
Aspects of End User Tailoring: People, Tools, Tailoring

$QGHUV�,��0¡UFK
Department of Information Science

University of Bergen,
N-5020 Bergen, Norway

+47 55584118
anders@ifi.uib.no

ABSTRACT
A novel approach to conceptualizing computer applications
– by aspects – is presented. The approach is proposed to
simplify end-user tailoring. Different aspects of an
application (user interface, rationale, and program code) are
tailored separately, and the interface between adjacent
aspects is updated automatically by the computer.

A tailorable application, BasicDraw, built and
conceptualized as a collection of three-aspect application
units has been evaluated with users in a video-recorded
experiment. The results show that it is easier to tailor the
interface than it is to tailor the program code.
Recommendations for tailoring of code are given.

Keywords
Information appliances, tailorable applications, aspects of
application units, levels of tailoring, empirical evaluation.

INTRODUCTION
End user computing is systems development undertaken by
users to further develop an existing system to needs that
were not accounted for in the original system [20]. This is
often accomplished by writing task-oriented scripts and
macros in high-level programming languages for off-the-
shelf computer applications, such as word processors,
spreadsheets, and drawing packages [21].

Studies has shown that a majority of word processor users
(92%) do tailor their applications in various ways, such as
setting parameters in preference forms to customize the
system [24]. Many users find this difficult and one reason
for this, according to Page et al., is that tailoring tools are
not well integrated into the systems.

In this paper I report on an approach to organizing
computer applications to simplify tailoring: conceptualizing
them as a collection of orthogonal DVSHFWV. The notion of
aspect is motivated in this section, and further developed in
the remainder of the paper. The anticipated users of the
approach are future developers of tailorable applications.

Aspects
An aspect is a singular facet of a complex (multi-faceted)
interactive system. It is characterized by being physically
connected to (one or more) adjacent aspects, but it is not
part of any other aspect in the conventional sense of a
part/whole decomposition of a complex system. Aspects are
different from parts in that they are organized in what I call
orthogonal aspect hierarchies rather than part/whole
composition hierarchies. The notion of aspect has taken
inspiration from Simon’s notion of “nearly decomposable”
systems [25] as well as gestalt psychology and language
philosophy. The latter influence is illustrated by the Escher
drawing shown in Figure 1 [8]. It is further explained
below.

)LJXUH� �� Organizing complexity as a collection of “nearly
decomposable” aspects. M.C. Escher ´'D\�DQG�1LJKW�´
Each of the three aspects in the drawing: white-bird, black-
bird, and landscape can be studied by itself without
reference to the others, and each aspect provides an
interface (boundary) to the others that is more or less well-
defined.

The DV\PPHWU\ of aspects is seen as a model for the
asymmetries found in interactive systems. It cannot easily
be modelled by conventional part/whole composition
hierarchies. The Escher drawing thus provides a clue for
how to (re)conceptualize and organize interactive systems
for the purpose of tailoring them. Furthermore, I propose a
solution for how to implement the model: identifying the
relevant aspects of a system, addressing each aspect by
itself, and creating well-defined interfaces between adjacent
aspects that are managed by the computer.

The rest of this paper builds support for these claims and is
organized as follows. Users of advanced information
appliances are identified. Household appliances is
suggested as a model for future information appliances. A
tailorable application is viewed as a collection of instances
of a type of information appliance referred to as an
application unit. Tools to tailor different aspects of an
application at the granularity of the application unit have
been built. A tailorable application BasicDraw has been
evaluated in a laboratory experiment. Results from the
experiment are reported.

Information Appliances
Most users of computer applications are not interested in
tailoring the applications but in using them to accomplish
useful tasks, such as writing reports and sending messages
by electronic mail. MacLean et al. [16] present data that
shows that there is not a sharp distinction between users and
programmers as is often thought. The authors characterize
the range of users from programmers to regular users as
lying along a “tailoring slope,” and including handymen
and tinkers in between. Handymen and tinkers have
acquired tailoring skills that are not typical of regular users,
but they are not perceived as programmers.

