COMPUTING A DIAMETER-CONSTRAINED
MINIMUM SPANNING TREE

by

AYMAN MAHMOUD ABDALLA

B.S. Montclair State University, 1992
M.S. Montclair State Univergity, 1996

A dissartation submitted in partid fulfillment of the requirements
for the degree of Doctor of Philosophy
in the School of Electricd Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Horida
Orlando, Florida

Spring Term
2001

Major Professor: Narsingh Deo

ABSTRACT

In numerous practical gpplications, it is necessary to find the smdlest posshble tree with a
bounded diameter. A diameter-condrained minimum spanning tree (DCMST) of a given
undirected, edge-weighted greph, G, is the smdlest-weight spanning tree of al spanning
trees of G which contain no path with more than k edges, where k is a given postive
integer. The problem of findng a DCMST is NP-complete for dl vdues of k;
4 £k £ (n—2), except when dl edge-weights are identical.

A DCMST is essentid for the effidency of various distributed mutua excluson
dgorithms, where it can minimize the number of messages communicaied among
processors per criticd section. It is dso useful in linear lightwave networks, where it can
minimize interference in the network by limiting the traffic in the network lines. Another
practica gpplication requiring a DCMST aises in daa compresson, where some
dgorithms compress a file utilizing a tree data-structure, and decompress a path in he
tree to access a record. A DCMST helps such dgorithms to be fast without sacrificing a
lot of storage space.

We present a survey of the literature on the DCMST problem, study the expected
diameter of a random labeled tree, and present five new polynomid-time agorithms for
an gpproximate DCMST. One of our new agorithms congtructs an approximate DCMST

in a modified greedy fashion, employing a heuristic for sdlecting an edge to be added to

the tree in each dage of the condruction. Three other new dgorithms dart with an
uncondrained minimum spanning tree, and iterativdy refine it into an approximae
DCMST. We dso present an adgorithm designed for the special case when the diameter
is required to be no more than 4. Such a diameter-4 tree is aso used for evauaing the
quaity of other adgorithms. All five dgorithms were implemented on a PC, and four of
them wee dso padldized and implemented on a massvey padld machine—the
MasPar MP-1. We discuss convergence, relalive merits, and implementation of these
heurigics. Our extensve empiricd sudy shows that the heuristics produce good

solutions for awide variety of inputs.

To my parents

ACKNOWLEDGEMENTS

Firg of dl, thank God for the abilities and opportunities thet made this dissertation
possble. | would like to thank my advisor, Prof. Narsngh Deo, for his guidance and
assisance, which dgnificantly contributed to the further development of my research and
writing skills. | would dso like to thank the committee members. Profs. Robert Brigham,
Mostafa Bassiouni, Rondd Dutton, and Ali Orogji, whose comments helped me improve
this dissertation.

| would like to give specid thanks to my parents, and the rest of my family, who gave
me unconditional support and encouragement throughout the course of my sudies. Also,
thanks to my fiancé who has been very supportive and understanding during the long
time | needed to conduct research and write this dissertation. Last but not least, thanks to
dl my friends and colleagues, especidly those in the Center for Pardle Computation, for
their comments and encouragement, and thanks to the daff of the School of Electrica

Engineering and Computer Science for dl their help.

TABLE OF CONTENTS

LIST OF FIGURES ...ttt sttt s nnenne s viii
LIST OF SYMBOLS ...ttt sttt b e b IX
CHAPTER 1: INTRODUCTION ...ociiiiicieiieieiesie et se e sae et sse s ssesneesesnens 1
00 A |V V7 1 o PSS 2

1.2 Existing Algorithms for the DCMST Problemcccccoovevvececceevece e 6

1.3 A Generalization of the DCMST Problem ... 11

1.4 Related Optimization and Decision Problems ..., 12

1.5 Diameter Sets and the Dynamic DCMSTccccoveieiieieveeveee e 14

1.6 The Diameter of a RANAOM TIEEcceoiiiiiiiiirieeiee e s 16

O © 11 1T P 17
CHAPTER 2: EXPECTED VALUE OF MST-DIAMETER ...ccoiiiiiieeree, 19
2.1 Exact Average-DIiamEtercoocooiiiiiiiereseneseeee e 21

2.2 Approximate Average-Diametercocoviieniinienieieeree e 27
CHAPTER 3: QUALITY OF AN APPROXIMATE DCMST ..o, 30
3.1 Polynomially-Solvable Cases ... 30

3.2 The Specia-Case Algorithm for DCMST(4) ...ooeeveeieeeeseee e 32
CHAPTER 4: THE IR1ITERATIVE-REFINEMENT ALGORITHM 35
g R 8 7= N Lo o1 1 o o OSSR 35

4.2 IMPIEMENALIONcceecieeieeie ettt s e e e nneas 41

4.3 CONVEIGENCEooeviiieerieeteere et se s ss e sreer e sse e sbe s e e ar e resseesneenesneenneas 42
CHAPTER 5: THE IR2 ITERATIVE-REFINELENT ALGORITHMcccceueee. 43
5.1 Selecting Edgesfor ReEmMOValcccooeiiieiiiiinnieeeesee e a7

5.2 Selecting a Replacement EAQEcoocoverininenineeeeee e 49

5.2.1 Edge-Replacement Method ERM1cccooviieieeneeiiecienen, 49

5.2.1 Edge-Replacement Method ERM2cccoceviiveiieiieeveeciene, 51

5.3 IMPIEMENLALIONceiiiiieiiiieiieeeee e 53

5.4 CONVEIGENCE ...ooouveiiiiiieeiieesieeesste e sree s ssbe e st e s ssseesssseesseeesbeeesbeeesaneessnseeeas 57

CHAPTER 6: THE CIR ITERATIVE-REFINELENT ALGORITHM 60

6.1 IMPIEMENLALION ...ceeiiieeie et 60
6.2 CONVEIGEINCE ...ttt ettt st be e e e s b e e e e bt nesaeenreene e 62
CHAPTER 7: THE ONE-TIME-TREE-CONSTURCTION ALGORITHM 64
7.1 The AlQOrthm ..o 64
7.2 IMPIEMENLELIONceeeiecieceee et 68
RS T 001V (0 0o SRR 70
CHAPTER 8: PERFORMANCE COMPARISONS ... 72
CHAPTER 9: CONCLUSION ..ottt sttt s 77
APPENDIX A: PROGRAM CODE FOR COMPUTING EXACT AVERAGE-
DIAMETER .o 79
APPENDIX B: PROGRAM CODE FOR THE ITERATIVE-REFINEMENT
ALGORITHMS L.t e 88
APPENDIX C: PROGRAM CODE FOR THE ONE-TIME-TREE-
CONSTURCTION ALGORITHM .o 119
LIST OF REFERENCESoooi oot ee st 151

Vi

21

2.2

2.3

31

4.1

4.2

5.1

5.2

8.1

8.2

8.3

8.4

LIST OF FIGURES

The unlabal€d treeS Of OFAEY 6oeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et ee e e e e e e eeeeeeeeeees

Different ways to connect anode from Sotoanodein S coovvveeveceevecce v,

Percentage error in approximate average-diameterccocevveeeeceeseccesee e,
One step in constructing an approximate DCM ST (4) from DCMST(3)
Anexample of CyCliNg INTRLocoiiieiececec e e
Finding an approximate DCM ST (2) by penalizing 2 edges per iteration
AN eXaMPIE OF IR2 ... sp e nnee s

Weight quality of approximate solution, in randomly weighted complete-graphs
with Hamiltonian-path M ST, produced by IR2 using two different edge-
replacement MELNOOS ... s

Theratio ((spanning-tree weight) / (MST weight)) in randomly weighted complete-
0] =01 USSR

Theratio ((spanning-tree weight) / (MST weight)) in randomly weighted complete-
graphs with Hamiltonian-path MSTSccciiiiieee e

Theratio ((spanning-tree weight) / (MST weight)) in randomly weighted graphs
WIth 20%0 AENSITY ..eooeeeiiecie et ettt e e sae e e aeenree s

Thetime required by different dgorithms to obtain an approximate DCMST(5) in
randomly weighted complete-graphs ..o e

viii

IS

b
D
e

r

Qo)
Wg(n)
a,bc

&, &, &, as
Adj(v)
BFST

C

CIR

Dq (X)

o
=]

DCMST

LIST OF SYMBOLS

the universa quantifier

the number of nodesintree S, (if S isatree), or the number of dementsin
st S (if Sisas).

the bandwidth of alinein anetwork

the maximum node-degree in the tree

asmdl pogtive constant

number of leaves adjacert to a given bicenter node in atree of diameter 3
bounded by g(n)

bounded below by g(n)

nodes

diameters from a tree-diameter set, described in Chapter 1
nodes adjacent to v within the given set of edges

breadth-first gpanning tree

the set of edges near the center of the spanning tree

the composite-iterative-refinement dgorithm

the diameter of a gpanning tree

the enumerator (generating function) for al treeswith diameter d
the expected vaue of diameter for alabeled tree with n nodes

diameter-congtrained minimum spanning tree

DCMST(k) diameter-condrained minimum spanning tree with dianger no more
than k

dist(u, v) the (unweighted) distance from node u to node v

distc(l) the distance of edge | from the center of the treg, plus 1

distdi) the distance from the source node (or edge) to nodei

e Napier's constant » 2.71828

E,E,E sets of edges

ecc(u) the eccentricity of node u: the maximum distance from node u to any node
inthe same tree

eccr(u) the eccentricity of node u with respect totree T

ERM1, ERM2 the edge-replacement methods used by Algorithm IR2

G G,G gahs

Gh(x) the enumerator (generating function) for al treeswith height £ h
h the height of atree

Hn(X) the enumerator (generating function) for dl treeswith height = h
hy afunction that determines the candidate “Hubs’ in the agorithm

developed by Paddock and described in Chapter 1

[[in Chapter 2] a subscript
i [inal chapters except for Chapter 2] anode

IR1 the first generd-iterative-refinement agorithm

IR2 the second genera-iterdive-refinement dgorithm

] anode

k the given congtant-bound on diameter

I an edge

L the lightest excluded-edge in the agorithm devel oped by Paddock and

described in Chapter 1

Iij, |5]

Inn

logn

my, My, My
M(P)
MAX{...}

MAX{..}

MIN{...}

al A
MIPS
MST
n

near(u)

the center edge of atree of odd diameter

boolean decision variables, used in the mixed-integer-linear- programming
formulation developed by Achuthan et al. and described in Chapter 1

the naturd logarithm (logarithm base €) of n

the logarithm of n with any constant base

the number of edgesin the given graph

variables

aproblem of finding the smalest tree isomorphic to prototype P

the maximum of two or more vaues

the maximum of vaues cdculated for al ain st A

the minimum of vaues caculaed for dl ain st A

million ingtructions per second
minimum spanning tree
the number of nodesin the given graph

atree node candidate to be incident to u in the approximate DCM ST

NSM1, NSM2 node-sdection methods used with Algorithm OTTC

NSM3

O(g(n)
oTTC

p

a node-selection method used with Algorithm OTTC
bounded above by g(n)
the one-time-tree- condruction agorithm

the number of processes dlowed to be executing in their critical section at
the sametime

aprototype
the number of sdlected start nodesin Algorithm OTTC

the radius of agraph

X

S asource node in adirected graph

SIMD gngle indruction-stream over multiple data- treams

t the time required to traverse alink in a network

tn(h) the number of labeled rooted-trees with n nodes, a pecified root, and
height no morethan h

Ty a breadth-firgt panning tree

Tg atree from a sequence

ardgi asequence of trees

u, v nodes

Vv,V sets of nodes

Ve the center node of atree of even diameter

Wau, vii the weight of the directed edge from uto v

W(u, v) the weight of edge (u, v)

W(T) the weight of tree T

w1, W, ... ,W, weghts of edges, dso used in referencing edges

Wmax the largest edge-weight in the current spanning tree
Whin the amdlest edge-weight in the current spanning tree
X a bitmap vector

X [in Chapter 2] avariable (used in generating functions)
X [in Al chapters except for Chapter 2] anode

Y, 2, 2 nodes

Xii

CHAPTER 1

INTRODUCTION

The Diameter-Congrained Minimum Spanning Tree (DCMST) problem can be dated as
folows given an undirected, edge-weighted graph, G, and a pogtive integer, k, find a
goanning tree with the smalest weight among al spanning trees of G which contain no
path with more than k edges. The length of the longest (unweighted) path in the tree is
called the diameter of the tree.

This problem was shown to be NP-complete by transformation from the Exact Cover
by 3 Sets problem [33]. Let n denote the number of nodesin G. It can be easly shown
that the problem can be solved in polynomid time for the following four specid cases
k=2 k=3, k= (-1), or when dl edge weights are identical. As dated in [33], the
other cases are NP-complete, even when edge weights are randomly sdected from the set
{1, 2}. We consder G to be connected; where the edge-weights of G are non-negative

numbers, randomly chosen with equal probability, following the Erdis-Rényi modd [28].

1.1 Motivation

The DCMST problem has applications in severa aress, such as in distributed mutud
excluson, linear lightwave networks, and bit-compresson for information retrievd. In
distributed systems, where message passing is used for interprocessor communication,
some dgorithms use a DCMST to limit the number of messages. For example,
Raymond's dgorithm [22, 66] imposes a logicd spanning tree dructure on a network of
processors. Messages are passed among processors requesting entrance to a critical
section and processors granting the privilege to enter. The maximum number of
messages generated per critica-section execution is 2d, where d is the diameter of the
gpanning tree. Therefore, a smdl diameter is essentid for the efficiency of the dgorithm.
Minimizing edge weights reduces the cost of the network. A fault-tolerant protocol was
introduced by Revannaswamy and Bhatt [69] as an extenson to this dgorithm. The
protocol makes the dgorithm tolerant to single nodelink falure and associated network
patition. This is done by utilizing nontree edges without increasing the upper bound on
the number of passed messages.

Satyanarayanan and Muthukrishnan [74] modified Raymond's origind agorithm to
incorporate the “least executed” fairness criterion and to prevent starvetion, aso usng no
more than 2d messages per process. In a subsequent paper [75], they presented a
digtributed dgorithm for the readers and writers problem, where multiple nodes need to

access a shared, seridly reusable resource. In this distributed dgorithm, the number of

messages generated by a read operation and a write operation has an upper bound of 3
and 2d, respectively.

In another paper on digtributed mutua excluson, Wang and Lang [86] presented a
token-based dgorithm for solving the p-entry critical-section problem, where a
maximum of p processes are dlowed to be in ther critica section at the same time. If a
node owns one of the p tokens of the system, it may enter its critica section; otherwise, it
must broadcast a request to al the nodes that own tokens. Each request passes at most
2pd messages.

The critical section protocol presented by Seban [76, 77] keeps a bound on the logica
clock usng a didributed predictive “clock squashing” mechanism. For smplicity, he
assumed a congant-Sze message requiring a condant time t to traverse a network link,
thus modding the network by an undirected graph. For a generd graph whose spanning
tree has diameter d, it takes dt time to transfer a message between the two most distant
nodes, and each node must process messages to and from al adjacent nodes. Therefore,
the protocol has control-section access-time performance QMAX{d, 33)%, where Dis the
maximum node-degree in the tree. The worgt-case performance occurs for linear and star
graphs, where a gar is a tree with at most one non-leaf. It is desrable to congtruct the
goanning tree with diameter and maximum degree in O(log n), where n is the number of
nodes in the graph. This problem is related to the DCMST problem, especidly if the time
taken by a message to traverse an edge is variable. A solution to the DCMST problem
can be a spanning tree with the smalest total edge-traversd time, and diameter O(log n).

If the maximum degree is not O(log n), the tree must be refined into the desired form.

For such cases, a new agorithm needs to be developed to refine the node degrees of the
DCMST without increasing its diameter.

In addition to its gpplications in digributed mutud-excluson, a DCMST is useful in
informetion retrieva, where large data structures caled bitmaps are used in compressing
large files. It is required to compress the files, so that they will occupy less memory
gpace, while dlowing reasonably fast access. Bookstein and Klein [17, 18] proposed a
preprocessing stage, in which bitmaps are firsd clustered and the clusters are used to
tranform ther member bitmaps into sparser ones that can be more effectivey
compressed. This is done by associating pairs of bitmap vectors such that the occurring
of a 1-bit in a vector increasses the likelihood of a Zhit occurring in the same pogtion in
the other vector. The association is made by an XOR operation of the pair, creating a
new vector with a smdler number of 1's. The number of 1's in the resulting cluster is
cdled the Hamming distance between the two associated bitmgp vectors. A smal
Hamming digance is desrable when compressng bitmap vectors because a smdler
number of 1-bits dlows more efficient compresson. Between the two associated bitmap
vectors, the vector with the higher number of 1's is discarded. The other vector may be
associated again, with a new bitmap vector, in the same manner. All non-discarded
vectors and clusters are compressed. An efficient clustering method darts by generating
a complete edge-weighted-graph dructure on the bitmaps, where the nodes represent
bitmaps, and the weighted edges represent Hamming distances. Then, the method uses a
gpanning tree of this graph to cluster and compress vectors dong the paths from a chosen

node, the rooat, to al the leaves of the spanning tree. To recover a given bitmap vector, X,

it is required to decompress dl nodes in the path from the root to X. Therefore, a
gpanning tree with a smal diameter can provide high-speed retrieval. However, the total
Hamming distance of the spanning tree must be low in order to conserve storage space.
Consequently, a DCMST provides the necessary baance between access speed and
storage space.

The DCMST problem dso arises in linear lightwave networks, where multi-cast cdls
are sent from each source to multiple dedtinations. It is desirable to use a spanning tree
with a smal diameter for each transmisson to minimize interference in the network. An
dgorithm by Bda et al. [14] decomposes a linear lightwave network into edge digoint
trees with at least one spanning tree. The agorithm builds trees with smdl diameters by
computing trees whose maximum node-degree is less than a given parameter, rather than
by optimizing the dameter directly. Furthermore, the lines of the network are assumed to
be identicd. If the linear lightwave network has lines of different bandwidths lines of
higher bandwidth should be included in the spanning trees to be used more often and with
more traffic. Employing an dgorithm that solves the DCMST problem can hdp find a
better tree decompostion for this type of network. The network can be modeed by an

edge-weighted graph, where an edge of weight 1/b is used to represent a line of

bandwidth b.

1.2 Existing Algorithms for the DCM ST Problem

Three exact-solution dgorithms for the DCMST problem, developed by Achuthan et al.
[5], were based on a mixed-integer-linear-programming formulaion of the problem [4,
6]. Branch-and-Bound methods were used to reduce the number of subproblems. The
agorithms were implemented on a SUN SPARC Il workstation operating a 28.5 MIPS.
The dgorithms were tested on complete graphs of different orders (n £ 40), usng 50
cases for each order, where edge-weights were randomly generated numbers between 1
and 1000. The fastest of the three dgorithms with diameter bound k = 4 produced an
exact solution in less than one second on average when n = 20, but it took an average of
550 seconds when n = 40.

Subsequently, Achuthan et al. [7] developed a better mixed-integer-linear-
programming formulation of the DCMST problem, thus improving the three branch-and-
bound dgorithms. The improved mixed-integer-linear-programming formulation
digtinguishes the cases of odd and even diameter-condraint, k. Let Wi, j) denote the
weight of undirected edge {, j), and W4, jii denote the weight of the directed edge from i
to j. For the DCMST being constructed, let I;; denote a decison variable that takes the
vaue 1 when edge &, jfior g, ifiisin the spanning tree, and O when neither edge is in the
goanning tree. When k is even, the following formulation is used to solve the DCMST
problem. Extend the given graph G = (V, E) to a directed graph G’ = (V', E’), where

V' = VE {s}, and E is obtained by replacing each edge (i, j) I E with the directed edges

a, jhiand g, i with Wi, j) = Wa, ji= W§, ifi and adding a zero-weight edge &s, ufifor
evey u 1 V. The mixedinteger-linear-programming formulation for congdructing a

DCMST with diameter no more than k is Construct agraph G° = (V', E), E | F,

which minimizes
f=awi il (11)
itV
subject to the congtraints:
é Isj =1, (12)
jiTv
al; =1, (1.3)
v, jivitj
dists(i) —dists(j) + (k/2 + 1)l £ k/2 "4, jfl E, (1.4)
;T {0, 1} "4, jil E, (15)
ad Ofdistsi)£k/i2+1 il Vv, (1.6)

where dists(i) represents the distance from node sto nodei in G

The reasoning behind this formulation is the following. Equation 1.1 optimizes the
gpanning tree weight. Conditions 1.2 and 1.3 ensure that node s has outdegree 1, and all
other nodes have indegree 1. By limiting the distance from s to each node in the tree
being congructed, Condition 1.4 prevents cycles from forming. Together, conditions 1.2,
1.3, and 1.4 lead to the creation of a directed graph G, consisting of directed paths from s
to dl other nodes. Conditions 1.4 and 1.6 ensure that the length of each of these directed
paths has length no more than (k/2 + 1). The solution, which is an exact DCMST with

diameter no more than k, is the underlying undirected graph of G* —{s}.

When the diameter condraint k is odd, a smilar formulation can be developed. The
odd formulation does not require the use of an extra source node s. Rather, it chooses
one directed edge au, vi as the source edge, where distg(i) is the distance from edge &, vi
to i. The constructed graph, G', is a tree that can be put in a layer structure such that all
directed paths have u or v as therr origin. The required DCMST is the underlying
undirected graph of G

The improved dgorithms [7] were tested with the same type of graphs and on the
same machine as the origind dgorithms When tesed with k = 4, the fastest of the
improved agorithms produced exact solutions in 113, 366, and 7343 seconds on average
for graphs of 40, 50, and 100 nodes, respectively. Since such exact agorithms have
exponentia time complexity, they are not suitable for graphs with thousands of nodes.

One specia-case dgorithm, which computes an approximate DCMST with diameter
bound k = 6, was developed by Paddock [59]. The dgorithm can be described as follows.
Fird, the edges of the graph G = (V, E) are sorted according to weight, and the smalest
20% edges are assigned to the set E’, and al other edges are deleted. In this agorithm,

al missng edges are assumed to have weight 0. Then, for each node v, compute:

h=34a alL-wuz2),

i Adi(v) 4 Adi(u)
where Adj(a) is the set of nodes x such that edge @, x) T E’, and L is the smallest edge-
weght in E larger than dl edge-weightsin E’. Choose five nodes v having the largest h,
vaues as the candidate “Hubs” Each Hub is used to generate a candidate DCMST,
where the smdlest-weight DCMST among them is sdected as the gpproximate solution.

Each candidate DCMST is computed using the following greedy drategy. Initidize the

tree to a Hub, then add nodes to the tree usng Prim's dgorithm, but at each step, use only
those edges that result in a distance from the Hub of 3 or less. Once this spanning tree is
obtained, refine it by replacing some of its edges, one by one, with minimum-spanning-
tree edges not in the current spanning tree. Each replacement is made only if it does not
cause the distance from the Hub to any node to exceed 3. The word-case time
complexity of this dgorithm is O(nm + n?), where n and m are the number of nodes and
edges in the input graph, respectively. This dgorithm is not effective snce it only
condders distances from the Hub, usng a smdl number of Hubs rather than usng the
distance between each pair of nodes in the tree being condructed. Hence, it tries to
optimize the diameter by optimizing the radius If the initid choice of Hub is poor, the
produced solution may be dggnificantly heavier than the optimd. Furthermore,
geneadizing this dgorithm is less effective for odd vaues of k. A better agorithm could
optimize the diameter directly, discarding fewer edges by the greedy drategy, thus
meaking the agorithm less vulnerable to the choice of Hub.

The problem of finding a radius-congtrained directed MST in a directed graph was
discussed by Gouvela [35]. He presented several node-oriented formulations for this
problem, where it is required to find a directed MST of a given weighted directed-graph
such that each path gtarting from a given root to any tree node has length no more than h,
h > 0. The formulations were based on an exiding formulation for the traveling-sdesman
problem [55], and they provided lower bounds for the radius-constrained directed MST
problem. Computationd results from a set of complete graphs, with up to 40 nodes, was

also presented B5]. Dahl [24] sudied a specid case of the radius-constrained directed

MST problem in directed graphs, where the radius condraint is 2, and he presented a new
formulation for this specid case.

In undirected grephs, the problem of finding a radius-congtraned MST, with a given
root and radius 2, was shown to be NP-hard by Alfandari et al. [9, 10]. They devised an
aoproximate polynomid-time dgorithm for this problem. This dgorithm guarantess a
worst-case gpproximation ratio of O(log n) in Eudidian graphs. They tested ther
dgorithm on a red-world problem of 80 nodes, and on randomly generated Euclidian
graphs of different orders. The experimentd results were ggnificantly better than the
theoreticad O(log n) bound. The specia-case agorithms for this problem, where the edge
weights range over two possble vaues, were aso shown to be gpproximatable within
logarithmic ratio [9, 10].

Bar-llan et al. [15] presented two polynomid-time dgorithms that find goproximate
DCMSTs with the diameter constrained to 4 or 5. The worst-case time complexity of the
two dgorithms is O(n?) and O(mn?) for congtraints 4 and 5, respectively. The agorithms
were specificaly designed to provide a logarithmic ratio gpproximation when the edge-
weights in the input grgph are the dements of an integra, non-decreasing function. They

are not suitable for the generd DCMST problem.

10

1.3 A Generalization of the DCM ST Problem

The DCMST problem was introduced by Garey and Johnson [33] as an NP-complete
problem. Pegpadimitriou and Yannakakis [61] discussed the generd problem, M(P), of
finding the smdlet spanning-tree that is isomorphic to a given prototype, P. They
showed that the complexity of such a problem, M(P), depends explicitly on the rate of
growth of the family of prototypes, P. In one case, they proved that if P is “isomorphic
to a path,” then M(P) is NP-complete. Then, they proved the following theorem: Let ardi

be an efficiently given sequence of trees such that the diameter of every tree, Tq in the
sequence, isin U(|Ta|é)for some e > 0, then the problem of finding the smallest spanning
tree of minimum weight thet is isomorphic to &T4i is NP-complete, where [Ta| denotes the
number of nodes in tree Tq A sequence of trees aldiis efficiently given if (i) ardiis

infinite, (i) for dl g° 1, [Ta| <

Té+l

< g([Ts|) for some polynomiad g, and (jii) there is a

polynomid-time agorithm to decide whether there exists a tree in aldi with a given
number of nodes and to return that tree if it exigs. Johnson P4] lised a few problems
proven to be NP-complete by showing that they contain the DCMST problem as a specid

case.

11

1.4 Related Optimization and Decision Problems

Some of the wdl-known condraned minimum-spanning-tree problems require
minmizing the weighted diameter of the spanning tree of a randomly-weighted graph;
i.e, the maximum pah-weight in the spanning tree. These problems are closdly related
to the problems that require optimizing the weighted radius of the spanning tree—the
maximum path-weght in the spanning tree from a given node to al other nodes in the
tree. The main difference between these problems and the DCMST problem lies in the
way they disregard the number of edges in the longest path in the tree. In these problems,
it is desred to have a spanning tree with smdl weghted diameter, even if it is a
Hamiltonian path. However, approaches to solve these problems can be sometimes
modified to solve the DCMST problem, and vise versa. For example, Cong et al. [23,
45] modified Prim's agorithm to compute a spanning tree with a smal weighted-radius.
Their modification follows Prim's dgorithm, adding the nearest node, u, firg, as long as
the weighted-radius congtraint is not violated; otherwise, backtracking is performed and u
is added via an edge of minimum weight tha does not violae the condraint. Our
modified Prim agorithm, explained in Chapter 7, adds the nearest node u fird, unless it
violates the diameter condraint. In this case, the violating edge to node u is discarded
and processing resumes with the next lightest edges not in the tree. We can invedtigate
backtracking as an dterndive to adding the next nearest node, and study the affects on

gpeed and solution quality of our dgorithm.

