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1 Introduction

1.1 Automatic speech recognition is pattern recognition

Saying that late 20th century automatic speech recognition (ASR) ispattern recognition,
is something of a truism, but perhaps one of which the fundamental implications are not
always fully appreciated. Essentially, a pattern recognition task boils down to measur-
ing the distance between a physical representation of a new, as yet unknown token, and
all elements of a set of pre-existing patterns, of course in the same physical representa-
tion. On the one hand, the ‘patterns’ that can be recognized are, implicitly or explicitly,
separate and invariable entities. For example, the commandopen in a Windows con-
trol application always has the same invariable and unique meaning. On the other hand,
the unknown input tokens are continuous signals that typically show a high degree of
variability. ASR research has centered around the problem of how to map continuous,
variable acoustic representations onto discrete, invariable patterns. In ASR the physical
representation of the speech tokens is some kind of dynamic power spectrum, for rea-
sons which date back to the days of Ohm and von Helmholtz, who have shown that the
power spectrum explains most of the perceptual phenomena in human speech processing.
Since the inception of digital signal processing dynamic spectra are approximated bya
sequence of short-time spectra (Rabiner and Schafer, 1978). Consequently, the pattern
match in ASR is invariably implemented as the accumulation of some distance measure
between the acoustic features derived from a sequence of short-time spectraof the input
token and the corresponding representation of the active patterns (see Fig. 1). There-
fore, anything which adds to the variability of the short time spectrum of a speech signal
will, as it were by definition, complicate pattern matching, and consequently complicate
ASR.

The basic aim of robust speech recognition is to make the pattern match insensi-
tive to variability in the short-time spectra. It goes without saying that there is no single
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Figure 1. Automatic speech recognition as a form of pattern matching. The feature
extraction module is used to compute a compact representation of the short-time spectra
that describes characteristics which are best suited for recognition.

optimal approach to find theholy grail. There are too many factors which affect the
spectra; in addition, there are just too many different ways in which the spectral features
can be represented, in which the patterns can be cast, and in which the search for the
best matching pattern can be implemented, even if we restrict the discussion to hidden
Markov models (HMMs) and Viterbi search. In this contribution we investigate two
factors which increase the variability of the short-time spectra in moredetail, viz. the
transmission channel and background noise. To clarify the discussion we first sketch a
model of the speech signal at the input of an ASR device. With the help of this model we
can explain the relation between different approaches of robust speech recognition, and
show how these approaches can be combined to reduce the effects of different sources
that distort the short-time spectra.

1.2 A simple model

It is easy to draw a comprehensive, but very abstract, conceptual model of the signals
at the input of an ASR device. Such a model is depicted in Fig. 2. We always have a
speaker, who is in some physical, acoustic environment, talking into a microphone which
is connected to a transmission chain that eventually delivers a signal to the input of the
ASR device. Filling in the details of this abstract model is less easy and straightforward,
however. How must one model the acoustic environment of the speaker? The model of
an anechoic room is certainly different from the model of a car running on the highway,
and also different from the model of a busy train station, and from a quiet hotel room. On
top of the impact of the acoustic environment, the microphone that converts the sound
into an electrical signal has several effects of its own. It is not equally sensitive to all
frequencies, nor to sounds coming from all different directions. In addition, the micro-
phone may also introduce non-linear distortions, like the plops caused by the airflow in
fricative and/or plosive sounds. In short, the microphone may introduce linear and non-
linear effects. The transmission chain connecting the microphone to the ASR device
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Figure 2. The observed speech spectrumS
′

is a mix of contributions from the original
speech spectrumS, the background noise spectrumN , the linear and non-linear transfer
characteristics of the channel, which can be described by a series of Volterra kernels
H1, H2, . . . (Schetzen, 1980), and the spontaneous activity of the channelH0.

may introduce its own additive noise and linear filtering (e.g., caused by the cabling and
amplifiers in analogue telephone transmission), as well as non-linear distortions. Digital
transmission should help to alleviate channel distortions, but it is certainly no panacea.
In cellular digital telephone networks radio transmission errors make a very substantial
contribution to recognition errors (both human and machine, for that matter).

Of course, we build conceptual models of the signal at the input of the ASR
device with the aim to recover the original undistorted speech signal, or rather, to recover
the power spectrum of the undistorted signals. The mathematical expression describing
the relation between the clean speech spectrum and the spectrum at the ASR input is
dependent on (1) the details of the transmission chain that are accounted for, and (2)the
description of the linear and non-linear effects that were mentioned above.

For the minimalist model shown in Fig. 2 letS
′

denote the spectrum of the speech
signal at the ASR input. Clearly,S

′

is a function of timet and frequencyω: S
′

=

S
′

(t, ω). If we assume that (1) the background noise is additive and (2) the channel can
be described as a linear, finite memory system,S

′

(t, ω) can be written as

S
′

(t, ω) = H0(t, ω) + H1(t, ω)[S(t, ω) + N(t, ω)], (1)

whereS(t, ω) is the original speech spectrum andN(t, ω) the spectrum of the back-
ground noise.H0(t, ω) corresponds to the spectrum of the signal spontaneously pro-
duced by the channel andH1(t, ω) is the spectrum of the linear transfer function of the
channel (Schetzen, 1980).S

′

, S, N , H0 andH1 are complex-valued functions of time
and frequency.

The original ‘clean’ speech spectrumS(t, ω) is very much an abstract concept.
Even under quiet, ‘noise free’ conditions the clean signal cannot be observed, because
it is affected by the room acoustics and the recording equipment. Fortunately, thelion’s
share of the inevitable effects are very small, much smaller than the differences be-
tween two speakers or between two realizations of the same linguistic utterance by the
same speaker. As long as the effects are similar for all utterances, they can be consid-
ered as part of the ‘clean’ spectrumS(t, ω). Robust speech recognition comes into play
where the impact on the ‘clean’ speech is variable, and so strong that the contributions
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to S
′

(t, ω) can no longer be neglected.

For robust speech recognition, Eq. 1 can be used to tell us how the speech spec-
trum observed at the ASR inputS

′

(t, ω) can be understood in terms of the original speech
spectrumS(t, ω) on the one hand, and the distortion terms on the other, i.e., the spon-
taneous activity of the transmission channelH0(t, ω), the linear transfer function of the
channelH1(t, ω), and the power spectrum of the additive noiseN(t, ω). Any approach
to robustness will need to consider (1) the relative importance of each of the three distor-
tion termsH0(t, ω), H1(t, ω), andN(t, ω), and (2) the accuracy with which each term
can be estimated. We are now in the position to explain why under certain conditions
specific solutions are superior. The key issue here is the amount of available priorknow-
ledge. To illustrate our point, we consider the following two scenarios. First, take an
ASR device attached to a switch in a telephone network. In this case, things lookpretty
hopeless. The input is a single signal, from which the set of actual parameter values of
all components of the model in Fig. 2 must be estimated. From a mathematical point
of view this is an ill-posed problem. It is an attempt to find a unique solution basedon
one equation with many unknowns. Elementary algebra tells us that this is impossible.
Instead of a unique solution, a whole family of solutions is possible and without addi-
tional and independent observations the ‘true’ parameter values cannot be reconstructed.
Consequently, in this situation we are obliged to simplify the model as much as possible
(to reduce the number of unknowns). As we will see below, the well-known cepstrum
mean subtraction technique (Atal, 1974; Furui, 1981) is a typical example of this sim-
plified approach. For a second scenario, consider an ASR device built into a Bugatti
car that is almost exclusively driven on the highways of Arizona and New Mexico. In
this case, we might be able to reliably estimate the parameters of most components of
the model in Fig. 2. To be more specific, with the engine switched off and no speech
input we can establish the parameter values for the model component representing the
spontaneous activity of the channel. While driving the car and no speech input, we can
record the typical background noise. Finally, we can measure the linear transfer charac-
teristic of the channel by testing the microphone in an an-echoic room. Now, the most
appropriate robustness approach in the first scenario will seem much more primitive than
the approach in the Bugatti case. Although it may be considered more appropriate from
a ‘physical’ point of view, the more sophisticated Bugatti model would fail miserably
in the first scenario, because the parameters of the noise will vary substantially between
calls, making it impossible to come up with a useful prediction for an individual call.
It is common knowledge in the field of System Identification that it is better tohave an
overly simplistic model of which the parameters can be estimated reliably, than to try a
physically more adequate model, the parameters of which cannot be estimated reliably.

