
E�
ient submat
h addressing forregular expressions

Master's Thesis

Ville Laurikari

Teknillinen korkeakoulu Helsinki University of Te
hnologyTietotekniikan osasto Department of Computer S
ien
e and EngineeringTietojenkäsittelyopin laboratorio Laboratory of Information Pro
essing S
ien
e

Otaniemi 2001

HELSINKI UNIVERSITY ABSTRACT OFOF TECHNOLOGY MASTER'S THESISAuthor: Ville LaurikariName of the thesis: E�
ient submat
h addressing for regular expressionsDate: November 1, 2001 Number of pages: 64Department: Fa
ulty of Information Te
hnology Professorship: Tik-106Supervisor: Professor Eljas Soisalon-SoininenInstru
tor: Kenneth Oksanen, M.S
., Li
.S
. (Te
h.)String pattern mat
hing in its di�erent forms is an important topi
 in theoreti
al
omputers
ien
e. This thesis
on
entrates on the problem of regular expression mat
hing with submat
haddressing, where the position and extent of the substrings mat
hed by given subexpressionsmust be provided.The algorithms in widespread use at the time either take exponential worst-
ase time to �nda mat
h,
an handle only a subset of all regular expressions, or use spa
e proportional to thelength of the input string where
onstant spa
e would su�
e. In this thesis I propose a newmethod for solving the submat
h addressing problem using nondeterministi
 �nite automatawith transitions augmented by
opy-on-write update operations.The resulting algorithm makes a single pass over the input string, always using time linearlyproportional to the input. Spa
e
onsumption depends only on the used regular expression,and not on the input string. To the author's knowledge, this is a new result. A prototype of aPOSIX.2
ompatible regular expression mat
her using the algorithm was done. Ben
hmarkingresults indi
ate that the prototype
ompares favorably against some popular implementations.Furthermore, absen
e of exponential or polynomial time worst
ases makes it possible to useany regular expression without performan
e problems, whi
h is not the
ase with previousimplementations or algorithms.

Keywords: regular expressions, submat
h addressing, parse extra
tion, regularexpression parsing, approximate regular expression mat
hing

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄTekijä: Ville LaurikariTyön nimi: Säännöllisten lausekkeiden tehokas osittainen jäsentäminenPäivämäärä: 1.11. 2001 Sivuja: 64Osasto: Tietotekniikan osasto Professuuri: Tik-106Työn valvoja: professori Eljas Soisalon-SoininenTyön ohjaaja: tekn. lis. Kenneth OksanenHakulauseketta vastaavien osien etsiminen merkkijonoista on eri muodoissaan tärkeä tietojen-käsittelyteorian alue. Tämä diplomityö keskittyy säännöllisiin lausekkeisiin ja niiden määrit-telemään kieleen kuuluvien merkkijonojen tehokkaaseen osittaiseen jäsentämiseen. Osittainenjäsentäminen tarkoittaa säännöllisen lausekkeen mielivaltaisesti valittuja osalausekkeita vas-taavien osamerkkijonojen määrittämistä koko lausekkeen määrittelemään kieleen kuuluvassamerkkijonossa.Tällä hetkellä laajassa käytössä olevat algoritmit joko kuluttavat pahimmassa tapauksessaeksponentiaalisesti aikaa merkkijonojen tutkimiseen, käyttävät tilaa suoraan verrannollisestisyötejonon pituuteen vaikka vakiotila riittäisi, tai pystyvät käsittelemään vain säännöllistenlausekkeiden osajoukkoa. Tässä diplomityössä ehdotan uutta ratkaisua osittaiseen jäsentämi-seen, jossa käytetään epädeterministisiä äärellisiä automaatteja joiden siirtymiä on laajennet-tu funktionaalisilla sijoitusoperaatioilla.Kehitetty algoritmi käy syötteen vain kerran läpi, ja sen aikakompleksisuus pahimmassakintapauksessa on suoraan verrannollinen syötejonon pituuteen. Algoritmin kuluttama tila riip-puu vain käytetystä säännöllisestä lausekkeesta eikä lainkaan syötejonosta. Työssä toteutet-tiin myös algoritmiin perustuva POSIX.2-yhteensopiva säännöllisten lausekkeiden osittaistajäsentämistä suorittava hakukirjaston prototyyppi. Suuntaa-antavien kokeellisten mittaustenperusteella prototyyppi suoriutuu hyvin verrattuna eräisiin yleisesti käytössä oleviin toteu-tuksiin. Lisäksi algoritmin lineaarisen aikakompleksisuuden vuoksi hauissa voidaan käyttäämitä tahansa säännöllistä lauseketta ilman kohtuuttoman ajankäytön vaaraa; tämä ei ole ol-lut mahdollista aikaisemmilla toteutuksilla tai algoritmeilla.

Avainsanat: säännölliset lausekkeet, osittainen jäsentäminen, likimääräinen säännöllis-ten lausekkeiden sovittaminen

Prefa
e
The basis work for this thesis was done in the HiBase proje
t, a joint resear
hproje
t between Helsinki University of Te
hnology (HUT) and Nokia Networks(NET). One major goal of the proje
t was to develop a persistent and real-timefun
tional programming environment.A regular expression library was needed in our proje
t, and I de
ided toimplement one; this was in late fall of 1999. It soon be
ame apparent that existingalgorithms and implementations were not suitable, or at least had a lot of roomfor improvement. Thus, I began resear
h on submat
h addressing algorithms.Eventually I
ame up with the idea of nondeterministi
 �nite automata withtagged transitions (TNFAs), and even wrote a paper [31℄ about them. Later, inthe spring 2001, when the time
ame to start with my Master's Thesis, this wasthe natural subje
t.I want to thank my supervisor, Professor Eljas Soisalon-Soininen, for his sup-port, both during HiBase and afterwards. I also want to thank Kenneth Oksanenfor helping me getting started and �nished, and giving valuable
omments on mywork.I am also grateful to Angelo Borsotti who read and
ommented many versionsof this thesis in detail. My gratitude also goes to the members of the HiBaseproje
t for their support and testing some early implementations of a prototypedeterministi
 �nite automata with tagged transitions (TDFA) mat
her: Sami-Pekka Haavisto, Jukka-Pekka Iivonen, Vera Izrailit, Jarkko Lavinen, Antti-PekkaLiedes, Marko Lyly, Petri Mäenpää, Kenneth Oksanen, Jussi Rautio, and MattiTikkanen. I would also like to thank Elizabeth Heap-Talvela from the HUTlanguage
enter for her grammati
al
omments.

iv

v
My thanks go also to my
urrent employer, SSH Communi
ations Se
urity,for letting me use some time and resour
es to �nally �nish this thesis.Finally, I would like to thank my family and espe
ially Henna Pietiläinen fortheir patien
e, advi
e, and love.

Espoo, November 1, 2001.
Ville Laurikari

Contents
Notation and Abbreviations viii
1 Introdu
tion 1
2 Submat
h Addressing for Regular Expression Mat
hing 32.1 Regular Expressions . 32.2 Submat
h Addressing . 62.2.1 Resolving Ambiguity . 72.3 Previous Work . 92.3.1 Ba
ktra
king Mat
hers . 92.3.2 Nakata-Sassa Semanti
 Rules 112.3.3 Kearns's Parse Extra
tion 132.3.4 Others . 14
3 Automata with Augmented Transitions 153.1 Nondeterministi
 Automata with Tagged Transitions 153.1.1 Solving the Submat
h Addressing Problem Using Tags . . 233.1.2 E�
ient Simulation . 253.2 Deterministi
 Automata with Tagged Transitions 313.2.1 Converting Nondeterministi
 Tagged Automata to Deter-ministi
 Tagged Automata 313.3 Related Problems . 353.3.1 Full Parsing . 363.3.2 Approximate Regular Expression Mat
hing 36

vi

CONTENTS vii
4 An Implementation 384.1 Sa
ri�
ing Complexity . 394.2 Generating "-free Tagged Automata from Regular Expressions . . 404.3 Eliminating Unne
essary Tags . 42
5 Experiments 455.1 Test Setup . 465.2 Test Results . 475.3 Summary . 55
6 Future Work 56
7 Con
lusion 57
Bibliography 58
Index 63

Notation and Abbreviations
fa; b; : : :g unordered set
ontaining the items a, b, . . .; empty set" empty stringL�
losure of the language LL1 Æ L2
on
atenation of languages L1 and L2L(r) language represented by regular expression rR� re�exive, transitive
losure of binary relation RR+ transitive
losure of binary relation RN the set of natural numbers f0; 1; 2; : : :gjwj length of string w`M binary relation between
on�gurations of M�yields in one step��M binary relation between
on�gurations of M�yields tag-wise ambiguously in one step��T total order on fun
tions from tags to their valueshn1; n2; : : : ; nki ordered k-tuple of the items n1, n2, . . . , nkfx : P (x)g the set of all x whi
h have property P .O(g(n)) ff(n) : there exist positive
onstants
 and n0 su
h that0 � f(n) �
g(n) for all n � n0gE1jE2 Regular expression su
h that L(E1jE2) = L(E1) [L(E2).E� Regular expression su
h that L(E�) = L(E)�.: Regular expression mat
hing any single symbol in the usedalphabet.
AST abstra
t syntax treeDFA deterministi
 �nite automatonDFAS deterministi
 �nite automaton with semanti
 a
tionsNFA nondeterministi
 �nite automatonNFAS nondeterministi
 �nite automaton with semanti
 a
tionsTDFA deterministi
 �nite automaton with tagged transitionsTNFA nondeterministi
 �nite automaton with tagged transitions

viii

Chapter 1
Introdu
tion
Pattern mat
hing, despite its low-key
overage, is a very important topi
 in
om-puter s
ien
e. It o

urs naturally in many areas of s
ien
e and information pro-
essing, su
h as data pro
essing, lexi
al analysis, text editing, and informationretrieval. Indeed, pattern mat
hing is the main programming paradigm in sev-eral programming languages like Prolog, SNOBOL4, and I
on, and most pro-gramming languages provide some kind of primitives to perform di�erent kindsof pattern mat
hing on strings. In biology, string pattern mat
hing problemsarise in the analysis of nu
lei
 a
ids and protein sequen
es. Considering all this,it is not a surprise that string pattern mat
hing is one of the most widely studiedproblems in theoreti
al
omputer s
ien
e.This thesis
on
entrates on regular expression patterns. Regular expressions[28℄ are very popular for des
ribing patterns for sear
hing text, and there arenumerous tools and libraries whi
h implement regular expression pattern mat
h-ing, like lex [32℄ and �ex [47℄. Most programming languages, su
h as Perl [54℄,provide some form of regular expression pattern mat
hing. Regular expressionsand regular expression mat
hing have re
ently been used even for implementingtype systems for programming languages [20, 21℄.It is not always enough just to perform language re
ognition, that is, to �ndout whether patterns of interest o

ur in the text. Frequently we need to knowexa
tly where a substring mat
hing the pattern was found and extra
t parts of asu

essful mat
h. For example, if a pattern mat
hes an address, it should be easyfor the programmer to a

ess the zip
ode. In the extreme
ase, a full parse treeof the mat
h is required. The problem of extra
ting partial parse information ofa mat
h is
alled submat
h addressing and is the main fo
us of this thesis.Often the sear
hed text is very large, emphasizing the need for e�
ient al-gorithms. For example, an algorithm using time in the order O(n2) or worseis una

eptable when sear
hing for a pattern from several megabytes of data.Spa
e
onsumption should also be as low as possible, so that no more spa
e is

1

CHAPTER 1. INTRODUCTION 2
used than ne
essary. In general a full parse tree of a string w mat
hing a regularexpression r takes O(jwj) spa
e, but in most
ases a full tree is not required,and even the full parse tree often takes only O(jrj) spa
e. Sear
hing for a simplepattern r from a very large text is best done using an algorithm whi
h uses spa
edepending only on r, not the length of the text being sear
hed.There has been some work in the area of e�
ient algorithms for regular ex-pression pattern mat
hing with full or partial parse extra
tion. The algorithmsin widespread use at the time of this writing either take exponential worst-
asetime to �nd a mat
h, use O(jwj) spa
e, or
an handle only a subset of all regularexpressions. None of these features are desirable for a general-purpose implemen-tation, su
h as a POSIX.2 [23℄
ompatible regular expression mat
hing library.This thesis mostly
on
entrates on on-line algorithms, where prepro
essing ofthe pattern must not take long, and the sear
hed text
annot be indexed beforethe sear
h.This thesis has the following stru
ture:In Chapter 2 regular expressions and the submat
h addressing problem arede�ned. After these a brief survey of previous work on submat
h addressingand regular expression parsing is given, and the most important problems of theprevious te
hniques are shown.In Chapter 3 I �rst present nondeterministi
 automata whi
h may have transi-tions augmented with tags, give a formal de�nition of their semanti
s, and showhow to solve the submat
h addressing problem using nondeterministi
 taggedautomata. Then I dis
uss e�
ient te
hniques to simulate these automata, andshow how they
an be
onverted to
orresponding deterministi
 automata. Fi-nally, a more generi
 model is dis
ussed where transitions are augmented with
omputable fun
tions whi
h manipulate some arbitrary data, and full parsingand approximate regular expression mat
hing are dis
ussed.In Chapter 4 an a
tual implementation of some of the algorithms studied inthe previous
hapter is dis
ussed.In Chapter 5 some experimental test results using the implementation de-s
ribed in Chapter 4 are shown, and
omparison to other implementations isdone.In Chapter 6 some dire
tions to future work and resear
h are given.In Chapter 7 the
on
lusions gained in this thesis are summarized.

Chapter 2
Submat
h Addressing forRegular Expression Mat
hing
Regular expressions, regular sets (sometimes
alled rational expressions and ra-tional sets, respe
tively), and �nite automata are
entral
on
epts in automataand formal language theory. A regular set is a set of strings mat
hed by a regularexpression. The origins of regular sets go ba
k to the work of M
Cullo
h andPitts [35℄ who devised �nite-state automata as a model for the behavior of neuralnetworks.The notation of regular expressions arises naturally from the mathemati
alresult of Kleene [28℄ that
hara
terizes the regular sets as the smallest
lass ofsets of strings whi
h
ontains all �nite sets of strings and whi
h is
losed underthe operations of union,
on
atenation and Kleene
losure.This
hapter �rst de�nes the syntax and semanti
s of regular expressions.Then the submat
h addressing problem is de�ned and some solutions by othersare dis
ussed, showing the biggest problems of these previous solutions.
2.1 Regular Expressions
De�nition 2.1 Regular expressions over an alphabet � are de�ned as follows:1. " and ea
h member of � is a regular expression.2. If r1 and r2 are regular expressions then so is (r1jr2).3. If r1 and r2 are regular expressions then so is (r1r2).4. If r is a regular expression then so is r�.