12

The gengd problem of finding a minimum weighted-diameter spanning-tree when
the edge weights are random (possibly negative) red numbers is NP-complete [19]. An
goproximate heurigtic for this problem was developed by Butdle et al. [19]. When the
given grgph is Eudidean, the minimum weghted-diameter spanning-tree can be solved in
O(mn + n?log n) time, a shown by Hassn and Tamir [39]. In a more recent paper, Cho
and Breen [21] presented an gpproximate agorithm for the generd problem, but they
only tesed it on Eudidean grgphs A formulaion of the minimum weghted-radius
gpanning tree problem, in the context of message routing, was presented in [84, 85]. An
goproximate agorithm for the bounded weghted-radius problem, based on Prim's
agorithm, was presented in [23, 45].

It was shown by Ho et al. [40] tha the minimum-weghted-diameter minimum
gpanning tree problem and minimum-weighted-radius minimum spanning tree problem
are NP-had. The minimum-weighted-diameter minimum spanning tree problem requires
finding the smdlet spaning tree among al spanning trees with minimum weghted-
dianegter. The minmum-weighted-radius minimum spanning tree problem is defined
gmilaly. In the following four corresponding decison problems bounded-weghted-
dianger minimum Spaning tree problem, minimum-weighted-diameter bounded
gpanning tree problem, bounded-weighted-radius minimum spanning tree problem, and
minmum-weighted-radius bounded spanning tree problem, it is required to find a tree
minimizing one weight objective while kegping a bound on the other. All four decison
problems are NP-complete [40]. In each of the other two corresponding decison

problems. bounded-weighted-diameter bounded spanning tree problem and bounded-

13

weighted-radius bounded spanning tree problem, two bounds are given. Both of these
decison problems are NP-hard [40]. An gpproximae dgorithm for the bounded-
welghted- radius bounded spanning tree problem was presented in [23, 45].

Another verson of the bounded-weighted-diameter minimum spanning tree problem
was presented by Sdama et al. [71]. In this problem, there are two different weights
associated with each edge of the graph, corresponding to the delay and cost of each edge.
The objective of the problem is to find a bounded-weighted-diameter minimum spanning
tree where the diameter is measured in terms of delay, and the totd spanning tree weight
is cdculated usng edge-costs. Sdama et al. [71] showed this problem is NP-complete,
and they presented an gpproximate dgorithm for solving it. An dterndive statement of
this problem, as indicaed by Maffioli [52], would be minimizing cod-to-time ratio,
which introduces a new grgph with a sngle weight for each edge. Other related

optimization problems can be found in [25, 27, 46, 48, 53, 62, 64, 65, 81].

1.5 Diameter Sets and the Dynamic DCM ST

The tree-diameter set (@1, ao, ... , as) of a connected graph G isthe set of dl diameters of
the spanning trees of G, liged in increasng order. When desgning an agorithm to
obtan a gpanning tree with a smal diameter, we should know if such a spanning tree
exiss. In addition, algorithms like IR1, IR2, and CIR, explained in Chapters 4, 5, and 6,

iterate through a set of gpanning trees of different diameters, trying to find a low-weight

14

tree with the desired diameter. The behavior of diameter sets may provide an ingght that
helps anayze and improve such agorithms. However, properties of diameter sets are
more useful to dynamic trees—spanning trees that repesatedly need to replace one or more
of their edges with different edges from the graph.

It is interesting to know which type of graph has a spanning tree with diameter equa
to its own diameter. A connected graph with radius r has a diameter preserving spanning
tree if and only if ether: (i) its diameter is equd to 2 or (ii) its diameter isequa to 2 — 1
and contains a par of adjacent vertices that have no common neighbor whose eccentricity
isequd to theirs[16].

One dgorithm, developed by Harary et al. [37], trandforms any spanning tree of a
2-connected graph G into any other spaning tree of G. The transformation uses a
sequence of steps; each step yields a spanning tree of G whose diameter differs from that
of the previous step by a most 1. Sankaran and Krishnamoorthy [73] extended this result
to al connected graphs having exactly one cut-node. For a random graph in generd,
Shibata and Fukue [79] show that &+ £ & + 0.5a;. Interpolation style properties for
distance sums of gpanning trees in 2-connected graphs were presented by Planthalt [63].

Interpolation properties are helpful when developing dgorithms for dynamic trees
where a minimum weighted-diameter needs to be maintained while we replace one edge
with another. In some cases, the added edge is given, and it is required to remove an
edge to bresk the cycle, while keeping the weighted diameter smdl. An dgorithm by
Algtrup et al. [13] finds the best edge to remove in O(n) time. When the removed edge is

given, and it is required to find the best replacement from the graph, an dgorithm by

15

Itdiano and Ramaswami (42, 43] finds the best replacement in O(n) time. Narddli et al.

[58] developed an dgorithm that finds dl the best replacements for dl edges in the tree in
O(n«/ﬁ) time and O(m + n) space, where n and m are the number of nodes and edges in

the graph, respectively.

1.6 The Diameter of a Random Tree

There is a dgnificant amount of literature on the height and diameter of a random tree,
incdluding the diameter of an unrooted random-labeled-tree. The average distance
between a pair of nodes in arandom p-ary treeis Q (log n), as shown by Shen [78]. The
average height of a binary plane tree and the average distance between nodes in a random
treeare Q (2(p n)’§ and Q ((p n/2)*, respectively [29, 30, 54]. The expected height of a
random labeled tree is (2 p n)” and it was derived by Rényi and Szekeres [68]. £uczak
[49, 50, 51] studied the asymptotic behavior of the height of a random rooted-tree and
used the results to redize the behavior of diameter in random grgphs. The problem of
tree enumeration by height and diameter, for different types of random trees, was
addressed in several papers, such as [38, 51, 68, 70], but the equation for the expected
value of dameter in a random labeled-tree is due to Szekeres [82]. He showed that for a
random labeled-tree of order n, as n goproaches infinity, the expected vaue of diameter

and the diameter of maximum probability ae 3.342171n” and 3.20151315n"

respectively.

16

1.7 Outline

This dissartation is organized as follows. In Chepter 2, we experimentaly study the
expected vaue of MST diameter in complete grgphs with uniformly-distributed random
edge-weights. Then, in Chapter 3, we discuss polynomidly-solvable exact cases of the
DCMST problem and present a new heurigtic that computes an approximate DCMST
with diameter no more than 4. Our approximate agorithms for solving the generd
DCMST problem employ two distinct Srategies iterative refinement and one-time tree-
condruction. The fird generd-iterdive-refinement agorithm, IR1, is described in
Chapter 4. 1t garts with an uncongrained MST, and then iteratively increases the weights
of edges near the center of the MST and recomputes the MST until the diameter
condraint is met or the number of iterations reaches a given number. The second
generd-iterative-refinement dgorithm, IR2, which is described in Chepter 5, garts with
an uncondrained MST, and then replaces carefully sdlected edges, one by one to
trandform the MST into a spanning tree satifying the diameter condraint. A composite
iterative-refinement dgorithm, CIR, is presented in Chapter 6. Algorithm CIR darts with
an uncongrained MST, and then uses IR1 until it (IR1) terminates. Then, if necessary, it
uses IR2 to transform the output of IR1 into a spanning tree satidying the diameter
condrant. The one-time tree-congruction agorithm, presented in Chapter 7, grows a
gpanning tree within the desred diameter-condraint usng our modified verson of Prim's
dgorithm. All of our dgorithms were implemented on a PC with a Pentium 111 / 500

MHz processor. Algorithms IR1, IR2, CIR, OTTC, and the specia-case dgorithm for

17

k = 4 were ds0 pardldized and implemented on the MasPar MP-1, which is an SSIMD
pardle computer with 8192 processors. We andyze the empiricd daa, from
implementation of these five dgorithms, in ther respective chapters. We compare their

overdl performance and relative meritsin Chapter 8.

18

CHAPTER 2

EXPECTED VALUE OF MST-DIAMETER

In a randomly-weighted complete graph, every spanning tree is equdly likely to be an
MST. Thus, there is a one-to-one correspondence between the set of possble minimum
goanning trees of a randomly-weighted complete graph with n nodes and the set of dll
n" ~ 2 |labdled trees with n nodes. Therefore, the behavior of MST diameter in a randomly-
welghted complete graph can be studied using unweighted random label ed-trees.

Rényi [60, 67] proved that the probability that a node in a random labeled-tree is a
leef is 1/e. If we repeatedly remove 1/e of the nodes from the tree, a Sngle node or single
edge would result after (218 In n) iterations. However, this does not imply that the
expected diameter is O(In n). The leaf-deletion procedure does not actualy remove 1/e
of the nodes, except in the firg iteration. After the leaves are removed, the remaning
subtree does not have the same probability distribution as the origina tree. For example,
removing dl the leaves of a tree may produce a Hamiltonian path, but removing the
leaves of a Hamiltonian path will not produce anything other than a Hamiltonian path.
Therefore, the probability of a Hamiltonian path in the subtree produced by removing the
leaves is drictly grester than the probability of a Hamiltonian path in the origind

random-tree.

19

(b)

(a)
o o
(©)
® o
(€)

(f)

Figure 2.1 The unlabeled trees of order 6

20

2.1 Exact Average-Diameter

When the number of nodes is amdl, like n = 6, the expected diameter for labeled and
unlabeled trees can be cdculated utilizing a lising of dl unlabeed trees of the same
order. For example, there are only six unlabeled trees of order 6, shown in Figure 2.1.
Since there are 1, 2, 2, and 1 unlabeled trees of diameter 2, 3, 4, and 5, respectively, the
expected value of diameter for an unlabeled tree of order 6 is:

(1" 2+2° 3+2° 4+1° 5)/6=35.
The number of different ways to labd the trees in Figures 1(a), 1(b), 1(c), 1(d), 1(e), and
1(f) is 6, 90, 120, 360, 360, and 360, respectively. Thus, the expected value of diameter
for alabeled tree of order 6is.

(6° 2+ (90+120)" 3+ (360+360) " 4+360° 5)/6%» 4.106.
This method of computing the expected vadue of diameter becomes less feasble as n
grows. For example, there are 47 unlabeled trees of order 9, and 65 unlabeled trees of
order 10, as shown by Harary and Prins [38].

Employing Riordan's method for enumerating labeled trees by diameter [70, 56], we

can use the following method to compute the expected value of diameter for dl labded
treeswith n nodes. First, compute tn(h), the number of labeled rooted-trees with n nodes,

aspecified root, and height no more than h, using the following equation:

0 (n- D!
W)= a ey, where
mytm++mp=n-1 T M TN

1£hE(M-2), 0EME(N-1), 1£i£h, andty(1)=0°=1. (2.1)

21

Clearly, ta(h) =n"~! for h3 n—1. When h = 2, Equation 2.1 can be smplified to:

6(2) = g‘ml"m

The vaues for t,(h) ae then subdituted into the following expresson for ther

enumerator:

G, (X) = é“h) ", h3 o0, 2.2)

n= l('1)|

Now, Hp (x), the enumerator for the number of labeed trees with n nodes and height

exactly h, isgiven by:

Ho(0=Gy (- G (=4 nM bMWD sy 23

e (n- D) ’
Now, Dq (x), the enumerator for the number of labeled trees with diameter d, is dbtained
for odd and even values of d:
Done1(X) =2 HZ(X), h3 0, (2.9
D2h (X) = Hh(X) =Hh - 1(X) Gh-1(X) , h3 1. (2.5)
After that, we obtain dy(d), the number of labeled trees with n nodes and diameter d, by

comparing terms from Equations 2.4 and 2.5 with the termsin the following enumerator:

D,(X) =8 X", d3 1. (2.6)

n=1

d,(d) ,
nl

Unlike the enumerators in Equations 2.2 and 2.3, this enumerator has a denominator of n!

in eech term, indead of (n — 1)!, to account for the different ways to choose a root in a

22

labeled tree of diameter d. Findly, d_, the expected vaue of the diameter for a labeled

treewith n nodes, is given by:

d :gé d>d, (d)Dn> ", ne 3. 2.7)
d=1]

Explicitly, Equation 2.1 can be used to cdculate:

3
t4(2) = {;0153 g Fm =
m=08M, g

4
t5(2) = é§4 Om*™ = 41, and
m=08M; g
o 4
3= & —— =101

——
Cdculate more vaues using to(h) = n" = 2 for h 3 n — 1, then substitute for t,(h) in
Equation 2.2 to obtain:
Go(X) =X,
Gi(X) =X + X2 + X2 + x¥6 + x°24 + x®/120 + ... ,
Go(X) = X + X% + 3x3/2 + 5x*/3 + 41x°/24 + 49x°%/30 + ...
Gs(X) = x + X% + 3x%2 + 8x*3 + 101x°/24 + ... , and
Ga(X) =X + X2 + 3x3/2 + 8x*3 + 125x°/24 + ...
Then, use Equation 2.3 to obtain:
Ho(X) =X,
Hi(x) = x% + x32 + x*6 + x°/24 + x®/120 + ... , and

Ho(x) = x3 + 3x%2 + 5x°/3 + 13x5/8 + ...

23

After that, use Equations 2.4 and 2.5 to obtain:
Di(X) = x%/2,
Do(X) = X312 + x*16 + x°/24 + x8/120 + ... ,
Da(x) = x*2 + x°2 + 7x%/24 + ...,
Da(x) =x°2+x%+ ..., and
Ds(x) = x%2 + ...
Findly, solve for the vadues of d,(d) usng Equation 2.6, and compute the average

diameter for alabdled treewith n nodes, d_ , using Equation 2.7.

Table1l Exact average-diameter forn=41to0 19

Nodes| Mean Diameter
4 2+ 3/4
5 3+ 11/25
6 4 + 23/216
7 4 + 244343
8 5 + 8803/32768
9 5 + 423973 /531441
10 | 6 + 3042239 /10000000
11 | 6 + 168968246 /214358881
12 | 7 + 1296756731 /5159780352
13 | 7 + 95955348055 / 137858491849
14 | 8 + 505795179247 / 4049565169664
15 | 8 + 70033243048672/129746337890625
16 | 8 + 4242384791970699 / 4503599627370496
17 | 9 + 56007173241669065 / 168377826559400929
18 | 9 + 4807321332780086399 / 6746640616477458432
19 | 10 + 23817830747172067306 / 288441413567621167681

Riordan [70] listed the number of labded trees with n nodes and diameter d, for

B3Enf£10and2 £dE£ (n—-1). We present the average diameter, produced by our

24

implementation of the method described above, for labeled trees with 4 to 19 nodes in

Table 1.

Figure2.2 Different ways to connect a node from S, to anodein S;

To cdculate Equation 2.3, we must use al solutions to the linear equation:
m+m+...+my=n-1. (2.8)
Each solution to Equation 2.8 represents one way to distribute n — 1 nodes into h classes
S;, where 5| = m;, 1 £] £ h. Each class, S;, contains the nodes at distance j from the
root. Corresponding to each solution to Equation 2.4, there are:

(n-1)!
m!'m! L mg!

different ways to digtribute the (n — 1) nodes into the h classes. As seen in Figure 2.2,

node vy; can be connected to a node in S; in My different ways. Since there are m, nodes

in Sy, there are m™ ways to connect the nodes in S, to the nodes in S;, and sSmilarly,

25

m,™ ways to connect the nodes in Sz to the nodes in S, and so on. By dlowing the

classes to be empty and defining @ = 1, Equation 2.3 includes dl the possibilities where

the height of the rooted labeled-tree is less than h. Connecting the nodes of a non-empty

class S; to an empty class Sj_1 will produce mj_lmj =0, which prevents such impossble

cases from being counted. The product m™mg=... mim gives dl the different ways to
connect al the nodesin the h different classes.
Equation 2.1 requires computing and adding

(n+h-2)!
((n- 1Y)

terms for specified vaues of n and h, corresponding to the number of nonnegeative integer
solutions to Equation 2.8. We implemented this method of computing the exact vaue of
average diameter on a PC with a Pentium 11l / 500 MHz processor. Employing the
dynamic programming drategy to reduce the time taken by this method, our
implementation required O(n?) space and approximately (4.2)" ~ 1° seconds to compute the
average diameter for al sets of trees of aders 4 to n. This high time-complexity makes
this method too dow for graphs with thousands of nodes. Therefore, we conducted an

empirical study of the expected value of diameter.

26

5.0

0.0 IAAMAAIAAAAA
: //«"VV LAY Vvv VVVW‘ A vWV

w0l
-15.0 /f

-20.0
-25.0

Error Percentage
100 * (Obs. Dia. - 3.33 *sqrtf)) / Obs. Dia.

-30.0
o

O O O O O O O O © O O O O
LN © © O O O O O © © © O O
© © © © O O oo © o o o o
© © O ®W O O O O O O O
N O ~O d MWL K d Mm
N M < 1D © 0o O

Order (n)

Figure 2.3 Percentage error in approximate average-diameter

2.2 Approximate Average-Diameter

We compared the average diameter in computer-generated random labeled-trees to the
expected value computed using Szekeres formula. The mean diameter was computed for
randomly generated trees with up to one million nodes, and averaged for 100 different
trees of each order. The curve fitting result for the diameter means, obtained usng a

least-square-fit program, was 3.33125n” showing a difference of 0.010921In” from

27

Szekeres formula. The curve fitting error, illustrated in Figure 2.3, abilizes for
n3 1100.

To generate a random labded-tree in linear time, we used a randomly generated
Prifer code [47]. Then, we examined three different gpproaches for caculating the
diameters of the trees. The first diameter-caculation agorithm takes a nai ve approach by
examining the paths between dl pars of leaves in the tree. Employing the Warshdl-
Floyd agorithm, this approach takes O(n®) time. The second approach repeatedly
removes dl the leaves in the tree, until a sngle path remains. The diameter is eud to
twice the number of deetions, plus the length of the remaning path. Usng an efficient
data dructure, such as a queue, to maintain the order by which leaves are deleted, this
approach takes linear time. The third approach, proposed by Handler [36], performs a
depth-firgt search from an arbitrary node, u, in the tree to find the farthest node v from u.
Node v will dways be a one end of a longest path in the tree [84, 85]. Then, the
agorithm performs a second depth-first search to find the farthest node z from v. The
length of this path from v to z gives the diameter of the tree [36]. This method computes
the diameter in linear time.

To diginguish the speed of the two linear-time methods of computing diameter, we
compared their execution times on a PC with a Pentium 111 / 500 MHz processor, using
trees with 50 to one million nodes. The time taken by each dgorithm was less than 3
millissconds for n £ 1000. As the number of nodes increased, the leaf-ddetion adgorithm

became clealy fader than Handler's dgorithm. Using a polynomid-fit program, we

28

determined that the execution time, in microseconds, taken by Handler's dgorithm and
the leaf-deletion agorithm was (2.79n — 43265) and (0.67n — 11716), respectively.

The above three methods for computing tree-diameter may be used with unlabeed
trees, where an ahbitrary labeling of the nodes can be assgned before applying the
dgorithms. A random unlabeled-tree can be generated in polynomia time usng an

agorithm devised by Alonso et al. [11, 12].

29

CHAPTER 3

QUALITY OF AN APPROXIMATE DCM ST

3.1 Polynomially-Solvable Cases

Four cases of the DCMST problem can be exactly solved in polynomid time. When the
diameter congtraint k = n — 1, an MST is the solution. When k = 2, the solution is a
gndles-weight star, where a dar is a tree with a most one nonleaf. Let DCMST (k)
denote (an optima) DCMST with diameter no more than k. A DCMST(2) can be
computed in O(n®) time by comparing the weight of evay n-node sar in G. A
DCMST(3) can be computed in O(n®) time by computing dl spanning trees with diameter
no more than 3 and choosng a spanning tree having the smdlest weght as follows
Clearly, in a DCMST(3) of graph G, every node must be of degree 1 except a most two
nodes, cdl them u and v. The edge (u, v) isthe central edge of DCMST(3). To construct
a spanning tree with diameter no more than 3, salect an edge to be the centrd edge, (u, v).
Then, for every node x in G, x I {u, v}, ndude in the spanning tree the smaller of the
two edges (x, u) and (x, v). To obtan a DCMST(3), compute al such spanning trees —

with every edge in G as the centra edge of one spanning tree — and slect the one with

30

the smdlest weight. In a graph of m edges, we have to compute m different spanning
trees. Each of these trees requires (n - 2) comparisons to sdlect (x, u) or (X, V).
Therefore, the total number of comparisons required to obtain aDCMST(3) is(n - 2)m.

For the case when dl edge-weghts in G are equal, we can consder G unweighted,
and the spanning tree with the amdlest diameter is an optima solution for any k 3 2, if
and only if a solution exigs. Finding such a solution is trivid for dl unweighted graphs
that contain an n-node da. For grgphs not containing a spanning dar, a minimum-
diameter spanning tree can be congructed as follows [8, 41]: For every node v in G,
construct a breadth-first gpanning tree (BFST), T,. The radius of T, is the maximum peth
length from v to any node in T, and it can be computed by keeping track of the distance
of every node u from v when u is added to T, during the BFST congruction, without
increadng the time complexity. Al minimum-radius spanning trees will have diameter
2r or 2r — 1 A mnmum-dianee spanning tree will be a BFST of minimum radius r
that contains exactly one node with distance r from the root, if such a tree exids, or any
minmum-radius spanning tree if such a tree does not exis. Since each BFST is
computed in O(m) time, and there are n possble BFSTS, the time complexity of finding a

minmum-diameter spanning tree is O(mn).

31

3.2 The Special-Case Algorithm for DCM ST (4)

We developed a specid-case dgorithm to compute an gpproximate DCMST(4). The
dgorithm darts with an exact DCMST(3), then it replaces higher-weight edges with
gndler-weight edges, dlowing the diameter to increase to 4. The refinement process
first arbitrarily sdects one end-node, u, of the central edge, U, v), of DCMST(3), to be
the center of DCMST(4). Let W(a, b) denote the weight of an edge @, b). For every
node x adjacent to v, the dgorithm attempts to obtain another tree of smaler weight by
replacing edge (x, v) with an edge (x, y), where y is adjacent to u, and W(X, y) < W(X, V).
Furthermore, for dl nodes z adjacent to u, W(X, y) £ W(X, 2). Fgure 3.1 illugtrates an
example of this possible ieplacement. If no such edge exists, we keep edge {, x) in the
tree. We use the same method to compute a second approximate DCM ST (4), with v as
its center. Findly, the adgorithm certifies the DCMST(4) having the smdler weight as
the approximate solution.

Suppose there are r leaves adjacent to u in DCMST(3). Then, thereare (n - r - 2)
leaves adjacent tov. Therefore, it isrequired to make

2r(n-r-2 (32

comparisons to get an gpproximate DCMST(4). The probability that u is connected to r

leavesis.
njﬁ(n - - 2) _ 6f(n - - 2) _ (32)
é 2fi(n - fi- 2) (n-H(n- 2)(n- 3)

r=1

32

To find the expected vadue for r, treat Equation 3.2 as a continuous function, take its first
derivative with respect to r, and then set the derivative equa to zero and solve for r.
This gives the vdue r = (n — 2)/2. Subdituting this vdue of r into Equation 3.1, it

shows that, employing our specid-case dgorithm, the expected number of comparisons

required to obtain an approximate DCMST(4) from aDCMST(3) is (n — 8n — 12)/2.

Figure 3.1 One step in constructing an approximate DCM ST (4) from DCMST(3)

To obtain a crude upper bound on the approximate DCMST (k) weight (where K is the
diameter congraint), observe that DCMST(3) and DCMST(4) are feasble (but often
grosdy suboptimd) solutions of DCMST(k) for dl k > 4. Usng the specid-case
heurigtic, we compute an approximate DCMST(4) and compare its weight with that of
DCMST(3) to verify that the heuristic provides a tighter upper-bound for approximate

DCMST (k). Let W(T) denote theweight of tree T. Then, clearly forany k 3 5,

W(MST) £ W(DCMST(k)) £ WDCMST(4)) £ W(DCMST(3)).

33

Since the exact DCMST for large graphs cannot be determined in a reasongble time,
we use the upper bounds, dong with the raio of the weight of the approximate DCMST
to the weight of the unconstrained M ST, as arough measure of the quality of the solution.

We implemented the specid-case heuristic for DCMST(4) sequentidly on a PC with
a Pentium 111 / 500 MHz processor. We dso pardleized it and implemented it on the
MasPar MP-1. We used complete graphs of orders between 50 and 3000, with randomly
generated weights ether ranging between 1 and 1000 or ranging between 1 and 10000.
We dso used complete graphs forced to have Hamiltonianpath MSTs with the same
ranges of edge weights. The sequentid and pardld implementations produced smilar
results for both random graphs and randomly generated grephs forced to have
Hamiltonian-path MSTs. The change of the upper bound on edge weight did not have
any noticesble effect, ether. The specid-case heuristic for DCMST(4) produced
goproximate solutions with weight roughly hdf that of exact DCMST(3), independent of
n, as will be shown in Figures 81 and 82. The time to refine a DCMST(3) into an
approximate DCMST(4) was about 1% of the time needed to caculate a DCMST(3),
independent of n. This heuridic is not suited for incomplete graphs since they ae

unlikely to contain a spanning tree with diameter 3.

CHAPTER 4

THE IR1ITERATIVE-REFINEMENT ALGORITHM

Our three genera iterative-refinement-strategy-agorithms firg compute an uncongrained
MST, and then iterativey refine this MST by edge-replacement until the diameter
condrant is satisfied. Generd iterdive-refinement-dgorithm IR1, which we present in
this chapter, iteratively pendizes the edges near the center of the MST by increasing ther
weight and then recomputes the MST. This attempts to lower the diameter by breaking

up long paths from the middle, replacing them by shorter ones.

4.1 The Algorithm

The heart of Algorithm IR1 is a problem-specific penalty function. A pendty function
succinctly encodes how many edges to pendize, which edges to pendize, and what the
pendty amount must be, where the pendty is an increase in edge weight. In each
iteration of IR1, as described in Algorithm 1, an MST of the grgph with the current
weights is computed, and then a subset of tree edges are pendized (usng the pendty

function), so that they are discouraged from gppearing in the MST in the next iteration.

35

(a)
| ./
° P
(b) (c)
. \.
PS °
(d) (e)

Figure4.1 Anexample of cyclingin IR1

Obviously, an edge at the center of a long path is a good candidate to be pendized, since

36

it would split eech of the longest peths in the current tree into two Subpaths of equd
length. However, pendizing only one edge per iteration may not be sufficient, as

illustrated by the example of Figure 4.1.

ALGORITHM 1 (IR1(G, Kk)).
begin
fails := 0;
G =G;
Tmin := MST of G;
T = Thin;
while (((diameter of T) > k) and (fails £ 15)) do
G’ := G’ with edges closest to the center of T, penalized;
Tmin :=MST of G’ ; /* computed using the new edge-weights */
if (((diameter of Tmin) < (diameter of T))
or (((diameter of Tyn) = (diameter of T)) and (W(Tmin) < W(T))))
then Dbegin
T = Tring
fails := 0;
end
else
fails :=fails + 1;
end while
return T
end.

For this complete graph and a specified diameter bound of 2, the MST is the pah
(W1, ws, W), shown in Figure 41(b). After pendizing the center edge, ws, and
recomputing the MST, we get the path (vi, ws, Wy), shown in Figure 4.1(c). The center
edge w, on this path is pendized next, producing the path in Figure 4.1(d). The dgorithm
fails to reduce the diameter of this tree as well, producing the tree in Figure 4.1(e), which,

in the next iterdion, regenerates the origind MST. The iterative refinement cydes

37

among these paths of diameter 3, and never finds any of the four spanning trees of
diameter 2.

However, if two edges ae pendized in every iteration, there is no cycling for this
exanple. The solution is found in three iterations, as shown in Figure 4.2. Such is the
case for every edge-weghted graph with n = 4. But for n = 5, penadizing two edges per
iteration may not be sufficient.

To reduce the possihility of cycling, the number of edges to be pendized per iteration
should increase with n. However, it must be kept in mind that penaizing too many edges
may result in the solution being too far from optima. This is because in the space of dl
n" = 2 labeed spanning trees, the iterative refinement in such a case would jump (in a
single iteraion) from one tree to another, which is many edges different, thereby missing
a number of feasble solutions with perhgps smdler weight. Therefore, the number of
edges pendized must be a dow-growing function of n, say log n. All the edges
penalized should be close to the center of the current spanning tree where the center of a
tree conggts ether of one node or one edge, depending on whether its diameter is even or
odd. The edges to be pendized should be the ones incident to the center. If more edges
are required to be pendized (when the degree of the center node is less than log, n), then
the edges at distance two from the center node should be chosen, and so on. A tie can be
broken by choosing the higher-weight edge to pendize.

