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1 Introduction

1.1  Automatic speech recognition is pattern recognition

Saying that late 20th century automatic speech recognition (ASRjte n recognition,
is something of a truism, but perhaps one of which the fundamental implications are not
always fully appreciated. Essentially, a pattern recognition task boisndo measur-
ing the distance between a physical representation of a new, as yet unknown token, and
all elements of a set of pre-existing patterns, of course in the same phypcasenta-
tion. On the one hand, the ‘patterns’ that can be recognized are, implicitly ocibypli
separate and invariable entities. For example, the comropedin a Windows con-
trol application always has the same invariable and unique meaning. On the other hand,
the unknown input tokens are continuous signals that typically show a high degree of
variability. ASR research has centered around the problem of how to mamgouns,
variable acoustic representations onto discrete, invariable patterASR the physical
representation of the speech tokens is some kind of dynamic power spectrum,-for rea
sons which date back to the days of Ohm and von Helmholtz, who have shown that the
power spectrum explains most of the perceptual phenomena in human speech processing.
Since the inception of digital signal processing dynamic spectra are approximaged by
sequence of short-time spectra (Rabiner and Schafer, 1978). Consequently, tire patte
match in ASR is invariably implemented as the accumulation of somendistaeasure
between the acoustic features derived from a sequence of short-time sgeb&anput
token and the corresponding representation of the active patterns (see Fidhetg- T
fore, anything which adds to the variability of the short time spectrum of a bpsgnal
will, as it were by definition, complicate pattern matching, and consequentiplozate
ASR.

The basic aim of robust speech recognition is to make the pattern matchiinsens
tive to variability in the short-time spectra. It goes without saying thaté is no single
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Figure 1. Automatic speech recognition as a form of pattern matching. The feature
extraction module is used to compute a compact representation of the shorpéiateas
that describes characteristics which are best suited for recognition.

optimal approach to find thkoly grail. There are too many factors which affect the
spectra; in addition, there are just too many different ways in which therspézatures

can be represented, in which the patterns can be cast, and in which thie feeahe

best matching pattern can be implemented, even if we restrict the dscishidden
Markov models (HMMs) and Viterbi search. In this contribution we inigege two
factors which increase the variability of the short-time spectra in rdetail, viz. the
transmission channel and background noise. To clarify the discussion we fich ske
model of the speech signal at the input of an ASR device. With the help of this model we
can explain the relation between different approaches of robust speech renxggmd
show how these approaches can be combined to reduce the effects of differens source
that distort the short-time spectra.

1.2  Asimple model

It is easy to draw a comprehensive, but very abstract, conceptual model ofjtizss

at the input of an ASR device. Such a model is depicted in Fig. 2. We always have a
speaker, who is in some physical, acoustic environment, talking into a microphocte w

Is connected to a transmission chain that eventually delivers a sigried tofut of the

ASR device. Filling in the details of this abstract model is less easytaaidistforward,
however. How must one model the acoustic environment of the speaker? The model of
an anechoic room is certainly different from the model of a car running on the highway,
and also different from the model of a busy train station, and from a quiet hotel l0am

top of the impact of the acoustic environment, the microphone that converts the sound
into an electrical signal has several effects of its own. It is not egsalhsitive to all
frequencies, nor to sounds coming from all different directions. In addition, theomic
phone may also introduce non-linear distortions, like the plops caused by the airflow in
fricative and/or plosive sounds. In short, the microphone may introduce linear and non-
linear effects. The transmission chain connecting the microphone to the AS&edevi
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Figure 2. The observed speech spectri$imis a mix of contributions from the original
speech spectrurfi, the background noise spectruyh the linear and non-linear transfer
characteristics of the channel, which can be described by a series ofr&dtemels
Hy, H,, ... (Schetzen, 1980), and the spontaneous activity of the chafyel

may introduce its own additive noise and linear filtering (e.g., caused by thiegaild
amplifiers in analogue telephone transmission), as well as non-linear distoDigitsl
transmission should help to alleviate channel distortions, but it is certampanacea.
In cellular digital telephone networks radio transmission errors makeyasudrstantial
contribution to recognition errors (both human and machine, for that matter).

Of course, we build conceptual models of the signal at the input of the ASR
device with the aim to recover the original undistorted speech signal, orradfiecover
the power spectrum of the undistorted signals. The mathematical expressiabidgsc
the relation between the clean speech spectrum and the spectrum at the ABRS i
dependent on (1) the details of the transmission chain that are accounted for, tred (2)
description of the linear and non-linear effects that were mentioned above.

For the minimalist model shown in Fig. 2 |6t denote the spectrum of the speech
signal at the ASR input. Clearlys’ is a function of timet and frequencyw: S =
S'(t,w). If we assume that (1) the background noise is additive and (2) the channel can
be described as a linear, finite memory systénit, w) can be written as

S/(t, w) = Hy(t,w) + Hi(t,w)[S(t,w) + N(t,w)], Q)

where S(t,w) is the original speech spectrum and¢,w) the spectrum of the back-
ground noise. Hy(t,w) corresponds to the spectrum of the signal spontaneously pro-
duced by the channel arfd, (¢, w) is the spectrum of the linear transfer function of the
channel (Schetzen, 1980y, S, N, H, and H; are complex-valued functions of time
and frequency.

The original ‘clean’ speech spectrufiit,w) is very much an abstract concept.
Even under quiet, ‘noise free’ conditions the clean signal cannot be observed, because
it is affected by the room acoustics and the recording equipment. Fortunateliprtise
share of the inevitable effects are very small, much smaller than tferafites be-
tween two speakers or between two realizations of the same linguistrante by the
same speaker. As long as the effects are similar for all utterarfe®scan be consid-
ered as part of the ‘clean’ spectrufiit, w). Robust speech recognition comes into play
where the impact on the ‘clean’ speech is variable, and so strong that théoatatrs
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to S'(t,w) can no longer be neglected.

For robust speech recognition, Eq. 1 can be used to tell us how the speech spec-
trum observed at the ASR inpit(t,w) can be understood in terms of the original speech
spectrumS(t,w) on the one hand, and the distortion terms on the other, i.e., the spon-
taneous activity of the transmission chanfklt,w), the linear transfer function of the
channelH,(¢,w), and the power spectrum of the additive nalég, w). Any approach
to robustness will need to consider (1) the relative importance of each dfréedistor-
tion termsHy(t,w), Hy(t,w), andN(¢,w), and (2) the accuracy with which each term
can be estimated. We are now in the position to explain why under certain corditi
specific solutions are superior. The key issue here is the amount of availablkrnmver
ledge. To illustrate our point, we consider the following two scenarios. ,Rake an
ASR device attached to a switch in a telephone network. In this case, thinggrietbk
hopeless. The input is a single signal, from which the set of actual parameaies \l
all components of the model in Fig. 2 must be estimated. From a mathematical point
of view this is an ill-posed problem. It is an attempt to find a unique solution based
one equation with many unknowns. Elementary algebra tells us that this is iflgossi
Instead of a unique solution, a whole family of solutions is possible and without addi-
tional and independent observations the ‘true’ parameter values cannot be recedstruct
Consequently, in this situation we are obliged to simplify the model as much afb[@os
(to reduce the number of unknowns). As we will see below, the well-known cepstrum
mean subtraction technique (Atal, 1974; Furui, 1981) is a typical example of this sim-
plified approach. For a second scenario, consider an ASR device built into a Bugatti
car that is almost exclusively driven on the highways of Arizona and New Mexito. |
this case, we might be able to reliably estimate the parameters of mopboemts of
the model in Fig. 2. To be more specific, with the engine switched off and no speech
input we can establish the parameter values for the model component represieating t
spontaneous activity of the channel. While driving the car and no speech input, we can
record the typical background noise. Finally, we can measure the linear trahafac-
teristic of the channel by testing the microphone in an an-echoic room. Now, the most
appropriate robustness approach in the first scenario will seem much morevertiran
the approach in the Bugatti case. Although it may be considered more appropriate from
a ‘physical’ point of view, the more sophisticated Bugatti model would fail miggra
in the first scenario, because the parameters of the noise will vary sublydogitween
calls, making it impossible to come up with a useful prediction for an individall c
It is common knowledge in the field of System Identification that it is bettératee an
overly simplistic model of which the parameters can be estimateabtglithan to try a
physically more adequate model, the parameters of which cannot be estimgtely.rel

In the following Section, we will discuss techniques for dealing with lindar fi
tering effects caused by the microphone and transmission channel. In Sestienva|
discuss different methods to deal with additive noise. In both problems, wetvals
the inter-dependence between the underlying models, the choice for parametamnepres
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tations, and the eventual spectral distance computation which is at the haayt ASR
algorithm.