In the following Section, we will discuss techniques for dealing with linear fil-
tering effects caused by the microphone and transmission channel. In Section 3,we will
discuss different methods to deal with additive noise. In both problems, we willstress
the inter-dependence between the underlying models, the choice for parameter represen-
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tations, and the eventual spectral distance computation which is at the heart ofany ASR
algorithm.

2 The presence of a transmission channel

2.1 Assumptions for channel robustness

As said before, it is only possible to observe the speech signal through some transmission
channel. Under most practical circumstances it is reasonable to assume thatthe linear
transfer function of the channel is time-invariant or at least varying slowly in comparison
with the articulation process. ThenH1(t, ω) in Eq. 1 reduces to

H1(t, ω) = H1(ω). (2)

In this Section, we want to focus the discussion on techniques for dealing with the effects
of H1(ω). To simplify the discussion, we make the additional assumption that the energy
of the combination of the spontaneous activity of the channel and the background noise
can be neglected, i.e.,

|H0(t, ω) + H1(ω)N(t, ω)|2 ≪ |H1(ω)S(t, ω)|2. (3)

The speech spectrum at the ASR input can then be approximated as

S
′

(t, ω) = H1(ω)S(t, ω). (4)

As can be seen, the speech spectrum at the ASR input now contains only two contri-
butions: the time-invariant linear transfer function of the channel and the time-variant
speech spectrum. As we will see below, the separation into two contributions that have
different temporal characteristics is the key to many channel robustnessstrategies. With-
out the assumption expressed by Eq. 2 such a convenient separation is not possible.

In the log-energy domain Eq. 4 becomes

log(|S
′

(t, ω)|2) = log(|H1(ω)|2) + log(|S(t, ω)|2). (5)

Taking the Fourier transform, we have in the cepstral domain

c
′

(t, τ) = ch(τ) + c(t, τ), (6)

with c
′

(t, τ) the cepstrum of the channel output,ch(τ) the cepstrum of the channel and
c(t, τ) the cepstrum of the original speech signal.c

′

(t, τ), ch(τ), andc(t, τ) are real-
valued functions, because the terms in Eq. 5 (log(|S

′

(t, ω)|2), etc.) are real and even.
According to Eq. 6 the contribution of the unknown channel is a constant for a given
quefrencyτ . From Eqs. 4, 5 and 6 it can be understood how the channel can affect
ASR: If training and testing are performed using two different channels, thecepstra
used during training differ from the corresponding cepstra at recognition time. Channel
normalization methods aim to reduce the differences between training and testing speech
spectra caused by the channel.
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2.2 Channel normalization techniques

Channel normalization (CN) techniques have been studied for quite different conditions.
In one such condition, which is not addressed in this contribution, a recognizer is trained
with speech recorded with a close talking microphone and recognition is attempted on
speech recorded with a different microphone. The contribution of the channel during
training does not need to be known in great detail, because it is constant. The channel
conditions during test are different from those during training, but constant too. Thus,
a single, fixed transformation should suffice (see for example (Anastasakos et al., 1994;
Liu et al., 1994; Orloff et al., 1994; Weintraub et al., 1994)).

In ASR applications over the telephone the situation is different: the channels
over which the training speech is recorded are unknown and likely to differ between all
recording sessions. The same goes for the testing speech. Under these conditions a CN
technique is needed both during training and testing. This is the situation that is reviewed
here.

2.2.1 Use of many different channels

Under the assumption that the channel characteristics and the speech signal arestatis-
tically independent, the first and second order statistics of the cepstral parameters for a
particular pattern (in our case a subword units) can be written according to Eq. 6 as

E{c
′

s(t, τ)} = E{ch(τ)} + E{cs(t, τ)} (7)

and

Cov{c
′

s(t, τ)} = Cov{ch(τ)} + Cov{cs(t, τ)}, (8)

whereE{} denotes the expected value andCov{} denotes the covariance. Thus, the
emission probability density functions of the states associated withs contain a con-
tribution due to the statistical differences between the channels. The estimates of the
means are biased with the unknown functionE{ch(τ)}, which approaches the aver-
age channel cepstrum if enough different channels are used. At the same time, the
covariance estimates are increased by the factorCov{ch(τ)}. If the training speech
covers a sufficient number of different but representative channels, the estimated pa-
rameters of the emission probability density functions may be expected to adhereto
Eqs. 7 and 8, e.g., (Hermansky et al., 1991; Hirsch et al., 1991; Aikawa et al., 1993;
Haeb-Umbach et al., 1995; Junqua et al., 1995; Nadeu et al., 1995a; Singer et al., 1995;
de Veth and Boves, 1996). Thus, using many different channels in training helps tore-
duce the impact of specific channels on the eventual models. However, it is of limited
help when an unknown utterance must be recognized, because there is no guarantee that
the bias due to the particular channel at hand is close to the average channelE{ch(τ)}.
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2.2.2 Explicit channel estimation

Some authors have proposed to estimate the contributions of the channel explicitly (sta-
tistical channel modeling (Gish et al., 1985; Gish et al., 1986)). This estimate is then
used to correct the HMM parameters or the speech feature values. The well-known cep-
strum mean subtraction technique (Atal, 1974; Furui, 1981) can be considered as a form
of explicit channel estimation. The cepstrum meanĉmean(τ) is computed by taking the
average over all speech signal frames

ĉmean(τ) =
1

T

T∑
t=1

[c
′

(t, τ) + ch(τ)] = ĉutt(τ) + ĉh(τ). (9)

As indicated in Eq. 9, the cepstrum mean consists of the average speech cepstrum of the
utterancêcutt(τ) (an approximation of the average speech cepstrum of the person who
produced the utterance) and the contribution due to the channelĉh(τ). As can be inferred
from Eq. 9, cepstrum mean subtraction has two effects. Firstly, the variability that is due
to differences between speakers is reduced in the statistics for a particular speech sound.
Secondly, cepstrum mean subtraction reduces the variability due to differences between
communication channels used when recording that sound.

Note that non-speech signal portions are not used in Eq. 9. The reason for this
can be understood as follows. According to Eq. 1, the observed spectrum in non-speech
signal portions is

S
′

(t, ω) = H0(t, ω) + H1(t, ω)N(t, ω). (10)

As can be seen, the non-speech spectrum consists of two contributions: the spontaneous
activity of the channelH0(t, ω) and the linearly filtered background noiseH1(ω)N(t, ω).
Without additional assumptions about the spontaneous activity of the channelH0(t, ω)

and the background noiseN(t, ω), non-speech portions of the signal cannot be used
to obtain reliable information about the linear filter characteristic of thechannelH1(ω)

alone. As a consequence, using non-speech portions of the signal introduces bias in the
estimate of the mean cepstrum in a way that cannot be predicted.

2.2.3 Filtering of log-energy or cepstral feature values

It is well-known that any differentiable functionf(t) can be recovered (up to a known
constant) as follows when it is observed with a constant unknown biask:

f(t) − f(tlow) =
∫ t

tlow

d

dt′
[f(t′) + k]dt′, (11)

wheretlow satisfies−∞ < tlow < t. Due to the differentiate and re-integrate operation
the unknown bias termk is replaced by the constant termf(tlow).

According to Eq. 6, the contribution of the channel results in a time-invariant
additive bias for each cepstral coefficient, which is independent of the original speech
cepstrum. When applying Eq. 11 to the cepstrum observed at the channel output, the
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cepstrum will no longer depend on the channel after such a differentiate and re-integrate
operation. Recalling our assumption in Eq. 3 about the energy of the silent signal por-
tions being very small compared to the energy of speech portions, we see that the con-
tributionf(tlow) will vanish if we taketlow in a silent portion (e.g., in the leading silence
at the beginning of the utterance). As a result, the cepstrum of the original speech signal
is obtained.