Another issue to congder in desgning a pendty function is the pendty amount. To
be effective without causng overflow, the pendty vaue must rae to the range of the

weights in the spanning tree. Let W(l) denote the current weight of an edge | being

38

W < Wy < Wy < W, < W< Wy

(@)

(b) (©)

(d)

Figure 4.2 Finding an approximate DCM ST (2) by penalizing 2 edges per iteration

pendized, and Wmax and wpin denote the largest and the smdlest edge-weight,

39

respectively, in the current MST. Also, let distc(l) denote the distance of an edge | from
the center node, plus one. When the center is a unique node, v, al the edges | incident to
Ve have distc(l) = 1, the ones a distance one from v have dist¢(l) = 2, and so on. When
the center is an edge |, it has dist(lc) = 1, an edge | incident to only one end-point of the
center edge has distc(l) = 2, and so on. Therefore, the pendty amount imposed on the

tree edge | isgiven by:

\|, (W(l) - Wmin)WmaX l;l
1 GiStC) (Wrac - W) B’

where e > 0 is a minimum mandatory pendty imposed on an edge, chosen to be
penalized. This minimum pendty ensures tha the iterative refinement makes progress in
every iteraion, and does not day a the same spanning tree by imposing zero pendties to
al the edges (in Studions, for example, when al the pendized edges have weghts equd
to Wnmin). In a typicd implementation, in which weights are $ored as integer vaues, the
vaueof emay besetto 1.

Clearly, the pendty amount is proportiona to the weight of the penalized edge and
inverse-proportiond to its distance from the center of the current MST. The pendty
amount can be as high as wma/dist(l), and it decreases as the pendized edge becomes
farther away from the center of the tree. This was done because replacing an edge with a
gndl dist¢(l) in the current tree can bresk a long path into two sgnificantly shorter
subpaths, rather han a short subpath and a long one. Also, an edge with a smaler weight

is pendized by a smdler amount than one with a lager weght if they have the same

40

vadue of disto() to makes it less likdy for the larger-weight edge to appear in the next

MST.

4.2 Implementation

We padldized Algorithm IR1 and implemented it on the MasPar MP-1. We ran the
code for IR1 on random graphs with up to 3000 nodes, whose minimum spanning trees
are forced to be Hamiltonian paths, and whose edge weights were randomly selected
numbers between 1 and 1000. The tree weights resulting from IR1 are reported as factors
of the uncondrained MST weight. The average condrained spanning-tree weights with
diameter n/10 were 1.068, 1.036, and 1.024 for n = 1000, 2000, and 3000, respectively.
This indicates remarkable peformance of this iterative-refinement dgorithm when the
diameter condraint is a large fraction of the number of nodes. The dgorithm was dso
fast, as it reduced the diameter of a 3000-node complete graph from 2999 to 103 in about
15 minutes. Nonethdess, this iterative-refinement dgorithm was not able to obtain
approximate DCMST (k) when k is a smdl fraction of the number of nodes such as n/20.

Thus, it should be used only for large vdues of k.

41

4.3 Convergence

One problem with the approach of Algorithm IR1 is that it recomputes the MST in every
iteration, which sometimes reproduces trees that were dready examined, even when the
replacement increases the diameter. Algorithm IR1 terminates when the current MST
diameter is no more than k, or when it cahnot improve the current MST further. The
latter case is identified by 15 consecutive iterations that reduce neither the diameter nor
the weght of the current MST. Our empiricd study showed that dlowing IR1 to
continue past 15 consecutive non-improving iterations did not result in better solutions
when the edge weights ranged from 1 to 10000. When it was alowed to run for 500
iterations (regardless of non-improving iterations), Algorithm IR1 succeeded in finding a
solution when the dameter condtraint k 3 n/10, but failed to find a DCMST when k was a
gndl condant. We present a different iterative-refinement dgorithm in the next chapter

that avoids the cycling problem, and produces solutions with smdler vaues of k.

42

CHAPTER S

THE IR2 ITERATIVE-REFINEMENT ALGORITHM

The next iterative-refinement agorithm, IR2, does not recompute the MST in every
iteration; rather, a new spanning tree is computed by modifying the previoudy computed
one. The modification performed does not regenerate previoudy generated trees and it
guarantees the dgorithm will terminate. Unlike IR1, this agorithm removes one edge a
a time and prevents cyding by moving away from the center of the spanning tree
whenever cycling becomes imminent. Figure 5.1 illustrates how this technique prevents
cyding for the origind graph of Fgure 4.1. After computing the MST, the agorithm
congders the middle edge (shown in bold) as the candidate for removd, as in Figure
5.1(b). But this edge does not have a replacement that can reduce the diameter, so the
dgorithm congders edges a little father away from the center of the tree. The edge
shown in bold in Figure 5.1(c) is the highest-weight such edge. As seen in Figure 5.1(d),
the agorithm is able to replace it by another edge, and tha reduces the diameter. This
agorithm guarantees that the diameter does not increase in any iteration and in fact can
reduce the diameter to a smal congant (less than 1% of the number of nodes in the
graph).

IR2 garts by computing the uncongtrained MST for the input graph G = (V, E). Then,

in each iteration, it removes one edge that bresks a longest path in the spanning tree and

43

replaces it by a nontree edge without increesing the diameter. The algorithm requires

computing eccentricity values for al nodes in the spanning treein every iteration.

W,

@

(b) (© (d)

Figure5.1 Anexampleof IR2

The initid MST can be computed usng Prim's dgorithm. The initid eccentricity
vaues for al nodes in the MST can be computed using a preorder tree-traversal where
each node vigt condsts of computing the distances from that node to dl other nodes in
the spanning tree. This requires a totd of O(n?) computations. As the spanning tree

changes, we only recompute the eccentricity vaues that change. After computing the

MST and the initid eccentricity vaues, the dgorithm identifies one edge to remove from
the tree and replaces it by another edge from G until the diameter condraint is met or the
dgorithm fals When implemented and executed on a variety of inputs, we found that
this process required no more than 3 iterations. Each iteration conssts of two parts. In
the first part, described in Section 5.1, we find an edge whose remova can contribute to
reducing the diameter, and in the second part, described in Section 5.2, we find a good
replacement edge. The IR2 dgorithm is shown in Algorithm 2, and its two different
edge-replacement subprocedures are shown in Algorithms 3 and 4. We use eccr(u) to
denote the eccentricity of node u with respect to spanning tree T; the maximum distance
from u to any other node in T. The diameter of a spaning tree T is given by

MAX{eccr(u)} over dl nodesuinT.

45

ALGORITHM 2 (IR2(G, T, k)).
begin
if (T is undefined)
then
T :=MST of G;
compute eccr (z) forall zin V; *G=(V,E)*/
C =K
move = false;
repeat

diameter := MfA\\/X{eCCT (2)};
if (C=/A)

then
if (move =true)
then begin
move := false;
C :=edges (u, 2) that are one edge farther from the
center of T than in the previous iteration;
end
else
C :=edges (u, z) at the center of T;
repeat
(X, y) := highest weight edge in C;
[* Thissplits T into two trees. subtreel and subtree2 */
until ((C = &) or (MAX {eccr (u)} = MAX 2{eccT @)}));

ul subtreel z1 subtree

if (C=4)
then /* no good edge to remove was found */
move = true;
else begin

remove (X, y) from T;
get a replacement edge and add it to T;
recompute eccr (z) for all zin V;
end
until ((diameter £ k) or (edges to be removed are farthest from center of T));
return T
end.

46

5.1 Selecting Edges for Removal

To reduce the diameter, the edge removed must bresk a longest path in the tree and
should be near the center of the tree. The center of spanning tree T can be found by
identifying the nodes u in T with eccr(u) = édiameter/20, the node (or two nodes) with
minmum eccentricity.

Since we may have more than one edge candidate for remova, we keep a sorted list
of candidate edges. This list, which we cdl C, is implemented as a max-hesp sorted
according to edge weights, so that the highest-weight candidate edge is at the root.

Removing an edge from a tree does not guarantee bresking al longest paths in the
tree. The end nodes of a longest path in T have maximum eccentricity, which is equd to
the diameter of T. Therefore, we must verify that removing an edge splits the tree T into
two subtrees, subtreel and subtree2, such that each of the two subtrees contains a node v
with eccr(v) equd to the diameter of the tree T. If the highest-weight edge from hegp C
does not satisfy this condition, the agorithm removes it from C and consders the next
highest. This process continues until the dgorithm ether finds an edge tha bresks a
longest path in T or the heap, C, becomes empty.

If the algorithm goes through the entire feap, C, without finding an edge to remove, it
must consder edges father from the center. This is done by identifying the nodes u with
eccr(u) = édiameter/20 + bias, where bias is initidized to zero, and incremented by 1

every time the dgorithm goes through C without finding an edge to remove. Then, the

47

dgorithm recomputes C as dl the edges incident to set of nodes u. Every time the
agorithm succeeds in finding an edge to remove, bias is reset to zero.

This method of examining edges helps prevent cyding snce we condder a different
edge every time until an edge that can be removed is found. But to guarantee the
prevention of cycling, aways sdect a replacement edge that reduces the ength of a path
in T. This will ensure that the refinement process will terminate, since it will either
reduce the diameter below the bound, k, or bias will become so large that the agorithm
tries to remove the edges incident to the end- points of the longest paths in the tree.

In the worst case, computing hegp C examines many edges in T, thereby requiring
O(n) comparisons. In addition, sorting C will take O(n log n) time. A replacement edge
is found in O(n®) time since the agorithm must recompute eccentricity vaues for dll
nodes to find the replacement that helps reduce the diameter. Therefore, the iterdive
process, which removes and replaces edges for n iterations, will take O(n®) time in the
worst case. Since hegp C has to be sorted every time t is computed, the execution time
can be educed by a congant factor if we prevent C from becoming too large. This is
achieved by an edge-replacement method that keeps the tree T farly uniform so thet it
has a amdl number of edges near the center, as we will show in the next section. Since C

is congtructed from edges near the center of T, thiswill keep C smdll.

48

5.2 Selecting a Replacement Edge

When an edge is removed from atree T, the tree T is split into two subtrees: subtreel and
subtree2. Then, we sdlect a non-tree edge to connect the two subtrees in a way that
reduces the length of a least one longest path in T without increesing the diameter. The
diameter of T will be reduced when dl longest paths have been so broken. We develop

two methods, ERM1 and ERM2, to find such replacement edges.

5.2.1 Edge-Replacement Method ERM 1

The fird edge-replacement-method, shown in Algorithm 3, sdects a minimum-weight
edge @, b) in G connecting a central node a in subtreel to a centra node b in subtree2.

Among dl edges that can connect subtreel to subtree2, no other edge (c, 2) will produce
a tree such that the diameter of (subtreel E subtree2 E {(c, 2)}) is smdler than the
diameter of (subtreel E subtree2 E {(a, b)}). However, such an edge (a, b) & not

guaranteed to exist in incomplete graphs.

49

ALGORITHM 3 (ERML1(G, T, subtreel, subtree2, move)).

begin
recompute ecCsypiree1(-) and eccsuptree2(.) for all nodes in each subtree;
my = MIN {eCCsubtreel(u)};

ul subtreel

mo = MIN {eccsubtreeZ(u)} :

ul subtree?2
(a, b) := minimum-weight edge in G that has:
(@l subtreel) and (b | subtree2) and (ecCsuptree1(@) = M1)
and (ecCsubtree2(b) = M2);
if (such an edge (a, b) is found)

then
add edge (a,b) to T;
else begin
add the removed edge (x, y) back to T;
move = true;
end
if (C = A) or (bias =0))
then begin
move = true;
C=£K
end
return edge (a, b)

end.

Since there can be a most two central nodes in each subtree, there are a most four
edges to sdect from. The centrd nodes in the subtrees can be found by computing
€CCamtree1(.) and eCCampree2() N each subtree, then taking the nodes v with
eCCaubiree(V) = MIN{ecCsiree(U)} Over al nodes u in the subtree that contains v. This
selection can be donein O(n?) time.

Findly, the boolean varidble move is st to true every time an edge incident to the
center of the tree is removed. This causes the removd of edges farther from the center of
the tree in the next iteraion of the dgorithm, which prevents removing the recently added

edge, (a, b).

50

This edge-replacement method seems fast at the first look, because it selects one out
of four edges. However, in the early iterations of the agorithm, this method creates
nodes of high degree near the center of the tree, which causes C to be very large. This, as
we have shown in the previous section, causes the time complexity of the agorithm to
increese by a congtant factor. Furthermore, having a most four edges from which to

select a replacement often causes the tree weight to increase significantly.

5.2.2 Edge-Replacement Method ERM 2

The second edge-replacement-method, shown in Algorithm 4, computes eCCyypiree1(.) and
eCCsubtree2(-) VaAues for each subtree individudly, as in ERM1. Then, the two subtrees are
joined & follows. Let the removed edge (x, y) have x T subtreel and y 1 subtree2. The
replacement edge will be the smdles-weight edge (a, b) which (i) guarantees that the
new edge does not increase the diameter, and (ii) guarantees reducing the length of a
longest path in the tree at least by one. We enforce condition (i) by:

€CCsubtree1(8) £ €CCsuntree1(X) AND €CCaubtree2(P) £ €CCsuvtreca(Y)
and condition (ii) by:

ECCaubtree1 () < ECCsutree1 (X) OR €CCsubtrec2(b) < €CCsubtreca(y) -
If no such edge (a, b) is found, we must remove an edge farther from the center of the

tree, instead.

51

ALGORITHM 4 (ERM2(G, T, subtreel, subtree2, x, y, move)).
begin
recompute ecCsypiree1(-) and eccsuptree2(.) for all nodes in each subtree;
M3 := €CCsubtree1(X);
My := €CCsubtree2(Y);
(a, b) := minimum-weight edge in G that has:
(@l subtreel) and (b | subtree2) and (ecCsuptree1(@) £ m1)
and (ecCsubtree2(b) £ M2) and ((ECCsubtree1(a) < M1 OF (ECCsubtree2(b) < M2));
if (such an edge (a, b) is found)

then
add edge (a,b) to T;
else begin
add the removed edge (x, y) back to T;
move = true;
end
return edge (a, b)

end.

Since ERM2 is not redtricted to the centers of the two subtrees, it works better than

ERM1 on incomplete graphs. In addition, it can produce DCMSTs with smaler weghts

because it sdects a replacement from a large set of edges, instead of 4 or fewer edges as

in ERM1. The larger number of edges increases the totd time complexity of IR2 with

ERM2 by a congant factor over IR2 with ERM1. However, this method does not create

nodes of high degree near the center of the tree as in ERM1. This helps keep the size of

hegp C amdl in the early iterations, reducing the time complexity of IR2 by a condant

factor.

52

— -A— - DCMST(3)

—>——Special-Case Approx.
DCMST(4)

—+——IR2-ERM1: Approx.
DCMST(10)

———|R2-ERM2: Approx.
DCMST(10)

(Spanning Tree Weight) / (MST Weight

100 200 300 400 500 1000

Number of Nodes (n)

Figure5.2 Weight quality of approximate solution, in randomly weighted
complete-graphs with Hamiltonian-path MSTs, produced by IR2 using two
different edge-replacement methods

5.3 Implementation

Frs, we padldized Algorithm IR2 and implemented it on the MasPar MP-1, usng
complete random-graphs and complete graphs forced to have Hamiltonian-path MSTS,
where edge weights were randomly selected integers between 1 and 1000. We dso
impemented IR2 sequentidly on a PC with a Pentium 11l / 500 MHz processor using

random-graphs and graphs forced to have Hamiltonian-path MSTs, where edge weights

53

were randomly selected integers between 1 and 10000, and the graph densties ranged
from 20% to 100%. All input graphs had orders ranging from 50 to 2000, where 20
different graphs were generated for each order, densty, and type of graphs. As expected,
IR2 did not enter an infinite loop, and it dways terminated within 3n iterations.

The weaght qudity of approximate DCMST(10) successfully obtaned by this
iterdtive-refinement dgorithm using the two different edge replacement methods, ERM1
and ERM2, for graphs with Hamiltonian-path MSTs is shown in Figure 5.2. The diagram
shows the weight of the computed gpproximate DCMST as a multiple of the weight of
the uncongtrained MST. It is clear that IR2 produced gpproximate solutions lower than
the upper bounds, and IR2 usng ERM2 produced lower weight solutions than IR2 using
ERM1. As expected, the time required by IR2 usng ERM1 to obtain approximate
DCMSTs was greater than the time required by IR2 usng ERM2. In addition, ERM1
required more memory space than ERM2, because the sze of C when we use ERM1 is
ggnificantly larger then its 9ze when ERM2 is used. This is caused by the creation of
high-degree nodes by ERM1, as explained in Section 52. For the remainder of this
dissertation, we will discuss the behavior of Algorithm IR2 only usng ERM2 as the
edge-replacement method.

When IR2 (usng ERM2) was tested on random complete-graphs, the weight qudity
of gpproximate DCMST(10) produced by IR2 exceeded the weight of approximate
DCMST(4) produced by the specid-case dgorithm when the edge weights were
randomly sdected integers between 1 and 1000, but not when the range of edge weights

was 1 to 10000. In the latter case, IR2 adso produced approximate DCMST(5) with

weight lower than the approximate DCMST(4) produced by the specid-case adgorithm.
No spanning tree of diameter 3 was found in our smples of sparse graphs, and therefore,
the specia-case heurigtic did not obtain any spanning trees of diameter 4 in those grephs.
The average time required to produce approximate solutions with n = 2000 for
DCMST(5) and DCMST(10), respectively, was 1924 and 1296 seconds in random
complete-graphs, and 1231 and 538 seconds in random graphs with 20% density. The
average weight of solutions with n = 2000 for DCMST(5) and DCMST(10), respectively,
as a factor of the unconstrained MST weight, was 159 and 48 n random complete-graphs
and 29 and 10.8 in random graphs with 20% dendty. In random gragphs of al tested
dengties, the weaght of solutions, as a factor of the uncongtrained-MST weight, increased
with n.

In graphs with Hamiltonian-path MSTs, the weight of approximate DCMST(10)
produced by IR2 (usng ERM2) was lower than the weight of approximate DCMST(4)
produced by the specia-case adgorithm, regardiess of the range of edge weights. The
upper bounds (trees of diameter 3 and 4) were not available for garse graphs of this type,
gther. The average time required by IR2 to produce approximate solutions, in graphs
with Hamiltonian MSTs, with n = 2000 for DCMST(5) and DCMST(10), respectively,
was 1488 and 1038 seconds in random complete-graphs, and 3038 and 1053 seconds in
random graphs with 20% densty. The average weight of solutions as a factor of the
uncongrained MST welght, was gproximatedy 26 and 9 for DCMST(5) and
DCMST(10), respectively, in random complete-graphs, independent of n. In random

graphs with 20% densty, the weight of solution, as a factor of the uncongtrained MST

55

weight, decreased with n. The weights of DCMST(5) and DCMST(10), respectively, as a
factor of MST weight, was 44.6 and 18.9 for n = 50 and 21.5 and 11.1 for n = 2000.

The weight of solutions, as a factor of MST weight, in our samples of graphs with
Hamiltonian-path MSTs did not increase with n because of the way these graphs were
generated. To force a randomly generated graph to have a Hamiltonian-path MST, we
randomly selected edges to include in the Hamiltonian path and randomly assgned them
integer weights between 1 and 100. The rest of the edges were randomly generated
integer-weights between 101 and 10000. Therefore, the average weight of an MST-edge
is 50, and te average weight of a non-MST edge is 5050. However, there are only (n —
1) edges in the MST and there are O(n?) non-tree edges in the rest of the graph. Thus, as
n increases, theratio:

(average weight of anon-MST edge) / (average weight of an MST edge)
decreases. This effect becomes clearer as the number of edges exceeds 10000.
Consequently, we evauate the solutions weights in this type of grephs based on the
upper and lower bounds (whenever available) caculated for the same set of graphs.
However, the time taken by the agorithm can be compared with other types of graphs,
where it can be seen that IR2 requires a longer time to obtain a solution when the
diameter of the uncongtrained MST islarger.

With dl input graphs used for IR2, the weghts of solutions and time required to
obtain them increased whenever the diameter bound, k, was decreased. The qudity of
IR2 will be discussed further, in Chapter 8, when it is compared to the other dgorithms

we developed for the DCM ST problem.

56

5.4 Convergence

As was shown in Sections 5.2 and 5.3, Algorithm IR2 is guaranteed to terminate, but it is
not guaranteed to produce a solution. The failure rate of IR2 does not depend on what
fraction of n the value of the bound on diameter, k, is. Rather, it dgpends on how smal
the congtant, Kk, is. To see this, we must take a close look a the way we move away from
the center of the tree while sdecting edges for removad. Note tha the dgorithm will fall
only when it tries to remove edges incident to the end-points of the longest paths in the
goanning tree. Also note that the agorithm moves away from the center of the spanning
tree every time it goes through the entire st C without finding a good replacement edge,
and it returns to the center of the spanning tree every time it succeeds. Thus, the only
way the dgorithm fals is when it is unable to find a good replacement edge in
édiameter/20 consecutive atempts, each of which includes going through a different set
of C. Empiricd results show tha it is unlikdy that the dgorithm will fal for 8
consecutive times, which makes it suitable for finding an approximate DCMST when the
vaueof k isacongtant greater than or equal to 15.

When the input graphs were forced to have Hamiltonian-path MSTs, Algorithm IR2
was unagble to find a spanning tree with diameter no more than 10 in some cases. In
graphs with 100 £ n £ 2500, our empirical results show a failure rate of 10% for k = 10
and 15% for k = 5. The success rate of IR2 (usng ERM2) with (unrestricted) random
complete-graphs was 90% for n 3 200. In al graphs, the times required by IR2 to obtain

asolution increased when the value of k was decreased.

57

When tested on incomplete graphs, Algorithm IR2 (usng ERM2) was more than 65%
successful in obtaining an approximate DCMST(5) for random graphs and graphs with
Hamiltonian-path MSTs, where the density was at least 20% and n 3 500. The success
rate dropped dowly as the density of the input graph was decreased. For the same types
of graphs and the same dendties, the success rate aso dropped when n was reduced
bedow 500, where Algorithm [IR2 becomes only 30% successful in finding an
goproximate DCMST(5) in grgphs with n = 50 and dendty = 20%. This is
understandable since the number of edges grows faster than the number of nodes. For
example, when dendity is 20%, there are 24950 edges in a graph of 500 nodes, but only
245 edgesin agraph of 50 nodes.

We measured and andyzed the time taken by IR2 to terminate. We measured the
time taken by IR2 (usng ERM2) to terminate successfully on the Pentium 111 / 500 MHz
mechine, and we obtaned the following equations usng a polynomid-fit program.
When using complete random-graphs, IR2 required (0.111n° + 62.7n®> — 29583.7n +
2170981) and (0.0736n° — 21.5n* + 10100n — 1230000) microseconds for k =5 and
k = 10, respectively. For random graphs with 20% density, IR2 required (0.191n° +
77.20° — 42250.8n + 3152147) and (0.0639n° +9.55 n? — 557350 — 342626)
microseconds for k = 5 and k = 10, respectively. This shows that the time required by
IR2 for this type of grephs is dmogst unaffected by the change in greph dendty. When
usng complete graphs with Hamiltonian-path MSTs, IR2 required (0.187n° + 50.2n° —
28288.1n + 2119730) and (0.121n° + 22n? — 11709.6n + 74699121) microseconds for

k =5 and k = 10, respectively. For graphs with Hamiltonian-path MSTs and 20%

58

density, IR2 required (0.248n° + 38.4n° — 26746.2n + 2120446) and (0.181n° — 133.8n° +
71780.63n — 7707461) microseconds for k = 5 and k = 10, respectively. This shows that,
in this type of graphs, the time required by IR2 increases dightly when the grgph density
is reduced.

59

CHAPTER 6

THE CIR ITERATIVE-REFINEMENT ALGORITHM

The composte-iterative-refinement dgorithm, CIR, fird computes an uncongrained
MST, then if the MST does not satisfy the condraint, iteratively refines this MST by edge
replacements until the diameter condraint is satisfied or the dgorithm fals Algorithm
CIR condgts of two stages. Algorithms IR1 and IR2, described in Chapters 4 and 5. The
fird stage, Algorithm IR1, is fast, but it normaly cannot reduce the diameter to the given
bound, k. It terminates when it is unable to improve the current spanning tree for 15
consecutive iterations. The second stage, Algorithm IR2, refines the spanning tree
further, until a solution is found or the dgorithm fals. The only difference in our use of
IR2 in this chapter is that it takes the spanning tree produced by IR1 as input, instead of

garting with an unconstraned MST as in Chapter 5.

6.1 Implementation

Algorithm CIR was implemented sequentidly on a PC with a Pentium [l /500 MHz
processor using graphs of orders 50 to 3000 and dengties from 20% to 100%. Twenty

different random graphs and twenty different graphs with Hamiltonian-path MSTs were

60

randomly generated for each order and densty. CIR dways terminated after no more
than 3n iterations of IR2. It was successful in more than 80% obtaining an approximate
solution in complete graphs, including the cases when n = 3000 and k = 5, where the
weight ratio (gpproximate DCMST to MST) was 251 for random graphs and 27 for
graphs with Hamiltonian-path MSTs. The weights of solutions produced by CIR were
lower than the upper bounds in complete graphs. IR1 terminated after reducing the
diameter by about 20%, producing a spanning tree with weight gpproximatey 1.05 times
MST weight. When the dendity of the graphs was gradudly reduced to 20%, the success
rate of CIR remained above 60%, but the weights of solutions deteriorated quickly.
Overdl, the time taken by IR1 was about 1% of the totd CIR time. The time taken by
CIR, in seconds, to obtain an gpproximate DCMST(5) in randomly-generated complete-
graphs was 245, 815, and 1924 for n = 1000, 1500, and 2000, respectively. Usng graphs
with Hamiltonian-path MSTs as input, the weights of solutions, as compared to the upper
and lower bounds, had the same quality as in random graphs, with the same success rate.
However, usng grgphs with Hamiltonian-path MSTs, CIR obtained an approximate
DCMST(5) in 292, 1130, and 3300 seconds for n = 1000, 1500, and 2000, respectively.
For dl graphs, the weights of solutions, and the time required by CIR to obtain them,

increased whenever k was reduced or whenever n was increased.

61

6.2 Convergence

The firg phase of Algorithm CIR, which is IR1, is guaranteed to terminate because it will
ether reduce the diameter below the given bound, or it will stop after failing to improve
the solution for 15 consecutive iterations. Empirica evidence shows that dlowing IR1 to
continue past 15 consecutive unsuccessful-iterations does not result in noticegbly lower-
weight solutions for the DCMST problem by CIR. The second phase of CIR, which is
IR2, is guaranteed to terminate (successfully or unsuccessfully), as shown in Chapter 5.
Consequently, CIR will aways terminate.

Empirical results show that the success rate of CIR is dightly lower than the success
rae of IR2 (without IR1). Algorithm IR1 is fagter than Algorithm IR2. However, the
time required by CIR is longer than the time required when IR2 is run usng an
unconsirained MST as input. In the first stage of CIR, the MST is recomputed by IR1,
producing a spanning tree with a smdler diameter. This spanning tree, however, contains
O(log n) edges that are not in the unconstrained MST. Furthermore, these edges are close
to the center of the spanning tree produced by IR1. In the second stage of CIR, some of
these O(log n) edges are replaced by IR2, which also replaces other edges and reduces the
diameter further. If the edge replacements in the first stage of CIR are not very carefully
sdected, they may cause the second stage to require more iterations, and possibly
decrease the weight-qudlity of the find solution.

