Aspects of End User Tailoring: People, Tools, Tailoring

Anders 1. Merch
Department of Information Science
University of Bergen,
N-5020 Bergen, Norway
+47 55584118
anders@ifi.uib.no

ABSTRACT

A novel approach to conceptualizing computer ajpilbns
— by aspects — is presented. The approach is pedpts
simplify end-user tailoring. Different aspects ofn a
application (user interface, rationale, and progcane) are
tailored separately, and the interface between cadja
aspects is updated automatically by the computer.

A tailorable application, BasicDraw, built and
conceptualized as a collection of three-aspecticgtn
units has been evaluated with users in a videordech
experiment. The results show that it is easieraitoit the
interface than it is to tailor the program code.
Recommendations for tailoring of code are given.

Keywords
Information appliances, tailorable applicationspexds of
application units, levels of tailoring, empirical evaluation.

INTRODUCTION

End user computing is systems development undertbie
users to further develop an existing system to sdbdt
were not accounted for in the original system [Zis is
often accomplished by writing task-oriented scripisd
macros in high-level programming languages for tb#-

shelf computer applications, such as word processor

spreadsheets, and drawing packages [21].

Studies has shown that a majority of word processers
(92%) do tailor their applications in various wagsich as
setting parameters in preference forms to custontiiee
system [24]. Many users find this difficult and oreason
for this, according to Page et al., is that targrtools are
not well integrated into the systems.

In this paper | report on an approach to organizing
computer applications to simplify tailoring: conteglizing
them as a collection of orthogonadpects. The notion of
aspect is motivated in this section, and furtherettged in
the remainder of the paper. The anticipated usérge
approach are future developers of tailorable applications.

Aspects

An aspect is a singular facet of a complex (mualteted)
interactive system. It is characterized by beingsidally
connected to (one or more) adjacent aspects, hstribt
part of any other aspect in the conventional sesfsa
part/whole decomposition of a complex system. Atpare
different from parts in that they are organizedvimat | call
orthogonal aspect hierarchies rather than part/ghol

composition hierarchies. The notion of aspect raeer
inspiration from Simon’s notion of “nearly decompbte”
systems [25] as well as gestalt psychology anduage
philosophy. The latter influence is illustrated twg Escher
drawing shown in Figure 1 [8]. It is further expled
below.

Figure 1: Organizing complexity as a collection of
decomposable” aspects. M.C. EschBuy and Night.”

Each of the three aspects in the drawing: whitd;Htack-
bird, and landscape can be studied by itself withou
reference to the others, and each aspect provides a
interface (boundary) to the others that is moréees well-
defined.

The asymmetry of aspects is seen as a model for the
asymmetries found in interactive systems. It careadily

be modelled by conventional part/whole composition
hierarchies. The Escher drawing thus provides & ¢t
how to (re)conceptualize and organize interactiygtesns
for the purpose of tailoring them. Furthermorerogmose a
solution for how to implement the model: identifyithe
relevant aspects of a system, addressing each tabpec
itself, and creating well-defined interfaces betwedjacent
aspects that are managed by the computer.

“nearly

The rest of this paper builds support for thesérdaand is

model for the structure of an application unit, @is the

organized as follows. Users of advanced information term | use for an information appliance [18]. Appliion

appliances are identified. Household appliances
suggested as a model for future information appkan A
tailorable application is viewed as a collectionirdtances

of a type of information appliance referred to as a

application unit. Tools to tailor different aspeat$ an
application at the granularity of the applicationituhave
been built. A tailorable application BasicDraw hasen
evaluated in a laboratory experiment. Results frira
experiment are reported.

Information Appliances

Most users of computer applications are not intecesn

tailoring the applications but in using them to @oplish

useful tasks, such as writing reports and sendiagsages
by electronic mail. MacLean et al. [16] presentad#iat

shows that there is not a sharp distinction betwesems and
programmers as is often thought. The authors cteriae

the range of users from programmers to regularsussr
lying along a “tailoring slope,” and including hagmden

is units are further described in a later section.