Mackay [15] has observed that many users are not able to
tailor the system they use without help from more capable
users, referred to as translators. Translators are able to take
a user’s problem and translating it into a solution. The kind
of tailoring that is most frequently performed is referred to
as FXVWRPL]DWLRQ: setting default preferences for user
interface layout and configuration options. The majority of
users consider customization to be useful [15, 24].

It has since been hypothesized that tailoring should be
extended to reach below the user interface and allow
different levels of a system to be tailorable as well [19], and
that the next generation computer application is not a
desktop application but an LQIRUPDWLRQ� DSSOLDQFH [22].
These two hypothesis, which at first may seem unrelated,
form the starting point for the rest of this paper.

The majority of today’s desktop applications are office
applications [10]. An information appliance, on the other
hand, is physically smaller than today’s desktop
applications, and it is primarily intended to be used in the
home, integrated with media appliances, such as television,
video, and telephone.

I propose that kitchen appliances be used as the model for
information appliances since kitchen appliances are some of
the most usable and useful tools we have today. Throughout
this paper I use a can-opener as an example to illustrate my
argument (Figure 2). The can-opener is seen as a simple
interactive system: a unit of three orthogonal aspects:
interface, rationale, and mechanism. Each of the aspects can
be (conceptually) taken apart and studied by itself and is
physically linked to other aspects by (more or less) well-
defined interfaces. Furthermore, the can-opener serves a

model for the structure of an application unit, which is the
term I use for an information appliance [18]. Application
units are further described in a later section.

,QWHUIDFH
5DWLRQDOH

0HFKDQLVP
)LJXUH��� The IKEA can-opener, a kitchen appliance, is seen as a
unit of three orthogonal aspects. It serves a model for the structure
of an application unit (a kind of information appliance).��
Although current kitchen appliances are relatively easy to
use, they are not easy to modify. First, they are difficult to
modify because they are not meant to be modified. Second,
they are difficult to modify because the building blocks they
are made of are static (black boxes). Computer applications,
on the other hand, have a greater potential for modifiability
because they are built out of dynamic building blocks
(software programs) that can be changed by rewriting the
program code.

RELATED WORK
Programmable Applications
Programmable applications [5] and design environments [6,
9] are classes of computational environments that give an
end-user support in modifying and extending these
environments. Modifiability is supported by access to high-
level, domain-oriented building blocks (analogous to LEGO
bricks), and extensibility is supported by writing small
programs in dynamic programming languages (e.g., LISP

and JAVA).

A goal of programmable applications is to support
programming not in terms of low-level machine instructions
but in terms of high-level, task-oriented building blocks and
to elevate programming to an activity that leverages the use
of the applications. A comprehensive discussion of some
motivational issues behind programmable applications is
given in [20].

In field studies of end-user programming behavior, Nardi
and her colleagues [21] have observed that users of
programmable applications, such as spreadsheets and CAD
systems, are able to master the formal notations embedded
in these systems (scripting languages) when the notations
match the tasks the user wishes to perform. This is in part
because users are already familiar with formal notations
from other activities, such as knitting and baseball score
keeping [21].

End User Participation
Involving end-users as first-class participants together with
developers and managers in projects where new technology

shift-
MouseUp

ctrlMouseUp

,QWHUIDFH

5DWLRQDOH

0HFKDQLVP

)LJXUH��� The BasicDraw application gives the user access to the three aspects of an application unit: Interface, Rationale, and Mechanism
(program code), and the aspects are linked by eventhandlers (two displayed). The screen image shows the three aspects of the “Rotate”
application unit. Tailoring will typically require making changes to each of the three aspects since they are partly interdependent.

is introduced is a well-established principle in Scandinavia
[23]. Users are the foremost experts on their own work and
therefore need to be involved in decisions regarding the
introduction of new technology at their workplace.
Furthermore, new technology will almost always change
existing ways of working [23].