2 The presence of a transmission channel

2.1  Assumptions for channel robustness

As said before, itis only possible to observe the speech signal through someisisioam
channel. Under most practical circumstances it is reasonable to assuntegettinear
transfer function of the channel is time-invariant or at least varyinglglowcomparison
with the articulation process. Thé#, (¢, w) in Eqg. 1 reduces to

Hl(t,w) :Hl(w). (2)

In this Section, we want to focus the discussion on techniques for dealing witfigbtse

of H;(w). To simplify the discussion, we make the additional assumption that the energy
of the combination of the spontaneous activity of the channel and the background noise
can be neglected, i.e.,

[Ho(t,w) + Hi(w)N(t,w)|* < [Hi(w)S(t,w)*. 3)
The speech spectrum at the ASR input can then be approximated as
S'(t,w) = Hi(w)S(t,w). (4)

As can be seen, the speech spectrum at the ASR input now contains only two contri-
butions: the time-invariant linear transfer function of the channel and the-vemiant
speech spectrum. As we will see below, the separation into two contmtautinat have
different temporal characteristics is the key to many channel robusttragsgies. With-
out the assumption expressed by Eg. 2 such a convenient separation is not possible.

In the log-energy domain Eq. 4 becomes

log(|:S"(t,w)|?) = log(|H1(w)[*) + log(|S (¢, w)[?). (5)
Taking the Fourier transform, we have in the cepstral domain
¢ (t,7) = en(r) +e(t, 1), (6)

with ¢ (¢, 7) the cepstrum of the channel outpui(7) the cepstrum of the channel and
c(t, 7) the cepstrum of the original speech signal(t, 7), c,(7), andc(t, 7) are real-
valued functions, because the terms in Eqlog((S'(¢,w)|?), etc.) are real and even.
According to Eq. 6 the contribution of the unknown channel is a constant for a given
guefrencyr. From Egs. 4, 5 and 6 it can be understood how the channel can affect
ASR: If training and testing are performed using two different channelscdpstra
used during training differ from the corresponding cepstra at recognition timenr@éha
normalization methods aim to reduce the differences between training ding tgzeech
spectra caused by the channel.
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2.2 Channel normalization techniques

Channel normalization (CN) techniques have been studied for quite different corsditi

In one such condition, which is not addressed in this contribution, a recognizanedra

with speech recorded with a close talking microphone and recognition is addrapt
speech recorded with a different microphone. The contribution of the channel during
training does not need to be known in great detail, because it is constant. The channel
conditions during test are different from those during training, but constant too. Thus,
a single, fixed transformation should suffice (see for example (Anastastaiosl®94;

Liu et al., 1994; Orloff et al., 1994; Weintraub et al., 1994)).

In ASR applications over the telephone the situation is different: the channels
over which the training speech is recorded are unknown and likely to difteresa all
recording sessions. The same goes for the testing speech. Under these conditions a CN
technique is needed both during training and testing. This is the situation thaeseel
here.

2.2.1 Use of many different channels

Under the assumption that the channel characteristics and the speech sigtatisie
tically independent, the first and second order statistics of the cepstrahgians for a
particular pattern (in our case a subword uitan be written according to Eq. 6 as

E{c,(t,7)} = E{ea(r)} + E{cy(t,7)} (7)

and
C’ov{c;(t, 7)} = Cov{cp(T)} + Cov{cs(t, T)}, (8)

where E{} denotes the expected value afidv{} denotes the covariance. Thus, the
emission probability density functions of the states associated svithntain a con-
tribution due to the statistical differences between the channels. Tineagss$ of the
means are biased with the unknown functibtic,(7)}, which approaches the aver-

age channel cepstrum if enough different channels are used. At the same time, the
covariance estimates are increased by the faCtar{c,(7)}. If the training speech
covers a sufficient number of different but representative channels, timea¢sti pa-
rameters of the emission probability density functions may be expected to adhere
Egs. 7 and 8, e.g., (Hermansky et al., 1991; Hirsch et al., 1991; Aikawa et al., 1993;
Haeb-Umbach et al., 1995; Junqua et al., 1995; Nadeu et al., 1995a; Singer et al., 1995;
de Veth and Boves, 1996). Thus, using many different channels in training hekps to
duce the impact of specific channels on the eventual models. However, it isit@dim

help when an unknown utterance must be recognized, because there is no guarantee that
the bias due to the particular channel at hand is close to the average chdnpel) }.
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2.2.2 Explicit channel estimation

Some authors have proposed to estimate the contributions of the channel exptaitly (s
tistical channel modeling (Gish et al., 1985; Gish et al., 1986)). This etimahen
used to correct the HMM parameters or the speech feature values. THenaelh cep-
strum mean subtraction technique (Atal, 1974; Furui, 1981) can be considered as a form
of explicit channel estimation. The cepstrum meéap,,.(7) is computed by taking the
average over all speech signal frames
J R
Cmean(T) = T Z[c (t,7) + cn(T)] = Cure(T) + (7). (9)
t=1

As indicated in Eq. 9, the cepstrum mean consists of the average speechroapdtne
utterance’,,;(7) (an approximation of the average speech cepstrum of the person who
produced the utterance) and the contribution due to the chapnel As can be inferred
from EQ. 9, cepstrum mean subtraction has two effects. Firstly, thehiity that is due
to differences between speakers is reduced in the statistics foneutarspeech sound.
Secondly, cepstrum mean subtraction reduces the variability due to difesréetween
communication channels used when recording that sound.

Note that non-speech signal portions are not used in Eq. 9. The reason for this
can be understood as follows. According to Eq. 1, the observed spectrum in non-speech
signal portions is

S'(t,w) = Hy(t,w) + Hy(t,w)N(t,w). (10)

As can be seen, the non-speech spectrum consists of two contributions: the spontaneous
activity of the channeH, (¢, w) and the linearly filtered background noifg(w) N (¢, w).

Without additional assumptions about the spontaneous activity of the chAp(telv)

and the background nois¥(¢,w), non-speech portions of the signal cannot be used

to obtain reliable information about the linear filter characteristic ofdi@nnelH; (w)

alone. As a consequence, using non-speech portions of the signal introduces bias in the
estimate of the mean cepstrum in a way that cannot be predicted.

2.2.3 Filtering of log-energy or cepstral feature values

It is well-known that any differentiable functiofi(t) can be recovered (up to a known
constant) as follows when it is observed with a constant unknownkbias

£~ Flti) = [

tiow %

wheret,,,, satisfies—oco < t,, < t. Due to the differentiate and re-integrate operation
the unknown bias terrh is replaced by the constant terf\¢,,,, ).

According to Eq. 6, the contribution of the channel results in a time-invariant
additive bias for each cepstral coefficient, which is independent of the origpeakch
cepstrum. When applying Eg. 11 to the cepstrum observed at the channel output, the

[f(t') + Klat', (11)
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cepstrum will no longer depend on the channel after such a differentiate ane geaitet
operation. Recalling our assumption in Eq. 3 about the energy of the silent signal por-
tions being very small compared to the energy of speech portions, we see thahthe c
tribution f (¢,,,,) Will vanish if we taket,,,, in a silent portion (e.g., in the leading silence

at the beginning of the utterance). As a result, the cepstrum of the original spgeah s

IS obtained.

The differentiate-and-integrate operation can be implemented as a liltear fi
Filtering can be performed either in the log-energy domain (Hermansky, 19811,
Hermansky and Morgan, 1994) or in the cepstral domain (Haeb-Umbach et al., 1995;
de Veth and Bourlard, 1995; de Veth and Boves, 1996). It was shown that channel ro-
bustness can also be improved if the re-integration of Eq. 11 is omittedi(R981;
Soong and Rosenberg, 1986). In that case, channel robustness is improved because the
constant bias termt actually corresponds to DC in the modulation spectrum and the
differentiation effectively attenuates this DC component.

