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Notation and Abbreviations
fa; b; : : :g unordered set ontaining the items a, b, . . .; empty set" empty stringL� losure of the language LL1 Æ L2 onatenation of languages L1 and L2L(r) language represented by regular expression rR� re�exive, transitive losure of binary relation RR+ transitive losure of binary relation RN the set of natural numbers f0; 1; 2; : : :gjwj length of string w`M binary relation between on�gurations of M�yields in one step��M binary relation between on�gurations of M�yields tag-wise ambiguously in one step��T total order on funtions from tags to their valueshn1; n2; : : : ; nki ordered k-tuple of the items n1, n2, . . . , nkfx : P (x)g the set of all x whih have property P .O(g(n)) ff(n) : there exist positive onstants  and n0 suh that0 � f(n) � g(n) for all n � n0gE1jE2 Regular expression suh that L(E1jE2) = L(E1) [ L(E2).E� Regular expression suh that L(E�) = L(E)�.: Regular expression mathing any single symbol in the usedalphabet.
AST abstrat syntax treeDFA deterministi �nite automatonDFAS deterministi �nite automaton with semanti ationsNFA nondeterministi �nite automatonNFAS nondeterministi �nite automaton with semanti ationsTDFA deterministi �nite automaton with tagged transitionsTNFA nondeterministi �nite automaton with tagged transitions
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Chapter 1
Introdution
Pattern mathing, despite its low-key overage, is a very important topi in om-puter siene. It ours naturally in many areas of siene and information pro-essing, suh as data proessing, lexial analysis, text editing, and informationretrieval. Indeed, pattern mathing is the main programming paradigm in sev-eral programming languages like Prolog, SNOBOL4, and Ion, and most pro-gramming languages provide some kind of primitives to perform di�erent kindsof pattern mathing on strings. In biology, string pattern mathing problemsarise in the analysis of nulei aids and protein sequenes. Considering all this,it is not a surprise that string pattern mathing is one of the most widely studiedproblems in theoretial omputer siene.This thesis onentrates on regular expression patterns. Regular expressions[28℄ are very popular for desribing patterns for searhing text, and there arenumerous tools and libraries whih implement regular expression pattern math-ing, like lex [32℄ and �ex [47℄. Most programming languages, suh as Perl [54℄,provide some form of regular expression pattern mathing. Regular expressionsand regular expression mathing have reently been used even for implementingtype systems for programming languages [20, 21℄.It is not always enough just to perform language reognition, that is, to �ndout whether patterns of interest our in the text. Frequently we need to knowexatly where a substring mathing the pattern was found and extrat parts of asuessful math. For example, if a pattern mathes an address, it should be easyfor the programmer to aess the zip ode. In the extreme ase, a full parse treeof the math is required. The problem of extrating partial parse information ofa math is alled submath addressing and is the main fous of this thesis.Often the searhed text is very large, emphasizing the need for e�ient al-gorithms. For example, an algorithm using time in the order O(n2) or worseis unaeptable when searhing for a pattern from several megabytes of data.Spae onsumption should also be as low as possible, so that no more spae is
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CHAPTER 1. INTRODUCTION 2
used than neessary. In general a full parse tree of a string w mathing a regularexpression r takes O(jwj) spae, but in most ases a full tree is not required,and even the full parse tree often takes only O(jrj) spae. Searhing for a simplepattern r from a very large text is best done using an algorithm whih uses spaedepending only on r, not the length of the text being searhed.There has been some work in the area of e�ient algorithms for regular ex-pression pattern mathing with full or partial parse extration. The algorithmsin widespread use at the time of this writing either take exponential worst-asetime to �nd a math, use O(jwj) spae, or an handle only a subset of all regularexpressions. None of these features are desirable for a general-purpose implemen-tation, suh as a POSIX.2 [23℄ ompatible regular expression mathing library.This thesis mostly onentrates on on-line algorithms, where preproessing ofthe pattern must not take long, and the searhed text annot be indexed beforethe searh.This thesis has the following struture:In Chapter 2 regular expressions and the submath addressing problem arede�ned. After these a brief survey of previous work on submath addressingand regular expression parsing is given, and the most important problems of theprevious tehniques are shown.In Chapter 3 I �rst present nondeterministi automata whih may have transi-tions augmented with tags, give a formal de�nition of their semantis, and showhow to solve the submath addressing problem using nondeterministi taggedautomata. Then I disuss e�ient tehniques to simulate these automata, andshow how they an be onverted to orresponding deterministi automata. Fi-nally, a more generi model is disussed where transitions are augmented withomputable funtions whih manipulate some arbitrary data, and full parsingand approximate regular expression mathing are disussed.In Chapter 4 an atual implementation of some of the algorithms studied inthe previous hapter is disussed.In Chapter 5 some experimental test results using the implementation de-sribed in Chapter 4 are shown, and omparison to other implementations isdone.In Chapter 6 some diretions to future work and researh are given.In Chapter 7 the onlusions gained in this thesis are summarized.



Chapter 2
Submath Addressing forRegular Expression Mathing
Regular expressions, regular sets (sometimes alled rational expressions and ra-tional sets, respetively), and �nite automata are entral onepts in automataand formal language theory. A regular set is a set of strings mathed by a regularexpression. The origins of regular sets go bak to the work of MCulloh andPitts [35℄ who devised �nite-state automata as a model for the behavior of neuralnetworks.The notation of regular expressions arises naturally from the mathematialresult of Kleene [28℄ that haraterizes the regular sets as the smallest lass ofsets of strings whih ontains all �nite sets of strings and whih is losed underthe operations of union, onatenation and Kleene losure.This hapter �rst de�nes the syntax and semantis of regular expressions.Then the submath addressing problem is de�ned and some solutions by othersare disussed, showing the biggest problems of these previous solutions.
2.1 Regular Expressions
De�nition 2.1 Regular expressions over an alphabet � are de�ned as follows:1. " and eah member of � is a regular expression.2. If r1 and r2 are regular expressions then so is (r1jr2).3. If r1 and r2 are regular expressions then so is (r1r2).4. If r is a regular expression then so is r�.
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CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 4
Nothing is a regular expression unless it follows from a �nite number of appli-ations of the rules above. The above de�nes only the regular expression syntax.The meaning of a regular expression, that is, the language represented by a reg-ular expression, is de�ned using a funtion L, whih is de�ned reursively asfollows:
1. L(") = f"g and for eah symbol a in the alphabet L(a) = fag.2. If r1 and r2 are regular expressions then L((r1jr2)) = L(r1) [ L(r2).3. If r1 and r2 are regular expressions then L((r1r2)) = L(r1) Æ L(r2).4. If r is a regular expression then L(r�) = L(r)�. �
The onatenation of two languages L1 Æ L2 is de�ned asL1 Æ L2 = fw : w = xy for some x 2 L1 and y 2 L2gL�, the Kleene losure of a language L, is the set of all strings obtained byonatenating zero or more strings from L.Many parentheses in regular expressions an be avoided by adopting the on-vention that the Kleene losure operator � has the highest preedene, then on-atenation, then j (alternation). The two binary operators, onatenation andalternation, are left-assoiative. Under these onventions the regular expressions(aj((b(�))d)) and ajb�d are equivalent, in the sense that they math the samestrings, namely, an a, or a b followed by a sequene of zero or more 's followedby a d.Example 2.1 For example, the regular expression(hotjold) (applejblueberryjherry) (piejtart)mathes any of the twelve deliaies ranging from hot apple pie to old herrytart.The regular expressionthe (very, )�very hot herry piemathes the strings the very hot herry pie; the very, very hot herry pie; thevery, very, very hot herry pie; and so on.The regular expression (�(aj(b�))�)represents the set of all strings over fa; b; g that do not have the substring a.�



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 5
There are many popular programs, tools, and libraries for performing regularexpression mathing. Most of these programs implement some extensions tothe regular expression notation, like awk [3℄, lex [32℄, and �ex [47℄. Extensionsare usually implemented in order to provide more suint and understandableways to represent regular languages. In fat, the relative suintness of di�erentnotations for regular sets has been of onsiderable theoretial interest [19, 37℄.In the regular expression notation de�ned above the symbols ), (, j, and �are metaharaters that are not a part of the alphabet. In omputer implemen-tations we do not have the luxury of using extra haraters out of the alphabetfor the regular expression notation, and a way to math the regular expressionmetaharaters themselves is needed. This is usually ahieved by using bakslash,n, as a quoting metaharater that permits metaharaters to be mathed. Themetaharaters an be denoted by pre�xing them with the bakslash: n), n(, nj,and n� math ), (, j, and � respetively. The bakslash itself is mathed by nn.Often we need to speify sets of input symbols in regular expressions, andusing expressions of the form (a1ja2ja3j : : :) an be umbersome. Many imple-mentations support denoting sets of haraters by surrounding them with brak-ets. For example, [ab℄ is equivalent to (ajbj). Charater sets an be negatedusing a aret, so that [�ab℄ mathes any harater exept a, b, or . Charatersets whih onsist of onseutive haraters an be de�ned using speial har-ater range notation. For example, [a� z℄ mathes any lower ase harater,and [�a� zA� Z0� 9℄ mathes any non-alphanumeri harater. The hara-ter range notation is naturally dependent on the order in whih the haraters arerepresented internally in the implementation (typially ASCII [6℄ or a derivative).Further shorthands an be de�ned for the most often used sets of haraters,the most popular of these being : whih mathes any single harater. Theexpression : an be thought of as a �don't-are� or �wildard� symbol. Anotherommon notation is the + operator. If r is a regular expression, then (r)+ denotesthe same language as r(r)�.None of these extensions add more desriptive power to the expressions, in thesense that the languages whih an be denoted by the extended expressions arestill purely regular, and only regular sets an be desribed with these extendedexpressions.One popular extension whih does extend the lass of representable languagesis bak referening. Regular expressions with bak referening, or rewbrs, ap-peared in the �rst version of the SNOBOL programming language [16℄, and havesine found their way into for example the UNIX ommand grep and the Perl[54℄ programming language.Rewbrs have an assignment operator %, so that if for example r is a regularexpression, then the rewbr r%v0 mathes whatever r mathes and assigns themathed string to the variable v0. After this, the variable an be used to math