Ehn and Kyng [3] suggest a “tool perspective” on
development and use of computer systems. This perspective
emphasizes that end-users should be active participants in
the design process rather than passive suppliers of data to
be used in formal specifications. The authors recommend
that users participate in the making of design specifications
by using tools and materials they are familiar with from
work and other everyday activities.

Bjerknes and Bratteteig [1] propose an “application
perspective” to involve end-users in design. The application
perspective puts technology in the context of use, i.e.,
viewing it from the users’ work tasks. These tasks are
different from the formal procedures encoded in the
technology they use to accomplish the tasks. On this basis
the authors recommend that computer systems be built by
studying the use situation and of finding new and creative

ways to use existing technology to influence and challenge
the development of technical tools.

Scandinavian end-user participation has primarily been
concerned with the involvement of end-users in the early
stages of systems development, i.e., during analysis, design
and prototyping. The perspective presented this paper is
that end-user participation should not stop once a system
has been installed, but continue to involve end-users in
future enhancements as well [2, 20]. This is addressed in
this work by combining the tool perspective [3] and the
application perspective [1]. The next section describes how
I interpret the tool perspective and the following section
how I interpret the application perspective.

TOOLS FOR TAILORING
User Interface Objects
The interface of a computer application is composed of user
interface objects. These objects mediate interaction
between a user and an interactive system in order to
complete work tasks, such as writing reports, tabularizing
data, creating diagrams, and making presentation slides.
These are typical tasks carried out with today’s computer
applications. The actual mechanism that transform user

input (keyboard press, mouse action, etc.) to system
functionality is the eventhandler. User interface objects
with eventhandlers was first introduced in the Xerox Star
computer [12].

The transition from using an application to tailoring it can
be supported by extending the eventhandler mechanisms of
conventional interface objects to allow for additional events
to be processed, each being associated with a specific level
of tailoring. This tailor-oriented perspective on user
interfaces has lead me to reconceptualize the notion of user
interface object and to propose an alternative unit of use,
the Application Unit.

Application Units
A computer application, in the context of this paper, is seen
as a collection of application units [18], and each
application unit is defined as a set of orthogonally
integrated aspects. The application unit is modelled after
the structure of the kitchen appliance shown in Figure 2.

The three aspects of an application unit are: (1) interface,
(2) rationale, and (3) mechanism. Interface is the user
interface objects and hence the aspect the user is primarily
concerned with. Rationale is documentation for KRZ�WR�XVH
an application unit as well as ZKDW its mechanism does and
ZK\ it does it. Mechanism is the program code that makes it
do it.

To tailor an application requires modifying one or more of
the three aspects of its application units. Access to the
various aspects is accomplished by holding down a
modifier key (option/alt, shift, or ctrl) while
performing the normal interaction gesture (pressing or
releasing a mouse button) on an interface object. This is
illustrated by the two arrows marked ctrlMouseUp and
shiftMouseUp in Figure 3.

When an aspect has been modified, the other aspects, and
the interface between modified aspects may have to be
updated. Whereas the latter can, to a large degree, be
automated by the computer, the former is a design activity
that has to be done manually by the end-user. When
tailoring the user interface, for example, the tailor may need
to make changes to the program code as well, keeping it
compatible with the interface changes, and vice versa. In
either case, the rationale may have to be updated. How to
link them up with each other again is accomplished by the
computer (saving the changes, compiling the code, etc.).

Tailoring the user interface may also require different skills
of the end-user than the skills required when tailoring the
mechanism. To tailor the mechanism, for example, the end-
user needs to be concerned about writing code in an
efficient manner as well as effectively utilizing previously
written code. On the other hand, to tailor the interface, the
tailor needs to be concerned about how to best support user
tasks, and user tasks are different from mechanisms (tasks
are typically informal whereas mechanisms must follow the
rules of a formal grammar).

Each aspect provides a view of the application that requires
its own set of tailoring tools. To provide a unified notion of
tailoring across aspects, tailoring tools are referred to as
HGLWRUV� and there is one editor per OHYHO of tailoring (each
level corresponding to an aspect). The correspondence
between aspects and levels is shown in Figure 4.