The differentiate-and-integrate operation can be implemented as a linear filter.
Filtering can be performed either in the log-energy domain (Hermansky et al., 1991;
Hermansky and Morgan, 1994) or in the cepstral domain (Haeb-Umbach et al., 1995;
de Veth and Bourlard, 1995; de Veth and Boves, 1996). It was shown that channel ro-
bustness can also be improved if the re-integration of Eq. 11 is omitted (Furui, 1981;
Soong and Rosenberg, 1986). In that case, channel robustness is improved because the
constant bias termk actually corresponds to DC in the modulation spectrum and the
differentiation effectively attenuates this DC component.

If a properly designed leaky integrator is used, the differentiate-and-integrate
operation will also be effective if the channel transfer function is slowly time-
varying. This approach of the unknown channel problem has resulted in many dif-
ferent proposals for filtering the observed sequence of cepstral parameters, for in-
stance RASTA filtering (Hermansky et al., 1991; Hermansky and Morgan, 1994), the
Gaussian dynamic cepstrum representation (Aikawa et al., 1993; Singer et al., 1995;
Boda et al., 1996), the high-pass filter method proposed in (Hirsch et al., 1991),
Slepian filters (Nadeu et al., 1995a), phase-corrected RASTA (de Veth and Boves, 1996;
de Veth and Boves, 1997b) and combinations of these methods (Junqua et al., 1995).

The cepstrum mean subtraction technique (Atal, 1974; Furui, 1981) can also be
formulated as a linear filter operation. If the channel estimate is calculated over the full
length of the speech utterance (as can be done in off-line experiments), then cepstrum
mean subtraction can be interpreted as a FIR filter operation, with the filter adjusted to
the length of each utterance. If a running mean is used to obtain the channel estimate
(which is the commonmodus operandi for cepstrum mean subtraction in real-time ap-
plications) the definition of the FIR filter is the same for each utterance. TheGaussian
Dynamic Cepstrum Representation (Aikawa et al., 1993) and the discrete cosine trans-
form (Milner and Vaseghi, 1995) are other examples of FIR filtering, although none of
these techniques was originally presented in that formalism.

2.3 Comparison of feature track filtering techniques

Using the linear transfer function description of Eq. 4, it is easy to show thatthe differ-
ences between the many techniques for undoing the effect of the channel relate to either
the way in which the parameters of the linear filterH1(ω) are estimated, and/or to the
way in which the operation, used to undo the effect ofH1(ω) is implemented. In this Sec-
tion, the focus is on the effects of the implementation of the filter. We will show that the
details of the implementation are important, because these details interfere with the type
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of models that are used in speech recognition. Although it would have been interesting
to show that the arguments developed in this Section also hold for more sophisticated
models of the channel, and the attendant more complex techniques to undo these ef-
fects in a recogniser (Rahim and Juang, 1996; Junqua and Haton, 1996; Junqua, 2001),
we will limit ourselves to the techniques decribed below due to space limitations.

2.3.1 Effect of the filter phase response

We concentrate our discussion on a comparison of three CN techniques which
can be described in terms of cepstral filtering: RASTA filtering, cepstrummean
subtraction and phase-corrected RASTA. RASTA filtering (Hermansky etal., 1991;
Hermansky and Morgan, 1994) is interesting for several reasons. First, it iswell-known
that RASTA filtering is effective with units that incorporate context dependency such as
words or triphones. In addition, RASTA can be viewed as a crude model of auditory
time masking, and it has been argued that this correspondence to perception accounts for
much of its effectiveness (Hermansky and Pavel, 1995; Hermansky, 1996). However,
Eq. 11 was the original point of departure for RASTA (Hermansky et al., 1991); its re-
lation to auditory masking was only established later on (Hermansky and Pavel, 1995;
Hermansky, 1996). The second CN technique discussed here is cepstrum mean
subtraction (Atal, 1974; Furui, 1981), because this technique is very simple, yet
highly effective (Steinbiss et al., 1995; Haeb-Umbach et al., 1995). In two inde-
pendent studies the effectiveness of RASTA filtering and cepstrum mean subtrac-
tion was compared in a recognition set-up based on context independent HMMs
(CI-HMMs) (Haeb-Umbach et al., 1995; de Veth and Boves, 1998a). In both stud-
ies the task was recognition of digit strings, be it that different languages were
being used: (Haeb-Umbach et al., 1995) used German and American English,
while (de Veth and Boves, 1998a) used Dutch. It was found in both studies that RASTA
filtering is effective as a CN technique, but that cepstrum mean subtraction is more effec-
tive. The apparent limited effectiveness of RASTA filtering can be attributed to the well-
known left-context dependency introduced by the RASTA filtering (Koehler et al., 1994;
Hermansky and Morgan, 1994). To be able to better understand this left-context depen-
dency, and to be able to verify that this is indeed the underlying cause for the limited ef-
fectiveness of RASTA filtering when compared to cepstrum mean normalization, phase-
corrected RASTA was introduced in (de Veth and Boves, 1998a).

We start our discussion by considering the signal shown in the upper panel of
Fig. 3. This artificial signal is intended to represent a sequence of cepstral values for
quefrencyτ . It models a sequence of seven time-invariant ‘speech’ states, precededand
followed by a rest state (‘silence’). The signal contains a constant DC-component that
represents the effect of the channel. The RASTA filtered version of this signal is shown
in the middle panel of Fig. 3.

Two observations can be made. First, the DC-component has been removed (at
least for times larger than, say, 70 frames). Second, the shape of the signal hasbeen
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Figure 3. Synthetic signal representing one of the cepstral coefficients in the feature
vector. Upper panel: Original signal containing a time-invariant DC-offset. Middle
panel: RASTA filtered signal. Lower panel: Phase-corrected RASTA filtered signal.

altered. Originally, the states of the signal had a constant amplitude. Afterfiltering, the
amplitude for each state drifts towards zero, while the values immediately after an abrupt
change are more or less preserved. This explains why RASTA enhances the dynamic
parts in the spectrum of a speech signal (Hermansky and Morgan, 1994). However,a
description of the signal in terms of states with well-defined means and small variances
becomes less accurate. Worse even, the mean amplitude of each state has become a func-
tion of the state itself AND of the preceding states. This is the left-context dependency
in RASTA (Koehler et al., 1994; Hermansky and Morgan, 1994).

To identify the origin of this left-context dependency, we take a close look at the
frequency responseHR(ν) of the classical RASTA filter which can be written as

HR(ν) = |HR(ν)| ejφR(ν), (12)

with ν the modulation frequency (in radians),|HR(ν)| the magnitude response andφR(ν)

the phase response. The magnitude and phase response of the RASTA filter with integra-
tion factora = −0.94 are shown in Fig. 4AB for modulation frequencies between0−20

Hz. This range includes the2 − 16 Hz region which has been shown to be most impor-
tant for human speech recognition (Drullman et al., 1994). From Fig. 4B it can be seen
that the phase response is non-linear for modulation frequencies below approximately 3
Hz. This non-linearity causes the time-domain shape distortions observed in themiddle
panel of Fig. 3.

To compensate for the phase distortion of the RASTA filter, while preserving
its magnitude response, we followed a procedure suggested in (Hunt, 1978). After the
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Figure 4. A. Log-energy response of classical RASTA. B. Phase response of classi-
cal RASTA. C. Log-energy response of phase-corrected RASTA. D. Phase response of
phase-corrected RASTA.

RASTA filter an all-pass filter is applied whose phase responseφpc(ν) is exactly the
inverse of the phase response of the RASTA filter

φpc(ν) = −φR(ν). (13)

Thus, the frequency responseHpc(ν) of the phase correction filter is

Hpc(ν) = e−jφR(ν). (14)

With this phase correction, the frequency responseHpcR(ν) of the complete phase-
corrected RASTA filter is

HpcR(ν) = HR × Hpc = |HR(ν)| . (15)

The phase correction filterHpc(ν) can be implemented as a pole-zero filter, obtained by
solving for the coefficients{b,a} that satisfy

e−jφR(ν) =
b0 + b1e

−jν + . . . + bqe
−jqν

1 + a1e−jν + . . . + ape−jpν
, (16)

where q (p) is the order of the numerator (denominator) polynomial.
In (de Veth and Boves, 1998a) a Matlab procedure withq = 1 and p = 7 was
used to calculate the{b,a} coefficients (Little and Shure, 1993). As it turns out, three of
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the seven poles of the phase-correction filter are lying outside the unit circle,while the
zero is lying inside. Due to the poles lying outside the unit circle, the phase-correction
filter is unstable. Therefore, it cannot be applied directly to the RASTA filtered signal.
However, the inverse of this filter is stable and, as a result, in off-line experiments the
following engineering trick can be used (Hunt, 1978): (1) reverse the RASTA-filtered
signal in time, (2) take the inverse of the pole-zero phase-correction filter, (3) apply
the inverted phase-correction filter to the time-reversed RASTA-filtered signal and (4)
reverse the resulting signal in time. With a slight performance penalty thenon-causal
filtering can be cast in a form that allows a real-time implementationwith short
processing delay (de Veth and Boves, 1997a). In this paper we will only discuss results
for off-line experiments.