The time taken by CIR was measured on a PC with a Pentium Il / 500 MHz

processor. The input graphs had 50 to 3000 nodes, and densties ranging from 20% to

62

100%. The edge weights were randomly-selected integers between 1 and 10000. A
polynomid-fit program was used to obtain the following equations for the time taken by
CIR to obtain an approximate solution When using random graphs as input, the time
required by CIR to compute approximate DCMST(5) and DCMST(10), respectively, was
(0.236n° + 9.92n? — 2430.3n — 1050113) and (0.169n° — 16.2n? + 4941.7n — 402038)
microseconds for complete graphs, and (0.278n° + 74.1n> — 42266.8n + 3030118) and
(0.151n% + 23.5n? — 16146.5n — 1194858) microseconds for graphs with 20% density.
This shows that the time required by CIR, for this type of graphs, is dmost unaffected by
the change in gregph dendty. Usng graphs with Hamiltonian-path MSTs, the time
required by CIR to compute approximate DCMST(5) and DCMST(10), respectively, was
(0.461n° — 239.4n* + 75896.98n — 3266577) and (0.233n* — 30.5n° + 13153.98n —
1039968) microseconds for complete graphs, and (0.394n° — 1.11n? + 203.51n + 704228)
and (0.171n® + 103.12n* — 50536.3n + 4291839) microseconds for graphs with 20%
dengty. This shows tha an increase in grgph dengty in this type of graphs causes an

increase the time required by CIR to obtain a solution.

63

CHAPTER 7

THE ONE-TIME-TREE-CONSTRUCTION ALGORITHM

In the one-time tree-condruction drategy, a modification of Prim's dgorithm is used to
compute an approximate DCMST in one pass. Prim's origind agorithm is chosen since
it has been experimentdly shown to be the fastest agorithm for computing an MST for
large dense-graphs [57]. In addition, Prim's dgorithm keeps the patidly-formed tree
connected in every iteration of the MST-condruction process. This makes it easer to
keep track of the diameter, as opposed to keeping track of the diameters of the trees of a
forest in Kruskd's agorithm. Furthermore, usng Kruska's agorithm, a greedy drategy
will not be able to construct a spanning tree of diameter k in one pass if an intermediate
step creates two non-spanning trees of diameter k/2. That makes it necessary to keep
more information about the forest while the spanning tree is being condructed, and it

may be necessary to do backtracking in some cases.

7.1 The Algorithm

The one-time-tree-condtruction agorithm, OTTC, dats with an abitrary node, and

grows a spanning tree by connecting the nearest neighbor that does not violae the

diameter constraint. Algorithm OTTC is described in Algorithm 4, where we maintain

the following information for each node, u:

near(u) is atree node candidate to be incident to u in the approximate DCMST.

W(u, v) Isthe weight of edge (u, v).

dist(u, v) s the (unweighted) distance from uto v if u and v are in the current tree, and
issetto —1if uor visnotinthetree.

ecc(u) Is the eccentricity of node u (the digance in the tree from u to the farthest

node) if u isin the current tree, and is set to -1 if u isnot in the tree.

To sdect near(u), we determine the edges that connect u to patidly-formed tree, T,
without increasing the diameter (as the firgt criterion) and among al such edges we want
the one with minimum weight.

In Segment 1 of Algorithm OTTC (described in Algorithm 4), the dist(.) and ecc(.)
values for node z are set by copying from its parent node near(z). In Segment 2, the
values of dist(.) and ecc(.) for the parent node are updated in n steps. In Segment 3, the
vaues of dist(.) and ecc(.) are update for other nodes. We make use of the dist(.) and

ecc(.) arrays, as described above, to smplify the OTTC computation.

65

ALGORITHM 4 (OTTC(G, k, z9)).

begin
Vr ={z0};
Er =/

near(u) :=zy, foreveryui Vr;
find a node z such that: W(z, near(z)) = I\/!I\E\l{\N(u, near (u))};

while (E1| < (n - 1)) do

select the node z with the smallest value of W(z, near(2));
V1:=Vr E {z};
Et:=Et E {(z near(2)};

* 1. set dist(z, u) and ecc(2) */
foru=1tondo

if (dist(near(z), u) >-1)

then
dist(z, u) :=dist(near(z), u) + 1;

end for
dist(z, z) :=0;
ecc(z) ;= ecc(near(2)) + 1;

[* 2. update dist(near(2), u) and ecc(near (2)) */
dist(near(2), z) := 1,
if (ecc(near(z)) <1)
then
ecc(near(z)) :=1;

* 3. update other nodes vaues of dist(.) and ecc(.) */
for each tree node u other than z or near(z) do
dist(u, z) := dist(u, near(z)) + 1;
ecc(u) := MAX{ecc(u), dist(u, 2)};
end for

[* 4. update the near(.) vaues for other nodesin G */
for each node u not in the tree do
if ((ecc(near(u)) +1) > k)
then
examine all nodes in T to determine near(u);
else
compare W(u, near(u)) to W(u, 2);
end for

end while
return T

end.

66

*T= (VT, ET) */

In Segment 4, we update the near(.) values for every node not yet in the tree. |If
adding node z to the tree would increase the diameter beyond the condraint, we must
reexamine dl nodes of the tree to find a new vdue for near(z). This can be achieved by
examining ecc(u) for nodes u in the treg i.e.,, we need not recompute the tree diameter.
This computation includes adding a new node, z to the tree, where W(z, near(2) is
minimum, and the addition does not increase the tree diameter beyond the condraint.
The time complexity of Segment 4 is O(n?) since it requires examining each node in the
tree once for each nontree node. The while loop requires (n — 1) iterations. Each
iteration requires a most O(n?) steps, which makes the worst-case time-complexity of the
dgorithm O(n®).

When G is incomplete, this adgorithm does not always find an exising solution.
Furthermore, the dgorithm is sendtive to the node chosen for darting the spanning tree.
Therefore, we compute n such trees, one for each darting node. Then, we sdect the
spanning tree with the smalest weight.

To reduce the time needed to compute a DCMST further, we sdect g Starting nodes
(g is independent of n) for OTTC a random, or we select the g nodes with the smallest
sum of weights of the edges incident to each node. Now, producing q spanning trees,
ingtead of n, reduces the overdl time complexity by a factor O(n) when ¢ is a constant.
For incomplete graphs, we can choose the g nodes with the highest degrees, and bresk a

tie by choosng the node with the smaller sum of weights of edgesincident to it.

67

7.2 Implementation

We implemented Algorithm OTTC on a PC with a Pentium Il / 500 MHz processor for
graphs of up to 2000 nodes and densties ranging from 20% to 100%, where 20 random
graphs and 20 graphs with Hamiltoniam-path MSTs were generated for each order and
dendgty. The edge weights were randomly-selected integers between 1 and 10000. We
dso padldized OTTC and implemented it on the MasPar MP-1 for complete random:
graphs and grgphs with Hamiltonian-path MSTs, where edge weights were randomly-
sdected integers between 1 and 1000. The pardld and sequentid implementations
produced smilar results in terms of the performance of OTTC.

The time required by OTTC to obtain an approximate DCMST using n start nodes
was dgnificantly larger than the time required by the other four agorithms presented in
this dissertation. We addressed this issue by running the dgorithm for a carefully
sdected smal set of dat nodes. We examined three different methods for choosing the
set of start nodes. One node-sdlection-method, NSM1, selects the center nodes of the g
gndlest garsin G as start nodes. The second method, NSM2, selects q nodes from G at
random. The third method, NSM3, is specific to incomplete graphs, and it sdects the g
nodes with the highest degrees in G, and bresks a tie by choosing the node with the
gmaler sum of weights of edges incident to it. We report the results using g = 20, where
other amdl vaues for q (between 1 and 50) produced smilar results. The qudity of
solution improved dowly with g, and the success rate of OTTC in obtaining a solution in

incomplete graphs increased dowly with q.

68

Algorithm OTTC was dways successful in obtaining a solution for complete graphs,
induding when k = 4. However, the success rate of OTTC declined as the densty of
input graphs was reduced, especidly when using less than n start nodes. Here, we report
the results (gpproximate solutions) for complete random-graphs. When usng n sart
nodes, Algorithm OTTC required 600, 2154, and 5130 seconds to compute an
gpproximate DCMST(5) with n = 1000, 1500, and 2000. OTTC using NSM1 produced
approximate solutions for DCMST(5) in 29, 91, and 206 seconds with n = 1000, 1500,
and 2000, respectivdy. OTTC using NSM2 produced approximate solutions with weight
amos identical to those obtained usng NSM1, but it took 6, 14, and 26 seconds to
compute an approximate DCMST(5) with n = 1000, 1500, and 2000, respectively. The
weights of approximate solutions obtained usng n gart nodes was better than using 20
dat nodes by more than two times the weight of MST, but it took about n/20 times
longer to run to completion. This confirms the theoreticd analyss that predicted an
improvement of O(n) in execution time over the n-iteration agorithm. The time required
by OTTC grew dowly with k. For example, usng OTTC with NSM2 to compute an
approximate DCMST(150) required only Y2second longer than the time required to
compute an approximate DCMST(4) for the same set of graphs with n = 1500. There
was no difference in the weight quality (compared to the upper and lower bounds), or in
the actud running time, when graphs with Hamiltonian-path MSTs were used as nput for
OTTC.

In incomplete graphs, OTTC with NSM2 required the same time it did with complete

graphs. Usng OTTC with NSM3 instead of NSM1 required a smal amount of extra

69

time, but it had no noticesble effect on the weights of solutions or the success rate of the
dgorithm. Oveadl, the time requred by OTTC was not affected by the change in graph

dengty and whether or not the graph had a Hamiltonian-path MST.

7.3 Convergence

Algorithm OTTC dats with an abitrary node, and grows a spanning tree by adding a
node via the smdlest-weight edge that does not violate the diameter condraint. When
adding an edge would violate the diameter condraint, an dternative edge, which does not
violate the diameter congraint, must be found. Since such an edge is guaranteed to exist
in a complete graph, OTTC will aways converge in complete graphs. However, in
incomplete grephs, the dgorithm islikdy to fal asthe dengty of the graph is reduced.

As expected, empiricd results show OTTC was dways successful in obtaining an
goproximate solution in dl types of complete graphs. When the density was reduced to
50%, it was necessary to run OTTC an average of 1.25 times for n = 100 and an average
of 73 times for n = 1500, each time with a different arbitrary node, before an
approximate DCMST(10) was found. In graphs with 20% dengty, it was necessary to
run OTTC gpproximately 29 times for n = 100 and gpproximately 67 times for n = 1500,
each time with a different arbitrary node, before an approximate DCMST(10) was found.
The number of attempts required to dotain a solution increased with n, but it was dways

possble for OTTC to obtain an gpproximate solution for DCMST(10) within n attempts

70

in graphs with dendty of a least 20%. However, OTTC, usng n source nodes, was
unable to find a sgpanning tree with dameter 5 in sparse graphs when a least one existed,
and its success rate in dense graphs was less than 100% for k = 5. The time required by
OTTC was not affected by the change in graph densty, where NSM2 required the same
time as in complete graphs, and NSM3 required gpproximately the same time as NSM 1.
The success rate of NSM2 and NSM3, in obtaining a solution, was approximately the
same.

We used a polynomid-fit program to determine the equation for the time taken by
OTTC on a PC with a Pentium 11l / 500 MHz processor. The time taken by OTTC using

one source node was approximately (0.00299n° + 0.33n? — 28.4n + 1667) microseconds,

71

CHAPTER 8

PERFORMANCE COMPARISONS

In this chepter, we present empirica results by implementing the iterative refinement and
one-time-tree-condruction agorithms on a Pentium 1l / 500 MHz processor, and we
compare the performance of these dgorithms based on the weght of approximate
solutions obtained, required time, convergence and success rate, and the effects of
different types of input.

Graphs of different orders and dendties, represented by their f © n) weight natrices,
were used as input. The input graphs had 50 £ n £ 3000, where edge weights were
randomly generated integers, 1 to 10000. Twenty different graphs were generated for
each order and densty, and the mean vaues were cdculated. In addition, we used
randomly generated grgphs with Hamiltonian-path MSTs, i.e, graphs whose MSTs are

forced to have diameter (n- 1).

72

—B—DCMST(3)
450 1 Special-Case Approx. DCMST(4)
4001 —©—CIR Approx. DCMST(5)

350 - IR2-ERM2 Approx. DCMST(5)
OTTC-NSM2 Approx. DCMST(5)

Weight Ratio

50 100 200 300 400 500 1000 1500 2000
Number of Nodes (n)

Figure8.1 Theratio ((spanning-tree weight) / (MST weight)) in randomly
weighted complete-graphs

Among dl four generd-agorithms we presented, only OTTC was always successtul
in obtaning an approximate solution for the DCMST problem in complete graphs
regardless of the vaue of the diameter bound, k. However, the success rate of OTTC
(using one source node) diminished quickly when the dengity of the graphs was reduced,
egpecidly with smdl vaues of the diameter bound, such as k = 5. Algorithms IR2 and
CIR were not dways successful in obtaining an goproximate solution, but their success
rate remained above 60%, even for graphs with 20% densty and diameter condraint
k =5 When OTTC was run usng n dat nodes, it was successful in obtaining an
gpproximate DCMST(10) in al graphs we tested, regardiess of their densty. However,

OTTC usng n start nodes was unable to obtain an gpproximate DCMST(5) in any graph

73

with 20% dendgty, and it was unsuccessful in obtaining an approximate DCMST(5) in
graphs with 50% density and n 3 1000, where agorithms IR2 and CIR verified that such
solutions exiged. Algorithm IR1 was dways successful in obtaining an approximate
solution in complete graphs when the diameter bound, k, was not less than n/10, but it
was unsuccessful in obtaining a solution when k was a smdl congtant, or when the graph

was not dense.

70 - —@— DCMST(3)
—1ll— Special-Case Approx. DCMST(4)
—=2A— CIR Approx. DCMST(5)
IR2-ERM2 Approx. DCMST(5)
OTTC-NSM2 Approx. DCMST(5)

60

50 A

Weight Ratio

[IE—; B ym§ : \A\Q/ : A2
20

50 100 200 300 400 500 1000 1500 2000
Number of Nodes (n)

Figure 8.2 Theratio ((spanning-tree weight) / (MST weight)) in randomly
weighted compl ete-graphs with Hamiltonian-path MSTs

The specia-case dgorithm for DCMST(4) was dways successful in finding an
goproximate solution in a graph that contains a spanning tree of diameter 3, and it was
unsuccessful otherwise. This specid-case dgorithm provided an upper bound on the

welghts of approximate solutions produced by the generd agorithms.

74

10
—HE—CIR Approx. DCMST(10) J]
9 IR2-ERM2 Approx. DCMST(10) /

8 1—A—OTTC-NSM2 Approx. DCMST(10)

Weight Ratio
(6}

3 1 / \

2 7 =
o
1 -
0 T T T T T T
50 100 200 300 400 500 1000 1500

Number of Nodes (n)

Figure 8.3 The ratio((spanning-tree weight) / (MST weight)) in randomly
weighted graphs with 20% density
As seen in Fgures 81, 82, and 83, Algorithm OTTC provided the lowest-weight
solutions, regardless of the dendty of the graph, and whether or not it has a Hamiltonian+
pah MST. Algorithm CIR produced gpproximate solutions with weight Smilar to the
weight of gpproximate solutions produced by IR2, and lower than the weight of the
gpproximate DCMST(4) produced by the specid-case dgorithm. Among dl five
agorithms we presented for the DCMST problem, only IR2 and CIR could produce
gpproximate solutions for vaues of k assmal as’5 in sparse graphs.
The time required by IR1, IR2, and CIR increased when k was reduced. The time
required by OTTC increased dightly when k was increased. However, OTTC (usng
NSM2) was the fagest of the four generd dgorithms in obtaining an approximate

solution. Furthermore, it was the only generd dgorithm that did not require more time

75

6000

—K—OTTC with n source nodes
—®—CIR
5000 —#— |R2-ERM2
—&=—OTTC-NSM2
o 4000 A
o
c
3
@ 3000 -
©
=
iZ= 2000 A 3
1000 A
0 —m o = H]
100 200 300 400 500 1000 1500 2000

Number of Nodes (n)

Figure 8.4 Thetime required by different algorithms to obtain an approximate
DCMST(5) in randomly weighted complete-graphs

when the diameter of the unrestricted MST was increased. Figure 84 illudtrates the time
required by IR2, CIR, and OTTC to compute an approximate DCMST(5) in the same set
of complete graphs. As the number of nodes increased, OTTC using NSM2 required less
time than the other dgorithms illudrated in the figure, but OTTC usng n start nodes
required more time than the other dgorithms illustrated in this figure. These resllts are
reflected by the coefficient of n® in the equation of time required by OTTC, given in
Chapter 7, which is lower than the coefficients of n® in the equations of time required by
other agorithms, given in earlier chapters. When OTTC was run with n source nodes, its
required time was multiplied by n. The equations for the time required by OTTC and
IR2, to obtain a DCMST(5) in randomly weighted complete-graphs, can be used to show

that OTTC run with n source nodes requires more time than IR2 for graphswith n 3 81.

76

CHAPTER9

CONCLUSION

The DCMST problem has various practicd applications, such as in digtributed mutud-
excdluson, bit-compresson for information retrievd, and linear lightwave networks. We
presented a survey of the literature on the DCMST problem and presented new efficient
gpproximate-adgorithms that solve it. We presented a study of the behavior of MST-
dianger in randomly generated graphs. Then, we developed five approximate
dgorithms for the DCMST problem. The specid-case adgorithm for DCMST(4)
congtructs an approximate DCMST(4) from an exact DCMST(3), and it is used in
providing an upper bound on the weight of gpproximate solutions in dense graphs. When
the diameter condraint is a large fraction of n, Algorithm IR1 uses the iterative-
refinement dtrategy to provide high-quaity solutions in a short amount of time. It darts
with an uncongrained MST, and then it iteratively increases the weight of (log n) edges
near the center of the MST and recomputes the MST. Algorithm IR2 uses the iterative-
refinement drategy with more careful edge-replacements, and without recomputing the
MST, to provide feasible solutions when k is a smdl congant. It serves as a tighter upper
bound for other general agorithms for the DCMST problem, and it is the adgorithm of
choice for sparse graphs. The composte-iterative-refinement dgorithm, CIR, combines

IR1 and IR2, providing ingght into ther behavior. Algorithm OTTC, which grows a

77

gpanning tree of the desired diameter, was adways successful in obtaining an approximate
solution in complete graphs, and the solution was aways lower than al upper bounds,
even when usng a smdl number of sat nodes When OTTC was used with a smdl
number of dtart nodes, it was dso the fastest of the four general dgorithms we presented
for solving the DCMST problem. Consequently, OTTC is an excdlent agorithm for
providing solutions for the DCMST problem, except in sparse graphs, where its success

rate was sgnificantly lower than that of IR2.

78

APPENDIX A

PROGRAM CODE FOR COMPUTING EXACT AVERAGE-
DIAMETER

79

/*****************7\'**

* Calculation of exact average-diameter for a tree of order n using Riordan's
* equations for computing the number of trees with a given diameter.

*

B S e e e xxxax/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <sys/time.h>

#include <sys/resource.h>

#include "gmp.h" /* this multi-precision library is available free from GNU */

#define maxn 52

#define MY_SEC (((after.ru_utime.tv_sec*1000000+after.ru_utime.tv_usec) \
-(before.ru_utime.tv_sec*1000000+before.ru_utime.tv_usec))/1000000.0)

struct rusage before, after;
long hsec, husec;
long int who=RUSAGE_SELF;

int S[maxn/2];

mpz_t power[maxn-2][maxn-4]; /* mpz_t is an arbitrarily-long integer */

mpz_t Factorial[maxn-1];

mpg_t G[maxn/2][maxn-1]; /* mpg_t is an arbitrarily-long rational number */
mpg_t D[maxn-1][maxn-1];

void Exponent(mpz_t *ans, int base, int expo)

if (expo < 0)
mpz_set_ui(*ans,0); /* unacceptable exponents */
else if (expo == 1)
mpz_set_ui(*ans,(unsigned long)base);
else if (expo == 0 || base == 1)
mpz_set_ui(*ans,1); /* includes 0°0: The Curious Identity */
else if (base == 0)
mpz_set_ui(*ans,0);
else mpz_set(*ans,power[base-2][expo-2]);

}

v*oid AllPowers(int n_hi) .
fz;LQV;I[T]ﬁf contains (+2)*(+2) which means power[0J0] contains 272 /
g /

int base, expo;

for (base = 2; base <= n_hi; base++) {
mpz_init_set_ui(power[base-2][0],(unsigned long)base);
mpz_mul_ui(power[base-2][0],power[base-2][0],(unsigned long)base);
for (expo = 3; expo <= n_hi - 2; expo++)

80

mpz_mul_ui(power[base-2][expo-2], power[base-2][expo-3],(unsigned long)base);

}

void AllFactorials(int n_hi)

int i

mpz_init_set_ui(Factorial[0], 1);
for (i=1; i <= n_hi; i++) {
mpz_init_set(Factorial[i], Factorial[i-1]);
mpz_mul_ui(Factorial[i], Factorial[i], (unsigned long)i);
}
}

void PolyMult(mpg_t *poly_prod, mpg_t *polyl, mpg_t *poly2, int lenl, int len2, int n_hi)

/* Compute the product of two polynomials. Assume all terms of each polynomial are */
/* present, where poly[i] is the coefficient of x*(i+1) */

inti, j;
mpq_t temp;

mpgq_inittemp);
for (i = 0; i < lenl+len2-1 && i < n_hi-1; i++)
mpq_set_ui(poly_prodli], 0, 1);

for (i=1;i<lenl;i++)
for j = 1;j<len2 && i+j < n_hi; j++) {
mpq_mul(temp, polyl[i-1], poly2[j-1]);
mpq_add(poly_prod[i+j-1], poly_prod[i+j-1], temp);

mpg_clear(temp);

}

void Initialize_G(int n_hi)
/* ~~ */

for (i=0; i < n_hi/2; i++)
for (j=0; j < n_hi-1; j++) {
mpa_init(G[i][i]);
mpq_set_ui(G[i][j], 0, 1);
}
}

void Initialize_D(int n_hi)
/* ~~ */

81

for (i=0; i < n_hi-1; i++)
for (j=0; j < n_hi-1; j++)
} mpa_init(D[i][i]);

void Compute_G2n(int n_hi)

inti, n;
mpz_t tempzl, tempz2;
mpgq_t tempq;

mpz_init(tempz1);
mpz_init(tempz2);
mpg_init(tempq);

for (n = 3; n < n_hi; n++) {
mpg_set_ui(G[1][n-1], O, 1);
for(i=1;i<n;i++){
mpz_mul(tempz1, Factorial[i], Factorial[n-i-1]);
Exponent(&tempz2,i,n-i-1);
mpz_set(mpqg_numref(tempq), tempz2);
mpz_set(mpg_denref(tempq), tempz1l);
mpg_canonicalize(tempq);
mpg_add(G[1][n-1], G[1][n-1], tempQq);
}
}

mpz_clear(tempzl);

mpz_clear(tempz2);

mpq_clear(tempq);
}

void Compute_Gkn(int k, int n, int n_hi)

int i;

mpg_t tempq;
mpz_t tempz;
mpq_t result;

mpdq_init(tempq);
mpz_init(tempz);
mpgq_init(result);

mpz_set_ui(mpg_numref(result), 1);

mpz_set(mpg_denref(result), Factorial[S[0]]);
for (1=0;i<=k-2; i++) {

82

Exponent(&tempz,SJ[i],S[i+1]);
mpz_set(mpqg_numref(tempq), tempz);
mpz_set(mpg_denref(tempq), Factorial[S[i+1]]);
mpg_canonicalize(tempq);

mpd_mul(result, result, tempq);

}

for(i=k-1;i<n&&i<n_hil2;i++) {
Exponent(&tempz,SJ[i],S[i+1]);
mpz_set(mpg_numref(tempq), tempz);
mpz_set(mpg_denref(tempq), Factorial[S[i+1]]);
mpq_canonicalize(tempq);
mpq_mul(result, result, tempq);
mpg_add(G[i][n-1], G[i][n-1], result);

}

mpg_clear(tempq);

mpz_clear(tempz);

mpg_clear(result);

}

void Compute_Gn(int n, int n_hi)

int diameter_value;
int i, k, subtotal,

for (i=0;i<n2;i++)

S[i] = 0;
S[0]=n -1;
subtotal = 0; /* total of S[1] through S[n-2] */
k =2;

while (S[n-2] < n-1 /* && k < n-1 && k < n_hi/2 */) {
for (i=1;i<=n2;i++)
if (subtotal < n - 1) { /* no carry */
S[i]++;
subtotal++;
if (S[i] == n-1)
k++;
i =n; /[*exit for loop */
}
else{
subtotal -= SJi];
S[i]=0; /[*carry 1*/
}
S[0] = n - subtotal - 1;

Compute_Gkn(k,n, n_hi);

} /* end while */
}

83

void Compute_G(int n_hi)

}

int i, j;
mpz_t tempz;
mpg_t rest;

Initialize_G(n_hi);
mpz_init(tempz);
mpg_init(rest);

[* case n == 2: */

for (i=0; i< n_hi-1; i++) {
mpdg_set_ui(G[O0][i],1,1);
mpz_set(mpq_denref(G[O][i]), Factorialli]);

}

for (i=0;i < n_hi/2; i++) {
mpdq_set_ui(G[iJ[0], 1, 1);
mpg_set_ui(GJ[i][1], 1, 1);

}

[* case n > 2: */
for (i= 3; i< n_hi-1; i++) {
Compute_Gn(i, n_hi);
for (=2;j<i-1&&j<n_hil2;j++)
mpq_add(G[i][i], G[i[i]. G[O][i]);
Exponent(&tempz,i,i-2);
mpz_set(mpqg_numref(rest), tempz);
mpz_set(mpq_denref(rest), Factorialli-1]);
mpg_canonicalize(rest);
for (j = i-1; j < n_hi/2; j++)
mpq_set(G[j-1][i-1], rest);
}

mpz_clear(tempz);
mpg_clear(rest);
Compute_G2n(n_hi);

void Compute_D(int n_hi)

inti, j;

mpg_t *templ, *temp2, *temp;

mpg_t hl[maxn-1], h2[maxn-1], prod[maxn-1];
unsigned long ul_i;

mpq_init(h1[0]);
mpq_set_ui(h1[0], 1, 1);
mpq_init(h2[0]);
mpg_set_ui(h2[0], O, 1);

for (i=1;i<n_hi-1; i++) {
mpa_init(h1[i]);
mpa_set_ui(h1[i, 0, 1);
mpq_init(h2[i]);
mpaq_set(h2[i], G[O][i]);
}

Initialize_D(n_hi);

for (i=0; i< n_hi-1; i++) {
ul_i = (unsigned long)i + 1,
mpq_set_ui(D[O][i], ul_i, 1);
mpz_set(mpg_denref(D[O][i]), Factorialli+1]);
mpd_canonicalize(D[O][i]);

}

templ = hl;
temp2 = h2;

for i=1;i<n_hi/2;i++){
temp = temp1;
templ = temp2;
temp2 = temp;

for (= 0; j < n_hi-1; j++)
mpq_sub(temp2[j], G[i](i]. G[i-1][i);

[* Even diameter */
PolyMult(D[2*i],temp1,G[i-1],n_hi-1,n_hi-1,n_hi);
for (j = 0; j < n_hi-1; j++)

mpaq_sub(D[2*][j], temp2[j], D[2*i][i]);

/* Odd diameter */
PolyMult(D[2*i-1],temp1,templ,n_hi-1,n_hi-1,n_hi);
for (j=0; j < n_hi-1; j++) {
mpz_mul_ui(mpq_denref(D[2*i-1][j]), mpg_denref(D[2*i-1][j]), 2);
mpg_canonicalize(D[2*i-1][j]);
}

}
/* May free hl and h2 here */
}

void ExpectedDiameter(int n_hi)

/* Calculate the expected diameter of a labeled tree as the average over all possible trees of */
[* trees of the same order */

inti, n;
mpg_t mean_diameter;

mpg_t tempg;
mpz_t powerz;

85

mpz_t mean_quotient;
mpz_t mean_remainder;

printf("\n Order Mean\n");

printf("~~~~~~~~~~~~ \n");

mpg_init(mean_diameter);
mpdq_init(tempq);
mpz_init(powerz);
mpz_init(mean_quotient);
mpz_init(mean_remainder);

for (n = 4; n < n_hi-1; n++)
{
mpq_set_ui(mean_diameter, 0, 1);
for (i=2;i<=n-1; i++) {
mpg_set(tempq, D[i-2][n-1]);
mpz_mul(mpg_numref(tempq), mpg_numref(tempq), Factorial[n]);
mpg_canonicalize(tempq);
mpz_mul_ui(mpg_numref(tempq), mpg_numref(tempq), (unsigned long)i);
mpg_canonicalize(tempq);
mpq_add(mean_diameter, mean_diameter, tempq);
}
Exponent(&powerz, n, n-2);
mpz_mul(mpg_denref(mean_diameter), mpq_denref(mean_diameter), powerz);
mpq_canonicalize(mean_diameter);
mpz_tdiv_qgr(mean_quotient, mean_remainder,
mpq_numref(mean_diameter), mpg_denref(mean_diameter));

printf(" %5d ", n);
mpz_out_str (stdout, 10, mean_quotient);

printf(" + ");

mpz_out_str (stdout, 10, mean_remainder);

printf(" /);

mpz_out_str (stdout, 10, mpg_denref(mean_diameter));
printf("\n");

}

mpg_clear(mean_diameter);
mpqg_clear(tempq);
mpz_clear(powerz);
mpz_clear(mean_quotient);
mpz_clear(mean_remainder);

int main(int argc, char *argv[])

{

int n_hi;
double total_time;

n_hi = atoi(argv[1]);
printf("\n\nNumber of nodes: from 4 to %d \n",n_hi);

86

/*
/*

n_hi += 2;
if (n_hi > maxn) {

printf("\nMaximum number of nodes allowed is %d\n\n",maxn-2);

exit(1);
}

total_time = 0.0; */
getrusage(who,&before); */

AllFactorials(n_hi);
AllPowers(n_hi);
Compute_G(n_hi);
Compute_D(n_hi);
ExpectedDiameter(n_hi);

[* getrusage(who,&after); */

/* total_time += MY_SEC; */

[* printf("\n\nTotal time is %2.2If \n\n", total_time); */
return O;

}

[x* * * ok *xx*x End of File **

87

APPENDIX B

PROGRAM CODE FOR THE ITERATIVE-REFINEMENT
ALGORITHMS

88

/*7\'************************7\'**

* |terative-refinement code (written in C) for the composite algorithm

* CIR, to find approximate solutions for Diameter-Constrained MST problem.
* This program can be easily modified to run any combination of IR1, IR2,

* and the special-case algorithm for DCMST(4).