3

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 4
Nothing is a regular expression unless it follows from a �nite number of appli-
ations of the rules above. The above de�nes only the regular expression syntax.The meaning of a regular expression, that is, the language represented by a reg-ular expression, is de�ned using a fun
tion L, whi
h is de�ned re
ursively asfollows:
1. L(") = f"g and for ea
h symbol a in the alphabet L(a) = fag.2. If r1 and r2 are regular expressions then L((r1jr2)) = L(r1) [L(r2).3. If r1 and r2 are regular expressions then L((r1r2)) = L(r1) Æ L(r2).4. If r is a regular expression then L(r�) = L(r)�. �
The
on
atenation of two languages L1 Æ L2 is de�ned asL1 Æ L2 = fw : w = xy for some x 2 L1 and y 2 L2gL�, the Kleene
losure of a language L, is the set of all strings obtained by
on
atenating zero or more strings from L.Many parentheses in regular expressions
an be avoided by adopting the
on-vention that the Kleene
losure operator � has the highest pre
eden
e, then
on-
atenation, then j (alternation). The two binary operators,
on
atenation andalternation, are left-asso
iative. Under these
onventions the regular expressions(aj((b(
�))d)) and ajb
�d are equivalent, in the sense that they mat
h the samestrings, namely, an a, or a b followed by a sequen
e of zero or more
's followedby a d.Example 2.1 For example, the regular expression(hotj
old) (applejblueberryj
herry) (piejtart)mat
hes any of the twelve deli
a
ies ranging from hot apple pie to
old
herrytart.The regular expressionthe (very,)�very hot
herry piemat
hes the strings the very hot
herry pie; the very, very hot
herry pie; thevery, very, very hot
herry pie; and so on.The regular expression (
�(aj(b
�))�)represents the set of all strings over fa; b;
g that do not have the substring a
.�

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 5
There are many popular programs, tools, and libraries for performing regularexpression mat
hing. Most of these programs implement some extensions tothe regular expression notation, like awk [3℄, lex [32℄, and �ex [47℄. Extensionsare usually implemented in order to provide more su

in
t and understandableways to represent regular languages. In fa
t, the relative su

in
tness of di�erentnotations for regular sets has been of
onsiderable theoreti
al interest [19, 37℄.In the regular expression notation de�ned above the symbols), (, j, and �are meta
hara
ters that are not a part of the alphabet. In
omputer implemen-tations we do not have the luxury of using extra
hara
ters out of the alphabetfor the regular expression notation, and a way to mat
h the regular expressionmeta
hara
ters themselves is needed. This is usually a
hieved by using ba
kslash,n, as a quoting meta
hara
ter that permits meta
hara
ters to be mat
hed. Themeta
hara
ters
an be denoted by pre�xing them with the ba
kslash: n), n(, nj,and n� mat
h), (, j, and � respe
tively. The ba
kslash itself is mat
hed by nn.Often we need to spe
ify sets of input symbols in regular expressions, andusing expressions of the form (a1ja2ja3j : : :)
an be
umbersome. Many imple-mentations support denoting sets of
hara
ters by surrounding them with bra
k-ets. For example, [ab
℄ is equivalent to (ajbj
). Chara
ter sets
an be negatedusing a
aret, so that [�ab
℄ mat
hes any
hara
ter ex
ept a, b, or
. Chara
tersets whi
h
onsist of
onse
utive
hara
ters
an be de�ned using spe
ial
har-a
ter range notation. For example, [a� z℄ mat
hes any lower
ase
hara
ter,and [�a� zA� Z0� 9℄ mat
hes any non-alphanumeri

hara
ter. The
hara
-ter range notation is naturally dependent on the order in whi
h the
hara
ters arerepresented internally in the implementation (typi
ally ASCII [6℄ or a derivative).Further shorthands
an be de�ned for the most often used sets of
hara
ters,the most popular of these being : whi
h mat
hes any single
hara
ter. Theexpression :
an be thought of as a �don't-
are� or �wild
ard� symbol. Another
ommon notation is the + operator. If r is a regular expression, then (r)+ denotesthe same language as r(r)�.None of these extensions add more des
riptive power to the expressions, in thesense that the languages whi
h
an be denoted by the extended expressions arestill purely regular, and only regular sets
an be des
ribed with these extendedexpressions.One popular extension whi
h does extend the
lass of representable languagesis ba
k referen
ing. Regular expressions with ba
k referen
ing, or rewbrs, ap-peared in the �rst version of the SNOBOL programming language [16℄, and havesin
e found their way into for example the UNIX
ommand grep and the Perl[54℄ programming language.Rewbrs have an assignment operator %, so that if for example r is a regularexpression, then the rewbr r%v0 mat
hes whatever r mat
hes and assigns themat
hed string to the variable v0. After this, the variable
an be used to mat
h

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 6
that same string again. For example, the rewbr (ajb)�%v0v0 denotes the languagefw : w = xx and x 2 fa; bg�g. Repeated strings like this are
alled squares ortandem repeats. As another example, the rewbr (ajbj
)�((ajbj
)%v0)(ajbj
)�v0(ajbj
)�mat
hes any string of a's, b's or
's with at least one repeated
hara
ter.Surprisingly, not mu
h theoreti
al study of ba
k referen
ing has been done.A related but restri
ted
lass of expressions has been studied by Angluin [7℄.Angluin's expressions do not have the alternation operator and only one ba
kreferen
e is allowed. Also Larsen [30℄ has studied regular expressions with ba
kreferen
ing and showed that the power of the expressions in
rease with the num-ber of nested levels that are allowed.Aho has also studied rewbrs, and showed that given a pattern
onsisting ofa rewbr r and an input string s the problem of �nding out whether s
ontains asubstring mat
hed by r is NP-
omplete [1℄. This is perhaps one of the main rea-sons for la
k of broad theoreti
al interest in rewbrs. Ba
k referen
ing
onstru
tsshall not be dis
ussed any further in this thesis.
2.2 Submat
h AddressingThe extension dis
ussed in this se
tion, submat
h addressing, sometimes
alledsubstring addressing of mat
hes, substring extra
tion, parse extra
tion, or justparsing regular expressions, is a very useful feature implemented in many regu-lar expression mat
hing programs. For example, all IEEE POSIX standard [23℄
ompatible regexp mat
hing libraries, and the Perl [54℄ and SNOBOL [16℄ pro-gramming languages support submat
h addressing.Instead of being an extension to the regular expression notation, submat
haddressing is an extension to the amount of detail given about a su

essful mat
h.Not only the information of whether a mat
h was found is given, but the sub-strings mat
hing the pattern and given subpatterns are reported. In short, sub-mat
h addressing means �nding the position and extent of the substring mat
hedby a given subexpression.For example, the regular expression very (:�) sti
kmat
hes the string Ja
k hasa very long blue sti
k in his hand. To be pre
ise, the regular expression mat
hesthe substring very long blue sti
k. The parenthesized subexpression mat
hes thesubstring long blue, and it is a submat
h of the whole mat
h. Submat
hes
an bereported as pairs of integers hs; ei, where s is the position of the �rst
hara
terof the submat
h and e is the position of the last
hara
ter of the submat
h plusone. The length of the submat
h in
hara
ters
an then be
omputed by e�s. Inthe above example, the submat
h addressing information for the parenthesizedsubexpression is h16; 25i, and the length of the submat
h is 9.To mark subexpressions for whi
h submat
h addressing needs to be done we

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 7
de�ne a new notation; the wanted subexpression is surrounded with bra
es, fand g. The regular expression in the above example
an then be rewritten usingthis notation as very f:�g sti
k.
2.2.1 Resolving AmbiguityIt is often the
ase that when mat
hing a regular expression, a subexpressionof the pattern
an parti
ipate in the mat
h of several di�erent substrings of theinput string. It is also possible that a subexpression does not mat
h any substringeven though the pattern as a whole does mat
h.For example,
onsider the regular expression fa�gfa�g and string aaa. Thereare twenty possible submat
h addressings in all, any of whi
h are
orre
t. Onepossibility is h0; 0i for the �rst subexpression and h0; 3i for the se
ond. Anotherpossibility is h1; 2i and h2; 3i, and so on.The following rules are used to determine whi
h substrings are
hosen:� Leftmost-longest rule: In the event that a regular expression
ouldmat
h more than one substring of the input string, the mat
h startingearliest in the string is
hosen. If the regular expression may mat
h morethan one substring at that point, the longest substring is
hosen.� Subexpression rule: Subexpressions also mat
h the longest possible sub-strings, subje
t to the
onstraint that the leftmost-longest rule must notbe violated. Subexpressions starting earlier in the regular expression takepriority over ones starting later. Note that higher-level subexpressions thustake priority over their lower-level
omponent subexpressions. Mat
hing anempty string is
onsidered longer than no mat
h at all.� Repeated mat
hing rule: If a subexpression mat
hes more than onesubstring of the whole mat
h, the last su
h substring is
hosen. Note thatthe
andidate substrings
annot overlap.The rules are in order of de
reasing priority. The subexpression rule is appliedto ea
h subexpression in order, regardless of whi
h subexpressions are marked forsubmat
h addressing.Example 2.2 The submat
h rule tells us to
hoose the addressing on the Let usmat
h the regular expression fa�gfa�g and string aaa. The leftmost-longest rulerequires that the whole string is mat
hed. This restri
tion
uts down the numberof possible substring addressings to the four leftmost-longest mat
hes shown inTable 2.1.The submat
h rule tells us to
hoose the addressing on the last row, be
ause ithas the longest mat
h for the �rst subexpression. �

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 8
Table 2.1: Leftmost-longest mat
hes of fa�gfa�g and aaa�rst subexpression se
ond subexpressionh0; 0i h0; 3ih0; 1i h1; 3ih0; 2i h2; 3ih0; 3i h3; 3i

Example 2.3 As another example,
onsider the regular expression (aja�)�. Thesyntax tree for this expression is shown in Figure 2.1. Ea
h subtree is numberedwith a number from 1 to 5.
j�

123 45a �aFigure 2.1: Syntax tree for (aja�)�Table 2.2 shows the submat
hes for ea
h subtree for some input strings.Mat
hing the empty string demonstrates the rule that an empty mat
h is
on-sidered longer than no mat
h at all; subtree number 4
an mat
h the emptystring and therefore it must mat
h the empty string, although this would not bene
essary to make the whole expression mat
h.Table 2.2: Submat
h addressings for (aja�)� against some stringsstring 1 2 3 4 5" h0; 0i h0; 0i h�1;�1i h0; 0i h�1;�1iba h0; 0i h0; 0i h�1;�1i h0; 0i h�1;�1ia h0; 1i h0; 1i h0; 1i h�1;�1i h�1;�1iaa h0; 2i h0; 2i h�1;�1i h0; 2i h1; 2iaaa h0; 3i h0; 3i h�1;�1i h0; 3i h2; 3iThe se
ond row on the table demonstrates the leftmost-longest rule. It wouldbe possible to mat
h the longer substring starting from the se
ond
hara
ter, butthe leftmost, and in this
ase shorter, mat
h is
hosen.The third row shows that subexpressions starting earlier take priority overones starting later. In terms of a regular expression syntax tree, a depth �rstpreorder traversal of the tree enumerates the subexpressions in order of priority.The subtrees in Figure 2.1 are numbered like this. Here, subtree number 3 takes

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 9
priority over subtree number 4, so the one
hara
ter is mat
hed by subtree 3instead of 4.The fourth and �fth row demonstrate how higher-level subexpressions takepriority over their lower-level
omponent subexpressions. It would be possible tomake the mat
h by letting subtree 3 mat
h the two a's by making two iterationswith the topmost star operator. But sin
e subtree 2 takes priority over its
om-ponents, we must
hoose the mat
h whi
h has the longest submat
h for subtree2. �The ambiguity resolving s
heme des
ribed here is, of
ourse, only one ofnumerous alternatives. The approa
h used here has almost identi
al semanti
s tothe one used in [23℄. Naturally, these rules are not good for every situation; in fa
t,the generally a

epted leftmost-longest rule has been the subje
t of some
riti
ism[11℄. The main argument is that sear
hing for longest mat
hing substrings usuallyresults in more
ompli
ated patterns when sear
hing stru
tured text, su
h asXML [14℄.
2.3 Previous WorkThe rest of this
hapter des
ribes brie�y some solutions to the submat
h address-ing problem developed by others. Ea
h subse
tion des
ribes a di�erent solution.
2.3.1 Ba
ktra
king Mat
hersMost regular expression mat
hing software whi
h support substring addressingdo not use the textbook NFA or DFA methods for mat
hing regular expressions,but an interpretive ba
ktra
king algorithm and a sta
k of ba
ktra
king points.There are two major advantages of the ba
ktra
king method � it is easy toimplement and it allows extensions like submat
h addressing and ba
k referen
ing[1, 7, 30℄ to be in
orporated easily.There is some amount of history in the evolution of ba
ktra
king algorithmswhi
h
an still be seen in the versions used today. The original ba
ktra
king algo-rithms supported only a subset of the regular expression syntax, the alternationoperator j was not supported at all. This made it possible to implement a ba
k-tra
king algorithm whi
h �nds the longest mat
h without extra ba
ktra
king.When j is added, it be
omes possible to
heat the ba
ktra
king algorithminto making a poor
hoi
e early on that produ
es a less-than-longest mat
h inthe end. Many of the implementors did not noti
e this; their do
umentation still
laims longest mat
h, even though they do not always �nd it. In order to �ndthe longest mat
h, the algorithm will have to explore every possible mat
h, and

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 10
this
an be spe
ta
ularly expensive even for relatively simple expressions. Forexample, the GNU regex-0.12 library
onsumes exponential time when mat
hingthe regular expression (a�)�jb� with input of the form aaaaaaa. . . b. With aninput of only approximately 25
hara
ters the mat
hing takes tens of se
onds ona
urrent workstation.On the other hand, Perl [54℄ takes the easy way out; it does not even try toreturn the longest mat
h. This
an be very
onfusing. As an example, take thePerl regular expressions (a|ab)(b
)? and (ab|a)(b
)?, and the strings ab andab
. The Perl program"ab" =~ /(a|ab)(b
)?/; print($&, "\n");"ab
" =~ /(a|ab)(b
)?/; print($&, "\n");"ab" =~ /(ab|a)(b
)?/; print($&, "\n");"ab
" =~ /(ab|a)(b
)?/; print($&, "\n");outputs the following:aab
ababEa
h line in the program mat
hes the string on the left-hand side of the =~operator against the regular expression between the /
hara
ters. The mat
hingsubstring is then printed.Even though it would be possible for ea
h line in the program to mat
h thewhole string, it does not always happen. Namely, the �rst and last lines of theprogram do not �nd the longest mat
h. This is
onfusing for a programmer whodoes not know how the Perl regular expression mat
her works, and may even bemisinterpreted as a bug. There are also
ases whi
h take a very long time to run,even though Perl tries to limit the amount of ba
ktra
king by not guaranteeinglongest mat
hes. For example, this program"aaaaaaaaaaaaaaaaaaaaaaaaab" =~ /((a*)*b)*b/;takes tens of se
onds to run (using Perl version 5.005_03) on
urrent desktophardware. This too may be misinterpreted as an �in�nite loop� bug.The Perl regexp mat
her is notoriously
omplex and
ontains a number of dif-ferent tri
ks and optimizations to avoid situations like the above where mat
hingtakes exponential time. Still, no number of tri
ks will
over every possible situ-ation, and there is a limit to the number of optimizations whi
h
an be applieduntil the program
ode be
omes unmaintainable.