Interface
Rationale

5
— T T Ty

(L |

Mechanism

Figure 2: Thel KEA can-opener, a kitchen appliance, is seen as a

unit of three orthogonal aspects. It serves a mfudtehe structure
of an application unit (a kind of information appliance).

Although current kitchen appliances are relativefsy to
use, they are not easy to modify. First, they affécdlt to

modify because they are not meant to be modifiedo8d,
they are difficult to modify because the buildingdks they
are made of are static (black boxes). Computeriegtfuns,

and tinkers in between. Handymen and tinkers have©n the other hand, have a greater potential forifiaddity

acquired tailoring skills that are not typical efgular users,
but they are not perceived as programmers.

Mackay [15] has observed that many users are rettab
tailor the system they use without help from moapable
users, referred to as translators. Translatorahle to take
a user’s problem and translating it into a solutibhe kind
of tailoring that is most frequently performed eferred to

as customization:. setting default preferences for user end-user support in modifying and extending these

interface layout and configuration options. The oni&y of
users consider customization to be useful [15, 24].

It has since been hypothesized that tailoring shdug

because they are built out of dynamic building k#c
(software programs) that can be changed by regritire
program code.

RELATED WORK

Programmable Applications

Programmable applications [5] and design environsf)
9] are classes of computational environments tha gn

environments. Modifiability is supported by accéssigh-
level, domain-oriented building blocks (analogoois EGO
bricks), and extensibility is supported by writirggnall

extended to reach below the user interface andwallo Pro9rams in dynamic programming languages (&.oSP

different levels of a system to be tailorable adl {#9], and

that the next generation computer application i$ ao
desktop application but atformation appliance [22].

These two hypothesis, which at first may seem ated|

form the starting point for the rest of this paper.

The majority of today’s desktop applications ardicef
applications [10]. An information appliance, on thther
hand, is physically smaller than
applications, and it is primarily intended to besdisn the
home, integrated with media appliances, such asisibn,
video, and telephone.

| propose that kitchen appliances be used as thielnfor

information appliances since kitchen appliancessaree of
the most usable and useful tools we have todayubout
this paper | use a can-opener as an example sirdbe my
argument (Figure 2). The can-opener is seen asnplesi
interactive system: a unit of three orthogonal atpe
interface, rationale, and mechanism. Each of tpects can
be (conceptually) taken apart and studied by itaat is
physically linked to other aspects by (more or)essll-

defined interfaces. Furthermore, the can-openevesea

today’s desktop

andJAVA).

A goal of programmable applications
programming not in terms of low-level machine instions
but in terms of high-level, task-oriented buildibigcks and
to elevate programming to an activity that levesatie use
of the applications. A comprehensive discussiorsae
motivational issues behind programmable applicatidm
given in [20].

In field studies of end-user programming behavidardi

and her colleagues [21] have observed that users of

programmable applications, such as spreadsheet£Aand
systems, are able to master the formal notatiortzedned
in these systems (scripting languages) when thatioas

match the tasks the user wishes to perform. This {zart

because users are already familiar with formal tharia

from other activities, such as knitting and baskebabre

keeping [21].

End User Participation
Involving end-users as first-class participantsetbgr with

developers and managers in projects where new technology

is to support

% File Edit Shapes [eliIZEV LTI Tailor...

= oy]
Rotate 3R
Delete 3D Rationale
ctrl MouseUp O Rationale viewer 1| S===H
shift- o . o
MouseUp axis of width
rotation [, ¥
=
I:I ath =
Wi =
270 | =
\ 4 180
O Implementation viewer
. X, 7 i
jim) :4 (% 90 degrees clockwise rotation *2 =
P =l ggo | 9©.360%
¥ Angle is an integer defined in BasicRectangle =g
x, W, width, height: ®lnteger; E/’
do % get current points %) widEh
getPosi - =
Interface getFost = u; I
getlidth —> width; WIdth go1e, rey 20, 1996 [0
getHeight -> height;
¥ computer new points *) ¥ 4
Cif Angle
A4 0 then
® = height -» x;
an -: angle;