*

B T s e s e e /

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include <sys/resource.h>

#define MaxWt 10000
#define MaxN 10000
#define MaxMSTWt MaxWt/100

#define BIG_NUMBER 0x7fffffff
#define TRUE 1
#define FALSE 0

#define MY_SEC (((after.ru_utime.tv_sec*1000000+after.ru_utime.tv_usec) \
-(before.ru_utime.tv_sec*1000000+before.ru_utime.tv_usec))/1000000.0)

#define StartTiming() getrusage(who,&before)
#define StopTiming(time) getrusage(who,&after); time = MY_SEC,;

struct rusage before, after;
long hsec, husec;
int who=RUSAGE_SELF,;

short n; [* actual number of nodes */

short k; /* the given diameter constraint */

short diameter; [* current tree diameter */

short dens; /* density of incomplete graph */

short root;

short *p; [* parent of each node in current tree */

short *ecc; [* eccentricity of each node in the tree */
short *deg; [* degree of each node in the tree */

int **G; [* the original graph */

int **dist; /* in IR1: the graph weights, including penalty */

/* in IR2: distance between any pair of nodes in tree */

short *leafness; /* indication of how far each node is from the leaves */
short *L; /* the heap containing nodes farthest from the leaves */

typedef struct heap_type {
short ul, u2; /* (ul, u2)is an edge “close" to the center */
} heap_type;
heap_type *C; /* the heap containing edges "close" to tree center */

89

short sizeC; /* Current number of elements in heap */

struct QNode_type {
short node;
struct QNode_type *next;
h

typedef struct QNode_type QNode;

QNode **child_h; /* Q head and tail for children of each node in current tree */
QNode **child_t;

double original_mstwt;

short maxliterations;

void DisplayGraph(int **graph)

/* ~~ */
/* Display the spanning tree. *
/* ~~ */
{
short 11, 3J;
if (n > 20)
return;

DTN\),
DN HHHH A EHEHAN");

printf(" ™);

for (Il = 0; Il < n; lI++)
printf(" %3d ",11);

printf("\n~~~~~~~ ");

printf("~~~~~ “);
printf("\n\n");

for (I1=0; Il < n; lI++) {
printf("%2d: ",I1);
for (JJ = 0; JJ < n; JJ++)
printf("%4d ", graph[ll][3J]);
printf("\n\n");

}
}
woid DisplayTree(void)
/* ~~ */
/* Display the spanning tree. */
/* ~~ */
{

short i;

if (n > 20)

return;

90

printf("\n This is the spanning tree: (root is parent of itself)");
printf("\n:::\n");
printf("Root is: %d\n",root);
for (i=0; i < n; i++)
printf(" Node: %2d Parent: %2d Weight: %4d Dist: %4d\n",
i, plil, GLIp(il]. dist[i][p[i]);
printf(" Node: %2d Degree: %2d Parent: %2d Weight: %4d Dist: %4d\n",
i, deg(i], p[i], Glillp[i]]. dist[i][p[i]]);
printf("\n\n");
}

void Span(int **graph)

inti, u, v;
short *tree;
short *rest;

if (NULL == (tree = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in Span(): tree[].\n");
exit(1);

}

if (NULL == (rest = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in Span(): rest[].\n");
exit(1);

}

for (i=0; i < n; i++)
tree[i] = i;

/* Put the nodes of the graph in a random order. */
for (i=0; i < n-1; i++) {
u=rand() % (n - i);
rest[i] = tree[u];
for (v=u; v < mHi-1; v++)
tree[v] = tree[v+1];

[* tree[0] contains the node leftover */

tree[1] = rest[n-2];
graph[tree[0]][tree[1]] = random() % MaxWt + 1,
graph[tree[1]][tree[0]] = random() % MaxWt + 1,

for (i=2; i < n;i++) {
u = tree[rand()%i]; /* select an arbitrary node from the tree */
v = rest[n-i-1]; /* select an "arbitrary” node not in the tree */
treeli] = v; [* add new node to the tree */
graph[u][v] = random() % MaxWt + 1;
graph[v][u] = random() % MaxWt + 1,

}

91

free(tree);
free(rest);

}

void GenerateRandomGraph(int **graph, int *m)

short i, j;
short d;

/* Initialize the diagonal of the graph to zero (no self loops). */
for (i=0; i < n; i++)
graph(i][i] = 0;
for (i=0; i < n; i++)
for j = i+1; j <n; j++)
graph(i][i] = graph[j][i] = 0;

*m =0;
Span(graph);
for (i=0; i < n; i++)
for (j=0; j < i; j++) {
d = rand() % 100;
if (d < dens && graph[i][j] == 0)
graph[i][j] = random() % MaxWt + 1,
if (graphli][j] > 0) { /* if there is an edge between i and j */
graph[j][i] = graph(i][j;
m=*m+1;
}

else
graph[i][j] = graph[j][i] = 0;

for (i=0;i<n;i++)
for (j = i+1; j < n; j++4)
dist[i][j] = dist[j][i] = graph(i](il;
}

void AllocateMemory(void)

/* Allocate memory for the 2-dimentional arrays G and dist. This Memory */
/* will not be freed until the program exits. */

short i;

if (NULL == (G = (int **)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G\n");
exit(1);

}

for (i=0; i < n; i++)

92

}

if (NULL == (G][i] = (int *)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G[%d]\n", i);
exit(1);

}

if (NULL == (dist = (int **)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- dist\n™);
exit(1);
}
for (i=0; i < n; i++)
if (NULL == (dist[i] = (int *)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- dist[%d]\n", i);
exit(1);
}

void GenerateRandomHamGraph(int *m)

/* Generate a complete graph with random edge weights, where the MST is
/* forced to be a Hamiltonian path

short i, j, u;
short *node, d;

if (NULL == (node = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in GenerateHamRandomGraph().\n");
exit(1);

}

/* Put the nodes of the graph in a random order. */
for (i=0; i < n; i++)

node[i] = i;
for (i=0; i < n-1; i++) {

u=rand() % (n - i);

p[i] = node(u];

for (j=u; j < n-i-1; j++)

nodelj] = node[j+1];

}
p[n-1] = node[0];

for (i=0; i < n; i++)
for (j =i;j < n; j++)
G[il[1 = 0;

/* Generate the Hamiltonian path MST */
for (i=0; i < n-1; i++)
Glp[iIp[i+1]] = G[p[i+1]1[pli]] = random() % MaxMSTWt + 1;

*m = 0;
for (i=0; i < n; i++)
for (j = i+1; j < n; j++) {
d = rand() % 100;

93

if (d < dens && GJi][j] == 0)
GIi][i] = random() % (MaxWt-MaxMSTWt) + MaxMSTWt + 1;
if (G[i][j] > 0) { /* if there is an edge between i and j */
G[illi] = GIO;
m=*m+1;
}

else
} G[i]{i] = Gili] = 0;

for (i=0; i < n; i++)
dist[i][i] = 0;

for (i=0; i < n; i++)
for (j=i+1; j < n; j++)

dist[i][j] = dist[j][i] = G[illil;

free(node);

}

short FindMax(short *list, short nn)

short i, max;

max = 0;
for (i=0; i < nn; i++)
if (abs(list[i]) >= max)
max = abs(list[i]);
return(max);

}

void FindMaxEccInSub(short *max1, short *max2)

short i;

*max1 = *max2 = 0;
for (i=0; i < n; i++)
if (ecc[i] < 0 && abs(ecc]i]) >= *max1)
*max1 = abs(eccli]);
else if (ecc[i] > 0 && abs(ecc]i]) >= *max2)
*max2 = abs(ecc]i]);

}

double FindMST (int **graph)

94

double wt=0;

short i, j;

short *cheap, *p1;

short *inTree;

short nextEdge, nextNode;

if (NULL == (p1 = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): p1[].\n");
exit(1);

}

if (NULL == (cheap = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): cheap[].\n");
exit(1);

}

if (NULL == (inTree = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): inTree[].\n");
exit(1);

}

for (i=0; i < n; i++) {
inTree[i] = FALSE;
if (graph[O][i] > 0)
cheapli] = graph[O][i;

else
cheap[i] = MaxWt + 1;
p1[i] = 0;
}
inTree[0] = TRUE;
p[0] = O;
root = 0;

for (i=1; i < n;i++) {
nexteEdge = MaxWt;
nextNode = -1;

for (j=1; j < n; j++)
if ({(inTree[j]) && (nextEdge > cheaplj])) {
nextEdge = cheaplj];
nextNode = j;

}

inTree[nextNode] = TRUE;
wt += G[nextNode][p1[nextNode]];
p[nextNode] = pl[nextNode];

for (j=0; j < n; j++)
if (cheaplj] > graph][j][nextNode] && graph[j][nextNode] > 0) {
cheaplj] = graph[j][nextNode];
pl[j] = nextNode;
}

95

free(pl);
free(cheap);
free(inTree);
return wt;

}

void Enqueue(short u, QNode **head, QNode **tail)

QNode *oldtail;

oldtail = *tail;

if(NULL==(*tail=(struct QNode_type *)malloc(sizeof(struct QNode_type))){
printf ("Out of memory -- function Enqueue()\n");
exit(1);

(*tail)->node = u;

if (oldtail '= NULL)
oldtail->next = *tail;
else *head = *tail;

(*tail)->next = NULL;
}

int Dequeue(QNode **head, QNode **tail)

QNode *oldhead;
int ret;

if (*head == NULL)
return(-1);

ret = (*head)->node;
oldhead = *head,;
*head = (*head)->next;
if (*head == NULL)
*tail = NULL;
oldhead->next = NULL;
free(oldhead);

return(ret);

}

short RemoveFromQ(QNode **prev, QNode **child)

96

{
QNode *temp;

if (*prev != *child) {
temp = *child;
(*prev)->next = (*child)->next;
*child = (*child)->next;
temp->next = NULL;

free(temp);
return 1,
}
else {
temp = *child,;
*prev = *child = (*child)->next;
free(temp);
return O;
}
}
void ComputeDegrees(void)
e et e e e e e e e e
/* Compute the degree of each node and store its children
[e e e e
{

int i;

for (i=0; i < n; i++)

deg[i] = 0;

for (i=0; i < n; i++)
child_h[i] = child_t[i] = NULL;

for (i=0; i < n; i++) {
deg][i]++;
deg[p[i]]++;
if (i !=root)
Enqueue(i, &child_h[p[i]], &child_t[p[il]);
}

deg[root] -= 2;
}

short GetFromHeapL(void)

inti, j;
short done;
short ret, temp;

if (sizeC == 0) /* heap is empty */
ret = -1;

else {

97

done = FALSE;
ret = L[O];
temp = L[sizeC-1];
sizeC--;
i=0;
j=1; I*jis left child of i */
while (j < sizeC && !done) {
if (j < sizeC-1)
if (leafness]L[j]] < leafness[L[j+1]])
j++; I*j points to larger child */
if (leafness[L[temp]] >= leafness[L][j]])
done = TRUE;
else {
L[i] = L[; /* move child up */

i=jhj=2%+1 /* move i and j down */

}
}
L[i] = temp;

return ret;

}

void AddToHeapL(short u)

short i, done;

if (sizeC >= MaxN) {
printf("Error: Heap L overflon\n");
exit(1);

}

else {
i = sizeC++,;
done = FALSE;
while (Idone)
if (i ==0)
done = TRUE; /* at root */
else if (leafness[u] < leafness[L[(i-1)/2]])
done = TRUE;
else if (leafness[u] == leafness[L][(i-1)/2]]
&& G[u][p[u]] <= G[L[ul[L[(i-1)/2]])
done = TRUE;
else { /* move from parent to child */
L[i] = L[(i-1)/2];
i = (i-1)/2;
}
L[l =u;

98

void CreateHeapL(void)

/* ~~ */
{

short i;

sizeC = 0;

for (i=0;i<n;i++)

AddToHeapL(j);
}
short Diameter(short *deg, short *cross_pointer)
/* ~~ */
/* Compute diameter using Leaf Deletion Method */
/* ~~ */
{
short i, dia;

short leaf_count = 0, que_size = 0;

short num_cross_point = O; /* tree level, starting from the leaves */
short leaf_node;

short front, rear, crossed = 0;

QNode *head, *tail, *child, *prev;

if (n==1) return O;
else if (n==2) return 1,

front = rear = 0;
head = tail = NULL;

for (i=0; i < n; i++)
if (deg[i] == 1) {
Enqueue(i, &head, &tail);
rear++;
leaf_count++;
que_size++;

}

cross_pointer[num_cross_point] = que_size - 1;
crossed = FALSE;
p[root] = -1;

if (Que_size 1= n-1) /* not STAR, i.e., n-1 nodes are leaf nodes. */
while (que_size <=n) {
leaf_node = Dequeue(&head, &tail);
deg[leaf_node] = 0;
front++;
leaf_count--;
leafness[leaf_node] = num_cross_point + 1;

if (leaf_node !'= root) {
deg[p[leaf_node]]--;
if (deg[p[leaf_node]] == 1) {
Enqueue(p[leaf_node], &head, &tail);
rear++;

99

leaf_count++;
que_size++;
}
}

/* decrement children’'s deg */
prev = child = child_h[leaf_node];
while (child != NULL) {
deg[child->node]--;
if (deg[child->node] == 1) {
Enqueue(child->node, &head, &tail);
rear++;
leaf_count++;
que_size++;

}

if (deg[child->node] <= 1) {
if (RemoveFromQ(&prev, &child) == 0)
/* return O for child is at beginning of queue */
child_h[leaf_node] = child;

}
else {

prev = child;

child = child->next;
}

}

if (front > cross_pointer[num_cross_point]) {
num_cross_point++;
cross_pointer[num_cross_point] = rear - 1,
crossed = TRUE;

}

if (crossed == TRUE && rear-front <= 2) break;
/* Detection of Path after deleting all leaf nodes */

crossed = FALSE;
}

/* leafness is not needed in the star case. IR will terminate. */
if (num_cross_point == 0 && que_size == n-1) /* STAR case */
dia = 2;

if (num_cross_point > 0 && leaf_count == 2) { /* a path remains */
dia = 2*(num_cross_point) + (n - (que_size - 2)) - 1;
i = 2*num_cross_point + 1; // + (diameter&1);
while (que_size <=n) {
leaf_node = Dequeue(&head, &tail);
i++;
if (leaf_node == -1) break;
leafness[leaf_node] = i/2;
if (leaf_node != root) {
deg[p[leaf_node]]--;
if (deg[p[leaf_node]] == 1) {

100

Enqueue(p[leaf_node], &head, &tail);
que_size++;
}
}
prev = child = child_h[leaf_node];
while (child != NULL) {
deg[child->node]--;
if (deg[child->node] == 1) {
Enqueue(child->node, &head, &tail);
que_size++;

}

if (deg[child->node] <= 1) {
if (RemoveFromQ(&prev, &child) == 0)
child_h[leaf_node] = child,;

}

else {
prev = child;
child = child->next;

}

}
}
}

if ((num_cross_point > 0) && (que_size - front) == 1) { /* node remains */
dia = 2 * num_cross_point;
i = Dequeue(&head, &tail);
leafness[i] = num_cross_point + 1;
}
tail = head;
while (NULL !'= head) {
tail = tail->next;
free(head);
head = tall,

}

for i=0;i<n;i++){
child_t[i] = child_h[i];
while (NULL != child_h[i]) {
child_t[i]= (child_t[i])->next;
free(child_h[i]);
child_h([i] = child_t]i];
}
}
p[root] = root;
return dia;

}

void Penalize(void)

/* Increase the weight of edges "near" the center
/* Assume root ==

101

short i, near;
short penalty, limit;
int Wmin, Wmax;

Wmax = 0;
Wmin = BIG_NUMBER,;
for(i=1;i<n;i++){
if (Wmin < dist[i][p][i]])
Wmin = dist[i][p[i]];
if (Wmax > dist[i][p[i]])
Wmax = dist[i][p[i]];
}

limit = floor(log(n)/log(2));
for (i = 0; i < limit; i++) {
if ((near = GetFromHeapL()) == root)
near = GetFromHeapL();
penalty = (dist[near][p[near]] - Wmin) * Wmax / (Wmax - Wmin);
if (penalty > 0)
if (leafness[near] <= leafness[p[near]])
penalty /= ((diameter + 1)/2 - leafness[near] + 1);
else penalty /= ((diameter + 1)/2 - leafness[p[near]] + 1);
if (penalty < 1)
penalty = 1;

if (dist[near][p[near]] + penalty > BIG_NUMBER) {
printf("Overflow error in function Penalize() \n");
exit(1);

}

else {
dist[near][p[near]] += penalty;
dist[p[near]][near] = dist[near][p[near]];

}

}
}

double IR1(double *IR1time)

double time;

double dcmst_wt, prev_weight;

short iter, *cross_pointer, *prev_p, *temp;
short MSTdiameter, prev_diameter, worse;

if (NULL == (L = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function IR2(): L[J\n");
exit(1);

if (NULL == (leafness = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function IR2(): leafness[]\n");

102

exit(1);
}
if (NULL == (deg = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function IR2(): deg[].\n");
exit(1);
}
if (NULL == (cross_pointer = (short *)calloc(n-1, sizeof(short)))) {
printf("Out of memory in IR2(): cross_pointer[].\n");
exit(1);

}

if (NULL == (prev_p = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function IR2(): prev_p[]\n");
exit(1);

}

if (NULL == (child_h = (QNode **)calloc(n, sizeof(QNode*)))) {
printf("Out of memory in IR2(): child_h[].\n");
exit(1);

}

if (NULL == (child_t = (QNode **)calloc(n, sizeof(QNode*)))) {
printf("Out of memory in IR2(): child_t[].\n");
exit(1);

}

StartTiming();
dcmst_wt = original_mstwt = FindMST(dist);
ComputeDegrees();
MSTdiameter = diameter = Diameter(deg,cross_pointer);
if (diameter > k)

CreateHeapL();
for (iter = O; iter < n; iter++)

prev_pliter] = pl[iter];

StopTiming(time);

iter = 0;

printf("\nin IR1:\n");

printf("lteration: %d, Diameter: %d, MST Weight: %0.0If, Time: %0.4If \n",
iter,diameter,dcmst_wt,time);

prev_diameter = diameter;
prev_weight = dcmst_wi;
worse = 0; /* number of iterations without improvement to solution */
iter = 0;
while (iter < maxlterations && diameter > k && worse <= 15) {
iter++;
CreateHeapL();
Penalize();
demst_wt = FindMST(dist);
ComputeDegrees();
diameter = Diameter(deg,cross_pointer);
if (prev_diameter > diameter ||
(prev_diameter == diameter && prev_weight > dcmst_wt)){
prev_diameter = diameter;
prev_weight = dcmst_wi;

103

}

worse = 0;
temp = prev_p;
prev_p = p;
p = temp;

}

else
worse++;

}

printf("Final Iteration: %d, Diameter: %d, DCMST Weight: %0.0If, Time: %0.4If \n",

iter,diameter,dcmst_wt,time);

if (diameter >= prev_diameter) {
temp = p;
p = prev_p;
prev_p = temp;
diameter = prev_diameter;
dcmst_wt = prev_weight;

}

StopTiming(time);
*IR1time = time;

printf("Revert to better tree: Diameter: %d, DCMST Weight: %0.0If, Time: %0.4If \n",

diameter,dcmst_wt,time);

free(L);
free(leafness);
free(deg);
free(cross_pointer);
free(prev_p);
free(child_h);
free(child_t);

return(dcmst_wt);

void ComputeDistEcc(void)

intu, w, z;
QNode *head, *tail;

/* initialize dist and ecc */
for (u=0; u < n; u++){
ecclu] = 0;
dist[u][u] = 0;
for (w=0; w < u; w++)
dist[w][u] = dist[u][w] = -1;
}

head = tail = NULL;

104

Enqueue(root, &head, &tail);

while ((u = Dequeue(&head, &tail)) = -1)
for (w=0; w < n; w++)

if (dist[root][w] < 0 && p[w] == u && w != u){

/* if w is an unvisited neighbor of u */
dist[w][root] = dist[root][w] = dist[root][u] + 1;
dist[u][w] = dist[w][u] = 1,
ecc[w] = ecc[u] + 1;

Enqueue(w, &head, &tail);

for (z=0; z < n; z++)
if ((dist[root][z] > O || z == root)&& z = w){
dist[z][w] = dist[w][z] = dist[u][z] + 1;
if (ecc[z] < dist[z][w])
ecc[z] = dist[z][w];

}
}

}
void ComputeSubtreeEcc(short *sub_ecc)
/* ~~ */
/* Recompute the eccentricity values with respect to each subtree. */
/* ~~ */
{

short i, j;

for (i=0; i < n; i++)

sub_eccl[i] = 0;
for (j=0; j < n; j++)
for (i=0; i < n; i++)
if (eccl[j] * ecc[i] > 0 && dist][i][j] > sub_ecc][j])
sub_ecc[j] = dist[i][j];

}
void RecomputeDistEcc(short a, short b)
/* ~~ */
/* Recompute the eccentricity values with respect to the entire tree */
/* ~~ */
{

short i, j;

short *subtree;

if (NULL == (subtree = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function RecomputeDistEcc()\n");
exit(1);

}

for (j=0; j < n; j++) {
subtree]j] = ecc]j];

105

ecc[j] = 0;
}

dist[a][b] = dist[b][a] = 1,
for (j=0; j < n; j++)
for (i=0; i < n; i++) {
if (subtree[j] < 0 && subtree[i] > 0)
dist[j][i] = dist[j][a] + dist[b][i] + 1;
else if (subtree[j] > 0 && subtree[i] < 0)
dist[j][i] = dist[j][b] + dist[a][i] + 1;
if (dist[j][i] > ecc[j])
ecclj] = dist[j][il;

free(subtree);

double ComputeDCMST3(short *uu, short *wv)

{

double wt, wt3;
short u, v, w;
short count, fail;
short p2[MaxN];

wt = wt3 = n * MaxWt;
for (u=0; u < n-1; u++)
for (v=u+l; v <n; v++) [*for each edge (u,v) */
if (G[u][v] > 0) {
p2[u] = u; /* make u the root of the tree */
p2[v] = u; /*initialize tree to edge (u,v) */
wt = G[u][v];
count = 2;
fail = FALSE;
for (w=0; w < n && !fail; w++)
if(Wl=u&&w!=v)
it (G[w][u] < G[W][V] && G[w][u] > 0) {
p2[w] = u;
wt += Gw][u];
count++;

}

else if (G[w][v] > 0) {
p2Ww] = v,
wt += Gw][V];
count++;

}
else fail = TRUE;

if (wt <wt3 && count ==n) {
wt3 = wi;
*uu = u;
W=,
for (w=0; w < n; w++)
plw] = p2[w];

106

*/

}
}

root = *uu;
return wt3;

}

double ComputeDCMST4(double mst3, short uu, short vv)

/* ~~~ ~——— -k/
/* Assume DCMST3 has been computed, and that uu is the root, and that */
[* the parent of every leaf is either uu or vv, and p[vv] = uu */
/* ~~~~~~~ ~—— ~— ~— ~— ~— ~— ~— */
{

double wtu, wtv;

short x, y, z;

short p1[MaxN];
short p2[MaxN];

if (mst3 >= n * MaxWt)
return mst3;

for (x=0; X < n; x++)
p2[x] = p1[x] = p[x];

pl[uu] = uu; /* this a potential root for DCMST(4) */
p1[w] = uu;
wtu = mst3;
for (x=0; x < n; x++)
if (p[X] == w && X I= v && X != uu) {
Z=w,
for (y=0;y <n; y++)
if (p[y]==uu &&y'=uu &&y'!=vwv
&& G[x][y] < G[x][z] && G[x][y] > 0)
z=y,;
p1[x] = z;
s += GIx[z] - GIX[P[xIl;

p2[wv] = vv; [* this another potential root for DCMST(4) */
p2[uu] = w;
wtv = mst3;
for (x=0; x < n; x++)
if (p[X] == uu && x != uu && x 1= w) {
Z = uu;
for (y=0; y < n; y++)
if (ply] == w && y I=w && y 1= uu
&& Gx]ly] < G[x][z] && G[x][y] > 0)
z=y;
p2[x] = z;
\}NtV += G[x][z] - G[X][p[XI];

if (wtv < wtu) {
for (x=0; X < n; x++)

107

p[X] = p2[x];
root = wv,
return wtv;
}
else{
for (x=0; X < n; x++)
p[x] = p1[xI;
root = uu;
return wtu;
}
}

void AddToHeapC(short ul, short u2)

int wt;
short i, done;

wt = G[ul][u2];

if (sizeC >= MaxN) {
printf("Error: Heap C overflom\n");
exit(1);

}

else {
i = sizeC++;
done = FALSE;
while (Idone)
if 1==0)
done = TRUE; /* at root */
else if (wt <= G[C[(i-1)/2].u1][C][(i-1)/2].u2])
done = TRUE;
else { /* move from parent to child */
C[i] = C[(i-1)/2];

i = (i-1)/2;
}
Cli].ul = u3;
Cli].u2 = u2;
}

}
void CreateHeapC(short bias)
/* ~~ */
/* Create heap C, and avoid duplicate entries */
/* ~~ */
{

short u, close;
QNode *headu, *tailu, *headyv, *tailv;
QNode *up, *vp;