In Fig. 4CD the magnitude and phase response of the phase-corrected RASTA
filter are shown. It can be seen that the magnitude response is almost identicalto the
original one and that the new phase response is flat and very close to zero in the re-
gion of important modulation frequencies. The result for phase-corrected RASTA in the
time domain is shown in the lowest panel of Fig. 3. The shape of the phase-corrected
RASTA filtered signal closely resembles that of the original signal. The phasecorrection
effectively removes the amplitude drift towards zero in time-invariant parts of the sig-
nal and decreases the left-context dependency. Thus, phase-corrected RASTA doesnot
model temporal masking, but it is in better agreement with the usual model of a speech
utterance as a sequence of time-invariant states.

2.3.2 Continuous speech recognition with phase-corrected RASTA

We compared the recognition performance of classical RASTA, phase-corrected RASTA
and cepstrum mean subtraction for a continuous speech recognition task, where utter-
ances recorded over the (land-line) public switched telephone network were used.About
nine hours of speech were used for training, while three hours of speech were used for
testing. The recognition lexicon contained 983 words.1.2% of the words in the test set
were out-of-vocabulary. The test set perplexity of the recognition task was 36.7.For our
evaluations we restricted ourselves to the single best recognized sentence. Full details of
these experiments can be found in (de Veth and Boves, 1998b).

We trained and tested HMMs for four different channel normalization conditions,
i.e., no channel normalization (NCN), classical RASTA (clR), cepstrum mean subtrac-
tion (CMS) and phase-corrected RASTA (pcR) in combination with two different rec-
ognizer set-ups, i.e. context independent phone-based HMMs (CI-HMMs) and context
dependent phone-based HMMs (CD-HMMs). In these experiments, the off-line ver-
sions of CMS and pcR were used. In other words, we used the whole utterance when we
computed the cepstrum mean and when we applied the time-reversal operation needed
for pcR. Taking the number of substitution, deletion and insertion errors into account,
we computed the word error rate for all combinations of channel normalization method
and recognizer set-up, where we varied the number of Gaussians used to describe the
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Figure 5. Recognition accuracy as a function of the total number of Gaussians in the
trained HMM set for clR (×), pcR (⋆) and CMS(•), compared to the feature set without
CN (◦) when using CI-HMMs.

emission probability density function of each state. For the CI-HMMs, mixtures with 4,
8, 16 and 32 Gaussians per state were used. This corresponds to using a total number
of Gaussians of 460, 920, 1840 and 3680 respectively. The results for the different CN
techniques with CI-HMMs are shown in Fig. 5.

From Fig. 5 it can be seen that clR deteriorates recognition performance com-
pared to NCN, when CI-HMMs are used. Removing the channel bias by using clR
introduces so much left-context dependency that the potential CN gain is completely
annihilated. The results for pcR indicate that the poor performance of classical RASTA
is a direct consequence of the phase distortion. By removing the phase distortion the
recognition performance is significantly and substantially improved comparedto clR. At
the highest total number of Gaussians in this CI-HMM system the WER is reduced by
23% relative to clR. In addition, for the more complex acoustic models pcR recognition
performance is significantly better than NCN and in fact becomes as good as CMS.

It is interesting to compare these results to the results reported in
(de Veth and Boves, 1998a). Whereas the continuous speech results in Fig. 5 show that
clR actually decreases recognition performance relative to NCN, the digit experiments
in (Haeb-Umbach et al., 1995; de Veth and Boves, 1998a) showed that clR is viable as
a CN technique. These findings may seem contradictory at first glance, but can be un-
derstood if one realizes that the main difference between these two set-upsis the num-
ber of different phone contexts. In fact, the number of different phone contexts for
the continuous speech recognizer is more than 70 times as large as in the digit recog-
nizer (de Veth and Boves, 1998b). As a consequence, the loss of recognition perfor-
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Figure 6. Recognition accuracy as a function of the total number of Gaussians in the
trained HMM set for clR (×), pcR (⋆) and CMS(•), compared to the feature set without
CN (◦) when using CD-HMMs.

mance due to enhancement of the left-context dependencies is likely to be much more
important in the continuous speech recognizer. Apparently, this effect is so strong that
it completely annihilates the potential performance gain obtained from the attenuation
of modulation components near DC. In the case of the digit recognizer, the net effect of
RASTA filtering is still positive, because the performance gain obtained by suppressing
the DC component is less affected by the left-context effect. The number of different
contexts for the digits vocabulary is apparently so small that the models are effectively
context dependent.

When using clR with CD-HMMs one would expect that the loss of recognition
performance due to the left-context effect is diminished, because different contexts are
modeled with different states. When every individual left context could be modeled
independently, the left-context effect should disappear completely, and the CN effect
should remain in its full strength. However, under all practical conditions incontinuous
speech recognition, the amount of training data is not sufficient to model each left context
independently. This lack of training data forces one to pool the data from different
contexts for sub-word units with low occurrence counts. In our experiments the data
sharing for infrequent units was implemented as a data-driven state-tying mechanism.
Due to the data sharing, one can no longer expect that the loss of recognition performance
caused by the left-context effect of clR is completely annihilated.

The results for CN techniques with CD-HMMs are shown in Fig. 6. In this
set-up we used HMMs with 1, 2, 4 and 8 Gaussians per state, corresponding to a total
number of Gaussians of 388, 776, 1552 and 3104 respectively. First, it can be seen
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that the difference between clR and NCN has become smaller than the one we observed
for CI-HMMs. For the best CI-HMMs clR decreases recognition performance by16%

relative to NCN. In the case of the best CD-HMMs the performance only drops9%.
Thus, we have some gain when switching from CI- to CD-HMMs in the case of clR,
but this improvement is limited due to the state-tying mechanism that is used to avoid
undertraining. However, even with CD-HMMs the detrimental effect of theleft-context
dependency is still stronger than the beneficial effect of CN in this recognition task.

It can also be seen that introducing the phase-correction brings the recognition
performance curve very close to the one for CMS (except at the models corresponding to
1 Gaussian per state). For the CD-HMMs corresponding to 8 Gaussians per state, WER
is improved by15% when clR is replaced by pcR. This is in good agreement with the
results of pcR obtained for CI-HMMs.

2.4 Conclusions

Most, if not all techniques intended to eliminate the variability introduced by the com-
munication channel imply some form of filtering of the sequence of feature vectors.The
results of the comparison of three different techniques for CN and the explanation of
these results show that care must be taken that the phase response of the filter is linear.
In other words: The overall shape of the feature track must be preserved as much as
possible. This requirement is due to the structure of the basic patterns which represent
the spoken words. In most cases speech is modeled as a sequence of essentiallytime-
invariant states, which are only dependent on a very local context. Any phase distortion
caused by a filter that is applied to remove the influence of the channel by necessity in-
terferes with the time-invariance and independence assumptions. In the particular case
of classical RASTA, the signal segments represented by conventional sub-wordunits
are much shorter than the RASTA filter memory. This results in a conflict between the
intrinsic nature of the feature values after filtering and the assumptions underlying the
structure of the speech model. As a consequence, the intended beneficial effect of this
CN technique is completely destroyed by the negative effect of the phase-distortion.