/490 then
x — height + width - x=;
y = width -» y;
120 -* angle;
ff180 then
¥ o+ width =» x;
y + height - width - y;
270 -¥ angle;
£ 270 then
y + height - y;
o -r angle;
£y

INHER rototelbject;

¥ zat new points *2

ix, y» —& Positiaon;

twidth, height) - Size;
#);

(width, height? - oldToMew -: {width, height>;

e

Figure 3: The BasicDraw application gives the user accesisedhree aspects of an application unit: Interf&ationale, and Mechanism
(program code), and the aspects are linked by baedters (two displayed). The screen image showsttree aspects of the “Rotate”
application unit. Tailoring will typically require making changes to each of the three aspects since they are partly interdependent.

is introduced is a well-established principle ira8dinavia
[23]. Users are the foremost experts on their ovankvand
therefore need to be involved in decisions regaydime
introduction of new technology at their workplace.
Furthermore, new technology will almost always d®n
existing ways of working [23].

Ehn and Kyng [3] suggest a “tool perspective” on
development and use of computer systems. This petisp
emphasizes that end-users should be active panisign
the design process rather than passive suppliedataf to
be used in formal specifications. The authors renend
that users participate in the making of design sigations

by using tools and materials they are familiar witbm
work and other everyday activities.

Bjerknes and Bratteteig [1] propose an “application
perspective” to involve end-users in design. Theliagtion
perspective puts technology in the context of use,
viewing it from the users’ work tasks. These taske
different from the formal procedures encoded in the
technology they use to accomplish the tasks. O libsis
the authors recommend that computer systems be Huil
studying the use situation and of finding new anshtive

ways to use existing technology to influence andllehge
the development of technical tools.

Scandinavian end-user participation has primarigerb
concerned with the involvement of end-users in ¢aey
stages of systems development, i.e., during arsalgsisign
and prototyping. The perspective presented thisepap
that end-user participation should not stop oncgystem
has been installed, but continue to involve endsuse
future enhancements as well [2, 20]. This is addr@sn
this work by combining the tool perspective [3] athok
application perspective [1]. The next section diessr how
| interpret the tool perspective and the followisgction
how | interpret the application perspective.

TOOLS FOR TAILORING

User Interface Objects

The interface of a computer application is compasfeaser
interface objects. These objects mediate intenactio
between a user and an interactive system in order t
complete work tasks, such as writing reports, tatizing
data, creating diagrams, and making presentati@ess!
These are typical tasks carried out with today'snpoter
applications. The actual mechanism that transfoser u

input (keyboard press, mouse action, etc.) to myste
functionality is the eventhandler. User interfachkjeats
with eventhandlers was first introduced in the Xeftar
computer [12].

The transition from using an application to taihgyiit can
be supported by extending the eventhandler meananids
conventional interface objects to allow for addiab events
to be processed, each being associated with afispevil

of tailoring. This tailor-oriented perspective onsen
interfaces has lead me to reconceptualize the matiaser
interface object and to propose an alternative ahitise,
the Application Unit.

Application Units

A computer application, in the context of this pape seen
as a collection of application units [18], and each
application unit is defined as a set of orthogonall
integrated aspects. The application unit is modeléer
the structure of the kitchen appliance shown in Figure 2.

The three aspects of an application unit are: ifigriace,
(2) rationale, and (3) mechanism. Interface is tiser
interface objects and hence the aspect the uggmisrily
concerned with. Rationale is documentation/fow fo use
an application unit as well aghar its mechanism does and
why it does it. Mechanism is the program code thateaak
do it.

To tailor an application requires modifying oneroore of

the three aspects of its application units. Accsshe
various aspects is accomplished by holding down a
modifier key pption/alt, shift, or ctrl) while
performing the normal interaction gesture (pressimy
releasing a mouse button) on an interface objekis T
illustrated by the two arrows markexd r | MouseUp and

shi ft MouseUp in Figure 3.