108

sizeC = 0;

tailu = tailv = NULL;

headu = headv = NULL;

close = (diameter + 1)/2 + !(diameter & 1);

if (bias != 0)
for (u=0; u < n; u++)
if (abs(ecc[u]) == (diameter+1)/2 + hias)
Enqueue(u, &headu, &tailu);
else
Enqueue(u, &headyv, &tailv);
else
for (U=0; u<n; u++)
if (abs(ecc[u]) == (diameter+1)/2 + bias)
Enqueue(u, &headu, &tailu);
else
if (abs(ecc[u]) == close)
Enqueue(u, &headv, &tailv);

if (headu != NULL && headv !'= NULL) {
for (vp = headyv; vp != NULL; vp = vp->next)
for (up = headu; up '= NULL; up = up->next)
if (dist[vp->node][up->node] == 1)
AddToHeapC(vp->node,up->node);

if (bias !=0) {
for (vp = headu; vp->next != NULL; vp = vp->next)
for (up = vp->next; up !'= NULL; up = up->next)
if (distfvp->node][up->node] == 1)
AddToHeapC(vp->node,up->node);

else /*if bias == 0 */
for (vp = headu; vp->next != NULL; vp = vp->next)
for (up = vp->next; up '= NULL; up = up->next)
if (dist[vp->node][up->node] == 1 && abs(ecc[u]) == close)
AddToHeapC(vp->node,up->node);
}

for (vp = headv; vp = NULL;) {
Vp = Vvp->next;
free(headv);
headv = vp;

}

for (up = headu; up '= NULL;) {
up = up->next;
free(headu);
headu = up;
}
}

heap_type GetFromHeapC(void)

109

/* Remove and return the edge with highest weight from heap C */

short i, j;
short done;
heap_type ret, temp;

if (sizeC == 0) /* heap is empty */
ret.ul = ret.u2 = 0;

else {
done = FALSE;
ret = C[O];
temp = C[sizeC-1];
sizeC--;
i=0;
j=1; /*jis left child of i */
while (j < sizeC && !done) {
if (j < sizeC-1)
if (G[C[j].u1][CIj].u2] < G[C[j+1].ul][C[j+1].u2])
j++; I* j points to larger child */
if (G[temp.ul][temp.u2] >= G[C[j].ul][C[j].u2])
done = TRUE;
else {
C[i] = C[j]; /* move child up */
i=j;j=2%+1, *moveiandjdown*
}
}
Cl[i] = temp;
}
return ret;

}

void ERM2(short *move, short *aa, short *bb, short x, short y)

int ab_wit;

short u;

short *sub_ecc; /* eccentricity of node wrt to its subtree */
QNode *a, *b;

QNode *subl_head, *subl _talil;

QNode *sub2_head, *sub2_tall,

subl_head = subl tail = NULL,
sub2_head = sub2_tail = NULL,

if (NULL == (sub_ecc = (short *)calloc(n,sizeof(short)))) {
printf("Out of memory in ERM2.\n");
exit(1);

}

ComputeSubtreeEcc(sub_ecc);

110

for (U=0; U < n; u++)
if (ecc[u] * ecc[x] > 0 && sub_ecc[u] <= sub_ecc][x])
Enqueue(u, &subl_head, &subl_tail);
else if (ecc[u] * ecc[y] > 0 && sub_ecc[u] <= sub_eccl[y])
Enqueue(u, &sub2_head, &sub?2_tail);

*aa = *bb = -1,
ab_wt = BIG_NUMBER;
for (a = subl_head; NULL != a; a = a->next)
for (b = sub2_head; NULL != b; b = b->next)
if (G[a->node][b->node] < ab_wt &&
G[a->node][b->node] > 0 &&
(abs(ecc[a->node]) < abs(ecc[X]) ||
abs(ecc[b->node]) < abs(ecc[y]))) {
*aa = a->node;
*bb = b->node;
ab_wt = G[a->node][b->node];

}

free(sub_ecc);
if (*aa == -1 || *bb == -1) { /* no replacement edge found */

*aa = X;
*bb = y;
*move = TRUE;

}

a = subl_head;

while (NULL != subl_head) {
a = a->next;
free(subl_head);
subl head = a;

}

a = sub2_head;
while (NULL != sub2_head) {
a = a->next;
free(sub2_head);
sub2_head = a;
}
}

double IR2(double *IR2time, double dcmst_wt)

double time;

short move, iterations;
short origDiameter;
short bias, eccu, eccy;
heap_type *xy;

short j, a, b;

111

if (NULL == (xy = (heap_type *)malloc(sizeof(heap_type)))) {
printf ("Out of memory -- function IR2(): xy\n");
exit(1);

}

if (NULL == (C = (heap_type *)calloc(n, sizeof(heap_type)))) {
printf ("Out of memory -- function IR2(): C[]\n");
exit(1);

}

if (NULL == (ecc = (short *)calloc(n, sizeof(short)))) {
printf ("Out of memory -- function IR2(): ecc[]\n");
exit(1);

}

StartTiming();

iterations = 0;

ComputeDistEcc();

diameter = FindMax(ecc, n);

origDiameter = diameter;

StopTiming(time);

printf("\nin IR2:\n");

printf(“lteration: %d, Diameter: %d, DCMST Weight: %0.0If, Time: %0.4f \n",
iterations,diameter,dcmst_wt,time);

move = FALSE;
bias = 0;
while (diameter > k && bias < (diameter+1)/2
&& iterations < maxlterations) {
iterations++;
if (move && 0 == sizeC) {
move = FALSE;
bias++;

else if (Imove)
bias = 0;
if !move && sizeC == 0)
CreateHeapC(bias);
eccu = eccv = 0;
*xy = GetFromHeapC();

if (xy->ul !=0)
do{
for (j=0; j < n; j++)
if (dist[j][xy->u2] > dist[j][xy->ul])
ecc[j] = -(abs(ecc]j])); /*jis in subtree 1 */
else
ecc[j] = abs(ecc[j]); /*jis in subtree 2 */

FindMaxEccInSub(&eccu,&eccv);
if (eccu = eccv)
*xy = GetFromHeapC();
} while(xy->ul = 0 && eccu != eccv);

112

if (eccu != eccv)
move = TRUE;
else { /*
if (useERM1)
ERM1(&move,&a,&b,bias,xy->ul,xy->u2);
else */
ERM2(&move,&a,&b,xy->ul,xy->u2);

if (I((a == xy->ul && b == xy->u2)||(b == xy->ul && a == xy->u2))) {
/* recompute dist and ecc only if tree changes */
RecomputeDistEcc(a,b);
diameter = FindMax(ecc, n);
}
}
}

dcmst_wt = FindMST(dist); /* reorganize the tree as a rooted tree */

StopTiming(time);

*IR2time = time;

printf("Final Iteration: %d, Diameter: %d, DCMST Weight: %0.0If, Time: %0.4An",
iterations,diameter,dcmst_wt,time);

free(xy);

free(C);

free(ecc);

return(dcmst_wt);

main(int argc, char *argvl[])
{
extern char *optarg;
int m; /* number of edges in the graph */
short graph_type, uu, w;
short seed;
short IR1d_hi, IR1d_low;
double IR1d_sum, IR1d_sumsq, ave_dens;
double dcmst3, demst4, factor;
double dcmstIR1_wt, dcmstiR2_wit;
double demst3_low, dcmst3_high, demst4_low, demst4_high;
double dcmst4_sum, dcmst4_sumsq, dcmst3_sum, dcmst3_sumsq;
double IR1time,IR2time,totallR1time, totallR2time, total_time;
double dcmstIR1_low, demstiR1_high, dcmstIR1_sum, demstiR1_sumsq;
double decmstIR2_low, dcmstIiR2_high, dcmstiR2_sum, decmstIR2_sumsq;
double dcmst_ratio_low, dcmst_ratio_high, dcmst_ratio_sum, dcmst_ratio_sumsq;
short trial, num_trials, fails, big_k, c;
short upper_bound_fails;

n=10;

m = 45;
k=5;

dens = 100;
seed = 7;

113

num_trials = 1,
graph_type = 0;

while ((c = getopt(argc, argv, "n:k:d:es:t:p")) != EOF)
switch (c¢) {
case 'n": n = atoi (optarg); break;
case 'k': k = atoi (optarg); break;
case 'd": dens = atoi (optarg); break;
case 'p":. graph_type = 1; break; /* has Hamiltonian MST */
case 'e": graph_type = 2; break; /* Euclidean */
case 's': seed = atoi(optarg); break;
case 't: num_trials = atoi(optarg); break;
case '?"
default:
printf("usage: %s [-n NumberOfNodes] [-t NumberOfTrials]", argv[0]);
printf("[-k DesiredDiameter] [-p] [-e] [-s RandomSeed] ");
printf("[-d GraphDensity]\n");
exit(1);
}

if (n > MaxN) {
printf ("%s: Maximum number of vertices is %d\n", argv[0], MaxN);
exit(1);

}

if (k<4){
printf ("Minimum diameter bound is 4\n");
exit(1);

}

printf ("\nn: %d \t k: %d \t Density: %d%% \t Seed: %d \t Trials: %d \n",
n, k, dens, seed, num_trials);
switch (graph_type) {
case 0O: printf("Graph Type: Random\n"); break;
case 1: printf("Graph Type: Randomly generated and has Hamiltonian MST\n");
break;
case 2: printf("Graph Type: \n"); break;
default: printf("Invalid Graph Type\n"); exit(1);
}

fails = 0;

big_k =0;
upper_bound_fails = 0;
totallR1time = 0;
totallR2time = O;
ave_dens = 0;

IR1d_low = Ox7fff;
IR1d_hi =0;
IR1d_sum = IR1d_sumsq = 0;

dcmstiR1_low = BIG_NUMBER,;

dcmstIlR1_high = 0;
dcmstiR1_sum = dcmstlIR1_sumsq = O;

114

dcmstiR2_low = BIG_NUMBER,;
dcmstiR2_high = 0O;
dcmstiR2_sum = demstiR2_sumsq = 0O;

dcmst_ratio_low = BIG_NUMBER,;
dcmst_ratio_high = 0;
dcmst_ratio_sum = dcmst_ratio_sumsq = 0;

dcmst3_low = BIG_NUMBER,;
dcmst3_high = 0;
dcmst3_sum = dcmst3_sumsq = 0;

dcmst4_low = BIG_NUMBER,;
dcmst4_high = 0;
dcmst4_sum = dcmst4_sumsq = 0;

if (NULL == (p = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in main().\n");
exit(1);

}

trial = num_trials;

AllocateMemory();

srandom(seed);

while (trial > 0) {

trial--;
switch (graph_type) {

case 0: GenerateRandomGraph(G,&m); break;
case 1: GenerateRandomHamGraph(&m); break;
case 2. GenerateEuclideanGraph(); break;
default: printf("Invalid Graph Type\n"); exit(1);

}

original_mstwt = FindMST (dist);
dcmst3 = ComputeDCMST3(&uu, &wv);
if (demst3 < n * MaxWt) {
factor = demst3/original_mstwt;
if (factor < dcmst3_low)
dcmst3_low = factor;
if (factor > dcmst3_high)
dcmst3_high = factor;
dcmst3_sum += factor;
dcmst3_sumsq += factor * factor;

dcmst4 = ComputeDCMST4(decmst3, uu, w);
factor = dcmst4/original_mstwt;
if (factor < dcmst4_low)
dcmst4_low = factor;
if (factor > dcmst4_high)
dcmst4_high = factor;
dcmst4_sum += factor;
dcmst4_sumsq += factor * factor;

115

}

else upper_bound_fails++;

printf("\n:::::::::::::::::::::::: TRIAL #%d =====================—======
num_trials-trial);
printf("\nNumber of edges = %d, Density = %0.2[f%%\n",
m, (double)m/(double)(n*n-n)*200);
if (demst3 < n * MaxWit)
printf("\nUpper Bound Weights: DCMST(3) = %0.0lf, DCMST(4) = %0.0IA\n",
dcmst3, demstd);
else printf("Upper bound is not available.\n");

ave_dens += (double)m/(double)(n*n - n) * 2;
maxlterations = 500;
dcmstlR1_wt = IR1(&IR1time);
factor = dcmstIR1_wt/original_mstwt;
if (factor < demstIR1_low)
dcmstlR1_low = factor;
if (factor > dcmstIR1_high)
dcmstlR1_high = factor;
dcmstIR1_sum += factor;
dcmstIR1_sumsq += factor * factor;
if (IR1d_hi < diameter)
IR1d_hi = diameter;
if IR1d_low > diameter)
IR1d_low = diameter;
IR1d_sum += diameter;
IR1d_sumsq += diameter * diameter;

maxlIterations = 10000;
demstlR2_wt = IR2(&IR2time, dcmstIR1_wt);
if (diameter <= k) {
totallR1time += IR1time;
totallR2time += IR2time;
factor = dcmstIR2_wt/original_mstwt;
if (factor < dcmstIR2_low)
dcmstlR2_low = factor;
if (factor > dcmstIR2_high)
dcmstIR2_high = factor;
dcmstlR2_sum += factor;
dcmstlR2_sumsq += factor * factor;

factor = dcmstIR2_wt/dcmstIR1_wit;
if (factor < dcmst_ratio_low)
dcmst_ratio_low = factor;
if (factor > dcmst_ratio_high)
dcmst_ratio_high = factor;
dcmst_ratio_sum += factor;
dcmst_ratio_sumsq += factor * factor;
}
else {
fails++;
if (diameter > big_k)

116

big_k = diameter;
}
}

printf("\nM\N~~~~~~~~~~ e~~~ OVERALL RESULTS:~~~~~~~~~~~~~~ e~ \n");
printf("\nAverage Density = %0.21f%%\n", ave_dens/num_trials * 100);
if (upper_bound_fails < num_trials) {
printf("\n1) The Upper Bounds: (weight as a factor of MST weight)\n");
printf("Upper Bound Sucess Rate = %0.2f%%\n",
100*((double)(num_trials-upper_bound_fails))/((double)num_trials));
printf("\nDCMST(3):\n Weight Range [%0.4If,%0.4If]\n",
demst3_low,dcmst3_high);
if (num_trials > 1) {
num_trials -= upper_bound_fails;
printf(" Weight Mean = %0.4lf, Standard Deviation = %0.4IAn",
dcmst3_sum/((double)num_trials),
sqrt((demst3_sumsq - (dcmst3_sum*dcmst3_sum)/
((double)num_trials))/((float)num_trials-1.0)));
num_trials += upper_bound_fails;
}
printf("\nDCMST(4):\n Weight Range [%0.4If, %0.4If]\n",
dcmst4_low,dcmst4_high);
if (num_trials > 1) {
printf(" Weight Mean = %0.4If, Standard Deviation = %0.4I\n",
demst4_sum/((double)num_trials),
sqrt((demst4_sumsq - (dcmst4_sum*dcmst4_sum)/
((double)num_trials))/((float)ynum_trials-1.0)));
}
}

else printf("No upperbounds available.\n");

printf("\n\n2) The Composite Iterative Refinement Algorithm:\n");
printf("There was %d successful trials out of %d. (failure rate = %0.2f%%)\n",
num_trials-fails, num_trials, 100*(float)fails/(float)num_trials);
if (fails > 0)
printf("The largest diameter of a fail attempt was %d \n", big_k);

printf("\nIR1: Final tree weight as a factor of MST weight:\n");
printf(" Weight Range [%0.4If, %0.4lf|\n",dcmstIR1_low,dcmstIR1_high);
if (num_trials > 1) {
printf(" Weight Mean = %0.4If, Standard Deviation = %0.4IAn",
dcmstIR1_sum/((double)num_trials),
sgrt((dcmstiR1_sumsq - (dcmstiR1_sum*dcmstiR1_sum)/
((double)num_trials))/((float)ynum_trials-1.0)));
}
printf(" Diameter Range [%d, %d]\n", IR1d_low, IR1d_hi);
if (num_trials > 1) {
printf(" Diameter Mean = %0.4lf, Standard Deviation = %0.4f\n",
IR1d_sum/((double)num_trials),
sqrt((IR1d_sumsq - (IR1d_sum*IR1d_sum)/
((double)num_trials))/((float)ynum_trials-1.0)));

117

num_trials -= fails;
printf("\nStatistics for the %d successful trials are reported below:\n",
num_trials);
printf("\nIR2: DCMST(%d) weight as a factor of MST weight:\n", k);
printf(" Weight Range [%0.4lIf, %0.4If|\n",dcmstIR2_low,dcmstIR2_high);
if (num_trials > 1) {
printf(" Weight Mean = %0.4If, Standard Deviation = %0.4If\n",
dcmstlR2_sum/((double)num_trials),
sqrt((demstIR2_sumsq - (dcmstIR2_sum*dcmstiR2_sum)/
((double)num_trials))/((floatynum_trials-1.0)));
}
printf("\nDCMST (%d) weight as a factor of weight of DCMST from IR1:\n", Kk);
printf(" Weight Range [%0.4If, %0.4If]\n",dcmst_ratio_low,dcmst_ratio_high);
if (num_trials > 1) {
printf(" Weight Mean = %0.4lf, Standard Deviation = %0.4IAn",
dcmst_ratio_sum/((double)num_trials),
sqrt((decmst_ratio_sumsq - (dcmst_ratio_sum*dcmst_ratio_sum)/
((double)num_trials))/((float)num_trials-1.0)));
}

if (num_trials > 0 && totallR1time+totallR2time > 0) {
printf("\nAverage IR1 Time = %0.4lf = %0.2[f%%\n",
totallR1time/num_trials, totallR1time*100/(totallR1time+totallR2time));
printf("Average IR2 Time = %0.4lf = %0.2If%%\n",
totallR2time/num_trials, totallR2time*100/(totallR1time+totallR2time));
printf("Average Total CIR Time = %0.4/An",
(totallR1time+totallR2time)/num_trials);
}

printf("\n");

}

/** End of Flle ***/

118

APPENDIX C

PROGRAM CODE FOR THE ONE-TIME-TREE-
CONSTRUCTION ALGORITHM

119

/***

* One-time-tree-construction code (written in C) to find approximate solutions for
* the Diameter-Constrained MST problem.

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <sys/resource.h>

#define MaxWt 10000

#define MaxN 4000

#define MaxMSTWt MaxWt/100

#define boolean short

#define MaxStart 50 /* maximum number of start nodes to select */
#define NUM_TO_CHECK 20 /* suggested number of start nodes to select */

#define TRUE 1
#define FALSE 0
#define BIG_NUMBER O0x7fffffff

#define MY_SEC (((after.ru_utime.tv_sec*1000000+after.ru_utime.tv_usec) \
-(before.ru_utime.tv_sec*1000000+before.ru_utime.tv_usec))/1000000.0)

#define StartTiming() getrusage(who,&before)
#define StopTiming(time) getrusage(who,&after); time = MY_SEC

struct rusage before,after;
long hsec, husec;
int who=RUSAGE_SELF,;

short n;

short k; /* the diameter constraint */

short dens; /* density of incomplete graph */
boolean *inTree;

short root;

int **G1; /* the original graph */
int **G; /* the graph after the labels are changed */
short distfMaxN][MaxN]; /* the distance between each pair of nodes */
short *parent;
struct QNode_type {
short node;
struct QNode_type *next;
%
typedef struct QNode_type QNode;

void AllocateMemory(void)

/* ~~ */
/* Allocate memory for the arrays G, G1, parent and dist. This Memory */

/* will not be freed until the program exits. */
/* ~~ */

120

int i;

if (NULL == (G = (int **)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G\n");
exit(1);
}
for (i=0; i < n; i++)
if (NULL == (GJi] = (int *)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G[%d]\n", i);
exit(1);
}

if (NULL == (G1 = (int **)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G1\n");
exit(1);
}
for (i=0; i < n; i++)
if (NULL == (G1]i] = (int *)calloc(n, sizeof(int)))) {
printf("Out of memory -- function AllocateMemory() -- G1[%d]\n", i);
exit(1);
}

if (NULL == (parent = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function AllocateMemory() -- parent\n");
exit(1);

}

void Span(int **graph)

inti, u, v;
short *tree;
short *rest;

if (NULL == (tree = (short *)calloc(n, sizeof(short)))) {
printf(*Out of memory in Span(): tree[].\n");
exit(1);

}

if (NULL == (rest = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in Span(): rest[].\n");
exit(1);

}

for (i=0; i < n; i++)
tree[i] = i;

/* Put the nodes of the graph in a random order. */

for (i=0; i < n-1; i++) {
u=rand() % (n - i);

121

}

rest[i] = tree[u];
for (v=u; v < mHi-1; v++)
tree[v] = tree[v+1];

[* tree[0] contains the node leftover */

tree[1] = rest[n-2];
graph[tree[0]][tree[1]] = random() % MaxWt + 1,
graph[tree[1]][tree[0]] = random() % MaxWt + 1,

for (i=2; i < n;i++) {
u = tree[rand()%i]; /* select an arbitrary node from the tree */
v = rest[n-i-1]; /* select an "arbitrary" node not in the tree */
treeli] = v; [* add new node to the tree */
graph[u][v] = random() % MaxWt + 1;
graph[v][u] = random() % MaxWt + 1;

}

free(tree);
free(rest);

void GenerateRandomGraph(int **graph, int *m)

short i, j;
short d;

/* Initialize the diagonal of the graph to zero (no self loops). */
for (i=0; i < n; i++)
graph(i][i] = 0;
for (i=0; i < n; i++)
for (j = i+1; j < n; j++4)
graph[i][j] = graph(j][i] = O;

*m = 0;
Span(graph);
for (i=0; i < n; i++)
for (j=0; j <1; j++) {
d = rand() % 100;
if (d < dens && graphli][j] == 0)
graph[i][j] = random() % MaxWt + 1;
if (graph([i][j] > 0) { /* if there is an edge between i and j */
graph[j][i] = graph(i][j;
*m=*m + 1,
}
else
} graph[i][j] = graph(j][i] = 0;

for (i=0;i<n;i++)

122

for (j = i+1; j < n; j++4)
dist[i][j] = dist[j][i] = graph[i][i];
}

void GenerateRandomHamGraph(int *m)

/* Generate a complete graph with random edge weights, where the MST is */
/* forced to be a Hamiltonian path

short i, j, u;
short *node, *p, d;

if (NULL == (node = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in GenerateHamRandomGraph() -- node[].\n");
exit(1);

}

if (NULL == (p = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in GenerateHamRandomGraph() -- p[].\n");
exit(1);

}

/* Put the nodes of the graph in a random order. */
for (i=0; i < n; i++)

node[i] = i;
for (i=0; i < n-1; i++) {

u=rand() % (n - i);

p[i] = node(u];

for (j=u; j < n-i-1; j++)

nodelj] = node[j+1];

}
p[n-1] = node[0];

for (i=0; i < n; i++)
for (j =i j<n;j++)
G1[i]{i] = 0;

/* Generate the Hamiltonian path MST */
for (i=0; i < n-1; i++)
G1[p[iIpli+1]] = G1[p[i+1]][p[i]] = random() % MaxMSTWt + 1;

*m = 0;
for (i=0; i < n; i++)
for (j=i+1;j<n;j++) {
d =rand() % 100;
if (d < dens && G1[i][j] == 0)
G1Ji][j] = random() % (MaxWt-MaxMSTWt) + MaxMSTWt + 1;
if (G1[i][j] > 0) { /* if there is an edge between i and j */
G1[j]li] = G0k
*m=*m+ 1;
}
else
G1[i]i] = GAp][] = 0;

123

}

}

for (i=0; i < n; i++)
dist[i][i] = O;

for (i=0; i < n; i++)
for (j=i+1; j < n; j++)

dist[i][j] = dist[j][i] = G1[i]{];

free(node);
free(p);

double FindMST(int **graph)

double wt=0;

short i, j;

short *cheap, *p1;

short nextEdge, nextNode;

if (NULL == (p1 = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): p1[].\n");
exit(1);

}

if (NULL == (cheap = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): cheap[].\n");
exit(1);

}

for (i=0; i < n; i++) {
inTree[i] = FALSE;
if (graph[O][i] > 0)

cheapli] = graph[O][i];
else
cheap[i] = MaxWt + 1;

p1[i] = O;

}

inTree[0] = TRUE;
parent[0] = O;
root = 0;

for (i=1; i < n;i++) {
nextEdge = MaxWt;
nextNode = -1;

for (j=1; j < n; j++)
if ({(inTree[j]) && (nextEdge > cheaplj])) {
nextEdge = cheaplj];
nextNode = j;

124

inTree[nextNode] = TRUE;
wt += graph[nextNode][p1[nextNode]];
parent[nextNode] = p1[nextNode];

for (j=0; j < n; j++)
if (cheap[j] > graph[j][nextNode] && graph[j][nextNode] > 0) {
cheaplj] = graph[j][nextNode];
pl[j] = nextNode;

}

}

free(pl);

free(cheap);

return wt;
}
void Enqueue(short u, QNode **head, QNode **tail)
/* ~~ */
/* Insert node u at the tail of the queue. */
/* ~~ */
{

QNode *oldtail;

oldtail = *tail;

if(NULL==(*tail=(struct QNode_type *)malloc(sizeof(struct QNode_type))){
printf ("Out of memory -- function Enqueue()\n");
exit(1);

}

(*tail)->node = u;

if (oldtail '= NULL)
oldtail->next = *tail;

else *head = *tail;

(*tail)->next = NULL;

}
int Dequeue(QNode **head, QNode **tail)
/* ~~ */
/* Delete and return the node at the head of the queue */
/* ~~ */
{

QNode *oldhead;

int ret;

if (*head == NULL)
return(-1);

ret = (*head)->node;
oldhead = *head;
*head = (*head)->next;
if (*head == NULL)

125

*tail = NULL;
oldhead->next = NULL;
free(oldhead);

return(ret);

}

short RemoveFromQ(QNode **prev, QNode **child)

QNode *temp;

if (*prev != *child) {
temp = *child;
(*prev)->next = (*child)->next;
*child = (*child)->next;
temp->next = NULL;
free(temp);
return 1,

}

else {
temp = *child,;
*prev = *child = (*child)->next;
free(temp);
return O;

}

}

short Diameter(short nn)

short i, dia;

short leaf_count = 0, que_size = 0;

short num_cross_point = 0; /* tree level, starting from the leaves */
short leaf_node;

short *label, *par;

short front, rear, crossed,;

short *deg, *cross_pointer;

QNode *head, *tail, *child, *prev;

QNode **child_h, **child_t;

if (nn==1) return O;
else if (nn==2) return 1;

if (NULL == (label = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function Diameter(): label[].\n");
exit(1);

}
if (NULL == (par = (short *)calloc(n, sizeof(short)))) {

126

printf("Out of memory -- function Diameter(): par[].\n");
exit(1);

}

if (NULL == (deg = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function Diameter(): deg[].\n");
exit(1);

if (NULL == (cross_pointer = (short *)calloc(n-1, sizeof(short)))) {
printf("Out of memory in Diameter(): cross_pointer[].\n");
exit(1);

}

if (NULL == (child_h = (QNode **)calloc(n, sizeof(QNode*)))) {
printf("Out of memory in Diameter(): child_h[].\n");
exit(1);

}

if (NULL == (child_t = (QNode **)calloc(n, sizeof(QNode*)))) {
printf("Out of memory in Diameter(): child_t[].\n");
exit(1);

}

/* Since partial trees (with non-consecutive labels) could be
passed as input, we re-label the nodes to make them consecutive */
front = 1;
label[0] = O;
for (i=1;i < n; i++)
if (inTreeli]) {
label[i] = front;
front++;

}

/* Computing node degrees */
for (i=0; i < n; i++)
deg(i] = 0;
for (i=0; i < n; i++)
child_h[i] = child_t[i] = NULL;
for (i=0; i < n; i++)
if (inTreeli]) {
deg[label[i]] += 1;
deg[label[parent[i]]] += 1;
par[labelli]] = label[parent][i]];
if (label[i] != root)
Enqueue(labelli], &child_h[par[label[i]]], &child_t[par[label[ill]);
}

deg[root] -= 2;

front = rear = 0;
head = tail = NULL;

for (i=0; i < nn; i++)
if (degfi] == 1) {
Enqueue(i, &head, &tail);
rear++;

127

leaf_count++;
que_size++;

}

cross_pointer[num_cross_point] = que_size - 1;
crossed = FALSE;
par[root] = -1;

if (que_size I=nn-1) /* not STAR, i.e., n-1 nodes are leaf nodes. */
[* que_size takes care of the star */
/* leaf count takes care of the path */

while (que_size <=nn) {
leaf_node = Dequeue(&head, &tail);
deg[leaf_node] = 0;
front++;
leaf _count--;

if (leaf_node != root) {
deg[par[leaf_node]]--;
if (deg[par[leaf_node]] == 1) {
Enqueue(par[leaf_node], &head, &tail);
rear++;
leaf_count++;
que_size++;
}
}