These findings show that any technique to improve robustness can only be ex-
pected to yield improved recognition results as long as it is compatible with the basic
assumptions made in the models of the speech signal and in the procedure to search for
the best matching patterns. Specifically, and in a way unfortunately, this implies that
findings from human speech perception cannot simply be re-used in ASR algorithms
which model speech as a sequence of discrete, time-invariant, context insensitive units.
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3 Robustness against background noise

3.1 Assumptions for noise robustness

To understand the effect of acoustic background noise on the feature values at the input
of an ASR system, we must return to Eq. 1. We keep the assumption that the channel
characteristics are time-invariant (cf. Eq. 2), but we drop the additional assumption that
the magnitudes of the terms related to noise are negligible relative to the magnitudes of
the terms related to the speech signal. This is equivalent to the assumptionthat

|H0(t, ω) + H1(ω)N(t, ω)| ≈ |H1(ω)S(t, ω)|. (17)

We then have

S
′

(t, ω) = H0(t, ω) + H1(ω)[S(t, ω) + N(t, ω)]. (18)

Without much loss of generality, Eq. 18 can be simplified by lumping all additive com-
ponents into a single, possibly time-varying, noise componentU(t, ω):

S
′

(t, ω) = H1(ω)S(t, ω) + U(t, ω). (19)

The general model in Eq. 19 is a good starting point for discussing different approaches
for improving noise robustness. As we already discussed in Subsection1.2, the choice
for a particular approach depends on the assumptions that can be made about our know-
ledge ofU(t, ω), or perhaps more accurately, on the possibility to obtain useful para-
metric estimates ofU(t, ω) in a specific situation. The model ofU(t, ω) must be more
simple as the noise becomes more variable between situations and unpredictable for a
specific situation. Attempts to undo the effect of additive noise can be classified ac-
cording to their working domain. Popular approaches include methods (1) to clean the
acoustic features, (2) to adapt the models trained on clean speech to noisy conditions
and (3) to adapt the distance computation in the Dynamic Programming search. These
approaches essentially try to reduce the variation in the feature values dueto the noise or
they try to limit the impact of this variation on the computation of the similarity between
new observations and pre-existing models.

It is reasonable to assume that noise robustness of an ASR system will increase
if methods developed in the different domains are properly combined. Although it might
seem attractive to compare the performance of individual approaches for improved noise
robustness, such a straightforward comparison is hardly fair. Some approachesmay be
inherently more effective with certain types of distortions. In addition, experience has
shown that the effectiveness of robustness techniques may be dependent on the details
of the implementation. For these reasons, we refrain from making direct comparisons
between different noise robustness approaches. We will limit the discussion to summary
descriptions of observation cleaning, predictive model-based compensation and model
adaptation, and focus in more detail on a new approach, which is formulated in the local
distance computation domain. For an extensive review of observation cleaning (and
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other noise robustness techniques), we refer to (Gong, 1995). Recently, many predictive
model-based compensation schemes were reviewed in (Gales, 1998). Finally, we refer
to (Lee, 1998) for an excellent review of model compensation and model adaptation
techniques.

3.2 Three domains for noise robustness

3.2.1 Feature domain

We first consider a well-known noise robustness method which is defined in the fea-
ture domain. In those scenarios where it is reasonable to assume that the noise isquasi
time-invariant, an obvious strategy would be to make an estimate of the noise spectrum
U(ω) and to subtract it from the noisy input spectraS

′

(t, ω). This strategy is known
asspectral subtraction (Boll, 1979; Lockwood and Boudy, 1992) and has a long tradi-
tion in research in speech enhancement, i.e., processing of noisy speech to make it more
pleasant and intelligible for humans. Spectral subtraction can be regarded as aclassic
example of the idea to try and find a feature representation for which the statistical char-
acteristics are minimally affected by the background noise. As long as ways can be
found to reliably estimate the background noise characteristics, spectral subtraction is a
useful pre-processing step that will increase recognition robustness and canbe combined
with any of the strategies yet to be described.

3.2.2 Model domain

If it is reasonable to assume that the ASR system is always used in the samenoise
environment, probably the simplest way of handling the problem is by training models
using speech recorded in that particular environment (e.g., (Dautrich et al., 1983)), or
speech corrupted by artificially adding the noise (e.g., (Gales, 1995)). These approaches
have shown good results, but their use is limited to those situations where the speech to
be recognized is always picked up in the same noise environment. Moreover, with this
approach new models need to be trained for each new type of noise. Finally, artificially
adding noise to clean recordings is only effective as long as the noise level under actual
conditions is not so high that it gives rise to the Lombard reflex. This kind of spontaneous
adaptation of the speech production enhances human intelligibility, but may very well
harm ASR performance (Junqua, 1996).

If the noise is not easily predicted, but one can still obtain a reliable estimate
of U(t, ω), one might want to use that estimate to adapt the observation distributions
in the models trained on clean speech (Lee, 1998; Lee and Huo, 1999). Another ex-
ample of a set of approaches developed for the model domain, ispredictive model
combination, PMC, also known asparallel model combination (Gales, 1998). In this
case, the idea is to train separate models of noise and speech; if necessary, different
types of noise can be modelled in parallel. During recognition the most likely com-
bination of speech sounds and noise is computed. Searching the optimal path while
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using both noise and speech models leads to a three dimensional dynamic program-
ming problem (Varga and Moore, 1990) with time, speech states and noise statesas
the three dimensions. If the noise can be described by an ergodic HMM, the three
dimensional search problem can be converted into a conventional two dimensional
search (Gales, 1998).

Despite the good results reported for different implementations of the PMC
scheme (see for example (Gales, 1998)), such an approach is not always feasible. In
particular, the usefulness of a PMC approach may be limited for two reasons, which are
both growing more important with the increased use of mobile phones. Firstly, even
if it is perfectly known beforehand what different noises can occur, the choice for the
appropriate noise type will have to be made at recognition time. The decision willbe-
come more difficult as the number of different noise types known to the ASR system
increases. Secondly, if the noise is time-variant, then the need will arise to continuously
update the noise model on-line. Due to lack of observations, the noise model estimate
may become poor to the extent that it limits the effectiveness of the compensation tech-
nique (Gales, 1998). These difficulties have inspired people to look for approaches that
make less specific assumptions on howU(t, ω) affects the features or the models. These
are the approaches developed in the distance computation domain.

3.2.3 Distance computation domain

The basic mechanism in an approach that does not rely on explicit estimates of thenoise
in terms of features or models consists of changing the similarity measurement between
the trained models and the test utterance. The moment one realizes that feature values
have an inherent uncertainty due to the presence of acoustic background noise, it is only
natural to try to develop decision strategies that are primarily based onfeature values
that are least affected by noise characteristics. In (Lee and Huo, 1999) anumber of such
robust decision methods are discussed. These methods all attempt to account explicitly
for the uncertainty in the feature values.

A somewhat different starting point is taken in the approaches based onMissing
Feature Theory (MFT) (Cooke et al., 1996; Morris et al.,1998). According to Eq. 19 the
signal spectrum at the ASR input can be considered as a mixture of a reliable compo-
nent (i.e. the channel filtered original speech spectrum) and an unreliable component
(i.e. the unknown noise contribution). Depending on the exact nature of the distor-
tion some of the observed values in the acoustic feature vector may still be reliable,
while other values may have become unreliable. In several recent proposals thekey
idea is to somehow disregard the unreliable information and base recognition on re-
liable information only. This idea can be pursued in different manners. First,let us
suppose that one is working with acoustic feature vectors that are defined in the spec-
tral domain, e.g., filter bank outputs. Then, if it can be assumed thatU(t, ω) takes
non-negligible values only for a limited number of time framest or a limited range of
frequenciesω, themarginalisation approach of MFT can be used (Cooke et al., 1996;
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Morris et al.,1998). With these assumptions it might be possible to explicitly de-
tect all time-frequency regions where the observed feature values are dominated
by U(t, ω), and either discard these features (Cooke et al., 1996; Dupont et al., 1997;
Tibrewala and Hermansky, 1997; Lippmann and Carlson, 1997; Morris et al.,1998) or
correct them in some way or another (Cooke et al., 1996; Morris et al.,1998;
Dupont, 1998; Raj et al., 1998). Of course, the problem then immediately arises how
corrupted values can be reliably detected. In the spectro-temporal domain this is not
an easy task, although good progress was recently reported (Vizinho et al., 1999). If
one is working with acoustic feature vectors defined in another domain (e.g., cepstra)
then the detection task becomes even more intricate, because the components of the
acoustic feature vectors that are significantly affected are not solely afunction of the
spectro-temporal characteristics ofU(t, ω), but also of the transformations applied to
the sequence of short-time spectra. We will elaborate this issue in more detail below.