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 11
2.3.2 Nakata-Sassa Semanti
 RulesNakata and Sassa have proposed regular expressions with semanti
 rules [43℄,whi
h
an be used as tools for expressing the syntax and semanti
s of input data,and a method of generating programs for pro
essing these input data. Their regu-lar expressions
an have intermixed semanti
 statements, whi
h
an
on
eivablybe extended to implement submat
h addressing instead of using ba
ktra
kingalgorithms des
ribed above.For example, in the regular expression(�j�)
we
an insert the semanti
 rules f and g by writing([f ℄(�j�)[g℄)
The rules f and g
an be implemented to store the
urrent position in the inputstring to, say, the variables t0 and t1 respe
tively. After a su

essful mat
h, ht0; t1iwould then be the submat
h addressing data for the parenthesized subexpression.The basi
 idea in the implementation of Nakata-Sassa semanti
 rules is thata pro
essing program for an expression with semanti
 rules
an be expressed asa �nite automaton for the underlying regular expression with semanti
 a
tionsatta
hed to the proper transitions. These automata are
alled nondeterministi
�nite automata with semanti
 a
tions (NFAS) and deterministi
 �nite automatawith semanti
 a
tions (DFAS).Nakata and Sassa do not dis
uss e�
ient methods for simulating nondeter-ministi
 automata with semanti
 a
tion transitions, but give an algorithm fortranslation from nondeterministi
 �nite automata with semanti
 a
tions to
orre-sponding deterministi
 automata. Their algorithm, however, fails to produ
e
or-re
t deterministi
 automata for
lasses of important nondeterministi
 automata,as we shall soon see.In the Nakata-Sassa system, ea
h state of the nondeterministi
 automaton to
onvert is assigned a temporary variable whi
h is used to postpone exe
ution ofsemanti
 a
tions in
ases where look-ahead is ne
essary. This is the weak spotof the method, and makes it impossible to use it to implement for example aPOSIX.2 [23℄
onformant regular expression mat
hing library.For example, the expression (a[f(a)℄)�a[g(a)℄b works
orre
tly (see Figure2.2), whereas (a[f(a)℄)�a[g(a)℄ab
annot be implemented (see Figure 2.3), be
auseV a2 is to be exe
uted at the transition from Q2 to Q3, while f(V) for V a2has not yet been evaluated. Nakata and Sassa note that the previous
ase
ould beimplemented by in
reasing the number of variables from one to two (by
hangingthe assignments into V1 a1 and V2 a2, and
hanging 2(f(V); f(V)) in Q3to 2(f(V1); f(V2))).

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 12
q0 q1 q2 q3 q4 q5 q6 q7

"
" a[V a℄ "[f(V)℄ " a[V 0 a℄ "[g(V 0)℄ b

"

q2; q5 q8q2(f(V))q7(g(V))
a[f(V);V a℄

q5(f(V))a[V a℄ b[g(V)℄
Figure 2.2: NFAS and DFAS for (a[f(a)℄)�a[g(a)℄b

"

"
" a[V a℄ "[f(V)℄ " a[V 0 a℄ "[g(V 0)℄ a bq1 q2 q3 q4 q5 q6 q7 q8 q9

q2; q5Q1 Q2 Q3
a2[V a2℄a1[V a1℄ q5(f(V))q2(f(V))q7(g(V))

q2(f(V); f(V))q5(f(V); f(V))q7(f(V); g(V))q8(g(V))
Figure 2.3: NFAS and partial DFAS for (a[f(a)℄)�a[g(a)℄ab

However, they fail to point out that this does not help in the general
ase,be
ause if there is some �nite number of n variables per state, the automatongenerated from a regular expression of the form
(a[f(a)℄)� n+1z }| {a : : : adoes not work, be
ause n+ 1 variables would be needed per state to implementa mat
her using the Nakata-Sassa method. All the algorithms given in theirpaper [43℄ also assume just one variable per state, and in
reasing the numberof variables per state is only brie�y mentioned. Also, Nakata and Sassa do

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 13

q0 q1
q2 q3
q4 q5

q6
""

"
"
"b

a
"

Figure 2.4: NFA for a+("jb)
not dis
uss resolving ambiguity at all; there are many important
ases wheresubmat
h addressing and semanti
 a
tions
an be done in di�erent ways (seeSe
tion 2.2.1).
2.3.3 Kearns's Parse Extra
tionIn his paper [25℄, Kearns des
ribes a method for extra
ting a parse after mat
hingwith a �nite automaton. First he shows algorithms to �nd mat
hes of regularexpressions patterns in strings.One by-produ
t of the mat
hing pro
ess des
ribed is a sequen
e of statesQ0; Q1; : : : ; Qn, su
h that Q0 is the initial state and Qn is an a

epting state.The whole sequen
e of states is written Q and the ith state as Qi. Ea
h Qi isa
tually a set of pla
es in the parse tree for the regular expression pattern p beingsear
hed for.Kearns gives a re
ursive algorithm whi
h operates on the sequen
e of statesQ and
an be used to build a full parse tree of the mat
h. He shows that thealgorithm is optimal in spa
e and time. The algorithm to build the parse tree isindeed optimal in this regard, but the sequen
e Q needs O(jwjq) spa
e to storefor an input string w and pattern of size q. The sequen
e Q is not needed foranything else but parse extra
tion, so the a
tual spa
e
omplexity of Kearns'salgorithm is, in fa
t, not optimal for
ases where the parse tree or partial parsetree takes less than O(jwjq) spa
e to store.As an example we simulate the NFA in Figure 2.4, whi
h represents thepattern a+("jb), on the input baab. The following sequen
e Q1 : : :Q5 is
al
ulated:Q1 = fq0g !baabQ2 = fq0g b!aabQ3 = fq0; q1; q2; q3; q4; q6g ba!abQ4 = fq0; q1; q2; q3; q4; q6g baa!bQ5 = fq0; q5; q6g baab!

CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 14
The ex
lamation mark is used to show the
urrent position in the input string.To the left of the ex
lamation mark is the already pro
essed input, and to theright is the unpro
essed part.Sin
e the end state q6 is in Q3, Q4 and Q5, but not in Q1 or Q2, we
on
ludethat the empty string and the b at the start of the input do not mat
h our pattern,but some su�x of the strings ba, baa, and baab does. Now, using a rather simplere
ursive algorithm on the sequen
e of states Q, a full parse tree of any of thesemat
hes
an be built.Kearns's algorithms are used for example in the TLex [24, 26℄
ode generator.

2.3.4 OthersDubé-Feeley Parse Tree AutomataDubé and Feeley proposed an algorithm for regular expression parsing in theirpaper [13℄. Their algorithm uses O(jrjjwj) spa
e for pattern r and string w, likeKearns's algorithm.
Combinatorial Approa
hesMyers et al [40℄ showed an algorithm for parsing regular expressions whi
h takesO(
4kPN) time and spa
e, where
 is the number of tagged subexpressions(subexpressions for whi
h submat
h addressing is wanted), k is the number ofproperly nested subexpressions in the pattern, P is the size of the regular ex-pression pattern, and N is the length of the input string. They note that itwould be possible to modify their algorithm to get an O(
MRPN + TR) timeand spa
e algorithm, where MR and TR are fa
tors whi
h depend on the patternsear
hed. In the worst
ase, MR and TR still grow exponentially with P . In any
ase the spa
e
omplexity is dependent of the length of the string and thereforethe algorithm is not suitable for partial parsing needed in submat
h addressing.

Chapter 3
Automata with AugmentedTransitions
In this
hapter I propose a new method for solving the submat
h addressingproblem e�
iently. A new model of
omputation
reated by augmenting tran-sitions of traditional �nite automata to manipulate lo
ation data is presented.The model is applied to solve the submat
h addressing problem. Algorithms toe�
iently simulate the augmented automata are given.This
hapter also dis
usses some problems related to submat
h addressing,namely full parsing and approximate regular expression mat
hing. These prob-lems
an be solved by generalizing the augmented transition model des
ribed inthe next se
tion.
3.1 Nondeterministi
 Automata with Tagged Transi-tionsTo solve the submat
h addressing problem (and with some generalizations a rangeof related problems) using automata, I propose a model where transitions
an beaugmented with tags. These augmented transitions are
alled tagged transitions.Tags are of the form tx, where x is an integer. Ea
h tag has a
orrespondingvariable whi
h
an be set and read, and when a tagged transition is used, the
urrent position in the input string is assigned to the
orresponding variable."=t00 1

Figure 3.1: A tagged transition
15

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 16
If a tag is unused, it has a spe
ial value, �1. Initially all tags are unusedand have this value. A tag and its variable are synonymous, so if we refer, say,to the variable t5, we mean the variable of tag t5. Figure 3.1 shows how taggedtransitions are marked in a graph. For untagged transitions, ! is used to denotethat there is no tag. Usually the =! is omitted from graphs so that a=! is writtena and "=! is written ".At �rst glan
e automata with tagged transitions are reminis
ent of �nite-statetransdu
ers sometimes used for parsing purposes [22, 49, 50℄, but the semanti
sare di�erent. We are interested in a single path whi
h results in a �nal statewith a given input string, and want to know, in addition to whi
h tags havebeen en
ountered, the pla
es in the input string where they were last seen. Thefollowing de�nitions formalize this idea.De�nition 3.1 A nondeterministi
 �nite automaton with tagged transitions, orTNFA, is a 7-tuple M = hK;T;�T ;�;�; s; F i, whereK is a �nite set of states,T is a �nite set of tags, ! 2 T ,�T is a total order on items of V . V is the set of all fun
tions from T �f!gto N [f�1g. Members of V are
alled tag value fun
tions.� is an alphabet, i.e. a �nite set of symbols,� is the transition relation, a �nite subset of K ��� � T �K.s 2 K is the initial state, andF � K is the set of �nal states. �The meaning of a quadruple hq; u; t; pi 2 � is that M , when in state q, may
onsume a string u from the input string, set the value of t to the
urrent positionin the input string, and enter state p.De�nition 3.2 A
on�guration of M is an element of K ��� ��� � V , wherethe �rst item is the
urrent state, the se
ond item is the pro
essed part of theinput string, the third item is the unpro
essed part of the input string, and thefourth item is a tag value fun
tion giving a value for ea
h tag. The initial tagvalues are spe
i�ed by v0 = (T � f!g) � f�1g. An initial
on�guration is aquadruple hs; "; w; v0i for some input string w. �

De�nition 3.3 The relation `M between
on�gurations (yields in one step) isde�ned as follows: hq; p; u; vi `M hq0; p0; u0; v0i if and only if there are w 2 �� and

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 17
t 2 T su
h that u = wu0 and hq; w; t; q0i 2 �. Then p0 = pw and

v0(x) = � jp0j if t 6= ! and x = tv(x) otherwise.We de�ne `�M to be the re�exive, transitive
losure of `M . A string w 2 �� isa

epted by M if and only if there is a state q 2 F and a fun
tion v su
h thaths; "; w; v0i `�M hq; w; "; vi. �
q0

q1
q2

q3
a/t0

a/t1 b

b

Figure 3.2: An example TNFAExample 3.1 Figure 3.2 shows a simple example TNFA. The automaton isdrawn as a dire
ted graph with
ertain additional information in
orporated intothe pi
ture. Like traditional �nite automata, states are represented by nodes, andtransitions by arrows labeled with w=t from node q to q0 whenever hq; w; t; q0i 2 �.The initial state is shown by a wedge shape, , and �nal states are indi
atedby double
ir
les. For the automaton in Figure 3.2 M = hK;T;�T ;�;�; s; F i,where K = fq0; q1; q2; q3gT = ft0; t1g� = fa; bgs = q0F = fq3gand � is the relation tabulated below. We do not
are about �T for now, and
an leave it unde�ned. q w t q0q0 a t0 q1q0 a t1 q2q1 b ! q3q2 b ! q3Clearly the language L(M) a

epted by M is fabg.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 18
From the initial
on�guration hq0; "; ab; v0i the following sequen
e of move
an ensue: hq0; "; ab; v0i `M hq1; a; b; v1i`M hq3; ab; "; v1iwhere v1(x) = � 1 if x = t0�1 if x = t1Thus hq0; "; ab; v0i `�M hq3; ab; "; v1i and ab is a

epted by M . It is also possibleto rea
h the �nal state in the following way:hq0; "; ab; v0i `M hq2; a; b; v01i`M hq3; ab; "; v01iwhere v01(x) = � �1 if x = t01 if x = t1Therefore also hq0; "; ab; v0i `�M hq3; ab; "; v01i. �Theorem 3.1 The language a

epted by any TNFA is regular.Proof outline. The proof is by redu
tion from TNFA to traditional NFA without
hanging the mat
hed language. A TNFA
an be redu
ed to an NFA by repla
ingall tags by �1 without
hanging the possible
on�gurations rea
hed with `Mwhen tag value fun
tions are disregarded. Then `M be
omes equivalent to the
orresponding operator de�ned for NFAs (see, for example, [34℄), and it is
learthat the a

epted language is regular. �As demonstrated by Example 3.1, for a parti
ular string w and a ma
hine M ,there may be several di�erent q and v whi
h satisfy hs; "; w; v0i `�M hq; w; "; vi. Inorder for the results of the
omputation to be predi
table and thus more pra
ti
al,we must somehow be able to determine whi
h parti
ular values of q and v we
hoose as the result.Indeed, there are
ases for whi
h
omputing all possible
on�gurations rea
h-able from the initial
on�guration by
onsuming an input string is not even
omputationally feasible. The number of di�erent possible
on�gurations
an beexponentially large.To
hoose between di�erent q, we
an simply assign ea
h �nal state a uniquepriority and
hoose the one with the highest priority. This is basi
ally whatlexi
al analyzers typi
ally do when two or more patterns mat
h the same lexeme.For example, lex [32℄
hooses the pattern spe
i�ed earliest in the pattern listwhenever several patterns mat
h the same string. We
an also leave the de
isionto the user of the automaton and make the automaton return a set of possiblepairs hq; vi where q is a �nal state and v is the
orresponding tag value fun
tion.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 19
When
hoosing between di�erent v (tag value ambiguity), the situation issimilar; we need some kind of ordering for tag values also. This is where �T
omes in. It is used as a way to prioritize di�erent tag value
on�gurations overothers.De�nition 3.4 We de�ne another binary relation �M on
on�gurations, (yieldstag-wise unambiguously in one step): hq; p; u; vi �M hq0; p0; u0; v0i if and only if forany
on�guration � for whi
h hs; "; pu; v0i ��M � and � `M hq0; p0; u0; v00i it holdsthat either v0 = v00 or v0 �T v00.As before, ��M is the re�exive, transitive
losure of �M . A string w 2 �� istag-wise unambiguously a

epted by M if and only if there is a state q 2 F anda fun
tion v su
h that hs; "; w; v0i ��M hq; w; "; vi. �Note that the de�nitions of �M and ��M are mutually re
ursive. It is stillpossible to
ompute ��M e�e
tively, using an iterative pro
ess, for any automatonand input string. Examining the de�nition a little further reveals that the initial
on�guration
an be used as the starting point of the
omputation. This isbe
ause the initial
on�guration
i is the only
on�guration in the beginningfor whi
h we know that
i ��M
i. Pro
eeding in a breadth-�rst manner always
hoosing at most one path rea
hing any state is a fairly e�
ient strategy in
omputing ��M . Algorithms 3.4 and 3.5 later in this
hapter show a way to
ompute ��M e�
iently.Example 3.2 For the automaton of the previous example (see Figure 3.2) andstring ab, the initial
on�guration is hq0; "; ab; v0i. Due to re�exivity, hq0; "; ab; v0i��M hq0; "; ab; v0i. Be
ause hq0; "; ab; v0i `M hq1; a; b; v1i and hq0; "; ab; v0i `Mhq2; a; b; v01i (see the previous example), we have alsohq0; "; ab; v0i �M hq1; a; b; v1iand hq0; "; ab; v0i �M hq2; a; b; v01iWe do not need to
hoose the �winners� for states q1 and q2, sin
e there is onlyone path from the initial
on�guration to ea
h of these states.Note that if � �M � then also � ��M �. The previous example shows also thathq1; a; b; v1i `M hq3; "; ab; v1i and hq2; a; b; v0i `M hq3; "; ab; v01i. Now we need touse �T to
hoose one to be the tag-wise unambiguous step whi
h rea
hes stateq3. If v1 �T v01, then hq1; a; b; v1i �M hq3; ab; "; v1iand hq0; "; ab; v0i ��M hq3; ab; "; v1iThe other possibility is that v01 �T v1, thenhq2; a; b; v0i �M hq3; ab; "; v01i