)LJXUH� �� Relationship between application unit aspects [18],
and tailoring levels [19].

EXAMPLE: TAILORING BASICDRAW
BasicDraw is a tailorable drawing program created by the
author. Its drawing functionality is similar in scope to the
functionality of small drawing editors found in word
processors and presentation programs. It allows the user to
create basic geometrical shapes such as rectangles, ovals,
and triangles, and to manipulate them by copying, moving,
scaling, and rotating them. These tasks are frequently
performed by computer users when they create diagrams in
written reports and visual presentations The tasks are
perceived to be simple by most computer users. It is not
simple, however, to tailor a drawing program to adapt it to
new needs.

)LJXUH��� Tailoring program code (mechanism) in an extension
editor� New code is added as extensions to old code (see Figure
3). The old code cannot be discarded.

Levels of Tailoring
There are three levels of tailoring supported by BasicDraw:
customization, integration, and extension [19].
Customization is the activity of changing the interface
aspect by setting parameters of interface objects in a
SUHVHQWDWLRQ� HGLWRU. Integration is the activity of changing
the rationale aspect by writing informal textual descriptions,
drawing uninterpreted diagrams, and pasting pictures in a
GUDZLQJ� HGLWRU. Extension is the activity of changing the
mechanism aspect by writing new program code in an
H[WHQVLRQ� HGLWRU� (Figure 5). None of the old code in
BasicDraw can be discarded. The reason for this is safety:
to prevent users from accidentally destroying mechanisms
that already works in the application.

Tailoring levels Aspects

Customization Interface

Integration Rationale

Extension Mechanism

EMPIRICAL EVALUATION
BasicDraw has been evaluated with end-users in an
informal user study in order to assess the usability of its
tailoring tools. The following section describes the study
(task, users, procedure) and gives a summary of some
results. A full description of the results can be found in
[20].

Task
The aim of the study was to assess the users ability to locate
and tailor a selected set of application units in the
BasicDraw application. Two simple but representative
exercises were devised for this purpose. The first was to
make a “rectangle” into a “square” and the second to
improve the “rotate” command. An abbreviated description
of the second exercise is shown in Figure 6.

0 -> 90 270 -> 360180 -> 27090 -> 180

)LJXUH��� One of the exercises in the experiment was to improve
the “rotate” command of BasicDraw according to the diagram
shown here (see Figure 3 for the original design). The diagram
was supplemented by a textual description (not shown).

The goal of the exercise was not to test the users’ ability to
create advanced application functionality but to compare
their individual differences with respect to tailoring at the
different levels (i.e., which levels are easier than others;
what tools are needed, etc.). Only the results related to
tailoring by extension are discussed in this paper since it
caused the most difficulties for the users. A discussion of
tailoring by customization and integration are found in [20].

Users
Twelve users participated in the experiment. They were
recruited by e-mail sent to all students and some faculty
members at the Department of Informatics at the University
of Oslo. The majority of respondents (67%) were from the
social informatics group. Two were female, ten were male.
All users received a compensation of 100 Kroner (about
$15) for volunteering. The participants had VRPH prior
knowledge of programming: each of them had taken an
introductory course in object-oriented programming. Some
of the users (42%) reported that it had been more than one
year since they last wrote a program. Others reported more
programming experience: about half of the users (58%) had
taken a course in BETA programming.

Procedure
BasicDraw is implemented in the BETA programming
language [19], and tailoring by extension required the users
to write some program code in BETA. Below is a program
solution to exercise II (which was to improve the “rotate”
command) created by one of the users (user #9). The

exercise required the users to extend the RotateObject
method of TestRectangle3, which is a subclass of
BasicRectangle (see Figure 4). The amount of program
code that each user wrote varied from 1 to 22 lines for each
application unit, and each exercise had about 2-3
application units (primarily shapes and commands). Not all
applications units required tailoring by extension.
TestRectangle3:BasicRectangle

(# Presentation::<

 (#

 do (100, 140) -> position;
 (50,30) -> size;
 #);