Recently, a new way was suggested to handle contaminated feature values,
which is not restricted to spectral features, and avoids the need to define adetector
that is running independently from the decoder for identification of unreliable acous-
tic feature vector components. This idea, which was proposed in (de Veth et al.,1998c;
de Veth et al., 2001), is yet another implementation of a method where the similarity
measurement has been altered to cope with the noise. It focusses on the computation
of the emission probabilities in the presence of disturbed acoustic feature vectors. This
approach is based on the assumption that the statistical models built for clean speech
are not proper models for observations obtained in the presence of noise. By modifying
the function used to evaluate the match between an input sequence of acoustic feature
vectors and each one of the candidate sequences of acoustic models (cf. Fig. 1), a situa-
tion is created in which unlikely feature values affect the search toa lesser degree. For
convenience we use the term ‘local distance function’ when we refer to the mathematical
expression used to evaluate the cost of assuming that a given sound segment pertains to
a given HMM state.

If there is noise present at recognition time that was not present when the models
were trained (i.e., in a mismatched training test condition), it isa priori evident that not
all observations were actually seen in the training phase. Therefore, somepart of the total
probability mass is set apart to account for the unseen observations. For recognition, a
new robust local distance function can then be determined by interpolating between the
contributions of the cost for ‘seen’ and ‘unseen’ observations:

− log[p(O)] = − log[(1 − ǫ).p(O|seen) + ǫ.p(O|unseen)], (20)

wherep(O) denotes the probability of the observationO, p(O|seen) is the probabil-
ity of the observation according to the data seen during during training,p(O|unseen)

the probability of the observation according the unknown process, andǫ the a priori
probability that an observation is generated that was not seen during training. Theidea
of the robust local distance function in Eq. 20 is in fact an attempt to incorporate the
well-known Tukey-Huber distortion model (Huber, 1981) in the recognition stage of an
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otherwise conventional HMM-based ASR (de Veth et al., 2001). What is essential here
is the assumption that an observed event is the realization of a mixture of twoprocesses.
The first is the known process of which the parameters could be reliably estimated in
the training phase, i.e., the process which produced the set of all seen observations. The
second process is the one that produces all observations that were not seen in the training
data. The only thing that is known about this second process is that some observations
will be generated at recognition time that were not seen during training.

The idea that individual observations may originate from a mixture of a known
and an unknown process plays an important role in the theories of Statistical Robust-
ness (Huber, 1981) and Robust Statistical Pattern Recognition (Kharin, 1996). In the
cases that we want to address (speaker independent recognition over the telephone), it
is impossible to estimate the distortion distributions from the training speech. In addi-
tion, it is difficult to obtain a reliable estimate of the distribution of distortions from the
unknown speech that is to be recognized. Under these two conditions we find ourselves
in the situation (again) that it may be better to use an overly simplisticmodel, than to
try to use a more sophisticated model. As we will see below, it is indeed possible to
improve recognition performance based on an extremely simple assumption about the
distribution of the observation values that were not seen during training.

In the remainder of this Section, we will first explain the robust local distance
function in more detail. Next, we will introduce a topic that has not attracted much
attention during the last decades, but that still might prove to be of considerableimpor-
tance, viz. the way several transformations of the sequence of short-time spectra in the
presence of additive noise (cf. Eq. 19) may affect the recognition result.

3.3 Disregarding unreliable information

3.3.1 Robust local distance function

As stated before, the pattern match in state-of-the-art ASR systemsis implemented as
a search through frame-state space in the form of a dynamic programming algorithm
(usually a Viterbi algorithm). For each acoustic feature vector, it is decided how each
candidate optimal partial path so far is best extended with any of the HMM states that
are candidates for extension. For each candidate optimal partial path, that state is se-
lected which minimizes the path extension cost. For HMMs, this path extension cost is
the combination of the emission cost of the candidate extension state and the transition
cost for jumping to the candidate extension state (Rabiner, 1988). In what followswe
will concentrate on the emission cost, since experience has shown that transition costs
can actually be disregarded in a practical system without significant loss of recognition
performance. Assuming that we really do not have any prior knowledge about the noise,
which is not unreasonable when dealing with speech recognition over the telephone, one
might reason as follows. An actually observed acoustic feature vector (orvector compo-
nent) can be considered to be the realization of a mixture of two random processes:the
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known process as observed during training and the unknown process of all observations
not previously seen. There is no need to explicitly determine by which of the two pro-
cesses the observation was generated. It suffices to determine the emission cost due to
the mixture of these two processes.

For an HMM stateSi that is described by a mixture ofM Gaussian probability
density functions the conventional local distance functiondloc, which we approximated
to be equal to the emission cost, is described as

dloc(Si,x(t)) = − log{
M∑

m=1

wim

K∏
k=1

Gimk(xk(t))}, (21)

wherex(t) denotes the acoustic observation vector at timet, wim denotes the m-th mix-
ture weight for stateSi, K denotes the dimension of the acoustic observation vector,
xk(t) the k-th component ofx(t), andGimk the k-th component of the m-th Gaussian
probability density function for stateSi. The robust local distance functiondrobust de-
fined in (de Veth et al., 1998c; de Veth et al., 2001) is

drobust(Si,x(t)) = − log{
M∑

m=1

wim

K∏
k=1

[(1 − ǫ)Gimk(xk(t)) + ǫp̂0(xk(t))]}, (22)

whereǫ denotes the a priori probability that a feature value originates from the distri-
bution of disturbed, unreliable speech values (0 ≤ ǫ < 1) and p̂0(xk(t)) denotes the
unknown probability density function used to compute the probability for observing an
outlier with valuexk(t). It can be seen that Eq. 22 reduces to Eq. 21 if we chooseǫ = 0.

Having reached this point, we still need to decide how the unknown process
is best statistically described, where ‘best’ means optimal according tothe princi-
ples of Robust Statistical Pattern Recognition. For the particular problem westudy
(i.e., how to make the computation of the local cost in the search robust) the bestde-
scription of the unknown process is, as yet, an open question. However, this does
not mean that one cannot make a sensible choice based on practical considerations.
In (de Veth et al., 1998c; de Veth et al., 2001) it was proposed to model the unknown
distribution as a uniform distribution, because this choice reflects our assumption best
that we do not have any prior knowledge about the unknown process.

Another decision that remains to be made is how to choose the a priori prob-
ability ǫ that a feature value originates from the distribution of values not seen during
training. Without additional assumptions about the noise distortion there is no obvi-
ous way in which the ‘optimal’ value ofǫ can be found. According to the experience
gained so far, it appears to be reasonable to choose the Acoustic Backing-off parameter
ǫ such that the recognition performance in the matched training-test condition does not
suffer too much, while in the mismatched condition the word error rate is maximally
decreased (de Veth et al., 1999a; de Veth et al., 1999b).

We will now explain the effect of using the robust local distance function as
defined in Eq. 22 and why the choice to model the unknown distribution as a uniform
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Figure 7. The contribution to the emission cost as a function of the observation value
of one acoustic feature vector component for two competing states (indicated as ‘i’ and
‘j’), when a conventional local distance function is used. Assuming that the current
observation actually corresponds to state ‘i’, three observation values are considered:
a reliable, undistorted observation value (‘clean’) and two different typesof unreliable,
distorted observation values (‘d1’ and ‘d2’). For the conventional local distancefunction,
the contribution to the emission cost due to a distorted value may lead to an unreliable
assignment of the most probable state.

distribution is already convenient. In Fig. 7 the local distance functions corresponding
to two competing, active HMM states (markedi andj) are shown for the conventional
local distance computation. For illustration purposes, we have assumed that the emission
probability density functionp(xk|Si) is modeled as a single Gaussian. Then the local dis-
tance becomes a quadratic function of the difference between the value of the observed
feature vector component and the mean value of the given distribution. We consider three
different observation values: one undisturbed value corresponding to the clean condition
(marked ‘clean’) and two different disturbed ones (marked ‘d1’ and ‘d2’). Weassume
that the frame vector actually ‘belongs’ to statei. It can be seen that the contribution to
the emission cost is lower for statei than for statej for the clean observation value. Now
consider disturbed observation values ‘d1’ and ‘d2’. In both cases the contribution to the
emission cost for statei is (much) higher than the one for statej, thereby increasing the
risk of recognition errors.