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 20
and hq0; "; ab; v0i ��M hq3; ab; "; v01i �Theorem 3.2 For a string w and a TNFA M , if v0 ��M hq; p; u; vi for someq 2 K, p, u, and v 2 V , then v is unique.Proof. The proof follows trivially from De�nition 3.4. If v0 ��M hq; p; u; vi, thenv is the minimum tag value fun
tion, as per �T , for whi
h the otherwise same
on�guration
an be rea
hed with `M from some previous
on�guration rea
hedby ��M . Therefore v must be unique, sin
e �T is a total order. �Theorem 3.3 If a string w is a

epted by M , it is also tag-wise unambiguouslya

epted by M .Proof outline. As
an be seen from the de�nition of �M , a
on�guration
0
an be rea
hed from another
on�guration
 if
 `M
0. There is an additionalrestri
tion that the tag value fun
tion in
0 must be the minimal one for thestate rea
hed with ��M for the same input string pre�x. This restri
tion doesnot prevent any state from being rea
hed with �M if it is rea
hed with `M , itonly
uts down the number of possible tag value fun
tions to exa
tly one. The
on
lusion is that if a state is rea
hable with `M , it is also rea
hable with �M ,and the theorem follows. �The point of ��M is that it
an be used to e�
iently
ompute the minimumtag value fun
tions of �nal
on�gurations rea
hable with an automaton for aninput string. However, depending on the properties of the automaton, ��M doesnot always �nd the
orre
t minimum tag value fun
tion that would be found by
omputing all possible �nal
on�gurations with `�M and �nding from these theminimum tag value fun
tion.Let us explore in more detail what properties of the automaton and �T arene
essary for `�M and ��M to give the same answer when sear
hing for the mini-mum tag value fun
tion.De�nition 3.5 (
onsisten
y) Let W be the set of strings whi
h are tag-wiseunambiguously a

epted by an automaton M . That is, for every string w 2Whs; "; w; v0i ��M hq; w; "; vifor some q 2 F and v 2 V . Then M is
onsistent if for every q0 2 F and v0 2 Vfor whi
h hs; "; w; v0i `�M hq0; w; "; v0iwe have that if q0 = q then v �T v0 or v = v0. �

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 21
In other words, an automaton is
onsistent if ��M yields the same tag valuefun
tions in the �nal states as the minimum tag value fun
tions
omputed with`�M .It is not immediately obvious that any usable
lass of
onsistent nontrivialTNFAs exist. But, as it turns out, there is a
lass of
onsistent TNFAs whi
h
an be used to solve the submat
h addressing problem, whi
h is quite enough formost pra
ti
al appli
ations.Let va and vb be two tag value fun
tions su
h that va �T vb. Let pos be someinteger su
h that pos � va(tx) and pos � vb(ty) for any tx 2 T and ty 2 T . Alsolet tk 2 T be some tag andv0a(t) = � pos if t = tkv0a(t) otherwise.v0b(t) = � pos if t = tkv0b(t) otherwise.The above is a formal des
ription of a situation where the tag value fun
tion vawins another tag value fun
tion vb. A
hange to the fun
tions later, by
hangingthe value of some tag tk to the
urrent position given by pos, would yield themodi�ed tag value fun
tions v0a and v0b. If we want to �nd the globally minimaltag value fun
tion, it must then hold that v0a �T v0b, or v0a = v0b. For if it werethat v0b �T v0a, then v0a would
ertainly not be the minimum value. But �M wouldhave already
hosen va earlier, and v0b would never even be
omputed.So to summarize, in a
onsistent automaton M , if �M
hooses some tag valuefun
tion va over another tag value fun
tion vb, then it must be
ertain that nolater tag en
ountered would yield a situation where vb should in fa
t have been
hosen instead of va.From now on we will restri
t ourselves to �T of the following form. Letva 2 V and vb 2 V be some tag value fun
tions. Then va �T vb if and only if9tx 2 T : (tx 2 minimized and (va(tx) < vb(tx)and 8ty 2 T; 0 � y < x : va(ty) = vb(ty)))or (tx =2 minimized and (va(tx) > vb(tx)and 8ty 2 T; 0 � y < x : va(ty) = vb(ty))) (3.1)
Here minimized is a set whi
h
ontains the tags whose values we want tominimize. The values of tags whi
h are not in minimized are maximized.Another restri
tion is put on tags, we will allow ea
h tag o

ur at exa
tlyone transition. The TNFA de�nition would allow for multiple o

urren
es of thesame tag, although it is not immediately
lear whether this
ould be useful.Now we are ready to analyze when va �T vb if and only if v0a �T v0b or v0a = v0b.In equation 3.1 there is always some minimum x for whi
h va(tx) and vb(tx) di�er,

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 22
"=tx
P2

P1
Figure 3.3: Illustration to analyze TNFA
onsisten
y. P1 and P2 are arbitrarypaths.
and for all y less than x the values va(ty) and vb(ty) are the same. If we de�nenew tag value fun
tions v0a and v0b like above by
hanging the value of some tagtk, there are three
ases. The �rst two
ases are trivial, the third is less so.
� If k < x then v0a �T v0b, be
ause v0a(tk) = v0b(tk) and va(tk) = vb(tk).� If k > x then v0a �T v0b, be
ause x is the minimum number for whi
hv0a(tx) 6= v0b(tx), and v0a(tx) = va(tx) and v0b(tx) = vb(tx).� If k = x then the situation is a bit more
ompli
ated. Ea
h tag o

ursexa
tly on
e in the automaton, and tx has already been en
ountered atleast on
e, be
ause it has di�erent values in va and vb. If k = x happens,then the same tag is en
ountered again. Then there must be a
y
le in theautomaton
ontaining tk. But now v0a(tk) = v0b(tk) = pos, and it seems tobe di�
ult to make any assumptions on the values of the rest of the tagstr, r > k, whi
h determine whether v0a �T v0b.Figure 3.3 illustrates this situation. The arbitrary path P2 along with thetransition labeled "=tx
onstitutes a
y
le. P1 is a path from the targetstate of the tx transition to a �nal state. There may be several di�erent P1in a TNFA.Be
ause it seems di�
ult to reason anything
lever about tags tr su
h thatr > k, we will resort to an easy way out. We look for situations su
h thatthe values of tr, r > k do not a
tually matter. There are at least threerelatively simple
ases:� All tr, r > k o

ur in all P2. Then whatever values ea
h tr have wouldbe overwritten to the same values by `�M , and v0a = v0b.� All tr, r > k o

ur in all P1. Then it does not matter whether v0a �T v0b,v0a = v0b, or v0b �T v0a, be
ause the tags whi
h de
ide this will beoverwritten anyway by the time a �nal state is rea
hed.� For any path from the initial state to any of the states on P2 no tagtr, r > k must o

ur. In this
ase v0a = v0b, be
ause all tags tr, r > kare unused.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 23
Now we have learned some simple restri
tions whi
h guarantee the
onsis-ten
y of a TNFA whi
h meets these restri
tions. The next se
tion shows how to
onstru
t a
onsistent TNFA for any submat
h addressing problem.

3.1.1 Solving the Submat
h Addressing Problem Using TagsAutomata with tagged transitions provide an elegant solution to the submat
haddressing problem. It is well known that as a formalism for spe
ifying strings,regular expressions and �nite automata are equivalent in that they both des
ribethe same sets of strings [34, 48, 51℄. There are many ways to transform reg-ular expressions into nondeterministi
 �nite automata whi
h re
ognize the lan-guage de�ned by the regular expression. Perhaps the most well-known methodis Thompson's
onstru
tion [5℄ and similar indu
tive methods [34, 51℄.Regular expressions with tags are similar to normal regular expressions (seeSe
tion 2.1) with one addition; one may write tags of the form tx straight intothe regular expressions. A tag mat
hes the empty string and has the side-e�e
tthat the
urrent position in the input string is assigned to the tag's variable.TNFAs
an be
onstru
ted for regular expressions with tags by modifyingThompson's
onstru
tion [5℄ to handle tags.De�nition 3.6 (Modi�ed Thompson's
onstru
tion) A regular expressionE over an alphabet T is transformed into an nondeterministi
 �nite automatonM(E) with input alphabet T . For all E, M(E) has exa
tly one �nal state. The�nal state is distin
t from the initial state and has no transitions leaving from it.Similarly, there are no transitions to the initial state.To avoid redundan
y in the drawings, a partial automaton M 0(E) is usu-ally shown instead of M(E). The di�eren
e between M 0 and M is su
h thatM 0(ta(E)tb) = M(E). In other words, in M(E) the �rst and last transition aretagged with tags ta and tb, respe
tively. The tags are su
h that a and b aresmaller than the number of any tag o

urring in M(E), and a 6= b. Tag ta isminimized and tb is maximized, so that �T
an be written down in the form ofEquation 3.1 on page 21.The following is a list of re
ursive rules to
onstru
t a
onsistent TNFA forany regular expression.� M 0(") is "i f
Here i is a new initial state and f a new �nal state. Clearly, the languagere
ognized by this TNFA is f"g.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 24
� For a 2 �, M 0(a) is ai f
Again i is a new initial state and f a new �nal state. This ma
hine re
og-nizes fag.� For tx 2 T , M 0(tx) is "=txi f
This ma
hine re
ognizes f"g, with the side-e�e
t that the
urrent positionin the input string is assigned to tx.� For the regular expression E1jE2,
onstru
t the following
omposite TNFAM 0(E1jE2).

"
""

"i f
M(E2)
M(E1)

Here i is a new initial state and f a new �nal state. There is a transition on" from i to the start states of M(E1) and M(E2). There is a transition on" from the �nal states of M(E1) and M(E2) to the new �nal state f . Theinitial and �nal states of M(E1) and M(E2) are not initial or �nal states ofM(E1jE2). Note that any path from i to f must pass through eitherM(E1)or M(E2) ex
lusively. Thus, we see that the
omposite TNFA re
ognizesL(E1) [L(E2).� For the regular expression E1E2,
onstru
t the
omposite TNFAM 0(E1E2):
i fM(E1) M(E2)

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 25
The initial state ofM(E1) be
omes the initial state of the
omposite TNFAand the �nal state ofM(E2) be
omes the �nal state of the
omposite TNFA.The �nal state of M(E1) is merged with the initial state of M(E2); that is,all transitions from the initial state of M(E2) be
ome transitions from the�nal state of M(E1). The new merged state loses its status as a start ora

epting state in the
omposite TNFA. A path from i to f must go �rstthrough M(E1) and then through M(E2) and no edge enters the initialstate of M(E1) or leaves the �nal state of M(E2), there
an be no pathfrom i to f that travels from M(E2) ba
k to M(E1). Thus, the
ompositeTNFA re
ognizes L(E1) Æ L(E2).� For the regular expression E�,
onstru
t the
omposite TNFA M 0(E�):

" "i f
"

"
M(E)

Here i is a new initial state and f a new �nal state. In the
omposite TNFA,we
an go from i to f dire
tly, along an edge labeled ", representing thefa
t that " is in (L(E))�, or we
an go from i to f passing through M(E)one or more times. Clearly, the
omposite TNFA re
ognizes (L(E))�.� For the parenthesized regular expression (E), useM(E) itself as the TNFA.� For a regular expression marked for submat
h addressing, fEg, use M(E)as the TNFA. The tags in the �rst and last transition of M(E) will givethe submat
h for E after a su

essful mat
h. �
3.1.2 E�
ient SimulationSimulating a TNFA means
omputing ��M using some algorithm. This se
tiondis
usses algorithms to
ompute ��M , starting from a simple but ine�
ient ver-sion and gradually improving the algorithm to �nally get a su�
iently e�
ientalgorithm.As already suggested in
onjun
tion with De�nition 3.4, the best way of
omputing ��M is to follow all possible paths in parallel. Sin
e we are interested

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 26
in only one set of tag values, it is possible to throw away paths whi
h will resultin unwanted tag values, so that the total number of paths we
onsider at ea
hinstant does not grow over a
ertain limit. To be pre
ise, this pruning
anbe done at ea
h state after ea
h
onsumed input symbol so that we need toremember at most as many paths as there are states in our automaton. Thisidea is already in
orporated into the de�nition of �M , and in this se
tion apseudo-
ode algorithm is given to e�
iently
al
ulate ��M for an automaton andinput string.All the algorithms in this se
tion work on a nondeterministi
 tagged automa-ton M = hK;T;�;�; s; F i.The following is an algorithm to
al
ulate the "-
losure of a set of states,taken from [5℄. It takes as an argument a set of TNFA states Q � K. Thealgorithm
omputes the set of all nodes rea
hable from Q using only "-labelededges of the TNFA. The sta
k holds states whose edges have not yet been
he
kedfor "-labeled transitions.Algorithm 3.1 ("-
losure)1 push ea
h state in Q onto sta
k2 initialize result to Q3 while sta
k is not empty do4 pop q1, the top element, o� of sta
k5 for ea
h q2 su
h that hq1; "; t; q2i 2 � for some t do6 if q2 is not in result then7 add q2 to result8 push q2 onto sta
k9 endif10 done11 done12 return result