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 6
that same string again. For example, the rewbr (ajb)�%v0v0 denotes the languagefw : w = xx and x 2 fa; bg�g. Repeated strings like this are alled squares ortandem repeats. As another example, the rewbr (ajbj)�((ajbj)%v0)(ajbj)�v0(ajbj)�mathes any string of a's, b's or 's with at least one repeated harater.Surprisingly, not muh theoretial study of bak referening has been done.A related but restrited lass of expressions has been studied by Angluin [7℄.Angluin's expressions do not have the alternation operator and only one bakreferene is allowed. Also Larsen [30℄ has studied regular expressions with bakreferening and showed that the power of the expressions inrease with the num-ber of nested levels that are allowed.Aho has also studied rewbrs, and showed that given a pattern onsisting ofa rewbr r and an input string s the problem of �nding out whether s ontains asubstring mathed by r is NP-omplete [1℄. This is perhaps one of the main rea-sons for lak of broad theoretial interest in rewbrs. Bak referening onstrutsshall not be disussed any further in this thesis.
2.2 Submath AddressingThe extension disussed in this setion, submath addressing, sometimes alledsubstring addressing of mathes, substring extration, parse extration, or justparsing regular expressions, is a very useful feature implemented in many regu-lar expression mathing programs. For example, all IEEE POSIX standard [23℄ompatible regexp mathing libraries, and the Perl [54℄ and SNOBOL [16℄ pro-gramming languages support submath addressing.Instead of being an extension to the regular expression notation, submathaddressing is an extension to the amount of detail given about a suessful math.Not only the information of whether a math was found is given, but the sub-strings mathing the pattern and given subpatterns are reported. In short, sub-math addressing means �nding the position and extent of the substring mathedby a given subexpression.For example, the regular expression very (:�) stikmathes the string Jak hasa very long blue stik in his hand. To be preise, the regular expression mathesthe substring very long blue stik. The parenthesized subexpression mathes thesubstring long blue, and it is a submath of the whole math. Submathes an bereported as pairs of integers hs; ei, where s is the position of the �rst haraterof the submath and e is the position of the last harater of the submath plusone. The length of the submath in haraters an then be omputed by e�s. Inthe above example, the submath addressing information for the parenthesizedsubexpression is h16; 25i, and the length of the submath is 9.To mark subexpressions for whih submath addressing needs to be done we
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de�ne a new notation; the wanted subexpression is surrounded with braes, fand g. The regular expression in the above example an then be rewritten usingthis notation as very f:�g stik.
2.2.1 Resolving AmbiguityIt is often the ase that when mathing a regular expression, a subexpressionof the pattern an partiipate in the math of several di�erent substrings of theinput string. It is also possible that a subexpression does not math any substringeven though the pattern as a whole does math.For example, onsider the regular expression fa�gfa�g and string aaa. Thereare twenty possible submath addressings in all, any of whih are orret. Onepossibility is h0; 0i for the �rst subexpression and h0; 3i for the seond. Anotherpossibility is h1; 2i and h2; 3i, and so on.The following rules are used to determine whih substrings are hosen:� Leftmost-longest rule: In the event that a regular expression ouldmath more than one substring of the input string, the math startingearliest in the string is hosen. If the regular expression may math morethan one substring at that point, the longest substring is hosen.� Subexpression rule: Subexpressions also math the longest possible sub-strings, subjet to the onstraint that the leftmost-longest rule must notbe violated. Subexpressions starting earlier in the regular expression takepriority over ones starting later. Note that higher-level subexpressions thustake priority over their lower-level omponent subexpressions. Mathing anempty string is onsidered longer than no math at all.� Repeated mathing rule: If a subexpression mathes more than onesubstring of the whole math, the last suh substring is hosen. Note thatthe andidate substrings annot overlap.The rules are in order of dereasing priority. The subexpression rule is appliedto eah subexpression in order, regardless of whih subexpressions are marked forsubmath addressing.Example 2.2 The submath rule tells us to hoose the addressing on the Let usmath the regular expression fa�gfa�g and string aaa. The leftmost-longest rulerequires that the whole string is mathed. This restrition uts down the numberof possible substring addressings to the four leftmost-longest mathes shown inTable 2.1.The submath rule tells us to hoose the addressing on the last row, beause ithas the longest math for the �rst subexpression. �
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Table 2.1: Leftmost-longest mathes of fa�gfa�g and aaa�rst subexpression seond subexpressionh0; 0i h0; 3ih0; 1i h1; 3ih0; 2i h2; 3ih0; 3i h3; 3i

Example 2.3 As another example, onsider the regular expression (aja�)�. Thesyntax tree for this expression is shown in Figure 2.1. Eah subtree is numberedwith a number from 1 to 5.
j�

123 45a �aFigure 2.1: Syntax tree for (aja�)�Table 2.2 shows the submathes for eah subtree for some input strings.Mathing the empty string demonstrates the rule that an empty math is on-sidered longer than no math at all; subtree number 4 an math the emptystring and therefore it must math the empty string, although this would not beneessary to make the whole expression math.Table 2.2: Submath addressings for (aja�)� against some stringsstring 1 2 3 4 5" h0; 0i h0; 0i h�1;�1i h0; 0i h�1;�1iba h0; 0i h0; 0i h�1;�1i h0; 0i h�1;�1ia h0; 1i h0; 1i h0; 1i h�1;�1i h�1;�1iaa h0; 2i h0; 2i h�1;�1i h0; 2i h1; 2iaaa h0; 3i h0; 3i h�1;�1i h0; 3i h2; 3iThe seond row on the table demonstrates the leftmost-longest rule. It wouldbe possible to math the longer substring starting from the seond harater, butthe leftmost, and in this ase shorter, math is hosen.The third row shows that subexpressions starting earlier take priority overones starting later. In terms of a regular expression syntax tree, a depth �rstpreorder traversal of the tree enumerates the subexpressions in order of priority.The subtrees in Figure 2.1 are numbered like this. Here, subtree number 3 takes
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priority over subtree number 4, so the one harater is mathed by subtree 3instead of 4.The fourth and �fth row demonstrate how higher-level subexpressions takepriority over their lower-level omponent subexpressions. It would be possible tomake the math by letting subtree 3 math the two a's by making two iterationswith the topmost star operator. But sine subtree 2 takes priority over its om-ponents, we must hoose the math whih has the longest submath for subtree2. �The ambiguity resolving sheme desribed here is, of ourse, only one ofnumerous alternatives. The approah used here has almost idential semantis tothe one used in [23℄. Naturally, these rules are not good for every situation; in fat,the generally aepted leftmost-longest rule has been the subjet of some ritiism[11℄. The main argument is that searhing for longest mathing substrings usuallyresults in more ompliated patterns when searhing strutured text, suh asXML [14℄.
2.3 Previous WorkThe rest of this hapter desribes brie�y some solutions to the submath address-ing problem developed by others. Eah subsetion desribes a di�erent solution.
2.3.1 Baktraking MathersMost regular expression mathing software whih support substring addressingdo not use the textbook NFA or DFA methods for mathing regular expressions,but an interpretive baktraking algorithm and a stak of baktraking points.There are two major advantages of the baktraking method � it is easy toimplement and it allows extensions like submath addressing and bak referening[1, 7, 30℄ to be inorporated easily.There is some amount of history in the evolution of baktraking algorithmswhih an still be seen in the versions used today. The original baktraking algo-rithms supported only a subset of the regular expression syntax, the alternationoperator j was not supported at all. This made it possible to implement a bak-traking algorithm whih �nds the longest math without extra baktraking.When j is added, it beomes possible to heat the baktraking algorithminto making a poor hoie early on that produes a less-than-longest math inthe end. Many of the implementors did not notie this; their doumentation stilllaims longest math, even though they do not always �nd it. In order to �ndthe longest math, the algorithm will have to explore every possible math, and
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this an be spetaularly expensive even for relatively simple expressions. Forexample, the GNU regex-0.12 library onsumes exponential time when mathingthe regular expression (a�)�jb� with input of the form aaaaaaa. . . b. With aninput of only approximately 25 haraters the mathing takes tens of seonds ona urrent workstation.On the other hand, Perl [54℄ takes the easy way out; it does not even try toreturn the longest math. This an be very onfusing. As an example, take thePerl regular expressions (a|ab)(b)? and (ab|a)(b)?, and the strings ab andab. The Perl program"ab" =~ /(a|ab)(b)?/; print($&, "\n");"ab" =~ /(a|ab)(b)?/; print($&, "\n");"ab" =~ /(ab|a)(b)?/; print($&, "\n");"ab" =~ /(ab|a)(b)?/; print($&, "\n");outputs the following:aabababEah line in the program mathes the string on the left-hand side of the =~operator against the regular expression between the / haraters. The mathingsubstring is then printed.Even though it would be possible for eah line in the program to math thewhole string, it does not always happen. Namely, the �rst and last lines of theprogram do not �nd the longest math. This is onfusing for a programmer whodoes not know how the Perl regular expression mather works, and may even bemisinterpreted as a bug. There are also ases whih take a very long time to run,even though Perl tries to limit the amount of baktraking by not guaranteeinglongest mathes. For example, this program"aaaaaaaaaaaaaaaaaaaaaaaaab" =~ /((a*)*b)*b/;takes tens of seonds to run (using Perl version 5.005_03) on urrent desktophardware. This too may be misinterpreted as an �in�nite loop� bug.The Perl regexp mather is notoriously omplex and ontains a number of dif-ferent triks and optimizations to avoid situations like the above where mathingtakes exponential time. Still, no number of triks will over every possible situ-ation, and there is a limit to the number of optimizations whih an be applieduntil the program ode beomes unmaintainable.



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 11
2.3.2 Nakata-Sassa Semanti RulesNakata and Sassa have proposed regular expressions with semanti rules [43℄,whih an be used as tools for expressing the syntax and semantis of input data,and a method of generating programs for proessing these input data. Their regu-lar expressions an have intermixed semanti statements, whih an oneivablybe extended to implement submath addressing instead of using baktrakingalgorithms desribed above.For example, in the regular expression(�j�)we an insert the semanti rules f and g by writing([f ℄(�j�)[g℄)The rules f and g an be implemented to store the urrent position in the inputstring to, say, the variables t0 and t1 respetively. After a suessful math, ht0; t1iwould then be the submath addressing data for the parenthesized subexpression.The basi idea in the implementation of Nakata-Sassa semanti rules is thata proessing program for an expression with semanti rules an be expressed asa �nite automaton for the underlying regular expression with semanti ationsattahed to the proper transitions. These automata are alled nondeterministi�nite automata with semanti ations (NFAS) and deterministi �nite automatawith semanti ations (DFAS).Nakata and Sassa do not disuss e�ient methods for simulating nondeter-ministi automata with semanti ation transitions, but give an algorithm fortranslation from nondeterministi �nite automata with semanti ations to orre-sponding deterministi automata. Their algorithm, however, fails to produe or-ret deterministi automata for lasses of important nondeterministi automata,as we shall soon see.In the Nakata-Sassa system, eah state of the nondeterministi automaton toonvert is assigned a temporary variable whih is used to postpone exeution ofsemanti ations in ases where look-ahead is neessary. This is the weak spotof the method, and makes it impossible to use it to implement for example aPOSIX.2 [23℄ onformant regular expression mathing library.For example, the expression (a[f(a)℄)�a[g(a)℄b works orretly (see Figure2.2), whereas (a[f(a)℄)�a[g(a)℄ab annot be implemented (see Figure 2.3), beauseV  a2 is to be exeuted at the transition from Q2 to Q3, while f(V ) for V  a2has not yet been evaluated. Nakata and Sassa note that the previous ase ould beimplemented by inreasing the number of variables from one to two (by hangingthe assignments into V1  a1 and V2  a2, and hanging 2(f(V ); f(V )) in Q3to 2(f(V1); f(V2))).