When an aspect has been modified, the other aspeuls
the interface between modified aspects may havdeto
updated. Whereas the latter can, to a large dedree,
automated by the computer, the former is a desigivity

that has to be done manually by the end-user. When

tailoring the user interface, for example, theaiaihay need
to make changes to the program code as well, kgeipin
compatible with the interface changes, and vicesaetn
either case, the rationale may have to be upda&ted: to
link them up with each other again is accomplisbgdhe
computer (saving the changes, compiling the code, etc.).

Tailoring the user interface may also require défe skills
of the end-user than the skills required when taip the
mechanism. To tailor the mechanism, for example,ethd-

Each aspect provides a view of the application tbqtiires
its own set of tailoring tools. To provide a undifiaotion of
tailoring across aspects, tailoring tools are reférto as
editors, and there is one editor pé&vel of tailoring (each
level corresponding to an aspect). The corresparaen
between aspects and levels is shown in Figure 4.

Tailoring levels Aspects
Customization ... Interface
Integration oo Rationale
Extension ~ coooeeeeeeeeeeeeeeeeeees Mechanism

Figure 4: Relationship between application unit aspects,[18]
and tailoring levels [19].

EXAMPLE: TAILORING BASICDRAW

BasicDraw is a tailorable drawing program creatgdthe
author. Its drawing functionality is similar in su® to the
functionality of small drawing editors found in vabr
processors and presentation programs. It allowsusiee to
create basic geometrical shapes such as rectarylals,
and triangles, and to manipulate them by copyingying,
scaling, and rotating them. These tasks are fratuen
performed by computer users when they create diagia
written reports and visual presentations The tasks
perceived to be simple by most computer userss hat
simple, however, to tailor a drawing program to fzdéato
new needs.

|

TestRectangle3: BasicRectangle
O

Extension editor

FPresentation::<

C#

do {100, 1402 =» position;
090, 3y -r size;

#3;

o Ok opew at{r‘ibutes *
do * new statements *3
INHER:;

#3;
#®3;

-
£ irle

Figure 5: Tailoring program code (mechanism) in an extension
editor New code is added as extensions to old code (ggreF
3). The old code cannot be discarded.

Levels of Tailoring

There are three levels of tailoring supported bgiBaraw:
customization, integration, and extension [19].
Customization is the activity of changing the ifdee
aspect by setting parameters of interface objentsai

presentation editor. Integration is the activity of changing

the rationale aspect by writing informal textuasdeptions,
drawing uninterpreted diagrams, and pasting pisturea

user needs to be concerned about writing code N any.,yine editor. Extension is the activity of changing the

efficient manner as well as effectively utilizingepiously
written code. On the other hand, to tailor the rifiatee, the
tailor needs to be concerned about how to beststpper
tasks, and user tasks are different from mechan{sas&s
are typically informal whereas mechanisms musbofelthe
rules of a formal grammar).

mechanism aspect by writing new program code in an
extension editor (Figure 5). None of the old code in
BasicDraw can be discarded. The reason for theaisty:

to prevent users from accidentally destroying maidms
that already works in the application.

EMPIRICAL EVALUATION

exercise required the users to extend Rheat eObj ect

BasicDraw has been evaluated with end-users in anmethod of Test Rect angl e3, which is a subclass of

informal user study in order to assess the usghilft its
tailoring tools. The following section describes thtudy

(task, users, procedure) and gives a summary ofesom application unit,

results. A full description of the results can hmurid in
[20].

Task

The aim of the study was to assess the usersyaiilibcate
and tailor a selected set of application units fre t
BasicDraw application. Two simple but represengtiv
exercises were devised for this purpose. The fig$ to
make a ‘“rectangle” into a “square” and the secood t
improve the “rotate” command. An abbreviated dexion

of the second exercise is shown in Figure 6.