 RotateObject::< (* further extension *)
 (# (* new attributes *)
 do (* new statements *)
 �LI�$QJOH
������������WKHQ
���������[���ZLGWK��!�[�
�������������WKHQ
���������\���KHLJKW��!�\�
�������������WKHQ
���������[���ZLGWK��!�[�
�����������WKHQ
���������\���KHLJKW��!�\�
������LI��
������INNER;
 #);
#);

In the boldface code above the user has copied the if-
statement from the parent method (see Figure 3) and
created new statements for each of the four conditions of
“angle of rotation.” Each statement provides some
additional mechanism which, upon execution has the effect
of moving the rectangle in the direction specified by the
diagram when compared to the original design.

The main method used for data collection was “thinking
aloud” [7, 14]. Users were asked to “think aloud” and
verbalize their thoughts as they interacted with the system
to tailor it. The interaction was recorded on video-tape.
Before the recording started, the users were given a warm-
up exercise to practice thinking aloud. During the recorded
exercises both the computer interface and the spoken
interactions were captured on tape. The tapes were later
analyzed to identify usability problems and to identify
patterns of recurrent tailoring behavior. Some of the tapes
(the ones judged to be most representative) were
transcribed by hand. An excerpt from one of those tapes is
reproduced below:

1RZ� ZH� DUH� LQ� D� O\LQJ�ER[� SRVLWLRQ�� :KHQ� LW� LV
URWDWHG�LW�EHFRPHV�����GHJUHHV�

/HW�PH�VHH�����

:KDW� KDV� KDSSHQHG� KHUH� PXVW� EH� FKDQJHG� E\
SXVKLQJ�LW�WR�WKH�OHIW�WRZDUGV�WKH�RQH�ZH�KDG�DW�����

$QG�WR�GR�WKDW�ZH�NHHS�WKH�<�WKH�VDPH��EXW�IRU�WKH�;
ZH�VXEWUDFW�WKH�:LGWK�

;�PLQXV�:LGWK�LV�SXW�LQWR�;�

7KHQ�ZH�KDYH�WKH�ODVW�RQH��,I�$QJOH�LV����WKHQ����

,W�PHDQV� WKDW�ZH�KDYH�EHHQ�DW�����DQG�ZH�KDYH� WR
³OLIW´�LW�XS�DJDLQ��RU�VXEWUDFW�+HLJKW�IURP�WKH�<�

This excerpt is part of the protocol of user #9, and thus
corresponds with the program code shown in the text above.
It gives an example of recurrent behavior: “inventing”
informal concepts to explain program behavior. These
informal concepts (underlined in the above text) were not
suggested by the evaluator nor the problem description
given to them. Instead, the users invented them to explain
how the old system operated and how they wanted the new
system to behave.

Although informal, these concepts would almost always
correspond (one-to-one) with the formal concepts (program
code) they were writing. Part of the above protocol shows
that the user is reading aloud as he writes the code in the
editor.

I interpret the protocol data to mean that end-users prefer to
articulate requirements of computer systems not in terms of
a formal specification language but in terms that include a
large portion of informality (incomplete and changing
terminology), and that the informal elements need to be
integrated with formal elements associated with the
implementation language. The former interpretation
confirms previous studies that show that successful
(democratic) user involvement in systems development
requires users to have access to tools and materials they can
relate to [4]. In addition I have shown that the informal
approach can be integrated with a formal approach [20], by
viewing a system as a set of orthogonal aspects.

Findings
All twelve users were able to complete the two exercises,
which included locating the three aspects of a selected set
of application units (menus, menu items, and shapes), and
then tailoring the application units at one or more of the
three levels of complexity: customization (interface),
integration (rationale), and extension (mechanism). Some of
the users received help by the evaluator when they were
tailoring at the implementation level.

After the experiment, qualitative data was collected by
informal interviews and questionnaires. The data indicates
that tailoring differs at the various levels: it was more
difficult to tailor the mechanism (extension) than it was to
tailor the user interface (customization), and the difficulty
of tailoring rationale (integration) was somewhere in
between the other two.