/* decrement children's deg */
prev = child = child_h[leaf_node];
while (child != NULL) {
deg[child->node]--;
if (deg[child->node] == 1) {
Enqueue(child->node, &head, &tail);
rear++;
leaf_count++;
que_size++;

}

if (deg[child->node] <= 1) {
if (RemoveFromQ(&prev, &child) == 0)
/* return O for child is at beginning of queue */
child_h[leaf_node] = child,;

}
else {

prev = child;

child = child->next;
}

}

if (front > cross_pointer[num_cross_point]) {
num_cross_point++;
cross_pointer[num_cross_point] = rear - 1,
crossed = TRUE;

128

}

}

if (crossed == TRUE && rear-front <= 2) break;

/* Detection of Path after deleting all leaf nodes */

crossed = FALSE;
}

if (num_cross_point == 0 && que_size == nn-1) /* STAR case */

dia = 2;

if (num_cross_point > 0 && leaf_count == 2) /* a path remains */

dia = 2*(num_cross_point) + (n - (Que_size - 2)) - 1;

if ((num_cross_point > 0) && (que_size - front) == 1) /* node remains */

dia = 2 * num_cross_point;

tail = head;

while (NULL = head) {
tail = tail->next;
free(head);
head = tail;

}

for (i=0;i<nn;i++) {
child_t[i] = child_h[i];
while (NULL != child_h[i]) {
child_t[i]= (child_t[i])->next;
free(child_h[i]);
child_h([i] = child_t]i];
}
}

free(label);
free(par);

free(deg);
free(cross_pointer);
free(child_h);
free(child_t);

return dia;

int FINdDCMST()

short i, j, h;

int *cheap;

double wt=0;

short *par;

short nextEdge, nextNode;

129

short *max; /* eccentricity values of the nodes in the current tree */
short nodes; /* number of nodes currently in the tree */
boolean success;

if (NULL == (cheap = (int *)calloc(n, sizeof(int)))) {
printf("Out of memory -- function FindDCMST(): cheapl[].\n");
exit(1);

}

if (NULL == (par = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function FindDCMST(): par[].\n");
exit(1);

if (NULL == (max = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function FindDCMST(): max[].\n");
exit(1);

}

root = 0;
parent[0] = O;
for (i=0; i < n; i++)
for (j=0; j < n; j++)
dist[i][j] = -1,
dist[0][0] = O;

for (i=0; i < n; i++) {
inTree[i] = FALSE;
if (G[O][i] > 0)
cheapl(i] = G[O][i];
else cheap[i] = MaxWt + 1;
parfi] = 0;
max[i] = 0;
}
inTree[0] = TRUE;
nodes = 1;

for (i=1; i < n;i++) {
nextEdge = MaxWt + 1;
nextNode = -1;

for (j=0; j < n; j++)
if (I(inTree[j]) && (nextEdge > cheapl[j])) {
nextEdge = cheaplj];
nextNode = j;
}
if (nextNode < Q) /* failed to connect node j to the tree */
return -1;
inTree[nextNode] = TRUE;
nodes++;
wt += nextEdge;
parent[nextNode] = par[nextNode];
if (G[nextNode][par[nextNode]] < 0)
return -1;

130

/* Update dist and max */
[* Part 1: Copy values into the new node */
for (j=0; j < n; j++) {
dist[nextNode][j] = dist[par[nextNode]][j];
if (dist[par[nextNode]][j] > -1)
dist[nextNode][j]++;

dist[nextNode][nextNode] = O;

max[nextNode] = 1+max[par[nextNode]];

dist[par[nextNode]][nextNode] = 1;

if (max[par[nextNode]] < 1)
max[par[nextNode]] = 1;

[* Part 2: Update all tree nodes' values for nextNode */
for (j=0; j < n; j++)
if (inTree[j] && j'=nextNode && j!'=par[nextNode]) {
dist[j][nextNode] = 1+dist[j][par[nextNode]];
if (max[j]<dist[j][nextNode])
max[j] = dist[j][nextNode];
}

/* Now update cheap & par */
for (j=0; j < n; j++)
if (linTree[j])
if (L+max[par(i]]) > k) {

[* We've increased the tree diameter. This means */
/* we need to recompute a new parent for this node */

cheap[j] = MaxWt + 1;
success = FALSE;
for (h=0; h < n; h++)
if (inTree[h] && (1+max[h] <= k) &&
(cheap(j] > G[h][i]) && (G[h][i] > 0)) {
cheaplj] = G[h](i];
parfj] = h;
success = TRUE;
}
if (success)
return -1;

}

else
/* We only need to look at the new node */

if (1+max[nextNode] <= k && cheap[j] > G[nextNode][j]

&& G[nextNode][j] > 0) {
cheap[j] = G[nextNode][j];
par[j] = nextNode;

}
} /* end for(i...) */

free(cheap);
free(par);
free(max);

if (nodes == n)

131

return wt;
else
return -1;

}

void SelectNodes(short *start_node)

boolean found;

short i, j, min_node[MaxStart];

int min_weight[MaxStart], curr_weight;
int max_index;

int sort_listfMaxN];

int h,l,temp;

for (i=0; i < MaxStart; i++) {
min_weight[i] = 0;
min_node[i] = i;

}

max_index = 0;

for (i=0; i < MaxStart; i++) {
for (j=1;j<n;j++)
min_weight[i] += G1[i][j];
if (min_weight[i] > min_weight[max_index])
max_index =i,
}

for (i=MaxStart; i < n; i++) {
curr_weight = 0;
for (j=0;j<n;j++)
sort_list[j] = G1][i][j];
for (h=0;h<n-1;h++)
for (I=h+1;I<n;l++)
if (sort_list[h] > sort_list[l]) {
temp = sort_list[h];
sort_list[h] = sort_list[l];
sort_list[l] = temp;

}

for (j=1; j < MaxStart; j++)
curr_weight += G1][i][j];
if (curr_weight < min_weight[max_index]) {
min_weight[max_index] = curr_weight;
min_node[max_index] = i;
for (j=0;j<MaxStart;j++)
if (min_weight[j] > min_weight[max_index])
max_index = j;

132

for (i=0;i<MaxStart;i++)

{
start_node[i] = min_node[i];

}
}
void AddToHeapD(short *heapD, short *gdeg, double *wt, short *sizeD, short u)
/* ~~ */
/* Add node u to heapD
/* ~~ */
{

short i, done;

if (*sizeD >= MaxN) {
printf("Error: Heap D overflom\n");

exit(1);
}
else {
i = (*sizeD)++;
done = FALSE;
while (!done)
if (i ==0)
done = TRUE; /* at root */
else if ((gdeg[u] < gdeg[heapDI[(i-1)/2]]) ||
((9deg(u] == gdeg[heapD|[(i-1)/2]]) &&
(wt[u] >= wtlheapD([(i-1)/2]])))
done = TRUE;
else { /* move from parent to child */
heapDIi] = heapD[(i-1)/2];
i = (-1)/2;
}
heapD][i] = u;
}
}
short GetFromHeapD(short *heapD, short *gdeg, double *wt, short *sizeD)
/* ~~ */
/* Remove and return the node with highest degree from heapD */
/* ~~ */
{
short i, j;
short done;

short ret, temp;

if (*sizeD == 0) /* heap is empty */
ret = -1;

else {
done = FALSE;
ret = heapDI0];
temp = heapD[*sizeD - 1];

133

(*sizeD)--;
i=0;
j=1; I*jis left child of i */

while (j < *sizeD && !done) {
if (j < *sizeD - 1)
if ((gdeg[heapDI[j]] < gdeglheapD[+1]]) ||
((gdeg[heapD[j]] == gdeg[heapD[j+1]]) &&
(wtfheapD[j]] > wt[heapD[j+1]])))
j++; I* j points to larger child */
if ((gdeg[temp] > gdeg[heapD[j]) ||
((gdegtemp] == gdeg[heapD[j]]) &&
(wtfheapD(temp]] <= wt[heapD(j]])))
done = TRUE;
else {
heapD[i] = heapD[j]; /* move child up */
i=j;j=2%+1; *moveiandjdown *

}
}
heapD]i] = temp;
}
return ret;
}
void SelectHiDegNodes(short *start_node)
/* ~~ */
/* Find the smallest-degree nodes in G. Break a tie using weight. *
/* ~~ */
{

boolean found;

short *gdeg, *heapD;
short i, j, sizeD;
double *wit;

if (NULL == (gdeg = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function SelectHiDegNodes(): gdeg[].\n");
exit(1);

}

if (NULL == (heapD = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory -- function SelectHiDegNodes(): heapD[].\n");
exit(1);

}

if (NULL == (wt = (double *)calloc(n, sizeof(double)))) {
printf("Out of memory -- function SelectHiDegNodes(): wt[].\n");
exit(1);

}

for (i=0; i < n; i++) {
gdeg[i] = 0;
wit[i] = O;

}

134

for (i=0; i < n-1; i++)
for (j = i+1; j < n; j++)
if (G1[i][j] > 0) {
gdeg[i]++;
gdeg[j]++;
witli] += G1[i][j];
wi[j] += G1[i][il;
}

sizeD = 0;
for (i=0; i < n; i++)
AddToHeapD(heapD, gdeg, wt, &sizeD, i);
for (i=0; i < MaxStart && i < n; i++)
start_node[i] = GetFromHeapD(heapD, gdeg, wt, &sizeD);

free(gdeq);
free(heapD);
free(wt);

}

double ComputeDCMST3(short *uu, short *vv)

double wt, wt3;
short u, v, w;
short count, fail;
short p2[MaxN];

wt = wt3 = (n-1) * MaxWt + 1,
for (u=0; u < n-1; u++)
for (v=u+1; v <n; v++) /*for each edge (u,v) */
if (G1[u][v] > 0) {
p2[u] = u; /* make u the root of the tree */
p2[v] = u; /* initialize tree to edge (u,v) */
wt = G1[u][v];
count = 2;
fail = FALSE;
for (w=0; w < n && 'fail; w++)
if(W!l=u&&w!=v)
if (G1[w][u] < G1[w][v] && G1[w][u] > 0) {
p2[w] = u;
wt += G1[w][u];
count++;
}
else if (G1[w][v] > 0) {
p2[w] = v;
wt += G1[w][v];
count++;

}
else fail = TRUE;

if (wt <wt3 && count ==n) {
wt3 = wit;

135

*uu = u;
W=,
for (w=0; w < n; w++)
parent[w] = p2[w];
}

}

root = *uu;
return wt3;
}

double ComputeDCMST4(double mst3, short uu, short vv)

/* Assume DCMST3 has been computed, and that uu is the root, and that */
/* the parent of every leaf is either uu or vv, and parent[vv] = uu */

double wtu, wtv;
short x, y, z;

short p1[MaxN]J;
short p2[MaxN];

for (x=0; x < n; x++)
p2[x] = p1[x] = parent[x];

pl[uu] = uu; /* this a potential root for DCMST(4) */
p1[w] = uy;
wtu = mst3;
for (x=0; X < n; x++)
if (parent[x] == wv && x != v && x = uu) {
Z=W,
for (y=0; y < n; y++)
if (parently] == uu && y '= uu && y != w
&& G1[X][y] < G1[x][z] && G1[Xx][y] > 0)
z=y;
p1l[x] = z;
wtu += G1[x][z] - G1[X][parent[x]];
}

p2[w] = wv; [* this another potential root for DCMST(4) */
p2[uu] = wv;
wtv = mst3;
for (x=0; X < n; X++)
if (parent[X] == uu && x !'= uu && x 1= w) {
Z = uu;
for (y=0;y < n; y++)
if (parently] ==w && y!=w &&y = uu
&& G1[X][y] < G1[x][z] && G1[X][y] > 0)
z=y,;
p2[X] = z;
wtv += G1[x][z] - G1[x][parent[X]];
}

136

if (wtv < wtu) {
for (x=0; x < n; x++)
parent[x] = p2[x];

root = wv,
return wtv;
}
else{

for (x=0; X < n; x++)
parent[x] = p1[x];

root = uu;

return wtu;

}
}

boolean Find(short key, short *list, short nn)

[* Use sequential search to find a given short integer in the given list. */

/* Return TRUE if found and FALSE if not found. */

short i;

for (i=0; i < nn; i++)
if (key == list[i])
return TRUE;
return FALSE;

int main(int argc, char *argv[])
{
extern char *optarg;
int m; /* number of edges in the graph */
short graph_type;
short i, j, c;
short *label, *start_node;
short seed, diameter;
short trial, num_trials;
short iter, first;
short w, uu;
short upper_bound_fails;
short hfails, rfails, afails;
short trial_hfails[MaxStart], trial_rfails[MaxStart], trial_afails;
boolean hsuccess, asuccess;
boolean use_all, use_rand, use_heur;

double ave_dens, total_afails, total_hfails19, total_hfails49, total_first;
double original_mstwt, factor, mstwt;

double dcmst3, demst3_low, demst3_high, demst3_sum, demst3_sumsgq;
double dcmst4, demst4_low, demst4_high, demst4_sum, demst4_sumsgq;
double heur_time_sum, rand_time_sum, ottc_time_sum; /* all trials */
double heur_time, rand_time, ottc_time; /* trial time */

double time, heur_overhead;

137

double heur_best_weight[MaxStart], rand_best_weight[MaxStart];

double ottc_best_weight;

double heur_worst_weight, rand_worst_weight, ottc_worst_weight;

double heur_best_low19, heur_best_highl9;

double heur_best_low49, heur_best_high49;

double heur_best_sum[MaxStart], heur_best_sumsql9, heur_best_sumsq49;
double heur_worst_low, heur_worst_high, heur_worst_sum;

double heur_worst_sumsgq;

double rand_best_low19, rand_best_high19;

double rand_best_low49, rand_best_high49;

double rand_best_sum[MaxStart], rand_best_sumsgl19, rand_best_sumsg49;
double rand_worst_low, rand_worst_high, rand_worst_sum;

double rand_worst_sumsgq;

double ottc_best_low, ottc_best_high, ottc_best_sum, ottc_best_sumsq;
double ottc_worst_low, ottc_worst_high, ottc_worst_sum;

double ottc_worst_sumsq;

n = 50;

m = 1225;

k=5;

dens = 100;

seed = 7;

graph_type = 0; /* random graph */

num_trials = 1;

use_all = FALSE; /* don't use all n nodes as start nodes */
use_rand = FALSE; /* don't use random start nodes */
use_heur = FALSE; /* don't select start nodes */

while ((c = getopt (argc, argv, "n:k:d:pes:t:arh™)) != EOF)
switch (¢) {
case 'n": n = atoi (optarg); break;
case 'k': k = atoi (optarg); break;
case 'd": dens = atoi (optarg); break;
case 'p": graph_type = 1; break; /* has Hamiltonian MST */
case 'e". graph_type = 2; break; /* Euclidean */
case 's'": seed = atoi (optarg); break;
case 't: num_trials = atoi(optarg); break;
case 'a": use_all = TRUE; break;
case 'r': use_rand = TRUE; break;
case 'h": use_heur = TRUE; break;
case '?"
default:
printf("usage: %s [-n NumberOfNodes] [-t NumberOfTrials] ", argv[0]);
printf("[-k DesiredDiameter]\n\t[-p] [-€] [-u] [-s RandomSeed]");
printf("\t[-a] [-r] [-h] [-d GraphDensity]\n");
exit(1);
}

if (use_all)
use_rand = TRUE;
if (n > MaxN || n < MaxStart) {
printf ("%s: Number of vertices must be between %d and %d\n",

138

argv[0], MaxStart, MaxN);
exit(1);
}
if (k <4){
printf ("Minimum diameter bound is 4\n");
exit(1);
}

printf ("\nn: %d \t k: %d \t Density: %d%% \t Seed: %d \t ",
n, k, dens, seed);
printf("Trials = %d\n",num_trials);
switch (graph_type) {
case 0O: printf("Graph Type: Random\n"); break;
case 1: printf("Graph Type: Randomly generated and has Hamiltonian MST\n");
break;
[* case 2: printf("Graph Type: Euclidean\n"); break; */
default: printf("Invalid Graph Type\n™); exit(1);

}

if (NULL == (inTree = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FINdMST(): inTree[].\n");
exit(1);

}

if (NULL == (label = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): label[].\n");
exit(1);

if (NULL == (start_node = (short *)calloc(n, sizeof(short)))) {
printf("Out of memory in FindMST(): start_node[].\n");
exit(1);

}

total_first = 0;
total_hfails19 = 0;
total_hfails49 = 0O;
total_afails = 0;
upper_bound_fails = 0;
trial_afails = 0;

for (i = 0; i < MaxStart; i++) {
trial_hfails[i] = 0;
trial_rfails[i] = O;

}

trial = num_trials;
ave_dens = 0;

dcmst3_low = BIG_NUMBER,;
dcmst3_high = 0;
dcmst3_sum = 0;
dcmst3_sumsq = 0;
dcmst4_low = BIG_NUMBER,;
dcmst4_high = 0;

139

dcmst4_sum = 0;

dcmst4_sumsq = 0;
heur_time_sum = 0;
rand_time_sum = 0;
ottc_time_sum = O;

heur_best low19 = BIG_NUMBER;
heur_best_high19 = 0;
heur_best_sumsq19 = 0O;
heur_best_low49 = BIG_NUMBER,;
heur_best_high49 = 0;
heur_best_sumsq49 = 0;
heur_worst_low = BIG_NUMBER,;
heur_worst_high = 0;
heur_worst_sum = 0;
heur_worst_sumsq = 0;

rand_best low1l9 = BIG_NUMBER;
rand_best_high19 = 0;
rand_best_sumsq19 = 0O;
rand_best low49 = BIG_NUMBER,;
rand_best_high49 = 0;
rand_best_sumsq49 = 0;
rand_worst_low = BIG_NUMBER,;
rand_worst_high = 0;
rand_worst_sum = 0;
rand_worst_sumsq = 0;

for (i = 0; i < MaxStart; i++) {
rand_best_sum[i] = 0;
heur_best_sum(i] = 0;

}

ottc_best_low = BIG_NUMBER;
ottc_best_high = 0;
ottc_best_sum = 0;
ottc_best_sumsqg = 0;
ottc_worst_low = BIG_NUMBER,;
ottc_worst_high = 0;
ottc_worst_sum = 0;
ottc_worst_sumsq = 0;

AllocateMemory();
srandom(seed);
while (trial > 0) {
trial--;
switch (graph_type) {
case 0: GenerateRandomGraph(G1,&m); break;
case 1: GenerateRandomHamGraph(&m); break;
I* case 2: GenerateEuclideanGraph(); break; */
default: printf("Invalid Graph Type\n"); exit(1);
}

140

heur_time = 0;
rand_time = 0O;
ottc_time = 0;
hfails = 0;
rfails = 0;
afails = 0;

original_mstwt = FindMST(G1);
diameter = Diameter(n);
dcmst3 = ComputeDCMST3(&uu, &w);
if (decmst3 < (n-1) * MaxWt + 1) {
factor = demst3/original_mstwt;
if (factor < dcmst3_low)
dcmst3_low = factor;
if (factor > dcmst3_high)
dcmst3_high = factor;
dcmst3_sum += factor;
dcmst3_sumsq += factor * factor;

dcmst4 = ComputeDCMST4(dcmst3, uu, w);
factor = dcmst4/original_mstwt;
if (factor < dcmst4_low)
dcmst4_low = factor;
if (factor > dcmst4_high)
dcmst4_high = factor;
dcmst4_sum += factor;
dcmst4_sumsq += factor * factor;

}

else upper_bound_fails++;

printf("\n:::::::::::::::::::::::: TRIAL #%d ===========================
num_trials-trial);
printf("\nNumber of edges = %d, Density = %0.21f%%\n",
m, (double)m/(double)(n*n-n)*200);
printf("\nMST Weight = %0.0If, Diameter = %d\n",
original_mstwt, diameter);
if (demst3 < (n-1) * MaxWt + 1)
printf("\nUpper Bound Weights: DCMST(3) = %0.0lf, DCMST(4) = %0.0fn",
dcmst3, demstd);
else printf("Upper bound is not available.\n");

ave_dens += (double)m/(double)(n*n - n) * 2;
heur_worst_weight = 0;

heur_best weight[0] = BIG_NUMBER,;
rand_worst_weight = 0;

rand_best_weight[0] = BIG_NUMBER,;
ottc_worst_weight = 0;

ottc_best_weight = BIG_NUMBER,;

heur */

if (use_heur) {
StartTiming();
if (dens == 100)

141

SelectNodes(start_node);
else SelectHiDegNodes(start_node);

StopTiming(time);
heur_time += time;
heur_overhead = time;

for (iter = hsuccess = 0;
iter < MaxStart; iter++) {
StartTiming();
[* Letting each node be the starting node for Prim's algorithm */
for (i=0; i < n; i++)
labelli] = i;
label[0] = start_node[iter];
label[start_node[iter]] = O;

for (i=0; i < n; i++)
for (j=0; j < n; j++)
Gllabel[iJ][label[j]] = G1][i][j];

mstwt = FindDCMST();
StopTiming(time);
heur_time += time;

if (mstwt > 0) { /* sucessful attempt ?? */
diameter = Diameter(n);
if (diameter > k)
mstwt = -1;
}

if (mstwt > 0 && iter == 0)
heur_best_weight[0] = mstwt;
else if (mstwt > 0 && heur_best_weight[iter-1] > mstwt)
heur_best_weight[iter] = mstwt;
else heur_best_weight[iter] = heur_best_weight[iter-1];

if (mstwt > 0) { /* sucessful attempt */
hsuccess = TRUE;

if (heur_worst_weight < mstwt)
heur_worst_weight = mstwt;
}

else hfails++;
if (lhsuccess)
trial_hfails[iter]++;
if (iter == NUM_TO_CHECK-1)
total_hfails19 += hfails;
} /* end for iter */

if ("hsuccess)
printf("Heur failed in all %d attemps\n“, MaxStart);
printf("Time taken by last NSM1 iteration = %0.4f\n", time);
}

142

I* rand */
if (use_rand) {
for (iter = asuccess = 0;
iter < MaxStart || (iter < n && asuccess == FALSE); iter++) {
StartTiming();
[* Letting each node be the starting node for Prim's algorithm */
for (i=0; i < n; i++)

labelli] = i;
label[0] = iter;
label[iter] = 0;

for (i=0; i < n; i++)
for (j=0; j < n; j++)
GllabelliJ][label[j]] = G1][il[jl;

mstwt = FindDCMST();
StopTiming(time);
rand_time += time;
if (mstwt > 0) { /* sucessful attempt ?? */
diameter = Diameter(n);
if (diameter > k)
mstwt = -1;
}
if (use_all)
ottc_time += time;

if (mstwt > 0 && iter == 0)
rand_best_weight[0] = mstwt;
else if (mstwt > 0 && rand_best_weight[iter-1] > mstwt)
rand_best_weight[iter] = mstwit;
else rand_best_weight[iter] = rand_best_weight][iter-1];

if (mstwt > 0) { /* successful attempt */
asuccess = TRUE;
if (rand_worst_weight < mstwt)
rand_worst_weight = mstwt;
if (use_all) {
if (ottc_best_weight > mstwt)
ottc_best_weight = mstwt;
if (ottc_worst_weight < mstwt)
ottc_worst_weight = mstwt;
}
}

else {
rfails++;
afails++;

if (lasuccess && iter < MaxStart)
trial_rfails[iter]++;

}

} /* endif(...) and for(iter...) */

if (lasuccess) {
printf("All iterations of this trial have failed.\n");
trial_afails++;

143

printf("Time taken by last NSM2 iteration = %0.4If\n", time);

[Hemmmenem ottc with all start nodes -------------------- */
if (use_all) {
if (use_rand) {
if (rfails > MaxStart)
first = rfails + 1,
else
first = MaxStart;
}
for (iter = first; iter < n; iter++) {
StartTiming();
[* Letting each node be the starting node for Prim's algorithm */
for (i=0; i < n; i++)

labelli] = i;
label[0] = iter;
label[iter] = O;

for (i=0; i < n; i++)
for (j=0; j < n; j++)
GllabelliJ][label[j]] = G1[il[il;

DisplayGraph(G);

mstwt = FindDCMST();
StopTiming(time);
ottc_time += time;
if (mstwt > 0) { /* sucessful attempt ?? */
diameter = Diameter(n);
if (diameter > k)
mstwt = -1;

if (mstwt > 0) { /* sucessful attempt */
diameter = Diameter(n);
if (ottc_best_weight > mstwt)
ottc_best_weight = mstwt;
if (ottc_worst_weight < mstwt)
ottc_worst_weight = mstwt;
}

else afails++;
} /*end if(...) and for(iter...) */
printf("Time taken by last OTTC iteration = %0.4IAn", time);

[*emmmmeee totals for this trial -------------------- */
if (use_heur) {
total_hfails49 += hfails;
heur_time_sum += heur_time;
if (hsuccess) {
for (i = 0; i < MaxStart; i++)
if (heur_best_weight[i] < BIG_NUMBER)

144

heur_best_sumli] += heur_best_weight[i] / original_mstwt;
heur_worst_sum += heur_worst_weight / original_mstwt;
heur_worst_sumsq += heur_worst_weight * heur_worst_weight
/ (original_mstwt * original_mstwt);
heur_best_sumsq19 += heur_best_weightfNUM_TO_CHECK-1]
* heur_best_weightiNUM_TO_CHECK-1]
/ (original_mstwt * original_mstwt);
heur_best_sumsq49 += heur_best_weight[MaxStart-1]
* heur_best_weight[MaxStart-1]
/ (original_mstwt * original_mstwt);
if (heur_best_low19 > heur_best_weightfNUM_TO_CHECK-1] / original_mstwt)
heur_best_low19 = heur_best_weightftNUM_TO_CHECK-1] / original_mstwt;
if (heur_best_low49 > heur_best_weight[MaxStart-1] / original_mstwt)
heur_best_low49 = heur_best_weight[MaxStart-1] / original_mstwt;
if (heur_best_high19 < heur_best_weightiNUM_TO_CHECK-1] / original_mstwt)
heur_best_high19 = heur_best_weightitNUM_TO_CHECK-1] / original_mstwt;
if (heur_best_high49 < heur_best_weight[MaxStart-1] / original_mstwt)
heur_best_high49 = heur_best_weight[MaxStart-1] / original_mstwt;
if (heur_worst_low > heur_worst_weight / original_mstwt)
heur_worst_low = heur_worst_weight / original_mstwit;
if (heur_worst_high < heur_worst_weight / original_mstwt)
heur_worst_high = heur_worst_weight / original_mstwit;
}

printf("\nHeuristic (NSM1):\n");

printf(" Total Time = %0.5If = Iterations' Time + Overhead\n",heur_time);

printf(" Average Time per Iteration = %0.5If,",
(heur_time-heur_overhead)/MaxStart);

printf(" Total Overhead = %0.4I\n", heur_overhead);

printf("%d Start: Best DCMST (Solution) Weight = %0.0A\n",
NUM_TO_CHECK, heur_best_weightiNUM_TO_CHECK-1]);

printf("%d Start: Best DCMST (Solution) Weight = %0.0f,",
MaxStart, heur_best_weight[MaxStart-1]);

printf("* Worst DCMST Weight = %0.0f\n", heur_worst_weight);

}

if (use_rand) {
total_first += (rfails + 1);
rand_time_sum += rand_time;
if (rfails < MaxStart) {
for (i = 0; i < MaxStart; i++)
if (rand_best_weight[i] < BIG_NUMBER)
rand_best_sum([i] += rand_best_weight[i]/ original_mstwt;
rand_worst_sum += rand_worst_weight / original_mstwt;
rand_worst_sumsq += rand_worst_weight * rand_worst_weight
/ (original_mstwt * original_mstwt);
rand_best_sumsql9 += rand_best_weightfNUM_TO_CHECK-1]
* rand_best_weightiNUM_TO_CHECK-1]
/ (original_mstwt * original_mstwt);
rand_best_sumsqg49 += rand_best_weight[MaxStart-1]
* rand_best_weight[MaxStart-1]
/ (original_mstwt * original_mstwt);
if (rand_best_low19 > rand_best_weight[NUM_TO_CHECK-1]/original_mstwt)

