlike for random walk estimators, the variance
of the above estimator is extremely easy to calculate
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according to the definition of variance, formula (7).
It yields:

V [b̂
(k+1)
i ] =

�i
Ai

P
(k)
T b

(k+1)
i �

�
b
(k+1)
i

�2
: (22)

Now suppose the input radiosities to the iteration
B
(k)
i � Bi are close to the true solution already,

then the output radiosities will also be close to the
solution. The variance on the output radiosities then
is approximately equal to

V [b̂SJi ] �
�i
Ai

PT bi: (23)

Proof of (22): According to the definition, the vari-

ance V [P̂
(k+1)
i ��i] is

V =
X
j;l

�
P
(k)
j Fjl�lÆli

�2

P
(k)
j Fjl=P

(k)
T

�

�
P
(k+1)
i � �i

�2

The double sum immediately simplifies to

�iP
(k)
T

X
j

P
(k)
j Fji�i = �iP

(k)
T

�
P
(k+1)
i � �i

�
:

Division by A2
i yields the required result.

In practice, such a stochastic Jacobi iteration
transforms an approximation for the power distri-
bution in a scene into a new, almost entirely inde-
pendent, one. Rather than replacing the previous
approximation with the new one, the approxima-
tions are averaged. In this way, variance is progres-
sively reduced. A first approximation, sufficiently
close to the solution in order to make such averag-
ing work correctly, can be obtained by a sequence of
similar stochastic Jacobi iterations in which unshot
power is propagated rather than total power, simi-
lar to in the progressive refinement radiosity method
[4]. The result of these iterations is added together,
rather than averaged, until the unshot power drops
below a small threshold. In this way, a first com-
plete, but possibly very noisy radiosity solution is
obtained. The iterations steps as described above
are then used in order to progressively reduce vari-
ance. It is very easy to prove that, when the num-
ber of samples is chosen proportional to the unshot
power to be propagated in each incremental itera-
tion, the variance on the first complete radiosity so-
lution will be identical to the variance of a regular
iteration with same total number of samples [2, 1].

5 Discussion and Validation

According to (9) and (20), the variance with NRW

random walks is approximately equal to

V RW

NRW
�

�T

NRW

�k
Ak

bk:

The variance of a stochastic Jacobi iteration with
NSJ rays is, according to (22)

V SJ

NSJ
�

PT
NSJ

�k
Ak

bk:

It can be shown easily that the mean number of rays
traced for simulating N random walks, continuous
or discrete, is NPT =�T . For an equal number of
rays, choosing NSJ = NRWPT =�T , the variance
with collision shooting random walks, both discrete
or continuous, and stochastic Jacobi iterations will
therefore be equal to good approximation.

There are however minor differences: first, we
already explained in the introduction that a continu-
ous and discrete random walk do not solve the same
result. The difference in the variance of a continu-
ous or discrete random walk is of the same order:
rarely noticeable in practice because propagation of
discretisation error is negligible.

A discrete random walk, and the stochastic Ja-
cobi method, both do solve for the same result.
There is a clear, and more interesting, difference be-
tween the variance of these methods in scenes with
high recurrent potential �k. The exact expressions
for the variances are:

V RW

NRW
=

1

NRW

�
�k
Ak

�T (1 + 2�k)bk � b2k

�

V SJ

NSJ
=

1

NSJ

�
�k
Ak

PT bk � b2k

�
:

We have validated these expressions by measuring
the mean square error in a simple cubical scene with
unit square faces. The reflectivities and emissivities
are chosen constant so that � + E = 1. In such a
scene, the radiosity B = 1 can be computed analyt-
ically, and so are the variance expressions above:
� Ak = 1, the total area AT = 6;
� �T = 6E = 6(1� �);
� bk = �;
� PT = �T =(1 � �), so that NRW must be

chosen NSJ(1� �).
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� 1/10 1/3 1/2 2/3 9/10 19/20
� 0.00218 0.03125 0.0909 0.2353 1.3729 3.0336

RW (theory) 0.04915 0.54167 1.2727 2.588 10.076 20.218
RW (experiment) 0.0477 0.532 1.236 2.639 10.55 20.088

SJ (theory) 0.05 0.5555 1.25 2.2222 4.05 4.5125
SJ (experiment) 0.0500 0.554 1.198 2.180 3.887 4.323

Table 1: Observed mean square error (MSE) per ray for a selected patch in a homogeneous cube with unit
sides and � + E = 1. There is a good correspondence between the empirical and the predicted values for
both the stochastic Jacobi method and the discrete collision shooting random walk. RW=Random Walk,
SJ=Stochastic Jacobi.