This is a fairly e�
ient algorithm, taking O(j�j) worst-
ase time and O(jKj)worst-
ase spa
e when implemented reasonably. When simulating a TNFA, wealso need to
al
ulate the set of tags en
ountered on the path to ea
h rea
hablestate. The following algorithm
al
ulates the tagged "-
losure of a set of TNFAstates Q � K. The algorithm was obtained by modifying the "-
losure algorithmto operate on pairs hq; ki where q 2 Q is a state and k � T is the set of tags seenso far.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 27
Algorithm 3.2 (tagged "-
losure)1 for ea
h state q in Q, push hq; ;i onto sta
k2 initialize result to the items in sta
k3 while sta
k is not empty do4 pop hq1; ki, the top element, o� of sta
k5 for ea
h q2 and t su
h that hq1; "; t; q2i 2 � do6 if hq2; t [ftgi is not it result then7 add hq2; k [ftgi to result8 push hq2; k [ftgi onto sta
k9 endif10 done11 done12 return result

Algorithm 3.2 returns the set of all pairs hq; ki where q is a state rea
hablefrom some state p inQ using only "-transitions and k is the set of tags en
ounteredon the path from p to q. There may be several hq; ki with the same q but di�erentk, be
ause there may be several di�erent paths with di�erent tags to q from thestates in Q. "" � � �"=t0 "=t1q0 q1 qnq2
"

Figure 3.4: Worst
ase for Algorithm 3.2The time and spa
e
omplexity of Algorithm 3.2 is O(jKj2jT j). The set ofall possible subsets of T is 2T , so the result
an
ontain at most jKj times j2T jelements. Figure 3.4 shows an example of a TNFA with whi
h this worst
asebehavior o

urs. From any state q in fq0; q1; : : : ; qng any state
an be rea
hed byfollowing a path whi
h
ontains any subset of the tags in ft0; t1; : : : ; tn�1g. Thustagged-"-
losure(q) for any q is of size (n+ 1)2n.The next algorithm uses �T to
hoose exa
tly one set of tags for ea
h rea
h-able state in an attempt to keep the spa
e requirements reasonable. After all, weare interested only in the minimal tag value fun
tions.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 28
Algorithm 3.3 (tagged �T -minimal "-
losure)1 initialize result to ;2 for ea
h item hq0; v0i in W do3 for ea
h item hq; ti in tagged-"-
losure(fq0g) do4 let v(x) = � pos if x 2 tv0(x) otherwise5 if result(q) is de�ned then6 if v �T result(q) then7 repla
e result(q) with v8 endif9 else10 set result(q) to v11 endif12 done13 done14 return result

In this algorithm, result is a fun
tion from K to V . As input the algorithmtakes a set of pairs W . Ea
h item hq; vi in W
onsists of a TNFA state q 2 Kand a tag value fun
tion v asso
iated with that state.The algorithm
alls the (ambiguous) tagged "-
losure for ea
h item inW , and
omputes the new tag value fun
tions a

ording to what tags have been en
oun-tered. In result the winning tag values for the rea
hed states as per �T are kept.Sin
e
alls to tagged-"-
losure are made, Algorithm 3.3 takes O(jW jCT jKj2jT j)time, where CT is the time to perform a �T
omparison.The
ulprit of this algorithm is the way it gathers exponential worst-
ase sizesets of items and then
ompares their elements to �nd out the minimum tagvalue fun
tions. The following algorithm
omputes the unambiguous tagged "-
losure as de�ned by ��M , whi
h is equivalent to Algorithm 3.3 if the automatonis
onsistent (see De�nition 3.5).

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 29
Algorithm 3.4 (���M "-
losure)1 for ea
h pair hq; vi in W , add q to queue2 initialize result to W3 for ea
h q in K set
ount(q) to the input order of q4 while queue is not empty do5 remove the �rst item, q1, from queue6 for ea
h q2 and t su
h that hq1; "; t; q2i 2 � do7 let v2(x) = � pos if x = t and t 6= !v1(x) otherwise8 if result(q2) is de�ned and v2 �T result(q2)or result(q2) is unde�ned then9 set result(q2) to v210 de
rease
ount(q2) by one11 if
ount(q2) = 0 then12 prepend q2 to queue13 set
ount(q2) to the input order of q214 else15 append q2 to queue16 endif17 endif18 done19 done20 return result

This algorithm handles the
ase in Figure 3.4 in linear time, whi
h is naturallya signi�
ant improvement to Algorithm 3.3. Note, however, that Algorithm 3.3and this algorithm do not solve the same problem, and therefore do not alwaysreturn the same result. Algorithm 3.4 solves a di�erent, more restri
ted, problem.To be spe
i�
, this algorithm
omputes the re�exive transitive
losure of�M over "-transitions, while Algorithm 3.3
omputes the
losure of `M over "-transitions and then uses �T to
hoose at most one tag value fun
tion for ea
hstate. If the automaton is
onsistent (see De�nition 3.5) then these problems arethe same; in general they are not.The
omplexity of Algorithm 3.4 is O(jT jj�jCT log jT j). The term log jT j
omes from using a fun
tional data stru
ture [15, 44, 45℄ for tag value fun
tions,jT j is present be
ause every tag may need to be set. j�j and CT are presentbe
ause the whole graph may need to be traversed CT times. Figure 3.5 shows aworst
ase for Algorithm 3.4.The following algorithm simulates a
onsistent TNFA M = hK;T;�;�; s; F ion an input string. The algorithm steps through the set of possible ��M
on�gu-rations by
onsuming one input symbol at a time.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 30
q0 q1 ""=t0 q5q3"=t1q2q4

"=t2q6 q7
"=tn... q4n�1

q9q8 ""

"

"" "
" "

"
" ""

q4n�2 q4n+1q4n

Figure 3.5: A worst
ase for Algorithm 3.4
Algorithm 3.5 (Simulating a TNFA)1 initialize rea
h to �M -"-
losure(fhs; v0ig)2 initialize pos to 0.3 while pos < jwj do4 fet
h the next input symbol
 from w5 initialize rea
hNext to ;6 for ea
h item hq; vi in rea
h do7 for ea
h transition hq;
; !; pi in � do8 add hp; vi to rea
hNext9 done10 done11 set rea
hNext to �M -"-
losure(rea
hNext)12 swap rea
h and rea
hNext13 set pos to pos + 114 done15 return fhq; vi j q 2 F; hq; vi 2 rea
hgGiven a TNFA and an input string w, this algorithm
omputes the set of pairshq; vi su
h that hs; "; w; v0i ��M hq; w; "; vi. In other words, the algorithm returnsall ways that the string w is tag-wise unambiguously a

epted by the automaton(see De�nition 3.4 on page 19). If w is not a

epted, the algorithm returns anempty set.For simpli
ity, the algorithm assumes that only "-transitions
an be tagged,and that only "-transitions and transitions on single input symbols are allowed.Any TNFA
an be easily
onverted to another TNFA whi
h follows this restri
-

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 31
tion, so generality is not lost by imposing these restri
tions.The formation of rea
hNext on lines 4�10 takes O(�) time. Ea
h
all tounambiguous-tagged-"-
losure on line 11 takes O(jT jj�jCT log jT j) time, as dis-
ussed above. For ea
h input symbol, both of the above are done exa
tly on
e,so the time
omplexity of the whole algorithm is O(T log TMCTN), where N isthe length of the input string. Parti
ularly, if CT = O(T), then the algorithmtakes O(NMT 2 log T) time in the worst
ase.
3.2 Deterministi
 Automata with Tagged TransitionsThere are many ways to simulate the operations of a TNFA deterministi
ally, andAlgorithm 3.5 in the previous se
tion is one. As is the
ase with traditional non-deterministi
 and deterministi
 automata,
omputations that
an be performedby an TNFA
an be pre
omputed to form a deterministi
 automaton. Naturally,all possible tag values
annot be enumerated �nitely, but fortunately this is notne
essary.As with traditional �nite automata, the usual time-spa
e trade-o�s apply;
onverting a TNFA into a deterministi
 automaton may take a lot of time, butneeds to be done only on
e, and the resulting automaton
an be implementedto pro
ess
hara
ters faster than the algorithm in the previous se
tion. A deter-ministi
 automaton may need mu
h more spa
e to store than a
orrespondingnondeterministi
 automaton, and time and spa
e
an be wasted in
omputingtransitions that are never used. Simulating a TNFA takes less spa
e, but isslower than with a deterministi
 automaton. Finally, the lazy transition eval-uation approa
h
an be used, where a deterministi
 automaton is
onstru
tedtransition by transition as needed, possibly keeping only a limited number ofpreviously
al
ulated transitions in a
a
he.
3.2.1 Converting Nondeterministi
 Tagged Automata to Deter-ministi
 Tagged AutomataTo a

ount for the fa
t that a TNFA
an be in many di�erent states after readingsome input symbols, a state in the deterministi

ounterpart, TDFA, is a set ofitems. Ea
h item in the set des
ribes one possible
on�guration the TNFA
anbe in. A situation is the
ombination of the
urrent state and tag values, and
anbe represented by a pair hs; ti, where s is a TNFA state and t is a value whi
hdes
ribes the
urrent value of all tags.A
tually, t does not need to be an expli
it des
ription of the values, it
an bejust a referen
e to a lo
ation (a pointer, if you will) whi
h
ontains the a
tualdes
ription. If we used expli
it tag value des
riptions as values of t, the numberof di�erent sets of situations would be in�nite. By using referen
es instead,

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 32
we gain two things. First, all possible TDFA states
an be �nitely enumeratedif we restri
t ourselves to a �nite set of lo
ations. Se
ond, by swapping the
ontents of di�erent memory lo
ations we
an
hange a TDFA state to appeardi�erent without
hanging its meaning. This makes the TDFA mat
her easier toimplement.De�nition 3.7 To represent the idea of lo
ations and referen
es formally, wede�ne an address to be a symbol ai, where i 2 N k for some k. The set of alladdresses is denoted by A. We also de�ne a fun
tion m from A to V representingmemory. Here V denotes the set of tag value fun
tions as in De�nition 3.2 onpage 16. �For example, to get the tag value fun
tion stored in m at address an, wesimply look up m(an).De�nition 3.8 To des
ribe operations on m and the tag value fun
tions storedthere, we de�ne C to be the set of possible instru
tions. C
onsists of two parts,Cs and C
, so that C = Cs [C
. Cs is the set of all strings of the form set(n; t)where n 2 Nk and t 2 T � f!g. C
 is the set of all strings of the form
opy(a; b)where a and b are in Nk. �The meaning of set(n; t) is that the tag value fun
tion m(an) is
hanged sothat t is mapped to pos. It may be that t already maps to pos in whi
h
asenothing
hanges when set(n; t) is performed.The meaning of
opy(x; y) is that the value at address ax is
opied to addressay. The
opy does not interfere with the original, so that set-operations onm(ax) do not
hange m(ay) or vi
e versa.Instru
tions
an be
on
atenated together to form sequen
es of instru
tions.These sequen
es are bounded with bra
kets, and the instru
tions are separated by
ommas. For example, [
opy(0; 1); set(1; 0)℄ �rst
opies the tag value fun
tionm(a0) to m(a1), and then
hanges the
opy so that m(a1)(0) = pos. The set ofall possible instru
tion sequen
es is denoted by C.De�nition 3.9 A deterministi
 �nite automaton with tagged transitions, or TDFA,is a 7-tuple M = hK;�; Æ; s;m0; F; V i, whereK is a �nite set of states,� is an alphabet, i.e., a �nite set of symbols,Æ is the transition fun
tion, a fun
tion from K �� to K � C.s 2 K is the initial state,m0 is a fun
tion from addresses to V spe
ifying the initial tag values, and

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 33
F � K is the set of �nal states. �V is the �nal tag value sele
tor, a fun
tion from F to A.a a aq1 q2"=t0q0

Figure 3.6: An example TNFAExample 3.3 The algorithm is outlined by means of an example. The exampleTNFA is shown in �gure 3.6. The TNFA
orresponds to the regular expressionfa�ga�a so that h0; t0i gives the submat
h.Now we begin to generate the TDFA, and the �rst step is to �nd the initialstate. The initial state of the TNFA is q0, and there is a tagged "-transitionfrom q0 to q1. Following the de�nition of ��M , the TNFA
an stay in state q0(��M is re�exive) or use the transition labeled "=t0 and enter state q1. Formally,hq0; "; w; v0i �M hq1; "; w; v1i for any w, where v0 = fht0;�1ig and v1 = fht0; 0ig.From these
onsiderations we form the initial state of the TDFA:Q0 = fhq0; a0i; hq1; a1igand the initial tag value fun
tionsm0 = fha0; fht0;�1igi; ha1; fht0; 0igigTDFA states are represented as sets of pairs hqi; ani, where qi is a TNFA stateand an is an address su
h thatm(an) is a tag value fun
tion spe
ifying the
urrenttag value fun
tion for state qi. This parti
ular state
an be interpreted to meanthat a TNFA
an be either in state q0 with m(a0) as the tag value fun
tion, orin state q1 with m(a1) as the tag value fun
tion.Next, if the symbol a is read, the TNFA
an
hoose any of the following foura
tions:� Move from hq0; a0i ba
k to q0. We take a
opy of m(a0) to some lo
ation,say x.� Move from hq0; a0i ba
k to q0 and then move to q1 using t0. We again takea
opy of m(a0) to some lo
ation y. Sin
e a t0 was en
ountered, we alsoneed to modify the
opy so that m(ay)(t0) = pos.� Move from hq1; a1i ba
k to q1, and take a
opy of m(a1) to z.� Move from hq1; a1i to q2, and take a
opy of m(a1) to w.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 34
From this we get the se
ond state of the TDFA: fhq0; axi; hq1; ayi; hq1; azi;hq2; awig. Note that a pair with q1 as the left item o