None of the users reported difficulties when tailoring the
interface. The main difficulties users reported when
tailoring rationale were how to design it and how to map
design content (i.e., the design) to corresponding concepts

in the code. These results are further reported in [20]. The
main difficulties users had when writing program code are
displayed in the diagram of Figure 7. It is a multiple-choice
question taken from one of the questionnaires and presents
answers to the question of what the users thought was most
difficult about programming.

0

1

2

3

4

5

Understand
programming

OtherWhere to
write code

Syntax
of BETA

OO prog-
ramming

)LJXUH��� Answers to a question about what was most difficult
about programming.

None of the users reported that they thought it was difficult
to understand programming. Only one user (8%) reported
difficulty with understanding object-oriented programming.
Four users (33%) reported difficulty with BETA’s syntax,
and two users (17%) had difficulty understanding where to
write the code. Five of the users (42%) chose the “other”
option. Their difficulties were related to understanding the
flow of control from superclass to subclass, and of finding
out what variables were available and what values they had.

4XHVWLRQV�DERXW�SURJUDPPLQJ PHG UDQJ 1
�� How useful was it to look at/copy
from old code when writing new code?
(1 = totally useless; 4 = sometimes
useful; 7 = very useful)

6.5 5-7 12

)LJXUH� �� Median with range of answers to a rank-ordered
question to measure the usefulness of look at/copy from old code.

The data in Figure 8 are the answers provided by the users
to a related (rank-ordered) question. It shows that users
thought it was very useful (average score of 6.5/7) to have
access to old code in order to look at it and to copy from it
when writing new code. The users would actively read and
copy from the old code during the exercises that required
programming. The code defined the mechanisms they had
to work with, and included variables and algorithms from
immediate superclasses. This confirms previous studies of
software reuse that show that to have access to old code for
copy-paste-and-modify is useful during reuse of object-
oriented programs [e.g., 13].

DISCUSSION
Is it realistic to think that future users of information
appliances will be programmers, albeit programming in the

small? If not, should we still be seeing an application as
being partitioned into aspects? These are some of the
questions I have attempted to answer in this paper.

First, I consider programming to be among the last tools to
resort to when tailoring an application. In a previous paper I
have advocated a gradual transition into the complexity of
an application, a transition that should only go as deep as
getting a tailoring-problem solved [19].

Second, by reconceptualizing the basic unit of an
interactive system to be not an application but an
application unit, the complexity of an interactive system has
been reduced by partitioning it into smaller, self-contained
units. The latter was made possible in part by organizing
them as three orthogonal aspects that mutually reference
each other. Tailoring an application unit will in most cases
be much simpler than tailoring an application since most
application units are smaller than applications, and more or
less independent of each other. This require fewer lines of
code to be written. By making application units domain-
oriented, a large portion of the code that has to be written
can be reused from other application units.

BETA’s syntax was perceived by some users to be difficult
to master (see Figure 7). Nevertheless, only one user
thought that a scripting language would improve end-user
tailoring. I interpret this to mean that the dividing line
between what can be expected of end-users without any
knowledge of programming and what can be expected of
end-user programmers is not, as often perceived, related to
the distinction between small languages (with a “little”
syntax) and full-fledged languages (like BETA), but rather
related to the distinction between high-level, task-oriented
languages, on the one hand, and low-level, computer-
oriented languages, on the other hand. This confirms
previous field studies carried out by Nardi [21].

What specific programming language one chooses to use, I
claim, should not be a main concern in end-user computing,
but rather how well the computational mechanisms
provided by the language map to the tasks that users wish to
perform. The BETA code available to the users in the
experiment was deliberately made to be task-oriented. This
was possible since the code defines mechanisms of
application units, and application units are, by definition,
task-oriented.

RECOMMENDATIONS
My study has shown that end-users with introductory level
knowledge of programming are able to participate in further
development of computer applications by tailoring them at
different levels of complexity without being professional
programmers. End-user tailoring brings programming
closer to users by integrating tailoring tools into generic
applications in a way that makes small programming
changes have a perceivable effect on the user. This view
requires developers of tailorable applications to

reconceptualize applications as collections of aspect-
oriented application units.