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 12
q0 q1 q2 q3 q4 q5 q6 q7

"
" a[V  a℄ "[f(V )℄ " a[V 0  a℄ "[g(V 0)℄ b

"

q2; q5 q8q2(f(V ))q7(g(V ))
a[f(V );V  a℄

q5(f(V ))a[V  a℄ b[g(V )℄
Figure 2.2: NFAS and DFAS for (a[f(a)℄)�a[g(a)℄b

"

"
" a[V  a℄ "[f(V )℄ " a[V 0  a℄ "[g(V 0)℄ a bq1 q2 q3 q4 q5 q6 q7 q8 q9

q2; q5Q1 Q2 Q3
a2[V  a2℄a1[V  a1℄ q5(f(V ))q2(f(V ))q7(g(V ))

q2(f(V ); f(V ))q5(f(V ); f(V ))q7(f(V ); g(V ))q8(g(V ))
Figure 2.3: NFAS and partial DFAS for (a[f(a)℄)�a[g(a)℄ab

However, they fail to point out that this does not help in the general ase,beause if there is some �nite number of n variables per state, the automatongenerated from a regular expression of the form
(a[f(a)℄)� n+1z }| {a : : : adoes not work, beause n+ 1 variables would be needed per state to implementa mather using the Nakata-Sassa method. All the algorithms given in theirpaper [43℄ also assume just one variable per state, and inreasing the numberof variables per state is only brie�y mentioned. Also, Nakata and Sassa do
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Figure 2.4: NFA for a+("jb)
not disuss resolving ambiguity at all; there are many important ases wheresubmath addressing and semanti ations an be done in di�erent ways (seeSetion 2.2.1).
2.3.3 Kearns's Parse ExtrationIn his paper [25℄, Kearns desribes a method for extrating a parse after mathingwith a �nite automaton. First he shows algorithms to �nd mathes of regularexpressions patterns in strings.One by-produt of the mathing proess desribed is a sequene of statesQ0; Q1; : : : ; Qn, suh that Q0 is the initial state and Qn is an aepting state.The whole sequene of states is written Q and the ith state as Qi. Eah Qi isatually a set of plaes in the parse tree for the regular expression pattern p beingsearhed for.Kearns gives a reursive algorithm whih operates on the sequene of statesQ and an be used to build a full parse tree of the math. He shows that thealgorithm is optimal in spae and time. The algorithm to build the parse tree isindeed optimal in this regard, but the sequene Q needs O(jwjq) spae to storefor an input string w and pattern of size q. The sequene Q is not needed foranything else but parse extration, so the atual spae omplexity of Kearns'salgorithm is, in fat, not optimal for ases where the parse tree or partial parsetree takes less than O(jwjq) spae to store.As an example we simulate the NFA in Figure 2.4, whih represents thepattern a+("jb), on the input baab. The following sequene Q1 : : :Q5 is alulated:Q1 = fq0g !baabQ2 = fq0g b!aabQ3 = fq0; q1; q2; q3; q4; q6g ba!abQ4 = fq0; q1; q2; q3; q4; q6g baa!bQ5 = fq0; q5; q6g baab!
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The exlamation mark is used to show the urrent position in the input string.To the left of the exlamation mark is the already proessed input, and to theright is the unproessed part.Sine the end state q6 is in Q3, Q4 and Q5, but not in Q1 or Q2, we onludethat the empty string and the b at the start of the input do not math our pattern,but some su�x of the strings ba, baa, and baab does. Now, using a rather simplereursive algorithm on the sequene of states Q, a full parse tree of any of thesemathes an be built.Kearns's algorithms are used for example in the TLex [24, 26℄ ode generator.

2.3.4 OthersDubé-Feeley Parse Tree AutomataDubé and Feeley proposed an algorithm for regular expression parsing in theirpaper [13℄. Their algorithm uses O(jrjjwj) spae for pattern r and string w, likeKearns's algorithm.
Combinatorial ApproahesMyers et al [40℄ showed an algorithm for parsing regular expressions whih takesO(4kPN) time and spae, where  is the number of tagged subexpressions(subexpressions for whih submath addressing is wanted), k is the number ofproperly nested subexpressions in the pattern, P is the size of the regular ex-pression pattern, and N is the length of the input string. They note that itwould be possible to modify their algorithm to get an O(MRPN + TR) timeand spae algorithm, where MR and TR are fators whih depend on the patternsearhed. In the worst ase, MR and TR still grow exponentially with P . In anyase the spae omplexity is dependent of the length of the string and thereforethe algorithm is not suitable for partial parsing needed in submath addressing.



Chapter 3
Automata with AugmentedTransitions
In this hapter I propose a new method for solving the submath addressingproblem e�iently. A new model of omputation reated by augmenting tran-sitions of traditional �nite automata to manipulate loation data is presented.The model is applied to solve the submath addressing problem. Algorithms toe�iently simulate the augmented automata are given.This hapter also disusses some problems related to submath addressing,namely full parsing and approximate regular expression mathing. These prob-lems an be solved by generalizing the augmented transition model desribed inthe next setion.
3.1 Nondeterministi Automata with Tagged Transi-tionsTo solve the submath addressing problem (and with some generalizations a rangeof related problems) using automata, I propose a model where transitions an beaugmented with tags. These augmented transitions are alled tagged transitions.Tags are of the form tx, where x is an integer. Eah tag has a orrespondingvariable whih an be set and read, and when a tagged transition is used, theurrent position in the input string is assigned to the orresponding variable."=t00 1

Figure 3.1: A tagged transition
15
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If a tag is unused, it has a speial value, �1. Initially all tags are unusedand have this value. A tag and its variable are synonymous, so if we refer, say,to the variable t5, we mean the variable of tag t5. Figure 3.1 shows how taggedtransitions are marked in a graph. For untagged transitions, ! is used to denotethat there is no tag. Usually the =! is omitted from graphs so that a=! is writtena and "=! is written ".At �rst glane automata with tagged transitions are reminisent of �nite-statetransduers sometimes used for parsing purposes [22, 49, 50℄, but the semantisare di�erent. We are interested in a single path whih results in a �nal statewith a given input string, and want to know, in addition to whih tags havebeen enountered, the plaes in the input string where they were last seen. Thefollowing de�nitions formalize this idea.De�nition 3.1 A nondeterministi �nite automaton with tagged transitions, orTNFA, is a 7-tuple M = hK;T;�T ;�;�; s; F i, whereK is a �nite set of states,T is a �nite set of tags, ! 2 T ,�T is a total order on items of V . V is the set of all funtions from T �f!gto N [ f�1g. Members of V are alled tag value funtions.� is an alphabet, i.e. a �nite set of symbols,� is the transition relation, a �nite subset of K ��� � T �K.s 2 K is the initial state, andF � K is the set of �nal states. �The meaning of a quadruple hq; u; t; pi 2 � is that M , when in state q, mayonsume a string u from the input string, set the value of t to the urrent positionin the input string, and enter state p.De�nition 3.2 A on�guration of M is an element of K ��� ��� � V , wherethe �rst item is the urrent state, the seond item is the proessed part of theinput string, the third item is the unproessed part of the input string, and thefourth item is a tag value funtion giving a value for eah tag. The initial tagvalues are spei�ed by v0 = (T � f!g) � f�1g. An initial on�guration is aquadruple hs; "; w; v0i for some input string w. �

De�nition 3.3 The relation `M between on�gurations (yields in one step) isde�ned as follows: hq; p; u; vi `M hq0; p0; u0; v0i if and only if there are w 2 �� and
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t 2 T suh that u = wu0 and hq; w; t; q0i 2 �. Then p0 = pw and

v0(x) = � jp0j if t 6= ! and x = tv(x) otherwise.We de�ne `�M to be the re�exive, transitive losure of `M . A string w 2 �� isaepted by M if and only if there is a state q 2 F and a funtion v suh thaths; "; w; v0i `�M hq; w; "; vi. �
q0