If a properly designed leaky integrator is used, the differentiate-and-itigegra
operation will also be effective if the channel transfer function is sjowine-
varying. This approach of the unknown channel problem has resulted in many dif-
ferent proposals for filtering the observed sequence of cepstral parametels;- f
stance RASTA filtering (Hermansky et al., 1991; Hermansky and Morgan, 1994), the
Gaussian dynamic cepstrum representation (Aikawa et al., 1993; Singer et al., 1995
Boda et al., 1996), the high-pass filter method proposed in (Hirschetal., 1991),
Slepian filters (Nadeu et al., 1995a), phase-corrected RASTA (de Veth@ares BL996;
de Veth and Boves, 1997b) and combinations of these methods (Junqua et al., 1995).

The cepstrum mean subtraction technique (Atal, 1974; Furui, 1981) can also be
formulated as a linear filter operation. If the channel estimate is caécutaver the full
length of the speech utterance (as can be done in off-line experiments), thémiweps
mean subtraction can be interpreted as a FIR filter operation, with teeddjusted to
the length of each utterance. If a running mean is used to obtain the channeltestim
(which is the commomnodus operandi for cepstrum mean subtraction in real-time ap-
plications) the definition of the FIR filter is the same for each utterance.Géessian
Dynamic Cepstrum Representation (Aikawa et al., 1993) and the discrete cesige t
form (Milner and Vaseghi, 1995) are other examples of FIR filtering, although none of
these techniques was originally presented in that formalism.

2.3  Comparison of feature track filtering techniques

Using the linear transfer function description of Eq. 4, it is easy to showtlleadiffer-
ences between the many techniques for undoing the effect of the channel reléterto ei
the way in which the parameters of the linear filfér(w) are estimated, and/or to the
way in which the operation, used to undo the effeciefw) is implemented. In this Sec-
tion, the focus is on the effects of the implementation of the filter. We wilhstinat the
details of the implementation are important, because these details iaterth the type
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of models that are used in speech recognition. Although it would have been imgresti

to show that the arguments developed in this Section also hold for more sophbistica
models of the channel, and the attendant more complex techniques to undo these ef-
fects in a recogniser (Rahim and Juang, 1996; Junqua and Haton, 1996; Junqua, 2001),
we will limit ourselves to the techniques decribed below due to space tionta

2.3.1 Effect of the filter phase response

We concentrate our discussion on a comparison of three CN techniques which
can be described in terms of cepstral filtering: RASTA filtering, cepstrapan
subtraction and phase-corrected RASTA. RASTA filtering (Hermanshky. 1991,
Hermansky and Morgan, 1994) is interesting for several reasons. Firstyéliknown
that RASTA filtering is effective with units that incorporate context depenglsach as
words or triphones. In addition, RASTA can be viewed as a crude model of auditory
time masking, and it has been argued that this correspondence to perception aarounts f
much of its effectiveness (Hermansky and Pavel, 1995; Hermansky, 1998 evdr,
Eq. 11 was the original point of departure for RASTA (Hermansky et al., 1991);-its re
lation to auditory masking was only established later on (Hermansky arel, R&95;
Hermansky, 1996). The second CN technique discussed here is cepstrum mean
subtraction (Atal, 1974; Furui, 1981), because this technique is very simple, yet
highly effective (Steinbiss et al., 1995; Haeb-Umbach etal., 1995). In two inde-
pendent studies the effectiveness of RASTA filtering and cepstrum mean subtra
tion was compared in a recognition set-up based on context independent HMMs
(CI-HMMs) (Haeb-Umbach et al., 1995; de Veth and Boves, 1998a). In both stud-
ies the task was recognition of digit strings, be it that different languages were
being used: (Haeb-Umbach et al., 1995) used German and American English,
while (de Veth and Boves, 1998a) used Dutch. It was found in both studies that RASTA
filtering is effective as a CN technique, but that cepstrum mean sulotnastmore effec-
tive. The apparent limited effectiveness of RASTA filtering can bedatted to the well-
known left-context dependency introduced by the RASTA filtering (Koehler et al., 1994;
Hermansky and Morgan, 1994). To be able to better understand this left-context depen-
dency, and to be able to verify that this is indeed the underlying cause for thedisft
fectiveness of RASTA filtering when compared to cepstrum mean norrialz@hase-
corrected RASTA was introduced in (de Veth and Boves, 1998a).

We start our discussion by considering the signal shown in the upper panel of
Fig. 3. This artificial signal is intended to represent a sequence of cepatuasvfor
guefrencyr. It models a sequence of seven time-invariant ‘speech’ states, preaeded
followed by a rest state (‘silence’). The signal contains a constant D(xopant that
represents the effect of the channel. The RASTA filtered version of thislsgysiaown
in the middle panel of Fig. 3.

Two observations can be made. First, the DC-component has been removed (at
least for times larger than, say, 70 frames). Second, the shape of the sigitedemas
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Figure 3. Synthetic signal representing one of the cepstral coefficients in the feature

vector. Upper panel: Original signal containing a time-invariant DC-affddiddle
panel: RASTA filtered signal. Lower panel: Phase-corrected RASTéyditt signal.

altered. Originally, the states of the signal had a constant amplitude. fAtéeing, the
amplitude for each state drifts towards zero, while the values imméglaiter an abrupt
change are more or less preserved. This explains why RASTA enhances the dynamic
parts in the spectrum of a speech signal (Hermansky and Morgan, 1994). However,
description of the signal in terms of states with well-defined means anlil\s@mances
becomes less accurate. Worse even, the mean amplitude of each stat@hesdanc-
tion of the state itself AND of the preceding states. This is the left-comkependency
in RASTA (Koehler et al., 1994; Hermansky and Morgan, 1994).

To identify the origin of this left-context dependency, we take a close look at the
frequency responsHy(v) of the classical RASTA filter which can be written as

Hr(v) = |Hg(v)| eI r) (12)

with © the modulation frequency (in radiang}{ z ()| the magnitude response ang(v)
the phase response. The magnitude and phase response of the RASTA filter with integra-
tion factora = —0.94 are shown in Fig. 4AB for modulation frequencies betweer20
Hz. This range includes thie— 16 Hz region which has been shown to be most impor-
tant for human speech recognition (Drullman et al., 1994). From Fig. 4B it candoe se
that the phase response is non-linear for modulation frequencies below approximately 3
Hz. This non-linearity causes the time-domain shape distortions observedmmaddie
panel of Fig. 3.

To compensate for the phase distortion of the RASTA filter, while preserving
its magnitude response, we followed a procedure suggested in (Hunt, 1978). After the

192



[EEN
o
o

K A
o l ~]2 o
O | | q-)
Z-10f | =
s | F
(O] [ [ @ —-100
GC) [ [ g_
-20— ‘
0 10 20 0 10 20
frequency (Hz) ——> frequency (Hz) ——>
‘ ‘ 100— ‘
Too ch | D
o | g o, 1
O | @ | |
S 10 ! S f |
= 1 A 1 1
Qo | < —-100t |
5 0L s L *
_20 L | |
0 10 20 0 10 20
frequency (Hz) ——> frequency (Hz) ——>

Figure 4. A. Log-energy response of classical RASTA. B. Phase response of classi-
cal RASTA. C. Log-energy response of phase-corrected RASTA. D. Phase resgons
phase-corrected RASTA.

RASTA filter an all-pass filter is applied whose phase respansg’) is exactly the
inverse of the phase response of the RASTA filter

¢pc(V> = _QbR(V)‘ (13)
Thus, the frequency responsg,.(v) of the phase correction filter is
H,e(v) = e 79r0), (14)

With this phase correction, the frequency respoibgr(v) of the complete phase-
corrected RASTA filter is

HpcR(V) = HR X Hpc = ‘HR(I/)| . (15)

The phase correction filtéd,,.(~) can be implemented as a pole-zero filter, obtained by
solving for the coefficient$b,a} that satisfy
bot+bie Vb
1t ae 4L+ ae I

e Ior() (16)

where ¢ (p) is the order of the numerator (denominator) polynomial.
In (de Veth and Boves, 1998a) a Matlab procedure with= 1 andp = 7 was
used to calculate thfh,a} coefficients (Little and Shure, 1993). As it turns out, three of
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the seven poles of the phase-correction filter are lying outside the unit circiks the
zero is lying inside. Due to the poles lying outside the unit circle, the phasectione
filter is unstable. Therefore, it cannot be applied directly to the RASTAré&t signal.
However, the inverse of this filter is stable and, as a result, in né-&xperiments the
following engineering trick can be used (Hunt, 1978): (1) reverse the RASked
signal in time, (2) take the inverse of the pole-zero phase-correctien, f{8) apply
the inverted phase-correction filter to the time-reversed RASITAd signal and (4)
reverse the resulting signal in time. With a slight performance penaltyponecausal
filtering can be cast in a form that allows a real-time implementatioih short
processing delay (de Veth and Boves, 1997a). In this paper we will only discustsre
for off-line experiments.