OPEN ISSUES
Some issues for further investigation are:

• Is it possible to do “deep” tailoring without a
programming language?

• Should we aim at higher-level (more domain-oriented)
programming languages?

• How can we integrate application units without an
application framework?

CONCLUSION
I have reported on the results of a recent Ph.D. dissertation.
It proposes a novel approach for conceptualizing computer
application (by aspects), and models the smallest usable
unit of an application (application unit) in terms of kitchen
appliances. I have further built a generic drawing program
as a collection of application units and integrated tailoring
tools into it. The tailoring tools operate at the granularity of
the application unit. Tailoring of application units has been
evaluated in an experiment with twelve college-level users.
I conclude from the experiment that tailoring below the
interface is viable and necessary in order to involve users in
further development of computer systems. This require
some knowledge of programming, but the learning curve
can be lowered by starting from already built application
units. Incrementally changing them by simple program
extensions will create perceivable effects for the end-user.

ACKNOWLEDGMENTS
The research reported in this paper was conducted as part
of the author’s Ph.D. dissertation at the University of Oslo.
I thank members of the Systems Development group at the
Department of Informatics for challenging discussions. I
thank Barbara Wasson for useful comments on the first
version of this paper.

REFERENCES
1. Bjerknes, G., and Bratteteig, T. The Application

Perspective: An Other Way of Conceiving System
Development and Edp-based Systems. 3URFHHGLQJV
,5,6��� 6HYHQWK� 6FDQGLQDYLDQ� 5HVHDUFK� 6HPLQDU� RQ
6\VWHPHHULQJ�(Helsinki, Finland, 1984). Helsinki School
of Economics, 204-225.

2. Braa, K. Priority Workshops as a Springboard for User
Participation in Redesign Activities. 3URFHHGLQJV
&22&6¶��� &RQIHUHQFH� RQ� 2UJDQL]DWLRQDO� &RPSXWLQJ
6\VWHPV (Calif., 1995), ACM Press, xx-yy.

3. Ehn, P., and Kyng, M. A Tool Perspective on Design of
Interactive Computer Support for Skilled Workers.
3URFHHGLQJV� ,5,6��� 6HYHQWK� 6FDQGLQDYLDQ� 5HVHDUFK
6HPLQDU� RQ� 6\VWHPHHULQJ� (Helsinki, Finland, 1984).
Helsinki School of Economics, 211-242.

4. Ehn, P. and Kyng, M. Cardboard Computers: Mocking-
it-up or Hands-on the Future. In J. Greenbaum and M.

Kyng (eds.)� 'HVLJQ� DW� :RUN�� &RRSHUDWLYH� 'HVLJQ� RI
&RPSXWHU� 6\VWHPV. Lawrence Erlbaum, Hillsdale NJ,
1991, 169-195

5. Eisenberg, M. Programmable Applications: Interpreter
Meets Interface. 6,*&+,�%XOOHWLQ�27, 2 (1995), 68-83.

6. Eisenberg, M., and Fischer, G. Programmable Design
Environments: Integrating End-User Programming with
Domain-Oriented Assistance. 3URFHHGLQJV� RI� &+,
��
(Boston MA, April 1994), ACM Press, 431-437.

7. Ericsson, K.A., and Simon, H.A. 3URWRFRO� $QDO\VLV�
9HUEDO� 5HSRUWV� DV� 'DWD� The MIT Press, Cambridge
MA, 1984.

8. Escher, M.C. 7KH� *UDSKLF� :RUN� RI� 0�&�� (VFKHU�
Ballantine Books, New York NY, 1971.

9. Fischer, G., and Girgensohn, A. End-User Modifiability
in Design Environments. 3URFHHGLQJV� RI� &+,
��
(Seattle WA, April 1990), ACM Press, 183-19.