urs twi
e in this set.This means that there are two di�erent ways we
ould rea
h q1, and we must
hoose one. Now we will make an assumption; we assume that fht0; aig �Tfht0; big always, if a > b. While this is not true in general, we assume thatit is true for the �T that we are using. In this
ase m(ay)(t0) > m(az)(t0)always be
ause m(ay)(t0) = pos and pos is the largest tag value so far. Thereforealways m(ay) �T m(az), and the unambiguous state is: Q1 = fhq0; axi; hq1; ayi;hq2; awig.We have not yet assigned
on
rete values for x, y and w. Now that we havethe whole unambiguous state in sight, we
an freely
hoose any suitable lo
ationsfor the tag value fun
tions. In this
ase, we
an let x = 0, y = 1, and w = 2, andthe �nal unambiguous state is:Q1 = fhq0; a0i; hq1; a1i; hq2; a2igWe must add the instru
tions to
reate the proper tag value fun
tions tom(a0), m(a1), and m(a2) during the transition from Q0 to Q1. So, we add to ourtransition fun
tion the entry Æ(Q0; a) = hQ1; [
opy(1; 2);
opy(0; 1); set(1; 0)℄i.Finally, we noti
e that Q1
ontains q2, whi
h is a �nal state. Thus, Q1 isalso �nal, and we add Q1 to F . If the input string ends with the TDFA in stateQ1, then
orresponding TNFA would have to be in state q2 in order to produ
ea mat
h. The �nal tag values will then be in the tag value fun
tion asso
iatedwith q2, that is, at a2. To re�e
t this, we add the entry V (Q1) = a2 to the �naltag value sele
tor fun
tion V .When the symbol a is read while in state Q1, the TNFA
an
hoose any ofthe following four a
tions:� Move from hq0; a0i ba
k to q0. We take a
opy of m(a0) to lo
ation x.� Move from hq0; a0i ba
k to q0 and then move to q1 using t0. We take a
opyof m(a0) to lo
ation y and modify it so that m(ay)(t0) = pos.� Move from hq1; a1i ba
k to q1, and take a
opy of m(a1) to lo
ation z.� Move from hq1; a1i to q2, and take a
opy of m(a1) to lo
ation w.In the same way as before, we get the ambiguous state fhq0; axi; hq1; ayi;hq1; azi; hq2; awig. Like before, m(ay) �T m(az) always, and the unambiguousstate is fhq0; axi; hq1; ayi; hq2; awig. But this is just the same as Q1 if we letx = 0, y = 1 and w = 2. Thus we have a loop in our TDFA from Q1 toQ1 on reading a. The
orresponding transition fun
tion entry is Æ(Q1; a) =hQ1; [
opy(1; 2);
opy(0; 1); set(1; 0)℄i.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 35
Now the
onstru
tion of the TDFA is
omplete. The TDFA is hK;�; Æ; s;m0; F; V i,where K = fQ0; Q1g� = fags = Q0m0 = fha0; fht0;�1igi; ha1; fht0; 0igigF = fQ1gV = fhQ1; a2igand Æ is the fun
tion tabulated below.q w q0
Q0 a Q1 [
opy(1; 2);
opy(0; 1); set(1; 0)℄Q1 a Q1 [
opy(1; 2);
opy(0; 1); set(1; 0)℄ �During the HiBase proje
t I implemented a TNFA to TDFA
ompiler pro-totype. The
ompiler didn't use the lazy transition evaluation approa
h, butalways
reated the full TDFA before pro
essing input. The
ompiler sour
e
ode,written in a prototype fun
tional programming language Shines [45℄, should beavailable from the WWW sometime in the future at http://hibase.
s.hut.fi/.Pseudo-
ode for the
onversion algorithm
an be found in [31℄.Be
ause Shines is not optimized for
omputationally intensive tasks, butrather for database appli
ations, the performan
e of the TDFA implementationis modest. However, it did pass all tests for
orre
tness, and shows that the algo-rithm outlined above is feasible. The inner loop of the TDFA simulator is quitesimple suggesting that an implementation using a lower-level language, su
h asC [27℄, would probably be e�
ient.

3.3 Related Problems
The tagged transition model
an be extended to a more generi
 model wheretransitions are augmented with
omputable fun
tions whi
h manipulate somearbitrary data. This makes it possible to
reate for example an automaton whi
h
ounts the number of times a
ertain transition is used. Using fun
tional datastru
tures [15, 44, 45℄ this more generi
 model
an be simulated e�
iently. Thefollowing two se
tions show two good examples of the ways the tagged transitionmodel
an be extended to solve related problems.

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 36
3.3.1 Full ParsingThe submat
h addressing algorithm
an be extended to store full parse data andstill retain the same time
omplexity. Spa
e
omplexity will rise to O(jwj), sin
ean expli
it representation of a full parse tree
annot be stored in less spa
e in theworst
ase.To get full parse data, we must not dis
ard old tag values when a tag isen
ountered repeatedly, but store all the positions in the input string where tagswere en
ountered. This
an be easily a
hieved by
hanging the new tag valuefun
tion in the de�nition of `M (on page 16) to the following:

v0(x) = � hjp0j; v(x)i if t 6= ! and x = tv(x) otherwise.This new de�nition will a

umulate all positions in the input string wheretags were seen into a list (lisp programmers will �nd this representation of listsas nested pairs familiar) where �1 marks the end of the list. The de�nition of�T will of
ourse need to be
hanged to
ompare the �rst values of the lists.After this simple
hange a
on
rete parse tree
an be built from the lists oftag values easily in O(jwj) time.
3.3.2 Approximate Regular Expression Mat
hingThe submat
h addressing algorithm
an be easily extended to an approximateregular expression mat
hing algorithm. Approximate pattern mat
hing allowsmat
hes to be approximate, that is, allows the mat
hes to be
lose to the sear
hedpattern under some measure of
loseness. One
ommonly used measure is edit-distan
e, also known as the Levenshtein distan
e [33℄, where
hara
ters
an beinserted, deleted, or substituted in the sear
hed text in order to get an exa
tmat
h. Ea
h insertion, deletion, or substitution adds the distan
e, or
ost, of themat
h.There has been some previous work on approximate regular expression mat
h-ing. In [38℄ Muºátko presents nondeterministi
 automata for approximate reg-ular expression mat
hing, but
on
ludes that �simulation of a nondeterministi
automaton is of a high time
omplexity� without doing any
on
rete
omplexityanalysis.In [39℄ Myers and Miller give an algorithm to solve the problem in O(MP)time, given a string of length M and a regular expression of length P . This isasymptoti
ally no worse than for the simpler problem of approximate mat
hingof simple keywords. The paper also gives an O(MP (M + P) + N2 logN) timealgorithm for arbitrary in
reasing gap penalties. In [29℄ Knight and Myers de-

CHAPTER 3. AUTOMATA WITH AUGMENTED TRANSITIONS 37
s
ribe an O(MP (logM + log2 P)) algorithm for approximate regular expressionmat
hing with
on
ave gap penalties [40℄.De�nition 3.10 (Approximate RE mat
h) A string w mat
hes the regularexpression E approximately with
ost
 if some w0 2 L(E)
an be transformedto w with
 insertions, deletions, or substitutions. �Any string mat
hes any regular expression with some
ost, so a useful algo-rithm is one that
an be used to tell whether there is a mat
h with a
ost lowerthan some threshold value, or to �nd the minimum
ost. Some algorithms let therelative
osts of insertions, deletions and substitutions to be
hanged arbitrarily.These
osts are denoted by
i,
d, and
s, respe
tively.The approximate mat
hing algorithm is
onstru
ted by
hanging the modi�edThompson's
onstru
tion in Se
tion 3.1.1 as follows:For a 2 �, M(a) is a :=

+
ii f:=

+
s"=

+
d
Here i is a new initial state and f a new �nal state. This ma
hine re
ognizes:

1. fag Æ nz }| {� Æ : : : Æ � with the side-e�e
t that
 is in
reased by n
i.
2. nz }| {� Æ : : : Æ � with the side-e�e
t that
 is in
reased by
d + n
i.
3. � Æ nz }| {� Æ : : : Æ � with the side-e�e
t that
 is in
reased by
s + n
i.Now, if we de�ne T , the set of tags, to
ontain only
 and use plain integer
omparison as �T , the TNFA simulation algorithm be
omes an algorithm whi
h�nds the minimum
ost for whi
h the input string mat
hes the regular expres-sions. Sin
e jT j = O(1), the algorithm takes O(MN) time to mat
h a string oflength N against a regular expression of size M .

Chapter 4
An Implementation
This
hapter des
ribes my implementation of a regular expression mat
her whi
happlies the algorithms studied in this thesis. The aim was to
reate a generalpurpose regular expression mat
hing library; the library should be robust andsu�
iently good for a wide variety of uses. The TNFA mat
her implementation,in
luding the C language sour
e
ode, is available as free software. It
an bedownloaded from the WWW at http://www.iki.fi/vl/libtre/. The proof-of-
on
ept TDFA implementation dis
ussed in Se
tion 3.2.1 should be availablefrom the WWW at http://hibase.
s.hut.fi sometime at the future.A typi
al use for a general purpose mat
her is sear
hing for all non-overlappingo

urren
es of relatively simple patterns from a long text. For example, a sear
h-and-repla
e utility in a text editor
ould be implemented in this way. The mat
hershould not s
an more text that absolutely ne
essary to �nd the next mat
h � ifthe mat
her would s
an the whole text even though the �rst mat
h is returned,sear
hing for su

essive o

urren
es of the pattern will then take quadrati
 time.The implementation may not even use strlen() or similar for �nding out thelength of the text.Another typi
al use
ase is sear
hing for texts whi
h mat
h a pattern from alarge number of short texts. For example, the popular UNIX utility grep worksthis way; ea
h line of the input data is sear
hed for a mat
h and the mat
hinglines are output. Note that this use does not require any kind of submat
haddressing.A third typi
al use
ase is dividing a text into words or tokens whi
h aredes
ribed using regular expressions. Traditionally this kind of pro
essing hasbeen done using spe
ialized tools, but there are situations where it makes senseto avoid using lexer generators in favor of a library.Most regular expression mat
hing libraries require that the patterns must be
ompiled into some internal representation before they
an be used for mat
hing.

38

CHAPTER 4. AN IMPLEMENTATION 39
Some appli
ations use a large number of regular expressions for various purposes,and
ompile them when the appli
ation is started. If
ompilation takes a very longtime, then the appli
ation takes a very long time to start. Therefore,
ompilingregular expressions should be as fast as possible.The POSIX standard is a widely used and a

epted API for regular expres-sion libraries, so it seemed natural to implement a POSIX
ompatible mat
her.This gives also the bene�t that are numerous other implementations to
ompareagainst.A TNFA based implementation would be suitable for a POSIX
ompatiblemat
her, be
ause of the restri
tion that
ompiling regular expressions should nottake long. A lazy TDFA generating algorithm might also be a

eptable, butwould be mu
h more
omplex and use a lot more memory, so I de
ided to goahead with a TNFA implementation.There are numerous methods for
onverting regular expressions to �nite au-tomata [8, 9, 10, 46, 36℄, making an NFA mat
her run faster [2, 41℄, redu
ing thespa
e requirements for the transition tables [4, 5, 12, 17, 52℄, and other usefulmethods and tri
ks [18, 42, 53℄. Most of these are probably appli
able to TNFAsand TDFAs perhaps with slight modi�
ations.
4.1 Sa
ri�
ing ComplexityAny NFA with "-transitions
an be
onverted to an NFA without "-transitions.In the worst
ase, the modi�ed NFA has O(n2) transitions if n is the number oftransitions in the original NFA. This happens for example with NFA's
onvertedfrom regular expressions of the form (ajaj : : : ja)� with Thompson's
onstru
tion.However, it is easier to implement a fast simulation routine for an NFA without"-transitions.Fun
tional data stru
tures [15, 44, 45℄ are also hard to implement very ef-�
iently. A tree-like fun
tional O(logn) time data stru
ture is slower than a
opying O(n) time routine for small n, due to overhead from referen
e
ountingor garbage
olle
tion, memory allo
ation and freeing, and other
onstant fa
torsrising from the more
ompli
ated implementation.Taking the above into
onsideration, I de
ided to implement an algorithmwhi
h is based on TNFA's without "-transitions. I also de
ided to use a
opyingO(n) routine for tag value sets, sin
e the number of tags is usually very low inpra
ti
e, and modern
omputers are
apable of
opying small memory blo
ksvery e�
iently.The resulting algorithm is des
ribed in the next se
tion. It uses O(NM2T)time, but is presumably faster than an implementation of the O(NMT 2 log T))time algorithm for most pra
ti
al patterns.

CHAPTER 4. AN IMPLEMENTATION 40
4.2 Generating "-free Tagged Automata from RegularExpressions"-free nondeterministi
 automata with tagged transitions
an be generated fromregular expressions using a modi�ed version of the method des
ribed in [5℄, Se
-tion 3.9. Note that the aim here is to
reate an "-free nondeterministi
 automa-ton, not a deterministi
 automaton. Se
tion 3.9 of [5℄ targets for a deterministi
automaton by �rst
reating an "-free nondeterministi
 automaton as an interme-diate phase.A regular expression is represented by a syntax tree with basi
 symbols andtags at the leaves and operators at the interior nodes. Symbol leaves in thesyntax tree for a regular expression are labeled by symbols in the alphabet. Toea
h alphabet leaf (a leaf not labeled by " or a tag) we atta
h a unique integerand refer to this integer as the position of the leaf.To
reate an "-free TNFA for a tagged regular expression E we �rst augmentit by forming the expression (E)#. The symbol # is not a part of the originalalphabet and is used to get a unique �nal state later.The fun
tions nullable, �rstpos , and lastpos are
al
ulated for ea
h syntaxtree node. These
an be formed using the indu
tive rules in Table 4.1 by workingup the syntax tree from the bottom; in ea
h
ase the indu
tive rules
orrespond

Table 4.1: Rules for
omputing nullable and �rstpos .Node n nullable(n) �rstpos(n)" true ;tx true ;leaf at posi-tion i false fhi; ;ig

1 j
2 nullable(
1) or nullable(
2) �rstpos(
1) [�rstpos(
2)

1
2Æ nullable(
1) and nullable(
2)
if nullable(
1) then�rstpos(
1) [addtags(�rstpos(
2);emptymat
h(
1))else�rstpos(
1)endif�
1 true �rstpos(
1)

CHAPTER 4. AN IMPLEMENTATION 41
Table 4.2: Rules for
omputing emptymat
h.Node n emptymat
h(n)" ;tx ftxgleaf ;

1 j
2
if nullable(
1) thenemptymat
h(
1)elseemptymat
h(
2)endif

1
2Æ emptymat
h(
1) [emptymat
h(
2)
�
1

if nullable(
1) thenemptymat
h(
1)else;endif
to the three operators, alternation,
on
atenation, and repetition. The rules forlastpos are the same as those for �rstpos, but with
1 and
2 reversed, and arenot shown.The fun
tion emptymat
h is de�ned in Table 4.2.The fun
tion addtags takes as arguments a set of pairs hp; ti
alled P and aset of tags T , where p is a position and t is a set of tags. The fun
tion returns anew set of pairs fhp; t0i j hp; ti 2 P and t0 = t [TgThe �rst and se
ond rules for nullable state that if n is a leaf labeled " or atag tx, then nullable(n) is true. The third rule states that if n is a leaf labeled byan alphabet symbol, then nullable(n) is false. In this
ase, ea
h leaf
orrespondsto a single input symbol, and therefore
annot generate ". The rest of the rulesfor nullable follow dire
tly from the algebrai
 properties of the
orrespondingoperators.As another example, the �fth rule for �rstpos says that if in an expressionrs, r generates ", then the �rst positions of s �show through� r and are also �rstpositions of rs. Any tags whi
h will be used in r when generating " are added tothe result. If r does not generate ", then only the �rst positions of r are the �rstpositions of rs. The reasoning behind the remaining rules of �rstpos are similar.