q1
q2

q3
a/t0

a/t1 b

b

Figure 3.2: An example TNFAExample 3.1 Figure 3.2 shows a simple example TNFA. The automaton isdrawn as a direted graph with ertain additional information inorporated intothe piture. Like traditional �nite automata, states are represented by nodes, andtransitions by arrows labeled with w=t from node q to q0 whenever hq; w; t; q0i 2 �.The initial state is shown by a wedge shape, , and �nal states are indiatedby double irles. For the automaton in Figure 3.2 M = hK;T;�T ;�;�; s; F i,where K = fq0; q1; q2; q3gT = ft0; t1g� = fa; bgs = q0F = fq3gand � is the relation tabulated below. We do not are about �T for now, andan leave it unde�ned. q w t q0q0 a t0 q1q0 a t1 q2q1 b ! q3q2 b ! q3Clearly the language L(M) aepted by M is fabg.
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From the initial on�guration hq0; "; ab; v0i the following sequene of movean ensue: hq0; "; ab; v0i `M hq1; a; b; v1i`M hq3; ab; "; v1iwhere v1(x) = � 1 if x = t0�1 if x = t1Thus hq0; "; ab; v0i `�M hq3; ab; "; v1i and ab is aepted by M . It is also possibleto reah the �nal state in the following way:hq0; "; ab; v0i `M hq2; a; b; v01i`M hq3; ab; "; v01iwhere v01(x) = � �1 if x = t01 if x = t1Therefore also hq0; "; ab; v0i `�M hq3; ab; "; v01i. �Theorem 3.1 The language aepted by any TNFA is regular.Proof outline. The proof is by redution from TNFA to traditional NFA withouthanging the mathed language. A TNFA an be redued to an NFA by replaingall tags by �1 without hanging the possible on�gurations reahed with `Mwhen tag value funtions are disregarded. Then `M beomes equivalent to theorresponding operator de�ned for NFAs (see, for example, [34℄), and it is learthat the aepted language is regular. �As demonstrated by Example 3.1, for a partiular string w and a mahine M ,there may be several di�erent q and v whih satisfy hs; "; w; v0i `�M hq; w; "; vi. Inorder for the results of the omputation to be preditable and thus more pratial,we must somehow be able to determine whih partiular values of q and v wehoose as the result.Indeed, there are ases for whih omputing all possible on�gurations reah-able from the initial on�guration by onsuming an input string is not evenomputationally feasible. The number of di�erent possible on�gurations an beexponentially large.To hoose between di�erent q, we an simply assign eah �nal state a uniquepriority and hoose the one with the highest priority. This is basially whatlexial analyzers typially do when two or more patterns math the same lexeme.For example, lex [32℄ hooses the pattern spei�ed earliest in the pattern listwhenever several patterns math the same string. We an also leave the deisionto the user of the automaton and make the automaton return a set of possiblepairs hq; vi where q is a �nal state and v is the orresponding tag value funtion.
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When hoosing between di�erent v (tag value ambiguity), the situation issimilar; we need some kind of ordering for tag values also. This is where �Tomes in. It is used as a way to prioritize di�erent tag value on�gurations overothers.De�nition 3.4 We de�ne another binary relation �M on on�gurations, (yieldstag-wise unambiguously in one step): hq; p; u; vi �M hq0; p0; u0; v0i if and only if forany on�guration � for whih hs; "; pu; v0i ��M � and � `M hq0; p0; u0; v00i it holdsthat either v0 = v00 or v0 �T v00.As before, ��M is the re�exive, transitive losure of �M . A string w 2 �� istag-wise unambiguously aepted by M if and only if there is a state q 2 F anda funtion v suh that hs; "; w; v0i ��M hq; w; "; vi. �Note that the de�nitions of �M and ��M are mutually reursive. It is stillpossible to ompute ��M e�etively, using an iterative proess, for any automatonand input string. Examining the de�nition a little further reveals that the initialon�guration an be used as the starting point of the omputation. This isbeause the initial on�guration i is the only on�guration in the beginningfor whih we know that i ��M i. Proeeding in a breadth-�rst manner alwayshoosing at most one path reahing any state is a fairly e�ient strategy inomputing ��M . Algorithms 3.4 and 3.5 later in this hapter show a way toompute ��M e�iently.Example 3.2 For the automaton of the previous example (see Figure 3.2) andstring ab, the initial on�guration is hq0; "; ab; v0i. Due to re�exivity, hq0; "; ab; v0i��M hq0; "; ab; v0i. Beause hq0; "; ab; v0i `M hq1; a; b; v1i and hq0; "; ab; v0i `Mhq2; a; b; v01i (see the previous example), we have alsohq0; "; ab; v0i �M hq1; a; b; v1iand hq0; "; ab; v0i �M hq2; a; b; v01iWe do not need to hoose the �winners� for states q1 and q2, sine there is onlyone path from the initial on�guration to eah of these states.Note that if � �M � then also � ��M �. The previous example shows also thathq1; a; b; v1i `M hq3; "; ab; v1i and hq2; a; b; v0i `M hq3; "; ab; v01i. Now we need touse �T to hoose one to be the tag-wise unambiguous step whih reahes stateq3. If v1 �T v01, then hq1; a; b; v1i �M hq3; ab; "; v1iand hq0; "; ab; v0i ��M hq3; ab; "; v1iThe other possibility is that v01 �T v1, thenhq2; a; b; v0i �M hq3; ab; "; v01i
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and hq0; "; ab; v0i ��M hq3; ab; "; v01i �Theorem 3.2 For a string w and a TNFA M , if v0 ��M hq; p; u; vi for someq 2 K, p, u, and v 2 V , then v is unique.Proof. The proof follows trivially from De�nition 3.4. If v0 ��M hq; p; u; vi, thenv is the minimum tag value funtion, as per �T , for whih the otherwise sameon�guration an be reahed with `M from some previous on�guration reahedby ��M . Therefore v must be unique, sine �T is a total order. �Theorem 3.3 If a string w is aepted by M , it is also tag-wise unambiguouslyaepted by M .Proof outline. As an be seen from the de�nition of �M , a on�guration 0an be reahed from another on�guration  if  `M 0. There is an additionalrestrition that the tag value funtion in 0 must be the minimal one for thestate reahed with ��M for the same input string pre�x. This restrition doesnot prevent any state from being reahed with �M if it is reahed with `M , itonly uts down the number of possible tag value funtions to exatly one. Theonlusion is that if a state is reahable with `M , it is also reahable with �M ,and the theorem follows. �The point of ��M is that it an be used to e�iently ompute the minimumtag value funtions of �nal on�gurations reahable with an automaton for aninput string. However, depending on the properties of the automaton, ��M doesnot always �nd the orret minimum tag value funtion that would be found byomputing all possible �nal on�gurations with `�M and �nding from these theminimum tag value funtion.Let us explore in more detail what properties of the automaton and �T areneessary for `�M and ��M to give the same answer when searhing for the mini-mum tag value funtion.De�nition 3.5 (onsisteny) Let W be the set of strings whih are tag-wiseunambiguously aepted by an automaton M . That is, for every string w 2Whs; "; w; v0i ��M hq; w; "; vifor some q 2 F and v 2 V . Then M is onsistent if for every q0 2 F and v0 2 Vfor whih hs; "; w; v0i `�M hq0; w; "; v0iwe have that if q0 = q then v �T v0 or v = v0. �
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In other words, an automaton is onsistent if ��M yields the same tag valuefuntions in the �nal states as the minimum tag value funtions omputed with`�M .It is not immediately obvious that any usable lass of onsistent nontrivialTNFAs exist. But, as it turns out, there is a lass of onsistent TNFAs whihan be used to solve the submath addressing problem, whih is quite enough formost pratial appliations.Let va and vb be two tag value funtions suh that va �T vb. Let pos be someinteger suh that pos � va(tx) and pos � vb(ty) for any tx 2 T and ty 2 T . Alsolet tk 2 T be some tag andv0a(t) = � pos if t = tkv0a(t) otherwise.v0b(t) = � pos if t = tkv0b(t) otherwise.The above is a formal desription of a situation where the tag value funtion vawins another tag value funtion vb. A hange to the funtions later, by hangingthe value of some tag tk to the urrent position given by pos, would yield themodi�ed tag value funtions v0a and v0b. If we want to �nd the globally minimaltag value funtion, it must then hold that v0a �T v0b, or v0a = v0b. For if it werethat v0b �T v0a, then v0a would ertainly not be the minimum value. But �M wouldhave already hosen va earlier, and v0b would never even be omputed.So to summarize, in a onsistent automaton M , if �M hooses some tag valuefuntion va over another tag value funtion vb, then it must be ertain that nolater tag enountered would yield a situation where vb should in fat have beenhosen instead of va.From now on we will restrit ourselves to �T of the following form. Letva 2 V and vb 2 V be some tag value funtions. Then va �T vb if and only if9tx 2 T : (tx 2 minimized and (va(tx) < vb(tx)and 8ty 2 T; 0 � y < x : va(ty) = vb(ty)))or (tx =2 minimized and (va(tx) > vb(tx)and 8ty 2 T; 0 � y < x : va(ty) = vb(ty))) (3.1)
Here minimized is a set whih ontains the tags whose values we want tominimize. The values of tags whih are not in minimized are maximized.Another restrition is put on tags, we will allow eah tag our at exatlyone transition. The TNFA de�nition would allow for multiple ourrenes of thesame tag, although it is not immediately lear whether this ould be useful.Now we are ready to analyze when va �T vb if and only if v0a �T v0b or v0a = v0b.In equation 3.1 there is always some minimum x for whih va(tx) and vb(tx) di�er,
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"=tx
P2

P1
Figure 3.3: Illustration to analyze TNFA onsisteny. P1 and P2 are arbitrarypaths.
and for all y less than x the values va(ty) and vb(ty) are the same. If we de�nenew tag value funtions v0a and v0b like above by hanging the value of some tagtk, there are three ases. The �rst two ases are trivial, the third is less so.
� If k < x then v0a �T v0b, beause v0a(tk) = v0b(tk) and va(tk) = vb(tk).� If k > x then v0a �T v0b, beause x is the minimum number for whihv0a(tx) 6= v0b(tx), and v0a(tx) = va(tx) and v0b(tx) = vb(tx).� If k = x then the situation is a bit more ompliated. Eah tag oursexatly one in the automaton, and tx has already been enountered atleast one, beause it has di�erent values in va and vb. If k = x happens,then the same tag is enountered again. Then there must be a yle in theautomaton ontaining tk. But now v0a(tk) = v0b(tk) = pos, and it seems tobe di�ult to make any assumptions on the values of the rest of the tagstr, r > k, whih determine whether v0a �T v0b.Figure 3.3 illustrates this situation. The arbitrary path P2 along with thetransition labeled "=tx onstitutes a yle. P1 is a path from the targetstate of the tx transition to a �nal state. There may be several di�erent P1in a TNFA.Beause it seems di�ult to reason anything lever about tags tr suh thatr > k, we will resort to an easy way out. We look for situations suh thatthe values of tr, r > k do not atually matter. There are at least threerelatively simple ases:� All tr, r > k our in all P2. Then whatever values eah tr have wouldbe overwritten to the same values by `�M , and v0a = v0b.� All tr, r > k our in all P1. Then it does not matter whether v0a �T v0b,v0a = v0b, or v0b �T v0a, beause the tags whih deide this will beoverwritten anyway by the time a �nal state is reahed.� For any path from the initial state to any of the states on P2 no tagtr, r > k must our. In this ase v0a = v0b, beause all tags tr, r > kare unused.
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Now we have learned some simple restritions whih guarantee the onsis-teny of a TNFA whih meets these restritions. The next setion shows how toonstrut a onsistent TNFA for any submath addressing problem.

3.1.1 Solving the Submath Addressing Problem Using TagsAutomata with tagged transitions provide an elegant solution to the submathaddressing problem. It is well known that as a formalism for speifying strings,regular expressions and �nite automata are equivalent in that they both desribethe same sets of strings [34, 48, 51℄. There are many ways to transform reg-ular expressions into nondeterministi �nite automata whih reognize the lan-guage de�ned by the regular expression. Perhaps the most well-known methodis Thompson's onstrution [5℄ and similar indutive methods [34, 51℄.Regular expressions with tags are similar to normal regular expressions (seeSetion 2.1) with one addition; one may write tags of the form tx straight intothe regular expressions. A tag mathes the empty string and has the side-e�etthat the urrent position in the input string is assigned to the tag's variable.TNFAs an be onstruted for regular expressions with tags by modifyingThompson's onstrution [5℄ to handle tags.De�nition 3.6 (Modi�ed Thompson's onstrution) A regular expressionE over an alphabet T is transformed into an nondeterministi �nite automatonM(E) with input alphabet T . For all E, M(E) has exatly one �nal state. The�nal state is distint from the initial state and has no transitions leaving from it.Similarly, there are no transitions to the initial state.To avoid redundany in the drawings, a partial automaton M 0(E) is usu-ally shown instead of M(E). The di�erene between M 0 and M is suh thatM 0(ta(E)tb) = M(E). In other words, in M(E) the �rst and last transition aretagged with tags ta and tb, respetively. The tags are suh that a and b aresmaller than the number of any tag ourring in M(E), and a 6= b. Tag ta isminimized and tb is maximized, so that �T an be written down in the form ofEquation 3.1 on page 21.The following is a list of reursive rules to onstrut a onsistent TNFA forany regular expression.� M 0(") is "i f
Here i is a new initial state and f a new �nal state. Clearly, the languagereognized by this TNFA is f"g.
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� For a 2 �, M 0(a) is ai f
Again i is a new initial state and f a new �nal state. This mahine reog-nizes fag.� For tx 2 T , M 0(tx) is "=txi f
This mahine reognizes f"g, with the side-e�et that the urrent positionin the input string is assigned to tx.� For the regular expression E1jE2, onstrut the following omposite TNFAM 0(E1jE2).