In Fig. 4CD the magnitude and phase response of the phase-corrected RASTA
filter are shown. It can be seen that the magnitude response is almost identical
original one and that the new phase response is flat and very close to zero in the re-
gion of important modulation frequencies. The result for phase-corrected RASH& i
time domain is shown in the lowest panel of Fig. 3. The shape of the phase-correcte
RASTA filtered signal closely resembles that of the original signal. The pt@section
effectively removes the amplitude drift towards zero in time-itasat parts of the sig-
nal and decreases the left-context dependency. Thus, phase-corrected RASTWtdoes
model temporal masking, but it is in better agreement with the usual model of ehspee
utterance as a sequence of time-invariant states.

2.3.2 Continuous speech recognition with phase-corrected RASTA

We compared the recognition performance of classical RASTA, phase-@uRASTA
and cepstrum mean subtraction for a continuous speech recognition task, where utter
ances recorded over the (land-line) public switched telephone network wereAlsad.
nine hours of speech were used for training, while three hours of speech were used for
testing. The recognition lexicon contained 983 wortd2% of the words in the test set
were out-of-vocabulary. The test set perplexity of the recognition task was B dur
evaluations we restricted ourselves to the single best recognized serftahcketails of
these experiments can be found in (de Veth and Boves, 1998b).

We trained and tested HMMs for four different channel normalization conditions,
i.e., no channel normalization (NCN), classical RASTA (cIR), cepstrusamsubtrac-
tion (CMS) and phase-corrected RASTA (pcR) in combination with two ilfferec-
ognizer set-ups, i.e. context independent phone-based HMMs (CI-HMMs) and context
dependent phone-based HMMs (CD-HMMSs). In these experiments, the off-line ver-
sions of CMS and pcR were used. In other words, we used the whole utterance when we
computed the cepstrum mean and when we applied the time-reversal operaiitau ne
for pcR. Taking the number of substitution, deletion and insertion errors into account,
we computed the word error rate for all combinations of channel normalization method
and recognizer set-up, where we varied the number of Gaussians used to déseribe t
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Figure 5. Recognition accuracy as a function of the total number of Gaussians in the
trained HMM set for cIR &), pcR (k) and CMS#), compared to the feature set without
CN (o) when using CI-HMMs.

emission probability density function of each state. For the CI-HMMs, mestwith 4,

8, 16 and 32 Gaussians per state were used. This corresponds to using a total number
of Gaussians of 460, 920, 1840 and 3680 respectively. The results for the different CN
techniques with CI-HMMs are shown in Fig. 5.

From Fig. 5 it can be seen that cIR deteriorates recognition performance com-
pared to NCN, when CI-HMMs are used. Removing the channel bias by using cIR
introduces so much left-context dependency that the potential CN gain is completely
annihilated. The results for pcR indicate that the poor performance of clasf\&GIAR
is a direct consequence of the phase distortion. By removing the phase distortion the
recognition performance is significantly and substantially improved compaci. At
the highest total number of Gaussians in this CI-HMM system the WER is reduced by
23% relative to cIR. In addition, for the more complex acoustic models pcR recogniti
performance is significantly better than NCN and in fact becomes as good as CMS

It is interesting to compare these results to the results reported in
(de Veth and Boves, 1998a). Whereas the continuous speech results in Fig. 5 show tha
cIR actually decreases recognition performance relative to NCN, theedigeriments
in (Haeb-Umbach et al., 1995; de Veth and Boves, 1998a) showed that cIR is \8able a
a CN technique. These findings may seem contradictory at first glance, but can be un-
derstood if one realizes that the main difference between these two sist-thpsnum-
ber of different phone contexts. In fact, the number of different phone contexts for
the continuous speech recognizer is more than 70 times as large as in the digit recog-
nizer (de Veth and Boves, 1998b). As a consequence, the loss of recognition perfor-
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Figure 6. Recognition accuracy as a function of the total number of Gaussians in the
trained HMM set for cIR &), pcR () and CMS#), compared to the feature set without
CN (o) when using CD-HMMs.

mance due to enhancement of the left-context dependencies is likely to be much more
important in the continuous speech recognizer. Apparently, this effect is@wdtnat

it completely annihilates the potential performance gain obtained from theuatien

of modulation components near DC. In the case of the digit recognizer, the net effect of
RASTA filtering is still positive, because the performance gain obtainedipgressing

the DC component is less affected by the left-context effect. The number ofediffe
contexts for the digits vocabulary is apparently so small that the modelsfactiedly
context dependent.

When using cIR with CD-HMMs one would expect that the loss of recognition
performance due to the left-context effect is diminished, because differerxtsaire
modeled with different states. When every individual left context could be raddel
independently, the left-context effect should disappear completely, and thefédt ef
should remain in its full strength. However, under all practical conditioremtinuous
speech recognition, the amount of training data is not sufficient to model eacbriegit
independently. This lack of training data forces one to pool the data from different
contexts for sub-word units with low occurrence counts. In our experiments the data
sharing for infrequent units was implemented as a data-driven state-tyicigamem.

Due to the data sharing, one can no longer expect that the loss of recognition performance
caused by the left-context effect of cIR is completely annihilated.

The results for CN techniques with CD-HMMs are shown in Fig. 6. In this
set-up we used HMMs with 1, 2, 4 and 8 Gaussians per state, correspondingab a tot
number of Gaussians of 388, 776, 1552 and 3104 respectively. First, it can be seen
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that the difference between cIR and NCN has become smaller than the one we=dbser
for CI-HMMs. For the best CI-HMMs cIR decreases recognition performancefy
relative to NCN. In the case of the best CD-HMMs the performance only dyps
Thus, we have some gain when switching from CI- to CD-HMMs in the case of cIR
but this improvement is limited due to the state-tying mechanism that & tosavoid
undertraining. However, even with CD-HMMs the detrimental effect ofi¢fitecontext
dependency is still stronger than the beneficial effect of CN in this recognésin t

It can also be seen that introducing the phase-correction brings the recognition
performance curve very close to the one for CMS (except at the models correspanding t
1 Gaussian per state). For the CD-HMMs corresponding to 8 Gaussians pel¢ER
is improved by15% when cIR is replaced by pcR. This is in good agreement with the
results of pcR obtained for CI-HMMs.

2.4 Conclusions

Most, if not all techniques intended to eliminate the variability introducedhleycom-
munication channel imply some form of filtering of the sequence of feature vedtioes.
results of the comparison of three different techniques for CN and the explanation of
these results show that care must be taken that the phase response of treelifiésri

In other words: The overall shape of the feature track must be preserved &samuc
possible. This requirement is due to the structure of the basic patterns whielseapr
the spoken words. In most cases speech is modeled as a sequence of essardially
invariant states, which are only dependent on a very local context. Any phaseidis
caused by a filter that is applied to remove the influence of the channel by neoessi
terferes with the time-invariance and independence assumptions. In tleijaartase

of classical RASTA, the signal segments represented by conventional subuwitsd
are much shorter than the RASTA filter memory. This results in a conflietdet the
intrinsic nature of the feature values after filtering and the assumptions yimdgethe
structure of the speech model. As a consequence, the intended beneficial effest of t
CN technique is completely destroyed by the negative effect of the phaseidistort

These findings show that any technique to improve robustness can only be ex-
pected to yield improved recognition results as long as it is compatible tivé basic
assumptions made in the models of the speech signal and in the procedure to search for
the best matching patterns. Specifically, and in a way unfortunately, tipiesnthat
findings from human speech perception cannot simply be re-used in ASR algorithms
which model speech as a sequence of discrete, time-invariant, contexitinsansts.
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3 Robustness against background noise