CHAPTER 4. AN IMPLEMENTATION 42
When the fun
tions �rstpos and lastpos have been
omputed for ea
h node inthe tree, we
an pro
eed to generate the transition relation � of the "-free TNFA.Basi
ally, the transition relation tells us what positions
an follow a position inthe syntax tree and whi
h tags are used to get there. The transition relation isa set of quadruples hqa; u; T; qbi, where T is a set of tags. The meaning of su
ha quadruple is that the TNFA, when in state qa, may
onsume the input symbolu from the input string, set the values of tags in T to the
urrent position inthe input string, and enter state qb. Two rules de�ne
an be used to
ompute alltransitions from an annotated syntax tree:
1. If n is a
atenation node with left
hild
1 and right
hild
2, and hp; tiis an item in lastpos(
1), then for ea
h item hp0; t0i in �rstpos(
2), addhqp; u; t[t0; qp0i to �. Here u is the input symbol
orresponding to positionqp.2. If n is a repetition node, and hp; ti is an item in lastpos(n), then for allitems hp0; t0i in �rstpos(n), add hqp; u; t [t0; qp0i to �. As before, u is theinput symbol
orresponding to position qp.If �rstpos and lastpos have been
omputed for ea
h node, �
an be
omputedby making one depth-�rst traversal of the syntax tree.The initial states and initial tag values are determined by the �rstpos of theroot node. For example, if �rstpos = fh1; ft0gi; h2; ft1gig, then q1 and q2 areinitial states. The initial tag values at q1 are 0 for t0 and �1 for all other tags.The initial tag values at q2 are 0 for t1 and �1 for all other tags.Example 4.1 Figure 4.1 shows �rstpos and lastpos for the nodes in a syntaxtree for f(ajb)�gabb#. Figure 4.2 shows the "-free TNFA
omputed from theannotated syntax tree.

4.3 Eliminating Unne
essary TagsIt is often possible to remove some tags from a syntax tree without losing anysubmat
h addressing information. The used submat
h addressing rules (the ruleswhi
h are used to de
ide whi
h one of the set of possible submat
hes are
ho-sen) a�e
t tag elimination in subtle, but
ompli
ated ways. Therefore I will notpresent an algorithm for eliminating tags from an annotated syntax tree. Instead,a few examples are shown to give a general idea of how su
h an algorithm mightwork.Example 4.2 The regular expression fag� has a syntax tree shown in Figure4.3. This
an be
hanged to the one in Figure 4.4 without losing any submat
h

CHAPTER 4. AN IMPLEMENTATION 43
Æ
bÆ #

t0
bÆÆÆÆfh1; ft0gi; h2; ft0gig fh1; ;i; h2; ;igfh1; ft0gi; h2; ft0gig fh3; ;ig fh4; ;ig fh5; ;ig fh6; ;ig

fh5; ;igfh4; ;ig
fh6; ;ig

fh4; ;ig fh5; ;ig fh6; ;ig

; ; fh1; ;i; h2; ;igfh1; ;i; h2; ;ig
fh2; ;igfh1; ;ig a fh1; ;ig

�j bfh1; ;i; h2; ;igfh1; ;i; h2; ;ig
fh2; ;ig

afh3; ;ig fh3; ;igfh1; ft1gi;h2; ft1gigt1 ;;
fh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gigfh1; ft0; gi; h2; ft0gi; h3; ft0; t1gig

Figure 4.1: �rstpos and lastpos for nodes in syntax tree for f(ajb)�gabb#.
q1 q2 q3 q4 q5 q6a a b b
a b

b=t1b
ft0; t1g

a=t1
ft0g ft0g

Figure 4.2: The "-free TNFA
omputed from the tree in Figure 4.1
addressing
apabilities. In the box beside Figure 4.4, e signi�es the position ofthe next symbol after the mat
h. If the mat
h has zero length, then e � 1 < eand the submat
h addressing data
omputed would be invalid. This situation
an be
he
ked as a spe
ial
ase. �Example 4.3 The regular expression afbf
gjfdg�g� has a syntax tree shown inFigure 4.5. This
an be
hanged to the one in Figure 4.6 without losing anysubmat
h addressing
apabilities. As
an be seen from the �gures, tags t2 and t3

Æ
�Æ
a t1t0

Figure 4.3: AST for fag�

CHAPTER 4. AN IMPLEMENTATION 44�a t0 = e� 1t1 = eFigure 4.4: Optimized AST for fag�

Æb t2 Æ
 t3
Æ

Æ� Æt0
Æa

j
Æt4 Æd t5
� t1

�Æ

Figure 4.5: AST for afbf
gjfdg�g�
are
ombined into t01, and tags t4 and t5 are
ombined into t02 and lifted outsidethe s
ope of the iteration operator. Tag t0 has been left in its original position,and t1 has been removed altogether. �

Æ� jÆÆ

Æ�b d

Æa
t00

t01 t02

t0 = t00t1 = et2 = t01 � 1t3 = t01t4 = t02 � 1t5 = t02
Figure 4.6: Optimized AST for afbf
gjfdg�g�

Chapter 5
Experiments
This
hapter gives some experimental results whi
h were obtained using the im-plementation dis
ussed in the previous
hapter.The performan
e
hara
teristi
s of regular expression mat
hers are
omplexmatters. Depending on the used regular expressions and the strings being sear
hed,the performan
e of an implementation may vary signi�
antly. Ea
h implementa-tion employs a di�erent set of optimizations and tri
ks whi
h
an be applied indi�erent situations.In addition to performan
e, another important
hara
teristi
 of an implemen-tation is
orre
tness. Surprising as it may seem, performan
e and
orre
tnessare often intimately related. Some implementations have bugs whi
h speed upmat
hing in some
ases, but
ause in
orre
t results in some other
ases. There-fore it does not make sense to
ompare implementations with di�erent semanti
s;the semanti
s of the mat
her have profound in�uen
e on inherent performan
eproblems and optimizations.My implementation is POSIX
ompatible. There is no industry-wide agree-ment on a realisti
 set of ben
hmarks for POSIX regexp mat
hers. None have evenbeen proposed. Therefore, it would be possible to show results whi
h suggest thatmy implementation seems to be always faster than other implementations, or re-sults whi
h seem to indi
ate that my implementation is typi
ally slower thanothers.For these reasons, I have tried to be very
areful about what
on
lusionsto draw from the ben
hmark results. The results shown in this
hapter shouldbe mostly regarded only as demonstrations of some of the
hara
teristi
s of myimplementation and some other implementations.

45

CHAPTER 5. EXPERIMENTS 46
5.1 Test Setup
In addition to my TNFA implementation, the same ben
hmarks were also donefor GNU regex-0.121 and ha
kerlab version 20010609. Both libraries
laim tobe POSIX.2
ompatible, and are generally regarded to be of good quality. Bothlibraries are written in the C programming language [27℄, and so is the TNFAmat
her.The tests
onsisted of timing the mat
hing operation regexe
 for di�erentpatterns and input strings of di�erent lengths. The time used by the regex
ompilation operation reg
omp for di�erent patterns was not tested.The tests were performed on a PC with a Celeron 300A pro
essor (running at450MHz, with 128 KB L2
a
he and a 100 MHz front side bus), 128 MB memory,and running Linux 2.4.4. The used C
ompiler was the GNU C
ompiler (g

),version 2.95.Standard statisti
s te
hniques were used to
al
ulate 95%
on�den
e intervalsfor the test results using the T-distribution. The deviations were negligible, sothe results presented in the next se
tion
an be
onsidered quite a

urate.

1There are many di�erent versions of GNU regex with the version label 0.12. I used theversion available from ftp://ftp.gnu.org/pub/gnu/prep/regex/.

CHAPTER 5. EXPERIMENTS 47
5.2 Test Results

0.01

0.1

1

10

100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.1: Test results for pattern (a)* and string aaaa: : :Figure 5.1 shows the results for a very basi
 regular expression, (a)*, andstring aaaa: : :. Note the logarithmi
 s
ale on both axes. As
an be seen fromthe �gure, the di�eren
e between ha
kerlab and the others is huge. Ha
kerlabperforms very badly for some reason. It takes over ten se
onds to mat
h a onekilobyte string with ha
kerlab where the TNFA implementation s
ans somethinglike 40 megabytes in the same time.Table 5.1: Mat
hing speeds for test 1TNFA GNU regex ha
kerlab3710000
ps 1190000
ps 901
ps

CHAPTER 5. EXPERIMENTS 48

0

1

2

3

4

5

6

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.2: Test results for pattern (a*) and string aaaa: : :Figure 5.2 shows the results for regular expression (a*), slightly di�erentfrom the regular expression in test 1 in terms of submat
h addressing, and stringaaaa: : :. The slow behavior of ha
kerlab does not apply to this
ase, and it faresmu
h better this time. GNU regex is now the slowest implementation takingabout twi
e as mu
h time as the TNFA implementation and ha
kerlab.Table 5.2: Mat
hing speeds for test 2TNFA GNU regex ha
kerlab3710000
ps 1850000
ps 3130000
ps

CHAPTER 5. EXPERIMENTS 49

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.3: Test results for pattern (a*)*|b* and string aaaa: : :Figure 5.3 shows the results for pattern (a*)*|b* and string aaaa: : :. Thistest illustrates a weakness in the ba
ktra
king algorithm used by GNU regex.Note the logarithmi
 s
ale on both axes.The time used by GNU regex grows exponentially with the length of theinput. At about 25
hara
ters the mat
hing time be
omes too long in pra
ti
efor any sensible use. Both the TNFA implementation and ha
kerlab handle thistest well, with the TNFA implementation beating ha
kerlab by approximately40%. Table 5.3: Mat
hing speeds for test 3TNFA GNU regex ha
kerlab3250000
ps N/A 2330000
ps

CHAPTER 5. EXPERIMENTS 50

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
on

ds
)

Pattern length (number of alternation operators plus one)

TNFA

Figure 5.4: Test results for pattern (a|a|: : :|a)* and string aaaa: : : of length220.Figure 5.4 shows the results for pattern (a|a|: : :|a)* and string aaaa: : :.This test shows the worst
ase behavior of the TNFA mat
her. Note that the
hanging parameter in this test is the pattern, not the input string length as inthe other tests. The length of the text in this test was
onstant 10 megabytes.In the worst
ase, the time used by the TNFA implementation grows quadrat-i
ally with the length of the pattern (see Se
tion 4.1). Neither GNU regex orha
kerlab were able to perform this test at all. GNU regex's ba
ktra
king al-gorithm runs out of sta
k spa
e almost immediately. Ha
kerlab on the otherhand showed nonlinear growth of mat
hing time when the input length (not thepattern length) was rising, and took over two minutes to mat
h a 32 kilobytestring with the regular expression (a|a)*. There was no hope of getting results
omparable with TNFA, so ha
kerlab was �disquali�ed�.Table 5.4: Mat
hing speeds for test 4TNFA GNU regex ha
kerlabN/A no result no result

CHAPTER 5. EXPERIMENTS 51

0

0.5

1

1.5

2

2.5

3

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

strstr
TNFA

Figure 5.5: Test results for pattern foobar and string aaaa: : :foobarFigure 5.5 shows the results for pattern foobar and string aaaa: : :foobar.This test demonstrates the speed of the implementations when given a simplesubstring sear
hing task.Ha
kerlab performs very well. This was anti
ipated, as ha
kerlab is based onDFA simulation and submat
h addressing is not needed at all for this test. For
omparison, Figure 5.5 shows also the timings for the C fun
tion strstr, fromthe GNU C library version 2.1.3, whi
h lo
ates a substring from a string.Table 5.5: Mat
hing speeds for test 5TNFA GNU regex ha
kerlab strstr8370000
ps 4180000
ps 17900000
ps 75600000
ps

CHAPTER 5. EXPERIMENTS 52

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.6: Test results for pattern a*foobar and string aaaa: : :foobarFigure 5.6 shows the results for pattern a*foobar and string aaaa: : :foobar.This test is a variation of the previous one. All implementations s
an theinput slower than in the previous test, with roughly half the speed.Table 5.6: Mat
hing speeds for test 6TNFA GNU regex ha
kerlab3580000
ps 2540000
ps 7520000
ps

CHAPTER 5. EXPERIMENTS 53

0

5

10

15

20

25

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.7: Test results for pattern (a)*foobar and string aaaa: : :foobarFigure 5.7 shows the results for pattern (a)*foobar and string aaaa: : :foobar.This is another variation of test number �ve. Now submat
h addressing isbrought in by adding the parentheses to the pattern. The TNFA mat
her handlesthis
ase almost as fast as the previous one. Both ha
kerlab and GNU regex slowdown to about a �fth of their speed in the previous test.Table 5.7: Mat
hing speeds for test 7TNFA GNU regex ha
kerlab3480000
ps 495000
ps 1620000
ps

CHAPTER 5. EXPERIMENTS 54

0

5

10

15

20

25

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.8: Test results for pattern (a|b)*foobar and string abbaba: : :foobarFigure 5.8 shows the results for pattern (a|b)*foobar and string aaaa: : :foobar.This is yet another variation of test number �ve, with more
ompli
ated submat
haddressing added by introdu
ing the alternation operation and a string of randoma's and b's before the su�x foobar.The speed of the TNFA mat
her drops down to about 40 per
ent of the speedin the previous test. GNU regex and ha
kerlab perform with approximately thesame speed as in the previous test.Table 5.8: Mat
hing speeds for test 8TNFA GNU regex ha
kerlab1400000
ps 440000
ps 1630000
ps

CHAPTER 5. EXPERIMENTS 55
5.3 Summary

Table 5.9: Mat
hing speed summarytest number TNFA GNU regex ha
kerlab1 3710000
ps 1190000
ps 901
ps2 3710000
ps 1850000
ps 3130000
ps3 3250000
ps N/A 2330000
ps4 N/A no result no result5 8370000
ps 4180000
ps 17900000
ps6 3580000
ps 2540000
ps 7520000
ps7 3480000
ps 495000
ps 1620000
ps8 1400000
ps 440000
ps 1630000
psTable 5.9 shows a summary of the test results. As
an be seen from the table,the TNFA implementation seems to perform rather well. While it is
ertain thatthese results are not
on
lusive, and it is not even
lear what a set of
on
lu-sive tests would
onsist of (see the beginning of this
hapter), it seems that theTNFA implementation has some interesting qualities not present in GNU regexor ha
kerlab.Perhaps the most
onvin
ing treat of the TNFA mat
her is its predi
tability;the mat
her
an perform reasonably well with any regular expression and inputstring. When the input string grows longer, worst-
ase mat
hing time in
reasesalways linearly.

Chapter 6
Future Work
Resear
hing in more detail the nature of
onsistent TNFAs would be interesting.It is easy to restri
t the tag ordering fun
tion and the use of tags in a TNFA toensure
onsisten
y, but it would be interesting to know whether tags
ould beused without restri
tions if the tag ordering fun
tion is of the form in Equation3.1.It is also an open problem whether TNFAs
an be
onverted to TDFAs infull generality while retaining the simpli
ity required for good performan
e. Analgorithm is outlined in this thesis for doing the
onversion and a proof-of-
on
eptTDFA implementation in [31℄ is referred to, but problems with following the tagordering fun
tion are sidestepped. A C-language [27℄ implementation of a TDFAmat
her would be required to evaluate the performan
e gain
ompared to TNFAsin pra
ti
e.An implementation of the approximate regular expression mat
hing algorithmoutlined in Se
tion 3.3.2 would be wel
ome. There are a few tools for approximateregular expression mat
hing in the style of grep, and it would be interesting tosee if the TNFA-based algorithm makes a di�eren
e. It would also be sensible to�nish the POSIX mat
her prototype, so it
ould be used as a drop-in repla
ementfor other implementations.