10. Greenbaum, J.�:LQGRZV�RQ�WKH�:RUNSODFH��&RPSXWHUV�
-REV�� DQG� WKH�2UJDQL]DWLRQ�RI�2IILFH�:RUN� LQ� WKH�/DWH
7ZHQWLHWK� &HQWXU\. Monthly Review Press, New York
NY, 1995.

11. Henderson, A. and Kyng, M. There’s No Place Like
Home: Continuing Design in Use. In J. Greenbaum and
M. Kyng (eds.). 'HVLJQ�DW�:RUN��&RRSHUDWLYH�'HVLJQ�RI
&RPSXWHU� 6\VWHPV� Lawrence Erlbaum, Hillsdale NJ,
1991, 219-240.

12. Johnson, J., Roberts, T.L., Verplank, W., Smith, D.C.,
Irby, C.H., Beard, M. and Mackey, K. The Xerox Star:
A Retrospective. ,(((� &RPSXWHU 22, 9 (September
1989), 11-26.

13. Lange, B.M. and Moher, T.G. Some Strategies of Reuse
in an Object-Oriented Programming Environment.
3URFHHGLQJV� RI�&+,
�� (Austin TX, May 1989), ACM
Press, 69-73.

14. Lewis, C. Using the “Thinking-aloud” Method in
Cognitive Interface Design. Research Report RC 9265.
T.J. Watson Research Center, Yorktown Heights NY,
1982.

15. Mackay, W. Users and Customizable Software: A Co-
Adaptive Phenomenon. Ph.D. thesis. Sloan School of
Management. Massachusetts Institute of Technology,
Cambridge MA, 1990.

16. MacLean, A., Carter, K., Lovstrand, L., and Moran, T.
User-Tailorable Systems: Pressing the Issues with
Buttons. 3URFHHGLQJV� RI� &+,¶��� (Seattle WA, April
1990), ACM Press, 175-182.

17. Madsen, O.L., Møller-Pedersen, B., and Nygaard, K.
2EMHFW�2ULHQWHG� 3URJUDPPLQJ� LQ� WKH� %(7$
3URJUDPPLQJ�/DQJXDJH. Addison-Wesley, Wokingham
UK, 1993.

18. Mørch, A. Application Units: Basic Building Blocks of
Tailorable Applications. 3URFHHGLQJV� RI� (:+&,¶��
(Moscow Russia, July 1995) Lecture Notes in Computer
Science 1015. Springer-Verlag, Berlin, 45-62.

19. Mørch, A. Three Levels of End-User Tailoring:
Customization, Integration, and Extension. In M. Kyng
and L. Mathiassen (eds.). &RPSXWHUV� DQG� 'HVLJQ� LQ
&RQWH[W. The MIT Press, Cambridge MA, 1997.

20. Mørch, A.I. Method and Tools for Tailoring of Object-
oriented Applications: An Evolving Artifacts Approach.
Ph.D. thesis. Dept. of Informatics, University of Oslo,
April 1997.

21. Nardi, B. $�6PDOO�0DWWHU�RI�3URJUDPPLQJ��3HUVSHFWLYHV
RQ� (QG� 8VHU� &RPSXWLQJ� The MIT Press, Cambridge
MA, 1993.

22. Norman, D.A. 7DPLQJ� 7HFKQRORJ\�� Available as
http://cogsci.ucsd.edu/~norman/DNMss/TamingTech.ht
ml, 1997.

23. Nygaard, K. Program Development as a Social Activity.
3URFHHGLQJV� RI� ,QIRUPDWLRQ� 3URFHVVLQJ� �� (1986).
North-Holland, 189-198.

24. Page, S.R., Johnsgard, T.J., Albert, U., and Allen, C.D.
User Customization of a Word Processor. 3URFHHGLQJV
RI� � &+,¶�� (Vancouver BC, April 1996). ACM Press,
340-346.

25. Simon, H.A. 7KH� 6FLHQFHV� RI� 7KH� $UWLILFLDO� Second
Edition. The MIT Press, Cambridge MA, 1981.