"
""

"i f
M(E2)
M(E1)

Here i is a new initial state and f a new �nal state. There is a transition on" from i to the start states of M(E1) and M(E2). There is a transition on" from the �nal states of M(E1) and M(E2) to the new �nal state f . Theinitial and �nal states of M(E1) and M(E2) are not initial or �nal states ofM(E1jE2). Note that any path from i to f must pass through eitherM(E1)or M(E2) exlusively. Thus, we see that the omposite TNFA reognizesL(E1) [ L(E2).� For the regular expression E1E2, onstrut the omposite TNFAM 0(E1E2):
i fM(E1) M(E2)
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The initial state ofM(E1) beomes the initial state of the omposite TNFAand the �nal state ofM(E2) beomes the �nal state of the omposite TNFA.The �nal state of M(E1) is merged with the initial state of M(E2); that is,all transitions from the initial state of M(E2) beome transitions from the�nal state of M(E1). The new merged state loses its status as a start oraepting state in the omposite TNFA. A path from i to f must go �rstthrough M(E1) and then through M(E2) and no edge enters the initialstate of M(E1) or leaves the �nal state of M(E2), there an be no pathfrom i to f that travels from M(E2) bak to M(E1). Thus, the ompositeTNFA reognizes L(E1) Æ L(E2).� For the regular expression E�, onstrut the omposite TNFA M 0(E�):

" "i f
"

"
M(E)

Here i is a new initial state and f a new �nal state. In the omposite TNFA,we an go from i to f diretly, along an edge labeled ", representing thefat that " is in (L(E))�, or we an go from i to f passing through M(E)one or more times. Clearly, the omposite TNFA reognizes (L(E))�.� For the parenthesized regular expression (E), useM(E) itself as the TNFA.� For a regular expression marked for submath addressing, fEg, use M(E)as the TNFA. The tags in the �rst and last transition of M(E) will givethe submath for E after a suessful math. �
3.1.2 E�ient SimulationSimulating a TNFA means omputing ��M using some algorithm. This setiondisusses algorithms to ompute ��M , starting from a simple but ine�ient ver-sion and gradually improving the algorithm to �nally get a su�iently e�ientalgorithm.As already suggested in onjuntion with De�nition 3.4, the best way ofomputing ��M is to follow all possible paths in parallel. Sine we are interested
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in only one set of tag values, it is possible to throw away paths whih will resultin unwanted tag values, so that the total number of paths we onsider at eahinstant does not grow over a ertain limit. To be preise, this pruning anbe done at eah state after eah onsumed input symbol so that we need toremember at most as many paths as there are states in our automaton. Thisidea is already inorporated into the de�nition of �M , and in this setion apseudo-ode algorithm is given to e�iently alulate ��M for an automaton andinput string.All the algorithms in this setion work on a nondeterministi tagged automa-ton M = hK;T;�;�; s; F i.The following is an algorithm to alulate the "-losure of a set of states,taken from [5℄. It takes as an argument a set of TNFA states Q � K. Thealgorithm omputes the set of all nodes reahable from Q using only "-labelededges of the TNFA. The stak holds states whose edges have not yet been hekedfor "-labeled transitions.Algorithm 3.1 ("-losure)1 push eah state in Q onto stak2 initialize result to Q3 while stak is not empty do4 pop q1, the top element, o� of stak5 for eah q2 suh that hq1; "; t; q2i 2 � for some t do6 if q2 is not in result then7 add q2 to result8 push q2 onto stak9 endif10 done11 done12 return result

This is a fairly e�ient algorithm, taking O(j�j) worst-ase time and O(jKj)worst-ase spae when implemented reasonably. When simulating a TNFA, wealso need to alulate the set of tags enountered on the path to eah reahablestate. The following algorithm alulates the tagged "-losure of a set of TNFAstates Q � K. The algorithm was obtained by modifying the "-losure algorithmto operate on pairs hq; ki where q 2 Q is a state and k � T is the set of tags seenso far.
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Algorithm 3.2 (tagged "-losure)1 for eah state q in Q, push hq; ;i onto stak2 initialize result to the items in stak3 while stak is not empty do4 pop hq1; ki, the top element, o� of stak5 for eah q2 and t suh that hq1; "; t; q2i 2 � do6 if hq2; t [ ftgi is not it result then7 add hq2; k [ ftgi to result8 push hq2; k [ ftgi onto stak9 endif10 done11 done12 return result

Algorithm 3.2 returns the set of all pairs hq; ki where q is a state reahablefrom some state p inQ using only "-transitions and k is the set of tags enounteredon the path from p to q. There may be several hq; ki with the same q but di�erentk, beause there may be several di�erent paths with di�erent tags to q from thestates in Q. "" � � �"=t0 "=t1q0 q1 qnq2
"

Figure 3.4: Worst ase for Algorithm 3.2The time and spae omplexity of Algorithm 3.2 is O(jKj2jT j). The set ofall possible subsets of T is 2T , so the result an ontain at most jKj times j2T jelements. Figure 3.4 shows an example of a TNFA with whih this worst asebehavior ours. From any state q in fq0; q1; : : : ; qng any state an be reahed byfollowing a path whih ontains any subset of the tags in ft0; t1; : : : ; tn�1g. Thustagged-"-losure(q) for any q is of size (n+ 1)2n.The next algorithm uses �T to hoose exatly one set of tags for eah reah-able state in an attempt to keep the spae requirements reasonable. After all, weare interested only in the minimal tag value funtions.
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Algorithm 3.3 (tagged �T -minimal "-losure)1 initialize result to ;2 for eah item hq0; v0i in W do3 for eah item hq; ti in tagged-"-losure(fq0g) do4 let v(x) = � pos if x 2 tv0(x) otherwise5 if result(q) is de�ned then6 if v �T result(q) then7 replae result(q) with v8 endif9 else10 set result(q) to v11 endif12 done13 done14 return result

In this algorithm, result is a funtion from K to V . As input the algorithmtakes a set of pairs W . Eah item hq; vi in W onsists of a TNFA state q 2 Kand a tag value funtion v assoiated with that state.The algorithm alls the (ambiguous) tagged "-losure for eah item inW , andomputes the new tag value funtions aording to what tags have been enoun-tered. In result the winning tag values for the reahed states as per �T are kept.Sine alls to tagged-"-losure are made, Algorithm 3.3 takes O(jW jCT jKj2jT j)time, where CT is the time to perform a �T omparison.The ulprit of this algorithm is the way it gathers exponential worst-ase sizesets of items and then ompares their elements to �nd out the minimum tagvalue funtions. The following algorithm omputes the unambiguous tagged "-losure as de�ned by ��M , whih is equivalent to Algorithm 3.3 if the automatonis onsistent (see De�nition 3.5).
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Algorithm 3.4 (���M "-losure)1 for eah pair hq; vi in W , add q to queue2 initialize result to W3 for eah q in K set ount(q) to the input order of q4 while queue is not empty do5 remove the �rst item, q1, from queue6 for eah q2 and t suh that hq1; "; t; q2i 2 � do7 let v2(x) = � pos if x = t and t 6= !v1(x) otherwise8 if result(q2) is de�ned and v2 �T result(q2)or result(q2) is unde�ned then9 set result(q2) to v210 derease ount(q2) by one11 if ount(q2) = 0 then12 prepend q2 to queue13 set ount(q2) to the input order of q214 else15 append q2 to queue16 endif17 endif18 done19 done20 return result

This algorithm handles the ase in Figure 3.4 in linear time, whih is naturallya signi�ant improvement to Algorithm 3.3. Note, however, that Algorithm 3.3and this algorithm do not solve the same problem, and therefore do not alwaysreturn the same result. Algorithm 3.4 solves a di�erent, more restrited, problem.To be spei�, this algorithm omputes the re�exive transitive losure of�M over "-transitions, while Algorithm 3.3 omputes the losure of `M over "-transitions and then uses �T to hoose at most one tag value funtion for eahstate. If the automaton is onsistent (see De�nition 3.5) then these problems arethe same; in general they are not.The omplexity of Algorithm 3.4 is O(jT jj�jCT log jT j). The term log jT jomes from using a funtional data struture [15, 44, 45℄ for tag value funtions,jT j is present beause every tag may need to be set. j�j and CT are presentbeause the whole graph may need to be traversed CT times. Figure 3.5 shows aworst ase for Algorithm 3.4.The following algorithm simulates a onsistent TNFA M = hK;T;�;�; s; F ion an input string. The algorithm steps through the set of possible ��M on�gu-rations by onsuming one input symbol at a time.
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Figure 3.5: A worst ase for Algorithm 3.4
Algorithm 3.5 (Simulating a TNFA)1 initialize reah to �M -"-losure(fhs; v0ig)2 initialize pos to 0.3 while pos < jwj do4 feth the next input symbol  from w5 initialize reahNext to ;6 for eah item hq; vi in reah do7 for eah transition hq; ; !; pi in � do8 add hp; vi to reahNext9 done10 done11 set reahNext to �M -"-losure(reahNext)12 swap reah and reahNext13 set pos to pos + 114 done15 return fhq; vi j q 2 F; hq; vi 2 reahgGiven a TNFA and an input string w, this algorithm omputes the set of pairshq; vi suh that hs; "; w; v0i ��M hq; w; "; vi. In other words, the algorithm returnsall ways that the string w is tag-wise unambiguously aepted by the automaton(see De�nition 3.4 on page 19). If w is not aepted, the algorithm returns anempty set.For simpliity, the algorithm assumes that only "-transitions an be tagged,and that only "-transitions and transitions on single input symbols are allowed.Any TNFA an be easily onverted to another TNFA whih follows this restri-
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tion, so generality is not lost by imposing these restritions.The formation of reahNext on lines 4�10 takes O(�) time. Eah all tounambiguous-tagged-"-losure on line 11 takes O(jT jj�jCT log jT j) time, as dis-ussed above. For eah input symbol, both of the above are done exatly one,so the time omplexity of the whole algorithm is O(T log TMCTN), where N isthe length of the input string. Partiularly, if CT = O(T ), then the algorithmtakes O(NMT 2 log T ) time in the worst ase.
3.2 Deterministi Automata with Tagged TransitionsThere are many ways to simulate the operations of a TNFA deterministially, andAlgorithm 3.5 in the previous setion is one. As is the ase with traditional non-deterministi and deterministi automata, omputations that an be performedby an TNFA an be preomputed to form a deterministi automaton. Naturally,all possible tag values annot be enumerated �nitely, but fortunately this is notneessary.As with traditional �nite automata, the usual time-spae trade-o�s apply;onverting a TNFA into a deterministi automaton may take a lot of time, butneeds to be done only one, and the resulting automaton an be implementedto proess haraters faster than the algorithm in the previous setion. A deter-ministi automaton may need muh more spae to store than a orrespondingnondeterministi automaton, and time and spae an be wasted in omputingtransitions that are never used. Simulating a TNFA takes less spae, but isslower than with a deterministi automaton. Finally, the lazy transition eval-uation approah an be used, where a deterministi automaton is onstrutedtransition by transition as needed, possibly keeping only a limited number ofpreviously alulated transitions in a ahe.
3.2.1 Converting Nondeterministi Tagged Automata to Deter-ministi Tagged AutomataTo aount for the fat that a TNFA an be in many di�erent states after readingsome input symbols, a state in the deterministi ounterpart, TDFA, is a set ofitems. Eah item in the set desribes one possible on�guration the TNFA anbe in. A situation is the ombination of the urrent state and tag values, and anbe represented by a pair hs; ti, where s is a TNFA state and t is a value whihdesribes the urrent value of all tags.Atually, t does not need to be an expliit desription of the values, it an bejust a referene to a loation (a pointer, if you will) whih ontains the atualdesription. If we used expliit tag value desriptions as values of t, the numberof di�erent sets of situations would be in�nite. By using referenes instead,



CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 32
we gain two things. First, all possible TDFA states an be �nitely enumeratedif we restrit ourselves to a �nite set of loations. Seond, by swapping theontents of di�erent memory loations we an hange a TDFA state to appeardi�erent without hanging its meaning. This makes the TDFA mather easier toimplement.De�nition 3.7 To represent the idea of loations and referenes formally, wede�ne an address to be a symbol ai, where i 2 N k for some k. The set of alladdresses is denoted by A. We also de�ne a funtion m from A to V representingmemory. Here V denotes the set of tag value funtions as in De�nition 3.2 onpage 16. �For example, to get the tag value funtion stored in m at address an, wesimply look up m(an).De�nition 3.8 To desribe operations on m and the tag value funtions storedthere, we de�ne C to be the set of possible instrutions. C onsists of two parts,Cs and C, so that C = Cs [C. Cs is the set of all strings of the form set(n; t)where n 2 Nk and t 2 T � f!g. C is the set of all strings of the form opy(a; b)where a and b are in Nk. �The meaning of set(n; t) is that the tag value funtion m(an) is hanged sothat t is mapped to pos. It may be that t already maps to pos in whih asenothing hanges when set(n; t) is performed.The meaning of opy(x; y) is that the value at address ax is opied to addressay. The opy does not interfere with the original, so that set-operations onm(ax) do not hange m(ay) or vie versa.Instrutions an be onatenated together to form sequenes of instrutions.These sequenes are bounded with brakets, and the instrutions are separated byommas. For example, [opy(0; 1); set(1; 0)℄ �rst opies the tag value funtionm(a0) to m(a1), and then hanges the opy so that m(a1)(0) = pos. The set ofall possible instrution sequenes is denoted by C.De�nition 3.9 A deterministi �nite automaton with tagged transitions, or TDFA,is a 7-tuple M = hK;�; Æ; s;m0; F; V i, whereK is a �nite set of states,� is an alphabet, i.e., a �nite set of symbols,Æ is the transition funtion, a funtion from K �� to K � C.s 2 K is the initial state,m0 is a funtion from addresses to V speifying the initial tag values, and
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F � K is the set of �nal states. �V is the �nal tag value seletor, a funtion from F to A.a a aq1 q2"=t0q0

Figure 3.6: An example TNFAExample 3.3 The algorithm is outlined by means of an example. The exampleTNFA is shown in �gure 3.6. The TNFA orresponds to the regular expressionfa�ga�a so that h0; t0i gives the submath.Now we begin to generate the TDFA, and the �rst step is to �nd the initialstate. The initial state of the TNFA is q0, and there is a tagged "-transitionfrom q0 to q1. Following the de�nition of ��M , the TNFA an stay in state q0(��M is re�exive) or use the transition labeled "=t0 and enter state q1. Formally,hq0; "; w; v0i �M hq1; "; w; v1i for any w, where v0 = fht0;�1ig and v1 = fht0; 0ig.From these onsiderations we form the initial state of the TDFA:Q0 = fhq0; a0i; hq1; a1igand the initial tag value funtionsm0 = fha0; fht0;�1igi; ha1; fht0; 0igigTDFA states are represented as sets of pairs hqi; ani, where qi is a TNFA stateand an is an address suh thatm(an) is a tag value funtion speifying the urrenttag value funtion for state qi. This partiular state an be interpreted to meanthat a TNFA an be either in state q0 with m(a0) as the tag value funtion, orin state q1 with m(a1) as the tag value funtion.Next, if the symbol a is read, the TNFA an hoose any of the following fourations:� Move from hq0; a0i bak to q0. We take a opy of m(a0) to some loation,say x.� Move from hq0; a0i bak to q0 and then move to q1 using t0. We again takea opy of m(a0) to some loation y. Sine a t0 was enountered, we alsoneed to modify the opy so that m(ay)(t0) = pos.� Move from hq1; a1i bak to q1, and take a opy of m(a1) to z.� Move from hq1; a1i to q2, and take a opy of m(a1) to w.
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From this we get the seond state of the TDFA: fhq0; axi; hq1; ayi; hq1; azi;hq2; awig. Note that a pair with q1 as the left item ours twie in this set.This means that there are two di�erent ways we ould reah q1, and we musthoose one. Now we will make an assumption; we assume that fht0; aig �Tfht0; big always, if a > b. While this is not true in general, we assume thatit is true for the �T that we are using. In this ase m(ay)(t0) > m(az)(t0)always beause m(ay)(t0) = pos and pos is the largest tag value so far. Thereforealways m(ay) �T m(az), and the unambiguous state is: Q1 = fhq0; axi; hq1; ayi;hq2; awig.We have not yet assigned onrete values for x, y and w. Now that we havethe whole unambiguous state in sight, we an freely hoose any suitable loationsfor the tag value funtions. In this ase, we an let x = 0, y = 1, and w = 2, andthe �nal unambiguous state is:Q1 = fhq0; a0i; hq1; a1i; hq2; a2igWe must add the instrutions to reate the proper tag value funtions tom(a0), m(a1), and m(a2) during the transition from Q0 to Q1. So, we add to ourtransition funtion the entry Æ(Q0; a) = hQ1; [opy(1; 2); opy(0; 1); set(1; 0)℄i.Finally, we notie that Q1 ontains q2, whih is a �nal state. Thus, Q1 isalso �nal, and we add Q1 to F . If the input string ends with the TDFA in stateQ1, then orresponding TNFA would have to be in state q2 in order to produea math. The �nal tag values will then be in the tag value funtion assoiatedwith q2, that is, at a2. To re�et this, we add the entry V (Q1) = a2 to the �naltag value seletor funtion V .When the symbol a is read while in state Q1, the TNFA an hoose any ofthe following four ations:� Move from hq0; a0i bak to q0. We take a opy of m(a0) to loation x.� Move from hq0; a0i bak to q0 and then move to q1 using t0. We take a opyof m(a0) to loation y and modify it so that m(ay)(t0) = pos.� Move from hq1; a1i bak to q1, and take a opy of m(a1) to loation z.� Move from hq1; a1i to q2, and take a opy of m(a1) to loation w.In the same way as before, we get the ambiguous state fhq0; axi; hq1; ayi;hq1; azi; hq2; awig. Like before, m(ay) �T m(az) always, and the unambiguousstate is fhq0; axi; hq1; ayi; hq2; awig. But this is just the same as Q1 if we letx = 0, y = 1 and w = 2. Thus we have a loop in our TDFA from Q1 toQ1 on reading a. The orresponding transition funtion entry is Æ(Q1; a) =hQ1; [opy(1; 2); opy(0; 1); set(1; 0)℄i.
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Now the onstrution of the TDFA is omplete. The TDFA is hK;�; Æ; s;m0; F; V i,where K = fQ0; Q1g� = fags = Q0m0 = fha0; fht0;�1igi; ha1; fht0; 0igigF = fQ1gV = fhQ1; a2igand Æ is the funtion tabulated below.q w q0 Q0 a Q1 [opy(1; 2); opy(0; 1); set(1; 0)℄Q1 a Q1 [opy(1; 2); opy(0; 1); set(1; 0)℄ �During the HiBase projet I implemented a TNFA to TDFA ompiler pro-totype. The ompiler didn't use the lazy transition evaluation approah, butalways reated the full TDFA before proessing input. The ompiler soure ode,written in a prototype funtional programming language Shines [45℄, should beavailable from the WWW sometime in the future at http://hibase.s.hut.fi/.Pseudo-ode for the onversion algorithm an be found in [31℄.Beause Shines is not optimized for omputationally intensive tasks, butrather for database appliations, the performane of the TDFA implementationis modest. However, it did pass all tests for orretness, and shows that the algo-rithm outlined above is feasible. The inner loop of the TDFA simulator is quitesimple suggesting that an implementation using a lower-level language, suh asC [27℄, would probably be e�ient.

3.3 Related Problems
The tagged transition model an be extended to a more generi model wheretransitions are augmented with omputable funtions whih manipulate somearbitrary data. This makes it possible to reate for example an automaton whihounts the number of times a ertain transition is used. Using funtional datastrutures [15, 44, 45℄ this more generi model an be simulated e�iently. Thefollowing two setions show two good examples of the ways the tagged transitionmodel an be extended to solve related problems.
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3.3.1 Full ParsingThe submath addressing algorithm an be extended to store full parse data andstill retain the same time omplexity. Spae omplexity will rise to O(jwj), sinean expliit representation of a full parse tree annot be stored in less spae in theworst ase.To get full parse data, we must not disard old tag values when a tag isenountered repeatedly, but store all the positions in the input string where tagswere enountered. This an be easily ahieved by hanging the new tag valuefuntion in the de�nition of `M (on page 16) to the following:

v0(x) = � hjp0j; v(x)i if t 6= ! and x = tv(x) otherwise.This new de�nition will aumulate all positions in the input string wheretags were seen into a list (lisp programmers will �nd this representation of listsas nested pairs familiar) where �1 marks the end of the list. The de�nition of�T will of ourse need to be hanged to ompare the �rst values of the lists.After this simple hange a onrete parse tree an be built from the lists oftag values easily in O(jwj) time.
3.3.2 Approximate Regular Expression MathingThe submath addressing algorithm an be easily extended to an approximateregular expression mathing algorithm. Approximate pattern mathing allowsmathes to be approximate, that is, allows the mathes to be lose to the searhedpattern under some measure of loseness. One ommonly used measure is edit-distane, also known as the Levenshtein distane [33℄, where haraters an beinserted, deleted, or substituted in the searhed text in order to get an exatmath. Eah insertion, deletion, or substitution adds the distane, or ost, of themath.There has been some previous work on approximate regular expression math-ing. In [38℄ Muºátko presents nondeterministi automata for approximate reg-ular expression mathing, but onludes that �simulation of a nondeterministiautomaton is of a high time omplexity� without doing any onrete omplexityanalysis.In [39℄ Myers and Miller give an algorithm to solve the problem in O(MP )time, given a string of length M and a regular expression of length P . This isasymptotially no worse than for the simpler problem of approximate mathingof simple keywords. The paper also gives an O(MP (M + P ) + N2 logN) timealgorithm for arbitrary inreasing gap penalties. In [29℄ Knight and Myers de-
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sribe an O(MP (logM + log2 P )) algorithm for approximate regular expressionmathing with onave gap penalties [40℄.De�nition 3.10 (Approximate RE math) A string w mathes the regularexpression E approximately with ost  if some w0 2 L(E) an be transformedto w with  insertions, deletions, or substitutions. �Any string mathes any regular expression with some ost, so a useful algo-rithm is one that an be used to tell whether there is a math with a ost lowerthan some threshold value, or to �nd the minimum ost. Some algorithms let therelative osts of insertions, deletions and substitutions to be hanged arbitrarily.These osts are denoted by i, d, and s, respetively.The approximate mathing algorithm is onstruted by hanging the modi�edThompson's onstrution in Setion 3.1.1 as follows:For a 2 �, M(a) is a := + ii f:= + s"= + d
Here i is a new initial state and f a new �nal state. This mahine reognizes:

1. fag Æ nz }| {� Æ : : : Æ � with the side-e�et that  is inreased by ni.
2. nz }| {� Æ : : : Æ � with the side-e�et that  is inreased by d + ni.
3. � Æ nz }| {� Æ : : : Æ � with the side-e�et that  is inreased by s + ni.Now, if we de�ne T , the set of tags, to ontain only  and use plain integeromparison as �T , the TNFA simulation algorithm beomes an algorithm whih�nds the minimum ost for whih the input string mathes the regular expres-sions. Sine jT j = O(1), the algorithm takes O(MN) time to math a string oflength N against a regular expression of size M .