0->90 270 -> 360

N

90 -> 180 180 -> 270

la

Y
~

Figure 6: One of the exercises in the experiment was to ing@ro
the “rotate” command of BasicDraw according to tfiagram
shown here (see Figure 3 for the original desidme diagram
was supplemented by a textual description (not shown).

The goal of the exercise was not to test the usdnidity to
create advanced application functionality but tonpare
their individual differences with respect to tailay at the
different levels (i.e., which levels are easiernthathers;
what tools are needed, etc.). Only the resultstedldo
tailoring by extension are discussed in this pagace it
caused the most difficulties for the users. A déston of
tailoring by customization and integration are found in [20].

Users

Twelve users participated in the experiment. Theyrew
recruited by e-mail sent to all students and soawilfy

members at the Department of Informatics at thevéhsity

of Oslo. The majority of respondents (67%) werarfrthe

social informatics group. Two were female, ten warae.

All users received a compensation of 100 Kronemo@ab
$15) for volunteering. The participants hadme prior

Basi cRect angl e (see Figure 4). The amount of program
code that each user wrote varied from 1 to 22 lfoegach
and each exercise had about 2-3
application units (primarily shapes and commanhis. all
applications units required tailoring by extension.
Test Rect angl e3: Basi cRect angl e
(# Presentation::<

(#

do (100, 140) -> position;

(50, 30) -> size;
#);

Rot at eCbj ect:: < (* further extension *)
(# (* new attributes *)
do (* new statenents *)
(if Angle
// 90 then
x + width -> x;
// 180 then
v + height -> y;
// 270 then
x - width -> x;
// 0 then
v - height -> y;
if) ;
| NNER;
#);
#)
In the boldface code above the user has copiedifthe
statement from the parent method (see Figure 3) and
created new statements for each of the four camditiof
“angle of rotation.” Each statement provides some
additional mechanism which, upon execution haseffect
of moving the rectangle in the direction specifieg the

diagram when compared to the original design.

The main method used for data collection was “timgk
aloud” [7, 14]. Users were asked to “think aloudida
verbalize their thoughts as they interacted with $lystem
to tailor it. The interaction was recorded on vidape.
Before the recording started, the users were gavevarm-
up exercise to practice thinking aloud. During theorded
exercises both the computer interface and the spoke
interactions were captured on tape. The tapes \ede
analyzed to identify usability problems and to itfgn
patterns of recurrent tailoring behavior. Some h# tapes
(the ones judged to be most representative) were

knowledge of programming: each of them had taken ananscribed by hand. An excerpt from one of thagees is

introductory course in object-oriented programmiSgme
of the users (42%) reported that it had been niome bne
year since they last wrote a program. Others reponiore
programming experience: about half of the useré4pBad
taken a course iBETA programming.

Procedure

BasicDraw is implemented in th®ETA programming
language [19], and tailoring by extension requitteel users
to write some program code BETA. Below is a program
solution to exercise Il (which was to improve thetate”

command) created by one of the users (user #9). The

reproduced below:

Now we are in a lying-box position. When it is
rotated it becomes 270 degrees.

Let me see, ...

What has happened here must be changed by
pushing it to the lefi towards the one we had at 180.

And to do that we keep the Y the same, but for the X
we subtract the Width.

X minus Width is put into X.
Then we have the last one. If Angle is 0, then ...

It means that we have been at 270 and we have to
“lift” it up again, or subtract Height from the Y.

This excerpt is part of the protocol of user #9¢d dhus
corresponds with the program code shown in theabaive.

It gives an example of recurrent behavior: “invagti
informal concepts to explain program behavior. Ehes
informal concepts (underlined in the above textyeveot
suggested by the evaluator nor the problem degmmipt
given to them. Instead, the users invented themxdain
how the old system operated and how they wantedédhe
system to behave.