3.1  Assumptions for noise robustness

To understand the effect of acoustic background noise on the feature values at the input
of an ASR system, we must return to Eq. 1. We keep the assumption that the channel
characteristics are time-invariant (cf. Eq. 2), but we drop the additessumption that

the magnitudes of the terms related to noise are negligible relative to tieitmdes of

the terms related to the speech signal. This is equivalent to the assurtimation

|Ho(t,w) + Hi(w)N(t,w)| = |Hi(w)S(t,w)]. (17)
We then have
S'(t,w) = Hy(t,w) + Hy(w)[S(t,w) + N(t,w)]. (18)

Without much loss of generality, Eq. 18 can be simplified by lumping all additive com
ponents into a single, possibly time-varying, noise compobiéhtw):

S'(t,w) = Hy(w)S(t,w) + Ult,w). (19)

The general model in Eqg. 19 is a good starting point for discussing different approaches
for improving noise robustness. As we already discussed in Subséc2ioine choice
for a particular approach depends on the assumptions that can be made about our know-
ledge of U(¢,w), or perhaps more accurately, on the possibility to obtain useful para-
metric estimates of/ (¢, w) in a specific situation. The model 6f(¢, w) must be more
simple as the noise becomes more variable between situations and unpredartable f
specific situation. Attempts to undo the effect of additive noise can be fidaksaic-
cording to their working domain. Popular approaches include methods (1) to clean the
acoustic features, (2) to adapt the models trained on clean speech to noisyoosndi
and (3) to adapt the distance computation in the Dynamic Programming search. These
approaches essentially try to reduce the variation in the feature valués thgenoise or
they try to limit the impact of this variation on the computation of the sintifdetween
new observations and pre-existing models.

It is reasonable to assume that noise robustness of an ASR system wilsmcrea
if methods developed in the different domains are properly combined. Although it might
seem attractive to compare the performance of individual approaches for irdproise
robustness, such a straightforward comparison is hardly fair. Some approaakdse
inherently more effective with certain types of distortions. In addition, agpee has
shown that the effectiveness of robustness techniques may be dependent on the detail
of the implementation. For these reasons, we refrain from making direct copar
between different noise robustness approaches. We will limit the discusssommary
descriptions of observation cleaning, predictive model-based compensation and mode
adaptation, and focus in more detail on a new approach, which is formulated in &he loc
distance computation domain. For an extensive review of observation cleaning (and
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other noise robustness techniques), we refer to (Gong, 1995). Recently, mamyiypeedi
model-based compensation schemes were reviewed in (Gales, 1998). , kiatbfer

to (Lee, 1998) for an excellent review of model compensation and model adaptation
techniques.

3.2 Three domains for noise robustness
3.2.1 Feature domain

We first consider a well-known noise robustness method which is defined in the fea
ture domain. In those scenarios where it is reasonable to assume that the qoias! is
time-invariant, an obvious strategy would be to make an estimate of the sjpestrum
U(w) and to subtract it from the noisy input specf&t,w). This strategy is known
asspectral subtraction (Boll, 1979; Lockwood and Boudy, 1992) and has a long tradi-
tion in research in speech enhancement, i.e., processing of noisy speedteth mare
pleasant and intelligible for humans. Spectral subtraction can be regardetlassia
example of the idea to try and find a feature representation for which thststaltchar-
acteristics are minimally affected by the background noise. As long as vaaybe
found to reliably estimate the background noise characteristics, spadbtedstion is a
useful pre-processing step that will increase recognition robustness abhd cambined
with any of the strategies yet to be described.

3.2.2 Model domain

If it is reasonable to assume that the ASR system is always used in thensasee
environment, probably the simplest way of handling the problem is by training models
using speech recorded in that particular environment (e.g., (Dautrich et al)),1883
speech corrupted by artificially adding the noise (e.g., (Gales, 1995)). Thesmepes
have shown good results, but their use is limited to those situations wherneabehsto
be recognized is always picked up in the same noise environment. Moreovethisit
approach new models need to be trained for each new type of noise. Finallyiadigtific
adding noise to clean recordings is only effective as long as the noise level whalgr a
conditions is not so high that it gives rise to the Lombard reflex. This kind of spontaneous
adaptation of the speech production enhances human intelligibility, but may &iry w
harm ASR performance (Junqua, 1996).

If the noise is not easily predicted, but one can still obtain a reliable attim
of U(t,w), one might want to use that estimate to adapt the observation distributions
in the models trained on clean speech (Lee, 1998; Lee and Huo, 1999). Another ex-
ample of a set of approaches developed for the model domaioredsctive model
combination, PMC, also known agarallel model combination (Gales, 1998). In this
case, the idea is to train separate models of noise and speech; if necdgtaent
types of noise can be modelled in parallel. During recognition the most likely com
bination of speech sounds and noise is computed. Searching the optimal path while
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using both noise and speech models leads to a three dimensional dynamic program-
ming problem (Varga and Moore, 1990) with time, speech states and noise asates
the three dimensions. If the noise can be described by an ergodic HMM, the three
dimensional search problem can be converted into a conventional two dimensional
search (Gales, 1998).

Despite the good results reported for different implementations of the PMC
scheme (see for example (Gales, 1998)), such an approach is not alwaysefeasibl
particular, the usefulness of a PMC approach may be limited for two reasbi) are
both growing more important with the increased use of mobile phones. Firstly, eve
if it is perfectly known beforehand what different noises can occur, the chorctné
appropriate noise type will have to be made at recognition time. The decisiobewill
come more difficult as the number of different noise types known to the ASR system
increases. Secondly, if the noise is time-variant, then the need vgéd sicontinuously
update the noise model on-line. Due to lack of observations, the noise model estimate
may become poor to the extent that it limits the effectiveness of the compangath-
nique (Gales, 1998). These difficulties have inspired people to look for approaches tha
make less specific assumptions on Hé, w) affects the features or the models. These
are the approaches developed in the distance computation domain.

3.2.3 Distance computation domain

The basic mechanism in an approach that does not rely on explicit estimatesofdbe

in terms of features or models consists of changing the similarity measnotémsveen

the trained models and the test utterance. The moment one realizes that fedibes

have an inherent uncertainty due to the presence of acoustic background noise, it is only
natural to try to develop decision strategies that are primarily basddaiare values

that are least affected by noise characteristics. In (Lee and Huo, 19@®laer of such
robust decision methods are discussed. These methods all attempt to accouittyexplic
for the uncertainty in the feature values.

A somewhat different starting point is taken in the approaches basktissimg
Feature Theory (MFT) (Cooke et al., 1996; Morris et al.,1998). According to Eq. 19 the
signal spectrum at the ASR input can be considered as a mixture of a reliable compo-
nent (i.e. the channel filtered original speech spectrum) and an unreliable component
(i.,e. the unknown noise contribution). Depending on the exact nature of the distor-
tion some of the observed values in the acoustic feature vector may stidllibble,
while other values may have become unreliable. In several recent proposdsythe
idea is to somehow disregard the unreliable information and base recognition on re
liable information only. This idea can be pursued in different manners. Hatsts
suppose that one is working with acoustic feature vectors that are defined in the spe
tral domain, e.g., filter bank outputs. Then, if it can be assumedlliaty) takes
non-negligible values only for a limited number of time frantew a limited range of
frequenciesv, the marginalisation approach of MFT can be used (Cooke et al., 1996;
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Morris et al.,1998). With these assumptions it might be possible to explicitly de-
tect all time-frequency regions where the observed feature values are dedhina
by U(t,w), and either discard these features (Cooke et al., 1996; Dupont et al., 1997;
Tibrewala and Hermansky, 1997; Lippmann and Carlson, 1997; Morris et al.,1998) or
correct them in some way or another (Cooke etal., 1996; Morris et al.,1998;
Dupont, 1998; Raj et al., 1998). Of course, the problem then immediately arises how
corrupted values can be reliably detected. In the spectro-temporal domsiis tnot
an easy task, although good progress was recently reported (Vizinho et al., 1999). If
one is working with acoustic feature vectors defined in another domain (e.g.,aepstr
then the detection task becomes even more intricate, because the componéets of t
acoustic feature vectors that are significantly affected are not solelpcion of the
spectro-temporal characteristics ©@ft¢,w), but also of the transformations applied to
the sequence of short-time spectra. We will elaborate this issue in moriadoay.
Recently, a new way was suggested to handle contaminated feature values,
which is not restricted to spectral features, and avoids the need to defle&etor
that is running independently from the decoder for identification of unreliable acous-
tic feature vector components. This idea, which was proposed in (de Veth E3%8¢;
de Veth et al., 2001), is yet another implementation of a method where the #ynilar
measurement has been altered to cope with the noise. It focusses on the computat
of the emission probabilities in the presence of disturbed acoustic featumrs/ie€his
approach is based on the assumption that the statistical models built forsgeach
are not proper models for observations obtained in the presence of noise. By modifying
the function used to evaluate the match between an input sequence of acouste fea
vectors and each one of the candidate sequences of acoustic models (cf. Figu®), a si
tion is created in which unlikely feature values affect the searchlésser degree. For
convenience we use the term ‘local distance function’ when we refer to theematical
expression used to evaluate the cost of assuming that a given sound segmen piertai
a given HMM state.
If there is noise present at recognition time that was not present when the models
were trained (i.e., in a mismatched training test condition),atpsiori evident that not
all observations were actually seen in the training phase. Therefore ypsotwd the total
probability mass is set apart to account for the unseen observations. For remmpgaiti
new robust local distance function can then be determined by interpolating lbetinese
contributions of the cost for ‘seen’ and ‘unseen’ observations:

—log[p(0)] = —log[(1 — €).p(O|seen) + e.p(Olunseen)], (20)

wherep(O) denotes the probability of the observation p(O|seen) is the probabil-

ity of the observation according to the data seen during during traipif@@junseen)

the probability of the observation according the unknown processdhd a priori
probability that an observation is generated that was not seen during trainingdegne

of the robust local distance function in Eq. 20 is in fact an attempt to incompdinat
well-known Tukey-Huber distortion model (Huber, 1981) in the recognition stage of an
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otherwise conventional HMM-based ASR (de Veth et al., 2001). What is eskkete

is the assumption that an observed event is the realization of a mixture prbwesses.

The first is the known process of which the parameters could be reliably éstinma

the training phase, i.e., the process which produced the set of all seen obseniimns
second process is the one that produces all observations that were not seen initfte tra
data. The only thing that is known about this second process is that some observations
will be generated at recognition time that were not seen during training.

The idea that individual observations may originate from a mixture of a known
and an unknown process plays an important role in the theories of StatisticaltRobus
ness (Huber, 1981) and Robust Statistical Pattern Recognition (Kharin, 199@&)e |
cases that we want to address (speaker independent recognition over the telephone)
is impossible to estimate the distortion distributions from the training@pek addi-
tion, it is difficult to obtain a reliable estimate of the distribution of ditibns from the
unknown speech that is to be recognized. Under these two conditions we find ourselves
in the situation (again) that it may be better to use an overly simphstidel, than to
try to use a more sophisticated model. As we will see below, it is indeedij®ss
improve recognition performance based on an extremely simple assumption béout t
distribution of the observation values that were not seen during training.

In the remainder of this Section, we will first explain the robust local digtanc
function in more detail. Next, we will introduce a topic that has not attractedim
attention during the last decades, but that still might prove to be of considengtxbe-
tance, viz. the way several transformations of the sequence of short-tinteasipethe
presence of additive noise (cf. Eg. 19) may affect the recognition result.

3.3  Disregarding unreliable information
3.3.1 Robust local distance function

As stated before, the pattern match in state-of-the-art ASR systeimplemented as

a search through frame-state space in the form of a dynamic programming algorithm
(usually a Viterbi algorithm). For each acoustic feature vector, it isddechow each
candidate optimal partial path so far is best extended with any of the HMidsstiaat

are candidates for extension. For each candidate optimal partial path, tleaisstat
lected which minimizes the path extension cost. For HMMs, this path ertensst is

the combination of the emission cost of the candidate extension state and thgotmansi
cost for jumping to the candidate extension state (Rabiner, 1988). In what folews

will concentrate on the emission cost, since experience has shown thatidranssts

can actually be disregarded in a practical system without significant logsofmnition
performance. Assuming that we really do not have any prior knowledge about the noise,
which is not unreasonable when dealing with speech recognition over the telephone, one
might reason as follows. An actually observed acoustic feature vectee@or compo-

nent) can be considered to be the realization of a mixture of two random proctsses:
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known process as observed during training and the unknown process of all observations
not previously seen. There is no need to explicitly determine by which of the two pro-
cesses the observation was generated. It suffices to determine theoaro@ssti due to
the mixture of these two processes.

For an HMM stateS; that is described by a mixture dff Gaussian probability
density functions the conventional local distance functign which we approximated
to be equal to the emission cost, is described as

M K
dioc(Si, X(t)) = —log{ Z Wim H Gimk(z1(1))} (21)
m=1 k=1
wherex(t) denotes the acoustic observation vector at time,,, denotes the m-th mix-
ture weight for stateS;, K denotes the dimension of the acoustic observation vector,
xi(t) the k-th component ok(¢), andG;,,.. the k-th component of the m-th Gaussian
probability density function for stat§;. The robust local distance functiah,,; de-
fined in (de Veth et al., 1998c; de Veth et al., 2001) is

K

drobust (Si; X(t)) = —log{ > wim [ [[(1 = )Gimn(xk(t)) + epo(zx(t))]},  (22)

m=1 k=1

wheree denotes the a priori probability that a feature value originates from the distri-
bution of disturbed, unreliable speech valueés{ ¢ < 1) andp,(z;(t)) denotes the
unknown probability density function used to compute the probability for observing an
outlier with valuex,(¢). It can be seen that Eq. 22 reduces to Eq. 21 if we choese.

Having reached this point, we still need to decide how the unknown process
is best statistically described, where ‘best’ means optimal accordinfeqrinci-
ples of Robust Statistical Pattern Recognition. For the particular problerstuay
(i.e., how to make the computation of the local cost in the search robust) thedsest
scription of the unknown process is, as yet, an open question. However, this does
not mean that one cannot make a sensible choice based on practical considerations.
In (de Veth et al., 1998c; de Veth et al., 2001) it was proposed to model the unknown
distribution as a uniform distribution, because this choice reflects our assnijest
that we do not have any prior knowledge about the unknown process.

Another decision that remains to be made is how to choose the a priori prob-
ability € that a feature value originates from the distribution of values not seen during
training. Without additional assumptions about the noise distortion there is no obvi-
ous way in which the ‘optimal’ value of can be found. According to the experience
gained so far, it appears to be reasonable to choose the Acoustic Backing-ofeperam
e such that the recognition performance in the matched training-test condition does not
suffer too much, while in the mismatched condition the word error rate is nakim
decreased (de Veth et al., 1999a; de Veth et al., 1999Db).

We will now explain the effect of using the robust local distance function as
defined in Eqg. 22 and why the choice to model the unknown distribution as a uniform
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contribution to emission cost

d2 clean d1
| |
value acoustic feature vector component

Figure 7. The contribution to the emission cost as a function of the observation value
of one acoustic feature vector component for two competing states (indicatédras *

), when a conventional local distance function is used. Assuming that therurr
observation actually corresponds to state ‘', three observation valeesoasidered:

a reliable, undistorted observation value (‘clean’) and two different tgpemreliable,
distorted observation values (‘d1’ and ‘d2’). For the conventional local distamation,

the contribution to the emission cost due to a distorted value may lead to alnbie
assignment of the most probable state.

distribution is already convenient. In Fig. 7 the local distance functiongspanding

to two competing, active HMM states (markedndj) are shown for the conventional
local distance computation. For illustration purposes, we have assumed thaiisiseoe
probability density functiop(z|S;) is modeled as a single Gaussian. Then the local dis-
tance becomes a quadratic function of the difference between the value of theeobserv
feature vector component and the mean value of the given distribution. We cohseser t
different observation values: one undisturbed value corresponding to the cleanarondit
(marked ‘clean’) and two different disturbed ones (marked ‘d1’ and ‘d2’). aAsume
that the frame vector actually ‘belongs’ to statdt can be seen that the contribution to
the emission cost is lower for statéhan for statg for the clean observation value. Now
consider disturbed observation values ‘d1’ and ‘d2’. In both cases the contribatiloa t
emission cost for stateis (much) higher than the one for statehereby increasing the
risk of recognition errors.