56

Chapter 7
Con
lusion
The main obje
tive of this thesis was to �nd an e�
ient solution to the submat
haddressing problem, suitable to be used in a general purpose regular expressionmat
hing library.I evaluated several existing algorithms and found them problemati
, eitherbe
ause of exponential worst-
ase mat
hing times or linear spa
e
onsumptionwhere
onstant spa
e would a
tually su�
e. Some
andidates
ould handle onlya subset of all regular expressions, whi
h was not a

eptable.My proposed solution, tagged nondeterministi
 �nite automata (TNFA), isan extension to traditional �nite automata where transitions are augmented withoperations to keep tra
k of submat
h beginning and ending positions while mat
h-ing. Algorithms for e�
iently simulating TNFAs with a single pass over the inputstring were given.The TNFA algorithm is
apable of �nding submat
hes, de
ided by tags andthe tag ordering fun
tion whi
h
an be easily
hanged to a

ommodate a varietyof submat
h addressing rules. The algorithm �nds the solution in one linear-time pass of the input string for any regular expression and input string. Thespa
e
onsumption during mat
hing is
onstant, depending only on the regularexpression but not the input string. In the author's knowledge, this is a newresult.A POSIX.2
ompatible TNFA mat
her was implemented as a part of thethesis work. The ben
hmarking results suggest that the implementation performsfavorably against some popular implementations of di�erent algorithms solvingthe same problem. The TNFAmat
her implementation, in
luding the C languagesour
e
ode, is available as free software. It
an be downloaded from the WWWat http://www.iki.fi/vl/libtre/.

57

Bibliography
[1℄ A. V. Aho. Algorithms for �nding patterns in strings. In Algorithms andComplexity, volume A of Handbook of Theoreti
al Computer S
ien
e,
hap-ter 5, pages 255�300. Elsevier S
ien
e Publishers B.V., 1990.[2℄ A. V. Aho, J. Hop
roft, and J. D. Ullman. The Design and Analysis ofComputer Algorithms. Addison-Wesley, Reading, MA, 1974.[3℄ A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK ProgrammingLanguage. Addison-Wesley, Reading, MA, 1988.[4℄ A. V. Aho and D. Lee. Storing a dynami
 sparse table. In Pro
eedings of the27th Annual Symposium on Foundations of Computer S
ien
e, pages 55�60,Los Angeles, CA, 1986. IEEE Computer So
iety Press.[5℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin
iples, Te
hniquesand Tools. Addison-Wesley, Reading, MA, 1986.[6℄ Ameri
an National Standards Institute (ANSI). Coded Chara
ter Set - 7-Bit Ameri
an Standard Code for Information Inter
hange. Standard ANSIX3.4-1986, 1986.[7℄ D. Angluin. Finding patterns
ommon to a set of strings (extended ab-stra
t). In Pro
eedings of the eleventh annual ACM Symposium on Theoryof Computing, pages 130�141, Atlanta, Georgia, 30 Apr. 1979.[8℄ V. Antimirov. Partial derivatives of regular expressions and �nite automaton
onstru
tions. Theoreti
al Comput. S
i., 155(2):291�319, 11 Mar. 1996.[9℄ G. Berry and R. Sethi. From regular expressions to deterministi
 automata.Theoreti
al Comput. S
i., 48(1):117�126, 1986.[10℄ J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481�494,O
t. 1964.[11℄ C. L. A. Clarke and G. V. Corma
k. On the use of regular expressions forsear
hing text. ACM Trans. Prog. Lang. Syst., 19(3):413�426, May 1997.

58

BIBLIOGRAPHY 59
[12℄ M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide,H. Rohnert, and R. E. Tarjan. Dynami
 perfe
t hashing: Upper andlower bounds. SIAM Journal on Computing, 23(4):738�761, Aug. 1994.http://epubs.siam.org/sam-bin/dbq/arti
le/19409.[13℄ D. Dubé and M. Feeley. E�
iently building a parse tree from a regularexpression. A
ta Informati
a, 37(2):121�144, 15 Sept. 2000.[14℄ B. DuCharme. XML: The Annotated Spe
i�
ation. Prenti
e Hall, UpperSaddle River, NJ, 1999.[15℄ M. Erwig. Fun
tional programming with graphs. In 2nd ACM SIGPLANInternational Conferen
e on Fun
tional Programming, pages 52�56, 1997.[16℄ D. J. Farber, R. E. Griswold, and I. P. Polonsky. SNOBOL, A string ma-nipulation language. J. ACM, 11(1):21�30, Jan. 1964.[17℄ M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table withO(1) worst
ase a

ess time. J. ACM, 31(3):538�544, July 1984.[18℄ A. Ginzburg. A pro
edure for
he
king equality of regular expressions.J. ACM, 14(2):355�362, 1967.[19℄ J. Hartmanis. On the su

in
tness of di�erent representations of languages.SIAM J. Comput., 9(1):114�120, 1980.[20℄ B. C. P. Haruo Hosoya, Jér�me Vouillon. Regular expression types for XML.In Pro
eedings of the �fth ACM SIGPLAN international
onferen
e on Fun
-tional programming, pages 11�22, Montreal, Canada, 18�21 Sept. 2000.[21℄ H. Hosoya and B. C. Pier
e. Regular expression pattern mat
hing for XML.In Pro
eedings of the symposium on Prin
iples of programming languages,pages 67�80, London, United Kingdom, 17�19 Jan. 2001.[22℄ C.-N. Hsu and M.-T. Dung. Generating �nite-state transdu
ers for semi-stru
tured data extra
tion from the web. Information Systems, 23(8):521�538, 1998.[23℄ Institute of Ele
tri
al and Ele
troni
s Engineers, In
. (IEEE), Inst. of EEEngineers, New York. Portable Operating System Interfa
e (POSIX). IEEEStd 1003.2, 1992.[24℄ S. M. Kearns. TLex v.68 user's manual. Te
hni-
al Report CUCS-037-90, Columbia University, 1990.http://www.
s.
olumbia.edu/�library/TR-repository/reports/reports-1990/
u
s-037-90.ps.gz.

BIBLIOGRAPHY 60
[25℄ S. M. Kearns. Extending regular expressions with
ontext operators andparse extra
tion. Software � Pra
ti
e and Experien
e, 21(8):787�804, Aug.1991.[26℄ S. M. Kearns. TLex. Software � Pra
ti
e and Experien
e, 21(8):805�821,Aug. 1991.[27℄ B. W. Kernighan and D. M. Rit
hie. The C Programming Language. Prenti
eHall, se
ond edition, 1988.[28℄ S. C. Kleene. Representation of events in nerve nets and �nite automata.In C. E. Shannon and J. M
Carthy, editors, Annals of Mathemati
s Studies,volume 34 of Automata Studies, pages 3�41. Prin
eton University Press,Prin
eton, NJ, 1956.[29℄ J. R. Knight and E. W. Myers. Approximate regular expression patternmat
hing with
on
ave gap penalties. Algorithmi
a, 14:85�121, 1995.[30℄ K. S. Larsen. Regular expressions with nested levels of ba
k referen
ing forma hierar
hy. Inf. Pro
ess. Lett., 65(4):169�172, 27 Feb. 1998.[31℄ V. Laurikari. NFAs with tagged transitions, their
onversion to deterministi
automata and appli
ation to regular expressions. In Pro
eedings of the 7thInternational Symposium on String Pro
essing and Information Retrieval,pages 181�187. IEEE, Sept. 2000.[32℄ M. Lesk. Lex � a lexi
al analyzer generator. Te
hni
al Report 39, BellLaboratories, Murray Hill, NJ, 1975.[33℄ V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions andreversals. Soviet Physi
s Doklady, 10(8):707�710, Feb. 1966.[34℄ H. R. Lewis and C. H. Papadimitrou. Elements of the Theory of Computa-tion. Prenti
e Hall, 1981.[35℄ W. S. M
Cullo
h and W. Pitts. A logi
al
al
ulus of the ideas immanent innervous a
tivity. Bulletin of Mathemati
al Biophysi
s, 5:115�133, 1943.[36℄ R. M
Naughton and H. Yamada. Regular expressions and state graphs forautomata. IRE Transa
tions on Ele
troni
 Computing, 9(1):39�47, 1960.[37℄ A. R. Meyer and M. J. Fis
her. E
onomy of des
ription by automata, gram-mars, and formal systems. In Conferen
e Re
ord 1971 Twelfth Annual Sym-posium on Swit
hing and Automata Theory, pages 188�191, East Lansing,Mi
higan, 13�15 O
t. 1971. IEEE.[38℄ P. Muºátko. Approximate regular expression mat
hing. In J. Holub, editor,Pro
eedings of the Prague Stringology Club Workshop '96, pages 37�41, 1996.Collaborative Report DC�96�10.

BIBLIOGRAPHY 61
[39℄ E. W. Myers and W. Miller. Approximate mat
hing of regular expressions.Bulletin of Mathemati
al Biology, 51:5�37, 1989.[40℄ E. W. Myers, P. Oliva, and K. Guimarães. Reporting exa
t and approximateregular expression mat
hes. In M. Fara
h-Colton, editor, Pro
eedings of the9th Annual Symposium on Combinatorial Pattern Mat
hing, number 1448in LNCS series #1448, pages 91�103, Pis
ataway, NJ, 1998. Springer-Verlag,Berlin.[41℄ G. Myers. A four Russians algorithm for regular expression pattern mat
h-ing. J. ACM, 39(2):430�448, Apr. 1992.[42℄ I. Nakata (Á[Ê�). Generation of pattern-mat
hing algorithms by ex-tended regular expressions. Advan
es in Software S
ien
e and Te
hnology,5:1�9, 1993.[43℄ I. Nakata (Á[Ê�) and M. Sassa (A�pÖ). Regular expressions withsemanti
 rules and their appli
ation to data stru
ture dire
ted programs.Advan
es in Software S
ien
e and Te
hnology, 3:93�108, 1991.[44℄ C. Okasaki. Purely Fun
tional Data Stru
tures. Cambridge University Press,1998.[45℄ K. Oksanen. Real-time Garbage Colle
tion of a Fun
tional Persistent Heap.Li
entiates Thesis, Helsinki University of Te
hnology, Department of Com-puter S
ien
e and Engineering, Laboratory of Information Pro
essing S
i-en
e, 1999.[46℄ G. Ott and N. H. Feinstein. Design of sequential ma
hines from their regularexpressions. J. ACM, 8(4):585�600, 1961.[47℄ V. Paxson. Flex � Fast Lexi
al Analyzer Generator.Lawren
e Berkeley Laboratory, Berkeley, California, 1995.ftp://ftp.ee.lbl.gov/flex-2.5.4.tar.gz.[48℄ D. Perrin. Finite automata. In Formal Models and Semanti
s, volume B ofHandbook of Theoreti
al Computer S
ien
e,
hapter 1, pages 1�57. ElsevierS
ien
e Publishers B.V., 1990.[49℄ E. Ro
he. Parsing with �nite state transdu
ers. In E. Ro
he and Y. S
habes,editors, Finite�State Language Pro
essing,
hapter 8. The MIT Press.[50℄ E. Ro
he and Y. S
habes. Deterministi
 part-of-spee
h tagging with �nite-state transdu
ers. Computational Linguisti
s, 21(2):227�253, 1995.[51℄ S. Sippu and E. Soisalon-Soininen. Languages and Parsing, volume 1 ofParsing Theory. Springer, 1988.

BIBLIOGRAPHY 62
[52℄ R. E. Tarjan and A. C.-C. Yao. Storing a sparse table. Commun. ACM,22(11):606�611, Nov. 1979. See also [17℄.[53℄ K. Thompson. Programming te
hniques: Regular expression sear
h algo-rithm. Commun. ACM, 11(6):419�422, June 1968.[54℄ L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O'Reilly andAsso
iates, third edition, July 2000.

Index
"-
losure, 27�T , 16, 18�M , 19�M "-
losure, 29��M , 19`M , 16`�M , 17approximate regular expression mat
h-ing, 36awk, 5ba
k referen
ing, 5, 9ba
ktra
king, 9, 50
on�guration of TNFA, 16
onsisten
y of a TNFA, 20
opy, 32set, 32
opy-on-write, see fun
tionalDFA, 9DFAS, 11edit-distan
e, 36�nite-state transdu
ers, 16�ex, 1, 5full parsing, 36fun
tionaldata stru
tures, 29, 35, 39programming, ivGNU C library, 51GNU regex, 9, 46grep, 5, 38Helsinki University of Te
hnology, iv

HiBase, ivHUT, see Helsinki University of Te
h-nologyI
on, 1Kearns's parse extra
tion, 13Kleene, 1Kleene
losure, 3, 4languages
on
atenation, 4regular, 4lazy DFA generation, 31, 39leftmost-longest rule, 7Levenshtein distan
e, see edit-distan
elex, 1, 5, 18lexi
al analysis, 1, 38libha
kerlab, 46Nakata-Sassa semanti
 rules, 11NET, see Nokia Networksneural networks, 3NFA, 9NFAS, 11Nokia Networks, ivNP-
ompleteness, 6nu
lei
 a
ids, 1parse extra
tion, see submat
h ad-dressingpattern mat
hing, 1Perl, 1, 5, 6, 10POSIX, 9, 11, 45POSIX.2, 2, 6Prolog, 1protein sequen
es, 1
63

INDEX 64
rational expressions, see regular ex-pressionsrational sets, see regular setsreg
omp, 46regexe
, 46regexp, see regular expressionsregular expressions, 1, 3
ompiling, 38extensions, 5quoting, 5semanti
s, 4sets of
hara
ters, 5su

in
tness, 5syntax, 3wild
ards, 5with ba
k referen
ing, 5with semanti
 rules, 11with tags, 23regular sets, 3repeated mat
hing rule, 7rewbrs, see ba
k referen
ingSNOBOL, 1, 5, 6squares, 5stateinitial, 17priorities, 18stringa

epted by a TNFA, 17tag-wise unambiguously a

epted,19strstr, 51subexpression rule, 7submat
h, 6submat
h addressing, 1, 6submat
h addressing rules, 7substring extra
tion, see submat
haddressingtagged "-
losure, 27tagged �T -minimal "-
losure, 28tagged transitions, 15tags, 15eliminating, 42

in regular expressions, 23in transitions, 15tandem repeats, see squaresTDFA, 31Thompson's
onstru
tion, 23modi�ed for TNFAs, 23TLex, 14TNFA, 16"-free, 39
on�guration, 16
onsisten
y, 20initial
on�guration, 16simulating, 25simulation algorithm, 30UNIX, 5, 38XML, 9