Although informal, these concepts would almost gkva
correspond (one-to-one) with the formal conceptedmm
code) they were writing. Part of the above protosiodws
that the user is reading aloud as he writes thes ¢dndhe
editor.

| interpret the protocol data to mean that endsipeefer to
articulate requirements of computer systems naerims of

a formal specification language but in terms tmafude a
large portion of informality (incomplete and chamgi
terminology), and that the informal elements needbé
integrated with formal elements associated with the
implementation language. The former interpretation
confirms previous studies that show that successful
(democratic) user involvement in systems develogmen
requires users to have access to tools and matdhmigy can
relate to [4]. In addition | have shown that théormal
approach can be integrated with a formal approach by
viewing a system as a set of orthogonal aspects.

Findings

All twelve users were able to complete the two eises,
which included locating the three aspects of acsetkeset
of application units (menus, menu items, and shapesl
then tailoring the application units at one or mofethe
three levels of complexity: customization (intedac
integration (rationale), and extension (mechanisSo)ne of
the users received help by the evaluator when there
tailoring at the implementation level.

After the experiment, qualitative data was colldctey
informal interviews and questionnaires. The datficiates
that tailoring differs at the various levels: it svanore
difficult to tailor the mechanism (extension) thiarwas to
tailor the user interface (customization), and difficulty
of tailoring rationale (integration) was somewhei®
between the other two.

None of the users reported difficulties when taigrthe
interface. The main difficulties users reported whe
tailoring rationale were how to design it and hawnhap
design content (i.e., the design) to correspondiigcepts

in the code. These results are further reportef@®p. The
main difficulties users had when writing prograntdecare
displayed in the diagram of Figure 7. It is a npiéichoice
guestion taken from one of the questionnaires ardemts
answers to the question of what the users thougktmost
difficult about programming.

5
o
w AT
£
=
a
g4 37T
[
s
L 2T
[
E
3 1T
=
0 } } } }
Understand OO prog- Syntax Where to Other
programming ramming of BETA write code

Figure 7: Answers to a question about what was most difficult
about programming.

None of the users reported that they thought it eEiicult
to understand programming. Only one user (8%) Ieplor
difficulty with understanding object-oriented pragmming.
Four users (33%) reported difficulty WitRETA's syntax,
and two users (17%) had difficulty understandingerehto
write the code. Five of the users (42%) chose tthet”
option. Their difficulties were related to underslang the
flow of control from superclass to subclass, andimding
out what variables were available and what values they had.

Questions about programming med |rang | N
9. How useful was it to look at/copy | g5 | 5.7 | 12
s

from old code when writing new code*
(1 = totally useless; 4 = sometimes
useful; 7 = very useful)

Figure 8: Median with range of answers to a rank-ordered
guestion to measure the usefulness of look at/copy from old code.

The data in Figure 8 are the answers provided byusers
to a related (rank-ordered) question. It shows tlmsrs
thought it was very useful (average score of 6.5¢7have
access to old code in order to look at it and toyciom it
when writing new code. The users would activelydread
copy from the old code during the exercises thguired
programming. The code defined the mechanisms tlagly h
to work with, and included variables and algorithfram
immediate superclasses. This confirms previousiesudf
software reuse that show that to have access toaald for
copy-paste-and-modify is useful during reuse ofeobj
oriented programs [e.g., 13].

DISCUSSION
Is it realistic to think that future users of infioation
appliances will be programmers, albeit programnimghe

small? If not, should we still be seeing an appiica as
being partitioned into aspects? These are somehef t
guestions | have attempted to answer in this paper.

First, | consider programming to be among the tasts to
resort to when tailoring an application. In a poess paper |
have advocated a gradual transition into the coxitpl®f

an application, a transition that should only godasp as
getting a tailoring-problem solved [19].

Second, by reconceptualizing the basic unit of an
interactive system to be not an application but an
application unit, the complexity of an interactsygstem has
been reduced by patrtitioning it into smaller, smifitained
units. The latter was made possible in part by mizjag
them as three orthogonal aspects that mutuallyreste
each other. Tailoring an application unit will inost cases
be much simpler than tailoring an application simgest
application units are smaller than applicationsl amre or
less independent of each other. This require fdines of
code to be written. By making application units cam
oriented, a large portion of the code that hasgonitten
can be reused from other application units.