Chapter 4
An Implementation
This hapter desribes my implementation of a regular expression mather whihapplies the algorithms studied in this thesis. The aim was to reate a generalpurpose regular expression mathing library; the library should be robust andsu�iently good for a wide variety of uses. The TNFA mather implementation,inluding the C language soure ode, is available as free software. It an bedownloaded from the WWW at http://www.iki.fi/vl/libtre/. The proof-of-onept TDFA implementation disussed in Setion 3.2.1 should be availablefrom the WWW at http://hibase.s.hut.fi sometime at the future.A typial use for a general purpose mather is searhing for all non-overlappingourrenes of relatively simple patterns from a long text. For example, a searh-and-replae utility in a text editor ould be implemented in this way. The mathershould not san more text that absolutely neessary to �nd the next math � ifthe mather would san the whole text even though the �rst math is returned,searhing for suessive ourrenes of the pattern will then take quadrati time.The implementation may not even use strlen() or similar for �nding out thelength of the text.Another typial use ase is searhing for texts whih math a pattern from alarge number of short texts. For example, the popular UNIX utility grep worksthis way; eah line of the input data is searhed for a math and the mathinglines are output. Note that this use does not require any kind of submathaddressing.A third typial use ase is dividing a text into words or tokens whih aredesribed using regular expressions. Traditionally this kind of proessing hasbeen done using speialized tools, but there are situations where it makes senseto avoid using lexer generators in favor of a library.Most regular expression mathing libraries require that the patterns must beompiled into some internal representation before they an be used for mathing.
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Some appliations use a large number of regular expressions for various purposes,and ompile them when the appliation is started. If ompilation takes a very longtime, then the appliation takes a very long time to start. Therefore, ompilingregular expressions should be as fast as possible.The POSIX standard is a widely used and aepted API for regular expres-sion libraries, so it seemed natural to implement a POSIX ompatible mather.This gives also the bene�t that are numerous other implementations to ompareagainst.A TNFA based implementation would be suitable for a POSIX ompatiblemather, beause of the restrition that ompiling regular expressions should nottake long. A lazy TDFA generating algorithm might also be aeptable, butwould be muh more omplex and use a lot more memory, so I deided to goahead with a TNFA implementation.There are numerous methods for onverting regular expressions to �nite au-tomata [8, 9, 10, 46, 36℄, making an NFA mather run faster [2, 41℄, reduing thespae requirements for the transition tables [4, 5, 12, 17, 52℄, and other usefulmethods and triks [18, 42, 53℄. Most of these are probably appliable to TNFAsand TDFAs perhaps with slight modi�ations.
4.1 Sari�ing ComplexityAny NFA with "-transitions an be onverted to an NFA without "-transitions.In the worst ase, the modi�ed NFA has O(n2) transitions if n is the number oftransitions in the original NFA. This happens for example with NFA's onvertedfrom regular expressions of the form (ajaj : : : ja)� with Thompson's onstrution.However, it is easier to implement a fast simulation routine for an NFA without"-transitions.Funtional data strutures [15, 44, 45℄ are also hard to implement very ef-�iently. A tree-like funtional O(logn) time data struture is slower than aopying O(n) time routine for small n, due to overhead from referene ountingor garbage olletion, memory alloation and freeing, and other onstant fatorsrising from the more ompliated implementation.Taking the above into onsideration, I deided to implement an algorithmwhih is based on TNFA's without "-transitions. I also deided to use a opyingO(n) routine for tag value sets, sine the number of tags is usually very low inpratie, and modern omputers are apable of opying small memory bloksvery e�iently.The resulting algorithm is desribed in the next setion. It uses O(NM2T )time, but is presumably faster than an implementation of the O(NMT 2 log T ))time algorithm for most pratial patterns.
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4.2 Generating "-free Tagged Automata from RegularExpressions"-free nondeterministi automata with tagged transitions an be generated fromregular expressions using a modi�ed version of the method desribed in [5℄, Se-tion 3.9. Note that the aim here is to reate an "-free nondeterministi automa-ton, not a deterministi automaton. Setion 3.9 of [5℄ targets for a deterministiautomaton by �rst reating an "-free nondeterministi automaton as an interme-diate phase.A regular expression is represented by a syntax tree with basi symbols andtags at the leaves and operators at the interior nodes. Symbol leaves in thesyntax tree for a regular expression are labeled by symbols in the alphabet. Toeah alphabet leaf (a leaf not labeled by " or a tag) we attah a unique integerand refer to this integer as the position of the leaf.To reate an "-free TNFA for a tagged regular expression E we �rst augmentit by forming the expression (E)#. The symbol # is not a part of the originalalphabet and is used to get a unique �nal state later.The funtions nullable, �rstpos , and lastpos are alulated for eah syntaxtree node. These an be formed using the indutive rules in Table 4.1 by workingup the syntax tree from the bottom; in eah ase the indutive rules orrespond

Table 4.1: Rules for omputing nullable and �rstpos .Node n nullable(n) �rstpos(n)" true ;tx true ;leaf at posi-tion i false fhi; ;ig
1 j 2 nullable(1) or nullable(2) �rstpos(1) [ �rstpos(2)

1 2Æ nullable(1) and nullable(2)
if nullable(1) then�rstpos(1) [addtags(�rstpos(2);emptymath(1))else�rstpos(1)endif�1 true �rstpos(1)



CHAPTER 4. AN IMPLEMENTATION 41
Table 4.2: Rules for omputing emptymath.Node n emptymath(n)" ;tx ftxgleaf ;

1 j 2
if nullable(1) thenemptymath(1)elseemptymath(2)endif

1 2Æ emptymath(1) [ emptymath(2)
�1

if nullable(1) thenemptymath(1)else;endif
to the three operators, alternation, onatenation, and repetition. The rules forlastpos are the same as those for �rstpos, but with 1 and 2 reversed, and arenot shown.The funtion emptymath is de�ned in Table 4.2.The funtion addtags takes as arguments a set of pairs hp; ti alled P and aset of tags T , where p is a position and t is a set of tags. The funtion returns anew set of pairs fhp; t0i j hp; ti 2 P and t0 = t [ TgThe �rst and seond rules for nullable state that if n is a leaf labeled " or atag tx, then nullable(n) is true. The third rule states that if n is a leaf labeled byan alphabet symbol, then nullable(n) is false. In this ase, eah leaf orrespondsto a single input symbol, and therefore annot generate ". The rest of the rulesfor nullable follow diretly from the algebrai properties of the orrespondingoperators.As another example, the �fth rule for �rstpos says that if in an expressionrs, r generates ", then the �rst positions of s �show through� r and are also �rstpositions of rs. Any tags whih will be used in r when generating " are added tothe result. If r does not generate ", then only the �rst positions of r are the �rstpositions of rs. The reasoning behind the remaining rules of �rstpos are similar.
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When the funtions �rstpos and lastpos have been omputed for eah node inthe tree, we an proeed to generate the transition relation � of the "-free TNFA.Basially, the transition relation tells us what positions an follow a position inthe syntax tree and whih tags are used to get there. The transition relation isa set of quadruples hqa; u; T; qbi, where T is a set of tags. The meaning of suha quadruple is that the TNFA, when in state qa, may onsume the input symbolu from the input string, set the values of tags in T to the urrent position inthe input string, and enter state qb. Two rules de�ne an be used to ompute alltransitions from an annotated syntax tree:
1. If n is a atenation node with left hild 1 and right hild 2, and hp; tiis an item in lastpos(1), then for eah item hp0; t0i in �rstpos(2), addhqp; u; t[ t0; qp0i to �. Here u is the input symbol orresponding to positionqp.2. If n is a repetition node, and hp; ti is an item in lastpos(n), then for allitems hp0; t0i in �rstpos(n), add hqp; u; t [ t0; qp0i to �. As before, u is theinput symbol orresponding to position qp.If �rstpos and lastpos have been omputed for eah node, � an be omputedby making one depth-�rst traversal of the syntax tree.The initial states and initial tag values are determined by the �rstpos of theroot node. For example, if �rstpos = fh1; ft0gi; h2; ft1gig, then q1 and q2 areinitial states. The initial tag values at q1 are 0 for t0 and �1 for all other tags.The initial tag values at q2 are 0 for t1 and �1 for all other tags.Example 4.1 Figure 4.1 shows �rstpos and lastpos for the nodes in a syntaxtree for f(ajb)�gabb#. Figure 4.2 shows the "-free TNFA omputed from theannotated syntax tree.

4.3 Eliminating Unneessary TagsIt is often possible to remove some tags from a syntax tree without losing anysubmath addressing information. The used submath addressing rules (the ruleswhih are used to deide whih one of the set of possible submathes are ho-sen) a�et tag elimination in subtle, but ompliated ways. Therefore I will notpresent an algorithm for eliminating tags from an annotated syntax tree. Instead,a few examples are shown to give a general idea of how suh an algorithm mightwork.Example 4.2 The regular expression fag� has a syntax tree shown in Figure4.3. This an be hanged to the one in Figure 4.4 without losing any submath
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Æ
bÆ #

t0
bÆÆÆÆfh1; ft0gi; h2; ft0gig fh1; ;i; h2; ;igfh1; ft0gi; h2; ft0gig fh3; ;ig fh4; ;ig fh5; ;ig fh6; ;ig

fh5; ;igfh4; ;ig
fh6; ;ig

fh4; ;ig fh5; ;ig fh6; ;ig

; ; fh1; ;i; h2; ;igfh1; ;i; h2; ;ig
fh2; ;igfh1; ;ig a fh1; ;ig

�j bfh1; ;i; h2; ;igfh1; ;i; h2; ;ig
fh2; ;ig

afh3; ;ig fh3; ;igfh1; ft1gi;h2; ft1gigt1 ;;
fh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gig

Figure 4.1: �rstpos and lastpos for nodes in syntax tree for f(ajb)�gabb#.
q1 q2 q3 q4 q5 q6a a b b
a b

b=t1b
ft0; t1g

a=t1
ft0g ft0g

Figure 4.2: The "-free TNFA omputed from the tree in Figure 4.1
addressing apabilities. In the box beside Figure 4.4, e signi�es the position ofthe next symbol after the math. If the math has zero length, then e � 1 < eand the submath addressing data omputed would be invalid. This situationan be heked as a speial ase. �Example 4.3 The regular expression afbfgjfdg�g� has a syntax tree shown inFigure 4.5. This an be hanged to the one in Figure 4.6 without losing anysubmath addressing apabilities. As an be seen from the �gures, tags t2 and t3

Æ
�Æ
a t1t0

Figure 4.3: AST for fag�



CHAPTER 4. AN IMPLEMENTATION 44�a t0 = e� 1t1 = eFigure 4.4: Optimized AST for fag�

Æb t2 Æ t3
Æ

Æ� Æt0
Æa

j
Æt4 Æd t5
� t1

�Æ

Figure 4.5: AST for afbfgjfdg�g�
are ombined into t01, and tags t4 and t5 are ombined into t02 and lifted outsidethe sope of the iteration operator. Tag t0 has been left in its original position,and t1 has been removed altogether. �

Æ� jÆÆ
Æ�b d

Æa
t00

t01 t02

t0 = t00t1 = et2 = t01 � 1t3 = t01t4 = t02 � 1t5 = t02
Figure 4.6: Optimized AST for afbfgjfdg�g�



Chapter 5
Experiments
This hapter gives some experimental results whih were obtained using the im-plementation disussed in the previous hapter.The performane harateristis of regular expression mathers are omplexmatters. Depending on the used regular expressions and the strings being searhed,the performane of an implementation may vary signi�antly. Eah implementa-tion employs a di�erent set of optimizations and triks whih an be applied indi�erent situations.In addition to performane, another important harateristi of an implemen-tation is orretness. Surprising as it may seem, performane and orretnessare often intimately related. Some implementations have bugs whih speed upmathing in some ases, but ause inorret results in some other ases. There-fore it does not make sense to ompare implementations with di�erent semantis;the semantis of the mather have profound in�uene on inherent performaneproblems and optimizations.My implementation is POSIX ompatible. There is no industry-wide agree-ment on a realisti set of benhmarks for POSIX regexp mathers. None have evenbeen proposed. Therefore, it would be possible to show results whih suggest thatmy implementation seems to be always faster than other implementations, or re-sults whih seem to indiate that my implementation is typially slower thanothers.For these reasons, I have tried to be very areful about what onlusionsto draw from the benhmark results. The results shown in this hapter shouldbe mostly regarded only as demonstrations of some of the harateristis of myimplementation and some other implementations.
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5.1 Test Setup
In addition to my TNFA implementation, the same benhmarks were also donefor GNU regex-0.121 and hakerlab version 20010609. Both libraries laim tobe POSIX.2 ompatible, and are generally regarded to be of good quality. Bothlibraries are written in the C programming language [27℄, and so is the TNFAmather.The tests onsisted of timing the mathing operation regexe for di�erentpatterns and input strings of di�erent lengths. The time used by the regexompilation operation regomp for di�erent patterns was not tested.The tests were performed on a PC with a Celeron 300A proessor (running at450MHz, with 128 KB L2 ahe and a 100 MHz front side bus), 128 MB memory,and running Linux 2.4.4. The used C ompiler was the GNU C ompiler (g),version 2.95.Standard statistis tehniques were used to alulate 95% on�dene intervalsfor the test results using the T-distribution. The deviations were negligible, sothe results presented in the next setion an be onsidered quite aurate.

1There are many di�erent versions of GNU regex with the version label 0.12. I used theversion available from ftp://ftp.gnu.org/pub/gnu/prep/regex/.
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5.2 Test Results
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Figure 5.1: Test results for pattern (a)* and string aaaa: : :Figure 5.1 shows the results for a very basi regular expression, (a)*, andstring aaaa: : :. Note the logarithmi sale on both axes. As an be seen fromthe �gure, the di�erene between hakerlab and the others is huge. Hakerlabperforms very badly for some reason. It takes over ten seonds to math a onekilobyte string with hakerlab where the TNFA implementation sans somethinglike 40 megabytes in the same time.Table 5.1: Mathing speeds for test 1TNFA GNU regex hakerlab3710000 ps 1190000 ps 901 ps
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Figure 5.2: Test results for pattern (a*) and string aaaa: : :Figure 5.2 shows the results for regular expression (a*), slightly di�erentfrom the regular expression in test 1 in terms of submath addressing, and stringaaaa: : :. The slow behavior of hakerlab does not apply to this ase, and it faresmuh better this time. GNU regex is now the slowest implementation takingabout twie as muh time as the TNFA implementation and hakerlab.Table 5.2: Mathing speeds for test 2TNFA GNU regex hakerlab3710000 ps 1850000 ps 3130000 ps
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Figure 5.3: Test results for pattern (a*)*|b* and string aaaa: : :Figure 5.3 shows the results for pattern (a*)*|b* and string aaaa: : :. Thistest illustrates a weakness in the baktraking algorithm used by GNU regex.Note the logarithmi sale on both axes.The time used by GNU regex grows exponentially with the length of theinput. At about 25 haraters the mathing time beomes too long in pratiefor any sensible use. Both the TNFA implementation and hakerlab handle thistest well, with the TNFA implementation beating hakerlab by approximately40%. Table 5.3: Mathing speeds for test 3TNFA GNU regex hakerlab3250000 ps N/A 2330000 ps
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Figure 5.4: Test results for pattern (a|a|: : :|a)* and string aaaa: : : of length220.Figure 5.4 shows the results for pattern (a|a|: : :|a)* and string aaaa: : :.This test shows the worst ase behavior of the TNFA mather. Note that thehanging parameter in this test is the pattern, not the input string length as inthe other tests. The length of the text in this test was onstant 10 megabytes.In the worst ase, the time used by the TNFA implementation grows quadrat-ially with the length of the pattern (see Setion 4.1). Neither GNU regex orhakerlab were able to perform this test at all. GNU regex's baktraking al-gorithm runs out of stak spae almost immediately. Hakerlab on the otherhand showed nonlinear growth of mathing time when the input length (not thepattern length) was rising, and took over two minutes to math a 32 kilobytestring with the regular expression (a|a)*. There was no hope of getting resultsomparable with TNFA, so hakerlab was �disquali�ed�.Table 5.4: Mathing speeds for test 4TNFA GNU regex hakerlabN/A no result no result
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Figure 5.5: Test results for pattern foobar and string aaaa: : :foobarFigure 5.5 shows the results for pattern foobar and string aaaa: : :foobar.This test demonstrates the speed of the implementations when given a simplesubstring searhing task.Hakerlab performs very well. This was antiipated, as hakerlab is based onDFA simulation and submath addressing is not needed at all for this test. Foromparison, Figure 5.5 shows also the timings for the C funtion strstr, fromthe GNU C library version 2.1.3, whih loates a substring from a string.Table 5.5: Mathing speeds for test 5TNFA GNU regex hakerlab strstr8370000 ps 4180000 ps 17900000 ps 75600000 ps
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Figure 5.6: Test results for pattern a*foobar and string aaaa: : :foobarFigure 5.6 shows the results for pattern a*foobar and string aaaa: : :foobar.This test is a variation of the previous one. All implementations san theinput slower than in the previous test, with roughly half the speed.Table 5.6: Mathing speeds for test 6TNFA GNU regex hakerlab3580000 ps 2540000 ps 7520000 ps
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Figure 5.7: Test results for pattern (a)*foobar and string aaaa: : :foobarFigure 5.7 shows the results for pattern (a)*foobar and string aaaa: : :foobar.This is another variation of test number �ve. Now submath addressing isbrought in by adding the parentheses to the pattern. The TNFA mather handlesthis ase almost as fast as the previous one. Both hakerlab and GNU regex slowdown to about a �fth of their speed in the previous test.Table 5.7: Mathing speeds for test 7TNFA GNU regex hakerlab3480000 ps 495000 ps 1620000 ps
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Figure 5.8: Test results for pattern (a|b)*foobar and string abbaba: : :foobarFigure 5.8 shows the results for pattern (a|b)*foobar and string aaaa: : :foobar.This is yet another variation of test number �ve, with more ompliated submathaddressing added by introduing the alternation operation and a string of randoma's and b's before the su�x foobar.The speed of the TNFA mather drops down to about 40 perent of the speedin the previous test. GNU regex and hakerlab perform with approximately thesame speed as in the previous test.Table 5.8: Mathing speeds for test 8TNFA GNU regex hakerlab1400000 ps 440000 ps 1630000 ps
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5.3 Summary

Table 5.9: Mathing speed summarytest number TNFA GNU regex hakerlab1 3710000 ps 1190000 ps 901 ps2 3710000 ps 1850000 ps 3130000 ps3 3250000 ps N/A 2330000 ps4 N/A no result no result5 8370000 ps 4180000 ps 17900000 ps6 3580000 ps 2540000 ps 7520000 ps7 3480000 ps 495000 ps 1620000 ps8 1400000 ps 440000 ps 1630000 psTable 5.9 shows a summary of the test results. As an be seen from the table,the TNFA implementation seems to perform rather well. While it is ertain thatthese results are not onlusive, and it is not even lear what a set of onlu-sive tests would onsist of (see the beginning of this hapter), it seems that theTNFA implementation has some interesting qualities not present in GNU regexor hakerlab.Perhaps the most onvining treat of the TNFA mather is its preditability;the mather an perform reasonably well with any regular expression and inputstring. When the input string grows longer, worst-ase mathing time inreasesalways linearly.



Chapter 6
Future Work
Researhing in more detail the nature of onsistent TNFAs would be interesting.It is easy to restrit the tag ordering funtion and the use of tags in a TNFA toensure onsisteny, but it would be interesting to know whether tags ould beused without restritions if the tag ordering funtion is of the form in Equation3.1.It is also an open problem whether TNFAs an be onverted to TDFAs infull generality while retaining the simpliity required for good performane. Analgorithm is outlined in this thesis for doing the onversion and a proof-of-oneptTDFA implementation in [31℄ is referred to, but problems with following the tagordering funtion are sidestepped. A C-language [27℄ implementation of a TDFAmather would be required to evaluate the performane gain ompared to TNFAsin pratie.An implementation of the approximate regular expression mathing algorithmoutlined in Setion 3.3.2 would be welome. There are a few tools for approximateregular expression mathing in the style of grep, and it would be interesting tosee if the TNFA-based algorithm makes a di�erene. It would also be sensible to�nish the POSIX mather prototype, so it ould be used as a drop-in replaementfor other implementations.
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Chapter 7
Conlusion
The main objetive of this thesis was to �nd an e�ient solution to the submathaddressing problem, suitable to be used in a general purpose regular expressionmathing library.I evaluated several existing algorithms and found them problemati, eitherbeause of exponential worst-ase mathing times or linear spae onsumptionwhere onstant spae would atually su�e. Some andidates ould handle onlya subset of all regular expressions, whih was not aeptable.My proposed solution, tagged nondeterministi �nite automata (TNFA), isan extension to traditional �nite automata where transitions are augmented withoperations to keep trak of submath beginning and ending positions while math-ing. Algorithms for e�iently simulating TNFAs with a single pass over the inputstring were given.The TNFA algorithm is apable of �nding submathes, deided by tags andthe tag ordering funtion whih an be easily hanged to aommodate a varietyof submath addressing rules. The algorithm �nds the solution in one linear-time pass of the input string for any regular expression and input string. Thespae onsumption during mathing is onstant, depending only on the regularexpression but not the input string. In the author's knowledge, this is a newresult.A POSIX.2 ompatible TNFA mather was implemented as a part of thethesis work. The benhmarking results suggest that the implementation performsfavorably against some popular implementations of di�erent algorithms solvingthe same problem. The TNFAmather implementation, inluding the C languagesoure ode, is available as free software. It an be downloaded from the WWWat http://www.iki.fi/vl/libtre/.
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