In Fig. 8 the same situation is depicted, but now the conventional local distance
functions have been replaced by their robust versions. As can be seen,isthgng
preferred over statg in the clean condition as before. However, for the distorted obser-
vation value ‘d1’ the contributions to the emission cost for statasd ; have become
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Figure 8. The contribution to the emission cost as a function of the observation value
of one acoustic feature vector component for the same two competing states ‘" and

as shown in Fig. 7, now using a robust local distance function. With the robust local
distance function, the contributions to the emission cost due to distorted featuss

of type ‘d1’ become identical for the two competing states ‘i’ and ‘j’. As a reshle
assignment of the most probable state becomes independent of this type of distorted
values. For a distortion of type ‘d2’, however, the robust local distance functiooti
effective.

identical. As a result the corrupted value will no longer favor the wrong gta@bvi-

ously, it will not favor the right state either. But if the corrupted value lies in the talil

of all (or most) distributions for the active states, its contribution todéeision how to
extend the candidate optimal partial path best is effectively cancelsdffitient com-
ponents of the acoustic feature vector of this frame contain uncorrupted valuewiiihe
discriminate between the active states and weigh in favor of the camectObviously,

this approach is not capable of removing the detrimental influence of distributional out
liers of the type ‘d2’. Here we are even more dependent on the presence of a sufficient
number of undistorted values to compensate for the incorrect boost of the likelihood of
statej.

The robust local distance function shown in Fig. 8 can also handle frames in
which all values are corrupted, as long as the values are affected inrtteerasanner
as the ‘d1’ type of distortion. In this case, the emission cost for all competatgsst
becomes essentially the same. When this happens, the frame makes no ¢ontrdout
the decision of what is the best path and thus is effectively eliminated.
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3.3.2 The effect of dispersion of unreliable information

As already indicated in the general scheme depicted in Fig. 1, in typical & Stms

the raw short-time spectra are not directly used for pattern matching. Mdse dime,
various normalization (e.g., gain normalization, channel normalization) and orthegonal
ization and dimensionality reducing transforms (e.g., Discrete Cosine dramdfinear
Discriminant Analysis) are applied. By using normalizing transforms, acofesiture
vectors are obtained that mainly represent the statistics of individualtsgeeads and
represent much less the variation due to differences in voice effort batdferent
speakers or the variation due to different telephone channels. Orthogonalizatien t
forms are used because they allow for more efficient modeling. For instancef tirdy
features are orthogonal, it is safe to assume that the covariance rsati@gonal.

With clean speech data, normalization and orthogonalization transforms gen-
erally improve recognition performance significantly. However, a corapibe may
arise when a subset of the components in the short-time spectrum are disturbded. In t
case, corrupted values in a restricted number of short-time spectral contpavié be
smeared out over the entire transformed vector. If this happens, theieffexts of
any strategy based on disregarding unreliable information might be jeopardiresl. T
is readily illustrated for the case of MFT. The basic presupposition in MRRat dis-
turbances affect only part of the acoustic feature vector components and leaestthe
intact. The idea of MFT is that recognition will be based only on those intact compo-
nents. If some transform causes dispersion of the distortions over all acteadtice
vector components, none of the components are completely intact any more. The extent
to which the effectiveness of MFT is undermined will then depend on how dgved:
vidual components are disturbed. In short, itis important to limit the spread ofaipies|
information in the acoustic feature vectors as much as possible, to kel eséect of
a strategy based on disregarding unreliable information.

3.4  Connected digit recognition with additive band-limited noise

We studied the effect of the spread of unreliable information due to acoustiocdea
vector transformations and the effect of using a robust local distance functithrei
context of connected digit recognition over the telephone. In all experiments kedsta
with mel-frequency log-energy coefficients as the basic representation siitinetime
spectrum. These are the raw features. We compared the recognition perferfoanc
two types of acoustic feature representations. The first type of features aieeubt
by a full-smearing transformation of the raw features, i.e., a linear corhbirgof
all raw features. For ease of reference, such feature representatioredladeFctype.
The second type of feature representations are obtained by feature transforines of t
raw features that only partly smear distortions over all feature vedomponents (P-
type features). In particular, we used within-vector mean normalizeldfreguency
log-energy coefficients (in short: F1) and mel-frequency cepstral coeffsc{é2) and
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compared these full-smearing transforms to sub-band mel-frequency ¢egusfa-

cients (Okawa et al., 1998) (P1) and within-vector filtered mel-frequencyeimygy
coefficients (Nadeu et al., 1995b) (P2). To study the effect of the type of local dis-
tance function, we conducted two sets of experiments with connected digit recogni-
tion, one set with the conventional and the other with the robust local distance func-
tion. As a distortion we used additive band-limited Gaussian noise. The cireoff
guencies of the band-pass filter were chosen such that approximately one quarter of
the energy bands that we used would be contaminated by nBise € 395H = and

Frign = 880Hz). We used three different signal-to-noise ratios of 20, 10 and 5 dBA
respectively, i.e., both the speech and noise energy levels were weiglktadiag to

the A-scale (Hassall and Zaveri, 1979). The ten words used for the digitstchDvere
modeled using 3-state, context independent phone-based HMMs with 16 Gaussians per
state. In all experiments reported here the robust local distance funct®onomaputed
usinge = 0.1. The uniform distribution that we used was defined independently for
each component. k = 1,..., K of the acoustic feature vector. Using all available
observations in the training data, we determined a lower and upper b@upng @nd

T}.nigh) Such that99.9% of all observations,(t) fell within the range betweefdy, ;,,,

andT}, nign. The uniform distribution for feature componéntvas defined to be equal to
m inside this range and zero everywhere else. More details about the robust
local distance function are given in (de Veth et al., 2001). Additional details aheut
experimental set-up can be found in (de Veth et al., 1999a; de Veth et al., 1999b). The
recognition results using the conventional local distance function for the ciebhnasy
conditions are shown in Fig. 9. The results using the robust local distance funaion a
shown in Fig. 10A, and the WER differenéd@V ER = W ER,opust — W E Rconventional

is shown in Fig. 10B.

Looking at the clean conditions first, it can be seen that all four feature repre-
sentations essentially perform at the same level and that recognitionrparfoe in the
clean condition is affected only slightly when switching from the conventiomahe
robust local distance function. Focusing on the conditions where noise was added to the
speech signals, two effects are clearly visible. Firstly, recogmitierformance is better
for the two feature representations that only partially smear distortioms B1 and P2
(two rightmost bars)) than for the representations that smear distortiongalb¥eature
components (i.e., F1 and F2 (two leftmost bars)). This observation holds forabg-re
nizer with the conventional as well as for the recognizer with the robust tlistdnce
function. Secondly, it can be seen that the recognizer based on the robust |cnatelist
function yields better results than the recognizer based on the conventionalikiaakce
function when noise is present in all cases, but one. The single exception ocBNR at
= 20 dBA for P1: The WER increases fromY.1% to 18.6% when switching from the
conventional to the robust local distance function.

Given the data shown in Fig. 9 and Figs 10AB, two remarks are in placelyfirs
application of the robust local distance function in the clean condition condiskeads
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Figure 9. Recognition results as a function of signal-to-noise ratio when using the con-
ventional local distance function. F1: within-vector mean normalized Magjtfency
log-energy coefficients. F2: Mel-frequency cepstral coefficients. P1: subidehd
frequency cepstral coefficients. P2: within-vector filtereded Mel-fraqudog-energy
coefficients.

to a slight loss of recognition performance. This is probably due to the fact that the
distributions of the observations to be recognized in the clean condition are tegtte
resented by the distributions found during training than by the mixture of distributions
used in the robust local distance computation. A mismatch between the mixtdise of
tributions used in the robust local distance computation and the actual distnilmit
observations could also explain the slight loss of recognition performance observed
one of the noise conditions. Secondly, the results show that performance improvements
are observed for all types of features that were tested. In other words: f&varfea-

ture representation that fully spreads spectrally local distortions dvegadure vector
components, the robust local distance function is capable of improving recognition per-
formance. Apparently, the detrimental effect of the noise can be partgigired by

the robust local distance function, albeit that the improvement is not equajly flar all
feature types.