BETA’s syntax was perceived by some users to be difficu
to master (see Figure 7). Nevertheless, only orer us
thought that a scripting language would improve -eser
tailoring. | interpret this to mean that the dividi line
between what can be expected of end-users withoyt a
knowledge of programming and what can be expecfed o
end-user programmers is not, as often perceivéateok to
the distinction between small languages (with dtleli
syntax) and full-fledged languages (liIBETA), but rather
related to the distinction between high-level, tasknted
languages, on the one hand, and low-level, computer
oriented languages, on the other hand. This cosafirm
previous field studies carried out by Nardi [21].

What specific programming language one chooseséo lu
claim, should not be a main concern in end-usermedimg,

but rather how well the computational mechanisms
provided by the language map to the tasks thaswgish to
perform. The BETA code available to the users in the
experiment was deliberately made to be task-orientéis

was possible since the code defines mechanisms of

application units, and application units are, byirdion,
task-oriented.

RECOMMENDATIONS

My study has shown that end-users with introductexel
knowledge of programming are able to participatéuither
development of computer applications by tailoringm at
different levels of complexity without being progésnal
programmers. End-user tailoring brings programming
closer to users by integrating tailoring tools irgeneric
applications in a way that makes small programming
changes have a perceivable effect on the user. Vigig

requires developers of tailorable applications to

reconceptualize applications as collections of etspe
oriented application units.

OPEN ISSUES
Some issues for further investigation are:

e Is it possible to do “deep” tailoring without a
programming language?

¢ Should we aim at higher-level (more domain-oriehted
programming languages?

¢ How can we integrate application units without an
application framework?

CONCLUSION

| have reported on the results of a recent Ph.Esedliation.
It proposes a novel approach for conceptualizingmater
application (by aspects), and models the smalleable
unit of an application (application unit) in terragkitchen
appliances. | have further built a generic drawimggram
as a collection of application units and integrat®itbring
tools into it. The tailoring tools operate at thramularity of
the application unit. Tailoring of application wihas been
evaluated in an experiment with twelve college-dawers.

I conclude from the experiment that tailoring beldie
interface is viable and necessary in order to wealsers in
further development of computer systems. This mequi
some knowledge of programming, but the learningveur
can be lowered by starting from already built apgtion
units. Incrementally changing them by simple progra
extensions will create perceivable effects for the end-user.

ACKNOWLEDGMENTS

The research reported in this paper was conductephe
of the author’'s Ph.D. dissertation at the Univgrsit Oslo.

| thank members of the Systems Development groupeat
Department of Informatics for challenging discussiol
thank Barbara Wasson for useful comments on thst fir
version of this paper.

REFERENCES

1. Bjerknes, G., and Bratteteig, T. The Application
Perspective: An Other Way of Conceiving System
Development and Edp-based Systenf&oceedings
IRIS-7 Seventh Scandinavian Research Seminar on
Systemeering (Helsinki, Finland, 1984). Helsinki School
of Economics, 204-225.

Braa, K. Priority Workshops as a Springboard User
Participation in Redesign Activities.Proceedings
COOCS’95 Conference on Organizational Computing
Systems (Calif., 1995), ACM Press, xx-yy.

Ehn, P., and Kyng, M. A Tool Perspective on Desf
Interactive Computer Support for Skilled Workers.
Proceedings IRIS-7 Seventh Scandinavian Research
Seminar on Systemeering (Helsinki, Finland, 1984).
Helsinki School of Economics, 211-242.

Ehn, P. and Kyng, M. Cardboard Computers: Magkin
it-up or Hands-on the Future. In J. Greenbaum and M

3.