In Fig. 8 the same situation is depicted, but now the conventional local distance
functions have been replaced by their robust versions. As can be seen, statei is being
preferred over statej in the clean condition as before. However, for the distorted obser-
vation value ‘d1’ the contributions to the emission cost for statesi andj have become
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Figure 8. The contribution to the emission cost as a function of the observation value
of one acoustic feature vector component for the same two competing states ‘i’ and‘j’
as shown in Fig. 7, now using a robust local distance function. With the robust local
distance function, the contributions to the emission cost due to distorted featurevalues
of type ‘d1’ become identical for the two competing states ‘i’ and ‘j’. As a result, the
assignment of the most probable state becomes independent of this type of distorted
values. For a distortion of type ‘d2’, however, the robust local distance function is not
effective.

identical. As a result the corrupted value will no longer favor the wrong statej. Obvi-
ously, it will not favor the right statei either. But if the corrupted value lies in the tail
of all (or most) distributions for the active states, its contribution to thedecision how to
extend the candidate optimal partial path best is effectively canceled. Ifsufficient com-
ponents of the acoustic feature vector of this frame contain uncorrupted values, they will
discriminate between the active states and weigh in favor of the correctone. Obviously,
this approach is not capable of removing the detrimental influence of distributional out-
liers of the type ‘d2’. Here we are even more dependent on the presence of a sufficient
number of undistorted values to compensate for the incorrect boost of the likelihood of
statej.

The robust local distance function shown in Fig. 8 can also handle frames in
which all values are corrupted, as long as the values are affected in the same manner
as the ‘d1’ type of distortion. In this case, the emission cost for all competing states
becomes essentially the same. When this happens, the frame makes no contribution to
the decision of what is the best path and thus is effectively eliminated.
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3.3.2 The effect of dispersion of unreliable information

As already indicated in the general scheme depicted in Fig. 1, in typical ASRsystems
the raw short-time spectra are not directly used for pattern matching. Most ofthe time,
various normalization (e.g., gain normalization, channel normalization) and orthogonal-
ization and dimensionality reducing transforms (e.g., Discrete Cosine Transform, Linear
Discriminant Analysis) are applied. By using normalizing transforms, acoustic feature
vectors are obtained that mainly represent the statistics of individual speech sounds and
represent much less the variation due to differences in voice effort between different
speakers or the variation due to different telephone channels. Orthogonalization trans-
forms are used because they allow for more efficient modeling. For instance, onlyif the
features are orthogonal, it is safe to assume that the covariance matrix is diagonal.

With clean speech data, normalization and orthogonalization transforms gen-
erally improve recognition performance significantly. However, a complication may
arise when a subset of the components in the short-time spectrum are disturbed. In this
case, corrupted values in a restricted number of short-time spectral components will be
smeared out over the entire transformed vector. If this happens, the effectiveness of
any strategy based on disregarding unreliable information might be jeopardized. This
is readily illustrated for the case of MFT. The basic presupposition in MFT is that dis-
turbances affect only part of the acoustic feature vector components and leave therest
intact. The idea of MFT is that recognition will be based only on those intact compo-
nents. If some transform causes dispersion of the distortions over all acousticfeature
vector components, none of the components are completely intact any more. The extent
to which the effectiveness of MFT is undermined will then depend on how severely indi-
vidual components are disturbed. In short, it is important to limit the spread of unreliable
information in the acoustic feature vectors as much as possible, to keep thefull effect of
a strategy based on disregarding unreliable information.

3.4 Connected digit recognition with additive band-limited noise

We studied the effect of the spread of unreliable information due to acoustic feature
vector transformations and the effect of using a robust local distance function in the
context of connected digit recognition over the telephone. In all experiments we started
with mel-frequency log-energy coefficients as the basic representation of theshort-time
spectrum. These are the raw features. We compared the recognition performance for
two types of acoustic feature representations. The first type of features are obtained
by a full-smearing transformation of the raw features, i.e., a linear combinations of
all raw features. For ease of reference, such feature representations are called F-type.
The second type of feature representations are obtained by feature transforms of the
raw features that only partly smear distortions over all feature vector components (P-
type features). In particular, we used within-vector mean normalized mel-frequency
log-energy coefficients (in short: F1) and mel-frequency cepstral coefficients (F2) and
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compared these full-smearing transforms to sub-band mel-frequency cepstral coeffi-
cients (Okawa et al., 1998) (P1) and within-vector filtered mel-frequency log-energy
coefficients (Nadeu et al., 1995b) (P2). To study the effect of the type of local dis-
tance function, we conducted two sets of experiments with connected digit recogni-
tion, one set with the conventional and the other with the robust local distance func-
tion. As a distortion we used additive band-limited Gaussian noise. The cut-offfre-
quencies of the band-pass filter were chosen such that approximately one quarter of
the energy bands that we used would be contaminated by noise (Flow = 395Hz and
Fhigh = 880Hz). We used three different signal-to-noise ratios of 20, 10 and 5 dBA
respectively, i.e., both the speech and noise energy levels were weighted according to
the A-scale (Hassall and Zaveri, 1979). The ten words used for the digits in Dutch were
modeled using 3-state, context independent phone-based HMMs with 16 Gaussians per
state. In all experiments reported here the robust local distance function was computed
usingǫ = 0.1. The uniform distribution that we used was defined independently for
each componentk, k = 1, . . . , K of the acoustic feature vector. Using all available
observations in the training data, we determined a lower and upper bound (Tk,low and
Tk,high) such that99.9% of all observationsxk(t) fell within the range betweenTk,low

andTk,high. The uniform distribution for feature componentk was defined to be equal to
1

Tk,high−Tk,low
inside this range and zero everywhere else. More details about the robust

local distance function are given in (de Veth et al., 2001). Additional details aboutthe
experimental set-up can be found in (de Veth et al., 1999a; de Veth et al., 1999b). The
recognition results using the conventional local distance function for the clean and noisy
conditions are shown in Fig. 9. The results using the robust local distance function are
shown in Fig. 10A, and the WER difference∆WER = WERrobust − WERconventional

is shown in Fig. 10B.

Looking at the clean conditions first, it can be seen that all four feature repre-
sentations essentially perform at the same level and that recognition performance in the
clean condition is affected only slightly when switching from the conventionalto the
robust local distance function. Focusing on the conditions where noise was added to the
speech signals, two effects are clearly visible. Firstly, recognition performance is better
for the two feature representations that only partially smear distortions (i.e., P1 and P2
(two rightmost bars)) than for the representations that smear distortions over all feature
components (i.e., F1 and F2 (two leftmost bars)). This observation holds for the recog-
nizer with the conventional as well as for the recognizer with the robust localdistance
function. Secondly, it can be seen that the recognizer based on the robust local distance
function yields better results than the recognizer based on the conventional localdistance
function when noise is present in all cases, but one. The single exception occurs atSNR
= 20 dBA for P1: The WER increases from17.1% to 18.6% when switching from the
conventional to the robust local distance function.

Given the data shown in Fig. 9 and Figs 10AB, two remarks are in place. Firstly,
application of the robust local distance function in the clean condition consistently leads
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Figure 9. Recognition results as a function of signal-to-noise ratio when using the con-
ventional local distance function. F1: within-vector mean normalized Mel-frequency
log-energy coefficients. F2: Mel-frequency cepstral coefficients. P1: sub-bandMel-
frequency cepstral coefficients. P2: within-vector filtereded Mel-frequency log-energy
coefficients.

to a slight loss of recognition performance. This is probably due to the fact that the
distributions of the observations to be recognized in the clean condition are better rep-
resented by the distributions found during training than by the mixture of distributions
used in the robust local distance computation. A mismatch between the mixture ofdis-
tributions used in the robust local distance computation and the actual distribution of
observations could also explain the slight loss of recognition performance observedin
one of the noise conditions. Secondly, the results show that performance improvements
are observed for all types of features that were tested. In other words: Evenfor a fea-
ture representation that fully spreads spectrally local distortions over all feature vector
components, the robust local distance function is capable of improving recognition per-
formance. Apparently, the detrimental effect of the noise can be partially repaired by
the robust local distance function, albeit that the improvement is not equally large for all
feature types.