The results discussed in this Section cannot be readily generalized, because i
must be expected that each specific noise type will affect different featlifferently.
Consequently, it must be expected that the amount of success that our robust local dis-
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Figure 10. A. Recognition results as a function of signal-to-noise ratio when using the
robust local distance function. Same abbreviations as in Fig. 9. B. Correspafiding
WER results.

tance function can offer, will depend on a complex interaction between &#atpes,
noise types and model characteristics. Additional research is neededytadute to
grips with this matter.

3.5 Discussion and conclusions

In this Section, we have presented a simple model of speech corrupted by adolitige
that can be used as a framework to compare and understand several difipreaiches
to making ASR more robust to noise. Noise robustness can be pursued in the acoustic
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feature domain, in the acoustic model domain, or in the distance measure domain. Ac-
cording to this scheme, we mentioned observation cleaning methods, of whichakpect
subtraction is the classic example. Next, we mentioned predictive modedlcasn-
pensation (viz. by assuming that useful estimates of the parameters of theaoise
obtained, which in their turn can be used to adapt the models to better fit the oarditi
present in the new signal). As another approach in the model domain, we referred to
work in model adaptation that attempts to make corrections based on obsesvas

they are received at recognition time.

In our contribution, we have focused on conditions in which no dependable
estimates of the noise can be made, so that we are left with the assuntyaticobt
served acoustic feature vectors can be considered as realizations &fumenaf two
different processes. The first process is known and corresponds to the ‘speech pro-
cess’ as observed during training. No knowledge about the second process is avail-
able. This unknown process corresponds to observations that were not seen during
training. We have argued that this description allows to make a link wittthitbery
of Robust Statistical Pattern Recognition (Kharin, 1996) and also to ijdseature
Theory (Cooke et al., 1996; Morris et al.,1998). These links deserve (and need) further
research.

From a speech science point of view, two possible ways can be identified to
extend the work on the robust local distance function. Firstly, our implementation
Missing Feature Theory might open new alleys towards the deployment of phonetic and
auditory knowledge in automatic speech recognition. For example, it could be possible
to introduce an estimate of fundamental frequency as one of the elements in thigcacous
feature vector. Fundamental frequency is only defined for voiced speech segments
undefined for other signal portions. With Acoustic Backing-off, it should not be difficult
to consider the value for fundamental frequency missing in signal portions that do not
contain voiced speech. Secondly, the physical and perceptual basis under Missing Fe
ture Theory might help to determine the best way for the incorporation of recarntses
from Robust Statistical Pattern Recognition in ASR.

We have also drawn attention to an issue which has not been widely discassed i
the literature, viz. the potential interaction between transformationseo€dmponents
of the short-time spectra and robustness against additive noise. With feptiexsead-
ditive noise will not affect all components of the short-time spectrum equakyakyued
that a transformation may be suboptimal when it smears distortions whiobcaier the
input short-time spectra over (almost) all components of the acoustic fe@ities. For
Missing Feature Theory this is evident, since smearing violates the basimpson un-
derlying Missing Feature Theory, i.e., that part of the observation values arstoteld.
The results from our experiments with feature representations that do not koalr
distortion over the full feature vector have shown convincingly that it paysitinnize
smearing. However, our research has also shown that it is not alwaightvavard to
predict how a given distortion in the spectro-temporal domain will be smeareid an-

210



other domain under a given transformation. For instance, the fact that our robu$tasDF
a positive effect even for full-smearing features like within-veaob@an normalized mel-
frequency log-energy coefficients and mel-frequency cepstral coefficiemest é@ast in
part be explained by the fact that not all transformed features have suffgathyefrom
the smearing of the low frequency spectral distortion (de Veth et al., 1999b)e Mer
search is needed with respect to this subject.

As a final subject for further research, we recall that the robust localrtista
function in the form of Acoustic Backing-off is not capable to handle the ‘d2’ type
distortions, shown in Figs 7 and 8. In general, the combination of the charticeeat
the additive noise and the feature transform will result in a mixture of ‘d1’ @2dtype
distortions. It is reasonable to expect that Acoustic Backing-off will be mdextie
if the proportion of ‘d1’ distortions in such a mixture is larger. However, ittil an
open question how to handle a mixture with a large proportion of ‘d2’ type distortions
to improve recognition robustness.

4 Concluding remarks

In this chapter we have discussed two environmental factors which contidbeagation
in speech signals and which therefore make automatic speech recognitionldiffhe
first factor is the effect of the transmission channel on the speech signavetsdrthe
input of the ASR device; the second is the effect of additive noise. Both factyrihelia
role in almost every recognition task, be it small vocabulary isolatedl wecognition
or the recognition of unconstrained spontaneous speech.

Throughout this contribution, the discussion was based on a physical and mathe-
matical model of the signals. It was argued that a model which encompasses abphys
effects in great detail (including possible non-linear distortions) is far tmopdex to
be handled. We have discussed how a simplified model can be adopted. Some simpli-
fications are quite realistic, e.g., the assumption that the transmission theatiree-
invariant (or varies only very slowly) during a human-machine interactigsisa. Yet,
in some specific situations the simplifications may become physicallyistieal For
instance, itis very unlikely that radio transmission errors in digigdiutar networks are
adequately represented by Eq. 19. However, it should be stressed that thécatigis
we addressed in this contribution are motivated by the important finding that@isi
tic model of which the parameters can be reliably estimated is alwalye freferred
over a physically more realistic model, if the parameters of the lattenat be reliably
obtained.

Another issue which has been emphasized throughout the paper is the interde-
pendence of the modules of state-of-the-art ASR devices. Thus, an ‘improvement’
one module, even one which is perfectly motivated by solid theory, may prodetés
riorate recognition accuracy, because it violates essential assumptionfyumpether
modules. This helps to explain why it has proven to be so difficult to harnessrconve
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tional and recent knowledge from phonetics and auditory perception to improve ASR:
Until we have a viable alternative for the Dynamic Programming search throfighna-

state space in which the frames constitute observations at equidistamiding with a
single fixed frequency resolution, only the most basic phonetic and auditory perception
knowledge can be brought to bear. We have illustrated this issue by means of RASTA fi
tering: Itis precisely its relation to human temporal masking — and tlee@dint conflict

with basic assumptions underlying HMM recognizers (like the assumption thatrspee
can be modelled as a sequence of relatively invariant and static sub-wisl-tmihich
restricts the usefulness of classical RASTA to the realm of recognitisacban whole-
word or triphone units, and prevents its generalization to sub-word model systsats ba
on units other than triphones.

Finally, we have pointed out how several different approaches to robust speech
recognition can be unified or at least be related to one another. Again, the point of depar
ture was a simplistic model, in which the signal at the input of an ASR deviansid-
ered as the sum of the ‘clean’ speech signal and some noise signal. Differevacipgs
can be developed depending on the choice of the working domain (see Fig. 1): the acous-
tic feature domain, the model domain or the distance computation domain. Examples for
the different domains are spectral subtraction, predictive model compensaiio)ss-
ing Feature Theory, respectively. We argued that the choice for any partroethod de-
pends on the assumptions about the parameters of the noise, and on the possibilities to re
liably estimate these parameters. We have elaborated a recentlyszhagproach which
has relations to the theory of Robust Statistical Pattern RecognitionifK i&96) and
more in particular to Missing Feature Theory (Cooke et al., 1996; Morris 419818).
Departing from the bottom line assumption that we have no prior knowledge about the
noise, we have introduced ‘Acoustic Backing-off’ as a means for handling observations
that are potentially corrupt and do not correspond to the distribution of observagiens s
during training. To that end we have introduced a new, robust local distance function. |
doing so, we have uncovered a new issue, viz. the impact of feature transtorsati
the local distance function and the attendant search.

We hope that the presentations and discussions in this paper help to provide a
framework to compare and unify the increasing stream of research pap@tsust ASR.
At the same time, it should help to guide future research and to focus it on tbpseta
which are most promising, given the full context of the models and assumptions implied
in a speech recogniser. Finally, this framework should help to prevent disapypoits
by showing how local improvements can be turned counterproductive because of the
way in which they violate critical assumptions in other components of a full-fikdge
ASR system.
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