4,

Kyng (eds.)Design at Work: Cooperative Design of 15.Mackay, W. Users and Customizable Software: A C
Computer Systems. Lawrence Erlbaum, Hillsdale NJ, Adaptive Phenomenon. Ph.D. thesis. Sloan School of
1991, 169-195 Management. Massachusetts Institute of Technology,

5. Eisenberg, M. Programmable Applications: Inteter Cambridge MA, 1990.

Meets InterfaceSIGCHI Bulletin 27, 2 (1995), 68-83. 16.MacLean, A., Carter, K., Lovstrand, L., and siorT.

6. Eisenberg, M., and Fischer, G. Programmable gbesi User-Tailorable Systems: Pressing the Issues with
Environments: Integrating End-User Programming with ~ BULONs. Proceedings of CHI'90 (Seattle WA, April
Domain-Oriented Assistance?roceedings of CHI'94 1990), ACM Press, 175-182.

(Boston MA, April 1994), ACM Press, 431-437. 17.Madsen, O.L., Mgller-Pedersen, B., and Nyga#rd,

7. Ericsson, K.A., and Simon, H.AProtocol Analysis: Object-Oriented Programming — in the ~ BETA
Verbal Reports as Data. The MIT Press, Cambridge Programming Language. Addison-Wesley, Wokingham
MA, 1984, UK, 1993.

8. Escher, M.C.The Graphic Work of M.C. Escher. 18.Mgrch, A. Application Units: Basic Building Biks of
Ballantine Books. New York NY. 1971. Tailorable Applications. Proceedings of EWHCI'95
' ’ (Moscow Russia, July 1995) Lecture Notes in Compute

9. Fischer, G., and Girgensohn, A. End-User MoHifiy Science 1015. Springer-Verlag, Berlin, 45-62.
in Design Environments. Proceedings of CHI'90 L
(Seattle WA, April 1990), ACM Press, 183-19. 19.Mrarch,' A'. Three Le_vels of End-U_ser Tailoring:
] Customization, Integration, and Extension. In M.ngy
10. Greenbaum, Windows on the Workplace: Computers, and L. Mathiassen (eds. omputers and Design in
Jobs, and the Organization of Office Work in the Late Context. The MIT Press, Cambridge MA, 1997.
Twentieth Century. Monthly Review Press, New York ' o
NY. 1995. 20.Mgrch, A.l. Method and Tools for Tailoring obfect-

,) oriented Applications: An Evolving Artifacts Approla.
11.Henderson, A. and Kyng, M. There’s No PlaceeLik Ph.D. thesis. Dept. of Informatics, University ol
Home: Continuing Design in Use. In J. Greenbaum and April 1997.
M. Kyng (eds.)Design at Work: Cooperative Design of .))
Computer Systems. Lawrence Erlbaum, Hillsdale NJ, 21.Nardi, B.A Small Malt?r of Programming: Perspectlv?s
1991, 219-240. on End User Computing. The MIT Press, Cambridge

MA, 1993.
12.Johnson, J., Roberts, T.L., Verplank, W., SpiditC.,

Irby, C.H., Beard, M. and Mackey, K. The Xerox Star 22.Norman, D.A. Taming Technology. Available as
A Retrospective./EEE Computer 22, 9 (September http://cogsci.ucsd.edu/~norman/DNMss/TamingTech.ht

1989), 11-26. ml, 1997.

13.Lange, B.M. and Moher, T.G. Some StrategiecRamfse 23 Nygaard, K. Program Development as a SocialAgt
in an Object-Oriented Programming Environment. Proceedings of Information Processing 86 (1986).

Proceedings of CHI'S9 (Austin TX, May 1989), ACM North-Holland, 189-198.
Press, 69-73. 24.Page, S.R., Johnsgard, T.J., Albert, U., anenAIC.D.
14.Lewis, C. Using the “Thinking-aloud” Method in User Customization of a Word ProcessBroceedings

Cognitive Interface Design. Research Report RC 9265 ¢/ CHI'96 (Vancouver BC, April 1996). ACM Press,

T.J. Watson Research Center, Yorktown Heights NY, 340-346.

1982. 25.Simon, H.A.The Sciences of The Artificial. Second
Edition. The MIT Press, Cambridge MA, 1981.