The results discussed in this Section cannot be readily generalized, because it
must be expected that each specific noise type will affect different features differently.
Consequently, it must be expected that the amount of success that our robust local dis-
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Figure 10. A. Recognition results as a function of signal-to-noise ratio when using the
robust local distance function. Same abbreviations as in Fig. 9. B. Corresponding∆

WER results.

tance function can offer, will depend on a complex interaction between feature types,
noise types and model characteristics. Additional research is needed to fully come to
grips with this matter.

3.5 Discussion and conclusions

In this Section, we have presented a simple model of speech corrupted by additivenoise
that can be used as a framework to compare and understand several different approaches
to making ASR more robust to noise. Noise robustness can be pursued in the acoustic

209



feature domain, in the acoustic model domain, or in the distance measure domain. Ac-
cording to this scheme, we mentioned observation cleaning methods, of which spectral
subtraction is the classic example. Next, we mentioned predictive model-based com-
pensation (viz. by assuming that useful estimates of the parameters of the noisecan be
obtained, which in their turn can be used to adapt the models to better fit the conditions
present in the new signal). As another approach in the model domain, we referred to
work in model adaptation that attempts to make corrections based on observations as
they are received at recognition time.

In our contribution, we have focused on conditions in which no dependable
estimates of the noise can be made, so that we are left with the assumption that ob-
served acoustic feature vectors can be considered as realizations of a mixture of two
different processes. The first process is known and corresponds to the ‘speech pro-
cess’ as observed during training. No knowledge about the second process is avail-
able. This unknown process corresponds to observations that were not seen during
training. We have argued that this description allows to make a link with thetheory
of Robust Statistical Pattern Recognition (Kharin, 1996) and also to Missing Feature
Theory (Cooke et al., 1996; Morris et al.,1998). These links deserve (and need) further
research.

From a speech science point of view, two possible ways can be identified to
extend the work on the robust local distance function. Firstly, our implementationof
Missing Feature Theory might open new alleys towards the deployment of phonetic and
auditory knowledge in automatic speech recognition. For example, it could be possible
to introduce an estimate of fundamental frequency as one of the elements in the acoustic
feature vector. Fundamental frequency is only defined for voiced speech segmentsand
undefined for other signal portions. With Acoustic Backing-off, it should not be difficult
to consider the value for fundamental frequency missing in signal portions that do not
contain voiced speech. Secondly, the physical and perceptual basis under Missing Fea-
ture Theory might help to determine the best way for the incorporation of recent results
from Robust Statistical Pattern Recognition in ASR.

We have also drawn attention to an issue which has not been widely discussed in
the literature, viz. the potential interaction between transformations of the components
of the short-time spectra and robustness against additive noise. With few exceptions ad-
ditive noise will not affect all components of the short-time spectrum equally. We argued
that a transformation may be suboptimal when it smears distortions which are local in the
input short-time spectra over (almost) all components of the acoustic feature vectors. For
Missing Feature Theory this is evident, since smearing violates the basic assumption un-
derlying Missing Feature Theory, i.e., that part of the observation values are undistorted.
The results from our experiments with feature representations that do not smearlocal
distortion over the full feature vector have shown convincingly that it pays to minimize
smearing. However, our research has also shown that it is not always straightforward to
predict how a given distortion in the spectro-temporal domain will be smearedout in an-
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other domain under a given transformation. For instance, the fact that our robust LDFhas
a positive effect even for full-smearing features like within-vectormean normalized mel-
frequency log-energy coefficients and mel-frequency cepstral coefficients can at least in
part be explained by the fact that not all transformed features have suffered equally from
the smearing of the low frequency spectral distortion (de Veth et al., 1999b). More re-
search is needed with respect to this subject.

As a final subject for further research, we recall that the robust local distance
function in the form of Acoustic Backing-off is not capable to handle the ‘d2’ type
distortions, shown in Figs 7 and 8. In general, the combination of the characteristics of
the additive noise and the feature transform will result in a mixture of ‘d1’ and ‘d2’ type
distortions. It is reasonable to expect that Acoustic Backing-off will be more effective
if the proportion of ‘d1’ distortions in such a mixture is larger. However, it is still an
open question how to handle a mixture with a large proportion of ‘d2’ type distortions
to improve recognition robustness.

4 Concluding remarks

In this chapter we have discussed two environmental factors which contributeto variation
in speech signals and which therefore make automatic speech recognition difficult. The
first factor is the effect of the transmission channel on the speech signal observed at the
input of the ASR device; the second is the effect of additive noise. Both factors play their
role in almost every recognition task, be it small vocabulary isolated word recognition
or the recognition of unconstrained spontaneous speech.

Throughout this contribution, the discussion was based on a physical and mathe-
matical model of the signals. It was argued that a model which encompasses all physical
effects in great detail (including possible non-linear distortions) is far too complex to
be handled. We have discussed how a simplified model can be adopted. Some simpli-
fications are quite realistic, e.g., the assumption that the transmission channel is time-
invariant (or varies only very slowly) during a human-machine interaction session. Yet,
in some specific situations the simplifications may become physically irrealistic. For
instance, it is very unlikely that radio transmission errors in digital cellular networks are
adequately represented by Eq. 19. However, it should be stressed that the simplifications
we addressed in this contribution are motivated by the important finding that a simplis-
tic model of which the parameters can be reliably estimated is always tobe preferred
over a physically more realistic model, if the parameters of the latter cannot be reliably
obtained.

Another issue which has been emphasized throughout the paper is the interde-
pendence of the modules of state-of-the-art ASR devices. Thus, an ‘improvement’in
one module, even one which is perfectly motivated by solid theory, may prove todete-
riorate recognition accuracy, because it violates essential assumptions underlying other
modules. This helps to explain why it has proven to be so difficult to harness conven-
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tional and recent knowledge from phonetics and auditory perception to improve ASR:
Until we have a viable alternative for the Dynamic Programming search through aframe-
state space in which the frames constitute observations at equidistant timepoints with a
single fixed frequency resolution, only the most basic phonetic and auditory perception
knowledge can be brought to bear. We have illustrated this issue by means of RASTA fil-
tering: It is precisely its relation to human temporal masking – and the attendant conflict
with basic assumptions underlying HMM recognizers (like the assumption that speech
can be modelled as a sequence of relatively invariant and static sub-word units) – which
restricts the usefulness of classical RASTA to the realm of recognition based on whole-
word or triphone units, and prevents its generalization to sub-word model systems based
on units other than triphones.

Finally, we have pointed out how several different approaches to robust speech
recognition can be unified or at least be related to one another. Again, the point of depar-
ture was a simplistic model, in which the signal at the input of an ASR device is consid-
ered as the sum of the ‘clean’ speech signal and some noise signal. Different approaches
can be developed depending on the choice of the working domain (see Fig. 1): the acous-
tic feature domain, the model domain or the distance computation domain. Examples for
the different domains are spectral subtraction, predictive model compensation, and Miss-
ing Feature Theory, respectively. We argued that the choice for any particular method de-
pends on the assumptions about the parameters of the noise, and on the possibilities to re-
liably estimate these parameters. We have elaborated a recently emerged approach which
has relations to the theory of Robust Statistical Pattern Recognition (Kharin, 1996) and
more in particular to Missing Feature Theory (Cooke et al., 1996; Morris et al.,1998).
Departing from the bottom line assumption that we have no prior knowledge about the
noise, we have introduced ‘Acoustic Backing-off’ as a means for handling observations
that are potentially corrupt and do not correspond to the distribution of observations seen
during training. To that end we have introduced a new, robust local distance function. In
doing so, we have uncovered a new issue, viz. the impact of feature transformations on
the local distance function and the attendant search.

We hope that the presentations and discussions in this paper help to provide a
framework to compare and unify the increasing stream of research papers on robust ASR.
At the same time, it should help to guide future research and to focus it on those aspects
which are most promising, given the full context of the models and assumptions implied
in a speech recogniser. Finally, this framework should help to prevent disappointments
by showing how local improvements can be turned counterproductive because of the
way in which they violate critical assumptions in other components of a full-fledged
ASR system.
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