145

rand_best_low19 = rand_best weightitNUM_TO_CHECK-1] / original_mstwt;
if (rand_best_low49 > rand_best_weight[MaxStart-1] / original_mstwt)
rand_best_low49 = rand_best_weight[MaxStart-1] / original_mstwt;
if (rand_best_high19 < rand_best_weightifNUM_TO_CHECK-1] / original_mstwt)
rand_best_high19 = rand_best_weightitNUM_TO_CHECK-1] / original_mstwt;
if (rand_best_high49 < rand_best_weight[MaxStart-1] / original_mstwt)
rand_best_high49 = rand_best_weight[MaxStart-1] / original_mstwt;
if (rand_worst_low > rand_worst_weight / original_mstwt)
rand_worst_low = rand_worst_weight / original_mstwit;
if (rand_worst_high < rand_worst_weight / original_mstwt)
rand_worst_high = rand_worst_weight / original_mstwt;
}

printf("\nRandom (NSM2):\n");

printf("The first successful iteration was #%d.\n", rfails+1);

if (rfails < MaxStart)

factor = rand_time/((float)MaxStart);

else factor = rand_time/((float)rfails+1.0);

printf(" Total Time = %0.5If, Average Time per Iteration = %0.5If\n",
rand_time, factor);

printf("%d Start: Best DCMST (Solution) Weight = %0.0f\n",
NUM_TO_CHECK, rand_best_weightfNUM_TO_CHECK-1));

printf("%d Start: Best DCMST (Solution) Weight = %0.0f,",
MaxStart, rand_best_weight[MaxStart-1]);

printf(* Worst DCMST Weight = %0.0f\n", rand_worst_weight);

}

if (use_all) {
total_afails += afails;
ottc_time_sum += ottc_time;
if (asuccess) {
if (ottc_best weight < BIG_NUMBER)
ottc_best_sum += ottc_best_weight / original_mstwt;
ottc_worst_sum += ottc_worst_weight / original_mstwt;
ottc_worst_sumsq += ottc_worst_weight * ottc_worst_weight
/ (original_mstwt * original_mstwt);
ottc_best_sumsq += ottc_best_weight * ottc_best_weight
/ (original_mstwt * original_mstwt);
if (ottc_best_low > ottc_best_weight / original_mstwt)
ottc_best_low = ottc_best_weight / original_mstwt;
if (ottc_best_high < ottc_best_weight / original_mstwt)
ottc_best_high = ottc_best_weight / original_mstwt;
if (ottc_worst_low > ottc_worst_weight / original_mstwt)
ottc_worst_low = ottc_worst_weight / original_mstwt;
if (ottc_worst_high < ottc_worst_weight / original_mstwt)
ottc_worst_high = ottc_worst_weight / original_mstwt;
}

printf("\nUsing All Nodes:\n");

printf("There was %d successful iterations. Success Rate = %0.2[f%%\n",
n-afails, 100*((double)(n-afails))/((float)n));

printf(" Total Time = %0.5If, Average Time per Iteration = %0.5fn",
ottc_time, ottc_time/n);

146

printf(* Best DCMST (Solution) Weight = %0.0f,", ottc_best_weight);
printf(* Worst DCMST Weight = %0.0f\n", ottc_worst_weight);

}
} /¥ end while */

printf("\PM\N~~~~~~~~~ e OVERALL RESULTS: ~~~~~~~m~~ e~ ");
printf("\nAverage Density = %0.21f%%\n", ave_dens/num_trials * 100);
printf("\n ** Spanning tree weight is reported as a factor of MST weight. **\n");
if (upper_bound_fails < num_trials) {
printf("\nUpper Bounds:\n");
printf("Upper Bound Sucess Rate = %0.2f%%\n",
100*((double)(num_trials-upper_bound_fails))/((double)num_trials));
printf(" DCMST(3): Range [%0.4lf, %0.4If]\n",dcmst3_low,dcmst3_high);
if (num_trials > 1)
printf(" Mean = %0.4If, Standard Deviation = %0.5[f\n",
dcmst3_sum/((double)num_trials),
sqrt((dcmst3_sumsq - (dcmst3_sum*dcmst3_sum)/
((double)num_trials))/((float)num_trials-1.0)));

printf(" DCMST(4): Range [%0.4lf, %0.4If|\n",dcmst4_low,dcmst4_high);
if (num_trials > 1)
printf(" Mean = %0.4lf, Standard Deviation = %0.5f\n",
dcmst4_sum/((double)num_trials),
sgrt((dcmst4_sumsq - (dcmst4_sum*dcmst4_sum)/
((double)num_trials))/((float)num_trials-1.0)));
}

else printf("No upperbounds available\n");

printf("\nActual first successful iteration (on average) is #%0.2I\n",
total_first/((double)(num_trials-trial_afails)));
if (use_heur) {
printf("\nHeuristic (NSM1):\n");
printf("\n%d Start Nodes:\n", NUM_TO_CHECK);
printf("Trial Success rate = %0.21f%% \n",
100 - 100*trial_hfailsf]NUM_TO_CHECK-1] / ((double)num_trials));
printf("There was %0.2If successful iterations (out of %d) on average. \n",
NUM_TO_CHECK - total_hfails19/((double)num_trials), NUM_TO_CHECK);
printf("lteration Success rate = %0.21f%%\n",
100 - 100*total_hfails19 / ((double)(num_trials * NUM_TO_CHECK)));
printf(" Best Weight (Solution) Range [%0.4If, %0.4/f]\n",
heur_best_low19, heur_best_high19);
if (num_trials > 1 && trial_hfailsfNUM_TO_CHECK-1] < num_trials)
printf(" * Best Weight (Solution) Mean = %0.4lf, Standard Deviation = %0.5If\n",
heur_best_ sum[NUM_TO_CHECK-1]/
((double)(num_trials-trial_hfailsf]NUM_TO_CHECK-1])),
sqrt((heur_best_sumsql9 -
(heur_best_sum[NUM_TO_CHECK-1] * heur_best sum[NUM_TO_CHECK-1])/
((double)(num_trials-trial_hfailsfNUM_TO_CHECK-1])))/
((float)(num_trials-trial_hfailsfNUM_TO_CHECK-1]-1))));

printf("\n%d Start Nodes:\n", MaxStart);

printf("Trial Success rate = %0.21f%% \n",
100 - 100*trial_hfails[MaxStart-1] / ((double)num_trials));

147

printf("There was %0.2If successful iterations (out of %d) on average. \n",
MaxStart - total_hfails49/((double)num_trials), MaxStart);
printf("lteration Success rate = %0.21f%%\n",
100 - 100*total_hfails49 / ((double)(num_trials * MaxStart)));
printf(" Best Weight (Solution) Range [%0.4If, %0.4If]\n",
heur_best_low49, heur_best_high49);
if (num_trials > 1 && trial_hfails[MaxStart-1] < num_trials)
printf(" * Best Weight (Solution) Mean = %0.4If, Standard Deviation = %0.5If\n",
heur_best_sum[MaxStart-1])/((double)(num_trials-trial_hfails[MaxStart-1])),
sqrt((heur_best_sumsq49 -
(heur_best_sum[MaxStart-1]*heur_best_sum[MaxStart-1])/
((double)(num_trials-trial_hfails[MaxStart-1])))/
((float)(num_trials-trial_hfails[MaxStart-1]-1))));
printf(* Worst Weight Range [%0.4lf, %0.4If]\n",heur_worst_low,heur_worst_high);
if (num_trials > 1 && trial_hfails[MaxStart-1] < num_trials) {
printf(* Worst Weight Mean = %0.4If, Standard Deviation = %0.5fn",
heur_worst_sum/((double)(hum_trials-trial_hfails[MaxStart-1])),
sqrt((heur_worst_sumsq - (heur_worst_sum*heur_worst_sum)/
((double)(num_trials-trial_hfails[MaxStart-1])))/
((float)(num_trials-trial_hfails[MaxStart-1]-1))));
printf("\n Average Time = %0.4If\n", heur_time_sum/((float)num_trials));
}
}
if (use_rand) {
printf("\nRandom (NSM2):\n");
printf("\n%d Start Nodes:\n", NUM_TO_CHECK);
printf("Trial Success rate = %0.21f%% \n",
100 - 100*trial_rfailsfNUM_TO_CHECK-1] / ((double)num_trials));
printf(" Best Weight (Solution) Range [%0.4If, %0.4If]\n",
rand_best low19, rand_best_high19);
if (num_trials > 1 && trial_rfailsfNUM_TO_CHECK-1] < num_trials)
printf(" * Best Weight (Solution) Mean = %0.4lf, Standard Deviation = %0.5If\n",
rand_best_ sum[NUM_TO_CHECK-1)/
((double)(num_trials-trial_rfailsfNUM_TO_CHECK-1})),
sgrt((rand_best_sumsql19 -
(rand_best_sum[NUM_TO_CHECK-1] * rand_best_ sum[NUM_TO_CHECK-1])/
((double)(num_trials-trial_rfailsfNUM_TO_CHECK-1])))/
((float)(num_trials-trial_rfailsfNUM_TO_CHECK-1]-1))));

printf("\n%d Start Nodes:\n", MaxStart);
printf("Trial Success rate = %0.21f%% \n",
100 - 100*trial_rfails[MaxStart-1] / ((double)num_trials));
printf(" Best Weight (Solution) Range [%0.4lf, %0.4If]\n",
rand_best_low49, rand_best_high49);
if (num_trials > 1 && trial_rfails[MaxStart-1] < num_trials)
printf(" * Best Weight (Solution) Mean = %0.4If, Standard Deviation = %0.5If\n",
rand_best_sum[MaxStart-1]/
((double)(num_trials-trial_rfails[MaxStart-1])),
sgrt((rand_best_sumsq49 -
(rand_best_sum[MaxStart-1] * rand_best_sum[MaxStart-1])/
((double)(num_trials-trial_rfails[MaxStart-1])))/
((float)(num_trials-trial_rfails[MaxStart-1]-1))));
printf(* Worst Weight Range [%0.4lf, %0.4If]\n",rand_worst_low,rand_worst_high);

148

if (num_trials > 1 && trial_rfails[MaxStart-1] < num_trials) {
printf(* Worst Weight Mean = %0.4If, Standard Deviation = %0.5If\n",
rand_worst_sum/((double)(num_trials-trial_rfails[MaxStart-1])),
sqrt((rand_worst_sumsq - (rand_worst_sum*rand_worst_sum)/
((double)(num_trials-trial_rfails[MaxStart-1])))/
((float)(num_trials-trial_rfails[MaxStart-1]-1))));
printf("\n Average Time = %0.4IAn", rand_time_sum/((float)num_trials));
}
}
if (use_all) {
printf("\nOTTC using all nodes:\n");
printf("Trial Success rate = %0.21f%%\n",
100 - 100*trial_afails / ((double)num_trials));
printf("There was %0.2If successful iterations (out of %d) on average. \n",
n - total_afails/((double)num_trials), n);
printf("Iteration Success rate = %0.21f%%\n",
100 - 100*total_afails / ((double)(num_trials * n)));
printf(" Best Weight (Solution) Range [%0.4If, %0.4If]\n",
ottc_best_low, ottc_best_high);
if (num_trials > 1 && trial_afails < num_trials)
printf(" * Best Weight (Solution) Mean = %0.4lf, Standard Deviation = %0.5If\n",
ottc_best_sum/((double)num_trials),
sqrt((ottc_best_sumsq - (ottc_best_sum*ottc_best_sum)/
((double)(num_trials-trial_afails)))/((float)(num_trials-trial_afails-1))));

printf(" Worst Weight Range [%0.4lf, %0.4If]\n",ottc_worst_low,ottc_worst_high);
if (num_trials > 1 && trial_afails < num_trials) {
printf(* Worst Weight Mean = %0.4If, Standard Deviation = %0.5fn",
ottc_worst_sum/((float)(num_trials-trial_afails)),
sqrt((ottc_worst_sumsq - (ottc_worst_sum*ottc_worst_sum)/
((double)(num_trials-trial_afails)))/((float)(num_trials-trial_afails-1))));
printf("\n Average Time = %0.4If\n", ottc_time_sum/((float)num_trials));

}
}
printf("\n");

[~~~ ~~ The 50 iteration results: ~~ e~
printf("\nResults for Start Nodes: 1 to %d \n", MaxStart);
if (use_heur) {
printf("\nHeuristic (NSM1):\n");
printf("Trial Success rate (precentage):\n");
for (i=0; i < MaxStart; i += 10) {
for (j=0; j < 10 && j+i < MaxStart; j++)
printf("%5.2If *, 100 - 100*trial_hfails[i] / ((double)num_trials));
printf("\n");

}
printf("\n");
if (num_trials > 1 && trial_hfails[MaxStart-1] < num_trials)

printf(" Best Weight (Solution) Mean: \n");

for (i=0; i < MaxStart; i++)

printf("%0.2If \n", heur_best_suml[i}/((double)(num_trials-trial_hfails[i])));
printf("\n");
}

149

if (use_rand) {
printf("\nRandom (NSM2):\n");
printf("Trial Success rate (precentage):\n");
for (i=0; i < MaxStart; i += 10) {
for (j=0; j < 10 && j+i < MaxStart; j++)
printf("%5.2If , 100 - 100*trial_rfails[i] / ((double)num_trials));
printf("\n");

}
printf("\n");
if (num_trials > 1 && trial_rfails[MaxStart-1] < num_trials)
printf(" Best Weight (Solution) Mean: \n");
for (i=0; i < MaxStart; i++)
printf("%0.2If \n",rand_best_sum([i]/((double)(num_trials-trial_rfails[i])));
printf("\n");

[RFxRR R Rk Rkkk * End of Filg *x#*xkxmkdkxioik Kk xkkkkkkk |

150

10.

11.

L1ST OF REFERENCES

A. Abdalla, N. Deo, and R. Francexchini, Padld heurigics for the diameter-
constrained MST problem, Congressus Numerantium, 136 (1999), pp. 97-118.

A. Abddla, N. Deo, N. Kumar, and T. Terry, Paralld computation of a diameter-
congtrained MST and related problems, Congressus Numerantium, 126 (1997), pp.
131-155.

A. Abddla, N. Deo, and P. Gupta, Random-tree diameter and the diameter-
constrained M ST, Congressus Numerantium, to appear, 2000.

N. R Achuthan and L. Caccetta, Minimum weight spanning trees with bounded
diameter, Australasian Journal of Combinatorics, 5 (1992), pp. 261-276.

N. R. Achuthan, L. Caccetta, P. Caccetta, and J. F. Geden, Algorithms for the
minimum weight spanning tree with bounded diameter problem, Optimization:
Techniques and Applications, 1 (2) (1992), pp. 297-304.

N. R. Achuthan and L. Caccetta, Addendum: Minimum weight spanning trees with
bounded diameter, Australasian Journal of Combinatorics, 8 (1993), pp. 279-281.

N. R. Achuthan, L. Caccetta, P. Caccetta, and JF. Geden Computational methods for
the diameter redricted minimum weight spanning tree problem, Australasian Journal
of Combinatorics, 10 (1994), pp. 51-71.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Upper Saddle River, NJ, 1993, pp. 79, 90.

L. Alfandai and V. Th. Paschos, On the approximation of some spanning
arborescence problems, Advances in Computer and Information Sciences '98, V.
Gudukbay et al. (eds.), 10S Press, 1998, pp. 574-581.

L. Alfandari and V. Th. Paschos, Approximating minimum spanning tree of depth 2,
International Transactions in Operations Research, 6 (1999), pp. 607-622.

L. Alonso, J. L. Rémy, and R. Schott, A linear-time dgorithm for the generation of
trees, Algorithmica, 17 (1997), pp. 162-182.

151

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

L. Alonso and R. Schott, Random Generation of Treess Random Generators in
Computer Science, Kluwer Academic Publishers. Dordrecht, Netherlands. 1995, pp.
31-51.

S. Algrup, J. Holm, K. de Lichtenberg, and M. Thorup, Minimizing diameters of
dynamic trees, Automata, languages and programming, Lecture Notes in Computer
Science. 1256 (1997), pp. 270-280.

K. Bda, K. Petropoulos, and T.E. Stern, Multicasting in a linear lightwave network,
|EEE INFOCOM '93, 3 (1993), pp. 1350-1358.

J. Bar-llan, G. Kortsarz, and D. Peleg, Generdized submodular cover problems and
aoplications, In Proceedings of the 4" Israel Symposium on Computing and Systems,
1996, pp. 110-118.

F. Buckley and Z. Paka, Property preserving spanning trees in random graphs, In M.
Karoiski, J. Jaworski, A. Rucinski (eds.), Random Graphs87, John Wiley & Sons,
1990.

A. Booksgen and S T. Klen, Congruction of optima graphs for bit-vector
compression, In Proceedings of the 13" ACM SIGIR Conference, 1990, pp. 327-342.

A. Bookstein and S. T. Klein, Compresson of correlated bit-vectors, Information
Systems, 16 (4) (1991), pp. 387-400.

F. Butdle, C. Lavault, and M. Bui, A uniform sdf-gabilizing minimum diameter
spanning tree agorithm, Distributed algorithms: 9" international workshop, WDAG
'95 proceedings, Lecture Notes in Computer Science, 972 (1995), pp. 257-272.

Z.-Z. Chen, A ample pardld dgorithm for computing the diameters of dl verticesin
atree and its application, Information Processing Letters, 42 (1992), pp. 243-248.

J Cho and J Breen, Analyss of the peaformance of dynamic multicas routing
agorithms, Computer Communications, 22(7) (1999), pp. 667-674.

R. Chow and T. Johnson, Distributed Operating Systems and Algorithms Addison
Wedey. Reading, MA. 1997.

J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C.K. Wong, Performance-driven
globd routing for cdl based ICs, IEEE International Conference on Computer
Design: VLS in Computers and Processors, 1991, pp.170-173.

G. Dahl, The 2hop spanning tree problem, Operations Reaearch Letters, 23 (1998),
pp. 21-26.

152

25.M. Ddl'Amico and F. Maéffioli, Combining linear and non-linear objectives in
gpanning tree problems, Journal of Combinatorial Optimization, 4 (2000), pp. 253-
2609.

26.N. Deo and A. Abddla, Computing a diameter-congraned minimum spanning tree in
pardld, Lecture Notes in Computer Science, 1767 (2000), pp. 17-31.

27.N. Deo and N. Kumar, Congtrained Spanning Tree Problems. Approximate Methods
and Pardld Computation, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 40 (1998), pp. 191-217.

28.P. Erddos and A. Rényi, On the evolution of Random Graphs, Publication of
Mathematical Institute of the Hungarian Academy of Sciences, 5 (1960), pp. 17-61.

29.P. Hgole, Z. Gao, A. Odyzko, and B. Richmond, The digtribution of heights of
binary trees and other ample trees, Combinatorics, Probability and Computing. 2
(1993), pp. 145-156.

30. P. Hgolet, and A. Odlyzko, The average height of binary trees and other smple trees,
Journal of Computer and System Sciences, 25 (1982), pp. 171-213.

31. P. Hgolet, P. Zimmernann, and B. V. Cutsen, A caculus for the random generation
of combinatorid dructures, INRIA Research Report 1830, 1993, (ftp://ftp.inriafr File
/inrialpublication/RR/RR-1830.ps.gz)

32.H. N. Gabow, Z. Gdil, T. H. Spencer, and T. E. Tajan, Efficent adgorithms for
finding minimum spanning trees in undirected and directed graphs, Combinatorica, 6
(1986), pp.109-122.

33. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco. 1979, pp. 206.

34. M. Gordon and JW. Kennedy, The counting and coding of trees of fixed diameter,
S AM Journal on Applied Math, 28 (2) (1975), pp. 376-398.

35.L. Gouveia, Usng the Miller-Tucker-Zemlin condrants to formulae a minima
goanning tree problem with hop condraints, Computers & Operations Research,
22(9) (1995), pp. 959-970.

36.G. Y. Handler, Minimax location of a faclity in an undirected tree graph,
Trangportation Science, 7 (1973), pp. 287-293.

37.F. Harary, R. J. Mokken, and M. J. Plantholt, Interpolation theorem for diameters of
gpanning trees, |IEEE Transactions on Circuits and Systems CAS-30 (7) (1983) pp.
429-431.

153

38. F. Harary and G. Prins, The number of homeomorphicaly irreducible trees, and other
species, Acta Math, 101 (1959), pp. 141-162.

39.R. Hassin and A. Tamir, On the minimum dianeer spanning tree problem,
I nformation Processing Letter, 53 (1995), pp. 109-111.

40. J-M. Ho, D. T. Lee, C.-H. Chang, and C. K. Wong, Minimum diameter spanning
trees and related problems, SAM Journal on Computing, 20 (5) (1991) pp. 987-997.

41. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms Computer Science
Press, Potomac, MD, 1978, pp. 317.

42.G. F. Itdiano and R. Ramaswami, Maintaning spanning trees of smdl diameter,
Algorithmica, 22 (1998), pp. 275-304.

43. G. F. Itdiano and R. Ramaswami, Mantaining spanning trees of amdl diameter, In
Proceedings of the 21% international colloquium on automata, languages and
programming, Lecture Notesin Computer Science, 1994, pp. 227-238.

44. D. Johnson, The NP-completeness column: An ongoing guide, Journal of Algorithms
6 (1985), pp. 145-159.

45.A. B. Khang and G. Robins, On Optimal Interconnections for VLS. Kluwer
Academic Publishers, Boston. 1995, pp. 69-102.

46. N. Kumar, Parallel Computation of Constrained Spanning Trees. Heuristics and
SMD Implementations, Ph. D. Dissertation, University of Centra Florida, 1997.

47.V. Kumar, N. Deo, and N. Kumar, Pardld generation of random trees and connected
graphs, Congressus Numerantium, 130 (1998), pp. 7-18.

48.J. F. Liu and K. A. Abde-Mdek, On the problem of scheduling paralel computations
of multibody dynamic andysis, Transactions of ASME, 121 (1999), pp. 370-376.

49. T. A. Euczak, Greedy dgorithm estimating the height of random trees, SAM Journal
on Discrete Math, 11 (2) (1998), pp. 318-329.

50. T. £uczek, Random trees and random graphs, Random Structures Algorithms, 13 (3-
4) (1998), pp. 485-500.

51. T. £uczak, The number of trees with large diameter, Journal of the Australian Math
Society (Series A), 58 (1995), pp. 298-311.

52. F. Maéffioli, On condraned diameter and medium optimad spanning trees, In

Proceedings of the 5" IFIP Conference on Optimization Techniques, 1973, pp. 110-
117.

154

53.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

606.

M. V. Maathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt
[11, Bicriteria network design problems, Journal of Algorithms 28(1), July 1998, pp.
142-171.

.A. Merr and J. W. Moon, The distance between points in random trees, Journal of

combinatorial theory, 8 (1970), pp. 99-103.

C. Miller, A. Tucker, and R. Zemlin, Integer programming formulations and traveling
sdesman problems, Journal of the ACM, 7 (1960), pp. 326-329.

J. W. Moon, Counting Labelled Trees, William Clowes & Sons, London, 1970.

B. M. E. Moet and H. D. Shapiro, An empiricd andyss of dgorithms for
congructing a minimum spanning tree, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 15 (1994), pp. 99-117.

E. Naddli, G. Proietti, and P. Widmayer, Finding dl the best swaps of a minimum

diameter spanning tree under trandent edge falures, Algorithms-ESA '98. Lecture
Notes in Computer Science, 1461 (1998), pp. 55-66.

P. W. Paddock, Bounded Diameter Minimum Spanning Tree Problem, M.S. Thesis,
George Mason University, Fairfax, VA, 1984.

E. M. Pamer, Graphical Evolution: An Introduction to the Theory of Random
Graphs. John-Wiley & Sons, New Y ork, 1985, pp. 114-122.

C. H. Pgpadimitriou and M. Yannakakis, The complexity of redtricted spanning tree
problems, Journal of the ACM, 29 (2) (1982), pp. 285-309.

Y. Pal and S Zaks, On the complexity of edge labelings for trees, Theoretical
Computer Science, 19 (1982), pp. 1-16.

M. J. Plantholt, Modding properties of spanning trees Diameter and distance sum,
Mathematical and Computer Modelling, 11 (1988), pp. 218-221.

.R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning

trees short or small, In Proceedings of the %" Annual ACM-SIAM Symposium on
Discrete Algorithms, 1994, pp. 546-555.

R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning
trees short or smal, SAM Journal on Discrete Math, 9 (2) (1996), pp. 178-200.

K. Raymond, A tree-based dgorithm for digributed mutud excluson, ACM
Transactions on Computer Systems, 7 (1) (1989), pp. 61-77.

155

67. A. Rényi, Some remarks on the theory of trees, Magyar Tud. Akad. Mat. Kutato Int
Ko2, 4 (1959), pp. 73-85.

68. A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian
Mathematical Society, 7 (1967), pp. 497-507.

69. V. Revannaswamy and P. C. P. Bhatt, A fault tolerant protocol as an etenson to a
digributed mutud excluson dgorithm, In Proceedings of the 1997 International
Conference on Parallel and Distributed Systems, 1997, pp. 730-735.

70.J. Riordan, The enumeration of trees by height and diameter, IBM Journal of
Research and Development, 4 (1960), pp. 473-478.

71.H. F. Sdama, D. S. Reeves, and Y. Viniotis, An efficient delay-condrained minimum
goanning tree heurigic, North Carolina State University Technical Report 96/17,
April 1996, 16 pp. (http://mww.ece.ncsu.edu/cacc/tech reports/abs/abs9617.html)

72.V. Sankaran and V. Krishnamoorthy, On the diameters of spanning trees, IEEE
Transactions on Circuits and Systems CAS-32 (10) (1985), pp. 1060-1062.

73.V. Sankaran and V. Krishnamoorthy, Tree-diameter and tree-eccentricity sets,
Sankhya: The Indian Journal of Statistics, 54 (1992), pp. 413-420.

74.R. Satyanarayanan and D. R. Muthukrishnan, A note on Raymond's tree-based
dgorithm for digributed mutud excluson, Information Processing Letters, 43
(1992), pp. 249-255.

75. R. Satyanarayanan and D. R. Muthukrishnan, A datic-tree-based agorithm for the
distributed readers and writers problem, Computer Science and Informatics, 24 (2)
(1994), pp. 21-32.

76. R. R. Seban, A didributed critica section protocol for genera topology, Journal of
Parallel and Distributed Computing, 28 (1995), pp. 32-42.

77.R. R. Seban, A high performance critica section protocol for distributed systems, In
Proceedings of the 1994 |EEE Aerospace Application Conference, 28 (1994), pp. 1-
17.

78. Z. Shen, The average diameter of generd tree structures, Computers Math. Applic.,
36 (7) (1998), pp. 111-130.

79.Y. Shibata and S. Fukue, On upper bounds in tree-diameter sets of graphs, |IEEE
Transactions on Circuits and Systems 36 (1989), pp. 905-907.

80.T. Shimizu and Y. Shibatas On the feasble tree-diameter sets of graphs, IEEE
Transactions on Circuits and Systems CAS-32 (8) (1985), pp. 862-864.

156

81. A. Shioura and M. Shigeno, The tree center problems and the relationship with the
bottleneck knapsack problems, Networks, 29 (2) (1997), pp. 107-110.

82. G. Szekeres, Didribution of labelled trees by diameter, Lecture Notes in Math., 1036
(1983), pp. 392-397.

83. L. Takacs, The asymptotic didribution of the tota heights of random rooted trees.
Acta. Sci. Math., 57 (1993), pp. 613-625.

84.D. W. Wadl, Mechanisms for Broadcast and Sdective Broadcast, Ph. D. Theds,
Stanford University, 1980.

85.D. W. Wal and S. S. Owicki, Center-based broadcasting, Technical Report No. 189,
Computer Systems Laboratory, Stanford University, 1980.

86.S. Wang and S. D. Lang, A tree-based digtributed agorithm for the k-entry critica
section problem, In Proceedings of the 1994 International Conference on Parallel
and Distributed Systems, 1994, pp. 592-597.

87. S. Znam, The minima number of edges of a directed grgph with given diameter, Acta
Facultis rerum naturalium universitatis comeniane, Mathematica, 24 (1970), pp. 181-
185.

157