With these choices, the variance expressions be-
come:

V RW

NRW
=

1

NSJ

�
6�2(1 + 2�)�

�2

1 � �

�

V SJ

NSJ
=

1

NSJ
5�2

� = Ik � Vk can be determined by solving

Ii = Vi +
X
j

Fij�jIj

analytically with Vi = Æik , taking values 0.2 for
the form factors between different patches. The true
values of the form factors are 0.200043 for abutting
patches and 0.1998 for parallel patches in the cube.
This yields the following solution for �:

� =
0:2�2

1� 0:2�(4 + �)
:

Filling in these values for � leads to the theoretical
values shown in table 1.

The reported empirical results are the average
mean square error (MSE) per ray observed on a se-
lected patch. They are the average MSE, after a suf-
ficiently high number of runs (more than 20,000 in
all cases) with NSJ = 10000 rays per run, multi-
plied with NSJ . The result for the stochastic Jacobi
iterative method have been obtained with the analyt-
ical solution B = 1 as input distribution. The ex-
periment has also been repeated with the (inexact)
result of a previous regular stochastic Jacobi itera-
tion as the input for the next iteration. The observed
mean square errors were not significantly different.

The difference in variance between discrete ran-
dom walk and stochastic Jacobi iterations is due
to a subtle difference in survival decisions. Sur-
vival decisions are made independently for each

random walk in the random walk method, while
they are made “in group” in the stochastic Jacobi
method. Consider that 10 particles have landed on a
patch with reflectivity 0.45 in the stochastic Jacobi
method. In a subsequent iteration, the number of
particles that will be shot from this patch will be 4 or
5, with an average of 4.5. With random walks, the
average number of surviving particles also will be
4.5 but it can be anything from 0 to 10 in an actual
experiment. The difference is however only notice-
able in scenes where particles have a high chance of
visiting the same patch twice or more. In practice,
this is very rarely the case.

6 Conclusion

In previous work [3], an empirical study has shown
that the accuracy for fixed number of samples
(rays) is identical with continuous collision shoot-
ing random walks, discrete collision shooting ran-
dom walks, and with the stochastic Jacobi algo-
rithm. Only an intuitive argument was given for this
observation. In this paper, we have calculated the
variance of the underlying Monte Carlo estimators
in these algorithms, and we have shown that for the
same number of ray, the expected square error will
indeed be the same, to good approximation.

Our previous study also indicated that low-
discrepancy sampling is more effective in the dis-
crete algorithms than in the continuous random
walk algorithm. A theoretical explication for this
observation has not been found. To the contrary:
the theory of low-discrepancy sampling rather indi-
cates that the lower-dimensional sampling in a con-
tinuous random walk algorithm should be more ef-
ficient. The theory however only provides very con-
servative error bounds that are valid asymptotically,
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for very large number of samples. We suspect that
the number of samples required in radiosity is not
high enough to exhibit the asymptotic properties.

The discussion in this paper also made clear
that the analysis of the stochastic Jacobi iterative
method is considerably easier than that of random
walk methods. Compare the length of the proofs in
x2 and x4! Not only is the analysis of the stochastic
Jacobi iterative method itself easier, but also the de-
sign and analysis of variance reduction techniques,
such as view-importance sampling, correlated sam-
pling, the combination of shooting and gathering,
and weighted importance sampling appears to be
far more easy, and more effective than for random
walks.

Stochastic Jacobi iterations have been studied ex-
tensively for diffuse reflection. An overview with
pointers to literature can be found in [1]. With the
exception of the work by Szirmay-Kalos, they have
to date hardly been investigated for general light
emission and scattering. With an appropriate so-
lution for the problem of storing non-diffuse illu-
mination information however, we believe that the
advantages of stochastic Jacobi iterations will carry
over to the general case as well.

References

[1] Ph. Bekaert. Stochastic radiosity: doing radios-
ity without form factors. SIGGRAPH’2001 course
notes, Course 20, ”Advanced Global Illumination”,
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